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1 Introduction

In his book Differential Games [6], Rufus Isaacs introduced a game called
the ’princess and monster’ game, which he described as follows:

”The monster P searches for the princess E, the time re-
quired being the payoff. They are both in a totally dark room
Q (of any shape) but they are each cognizant of its boundary
(possibly through small light admitting perforations high in the
walls). Capture means that the distance PE ≤ r, a quantity
small in comparison with the dimension of Q. The monster, sup-
posed highly intelligent, moves at a known speed. We permit the
princess full freedom of locomotion.”

In this thesis, we will consider the cases that Q is a circle and Q is an interval.
The princess and monster game on a circle is the only search game with a
mobile princess that has been solved, and it was done by Alpern (1974) [1]
and Zeliken (1972) [7]. In Section 3, we prove that, according to Zeliken, the
value of this game exists, what this value is and indicate for which strategies
that value is optimal. The princess and monster game on an interval was
believed to be trivial. People thought that it was optimal for the monster to
start at a random end and then move to the other end. For the search game
with an immobile princess, this strategy is indeed optimal. In Section 4, we
demonstrate that with a mobile princess, that strategy is not optimal and
that the game Γ(I) is not trivial. We achieve this by providing estimates on
its value V based on the article of Alpern, Fokkink, Lindelauf and Olsder [4].

2



2 Search games

A search game is a two-player game with a searcher and a hider. This game
takes place in a set that is called the search space Q. The searcher can
choose any path inside Q, but his speed cannot exceed 1. The hider can,
just like the searcher, choose any path inside Q, or he can remain immobile.
It is assumed that the hider and the searcher have no knowledge about each
other’s movement. In general, the game is considered to be over when the
distance between the searcher and the hider is less than or equal to ε. Usually
we consider the case ε is zero, so the searcher and the hider must be in the
same place for the game to end. The time that the searcher needs to catch
the hider (the capture time) is the payoff of the game. Since the hider wants
to maximize this capture time and the searcher wants to minimize it, a search
game is a zero-sum game. Search games, as mathematical models, can be
applied to hide-and-seek situations such as those played in our childhood or
practiced in certain military situations.

2.1 The princess and monster game

In this thesis, we discuss a search game called the princess and monster game.
In this game, the hider (princess) is mobile. We will denote a path of the
searcher (monster) by M and a path of the princess by P . The payoff function
(the capture time, i.e. the time at which the monster and princess are in the
same place) is denoted by T (M,P ). The existence of a value V = V (Q) for
this game, an optimal searcher mixed strategy and an ε-optimal hider mixed
strategy are proved in [3] and [5]. We define a strategy to be ε-optimal if the
expected payoff is at least V − ε against any strategy of the opponent.
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3 The game on a circle

For the princess and monster game on a circle, the space Q is the circumfer-
ence of a circle. The only difference from the original princess and monster
game is that we now assume that both M and P have a speed that does not
exceed 1. The radius of the circle is r, and φ and ψ are the angles of the
position vectors to M and P with some fixed line through the centre of the
circle. We then have the system

φ̇ = v/r, |v| ≤ 1,

ψ̇ = w/r, |w| ≤ 1.
(1)

For the strategies of M and P , we take the paths of (1), i.e. the functions
φ(t) and ψ(t), respectively. Because the players have a maximal speed of 1,
these functions satisfy the Lipschitz condition:

|φ(t)− φ(t′)| ≤ |t− t′|/r,
|ψ(t)− ψ(t′)| ≤ |t− t′|/r.

(2)

Neither player has a dominant strategy, so they have to consider a mixed
strategy, i.e. a probability distribution on the set of pure strategies. Each
player chooses such a probability distribution and then we can compute the
expected value of the capture time.

3.1 Optimal strategies and the payoff

In this section, we prove that the value of the game exists and equals 3
2
πr.

The optimal strategies (which are the same for both players) belonging to
this value are as follows: at t = 0, start randomly (so the initial distribution
is uniform); with probability 1

2
go to the antipodal point halfway around the

circle clockwise (counterclockwise) with maximal speed until the time t = πr,
which we call a period. Now, again with probability 1

2
, choose one of the two

directions until the antipodal point is reached. In this way, one can introduce
a measure on the space of functions (2) equivalent to such a movement.
Let us prove that these strategies are optimal. Let M follow the described
strategy and let P choose an arbitrary acceptable strategy. In this case, we
prove the payoff is constant, independent of the strategy of P , and that this
payoff equals 3

2
πr.
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Figure 1: Figure 2:

Lemma 3.1. The probability of capture in the first period is 1
2
.

Proof. First, make a graph of the movement with the time t on the x-axis
and the arc-length that P has passed through on the y-axis. At t = 0, we
take the origin for the position of M . Now the two possible paths for M ,
beginning at the endpoints of the interval [0, 2πr], are the lines with slopes
1 and -1 respectively. Figure 1 depicts these paths. Now, we consider some
specific path of P on the interval [0, πr]. In Figure 1 that path is a curve
that satisfies the Lipschitz condition with Lipschitz constant 1. Of course this
curve starts at some point in the interval [0, 2πr], as this interval represents
the circumference of the circle. Because of the Lipschitz condition, the path
of P intersects only one of the legs of the right triangle, not both (or for
one point on the y-axis, the curve reaches the vertex of the triangle). So
for all starting positions of P on the y-axis (except for the one where the
curve reaches the vertex of the triangle), a choice of M in one direction leads
to capture in the first period, while a choice in the other direction leads to
avoidance of capture. This means that for a fixed path and a fixed starting
position of P , the probability of capture is 1

2
. Hence, for a fixed path and a

uniform distribution of the initial position of P , the probability of capture
is 1

2
. We can take an arbitrary measure on the space of functions satisfying

the Lipschitz condition (2). Now for any fixed function, the probability of
capture in the first period is also 1

2
. �

At this point, we calculate the expected value of the capture time. To do so,
we first need to calculate the expected value of the capture time, subject to
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the condition that the princess is captured in the first period. The distance
along the arc of the circle from M to P in the counterclockwise direction is
denoted by x. Then, we call θ(x) the capture time, where P has a fixed path
and begins at x, and M chooses the direction that ensures the capture of P
in the first period.

