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Abstract

In this thesis a dataset of 271 intensive-care patients with automatic res-
piratory distress syndrome that are CMV seropositive is analyzed. The
data, obtained from two different hospitals, is analyzed using multi-state
models. The first thing we calculated was if there was heterogeneity on
the hospital level when it comes to dying and the effect of covariates.
To do this we used a frailty-cox model. We found a frailty variance of
1.98 ∗ 10−16, which implies there is no noticeable heterogeneity on hos-
pital level. After this we used a different multi-state model to calculate
the population attributable fraction of CMV reactivation on dying, and
found a value of about 0.23, which implies a significant effect.
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1 Introduction

Multi-state models are a valuable tool of mathematicians and biologists to ana-
lyze and give a mathematical meaning to data obtained from clinical trials and
observational studies. An example of a way in which multi-state models can be
used is making predictions for patients in similar situations based on collected
data. Another use of this system is estimating the effect covariates such as age,
weight etc. can have on the probability of experiencing an event, for instance
dying.

2 Theoretical background

In this section we will explain the theoretical background that is required to
understand the rest of this thesis. We shall start with giving an introduction,
explaining the Markov assumption and censoring. After this we will begin with
one of the simplest multi-state models possible, after which we will move on to
competing endpoints models, and finally to general multi-state models. In that
section we shall also talk about transition probabilities and the Aalen-Johansen
estimator. After that we will explain the Cox-model, a way of calculating the
influence of covariates. After this we will give an introduction to frailties and
give a short explanation of the Population Attributable Fraction (PAF). Readers
already aware of the theory behind multi-state models and the Cox-model are
advised to skip to section 2.5.

2.1 Survival analysis

A multi-state model is a stochastic process (X(t)) with a finite state space
S = {1, ..., N}. We can use this to model a process in which a subject can
be in one of a finite number of states, and can make transitions between those
states. In a process with N different states, we say that if X(t) = k where
k ∈ 1, 2, ..., N , then the subject is in state k at time t. A transition into state
n is made if {Xt = n|Xt− 6= n}, where t− implies the time just before time
t. A transition between states is often referred to as a event, and the time at
which this happens is called the event-time and is often denoted by T . States
from which a transition into another state is possible are called transient, while
states that can not be exited once entered are called absorbing [1].

2.1.1 Markov assumption

For now and in the rest of this thesis, we shall make the assumption that this
process can be described by a Markov process: we define the transition proba-
bility from state h at time s to state j at time t as

phj(s, t) = P (X(t) = j|X(s) = h,Hs−) (1)
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In this equation Hs− represent the history of the process until just before time
s. Then the Markov assumption implies:

P (X(t) = j|X(s) = h,Hs−) = P (X(t) = j|X(s) = h) (2)

So the history has no influence on the transition probability [2].

2.1.2 Right-censoring

It is possible that the data collected is be incomplete. In a medical survey, this
can for instance happen if the study in which the data was collected has a set
end date, and at that point not all the subjects have had a event yet. This
is called right-censoring. In this case there will be a second value called the
censoring time C. If C < T the event will not be observed and the event will
be called censored. It is often the case with censoring that if the event gets
censored, the real event time T is unknown, and all that is known about it is
that it is larger than the censoring time C.

2.1.3 The simplest multi-state model

The simplest type of multi-state model is given in figure 1.

Figure 1: The simplest multi-state model with only 2 states. The arrow repre-
sents a possible transition from state 1 to state 2

In this figure state 1 is a transient state, while state 2 is an absorbing state. A
example of a multi-state model like this is an alive-dead model, where state 1
represents ”alive”, while state 2 represents ”death”, and the transition repre-
sents dying.

The hazard function or hazard rate λ(t) is given by the chance to have the event
of interest at time t given that the event has not yet occurred before time t.
This hazard function is defined as

λ(t) = lim
∆t↘ 0

P (T ∈ [t, t+ ∆t)|T ≥ t)
∆t

. (3)
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The cumulative hazard is given by:

Λ(t) =

∫ t

0

λ(u)du (4)

Both the hazard function and the cumulative hazard can be estimated from
observations of the event time T . It is important to take into consideration
that the estimator still works even in the presence of censored events. One of
these estimators is called the Nelson-Aalen estimator, which is defined as follows:

Let, for a population of D individuals: 0 < t1 < t2 < ... < tD be the or-
dered event times, and let di be the number of events that happened at ti.
Finally, let ni be the amount of people that are just before time ti at risk of
having a event. Than an estimator of the hazard function is given by:

