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Abstract

This thesis provides an introduction into the basics of Evolutionary Game Theory. Evo-
lutionary Game Theory is linked with the concept of natural selection, which deals with
selection and mutation. After a small introduction in Game Theory, the definition of an
Evolutionary Stable Strategy (ESS) is introduced. An ESS focusses on the concept of
mutation, where the payoff is measured by the number of offspring. A point is an ESS
if it is a better strategy than a mutant strategy, and it fares better against the mutation
than the mutation does against itself. The main result is that an Evolutionary Stable
Strategy is always a symmetric Nash equilibrium, but the converse is not true. Then,
the concept of the Replicator Dynamic is introduced, which covers the concept of se-
lection. The replicator dynamics is an ordinary differential equation, which is used to
measure the change in the composition of the population over time. The main result
is that a Lyapunov stable stationary state is a symmetric Nash equilibrium. Finally, an
economic application of Evolutionary Game Theory is explained, where the replicator
dynamic equation is calculated, equilibrium points are found and stability is measured.
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Chapter 1

Introduction

Game theory is a growing subject with many sorts of applications. A broad, but ac-
curate, definition of game theory is given by Hans Peters in his book ’Game Theory: A
Multi-Levelled Approach’[15], which will be the basis of this study. He states: ’Game
theory is a formal, mathematical discipline which studies situations of competition and
cooperation between several involved parties’.

Game theory was originally created when Von Neumann and Morgenstern pub-
lished their book ‘Theory of Games and Economic Behavior’ in 1944[24]. Nevertheless, the
main revolution in game theory was accomplished by John Nash, who published his
article ’Non-Cooperative Games’ in the early 1950s[12]. In the early 1970s this resulted in
the realization of the powerful tool John Nash had provided in formulating the equi-
librium concept. This caused a reawakening in game theory, since economists applied
the idea to economic issues[25]. Nash’s theories were mainly based on rationality of
the players, which created ambiguousness about the definition of rationality. In 1973,
Maynard Smith published his article ‘The Logic of Animal Conflict’, where he introduced
evolutionary game theory[10][11][9]. Here is not assumed that the players are aware of
the game and therefore act rationally.

The introduction of evolutionary game theory required a radical shift in perspective
[18]. In evolutionary game theory, the players are interpreted as populations of individ-
uals or animals [15]. Each individual chooses among alternative actions whose payoffs
depend on the choices of other individuals. The distribution of observed behavior in a
population and the possible actions evolve over time, as fitter and more efficient strate-
gies become more prevalent. This prevalence of behaviors can make actions fitter or
less fit. So, one can imagine that the dynamics can become quite complex. Evolution-
ary game theory focusses on the question which behaviors become extinct and which
survive over time, and whether the system approaches a stable-steady state[2].

A fundamental point is that biologists often deal with the genetic mechanism of
natural selection. This mechanism can be used in economics or other social sciences as
well. In economics, the social mechanisms of learning and imitation are usually more
important than the genetic mechanism. A wide variety of learning and imitation pro-
cesses are conceivable and the appropriate dynamical representation is highly context-
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6 CHAPTER 1. INTRODUCTION

dependent. The results of evolutionary game theory could be interesting to economists
in the sense that the areas of attractions are easily found[2]. Market competition pushes
firms who are not maximizing their profits out of the market, and eventually reaches
an equilibrium. Evolutionary game theory enables analysis in these interactive envi-
ronments [25]. An example of such an interactive environment is illustrated in chapter
4.

Game theoretical concepts in evolutionary biology have been criticized by popula-
tions geneticists. The theory of long-term evolution neglects crucial aspects such as the
mating system or the mode of inheritance. Genetic constrains, which may be dominant
in a short-term perspective, will in the long run disappear due to the constant supply
of mutations [26].

This thesis aims to provide an introduction into the basics of evolutionary game the-
ory. This chapter will continue explaining the basics of standard game theory needed
to understand evolutionary game theory. Chapter 2 will enlighten the concept of evo-
lutionary stable strategies; Chapter 3 is about replicator dynamics and evolutionary
stability. The last chapter will show an economical application of evolutionary game
theory.

1.1 The basics

The models of game theory are highly abstract presentations of real life situations [14].
By providing different examples we will explain the basic definitions.

1.1.1 Time vs. Newsweek

The first example is a non-cooperative game involving two papers, Time Magazine and
Newsweek. They need to decide which article to publish on the front-page. Both parties
have two alternatives, ’Impeachment’ or ’Financial Crisis’. Their payoffs are shown in
the matrix below, which we call a payoff matrix:

Newsweek
Impeachment Financial Crisis

Time Magazine
Impeachment (45,45) (90,40)

Financial Crisis (40,90) (20,20)

Time Magazine is referred to as player 1 and considers the rows of the matrix. In other
words, they look at the ’first mentioned number’ in each of the possibilities. Newsweek
is referred to as player 2 and considers the columns of the matrix, or the ’second num-
ber mentioned’. It shows a 2× 2-matrix. Such a game is called a matrix game, and in
particular a bimatrix game, which are generally defined as follows:

Definition 1.1.1 (Matrix Game [15]). A matrix game is a m× n-matrix A of natural numbers
where the number of rows m and the number of columns n are integers such that m, n ∈ N with
m, n ≥ 1. The matrix A looks like:
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A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn


Definition 1.1.2 (Bimatrix Game [15]). A bimatrix game is a pair of m× n-matrices (A,B),
where m, n ∈ N with m, n ≥ 1.

The game in our example has a special format. It is called a symmetric game. We could
define the payoff as G = (A, AT), where A is given by:

A =

(
45 90
40 20

)
Definition 1.1.3 (Symmetric Game [15]). Let G = (A, B) be an m× n-bimatrix game. Then
G is symmetric if m = n and B = AT, where AT denotes the transpose of A. Hence, bij = aji
for all i, j = 1, ..., m.

Non-cooperative game theory designed by John Nash includes some assumptions. We
assume that both player have full knowledge about the payoffs of the game. They
choose simultaneously, without the possibility of bargaining. Thereby, both player act
rationally, which is often referred to as their ’best reply’. So, they should always max-
imize their expected payoff, given the knowledge of or conjecture about the strategies
chosen by the other players. Both players take the other person’s options into consid-
eration.

In this example Time Magazine (player 1) has to choose between the two articles.
If Newsweek (player 2) would choose to publish the impeachment article, Time Mag-
azine has to choose between a payoff of 45 or 40. Since they act rationally they prefer
to publish the impeachment article as well. If Newsweek would choose to publish
the financial crisis article, Time Magazine has to choose between a payoff of 90 or 20.
Again, they prefer to publish the article on impeachment. So, unregarded the choice
of Newsweek, Time Magazine’s best reply is always to publish the article on impeach-
ment. This is called a dominant strategy or pure strategy. The same deduction can be
performed for Newsweek, and again the result will show that their dominant strategy
is to publish the article on impeachment. This game as an equilibrium in pure strate-
gies, namely (impeachment, impeachment). Such a point is called a saddle point or Nash
equilibrium. In such a saddlepoint no player has the incentive to deviate unilaterally.

Definition 1.1.4 (Saddlepoint [15]). A position (i, j) in a m× n-matrix game A is a saddle-
point if aij ≥ akj for all k = 1, ..., m and aij ≤ aik for all k = 1, ...n. In other words, aij is a
saddlepoint if it is maximal in its column j and minimal in its row i.

The Nash equilibrium is the main tool in game theory. It is, for example, used in
oligopolistic and political competition [14]. Before presenting the definition of a Nash
equilibrium some insides on strategies are necessary.
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In a bimatrix game (A, B) player 1 considers the rows of the m× n-matrix A. A (mixed)
strategy of player 1 is a probability distribution p over the m rows of A, so an element
of the set

∆m := {p = (p1, ..., pm) ∈ Rm|
m

∑
i=1

pi = 1, pi ≥ 0 for all i = 1, ..., m}.

Player 2 considers the columns of the matrix B. Analogous, A (mixed) strategy of player
2 is a probability distribution q over the n columns of B, so an element of the set

∆n := {q = (q1, ..., qn) ∈ Rn|
n

∑
j=1

qj = 1, qj ≥ 0 for all i = 1, ..., n}.