Lemma 3.2. The random variable θ(x) is uniformly distributed on [0, πr]
for a fixed path of P.

Proof. Look at figure 2. Like in figure 1, we have trajectories for the monster,
the lines with slopes 1 and -1 and a specific trajectory of the princess. Since
the monster paths have slopes of 1 and -1, the line segment LN is equal
to 2a and the segment KM is equal to 2a + 2∆a. It is therefore apparent
that KL + MN = BC = 2∆a, where KM < 2πr and a + ∆a < πr. Then
µ {x : a ≤ θ(x) ≤ a+ ∆a, a ≥ 0, a+ ∆a ≤ πr, 0 ≤ x ≤ 2πr} =
µ {[a, a+ ∆a] ∩ [0, πr]} ∪ µ[0, 2πr] = 2πr · P(θ(x) ∈ [a, a + ∆a]). Since the
initial position of P has a uniform distribution and P has a fixed path, θ(x)
has a uniform distribution. �

Because θ(x) has a uniform distribution, the expected value of the capture
time, subject to the condition that P is captured in the first period is (0 +
πr)/2 = 1

2
πr. Note that θ(x) does not depend on the path of P , as it was

fixed, so we can take any measure on the space of paths of P. Thus, the
expected value of the capture is also equal to 1

2
πr.

We proved that the probability of capture in the first period is 1
2
, so the

probability of capture in the second period is 1
2
· 1

2
= 1

4
and in the third

period is 1
2
· 1

2
· 1

2
= 1

8
. In this way, the expected value of the capture time,

subject to the condition that P is captured in the second period is equal to
πr+ 1

2
πr. This is because if the capture does not occur in the first period, the

first period passes by (t = πr) and the expected value of the capture in the
second period is 1

2
πr. Subject to the condition that P is captured in the third

period, the expected value of the capture time is 2πr+ 1
2
πr because capture

does not take place in first two periods (t = 2πr) and the expected value of
the capture in the third period is 1

2
πr. Of course, we can also compute these

values using the definition of the expected value. For example, the expected
value of the capture time, subject to the condition that P is captured in the
second period, is calculated as follows: E(capture time | P captured in the

second period) =
2πr∫
πr

x · 1
πr
dx =

[
1

2πr
· x2
]2πr
πr

= 2πr − 1
2
πr = πr + 1

2
πr.
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Now, we can use the law of total expectation, which provides

CT =
1

2
(
1

2
πr) +

1

4
(πr +

1

2
πr) +

1

8
(2πr +

1

2
πr) + . . .

We can solve this using the series
∑∞

k=1 k · xk = x
(x−1)2 , so

CT =
1

2
(
1

2
πr) +

1

4
(πr +

1

2
πr) +

1

8
(2πr +

1

2
πr) + . . .

=
2

4
πr +

3

8
πr +

4

16
πr + . . .

= πr ·
∞∑
k=2

k

2k

= πr ·

(
∞∑
k=1

k

2k
− 1

2

)
= πr(2− 1

2
)

=
3

2
πr.

(3)

Now, let P follow the strategy described above and let M choose any ar-
bitrary acceptable strategy. Then by symmetry, we obtain the exact same
payoff 3

2
πr. Thus, the monster has a strategy, the described optimal strat-

egy, which gives him the value 3
2
πr and the princess has a strategy, also the

optimal strategy, which likewise gives her the value 3
2
πr. Therefore, that the

value 3
2
πr is the value of our game for the described optimal strategy.
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4 The game on an interval

In this section, we discuss the princess and monster game on the interval
[−1, 1]. The monster will take a path M = M(t) of speed 1, which will
be his pure strategy. The princess’ pure strategy will be any continuous
path P = P (t) since the princess has an arbitrary speed. As Section 2 has
noted, the payoff for this game is T = T (M,P ) = min {t : M(t) = P (t)}.
Now, take the topology of uniform convergence on compact subsets. Then
the function T is upper semi-continuous and the mixed strategy space of
the monster is compact Hausdorff. Now, the pure strategy space of P is
P = {P : [0,∞)→ I = [−1, 1], P continuous}. The pure strategy space of
M is

M = {M : [0,∞)→ I = [−1, 1], |M(t)−M(t′)| ≤ |t− t′|∀t, t′ ≥ 0} ,

or in other words, all the paths in P which satisfy the Lipschitz condition
with Lipschitz constant 1.

4.1 Properties of the equilibrium solutions

First, the monster chooses a path that covers the entire interval [−1, 1];
otherwise, the princess can hide at some endpoint and then the payoff is
infinite. We demonstrate in this section that if the monster reaches an end,
he should move directly to the other end and if the princess reaches an end,
she should stay there. We then show that the princess should never exceed
speed 1, despite being unrestricted in speed, and that both the monster and
the princess optimally use mixed strategies such that they are invariant under
the reflection φ(x) = −x. Finally, we prove that the optimal response for the
monster is to use a finite number of pure strategies whenever the princess
uses a mixed strategy consisting of a finite number of pure strategies and
that in an optimal mixed strategy of the princess, the pure strategies do not
intersect. To prove this, we must first establish some definitions.

Definition 1. A pure strategy M ∈ M is called end-reflecting if M(t0) =
±1 ⇒ |M(t)−M(t0)| = t − t0 for t0 ≤ t ≤ t0 + 2; in other words, if the
monster reaches an end, he should move straight to the other end.

