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Abstract

Following the discovery of topological insulators (TI) in 2005, a quest has begun in condensed-
matter physics, for the discovery of more exotic topological phases of matter. One such example
are Weyl semimetals (WSM), materials whose valence and conduction bands touch at a singular
point in momentum space. Although these states of matter come with a number of interesting
features, in this thesis we focus on their transport properties. More specifically, we concentrate
on the ability of WSMs to support an electric current in the direction of an applied magnetic
field, a phenomenon that came to be known as the chiral magnetic effect (CME). On the way,
we come across a crucial interpretation issue, whose resolution will require bringing together
physicists working on tremendously different energy scales. After establishing a consistent
and physically acceptable theoretical framework, we briefly turn our attention to the current
experimental status of CME. The thesis concludes with the construction of a simple holographic
dual theory to WSM, through which we hope we could gain some insights into the interacting
regime of WSM. Interactions are potentially of particular importance in experimental attempts
to identify WSM and CME. Therefore, a model that successfully takes these effects into account
is urgently on demand.



Chapter 1

Introduction

Most people remember from their high school years the 3 elementary states of matter, namely
gas, liquid and solid, where each state is characterised by an increasing level of order in the
system. Gases consist of particles freely moving in the available volume. In liquids, atoms1

demonstrate some degree of interaction among themselves, and they tend to take the shape
of the container they are placed in. Lastly, solids have a definite shape and in many cases
their atoms are located in well-defined sites of some lattice structures, in which case we talk
about crystals. Later on, we learn that materials, and solids in particular, can be further
classified according to their response to an applied potential difference. This classification lead
to insulators, materials that do not respond with an electric current to the external voltage2,
and conductors or metals, where an electric current appears parallel to the applied electric
field.

In university, this difference was demystified. The simple, yet prevailing model is that of
band theory. Electrons in solids occupy discrete energy levels, called energy bands, and they
do so successively up to a maximum energy level called the Fermi level or Fermi energy3.
Conductivity was related to the ability of electrons to move either within a band or from one
band to the other. When the Fermi level is located between the two energy bands that are
separated in energy the material will be called an insulator. Electrons cannot move within the
lower band, because all states are occupied, and in order to move to the higher energy band an
energy intake equal to the energy difference of the two bands, the energy gap, is required. On
the other hand when the Fermi level lies inside an energy band, the material is a conductor.
Electrons within a band can occupy nearby states and a current can develop easily.

As the energy gap becomes smaller but remains non-zero, we go into the regime of semi-
conductors. Their remarkable electronic properties have led to a tremendous growth in tech-
nological advancements following the invention of transistor in 1947 by Bardeen, Brattain and
Shockley [1]. A further, internal, classification in the semiconductor family can be made ac-
cording to which is the carriers of the electric current. Therefore, when the doping is such that
electrons are the majority carriers and holes are the minority ones, we have n-type semicon-
ductors. In the reverse case we refer to the material as p-type semiconductor. Finally, in the
absence of any doping we end up with an intrinsic semiconductor and electrons and holes are
treated on equal footing. The last member of the list, and the one that we will be occupied with
for the rest of the thesis, arises when the two bands touch at a single point at the Fermi level.
This type of behaviour is called semi-metallic and it will give rise to some remarkable properties
fundamentally different from the previous ones. A schematic visualisation of this classification

1In this context the word is "atoms" is used in the philosophical sense, and refers to the smallest constituent
particles that comprise the liquid and the solid. They can be atoms in the physicist’s sense, molecules, ions, etc.

2Of course assuming a small external perturbation
3Rigorously speaking, the two concepts coincide only at zero temperature. However, since the main result of our

analysis is calculated at T = 0, we shall use the two terms interchangeably.
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Figure 1.1: Filling of the electronic density of states in various types of materials at equilibrium.
Here the vertical axis is energy while the horizontal axis is the Density of states for a particular
band in the material listed. In metals and semimetals the Fermi level EF lies inside at least
one band. In insulators and semiconductors the Fermi level is inside a band gap; however, in
semiconductors the bands are near enough to the Fermi level to be thermally populated with
electrons or holes.