Furthermore, a strategy p of player 1 is called pure if there is a row with pi = 1. This
is sometimes denote by ei (analogous, a strategy q of player 2 is called pure if qj = 1,
denoted by ej). In our example, the pure strategy of Time Magazine is p = (1, 0), also
denoted by e1. The same holds for Newsweek, their pure strategy is q = (1, 0), denoted
by e1.The interpretation and computation of the payoff for player 1 is as follows:

pAq =
m

∑
i=1

n

∑
j=1

piqjaij (1.1)

Where A is an m× n-matrix, p ∈ ∆m and q ∈ ∆n. Analagous, for player 2 the payoff is
calculated by

pBq =
m

∑
i=1

n

∑
j=1

piqjbij (1.2)

The definition of a Nash equilibrium was originally written by John Nash [12], but the
next definition is cited from Peters’ book [15]:

Definition 1.1.5 (Nash Equilibrium [15]). A pair of strategies (p,q) in an m × n-bimatrix
game (A,B) is a Nash equilibrium if p is the best reply of player 1 to q and q is the best reply of
player 2 to p. In other words, if both

pAq ≥ p′Aq for all p′ ∈ ∆m

and
pBq ≥ pBq′ for all q′ ∈ ∆n

hold. A Nash equilibrium (p,q) is called pure if both p and q are pure strategies. A Nash
equilibrium (p*, q*) is symmetric if every player plays the same strategy, if p* = q*.

We can conclude that our example has a symmetric Nash equilibrium in pure strategies,
namely((1, 0), (1, 0)).
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1.1.2 The Battle of the Bismarck Sea

The next game is an example of a zero-sum game, because the sum of the payoffs equal
zero in every case. The payoff matrix is given by [15]:

Japan
North South

America
North (2,-2) (2,-2)
South (1,-1) (3,-3)

The story of this game is that America (player 1, rows) wants to bomb the transport of
Japan to New Guinea (player 2, columns). America and Japan have two options: the
shorter Northern route, which will take 2 days, or the longer Southern route, which will
take 3 days. So, if they choose the same route America has either 2 or 3 days to bomb
Japan’s transport. If America chooses their route differently form Japan, they can call
back the planes and send them to the other route. But, this will delay the attack a whole
day. We assume that the number of bombing days is a positive payoff for America and
a negative payoff for Japan, therefore the sum of the game is zero. We could summarize
the payoffs into one matrix given by

A =

(
2 2
1 3

)
Where the payoff is considered positive for America (player 1), and negative for Japan
(player 2). From Japan’s perspective we see that if America would choose the shorter
Northern route, Japan needs to choose between a payoff of -2 or -2. Since these are
the same, Japan is indifferent between the two routes. If America would choose the
longer Southern route, Japan needs choose between a payoff of -1 or -3. In this case
Japan’s best reply is to choose the Northern route. Overall, Japan is slightly better of
with the Northern route, regardless the choice of America. Japan’s strategy is called
weakly dominant. America has full knowledge about the payoff and therefore knows
that Japan will probably choose the Northern route. America will choose the Northern
route as well (a payoff of 2 versus 1). The combination (North, North) maximizes its
minimal payoff in its row for America (because, 2 = min{2, 2} ≥ 1 = min{1, 3}) and
minimizes the maximum payoff in its column for Japan (because, 2 = max{2, 1} ≤ 3 =
max{2, 3}). This point is the saddlepoint or Nash equilibrium in this game.

1.1.3 Matching Pennies

Another often used example is the matching pennies game. This game is also an ex-
ample of a zero-sum game. In this game, both players have a coin which they simulta-
neously throw. If the coins match player 1 wins both coins. If they do not match, both
coins go to player 2. The payoff matrix is given by [15]:
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Player 2
Heads Tails

Player 1
Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)

If player 2 throws heads, player 1 wishes to throw heads as well, and if player 2 throws
tails, player 1 wishes to throw tails as well. From player 2’s perspective it is the other
way around. If player 1 throws heads, player 2 wishes to throw tails, and if player 1
throws tails player 2 wishes to throw heads. This shows that neither player has a pure
or dominant strategy in this game. The randomized choices of the players is called a
mixed strategy. These choices are often interpreted as ’beliefs’ of the players.

Theory about mixed strategy is, for example, used in describing the distribution
of the tongue length of bees or the tube length in flowers [14]. It has been proven that
every two-person matrix game has a value if mixed strategies are possible [23]. Suppose
player 1 chooses heads or tails with probability 1

2 . Suppose player 2 chooses heads with
probability q and tails with probability 1− q, where 0 ≤ q ≤ 1. The expected payoff for
player 1 is equal to 1

2 [q · 1 + (1− q) · −1] + 1
2 [q · −1 + (1− q) · 1] which is equal to 0 (so

independent of q). We say that 0 is the value of the game.

1.1.4 Prisoners’ Dilemma

Probably the most famous example is the prisoners’ dilemma given by [15]:

Prisoner 2
C D

Prisoner 1
C (-1,-1) (-10,0)
D (0,-10) (-9,-9)

This payoff matrix shows a symmetric 2× 2-matrix, non-zero sum game. Here, two
prisoners (players 1 and 2) have committed a crime together and are interrogated in-
dependently of each other. Both prisoners can choose to either ’cooperate’ (C), so not
betray his partner, or ’defect’ (D), betray his partner. The punishment for their crime is
10 years in prison. Both betraying their partner reduces their punishment by 1 year. If
they betray their partner and are not betrayed themselves they can go home, while the
other still has to stay for 10 years in prison. If they both do not betray the other they
are convicted to 1 year in prison for a minor offence. Their negative payoff (number of
years in prison) is shown in the payoff matrix.

By the same sort of reasoning as in the previous examples we see that both play-
ers have a pure strategy in betraying their partner, regardless what the other prisoner
does. So, the symmetric Nash equilibrium is (D, D) leading to a payoff of (−9,−9).
But, we see that both prisoners could be better of by both not betraying their partner
and therefore choose strategy C. By playing (C,C) their payoff would become (-1,-1).
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This shows that the result is not Pareto Optimal, since both player could obtain a bet-
ter payoff1. This game is a great metaphor within economics and is used to analyse
different situations [4]. Many scientists analysed the consequences of the possibility of
cooperation in similar situations, for example [1].

1An equilibrium is Pareto Optimal if it is impossible to reallocate so as to make an individual better off
without making at least one individual worse off.
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Chapter 2

Evolutionary Stable Strategies

With the standard interpretation of non-cooperative games, as explained above, It is as-
sumed that rational players are aware of the structure and constantly try to maximize
their payoffs by predicting the moves of their opponents[25]. Evolutionarily game the-
ory is motivated entirely different. Here, it is presumed that the players’ strategies are
biologically encoded and heritable. Individuals have no control over their strategy and
need not be aware of the game. They reproduce and are subject to the forces of natu-
ral selection. These mutations create alternative options or strategies. Thereby, in the
classical game theory a strategy is chosen for its payoff in that strategy. In evolution-
ary game theory the payoff is equivalent to the fitness function, where the payoff is
measured as the number of offspring. Evolutionary game theory is a replication of a
strategy so it can be carried out to the next generation [16].

A key concept in evolutionary game theory is the Evolutionary Stable Strategies (ESS).
An evolutionarily stable strategy is a strategy which, if adopted by a population in a
given environment, cannot be invaded by any alternative or mutant strategy. It was
originally developed by Maynard Smith and Price in 1973 [11]. The main conclusion
is that such a strategy is robust to evolutionary mutation pressures, which means that
a small mutation does not change the distribution of the population. The idea is as
follows. Suppose you repeatedly draw individuals (player 1 and 2) from a large popu-
lation to play a symmetric two person game. Further, assume that these individuals are
’programmed’ or ’genetically encoded’ to play a certain pure or mixed strategy. This
can be seen as the genetic structure of an individual. The individuals are not in control
of their strategy, since they inherited it from their parents. Evolutionary game theory
is interested in the effects that occur when you inject a small population of individuals
who are programmed to play a different pure or mixed strategy. They are interested
if this mutation disrupts the stability of the current state of the distribution among the
population. An evolutionary stable strategy occurs if the existing population has some
barrier against the mutation, such that the payoff of the mutant strategy falls below the
payoff of the current distribution [25].