λ̂(tj) =
dj
nj

(5)

And the Nelson-Aalen estimator of the cumulative hazard is given by:

Λ̂(t) =
∑
tj≤t

dj
nj

(6)

The variance of this estimator can also be estimated in the following way:

σ̂2(t) =
∑
tj≤t

dj
n2
j

(7)

Combining these estimators can give us a 95% confidence interval for the cu-
mulative hazard, given by:

Λ̂k(t)± σ̂2
k(t) ∗ 1.96 (8)

2.2 Competing risks

A slightly more difficult version of the model in figure 1 is called the competing
risks model. In this type of model there are several possible events that can
happen from the initial state. An example of this type of model is given in
figure 2. In this example there are three possible events that can happen from
state 0, those being the transitions into state 1, 2, or 3. For every subject there
are two possible situations, either only one of the possible events will happen,
or the observation will be censored.
With the competing risks model, it is quite often useful to define the cause
specific hazard, which is the chance of having a transition to one specific end
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Figure 2: A model with multiple competing endpoints, all endpoints are ab-
sorbing

state given that no events have happened yet. In a model with initial state 0
and competing endpoints {1, 2,...,N}, with event-time T and event-cause D we
define the cause specific hazard as:

λk(t) = lim
∆t↘ 0

P (T ∈ [t, t+ ∆t), D = k|T ≥ t)
∆t

, k ∈ {1, 2, ..., N} (9)

The Nelson-Aalen estimator can be calculated almost identical to how it was
done in equation 5, but here we define dik as the number of events of type k at
time ti. Then the Nelson-Aalen estimators are given by:

Λ̂k(t) =
∑
tj≤t

djk
nj

, k ∈ {1, 2, ..., N} (10)

And the variances by:

σ̂k
2
(t) =

∑
tj≤t

djk
n2
j

(11)

2.3 Multi-state models

Multi-state models can be different from competing risks models in that, de-
pending on the model, it is possible to make a transition from the initial state
into a different transient state, so that at a later point another event can hap-
pen and a individual can experience multiple events. A example of a multi-state
model that is not a competing risks model is given in figure 3
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Figure 3: A multi-state model with two transient and two absorbing states.

In this example states 0 and 2 are transient, while state 1 and 3 are absorbing.
It is possible for someone in state 0 to first make a transition to state 2, and
then at a later time make a transition from state 2 to state 3, something that
was not possible in the competing risks example.
Once again, we will make a slight adaptation to the hazard function and to the
Nelson-Aalen estimator to make it fit with the now slightly more complicated
situation. The cause specific hazard function for a transition from state k to
state l is given by:

λkl(t) = lim
∆t↘ 0

P (T ∈ [t, t+ ∆t), Xt+∆t = l|T ≥ t,Xt− = k)

∆t
, k, l ∈ {0, 1, ..., N}

(12)

For the Nelson-Aalen estimator for the transition from state k to state l, we
now define dikl as the number of transitions from state k to state l at time ti,
and we define nik as the amount of people in state k just before time ti. Then
the Nelson-Aalen estimators are given by:

Λ̂kl(t) =
∑
tj≤t

djkl
njk

, k, l ∈ {1, 2, ..., N} (13)

And the variances by:

σ̂kl
2
(t) =

∑
tj≤t

djkl
n2
jk

(14)

Another important estimator is the Aalen-Johansen estimator, which can be
defined as follows:
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We define the matrix

P(s, t) := (Plj(s, t))l,j , l, j ∈ {0, 1, 2, ...J}

where each element represents the chance for any random subject to be in state
j at time t, given that that subject was in state l at time s.
We also define the matrix

Λ(t) := (Λlj(t))l,j , l, j ∈ {0, 1, 2, ...J}

where each element represents the cumulative transition hazard from state l to
state j at time t.

The final thing we will define for now is dΛ(u), which is given element-wise
by:

d(Λlj(u))l,j = P (T ∈ [t, t+ ∆t), Xt+∆t = l|T ≥ t,Xt− = k) if l 6= j

d(Λll(u)) = −
J∑

j=0,j 6=l

d(Λlj(t)) if l = j

An estimator of the matrix P is given by the Aalen-Johansen estimator. This
estimator is given by the product over all event times of the sum of the identity
matrix plus dΛ(u):

P̂(s, t) =
∏

tj∈(s,t]

(I + dΛ̂(tj)) (15)