Figure 1.2: Band structure of a Topological Insulator. The dispersion relation of the bulk
conduction and valence bands are plotted in red and blue colour respectively. Contrary, the
dispersion relation relation of the surface states is plotted in green with the arrows indicating
the spin polarization. Evidently, the material is an insulator in the bulk, with the Fermi level
lying in the gap between the valence and the conduction bands. At the same time, the surface
states cross it, leading to a conducting behaviour on the boundary.

can be seen in Fig. (1.1) 4.
This was the situation until the beginning of the 21st century and each solid was thought to

belong in one of the above categories. Then in 2005 Mele and Kane paved the way for a new era
in condensed matter physics with the discovery of topological insulators (TI)[2]. This novel state
of matter, elongated the above list with the first member of the subcategory that came to be
known as topological phases of matter. What is special about TIs is an interesting coexistence
of an insulating bulk with conducting surface states on their boundary. In simple words, the
bulk bands are separated by an energy gap within which the Fermi level lies, and at the same
time there exist states whose wavefunctions are localised on the surface of the material and
whose corresponding energy bands cross the Fermi level. Fig. 1.2 depicts the situation quite
accurately.

An intuitive way of thinking of a TI goes as follows5. The internal structure of a TI is such
4Borrowed from wikipedia.org
5The example was taken from a talk given by M.Z. Hasan.
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that a surface electron sees no energy gap and can therefore move freely on the surface. On the
contrary, in the "vertical" direction towards the bulk, there is a potential barrier that prevents
such motion. Although a detailed analysis of TI goes beyond the scope of this thesis, it is im-
portant to note that these conducting states are protected by symmetry against perturbations.
The existence of an associated quantity that can take only integer values, and therefore cannot
change its value continuously, i.e. under a small perturbation, is the most important feature,
common in all phases of matter that claim to be topological. But TI was only the beginning for
a whole new quest in the scientific community that goes under the banner of condensed matter
physics. It was the quest for phases of matter whose properties have their roots in topology
and therefore can demonstrate great robustness against perturbations.

An immediate, naive generalisation of the concept of TI would be a topological conductor
(TC), i.e. a state of matter that is conducting in the bulk and also supports conducting surface
states. But does this sentence even make sense? A TC would be either a trivial state of matter,
i.e. a conductor in the ordinary sense, or its surface states would simply decay into the bulk.
Remember the intuitive picture with the surface electron on the boundary of a TI. In the case
we are discussing now, there is no barrier in the "vertical" direction to prevent the electron from
diving into the bulk. Therefore, a TC doesn’t seem a very realistic option.

However, it seems that TCs exist and the crucial condition for their existence lies in the
topologically non-trivial structure of their momentum space. To be precise, these materials are
not conductors in the strict sense in the bulk. Rather they have two energy bands touching at
a singular6, people used to call it diabolical, point in momentum space. Eventually, the term
that is used from scientists to describe such materials is topological semimetals.

It is this type of physical systems that we will try to understand in this thesis, using some
conventional, field-theoretic tools but also some other that we borrowed from our high-energy
partners working on string theory!

1.1 Into the Weyl

We now turn our attention on a particular type of semi-metals. The crucial, distinctive feature
of these systems, is their linear dispersion relation around the band touching point. To see
how this can happen, assume that we set up a 2−band Hamiltonian for the system whose two
eigenvalues cross at a point in momentum space. Then, if the linearised Hamiltonian, about
the crossing point, reads

H(~k) = ±vf~σ · ~k, (1.1)

then the system we describe is termed Weyl semimetal (WSM)7. In eq. (1.1), ~k measures
momenta around the touching point. This is simply the Weyl equation describing massless,
chiral fermions of spin−1/2. What this means is that the electrons around the Fermi point
of a system described by the initial, non-linearised, Hamiltonian behave effectively as pseudo-
relativistic chiral fermions! The "pseudo" term suggests that the quasiparticle’s velocity is a few
orders of magnitude less than the speed of light. Indeed, this quantity is a parameter of our
effective model and can be determined experimentally.

Even at this starting point we can have some signs of the robustness of this system that
as we shall shortly see has an underlying topological origin we have long been praising for.
A crucial aspect of robustness lies in the dimensionality of the system. In 2 dimensions the
Hamiltonian can be explicitly written as

6The singularity of the band touching point will be better understood in the next sections when we introduce the
concept of Berry phase.