We assume a large population (effectively infinite) so that we can reasonably model
the proportions of the two strategies. If the population were sufficiently small, we

13



14 CHAPTER 2. EVOLUTIONARY STABLE STRATEGIES

would, for example, need to worry about the random extinction of strategies at low
frequency. Weibull (1995) [25] argues in his book that for a positive invasion barrier
to be effective, such a barrier should exceed 1

n , where n is the size of the population.
Thereby, this way the effect of current individuals’ actions on others’ future actions can
be neglected. Neil (2004) [13] dedicated his research to explain why a large (infinite)
population is necessary. He shows that a large population results in a better test of
evolutionary stability.

Due to the Darwinian link it is an important subject of study within biological sci-
ences. The ESS is used for predicting outcomes of long-term phenotypic evolution
when fitness depends on the frequencies of the various phenotypes present in a popu-
lation. The largest advantage of this strategy is that it can be resolved with only in-
formation about phenotypic aspects, so without the often unknown genetic details.
Thereby, using ESS more complex ecological interactions and adaptations can be ex-
plored [3][19].

Despite the biological importance, economists use ESS as well. In such a social or
economic environment, evolutionary stability requires that any small group of indi-
viduals who try a different strategy are less well off then those who stick to the status
quo strategy. This way, the large populations have no incentive to change strategy. An
ESS that occurs in a social or economical environment may be thought of as a conven-
tion [25]. An example of using evolutionary game theory in economics is presented in
chapter 4.

In spite of the great use of ESS, it has a drawback. It is not certain that, during
the course of evolution, the ESS will be reached. One might expect that ESS is similar
to a convergence stability, which indicates that a process slowly approaches its point
of stability over time. Nevertheless, evolutionary stable strategies and convergence
stability are two independent stability concepts. Evolutionary stable strategies renders
a population against invasion by any new mutant. Whereas, convergence stability is
reached through small evolutionary steps. This has been acknowledged and researched
by several scientists like Eshel, Taylor and Geritz et al. [3][21]. They concluded that a
phenotype that is convergent stable can always be invaded by another phenotype. The
significance of the ESS as long-term predictor depends on whether or not the phenotype
is convergence stable1. A way to improve the model is to correct for preference in
selection. This is further explained in chapter 3 about replicator dynamics.

This chapter will start by expanding the knowledge about symmetric two-player
games. Then evolutionary stability is defined and some useful theories are provided.
We end with a set of examples to get a better understanding of evolutionary stable
strategies.

1A more detailed view on this matter can be found in Geritz et al. (1998) [3]
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2.1 Evolutionary Stability

This section provides the definition of a evolutionary stable strategy and some useful
theories. Let A be an m × n-matrix, and let ∆m denote the incumbent set of mixed
strategies for player 1 or player 2. The following definition is from the book of Peters
(2008), but is originally based on the definition given by Maynard Smith and Price
(1973) [15][11].

Definition 2.1.1 (Evolutionary Stable Strategy[15]). A strategy x ∈ ∆m is an evolutionary
stable strategy (ESS) in A if for every strategy y ∈ ∆m, y 6= x, there exists some εy ∈ (0, 1)
such that for all ε ∈ (0, εy) we have

xA(εy + (1− ε)x) > yA(εy + (1− ε)x) (2.1)

This indicates that when considering a small mutation εy + (1− ε)x of x, the original
strategy x is better than the mutant strategy y if 2.1 holds. Thereby, if the population x
is invaded by a small part of the mutant population y, it will survive since it fares better
against the mutation than y itself does. The following proposition shows that an ESS
results in a symmetric Nash equilibrium.

Theorem 2.1.1 ([15]). Let A be an m×m-matrix and let x ∈ ∆m be an ESS in A (so equation
2.1 holds). Then (x, x) is a Nash equilibrium in G = (A, AT).

Proof. Let y ∈ ∆m, then we need to show that xAx ≥ yAx. Take εy ∈ (0, 1) such that for
all ε ∈ (0, εy) we have

xA(εy + (1− ε)x) > yA(εy + (1− ε)x)

for all 0 < ε < εy as in theorem 2.1.1. By taking limε→0, we see that xAx ≥ yAx.

This theorem shows that evolutionary stable strategies result in symmetric Nash equi-
libria. It is then sufficient to restrict our attention to symmetric Nash equilibria. It
is easily verified that every ESS is optimal against itself. If a strategy x is not opti-
mal against itself, then there exists some other strategy y that obtains a higher payoff
against x than x does. Hence, if the population share of such a mutant strategy y is small
enough, then, by continuity of 2.1 it will earn more against the population mixture than
the incumbent strategy x will, and thus x is not evolutionarily stable [25].

This is not the only condition which should hold for x to be an ESS. The strategy x
should be a better reply to the mutant strategy y then y is to itself. To see this, suppose,
on the contrary, that an alternative best reply y to x earns at least as much against
itself as x does. Then y has a payoff at least as much as x, also against the mixture
εy + (1− ε)x (irrespective of ε), so x is not evolutionarily stable. The converse of this
also holds: if (x, x) is a symmetric Nash equilibrium and every alternative best reply y
earns less against itself than x earns against it, then such mutants do worse than x in
the post-entry population [25]. These insights are stated in the next theorem.
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Theorem 2.1.2. Let A be an m× m-matrix. If x ∈ ∆m is an ESS in A, then for all y ∈ ∆m

with y 6= x we have:
xAx = yAx −→ xAy > yAy (2.2)

Conversely, if (x, x) ∈ ∆m × ∆m is a Nash equilibrium in G = (A, AT) and 2.2 holds, then x
is an ESS.

Proof. The first part can be proved using contradiction. Let x ∈ ∆m be an ESS in A. Let
y ∈ ∆m with y 6= x and xAx = yAx. Suppose that xAy ≤ yAy. Then, for any ε ∈ [0, 1],
xA(εy + (1− ε)x) ≤ yA(εy + (1− ε)x), which contradicts 2.1, since it cannot be an
ESS.

Conversely, let (x, x) ∈ ∆m × ∆m be a Nash equilibrium in G = (A, AT) and let
2.2 hold for x. If xAx > yAx, then also xA(εy + (1− ε)x) > yA(εy + (1− ε)x) for
small enough ε ∈ (0, 1]. If xAx = yAx, then xAy > yAy, hence 2.1 holds for any
ε ∈ (0, 1].

With these two theorems we conclude that evolutionary stable strategies x occur in
symmetric Nash equilibria, and perform strictly better against any alternative best reply
y than that alternative best reply performs against itself. Combining the two theorems
above we can denote the set fo all ESS by ESS(A), which is characterized as follows:

Definition 2.1.2 ([15]). Let A be a symmetric m×m game. Then

ESS(A) = {x ∈ NE(A)|∀y ∈ ∆m, y 6= x [xAx = yAx −→ xAy > yAy]}

2.2 Symmetric Two-Player Games

Evolutionary game theory is often concerned with symmetric two-player games. We
are especially interested in symmetric Nash equilibria. We denote the set of Nash equi-
libria of (A, AT) by NE(A, AT) and the set of all symmetric Nash equilibrium that occur
in (A, AT) by

NE(A) = {x ∈ ∆m|(x, x) ∈ NE(A, AT)}
We can prove that this set is non-empty.

Lemma 2.2.1 ([15]). For any m×m-matrix A, NE(A) 6= ∅. In other words, every symmetric
m×m-matrix game has a symmetric Nash equilibrium.

Proof. Some definitions in this proof have not been addressed earlier in the thesis. They are
mentioned to complete the proof. For more information see Peters’ book [15]
Let x ∈ ∆m, viewed as a strategy of player 2 in (A, AT), also referred to as (q, 1− q) for
0 ≤ q ≤ 1. Let β1(x) be the set of best replies of player 1 in (A, AT), called (p, 1− p).
For a set of best replies holds that for some 0 ≤ a ≤ 1 the set looks like:

β1(x) =


{(1, 0)}( or {(0, 1)}) if 0 ≤ q < a
{(p, 1− p)|0 ≤ p ≤ 1} if q = a
{(0, 1)}( or {(1, 0)}) if a < q ≤ 1



2.2. SYMMETRIC TWO-PLAYER GAMES 17

(For methods to derive such a function see the ’Hawk-Dove’ example in section 2.3).
This set is an example of a upper semi-continuous set. Thereby, the function can take on
every value for any 0 ≤ p, q ≤ 1 within the set, which indicates that the set is convex2.
So, the correspondence x 7→ β1(x) is upper semi-continuous and convex valued, then
by the Kakutani Fixed Point Theorem3 we know that β1(x) has a fixed point we call
x∗. So, x∗ ∈ ∆m with x∗ ∈ β1(x∗). Since player 2’s payoff matrix is the transpose of
A, it follows that also x∗ ∈ β2(x∗). Thus, (x∗, x∗) ∈ NE(A, AT), and therefore x∗ ∈
NE(A).