2.4 Cox model

Sometimes, it could prove useful to study the effects of other covariates on the
hazard function for certain transitions, for example studying the effect of age or
gender on the probability of dying in a clinical test. An example of a model to
do this with is the Cox proportional hazard model, where the hazard function
for transition from state l to state k at time t for subject i with covariate vector
Xi is given as:

λkl(t|Xi) = λkl0 (t)exp(βTXi) (16)

In this equation, λkl0 is the baseline hazard function for transition from state
k to state l. This is the same for all subjects in the study and represents an
individual for who all covariate values are zero.
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The cumulative hazard for transition from state l to state k at time t for subject
i with covariate vector Xi is given similarly, with:

Λkl(t|Xi) = Λkl0 (t)exp(βTXi) (17)

2.5 Frailty model

Almost always, there is variation in treatment outcome between patients. A
way of reducing this variation is to incorporate patient characteristics in the
model, by for example using a Cox model as described in the previous section
to incorporate patient covariates. However, often not all of the variation can be
explained by this, and there are effects that can not be captured by observable
covariates. A way of reducing this variation further is by incorporating frailty,
in this context otherwise known as heterogeneity, in the model, to introduce
random effects into the model. The variance of this random term can than be
used to determine if there is heterogeneity in the model and the order of mag-
nitude.

In medical studies from which the data comes from more than one center, we
can consider heterogeneity on a center level. We will use a Cox multi-state
model with a random effect, otherwise known as a frailty model, to study this.

The hazard function of a frailty model is defined as follows: for a transition
from state k to state l, for subject i with covariate vector Xi and frailty Wi:

λkl(t|Xi,Wi) = Wiλ
kl
0 (t)exp(βTXi) (18)

A choice that is most often used as the frailty term is a random variable picked
from a gamma distribution with shape parameter 1

θ , and scale parameter θ.
This has as a result that:

E(Wi) = 1

and:

V ar(Wi) = θ

As a result of this, we can make a lot of inferences about the amount of hetero-
geneity based on the calculated value of θ. If θ is significantly different from 0,
it implies there is heterogeneity in some way. The larger this value is, the more
significant [3].
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2.6 PAF

The population-attributable fraction, or PAF for short, is a useful tool in re-
searching the effects that intermediate events can have on the final outcome of
a model. An example of an effect that can be researched this way is the effect
that diseases acquired on the ICU can have on the chance of dying in the hos-
pital (this is the example we will study later in this paper). We will define two
events, event D will be the event of interest, and event E will be the event of
which we want to know what the effect on event D is. If we define P (D|t) as
the chance of the event of interest having already taken place on time t, and
P (D̄|t) as the chance of the event of interest not having taken place before time
t. With the same type of notation, we define P (E|t) as the chance of the other
event having already taken place on time t, and P (Ē|t) as the chance of the
other event not having taken place before time t. Then the PAF is given by:

PAF (t) = 1− P (D|Ē, t)
P (D|t)

(19)

The interpretation of this is as follows: the PAF gives the fraction of the events
of interest D that would not have taken place had the interfering event E not
existed. Back to our example of hospital data, the PAF gives the fractions of
deaths that would not have occurred was it not for diseases picked up in the
ICU.

3 Description of data

The dataset that was studied was an adaptation of a dataset collected from
2011 to 2013 in two tertiary intensive care units in the Netherlands, collected
by the MARS consortium. The original data described 399 patients with acute
respiratory distress syndrome (ARDS). The reason the data was adapted was to
study the effect of Cytomegalovirus(CMV) reactivation in patients with ARDS,
so in the adapted dataset only the 271 patients that were CMV seropositive are
included [4]. We shall use this data to study the heterogeneity between the two
centers, and also the effect CMV reactivation has on the probabiltiy of death
using the PAF.
Of the 271 patients, 52 died, 209 were discharged, and 10 were censored. The
data came from two hospitals, labeled hospital 0 and hospital 1. The next table
shows these 271 patient, but divided per hospital. The data from this table will
be used in section 4.1.

Hospital Total patients Deceased Discharged censored
0 179 32 143 4
1 92 20 66 6

In section 4.2 we shall look at the effects of CMV reactivation. the next ta-
ble once again shows the same patients, but divided over whether or not CMV
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reactivation took place. Nine subjects entered the study with CMV already
reactivated.