7In general the Hamiltonian would read H(~k) = ±
∑
ij vijσ

ikj .
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H(~k) = ±vf (σxkx + σyky). (1.2)

In this case, the system has two bands that disperse like ε(~k) = ±
√
k2x + k2y and therefore there

is a touching point of the two bands at the so called Weyl point 8 at kx = ky = 0. A perturbation
of the system proportional to any of the two already used Pauli matrices, simply shifts the Weyl
point in momentum. Similarly, any "mass term" perturbation, i.e. a term proportional to the
identity matrix, simply shifts the point in energy. However, a perturbation proportional to the
third Pauli matrix opens up a gap and therefore destroys the Weyl touching point.

On the contrary, in three dimensions the Hamiltonian reads

H(~k) = ±vf (σxkx + σyky + σyky), (1.3)

with a band touching point at kx = ky = kz = 0 and all Pauli matrices used up. In this case any
possible perturbation can be decomposed into the three already used Pauli matrices and the
unit matrix. Therefore, it can only lead to shifts in the location of the Weyl point in momentum
space but never to a gap opening. What the above discussion has shown is that Weyl point
are robust against perturbations in 3 dimensions but not in 2! Therefore, we have seen that
dimensionality is an important characteristic of topological semimetals.

The second crucial property that need to be fulfilled, for a Weyl point to exist, is that
either time reversal (TR) or inversion (I) symmetry must be broken. TR symmetry inverts both
momentum and spin, so that for a TR symmetric system Eσ(~k) = E−σ(−~k). Thus, if a Weyl
point exist at momentum ~kw with a given chirality, then there exist another Weyl point at
−~kw with the same chirality. On the contrary, I symmetry affects only the momentum leading
to Eσ(~k) = Eσ(−~k). Hence, if a Weyl point exists at momentum ~k then there exist another
Weyl point at −~k with opposite chirality. As a result, breaking of TR symmetry leads to two
Weyl cones being separated in momentum, while I symmetry breaking leads to a separation in
energy9. Instead, a TR and I symmetric system has two doubly degenerate bands touching at
a 4-fold degenerate point in momentum space that we shall call a Dirac point. The low-energy
excitations of such a solid will be determined by the massless Dirac equation in 3 dimensions
which reads

HDirac(~k) = ~vf

(
~σ · ~k 0

0 −~σ · ~k

)
. (1.4)

We see that this 4×4 Hamiltonian is by no means stable to arbitrary perturbations. Therefore,
robustness of a Dirac point in d = 3 dimensions is strongly dependent on the survival of both
TR and I symmetries in the system.

Before moving further with the theoretical analysis of WSM, it is worth mentioning that
as of 2015, WSM are no longer a mere mathematical artifact. On the contrary, experimental
groups have managed to successfully identify a WSM behaviour in TaAs compounds [3, 4].

1.2 Topological character of WSM

We believe that it is clear by now, that WSM belong to the category of topological phases of
matter. The robustness of the touching point against perturbations that we just described is
definitely a good indication of the topological origin of WSM. However, in this section, we can
be more concrete and define a topological invariant associated to the Weyl node. The quantity
that will provide us with this topological invariant is Berry phase.

8Note the change of name from Fermi to Weyl point.
9The notion of separation we are referring to, will be made clear in chapter 2 when we break inversion symmetry

of the system.
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In 1984 Berry proposed that for systems that undergo a cyclic, adiabatic change, their state
vector does not necessarily return to its original value but may acquire an extra geometrical
phase factor [5]. This extra phase came to be known as the Berry phase and is given by the
formula

γn = i

∫
C
d~R〈n(~R)|∇~R|n(~R)〉 =

∫
C
d~R · A(~R), (1.5)

where A(~R) ≡ i〈n(~R)|∇~R|n(~R)〉 is the so called Berry curvature. The name suggests some
connection to the electromagnetic gauge field and we will shortly see that this is indeed the case.
In eq. (1.5), ~R denotes an abstract vector consisting of a number of quantities parametrising
the system, |n(~R)〉 is the state of the system for the a given value of the vector ~R and γn the
Berry phase that the system gets after ~R has completed a cyclic evolution in parameter space
that is described via the closed path C. Under this perspective, the term geometric can be
attributed to the geometrical properties of the parameter space. If the path in ~R-space is trivial
then the state vector does not acquire an extra phase. If on the other hand the system will
"enclose a peculiar point10" after a cyclic, adiabatic change, then the state of the system will
change by this extra Berry phase.