Weibull (1995) [25] proves in his book (section 1.3.3) that payoff differences between
any two strategies for a player, given other players’ strategies, are invariant under local
shifts of payoff functions. Since Nash equilibria are defined in terms of such payoff
differences, the set NE(A) is invariant under transformations which are shown below.
Evolutionary stability is defined in terms of such individual payoff differences, and
therefore is the set NE(A) invariant under local payoff shifts. Thus, for the following
payoff matrix,

A =

(
a11 a12
a21 a22

)
(2.3)

we may consider (without loss of generality) the following:

A′ =
(

a11 − a21 a12 − a12
a21 − a21 a22 − a12

)
=

(
a11 − a21 0

0 a22 − a12

)
=

(
a1 0
0 a2

)
where a1 := a11 − a21 and a2 := a22 − a12 [15]. For a generic matrix A4, with a1, a2 6= 0,
there are essentially three different cases.

In the first case, a1 and a2 are of opposite sign. This is a variety of the Prisoners’
Dilemma. If, for example, a1 = 1 and a2 = −1 then A′ becomes;

A′ =
(

1 0
0 −1

)
Since we are discussing symmetric games the payoff matrix can be viewed as (A, AT):

Player 2
Option 1 Option 2

Player 1
Option 1 (1,1) (0,0)
Option 2 (0,0) (-1,-1)

2A set S is called convex if whenever a, b ∈ S the segment [a, b] is also contained in S (for example, discs
and rectangles are convex) [7].

3Kakutani Fixed Point Theorem: Let Z ⊆ Rn be a non-empty compact and convex set and let F : Z 7→ Z
be an upper semi-continuous and convex valued correspondence. Then F has a fixed point[15] The proof of
this theorem goes beyond the complexity of this thesis, a proof of this theorem can be found in [5]

4The main characteristic of a generic matrix A is that it has non-zero and distinct eigenvalues.
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By the same reasoning as explained in chapter 1, we see that both players have a domi-
nant strategy for the option 1. The symmetric Nash equilibrium is for x = ((1, 0), (1, 0))
or (e1, e1). Such games posses exactly one evolutionary stable strategy; NE(A) = {e1}
if a1 > 0, a2 < 0 and NE(A) = {e2} if a1 < 0, a2 > 0 [25] These equilibria are evolution-
ary stable since they are pure.

In the second case, a1 and a2 are both positive. In this case, we have three symmetric
Nash equilibria. If for example a1 = a2 = 1 then

A′ =
(

1 0
0 1

)
The game has two symmetric equilibria in pure strategies, namely ((1, 0), (1, 0)) and
((0, 1), (0, 1)). Thereby, an equilibrium occurs in mixed strategies. Since both par-
ties are indifferent between the two options an extra symmetric Nash equilibrium is
(( 1

2 , 1
2 ), (

1
2 , 1

2 )). In general, NE(A) = {e1, e2, x̂}, where x̂ = ( a2
(a1+a2)

, a1
(a1+a2)

). The two

equilibria e1 and e2 are pure and thus evolutionary stable. However, x̂ is not evolution-
ary stable since all y ∈ ∆2 are best replies to x̂ [25].

The third and final case is when a1 and a2 are both negative. We have a variety
of the Hawk-Dove problem, explained later this chapter. Such a game has two pure
asymmetric equilibria and one symmetric equilibrium. If, for example, a1 = a2 = −1
then A′ becomes;

A′ =
(
−1 0
0 −1

)
The two asymmetric equilibria are ((1, 0), (0, 1)) and ((0, 1), (1, 0)). Again, the players
are indifferent between the two strategies, therefore the only symmetric equilibria is
(( 1

2 , 1
2 ), (

1
2 , 1

2 )). So, NE(A) = {x̂} with x̂ = ( a2
(a1+a2)

, a1
(a1+a2)

). Only this time, x̂ is evo-
lutionary stable, because there are no pure strategies which can intrude the stability.
[25].

2.3 Examples

2.3.1 The Hawk-Dove Game

One of the most well known examples in evolutionary game theory is the Hawk-Dove
game [14][15][17][19]. The game is about individuals of the same large populations who
meet at random, in pairs, and behave either aggressively (Hawk) or passively (Dove).
Their behavior is genetically determined, so they are not able to choose between the
two modes of behavior. The payoffs shown below reflect the Darwinian fitness, in
other words, the number of offspring.
It is immediately seen that it is a symmetric matrix game G = (A, AT) with:

A =

(
0 3
1 2

)
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Player 2
Hawk Dove

Player 1
Hawk (0,0) (3,1)
Dove (1,3) (2,2)

A mixed strategy p = (p1, p2) is interpreted as expressing the population shares of indi-
viduals characterized by the same type of behavior. So, p1 × 100% of the populaion are
Hawks and p2× 100% op the population are Doves. We would like to find a symmetric
Nash equilibrium, since at this point the players have the same strategy. We observe
that this game has two Nash equilibria in pure strategies, namely (Hawk, Dove) and
(Dove, Hawk). To find all Nash equilibria we determine the best replies of both players.
We first consider the strategy (q, 1− q) of player 2. If the expected payoff from playing
Hawk is higher than the expected payoff from playing Dove, the best reply for player
1 is playing Hawk so (q, 1− q) = (1, 0). The best reply for player 1 is Hawk if:

0q + 3(1− q) > 1q + 2(1− q)

which holds for q < 1
2 . Therefore, Dove is the best reply if q > 1

2 , and player 1 is
indifferent between Hawk and Dove for q = 1

2 . Summarizing, if we call the set of best
replies for player 1 β1(q, 1− q) we have:

β1(q, 1− q) =


{(1, 0)} if 0 ≤ q < 1

2

{(p, 1− p)|0 ≤ p ≤ 1} if q = 1
2

{(0, 1)} if 1
2 < q ≤ 1

Since the game is symmetric we find, by analogous reasoning, that the playing Hawk is
best strategy for player 2 if p < 1

2 . Therefore, if we call the set of best replies for player
2 β2(p, 1− p) we also have:

β2(p, 1− p) =


{(1, 0)} if 0 ≤ p < 1

2

{(q, 1− q)|0 ≤ q ≤ 1} if p = 1
2

{(0, 1)} if 1
2 < p ≤ 1

We can conclude that there are three Nash equilibria: ((1, 0), (0, 1)), (( 1
2 , 1

2 ), (
1
2 , 1

2 )), and
((0, 1), (1, 0)). Obviously, only (( 1

2 , 1
2 ), (

1
2 , 1

2 )) is a symmetric Nash equilibrium. To
make sure it is an ESS, equation 2.2 must hold. So consider again x = (( 1

2 , 1
2 ), (

1
2 , 1

2 )). Let
y = (y, 1− y) be an arbitrary strategy, then xAx = yAx is always satisfied since (x, x) is
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a Nash equilibrium5. We check whether xAy > yAy holds for all y = (y, 1− y) 6= x.

xAy > yAy
2

∑
i=1

2

∑
j=1

xiyjaij >
2

∑
i=1

2

∑
j=1

yiyjaij
6

x1y1a11 + x1y2a12 + x2y1a21 + x2y2a22 > y1y1a11 + y1y2a12 + y2y1a21 + y2y2a22

1
2
(1− y) · 3 + 1

2
y · 1 + 1

2
(1− y) · 2 > y(1− y) · 3 + (1− y)y · 1 + (1− y)2 · 2

4y2 − 4y + 1 > 0

Which holds for all y 6= 1
2 . We can now conclude that x = ( 1

2 , 1
2 ) the unique evolution-

ary stable strategy is in A.