Definition 2. A pure strategy P ∈ P is end-absorbing if the princess stays
at an end after she reaches that end; thus, P (t0) = ±1 ⇒ P (t) = P (t0) for
t ≥ t0.
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Definition 3. For either player, a mixed strategy is symmetric if the strategy
is invariant under the reflection φ(x) = −x. We denote a strategy that is
symmetric to M ∈M and to P ∈ P by −M and −P , respectively.

Definition 4. The monster or the princess runs at time t if |M ′(t)| = 1 or
|P ′(t)| = 1, i.e. if the player moves with speed 1 at time t.

The following three lemmas concern pure strategies which are dominated.
We note that a path is smooth if it is continuously differentiable. We can
limit the pure hider strategies to any subset that is dense in M. So we can
consider smooth paths only without changing the value of the game.

Lemma 4.1. Every pure monster strategy M ∈M is dominated by one that
is end-reflecting.

Proof. Assume that M is not end-reflecting and reaches, let’s say, +1 at time
t0 (so M(t0) = +1). Let M∗ be end-reflecting and equal to M up to time
t0 and equal to 1 + t0 − t for t ≥ t0. Since M∗ is end-reflecting, M∗(t0) =
+1⇒ |M∗(t)−M∗(t0)| = t− t0 for t0 ≤ t ≤ t0 + 2. Let P ∈ P be arbitrary.
If T (M,P ) ≤ t0, then T (M∗, P ) = T (M,P ). If T (M,P ) = t1 > t0, we know
that P (t1)−M(t1) = 0. Since M(t) ≥ M∗(t) for all t ≥ t0, this means that
P (t1) = M(t1) ≥ M∗(t1), so P (t1) −M∗(t1) ≥ 0. Because P (t) ≤ 1 for all
t ≥ 0, P (t0)−M∗(t0) = P (t0)−1 ≤ 0. Since P−M∗ is a continuous function,
the intermediate value theorem dictates that there exists a t2 ∈ [t0, t1] such
that P (t2) − M∗(t2) = 0. Thus, T (M∗, P ) = t2 ≤ t1 = T (M,P ), so M∗

dominates M . �

Lemma 4.2. Every pure princess strategy P ∈ P is dominated by one that
is end-absorbing.

Proof. Suppose P is not end-absorbing and reaches, let’s say, +1 at time t0
(so P (t0) = +1). Let P ∗ be end-absorbing and equal to P for t ≤ t0 and
then stays at +1. P ∗ is end-absorbing, so P ∗(t0) = +1 ⇒ P ∗(t) = P ∗(t0)
for t ≥ t0. Now consider an arbitrary M ∈ M. If T (M,P ∗) = t1 > t0, then
M(t1) = P ∗(t1) = +1. Since, again, P (t) ≤ 1 for all t ≥ 0, M(t1) = 1 ≥
P (t1). Because M(t0) < 1 = P (t0) and M is continuous, the intermediate
value theorem states that there exists a t2 ∈ [t0, t1] such that M(t2) = P (t2).
We can conclude that T (M,P ) = t2 ≤ t1 = T (M,P ∗); thus, for any M , P is
dominated by P ∗. �
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Lemma 4.3. Every smooth princess strategy P ∈ P is dominated by one
which is in M. Therefore, the princess should never exceed speed 1.

Proof. Let P be a smooth princess, and let P ∗ be a princess that follows
P but has speed bounded by 1. Let t0 =inf{t ∈ [0,∞) : |P ′(t)| > 1} and
assume that t0 is finite. So, t0 is the first time at which P exceeds speed
1. For t ≤ t0, define P ∗(t) = P (t). For t > t0, the princess P ∗ continues
moving at speed 1 in the same direction as P . By the boundedness of the
interval, P ∗ meets P again at time τ > t0. Now, suppose that M finds P at
T = T (M,P ) when P and P ∗ are not in the same place and suppose that the
capture takes place before time τ , or else let t1 =inf{t ∈ [τ,∞) : |P ′(t)| > 1}
and repeat the construction inductively. So, we now have t0 < T < τ . By
symmetry, let P be the one that moves right at time t0, so P ′(t0) = +1.
Then P ∗ has speed 1 and P ∗(t) < P (t) ∀t ∈ (t0, t1). M(T ) = P (T ) > P ∗(T ),
and the monster moves with speeds bounded by 1, so M(t) > P ∗(t) for all
t ∈ (t0, T ). We can conclude that T (M,P ∗) > T (M,P ); that is, P ∗ cannot
be caught from behind and she will not be caught by the monster before P ,
so the princess should never exceed speed 1. �

As a result of this proposition, we only have to consider paths of the princess
with speed ≤ 1. In the following propositions, we consider mixed strategies,
i.e. probability measures on the Borel σ-algebra of M.

Lemma 4.4. There is an optimal monster mixed strategy, and for any ε,
there is an ε-optimal princess mixed strategy. Both are invariant under
φ(x) = −x.

Proof. This proof is a special case of theorem 3 of Alpern and Asic [2]. This
theorem proves the existence of such strategies invariant under the isometry
group of a network Q. If Q = I, that group consists of the identity and
φ. �

Lemma 4.5. Suppose the princess uses a mixed strategy focused on a finite
number of pure strategies Pj ∈ M, j=1,...,J . Then the optimal response of
the monster is also focused on a finite number of pure strategies. In particu-
lar, the monster chooses a random permutation σ of 1,...,J and after he has
met Pσ(j) he runs to Pσ(j+1) until he has met all princesses with different pure
strategies. So, for a pure strategy M of the monster and for pure princess
strategies Pj, the capture times are T (M,Pj) = tj, with 0 = t1 ≤ t2 ≤ ... ≤ tJ
and

M ′(t) = sign(Pj+1(tj)−M(tj)) ∀t ∈ (tj, tj+1) (4)
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Proof. Let M∗ be any pure monster strategy which is an optimal response
to the mixed princess strategy which fails (4) for some j. Choose Pj so that
T (M∗, Pj) = t∗j is non-decreasing in j. Let k be the smallest j such that
(4) fails. Without loss of generality, suppose that Pk+1(t∗k) > M∗(t∗k). Now,
define a new monster strategy M(t) with T (M,Pj) = tj∀j = 1, ..., J . This
strategy is given by:

M(t) =


M∗(t), if t ≤ t∗k
M∗(t∗k) + (t− t∗k), if t∗k ≤ t ≤ tk+1

Pk+1(t), if tk+1 ≤ t ≤ t∗k+1

M∗(t), if t∗k+1 ≤ t.