A few years later, in 1989, Zak applied Berry’s formula in the context of condensed matter
systems [6]. In fact, due to the periodicity of the Brillouin zone (BZ), Berry’s phase finds a
natural realisation in solid state physics. Here the role of the abstract parameter vector ~R is
played by the momentum wavevector ~k which characterises the Bloch state of the system. In
this context, we can define the Berry connection A(~k) and the corresponding Berry curvature
~B(~k) as

A(~k) = −i
∑
n

〈u
n,~k
|∇~k|un,~k〉

~B(~k) = ∇~k ×A,
(1.6)

where the role of the arbitrary state vector |n(~R)〉 is now played by the Bloch state |u
n,~k
〉.

Let us see more explicitly, what this means for our case. The Hamiltonian for both chiralities
can be written in the form H = κvF~k.σ, where κ = ± denotes the chirality of the node. By
construction, this Hamiltonian has two eigenstates of the form

|+〉 =

(
cos θ2e

−iφ

sin θ
2

)
|−〉 =

(
sin θ

2e
−iφ

cos θ2

)
, (1.7)

with corresponding eigenenergies E+(p) = κvfp and E−(p) = −κvfp. This means that the |+〉
state is a positive energy eigenstate for the right chiral fermion while the |−〉 state is a positive
energy eigenstate for the left one. In the above notation, θ and φ denote angles in momentum
space.

Then, replacing eq. (1.7) in Berry’s formulas in eq. (1.6), we see that the positive energy
eigenstates for the two chiralities lead to an expression for the Berry curvature of the form

~B(~k) = κ
1

2k
k̂. (1.8)

Therefore, the Berry curvature of a Weyl point of positive (negative) chirality has the same form
as a magnetic monopole (antimonopole) in momentum space. It is in this sense that a Weyl
point "emits magnetic flux in momentum space". Calculating the total flux around each Weyl
point, we find that each Weyl node is associated with a ±1 quantum of Berry flux, in units of
2π, the sign of which depends on the chirality of the node, namely

10Both terms are used in a loose sense at this moment.
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Figure 1.3: AHE denotes the appearance of a potential difference, VH , in the direction trans-
verse to an applied electric field, Vx, in the presence of a perpendicular magnetic field, Bz.

∫
S

~B(~k) · d~S = κ2π (1.9)

What the above analysis has shown us, is that a Weyl point is a topological object in mo-
mentum space; it is a point from which Berry flux emanates or sinks into. It is precisely this
topological character that ensures stability and robustness of Weyl nodes against perturba-
tions. Nonetheless, there is a way in which a Weyl point can be destroyed. This possibility
arises when two Weyl nodes of opposite chirality annihilate each other when they meet in
momentum space.

As a concluding remark, the situation is completely analogous to electrons in real space.
Electrons are monopoles of electric field and by charge conservation these monopoles can only
disappear if they meet with a monopole of opposite charge. Similarly, WSM are monopoles of
Berry flux in momentum space, and the stability these configurations exhibit in the space where
they live, ensures that the corresponding physical system is also stable against perturbations.

1.3 Topological electromagnetic responses

The second topological feature of a Weyl semimetal, and the one that we will be mostly con-
cerned with in this thesis, is its topological response to an external electromagnetic field. The
topological character of the response lies in the fact that it is directly related to the position of
the Weyl nodes in momentum space and is insensitive to any other parameters of the system.
There are two distinct responses that can be directly related to the topologically non-trivial
nature of Weyl nodes: the anomalous Hall effect (AHE) and the chiral magnetic effect (CME).
Although we shall be mostly interested in the latter, it is instructive to have a feeling of the
underlying physics behind both effects.