CMV Reactivation Total patients Deceased Discharged censored
No 204 29 170 5
Yes 67 23 39 5

4 Results

In this section we shall present the results of data analysis that has been done
on the data that has been described in the previous section. The analysis has
been done using the software environment R. The presentation of the results
of the analysis shall be split in two parts, both of which use their own multi-
state model. In section 4.1 we will research the frailty variance of the chance
of dying from the two hospitals that the data came from, and whether there is
heterogeneity at the level of those hospitals for this event. To do this we shall
use a competing risks frailty Cox model as described in section 2.2, section 2.4,
and section 2.5. We shall also look at some of the covariates that were available
with the original data, and the effect they have on the probability of dying. In
section 4.2 we shall look at the PAF of CMV reactivation in the data set, as
described in section 2.6. To do this we shall use a multi-state model that is
a slightly more complicated version of the competing risks model, with CMV
reactivation as an intermediate effect.

4.1 Frailty and covariates

In this section we shall calculate the heterogeneity on hospital level of the data
set for the probability of dying. To do this we shall use the competing risks
frailty Cox model shown in figure 4.

Figure 4: The competing risks model with which we shall calculate the frailty
factor of the hospitals
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As mentioned in section 3, the data comes from two different hospitals, re-
ferred to as ”hospital 0”, and ”hospital 1”. We shall look at the transition from
state 0 to state 1, which is the transition that represents dying.

The covariates we shall be looking at are ”APACHE IV score”, which is a
system to measure health problems. A higher score implies more problems.
Other covariates are ”gender”, ”age”, ”BMI”, ”SOFA”, which is a method of
calculating organ failure, where a higher score implies more failure. The final
covariate is ”diabetes”. Except for SOFA which was taken on the day the pa-
tient entered the study, all the covariate values are taken on the day an event
happened. However before we look at the calculated variance of the frailty of
this model, we shall first compare the Nelson-Aalen estimators of the transition
for two subsets of the data, one containing all the subject from hospital 0 and
the other containing all subjects from hospital 1. If these are significantly dif-
ferent, it could imply that the variance of the frailty will be significantly larger
than zero, and there will be a large heterogeneity. These estimators and their
95% confidence intervals are displayed in figure 5.

Figure 5: The Nelson-Aalen estimators for Λ01(t) for both subsets of the data,
given with 95% confidence interval.

We see that there does not appear to be a large difference between the subsets,
which implies that the variance in the heterogeneity on center level is probably
not very different from zero.
As explained in section 2.5, we shall use a frailty taken from a gamma distribu-
tion with shape parameter 1

θ , and rate parameter θ, so that the expected value
is 1 with variance θ. After doing the calculations, we came to the following
value for θ, and the following values and 95% confidence intervals for the chosen
covariates:
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θ = 1.98 ∗ 10−16 (20)

Covariate Value Confidence interval
APACHE IV score 1.009 (1.00 , 1.02)

Gender 1.250 (0.69 , 2.27)
Age 1.051 (1.03 , 1.08)
BMI 1.018 (0.97, 1.07)

SOFA 1.069 (0.96, 1.19)
Diabetes 0.545 (0.22, 1.32)

The value of the variance of the frailty term is in no way significantly different
from zero, so as we expected from the Nelson-Aalen estimators, the heterogene-
ity between centers is pretty much nonexistent.

A covariate is considered significant if the confidence interval does not con-
tain 1. The effect of the covariate is called significantly increasing if the entire
confidence interval is larger than 1, and significantly decreasing if the confidence
interval is smaller than 1. In the table of covariates we can see the following:

• While the value given in the table for APACHE IV score is barely signifi-
cantly increasing with the confidence interval only slightly above 1, keep
in mind that this represents an increase per point of APACHE IV score.
Considering that APACHE IV is a scale that ranges from 0 to 240, a high
score in this aspect does imply a higher chance of dying.

• Gender, represented here as a binary value (0,1), appears to have a severe
impact on mortality of about 25%, however the confidence interval of this
covariate is rather large, and contains both values far above and far below
1, so the covariate is not significant and no definitive answers about the
effect can be given at this point.

• Age has a significant increasing effect per year on mortality, which because
of the high range of ages of the subject, means that an older subject has a
severely higher chance of dying when compared to a younger subject. This
would make sense as the majority of people in the study are older than 25
years, above which an increase of age is often associated with more health
related problems.

• BMI has a very small increasing effect per point, however it is not signifi-
cant. This makes sense considering a larger BMI is often associated with
health problems. While in this study BMI has a smaller range than for
instance age and APACHE IV score, it is still a broad enough range such
that a patient with a for the study high BMI has a much higher chance of
dying than a patient with a lower BMI.