(5)

Now, tj = t∗j except for j = k + 1 and t∗k+1 > tk+1. Therefore, M∗ is not an
optimal response. �

This proposition indicates that if the monster uses an optimal strategy, we
can focus on pure strategies in which the monster runs all the time. After
Lemmas 4.4 and 4.5, we can conclude that it is sufficient to consider finite
mixed strategies only.

Definition 5. We call a pair of pure hider strategies P1, P2 non-crossing if
P1(t) ≤ P2(t) for all t ≥ 0. P1, P2 are non-intersecting if the inequality holds
strictly.

For pure princess strategies P1 and P2, we can define pure strategies P1 ∧
P2 =min{P1, P2} and P1 ∨ P2 =max{P1, P2}. It is obvious that P1 ∧ P2 and
P1 ∨ P2 are non-crossing.

Lemma 4.6. Let P be the princess strategy that consists of the pure strate-
gies P1, P2 with equal probability. Then P is dominated by the non-crossing
princess strategy that consists of the strategies P1∧P2, P1∨P2 with equal prob-
ability. As a consequence, any finite mixed princess strategy can be assumed
to consist of two non-crossing pure strategies.

Proof. From the definition of P1∧P2 and P1∨P2, it is clear that {P1 ∧ P2, P1 ∨ P2} =
{P1, P2} for all t. If M catches the first of the two princesses P1, P2, let us say
P1, at time t1, then M simultaneously catches the first of the non-crossing
princesses P1 ∧ P2, P1 ∨ P2. Reflecting the interval, let M approach from
the left side. He thus catches P1 ∧ P2 at time t1, so M(t1) = P1 ∧ P2(t1) =
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P1(t1) ≤ P2(t1) = P1 ∨ P2(t1). So at time t1, P2 and P1 ∨ P2 are at the
same place and M is to their left. Also, P1 ∨ P2(t) ≥ P2(t) for all t, so
T (M,P2) ≤ T (M,P1 ∨ P2) so M cannot catch P1 ∨ P2 before he catches P2.
We can conclude that P1 ∨ P2 dominates P2. Since P1 ∧ P2 and P1 ∨ P2 are
non-crossing, it is possible to construct a finite mixed princess strategy that
consist of non-crossing pure strategies. �

A collection of non-intersecting paths is used to approximate any finite col-
lection of non-crossing paths arbitrarily close. This means that there exist
ε-optimal princess strategies that are finite, symmetric and non-intersecting.

Lemma 4.7. Any pure princess strategy P in a non-intersecting symmetric
princess strategy is contained in half of the interval [−1, 1], so P (t) ∈ [−1, 0]
or P (t) ∈ [0, 1] for all t.

Proof. If the princess uses the pure strategy P , then she also uses −P . If
P (t) = 0, then P and −P would intersect, but this cannot occur since the
mixed strategy is non-intersecting. Therefore, either P (t) 6= 0 ∀t or P is
immobile and remains in 0 for the rest of the game. When P (t) 6= 0 ∀t,
neither P nor −P can cross the middle of the interval. So, in both cases, P
is contained in half of the interval [−1, 1]. �

4.2 Estimates on the value of the game

The game appears to be trivial, since there are apparently some optimal
strategies for the interval that are dominant. In this section, we show that
these strategies are not dominant and that the game is therefore not trivial.
For the monster, an obvious approach is to start at a random end and then
run to the other end. Let us call this strategy A. In this strategy the monster
starts in 1 and runs to -1 such that A(t) = 1− t, or symmetrically −A(t) =
−1 + t for all t ∈ [0, 2]. These strategies A and −A are called ’the sweepers ’.
The optimal response for the princess would be to wait at the middle until
time 1− ε and then run to 1 for A or -1 for −A. We denote these strategies

with F and −F , so F (t) =

{
max
t≥0
{0, ε− 1 + t} for 0 ≤ t ≤ 2− ε

1 for t > 2− ε
, and re-

spectively −F (t) =

{
min
t≥0
{0,−ε+ 1− t} for 0 ≤ t ≤ 2− ε

−1 for t > 2− ε
. This gives an
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estimate V ≤ 3
2

because if the monster equiprobably uses strategies A and
−A, he catches the princess such that, at worst, the capture times are 1 and
2.
For the princess, it would be obvious to start at a random end and then stay
there the whole game. This gives strategies E and −E, satisfying E(t) = 1
and −E(t) = −1, respectively. The optimal response to the strategy that
equiprobably uses E and −E is for the monster to use A and −A with equal
probability. The expected capture time for this optimal response is 1 because
T = 1

2
T (A,E) + 1

2
T (−A,E) = 1

2
(0 + 2) = 1. This gives an estimate V ≥ 1.

If V = 1 or V = 3
2
, the game would be trivial, so by presenting simple strate-

gies, we demonstrate that 1 < 97
75
< V < 47

32
< 3

2
. It is optimal against the

strategies A and −A to use strategies F and −F , so to wait around 0 until
time 1− ε and then run to one of the endpoints. The monster can now am-
bush the princess by adding a search path that keeps watch over the centre.
Let B be the strategy that starts at 0, runs to the left, joins sweeper −A
at time 1

2
when he meets him until he reaches 1, then goes to -1 by Lemma

4.1. The symmetric counterpart of B is −B. Now, the mixed strategy of
the monster consists of strategies ±A each with probability 7

16
and ±B each

used with probability 1
16

. A space-time diagram [−1, 1]× [0,∞) in Figure 3
depicts the strategies ±A and ±B of the monster.