1.3.1 Anomalous Hall Effect

In 1879, Edwin Hall observed a voltage difference in the direction transverse to the electric
current induced by applied electric field, in the presence of an external magnetic field in the
direction perpendicular to the current, Fig. 1.3. This off diagonal components in the conduc-
tivity tensor came to be known as the Hall effect. Shortly after his first discovery, he reported
that the effect was nearly ten times stronger in ferromagnetic iron than in non-magnetic con-
ductors. This latter much stronger effect in intrinsically magnetic materials was termed the
anomalous Hall effect. Although the experimental discovery of the effect was made towards the
end of the 19th century, it took scientist nearly 100 years to come up with the right theoretical
description. The main reason for this delay lies in the fact that a proper model for AHE required
concepts related to topology and geometry, such as the Berry phase, whose proper definition
came about only quite recently.
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Figure 1.4: In systems with chiral charge imbalance, i.e. µ5 6= 0, an collinear electric current
is expected to appear as a response to an external magnetic field.

A controversial part in the story of AHE has been the relative importance of the two terms
that constitute the effect. On the one hand, there are intrinsic properties of the electronic
structure that contribute to the so called intrinsic AHE. On the other, impurity scattering gives
rise to extrinsic AHE. In general ferromagnetic metals, both contributions are of the same
magnitude and therefore an experimental separation of the two is a rather difficult and subtle
matter. However, as Burkov pointed out [7], extrinsic contributions to the AHE are absent in
the case of WSM and only the intrinsic ones survive. The latter is found to be proportional to
the separation of the two nodes in momentum space and is nearly insensitive to deformations
of the Fermi surface. The formula that gives the AHE current can be found to be

jν =
e2

2π2
bµε

µναβ∂αAβ, (1.10)

where bµ is the vector separating the two Weyl nodes in momentum space and Aµ is the applied
gauge field.

1.3.2 Chiral Magnetic Effect

Athough AHE has great physical importance, it is not a novel feature of WSM. The truly and
inherently unconventional properties of this new class of topological mater came with the theo-
retical discovery of CME. This effect is expected to occur in chiral systems with a chiral charge
imbalance, and denotes the appearance of an electric current along the direction of an externally
applied magnetic field. This behaviour is captured in Fig. 1.4. The proportionality constant
between the response current and the applied magnetic field is termed CME conductivity and,
as we shall prove in chapter 2, is found to be

~j =
e2

2π2
µ5 ~B, (1.11)

where 2µ5 is the chiral chemical potential imbalance or equivalently the separation of the Weyl
points in energy11.

As we can see, the resulting expressions indeed depend only on the separation of the Weyl
points in momentum space as we have anticipated and therefore verify their topological origin.
We will devote a great part of the thesis discussing CME, therefore we shall refrain from making
any further comments at this point.

11To make connection with the notation of chapter 2, if µR = b0 and µL = −b0 are the chiral chemical potentials,
then µ5 = µR−µL

2
= b0. Thus the two symbols will be used interchangeably.
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Figure 1.5: The bulk Brillouin zone is depicted in light blue colour where the two Weyl nodes
are present. The arrows indicate the direction of the Berry curvature and denote the monopole
(arrows pointing outwards) and the anti-monopole (arrows pointing inwards). The surface
Brillouin zone is depicted in grey colour. The projections of the Weyl nodes onto the surface
Brillouin zone, are connected with a conducting surface arc, called the Fermi arc.

1.4 Topological surface states - Fermi Arcs

The last property of WSMs we will comment on, and is also related to their topological nature,
has great significance in the attempts to experimentally identify them. As we have stated before,
a crucial characteristic of topological states of matter is the existence of topologically protected
surface states. In the case of topological insulators, the bulk gap leads to protected conducting
surface states whose existence is ensured by the gap of the bulk. In the case of WSM, the bulk
is also conducting because of the touching point of the two bands and naively one would expect
that no surface states exist. Such an expectation sounds reasonable because surface modes
might merge with the bulk ones leading to a collapse of the notion of a surface state.

Nonetheless, due to the topological properties of momentum space, surface states can in-
deed survive. The general picture is vividly captured in Fig. 1.5. There one can see both the bulk
and the surface Brillouin zones of a WSM. In the bulk, the two momentum space monopoles
that correspond to each Weyl fermion are clearly distinguished. As we have commented, Berry
flux emanates from one and dives into the other. However, in the surface Brillouin zone, the
projections of the two monopoles are connected via a line of conducting states that are highly
localised on the surface of the WSM. Therefore, in the case of WSM we no longer have closed
Fermi surfaces, rather open Fermi arcs and these can be experimentally seen.