2.3.2 Rock-Paper-Scissors

We can extend the theory of evolutionary stable strategies to a symmetric 3× 3-matrix
game. A well-known childrens game is rock-paper-scissors, shown in the following sym-
metric matrixgame:

Player 2
Rock Paper Scissors

Rock (1,1) (2,0) (0,2)
Player 1 Paper (0,2) (1,1) (2,0)

Scissors (2,0) (0,2) (1,1)

The matrix B obtained from the payoff matrix is

B =

1 2 0
0 1 2
2 0 1


The rules are simple. Rock (strategy 1) beats scissors, scissors (strategy 2) beats paper,
and paper (strategy 3) beats rock. Intuitively we see that this game has no Nash equi-
librium in pure strategies. Using the methods from the previous example it is easily
shown that there is exactly one Nash equilibrium in mixed strategies. Namely when
both players randomize their choice, so for (x, x) with x = ( 1

3 , 1
3 , 1

3 ). Obviously this is
a symmetric Nash equilibrium, but it can be shown that it is not an ESS. The strategy
(x,x) is be an ESS if 2.2 holds. If we use the mutant strategy y = e1 we see that

5for y = (y, 1− y) we see xAx = 3
2 , but also yAx = 3

2 . So yAx is independent of y for (x, x) a Nash
equilibrium.

6See equation 1.1
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xAx = yAx
3

∑
i=1

3

∑
j=1

xixjaij =
3

∑
i=1

3

∑
j=1

yixjaij

1 = 1

which is in line with the assumption of theorem 2.1.2, but then xAy ≯ yAy can never
hold, since both sides are equal to 1. From theorem 2.1.1 we know that every ESS is
a symmetric Nash equilibrium. This example shows that the converse is not true. A
symmetric Nash equilibrium is not necessarily an ESS.
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Chapter 3

Replicator Dynamics and
Evolutionary Stability

Central in evolutionary theories are the concepts of mutation and selection. We have
discussed the concept of mutation in the chapter about evolutionary stable strategies.
As mentioned before, this theory is not complete. To capture the concept of selection
and thereby search for convergence stability, we introduce replicator dynamics [15].
Basically, the replicator dynamic is a dynamic which describes how the frequencies of
strategies within a population change in time, according to the strategies’ success [6].
The replicator dynamics is a system of ordinary differential equations, which do not
cover the mutation mechanism at all. Robustness against mutations is indirectly taken
care of by the criteria of dynamic stability[25]. Dynamic stability is achieved when
small shifts in the shares of the population always move back towards the equilibrium,
this indicates that mutations are taken care of by natural selection.

We assumed with evolutionary stability that individuals were ’programmed’ for
pure and mixed strategy. The basic replicator dynamics assumes that each individuals
can only be programmed to pure strategies. So, we interpreted a mixed strategy x as
a population state, where each component xi represents the population’s share of indi-
viduals who are programmed to the corresponding pure strategy i. The interpretation
of the payoff remains the same, random pairwise matchings in a large population cre-
ates the level of fitness measured by the number of offspring. Each offspring inherits a
parent’s strategy[25].

In 1978 Taylor and Jonker [21] published their article ’Evolutionary Stable Strategies
and Game Dynamics’, where they introduced the replicator dynamics. They assumed
that the population develops according to an ordinary differential equation which will
be presented in this chapter. The replicators are the pure strategies, which can be copied
without error from parent to child, with the individuals in the population being their
hosts. When the population state changes, the payoff to the pure strategies also changes
from fitness[25].

In the analysis of the next chapter we give few extra definitions. Let I = {1, 2, ..., n}
be a set consisting of all players, with n ∈ N. Let Si be the set of pure strategies for

23
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player i. The set of pure strategies of player i is denoted by Si = {1, 2, ..., mi}, with
mi ≥ 2. The set of pure strategies that is assigned positive probabilities by some mixed
strategy xi is called the support of xi, and is denoted by C(x) = {h ∈ Si|xih > 0} The
set C(x) denotes the set of all interior points. The mixed strategies in this set are called
interior or completely mixed. The strategies have positive probability for all the pure
strategies and therefore have full support. C(x) = S for all i ∈ I [25].

3.1 Replicator Dynamics

Consider again a large but finite population of individuals, and consider a symmetric
m×m-matrix game A. We can interpreted a mixed strategy x ∈ ∆m as a vector of pop-
ulation shares over pure strategies, evolving over time. For example in the Hawk-Dove
game, x = ( 1

2 , 1
2 ) indicates that half of the population has the pure strategy ’Hawk’, and

half of the population has the pure strategy ’Dove’. These population shares change
over time. So, x is dependent on time, we write x = x(t) [15]. The expected payoff for
playing the pure strategy i equals ei Ax, therefore the average payoff equals

m

∑
i=1

xiei Ax = xAx. (3.1)

As mentioned before, Taylor and Jonker [21] assumed in their article that population
shares develop according to a differential equation. This equation is defined as:

ẋi =
dxi(t)

dt
= [ei Ax− xAx]xi (3.2)

for i = 1, 2, ..., m pure strategies. This equation is called the replicator dynamics. The
share of the population playing the pure strategy i changes with a rate proportional to
the difference between the expected payoff of i and the average population payoff[15].

To analyse replicator dynamics and therefore equation 3.2 we use theory off differ-
ential equations and dynamical systems. We will restrict our attention to a few basic
concepts.

For each initial state x(0) = x0 ∈ ∆m, equation 3.2 induces a solution ξ(t, x0) ∈ ∆m.
We call x a stationary point of the dynamics in 3.2 if ẋ = (ẋ1, ..., ẋm) = (0, ..., 0), in other
words ∑m

i=1 ẋi = 0. For example, ei is a stationary point for all i [15].

Definition 3.1.1 ([15]). A state x is Lyapunov stable if every open neighborhood B of x contains
an open neighborhood B0 of x such that ξ(t, x0) ∈ B for all x0 ∈ B0 and t ≥ 0.

Definition 3.1.2 ([15]). A state x is asymptotically stable if it is Lyapunov stable and it has an
open neighborhood B∗ such that limt→∞ ξ(t, x0) = x for all x0 ∈ B∗.

This implies that if a state x is Lyapunov stable, then it is a stationary point.
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3.2 Symmetric Two-Player Games

We again consider two-player games, but this time to analyse the replicator dynam-
ics for symmetric 2× 2 games corresponding to A. Without loss of generality we can
restrict our attention to the normalized game

A′ =
(

a1 0
0 a2

)
(3.3)

Recall that a1 = a11 − a21 and a2 = a22 − a12. Using x = (x1, x2) with 0 ≤ x1, x2 ≤ 1 and
x1 + x2 = 1, the replicator dynamics of equation 3.2 is can be reduced to

ẋ1 = [e1Ax− xAx]x1

= [x1a1 −
2

∑
i=1

2

∑
j=1

xixjaij]x1

= [x1a1 − (x2
1a1 + x2

2a2)]x1

= x2
1a1 − x3

1a1 − x1x2
2a2

= x2
1a1(1− x1)− x1x2

2a2

= x2
1x2a1 − x1x2

2a2

= [a1x1 − a2x2]x1x2

Since x1 + x2 = 1, it follows that ẋ1 + ẋ2 = 0 =⇒ ẋ2 = −ẋ1. We consider the same three
cases as before:

In the first case, a1 and a2 are of opposite sign. If, for example a1 = −1 and a2 = 1,
then wee see that;

ẋ1 = [x1a1 − x2a2]x1x2

= (−x1 − x2)x1x2

= −x1x2

This shows that the population always declines. We conclude that the population either
always decreases (for a1 < 0 and a2 > 0) or always increases (for a1 > 0 and a2 < 0).
Therefore, the stationary points of the dynamics are x = e1 and x = e2. Starting from
any interior initial position, the population share converges to the unique ESS [15][25].

In the second case both payoffs a1 and a2 are positive. The sign of the growth rate
x1 changes when a1x1 = a2x2, so when x1 = a2

(a1+a2)
. If both payoffs are positive, x1

tend towards 0 from any point below the ’switch point’, and x1 increases to 1 for any
point above this point. These results show that from any initial interior position, the
population share converges to one of the two ESS’s [25], and that x1 = a2

(a1+a2)
is a

saddle-point.
For the final case, both payoffs a1 and a2 are negative. Since we know that x̂ =

( a2
(a1+a2)

, a1
(a1+a2)

) is an ESS, we see that x1 increases towards a2
(a1+a2)

from any lower initial
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value and decreases towards this fraction from any higher initial value. So, the game
has one unique ESS and the game always converges to this point, independent of the
interior initial position [25].