Theorem 4.8. V ≤ 47
32

= 1.4688.

Proof. Let P be any princess strategy and let the monster adopt the mixed
strategy in which he uses ±A each with probability 7

16
and ±B each with

probability 1
16

. The probability that T ≤ t is denoted by P(t). We consider
two cases: (i) |P (1

2
)| ≤ 1

2
and (ii) |P (1

2
)| > 1

2
.

(i) |P (1
2
)| ≤ 1

2
, so −1

2
≤ P (1

2
) ≤ 1

2
. This means that at time t = 1

2
, B of −B

has been met, so P(1
2
) = 1

16
. Then, the princess has met A of −A at time

t = 1, so P(1) = 8
16

. Finally, at time t = 2, all have been met, which means
that P(2) = 1. Thus,

T ≤ 1

16
· 1

2
+

(
8

16
− 1

16

)
· 1 +

(
1− 8

16

)
· 2 =

1

16
· 1

2
+

7

16
· 1 +

1

2
· 2 =

47

32
.

(ii) Because of symmetry, we can assume that P (1
2
) > 1

2
. The princess has

then met A at time t = 1
2
, so P(1

2
) = 7

16
. Subsequently, she can maximally

avoid −A and B until time t = 2. This yields P(2) = 15
16

. At time t = 4, all
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Figure 3: The monster strategy for V < 47/32 in a space-time diagram

have been met by the princess, so P(4) = 1. This gives the value

T ≤ 7

16
· 1

2
+

(
15

16
− 7

16

)
· 2 +

(
1− 15

16

)
· 4 =

7

16
· 1

2
+

8

16
· 2 +

1

16
· 4 =

47

32
.

�

At this point, we consider a lower bound on V . We consider the monster
strategies A and B. Against A and B, the optimal princess strategy is to
start at ±1

2
and stay there until time 1

2
−ε. Then, she should either run to the

middle and back to the end or run straight to the closest end. We respectively
denote these strategies by ±G and ±H. These strategies, together with ±E
and±F , are drawn in figure 4. Notice that these paths do not cross the centre
because of Lemma 4.7. Combining these strategies, the princess obtains a
mixed strategy in which she uses E,F,G,H and their counterparts. Then,
according to Lemma 4.5, the monster starts in 0, ±1

2
or ±1 and runs between

all possible princess paths. When the monster starts at an end, he must use
strategy ±A. If he starts in 0, the monster runs to ±1

2
, at which point he

turns (B) or continues to an end and then runs back, which we call strategy
M . Finally, if the monster starts in ±1

2
, he either runs to the closest end and

14



back (strategy ±C) or to the farthest end and back (strategy ±D). Figure
4 also presents strategies C, D and M .

Figure 4: Left: E, F , G and H are the pure paths in an optimal mixed
princess strategy against A, B. Right: C, D and M are the monster’s
response to {E,F,G,H}. C, D and M are, apart from A, B and up to
symmetry, the only relevant paths.

Lemma 4.9. For the above mixed strategies for the monster and the princess,
the value of the corresponding matrix game gives the lower bound V ≥ 97

75
=

1.293.

Proof. The zero-sum game matrix, whereby each pure searcher strategy is a
row and each pure princess strategy is a column, is as follows(ignoring ε):

15





±E ±F ±G ±H

±A 1
2
(0 + 2) 1

2
(1 + 2) 1

2
(1 + 2) 1

2
(1

2
+ 2)

±B 1
2
(2 + 4) 1

2
(0 + 0) 1

2
(1

2
+ 2) 1

2
(2 + 4)

±C 1
2
(1

2
+ 5

2
) 1

2
(5

4
+ 5

2
) 1

2
(0 + 5

2
) 1

2
(0 + 5

2
)

±D 1
2
(3

2
+ 7

2
) 1

2
(1

2
+ 1

2
) 1

2
(0 + 3

4
) 1

2
(0 + 3

2
)

±M 1
2
(1 + 3) 1

2
(0 + 0) 1

2
(1

2
+ 3) 1

2
(1 + 3)


=



±E ±F ±G ±H

±A 1 3
2

3
2

5
4

±B 3 0 5
4

3

±C 3
2

15
8

5
4

5
4

±D 5
2

1
2

3
8

3
4

±M 2 0 7
4

2


Solving this game matrix gives a value of 97

75
, and this is a lower bound on

V . �

In theory, it is possible to compute the value of the game. This can be done
by adding finitely many pure strategies to the princess and then add finitely
many pure strategies to the monster to optimize his response. However, the
princess can then optimize her response by a finite number of pure strate-
gies, etc. This increase in the number of pure strategies is exponential and
unfortunately, the convergence to the value of the game appears to be slow
and not effectively computable. In the following two sections, we improve
the upper and lower bounds by assigning the princess and the monster pure
strategies with continuous initial distributions.

4.3 A monster strategy with continuous initial distri-
bution

In this section, we improve the upper bound V < 47
32

. To do this, we extend
the mixed monster strategy which uses A,B. Replace B with a continuous
mixed strategy mΦ. In mΦ the monster picks a point x on the interval Φ(x)
according to a continuous distribution, and he runs to the right until he meets
sweeper A, joins sweeper A until -1 and then he runs back to 1. −mΦ is the
symmetric counterpart of mΦ where the monster starts according to Φ(−x).
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Lemma 4.10. Suppose that the monster uses mΦ. Let P be a pure princess
strategy and denote the first time that the princess meets a sweeper by y =
y(P ). Then the monster finds the princess before time y ⇔ he starts in
(P (y)− y, P (0)] and runs to the right, or if he starts in [P (0), P (y) + y) and
runs to the left.