1.5 Free electrons are not enough

So far, we have dealt with fermionic systems with band touching points, and the interesting
effects their topologically non-trivial momentum space gives rise to. All the analysis that we
previously described is based on the concept of band theory whose main assumption is that the
electrons in the solid are non-interacting. Such an assumption, even if justified in some cases,
limits significantly the accessible physical systems that we can model. Interactions might
give rise to fundamentally different physics that free the free approximation cannot capture.
Therefore, we want to find a tool to describe the interaction mechanisms in solids and in Weyl
semimetals in particular.

Perturbation theory has been so far a very successful tool for such a description. Yet, its
validity is ensured, provided that the interaction model contains a sufficiently small parameter
around which we can perform a Taylor expansion. If for example, our system can be described
by a field theory action and the interaction term is added via a small coupling constant, then
the partition function Z can be expanded in this sense. Thus, Feynmman diagrams provide a
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very effective tool to obtain expectation values of the various operators of interest. So, in the
weak coupling regime, interactions have been included in a properly working paradigm.

On the contrary, strongly interacting systems cannot always be modelled and described in a
systematic way. In this case, Taylor expansion of the partition function is no longer possible as
the coupling constant of the interaction term is not small and therefore the expansion breaks
down; in short, a diagrammatic treatment of strongly coupled field theory is not valid. It is
precisely this strongly coupled regime of interacting Weyl fermions that we will try to approach.
Maybe it is trivial to note that leaving the weak coupling regime, does not come for free. Neither
does it suggest that we can describe any type of strong interaction. On the contrary, in order
to make further progress we need to specify the nature of the interactions and construct a
mathematical framework that best suits for their description.

The first assumption that we make, is that the fermionic interactions can be modelled via
coupling the free fermion to a quantum critical system, i.e. a system around a quantum critical
point (QCP). To keep matters simple, we assume that such a system can be expressed in terms
of a single complex scalar field Φ. If the interactions were small, the Φ field could have been
pertubatively integrated out and an effective potential for the free fermion would easily arise.
If, as in the case we are considering, the interactions are strong and the above scheme failed,
then we further simplify the problem, assuming that the QCP is described by a strongly coupled
conformal field theory (CFT).

This assumption is usually realistic since the main property of systems at the phase tran-
sition point is their scale invariance, dictated by a divergent correlation length, which is a
crucial feature of a CFT. However, the conformal group has additional symmetries which are
not always obeyd by a system at QCP. Believing that scale invariance is a good enough starting
point, we then set off to determine correlation functions of conformal operators, having certain
conformal dimensions, which are the main objects of a CFT. Even now, our task is not easy
in any sense, principally because we have no clue about the generating functional or the mi-
croscopic composition of the operators of the theory. What we only know is their conformal
dimension and symmetry properties.

Hence, to sum up, although we have reduced the problem of the interacting Weyl semimetal,
to the calculation of n-point functions of some operators of some strongly coupled CFT, we don’t
know neither the operators nor the theory in which these unknown operators live! The situation
doesn’t seem quite encouraging, does it?!

1.5.1 AdS/CFT correspondence

Quite remarkably string theory is here to save the day and show us the way out of this apparent
dead in that we put ourselves into12! The way out that we shall follow, has its roots in the
holographic principle proposed by Gerard ’t Hooft and Leonard Susskind, suggesting that infor-
mation of a string theory in a bulk spacetime can be encoded on its boundary [8, 9]. Stepping
on this proposal, Juan Maldacena conjectured in 1997 that string theories in spacetimes with
constant negative curvature, Anti deSitter (AdS), are in some sense equivalent to CFTs defined
on their boundary, which is of one dimension less [10]. The canonical example of Maldacena’s
conjecture is the duality between type II-B superstring theory defined on AdS5 × S5 and an
N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions. Nonetheless, proposals have
been made for other theories as well.