• SOFA has the second largest increasing effect on mortality of the covariates
studied, however it is not significant. This would be logical as SOFA is
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a rating system defined to monitor organ failure, and entering the study
with a high score in this would logically increase the chance of dying.
This is slightly offset by the fact that SOFA has a smaller range than
covariates such as age or APACHE IV score, however due to the fact that
the increase per point is quite large, a relatively high score in this still
implies a severely increased chance of dying. The reason it is not significant
might be explained by the sample size of the study, and possibly with a
larger sample size it would be found that it causes a significant increase.

• Diabetes, which is like gender represented by a binary variable (0,1) shows
some of the weaknesses of this system, as it appears to have a very large
decreasing effect on mortality, while intuition would say that it should
have a increasing effect. This is possibly caused by the fact that there
were only very few people in the study with diabetes, so the confidence
interval is rather wide and like gender, contains values of both far above
and far below one, so it is not significant.

4.2 PAF of CMV reactivation

As mentioned in the introduction of this section, we shall use a different model
than what has been used in previous sections. This model is given in figure 6.

Figure 6: The model used to calculate the PAF of CMV reactivation

This time, it is not only important if death or discharge have happened, but
also whether of not CMV reactivation has taken place before either of these
event. This has been displayed with the addition of states 3, 4 and 5. Another
difference with previous situations is that not every subject starts in state 0. As
mentioned in section 3, there are nine subject that start in state 3. Before we
shall calculate the PAF of dying with CMV reactivated versus dying without it,
we shall first compare the Nelson-Aalen estimators of the two transitions that
imply dying, those being Λ01(t) and Λ34(t). These two estimators are displayed
in figure 7.
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Figure 7: The Nelson-Aalen estimators for Λ01(t) and Λ34(t), given with 95%
confidence interval.

As opposed to the situation of the previous section, we do see a significant
difference in the two estimators. While this does not give a definitive statement
about what the PAF will be, it does make it more likely for the PAF to be
significantly different from 0.

Now on to the calculations of the PAF. In this situation, the chances are given
as follows:

P (D|Ē, t) =
P01(0, t)

P00(0, t) + P01(0, t) + P02(0, t)
(21)

This is the chance of dying while in state 0 in time (0,t), divided by the chance
of not having gone to state 3 in time (0,t). Furthermore:

P (D|t) =
262

271
P01(0, t) +

9

271
P34(0, t) +

262

271
P04(0, t) (22)

This can be interpreted as the chance of starting in either state 0 multiplied by
the chance of dying from state 1 (either through state 3 or not), plus the chance
of starting in state 3 multiplied by the chance of dying when starting from state
3. With these two equations we can finally give:
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PAF (t) = 1−
( P01(0,t)
P00(0,t)+P01(0,t)+P02(0,t) )

262
271P01(0, t) + 9

271P34(0, t) + 262
271P04(0, t)

(23)

Unfortunately we do not know the exact transition probabilities, but we can use
the Aalen-Johansen estimators as described in section 2.3 to make an estima-
tion of the PAF at every time t. Graphs of the Aalen-Johansen estimators of
the transitions are shown in appendix A. The results of calculation the PAF at
every relevant time are displayed in figure 8.

Figure 8: The estimation of the PAF for every time t. We cut of the first ten
seconds as there had not been any transitions into state 4 yet so the PAF would
not have made sense for those times.

As we expected, the PAF is at every time significantly larger than zero, ap-
pearing to go towards a value of about 0.23. This implies that a significant part
of the deaths in this data-set are in fact caused by, or at least severely influenced
by the reactivation of CMV.

5 Discussion

In this thesis we researched a dataset of 271 patients, coming from two hospi-
tals. While we were unable to find sufficient evidence of heterogeneity with the
method that we used, this does not have to imply that there is no heterogeneity
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at all.

Due to there only being two hospitals in the study, the absence of heterogeneity
in the center could have been coincidental. If data from more hospitals was
added, maybe the variance term θ could have been significantly higher.

Another possible reason of why no heterogeneity was found was because only
one method was used. While taking a gamma parameter as frailty term is the
most popular option in this type of situation, it is by no means the only one. In
future studies of this data other options could be researched, which might give
different results.

Also important to note is that while in this study there was no heterogene-
ity found by this method, does not mean that using a frailty model in a similar
situation is unnecessary, as unaccounted heterogeneity in a model can lead to
bias.
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A transition probabilities

In this section we will display graphs of the transition probabilities of the model
used in section 4.2.
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Figure 9: transition probabilities of the model used in section 4.2.
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