Proof. According to Lemma 4.7, we can assume that P (t) ≥ 0 ∀t, so P ≥ 0.
Then P meets sweeper A first, and P (y) = 1 − y. Because of the Lipschitz
condition, |P (y)− P (0)| ≤ y, so 1− 2y ≤ P (0). Let M be the pure strategy
in mΦ, so he initially runs to the right until he meets A. The argument for
M running to the left is the same.
” ⇒ ” Assume that M does not start in (P (y) − y, P (0)] = (1 − 2y, P (0)].
Then either M(0) > H(0) or M(0) < 1 − 2y. If M(0) > P (0), M runs to
the right until he meets sweeper A and finds P at time y and not before. In
the second case, M cannot meet A before P does, so the paths of M and P
do not cross before time y.
” ⇐ ” Suppose that M starts in (P (y) − y, P (0)] = (1 − 2y, P (0)]. Ac-

cordingly, M meets A at time t = 1−M(0)
2

< y. Since for t < y holds that
M(t) = A(t) > P (t), it yields M(t) > P (t) and since M(0) < P (0), M finds
P between 0 and t. �

Lemma 4.11. Let f = Φ′ be the probability density of Φ. If the monster
starts in (P (y)− y, P (0)] and runs to the right, he catches the princess with
expected capture time

y∫
0

tf(P (t)− t)(1− P ′(t)) dt. (6)

If the monster starts in [P (0), P (y) + y) and runs to the left, he catches the
princess with expected capture time

y∫
0

tf(−P (t)− t)(1 + P ′(t)) dt. (7)

Proof. We consider a small time interval [t, t + ∆t] in which the princess
moves from P (t) to P (t) + ∆P . Since we assume that the princess does not
move faster than 1, we can use that |∆P | ≤ ∆t. If the monster meets the
princess in the interval [t, t + ∆t] and has started out from the right, then
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he started in the interval [P (t) − t + ∆P − ∆t, P (t) − t]. The probability
that the monster starts in that interval is equivalent to the probability that
the hider is caught in the interval [t, t + ∆t] and is approximated by the
length of [P (t) − t + ∆P − ∆t, P (t) − t] multiplied by the density f in
P (t) − t. Therefore, this approximation is f(P (t) − t)(∆t − ∆P ). If ϕ(t)
is the probability density describing the likelihood that the monster catches
the princess, and the time of capture is t up to the first order, then the

expected capture time is
y∫
0

t · ϕ(t) dt. Now f(P (t) − t)(∆t − ∆P ) is equal

to the approximation on ϕ(t) over [t, t + ∆t], i.e. ϕ(t) · ∆t. By taking
the limit of ∆t → 0, we get ϕ(t) = lim∆t→0

1
∆t
· f(P (t) − t)(∆t − ∆P ) =

lim∆t→0 f(P (t) − t) · (1 − P (t+∆t)−P (t)
∆t

) = f(P (t) − t)(1 − P ′(t)). So the

expected capture time is
y∫
0

t · ϕ(t) dt =
y∫
0

t · f(P (t) − t)(1 − P ′(t)) dt. By

symmetry we can obtain (7) in the same way. �

The princess has chosen x = P (0) and y and the monster uses mΦ and −mΦ

with the same probability 1
2
, so the expected capture time is then represented

by

1

2

y∫
0

t · [f(P (t)− t)(1− P ′(t)) + f(−P (t)− t)(1 + P ′(t))] dt. (8)

This is equivalent with maximizing the integral without the constant 1
2

and
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can be simplified by partial integration:

y∫
0

t · [f(P (t)− t)(1− P ′(t)) + f(−P (t)− t)(1 + P ′(t))] dt

=

t y∫
0

[f(P (t)− t)(1− P ′(t)) + f(−P (t)− t)(1 + P ′(t))]

y
0

−
y∫

0

 y∫
0

[f(P (t)− t)(1− P ′(t)) + f(−P (t)− t)(1 + P ′(t))] dt


= [−t (Φ(P (t)− t) + Φ(−P (t)− t))]y0 +

y∫
0

[Φ(P (t)− t) + Φ(−P (t)− t)] dt

= −y (Φ(P (y)− y) + Φ(−P (y)− y)) +

y∫
0

[Φ(P (t)− t) + Φ(−P (t)− t)] dt

The first term results in the constant −yΦ(1− 2y) by using |P (y)| = 1− y.
The second term is the integral in the following lemma.

Lemma 4.12. Let y be the first time that the princess meets a sweeper. Then
the optimal princess path from P (0) to P (y) maximizes

y∫
0

[Φ(P (t)− t) + Φ(−P (t)− t)] dt. (9)

The integral (9) is a variational problem. Let
y∫
0

[Φ(P (t)− t) + Φ(−P (t)− t)] dt =

y∫
0

L(t, P (t), P ′(t)) dt. Then its Euler-Lagrange equation is ∂L
∂P (t)

− d
dt

∂L
∂P ′(t)

=

Φ′(P (t)−t)
P (t)

+ Φ′(−P (t)−t)
−P (t)

− d
dt

(0) = 0. This gives the equation f(P (t) − t) =

f(−P (t)− t), where P (t) = 0 is a stationary value. If Φ is the uniform distri-
bution, the equation is satisfied for any path of the princess, so the integral
(9) is independent of P . It follows that Φ(x) = x+1

2
, so the integral becomes

y∫
0

P (t)−t+1
2

+ −P (t)−t+1
2

dt =
y∫
0

−t+ 1 dt =
[
−1

2
t2 + t

]y
0

= −1
2
y2 + y.
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The integral in (9) represents the payoff against the monster that starts in
the interval (P (0) − y, P (0) + y) and runs to P (0). So, if the princess has
met a sweeper, she should run to the end, because when the monster using
±mΦ meets a sweeper, he joins him and runs away from the end where the
princess hides.