This information leads to the following theorem.

Theorem 3.2.1. Let A be a generic 2× 2 matrix and let x ∈ ∆2. Then x ∈ ESS(A) if and only
if x is an asymptotically stable state of the replicator dynamics.

3.3 Nash Equilibrium Strategies

This information brings up questions about the linkage between replicator dynamics
and Nash equilibirum strategies. The next theorems answers these questions. We con-
sider the 2 × 2 payoff matrix A mentioned in the previous section. Thereby, the set
denoted by ∆m

0 is the interior of the set ∆m. In other words, ∆m
0 = {x ∈ ∆m|x > 0} is the

set of completely mixed strategies [15]. In the next theorem the set ST(A) consists of all
the stationary states, so when ẋi = 0:

ST(A) = {x ∈ ∆m|∀i ∈ C(x) [ei Ax = xAx]} (3.4)

Theorem 3.3.1 ([15]). For any finite symmetric two-player game with payoff matrix A we
have:

1. {e1, ..., em} ∪ NE(A) ⊆ ST(A)
2. ST(A) ∩ ∆m

0 = NE(A) ∩ ∆m
0

3. ST(A) ∩ ∆m
0 is a convex set and if z ∈ ∆m is a linear combination of states in this set,

then z ∈ NE(A)

Proof. (1) From theorem 2.1.1 we see for every pure strategy i that ei Ax = xAx and thus
ei ∈ ST(A). If we take x ∈ NE(A), then every i ∈ C(x) is a pure best reply, which
indicates that ei Ax = xAx. For i /∈ C(x) we see xi = 0. So we conclude x ∈ ST(A). This
proves the first statement
(2) We know for x ∈ ST(A), and thus for x ∈ ST(A) ∩ ∆m

0 , that ei Ax = xAx. Since the
same holds for x ∈ NE(A) ∩ ∆m

0 we can conclude the second statement.
(3) Let x and y be two completely mixed and stationary points. In other words, x, y ∈
ST(A) ∩ ∆m

0 . Let α, β ∈ R and let z = αx + βy ∈ ∆m. Then for any pure strategy i we
have

ei Az = αei Ax + βei Ay = αxAx + βyAy = zAz

This implies that z is stationary. If z is completely mixed, statement (2) shows that if
z ∈ ST(A) ∩ ∆m

0 then also z ∈ NE(A) ∩ ∆m
0 . If z is a boundary point of ST(A) ∩ ∆m

0 ,
then it is also a boundary point of NE(A) ∩ ∆m

0 . In this case, z ∈ NE(A) since NE(A)
is a closed set. Since ∆m is convex and z ∈ ST(A) ∩ ∆m

0 for all α, β ≥ 0 with α + β = 1,
we can also conclude that ST(A) ∩ ∆m

0 is a convex set[15].

The main result of the theorem above is that every symmetric Nash equilibrium is sta-
tionary. Using Lyapunov stability we can refine the theorem about Nash equilibria.
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Theorem 3.3.2. Let x ∈ ∆m be a Lyapunov stable stationary state. Then x ∈ NE(A)

Proof. We prove this by contradiction. Suppose x /∈ NE(A). Then the first statement of
theorem 3.3.1 shows that x is not stationary, so ei Ax− xAx > 0 for some i /∈ C(x). We
may assume continuity, so there is a δ > 0 and an open neighborhood U of x such that
ei Ay− yAy ≥ δ for all y ∈ U ∩ ∆m. But then ξi(t, x0) ≥ x0

i exp(δt) for all x0 ∈ U ∩ ∆m

and t ≥ 0 such that ξ(t, x0) ∈ U ∩ ∆m. This is the result of the fact that the solution of
the differential equation ẏ = δy with initial condition (y0) = y0, is y(t) = y0exp(δt).
Now we see that ξ(t, x0) increases exponentially from any x0 ∈ U ∩ ∆m

0 with x0
i > 0

whereas xi = 0. This result contradicts Lyupanov stationary stability.[15].

The final subject to consider is asymptotic stability. The theory implies that asymptotic
stability implies Lyapunov stability and therefore by theorem 3.3.2 also Nash equilib-
rium. Then again, a Nash equilibrium implies stationarity by theorem 3.3.1. Therefore,
an asymptotic Nash equilibrium is isolated, which means that in a small neighborhood
around the Nash equilibrium no other equilibrium can be found. The next section con-
sidered examples to apply the previous theories [15].

3.4 Examples

3.4.1 The Hawk-Dove Game

The easiest way to illustrate the replicator dynamic is by continuing with the Hawk-
Dove example [15]. Recall that matrix A is defined as:

A =

(
0 3
1 2

)
Consider a vector of population shares x = (x, 1 − x), and an arbitrary individual
within the population. We know from 3.1 that the average fitness equals

2

∑
i=1

xiei Ax = xAx

=
2

∑
i=1

2

∑
j=1

xixjaij

= x1x1a11 + x1x2a12 + x2x1a21 + x2x2a22

= 2− 2x2

We assume that the share of the population develops over time. So, x is a function of
time t. The change in x is described by the time derivative ẋ = ẋ(t) = dx(t)

dt , which is
proportional to the difference with the average fitness. So, using equation 3.2 for the
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pure strategy ’Hawk’ (e1) this equals,

ẋ(t) = x(t)[e1Ax− xAx]

= x(t)[3(1− x(t))− (2− 2x(t)2)]

= x(t)(x(t)− 1)(2x(t)− 1)

This equation is the replicator dynamics for the Hawk-Dove game. It indicates that the
population of Hawks continuously changes over time and that this change is propor-
tional to the difference of the fitness at time t and the average fitness of the population.
Simplifying the equation (and writing x instead of x(t)) makes is possible to create a
diagram of dx

dt as a function of x, called a phase diagram, shown in figure 3.11 [15].

Figure 3.1: Replicator dynamics of the Hawk-Dove game. Source:[15]

In the figure we see that the replicator dynamic has three different roots, also called
rest point. When x = 0, x = 1

2 or x = 1 the derivative dx
dt equals zero, so the population

shares do not change at these moments. In the case that x = 0 all individuals are Doves.
The fitness or payoff equals the average fitness and therefore nothing changes. How-
ever, this rest point is not stable. A slight disturbance, like a small mutation, increases
the amount of Hawks, seen by the positivity of ẋ = dx

dt . This increase will continue until
the second rest point is reached in x = 1

2 . From the same reasoning follows that x = 1,
when the population only consists of Hawks, is not a stable rest point. So we consider
the rest point x = 1

2 . As shown in the figure, a small change in more Dove of Hawks in
the population, results in a movement back to the rest point where half the population
is a Dove and half is a Hawk. This shows that this rest point is stable [15].

It is no coincidence that x = 1
2 is the stable rest point. Recall that x = ( 1

2 , 1
2 ) is

the unique evolutionary stable strategy of this game. This result is stated in the next
theorem:

Theorem 3.4.1 ([15]). Let A be a 2× 2-matrix. Then:

1. A has at least one evolutionary stable strategy
2. x = (x, 1− x) is an evolutionary stable strategy of A, if and only if x is a stable rest point

of the replicator dynamics.
1The figure is copied out of Peters’ book Game Theory, see his book for more details.
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Proof. Theorem 3.2.1 implies the second statement. A full proof can be found in the
book of Weibull [25]

3.4.2 Rock-Paper-Scissors

We consider the Rock-Paper-Scissors example again [25]. This time we analyse the
generalized version, which is defined as follows:

Player 2
Rock Paper Scissors

Rock (1,1) (2+a,0) (0,2+a)
Player 1 Paper (0,2+a) (1,1) (2+a,0)

Scissors (2+a,0) (0,2+a) (1,1)

with a ∈ R. In the example of chapter 2 we used a = 0 (the interior Nash equilibrium
x∗ = ( 1

3 , 1
3 , 1

3 ) is independent of a). We define the matrix B as:

B =

 1 2 + a 0
0 1 2 + a

2 + a 0 1


Using equation 3.2 we see that the replicator dynamics becomes:

ẋ1 = [(1 · x1 + (2 + a) · x2 + 0 · x3)− xBx]x1

= [x1 + (2 + a)x2 − xBx]x1

ẋ2 = [(0 · x1 + 1 · x2 + (2 + a) · x3)− xBx]x2

= [x2 + (2 + a)x3 − xBx]x2

ẋ3 = [((2 + a)ẋ1 + 0 · x2 + 1 · x3)− xBx]x3

= [(2 + a)x1 + x3 − xBx]x3

Where chapter 2 illustrates the basic principal, it can be shown that the logarithm of
x1 · x2 · x3 can increase, decrease or remain constant over time. We define h(x) =
log(x1x2x3) = log(x1) + log(x2) + log(x3), where x1 + x2 + x3 = 1. If we differenti-
ate h(x) over time we get:

ḣ(x) =
ẋ1

x1
+

ẋ2

x2
+

ẋ3

x3

= (x1 + x2 + x3) + (2 + a)(x1 + x2 + x3)− 3xBx
= 3 + a− 3xBx
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To calculate xBx we first note that:

1 = x1 + x2 + x3

= (x1 + x2 + x3)
2

= (x2
1 + x2

2 + x2
3) + 2(x1x2 + x1x3 + x2x3)

= ‖x‖2 + 2(x1x2 + x1x3 + x2x3)

where ‖x‖2 = (x2
1 + x2

2 + x2
3). This also indicates that a

2 (1− ‖x‖2) = a(x1x2 + x1x3 +
x2x3) Then follows:

xBx =
3

∑
i=1

3

∑
j=1

xixjbij

= x2
1b11 + x1x2b12 + x1x3b13 + x2x1b21 + x2

2b22 + x2x3b23 + x3x1b31 + x3x2b32 + x2
3b33

= x2
1 + x2

2 + x2
3 + (2 + a)(x1x2 + x2x3 + x1x3)

= ‖x‖2 + 2(x1x2 + x1x3 + x2x3) + a(x1x2 + x1x3 + x2x3)

= 1 + a(x1x2 + x1x3 + x2x3)

= 1 +
a
2
(1− ‖x‖2)

So, we conclude
ḣ(x) =

a
2
(3‖x‖2 − 1) (3.5)

Consider a convex unit triangle D. Then ‖x‖2 is maximal at each of the three vertices
with value 1, and it is minimal at x∗ = ( 1

3 , 1
3 , 1

3 ). At its minimum xi has the value 1
3 for

i = 1, 2, 3, which gives ḣ(x) = 0. For all x 6= x∗ we have ḣ(x) > 0 on D.
Weibull (2004) [25] shows in his book that if a = 0 all interior solutions to the repli-

cator dynamics in D are periodic. If a < 0 the paths inside D move outwards, towards
hyperbolas for which the value x1x2x3 is low. For a > 0 the paths inside D move in-
wards, towards hyperbolas where the value x1x2x3 is high. Weibull’s main conclusion
about the generalized game is that for a > 0 the unique Nash equilibrium strategy x∗ is
asymptotically stable and is Lyapunov stable. Therefore, in this case x∗ meets the crite-
ria for evolutionary stability by theorem 3.3.2. For a = 0 he shows that x∗ is Lyapunov
stable but not asymptotically stable. So, it is neutrally stable but not evolutionary sta-
ble. Finally, for a < 0, x∗ is unstable. For more details and extensive reasoning, see
Weibull’s book.



Chapter 4

Pricing Electric Vehicles

This final chapter shows an example on how evolutionary game theory is used for eco-
nomic purposes. It is based on the article ’A Discrete Two-Level Model for Charge Pricing of
Electric Vehicles Based on Evolutionary Game Theory’, written by D. Lian et al. in 2016 [8].
They mention the growing importance of vehicle-to-grid (V2G) technology in the future
Smart Grid. The marketization of the V2G system is important, and therefore also the
pricing strategies of the demand response management on electric vehicles. Using evo-
lutionary game theory, they optimize the pricing strategy of Power Grid Corp (PGC)
for electric vehicles. The next sections show the main mathematical developments of
their research and state their main conclusions.

4.1 The Simple Evolution Game, Electric Vehicles Users vs Power
Grid Corp

One can imagine that a two level game is not a perfect representation of reality. Indi-
viduals do not always act purely rational in situations. Due to this complexity of the
actual economic environment, the model is expected to have incomplete information
and limited rationality of the participants [8]. Therefore, we start off with a simplified
model of the situation. The next section deals with an expanded version.

We introduce the model by providing background information. Firstly, in the future
open market environment, Power Grid Corp can use different subsidy strategies to
affect the level of participation of the electric vehicle users (EVU).

Secondly, both Power Grid Corp and the customers have two types of strategies.
Power Grid Corp can choose to either actively adopt high subsidies to support their
electric vehicles and encourage participation in load-shifting, or do not take high sub-
sidy policy to support the electric vehicle market. The customers can choose for high
participation and actively participate in load-shifting, or low participation and thus
passive participation in load-shifting.

Third, we say that the probability of the strategy ’high subsidy’ for the Power Grid
Corp is α = α(t). Then, the probability of the strategy ’no high subsidy’ is 1 − α =
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1− α(t). We say that the probability of ’active participation’ for consumers of electric
vehicles is β = β(t). Then, the probability of ’passive participation’ is 1− β = 1− β(t).

Fourth, the payoff matrix in simple electric vehicle evolution game, looks as follows:

EVU
Active participation Passive Participation

PGC
High Subsidy (R1 + δ + YR − Z1, R2 + δ + BT − Sun) (R1 − Z1, R2 + BT)

No High Subsidy (R1 + YR, R2 − Sun) (R1, R2)

Here, R1 and R2 are the two levels of game revenues when Power Grid Corp does not
take the high subsidy and the customers choose passive participation. In this case,
Power Grid Corp has less money to spend on improving their electric vehicles. Al-
though both sides of the game could suffer from social and economic loss, there is still
the original mechanism of intrinsic benefit. YR stands for the capacity gain and extra
benefit for Power Grid in case of active participation of the consumers. Sun is the benefi-
cial loss, like battery loss, caused by high participation of electric vehicle users. Z1 is the
quantitative benefit loss due to the return of investment. BT is the additional subsidy
income for electric vehicle consumers if the Power Grid Crop chooses the high sub-
sidy strategy. δ is the possible extra income due to positive interaction benefits under a
win-win situation.

To find the replicator dynamics, the revenue formulas need to be expressed and
the average revenues for both parties must be measured. In this part we stick to the
notation of Liang et al. [8]. U1 is the average revenue for Power Grid corporation and
U2 is the average quantitative revenue for electric vehicle customers.

For the Power Grid Crop we see that

U1 = αU11 + (1− α)U12

where U11 is the average revenue for Power Grid corporation if they choose to take the
high subsidy and U12 is the average revenue if they do not take the high subsidy. In
other words,

U11 = β(R1 + δ + YR − Z1) + (1− β)(R1 − Z1)

U12 = β(R1 + YR) + (1− β)R1

The replicator dynamics changes the variation of the probability of the analysis ac-
cording to the evolutionary direction [8]. Using equation 3.2 the replicator dynamic
equation (called R f (α) for Power Grid corporation) is obtained as follows

R f (α) =
dα(t)

dt
= (U11 −U1)α

= (U11 − αU11 − (1− α)U12)α

= α(1− α)(U11 −U12)

= α(1− α)(β(R1 + δ + YR − Z1) + (1− β)(R1 − Z1)− (β(R1 + YR) + (1− β)R1)

= α(1− α)(βδ− Z1)
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We proceed by doing the same calculations for electric vehicle consumers, with average
quantitative revenue U2 given by

U2 = βU21 + (1− β)U22

where U21 is the average quantitative revenue for electric vehicle consumers if they
choose to actively participate in consuming, and U22 is the average quantitative revenue
if they passively participate. The equations are as follows

U21 = α(R2 + δ + BT − Sun) + (1− α)(R2 − Sun)

U22 = α(R2 + BT) + (1− α)R2

Again, using equation 3.2, the replicator dynamic equation (called R f (β) for electric
vehicle users) is obtained as follows