Lemma 4.13. Denote x = P (0). The payoff of the monster using ±mΦ

against any princess strategy is as follows:

V (±mΦ, P ) = 1− Φ(−P (0)) + 2Φ(1− 2y) +
y

2
(1− Φ(P (0)))− y

2
Φ(1− 2y)

+
1

2

y∫
0

[Φ(P (t)− t) + Φ(−P (t)− t)] dt

(10)

Proof. We consider all possible positions where the monster can start as well
as the direction in which he moves. So, we can assume that P ≥ 0. The first
option for the monster is to start left from x = P (0) and run to the left. He
does this with probability 1

2
(1 − Φ(−P (0))) and he catches the princess at

time 2. This gives the first term 1
2
· (1 − Φ(−P (0))) · 2 = (1 − Φ(−P (0))).

If the monster that starts out left from 1 − 2y and runs to the right with
probability 1

2
·Φ(1− 2y), he ultimately catches the princess at time 4, which

gives the second term. If the monster starts right from x = P (0) and then
runs to the right with probability 1

2
· (1 − Φ(P (0))), he joins the sweeper A

and catches the princess at time y, which gives the third term. If the monster
behaves as he does in 4.11, we obtain the two final terms. �

If Φ(x) = x+1
2

, then (10) is equal to 1− −P (0)+1
2

+ 2 · 2−2y
2

+ y
2
· (1− P (0)+1

2
)−

y
2
· 2−2y

2
+ 1

2
· (−1

2
y2 + y) = 10+2P (0)−y(7−P (0))+y2

4
. This payoff is maximal at

P (0) = 1 for any 0 ≤ y ≤ 1 and we get V (±mΦ, P ) = 12−8y+y2

4
. We now

consider a mixed monster strategy σ in which the monster uses the sweeper
strategy ±A with probability p and uses ±mΦ with probability 1−p. Sweeper
±A meets the princess at time y or at time 2, so V (±A,P ) = 1

2
·(2+y). Now,

V (σ, P ) = p·V (±A,P )+(1−p)·V (±mΦ, P ) = p· 1
2
·(2+y)+(1−p)· 12−8y+y2

4
.

If the monster takes p = 7
9
, then V (σ, P ) = 13

9
− 1

18
y+ 1

18
y2. This is maximal

at y = 0 or y = 1. For the princess, it is therefore optimal to start at an end
and stay there, or to start at an end, run to the middle and then run back
to the end. For y = 0 or y = 1, the payoff is 13

9
. This is an upper bound for

the value of the game and results in the following lemma.
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Lemma 4.14. If the monster uses the mixed strategy σ, then for any princess
strategy we obtain V ≤ 13

9
.

4.4 A princess strategy with continuous initial distri-
bution

In this section, we improve the lower bound V > 97
75

. To do so, we extend
the mixed princess strategy which uses E,F,G. Replace F and G with a
continuous mixed strategy pΨ. In pΨ, the princess picks a point x ∈ [ε, 1− ε]
according to a continuous distribution Ψ(x) and waits in x until sweeper A
is ε close. She then runs to ε, where she turns back to run back to 1. −pΨ is
the symmetric counterpart of pΨ where the princess starts in [−1 + ε,−ε].

Lemma 4.5 suggests that the monster M either starts at an end (i.e. M is
a sweeper), or starts in [−1 + ε,−ε] ∪ [ε, 1 − ε]. The first time that M gets
ε close to a sweeper is denoted by y. By symmetry, we can assume that
this sweeper is A. Sweeper A runs all the time, so for t < y, we know that
M(t) < A(t). Then M approaches A from the left, so until time y, he catches
immobile princesses that start in x = P (0) > M(0) and that wait for A or
that are running ε in front of A. The monster wants to catch as many im-
mobile princesses as possible and he therefore seeks to maximize the interval
[M(0),M(y)]. So, M starts in 1−2y− ε and runs to 1−y− ε. At time y, the
monster now has two possibilities: he can continue and run to 1 to catch the
princess E and then run back to -1 to catch all other princesses (strategy M1),
or he can turn and run to -1 to catch the princess with x = P (0) < M(0)
and turn back in -1 to return to 1 (strategy M2). Against the end point
strategies, M1 catches princess E at time 2y and princess −E at time 2y+ 2,
which gives the expected payoff V (±M1,±E) = 1 + 2y. V (±M2,±E) = 3
since M2 catches −E at time 2 and E at time 4. Now, we have the following
lemma, where ψ = Ψ′ is the probability density of Ψ.

Lemma 4.15. If we ignore ε, then the expected payoff for ±M1 against ±pΨ
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is:

V (±M1,±pΨ) = (1 + y)(1−Ψ(2y − 1)) +
1

2

2y−1∫
0

(−t− 1 + 2y) · ψ(t) dt

+
1

2
(1 + y)Ψ(1− 2y) +

1

2

1−y∫
1−2y

(t− 1 + 2y) · ψ(t) dt+
1

2
y(1−Ψ(1− y))

(11)
If we again ignore ε, then the expected payoff for ±M2 against ±pΨ is:

V (±M2,±pΨ) = 1−Ψ(2y − 1) +
1

2

2y−1∫
0

(−t− 1 + 2y) · ψ(t) dt

+
1

2
Ψ(1− 2y) +

1

2

1−y∫
1−2y

(t− 1 + 2y) · ψ(t) dt+
1

2
y(1−Ψ(1− y))

(12)

Proof. Because of symmetry, we only have to consider M1 and M2 against
±pΨ. First, we look at the payoff in (11). The first two terms concern
princesses who start out from x < 0. In the first case, the princess starts to
the left of M1, so she starts in the interval [−1, 1 − 2y). The princess picks
her strategy with probability 1