R f (β) =
dβ(t)

dt
= (U21 −U2)β

= (U21 − βU21 − (1− β)U22)β

= β(1− β)(U21 −U22)

= β(1− β)(α(R2 + δ + BT − Sun) + (1− α)(R2 − Sun)− (α(R2 + BT) + (1− α)R2))

= β(1− β)(αδ− Sun)

The equilibrium of the replicator dynamic equations is established when R f (α) = 0
and R f (β) = 0. Immediately is seen that this holds for α = 0, α = 1, β = 0 and β = 1.
thereby, both equations are zero when (βδ− Z1) = 0 and (αδ− Sun) = 0. This gives us
five points of equilibrium for (α, β), namely (0, 0), (0, 1), (1, 0), (1, 1) and ( Sun

δ , Z1
δ ). To

analyse the local stability of these equilibrium points, we calculate the eigenvalues of
the Jacobi matrix for each point of equilibrium. The Jacobi matrix is given by

J =

 ∂R f (α)

∂α

∂R f (α)

∂β
∂R f (β)

∂α

∂R f (β)

∂β


=

(
(1− 2α)(βδ− Z1) α(1− α)δ

β(1− β)δ (1− 2β)(αδ− Sun)

)
We see for (α, β) = (0, 0) that:

J =
(
−Z1 0

0 −Sun

)
Where the eigenvalues are found as follows

det(J − λI) =
∣∣∣∣−Z1 − λ 0

0 −Sun − λ

∣∣∣∣ = 0

= (−Z1 − λ)(−Sun − λ) = 0.
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Which shows λ1 = −Z1 and λ2 = −Sun. Since λ1, λ2 < 0, we conclude that (0, 0) is
locally stable. By the same reasoning for (0, 1), (1, 0) and (1, 1), we conclude that only
(0, 0) and (1, 1) are locally stable. We only need the check for (α, β) = ( Sun

δ , Z1
δ ). These

eigenvalues are given by

det(J − λI) =
∣∣∣∣ 0 Sun − 1

δ S2
un

Z1 − 1
δ Z2

1 0

∣∣∣∣ = 0

= λ2 − (Z1 −
1
δ

Z2
1)(Sun −

1
δ

S2
un) = 0.

Therefore, λ1, λ2 = ±
√
(Z1 − 1

δ Z2
1)(Sun − 1

δ S2
un). We see that one lambda is positive

and the other is negative, either in the real or the complex dimension. This shows that
the equilibrium is a saddle point. The results on stability indicate that by repeating
the game numerous times, the position of the game will converge either to 0 or to 1,
depending on the initial position of α and β [8]1.

4.2 The Expanded Evolutionary Game Model, the Up-Level Model

The model discussed in the previous section is not enough to fully describe the relation-
ship between the Power Grid corporation and the electric vehicle users. Not only Power
Grid corporation should be taken into account, also some private companies involved
in the sale of electricity should be considered. This section draws the up-level model of
the evolution game. The problems of incomplete information and limited rationality of
participants are still accurate. Player 1 represents a small corporation, which can also
be considered the local government. Player 2 represents a big corporation, which can
also be considered the central government. The payoff matrix of the up-level evolution
game is as follows:

Big Corp
Base Price High Price

Small Corp
Base Price (u1, u2) (u1 + a1v1, ( u2

v1
− a1)v2)

High Price (( u1
v1
− a2)v2, u2 + a2v1) (u1 + d, u2 + d)

where v1 stands for the base price and v2 for the high price in the electric vehicle market.
If the small corporation and the big corporation both choose the base price, the revenue
remains status quo and equals u1 and u2 respectively. Again, both types of corporations
lose some social and economic effects, but there is still the original mechanism of intrin-
sic benefit. Furthermore, a1 and a2 represents the number of extra customers if the small
corporation chooses the base price and the big corporation chooses the high price, and
the other way around. Finally, d reflects the increase in revenues if both players choose
the high price.

1Liang et al. (2016) performed some numerical simulations where they used example payoffs. The
movement to either 0 or 1 is nicely illustrated. Check their article for images and more information.
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Using the same reasoning as in the previous section we say that the probability for
the strategy of a base price for the small corporation is p = p(t), and the strategy for a
high price is 1− p = 1− p(t). The probability for the strategy of a base price for the big
corporation is q = q(t), and thus the strategy for a high price is 1− q = 1− q(t).

From the payoff matrix we see that the average revenue for the small corporation
equals

U1 = pU11 + (1− p)U12.

Here, U11 is the average revenue if the small corporation chooses the base price and U12
is the average revenue if the small corporation chooses the high price. U11 and U12 are
given by

U11 = qu1 + (1− q)(u1 + a1v1),

U12 = q(
u1

v1
− a2)v2 + (1− q)(u1 + d).

Then, the replicator dynamics equation, called R f (p) becomes:

R f (p) =
dp(t)

dt
= (U11 −U1)p

= p(1− p)(U11 −U12)

= p(1− p)[(qu1 + (1− q)(u1 + a1v1))− (q(
u1

v1
− a1)v2 + (1− q)(u1 + d))]

= p(1− p)[a1v1 − d− q(a1v1 + (
u1

v1
− a2)v2 − (u2 + d))]

= p(1− p)(γ1 − qη1)

where γ1 = a1v1 − d and η1 = a1v1 + ( u1
v1
− a2)v2 − (u2 + d). Performing the same

calculations for the big corporation gives an average revenue of

U2 = qU21 + (1− q)U22

where U21 is the average revenue if the small corporation chooses the base price, and
U22 is the average revenue if the small corporation chooses the high price. They are
given by

U21 = pu2 + (1− p)(u2 + a2v1)

U22 = p(
u2

v1
− a1)v2 + (1− p)(u2 + d)
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The replicator dynamics equation R f (q) for the small corporation becomes:

R f (q) =
dq(t)

dt
= (U21 −U2)q

= q(1− q)(U21 −U22)

= q(1− q)(pu2 + (1− p)(u2 + a2v1)− (p(
u2

v1
− a1)v2 + (1− p)(u2 + d)))

= q(1− q)(a2v1 − d− p[a2v1 + (
u2

v1
− a1)v2 − (u2 + d)])

= q(1− q)(γ2 − pη2)

where γ2 = a2v1 − d and η2 = a2v1 + ( u2
v1
− a1)v2 − (u2 + d). The points of equi-

librium of the replicator dynamics are established when R f (p) = 0 and R f (q) = 0.
By same reasoning as in the previous section we get five equilibria for(p, q), namely
(0, 0), (0, 1), (1, 0), (1, 1) and (γ2

η2
, γ1

η1
). The stability of the point of equilibrium is checked

using the Jacobi matrix given by

J =

 ∂R f (p)
∂p

∂R f (p)
∂q

∂R f (q)
∂p

∂R f (q)
∂q


=

(
(1− 2p)(γ1 − qη1) −p(1− p)η1
−q(1− q)η2 (1− 2q)(γ2 − pη1)

)
For further analysis of the stability of the points of equilibrium, Liang et al. (2016)
performed simulations. The graphics of these simulations can be found in their article
[8]. They concluded that with the increase of time t, the game will, after continuously
repeating, converge separately to either 0 or 1.

These results have a lot in common with the simplified version of the evolution
game. The up-level game and the basic evolutionary game are connected in an inter-
active game. The economic premise of the double layer evolutionary game theory is
based on basic economic theories like the cost-benefit theory, the utility theory and risk
aversion of subjects. Therefore, the following conditions have to be met for the double
layer the game.

First of all, every subject has limited rationality and follows the principle of risk
minimization and efficiency maximization. In other words, every player will choose the
strategy which maximizes their utility function. Secondly, the strategy for Power Grid
Corp becomes the bridge between the basic model and the up-level game. Their choice
for taking subsidy or not affects the number of electric vehicle users, and therefore their
pricing strategy. We assume that α ∝ (1− p)(1− q), so we can say α = k1(1− p)(1− q)
where k1 represents a weighted coefficient. Finally, we assume that every player has
both continuity and timeliness in the process of evolution and strategy selection. A
full explanation on how to derive the replicator dynamic equations for the double layer
model and locate the stable points of equilibria can be found in the article of Liang et
al. (2017) [8]. They conclude that strategy orientation is more beneficial when applied
on the double layer model.
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