2
and her initial position x with probability

Ψ(−x), so the total probability is 1
2
(1 − Ψ(2y − 1)). M1 finds this princess

at time 2 + 2y, so this gives the first term (2 + 2y) · 1
2
(1 − Ψ(2y − 1)) =

(1+y)(1−Ψ(2y−1)). The probability of a princess who starts in x ∈ [1−2y, 0)

is 1
2

0∫
1−2y

ψ(−t) dt = 1
2

2y−1∫
0

ψ(t) dt. The princess waits for −A, so she gets

caught before she meets −A by M1 at time t(x) = −x − (1 − 2y) for all

y ∈ [1
2
, 1]. This gives the second term 1

2

2y−1∫
0

(−t − 1 + 2y) · ψ(t) dt. The

other three terms concern princesses who start out from x > 0. In the third
case, the princess begins in x ∈ [0, 1− 2y) with probability 1

2
Ψ(1− 2y). The

monster starts in 1 − 2y, runs to 1 and needs time 2y to do this while the
princess stays immobile in x. When the princess almost meets A, she runs
to the middle and the monster is distance 1−2y behind her. Thus, when she
reaches the middle, time t = 1 has passed by, and the monster is 2y away
from her. Now, the princess and the monster meet halfway, which is the half
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of 2y. So the capture time is 1+y. This gives the third term 1
2
(1+y)Ψ(1−2y).

The probability that the princess starts in x ∈ [1−2y, 1− y) is 1
2

1−y∫
1−2y

ψ(t) dt.

The princess waits for A, which is similar to the second case, so the monster
catches her at time t(x) = x− (1−2y) for all y ∈ [0, 1

2
]. This gives the fourth

term 1
2

1−y∫
1−2y

(t−1+2y) ·ψ(t) dt. In the last case, the princess starts right from

1− y with probability 1
2
(1−Ψ(1− y)). The monster catches this princess at

time y which gives the final term 1
2
y(1 − Ψ(1 − y)). For the payoff in (12),

there are have two differences. In the first case, M2 catches the princess at
time 2 instead of time 2 + 2y because he joins A and therefore, in the third
case, he catches the princess at time 1 instead of time 1 + y. �

Now let Ψ again be the uniform distribution. We then consider the mixed
strategy γ in which the princess uses ±E,±pΨ where Ψ is the uniform distri-
bution. We know that V (±M2,±E) does not depend on y, so it is optimal
for the monster to pick a y such that the payoff V (±M2,±pΨ) is minimal.

Lemma 4.16. Let the princess use the mixed strategy γ. Then, the best
response of the monster gives a matrix game with value 15

11
. We conclude

that V ≥ 15
11

.

Proof. Since Ψ is the uniform distribution, we have Ψ(x) =


0 for x < 0

x for 0 ≤ x ≤ 1

1 for x > 1

and ψ(x) =

{
1 for 0 ≤ x ≤ 1

0 else
. If we put this into equations (11) and (12)

we obtain expected payoffs T1(y) = (1+y)+0+ 1
2
(1+y)(1−2y)+ 1

2

1−y∫
1−2y

(t−1+

2y) dt+ 1
2
y2 and T2(y) = 1+0+ 1

2
(1−2y)+ 1

2

1−y∫
1−2y

(t−1+2y) dt+ 1
2
y2 for 0 ≤ y <

1
2

and T1(y) = (1+y)(2−2y)+ 1
2

2y−1∫
0

(−t−1+2y) dt+0+ 1
2

1−y∫
0

(t−1+2y) dt+ 1
2
y2

and T2(y) = (2− 2y) + 1
2

2y−1∫
0

(−t− 1 + 2y) dt+ 0 + 1
2

1−y∫
0

(t− 1 + 2y) dt+ 1
2
y2

for 1
2
≤ y ≤ 1. This results in the following:
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T1(y) =

{
−1

4
y2 + 1

2
y + 3

2
for 0 ≤ y < 1

2

−5
4
y2 + 2 for 1

2
≤ y ≤ 1

and T2(y) =

{
3
4
y2 − y + 3

2
for 0 ≤ y < 1

2
3
4
y2 − 2y + 2 for 1

2
≤ y ≤ 1

.

Since V (±M2,±E) does not depend on y, it is optimal for the monster to
pick a y with 0 ≤ u ≤ 1 such that T2(y) is minimal. The minimum is at
y = 1, so T2(1) = 3

4
. If the monster only uses the mixed strategy ±A,±M2,

we get the game matrix


±E ±pΨ

±A 1 3
2

±M2 2 3
4

. This matrix has value 15
11

,

where the princess uses ±E with probability 3
11

and ±pΨ with probability
8
11

. The monster cannot improve by including the strategy ±M1 because
3
11
V (±M1,±E) + 8

11
V (±M1,±pΨ) = 3

11
· (1 + 2y) + 8

11
T1(y) is minimal for

y = 0 and y = 1. Therefore, 3
11
·(1+2y)+ 8

11
T1(y) ≥ 15

11
. So, if the princess uses

the mixed strategy γ, the monster cannot do better than expected capture
time 15

11
, which makes 15

11
a lower bound on V . �
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5 Conclusion

In this thesis we handled the princess and monster game in which we present
the best way for a monster to search for a mobile princess who is restricted
to the circumference of a circle and to the interval [−1, 1]. The value of this
game exists, which follows from a minimax theorem by Alpern and Gal. For
the circumference of a circle, the value of the game is 3

2
πr. The optimal

strategies belonging to this value are as follows: start randomly anywhere
on the circle; move with probability 1

2
to the antipodal point halfway around

the circle clockwise or counterclockwise with maximal speed 1.
For the interval [−1, 1], it seems rather difficult to determine the value of
the game. We have established many properties of optimal princess and
monster paths; for example, the princess should never go faster than speed
1 despite being unrestricted in speed. By presenting some simple strategies,
we have obtained the bounds 1 < 97

75
< V < 47

32
< 3

2
on the value of the game.

Finally, we have improved these bounds by using mixed strategies which
start according to a continuous distribution, and we subsequently obtained
15
11
≤ V ≤ 13

9
.
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