In the appropriate limit of the correspondence, the string theory side of the duality reduces
to classical gravity described by Einstein’s theory while the field theory side corresponds to the
strong coupling with large-Nc (i.e. large "color") and large ’t Hooft coupling limit. Although a
rigorous proof of the correspondence is still missing, Maldacena’s conjecture has survived a
large number of numerical tests and therefore expectations that we are on the right track are

12After all nobody forced us to take the assumptions we took!
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high.
Instead of getting into the cumbersome mathematical details of the conjecture, that will

take us away from our path, we shall give two physically intuitive arguments that support the
conjecture. The first one, is related to the degrees of freedom (dof) of the theory. Dofs of a
system are counted by its entropy. In a QFT the entropy is an extensive quantity meaning that
it scales with the volume. On the contrary, in a theory of gravity, the entropy is bounded by the
entropy of a black hole surrounding the volume, the Bekenstein bound, and which scales with
the area of the black hole [11, 12]. Therefore, entropy in a theory of gravity in d dimensions
scales in the same way as a field theory defined in a (d− 1)-dimensional spacetime.

The second argument in support of the correspondence, lies in symmetry. A conformal field
theory is characterised by conformal invariance i.e invariance under conformal transforma-
tions. These transformations form a group, the so called conformal group, which is isomorphic
to SO(dcft + 1, 1), where dcft denotes the dimension of the spacetime where the CFT lives in.
Similarly, the AdS spacetime is characterised by a set of transformations that leave the metric
invariant. One can easily see that the AdS symmetry group is also isomorphic to SO(dads, 1),
where it was assumed that the AdS spacetime is dads+1-dimensional. Therefore, the symmetry
group of a CFT living in a d-dimensional spacetime, is isomorphic to the symmetry group of an
AdS space of one dimension higher.

Hoping that the two previous arguments were sufficient to motivate the reader, the moral
strory of the correspondence goes like this: ignoring all fancy, mathematical details, the basic
tool that ’t Hooft, Susskind and Maldacena13 have given us, is that a strongly coupled conformal
field theory "is" dual to some theory of classical gravity. In essence, the main idea of AdS/CFT
correspondence is captured in the following compact yet elegant formula14

〈e
∫
ddxOφ〉CFT = exp(

i

~
Sbulk[χ→ φ]). (1.12)

On the left hand side of eq. (1.12) we have the generating functional for correlation functions
of an operator O, sourced by the field φ. On the right hand side, Sbulk is a gravity action
evaluated on the solution of the equations of motion that reduce χ to its boundary value.
What the AdS/CFT correspondence suggests, via eq. (1.12), is that correlation functions of
a composite operator O of a CFT in d dimensions, can be calculated by an appropriate d + 1
gravity action put on-shell. Miraculously15 or not, the AdS/CFT seems to be exactly the missing
part of the strongly coupled CFT puzzle. What Maldacena basically told us, boils down to this:

"You have an unknown CFT theory, with unknown composite operators whose n-point
functions you want to calculate? No problem! Just come up with a suitably chosen
gravity theory and you will be just as good!"

The real challenge of the AdS/CFT program lies in the phrase "suitably chosen". So far there
is no unique and universal way to determine the correct gravity dual of a strongly coupled CFT.
Instead, it is up to the theorist’s experience and physical intuition to come up with the best
model. Eventually, the experiment will be the final judge of every possible theory of nature,
whenever the time is ready for an AdS/CFT model with experimentally falsifiable results.

1.5.2 Semi-holography

In our approach we make an attempt to go a step further towards that direction. What we
are interested in is to calculate the interacting Green’s functions of elementary fermionic op-

13Among numerous other scientists with great contribution to the field.
14Rigorously, eq. (1.12) is valid only for a massless field, but the prescription is valid in essence both for massive

and fermionic fields.
15Actually no miracle has happened. It was AdS/CFT that we had in our minds when making all these assumptions

on the nature of the interactions.
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erators and eventually the conductivity they give rise to. The main reason we are after the
former quantity is that its imaginary part, i.e. the spectral function, is directly measurable
in experiments, e.g. using angle-resolved photoemission spectroscopy (ARPES) for solid-state
systems or radio-frequency spectroscopy when studying ultra-cold atoms. A crucial property
of the spectral function that makes it rather useful and appealing is the fact that it satisfies a
sum rule of the form ∫ ∞

−∞
dωρ(~k, ω) = 1, (1.13)

making it easy to determine whether there were excitations in the system that were not properly
taken into account. In addition, the above sum rule is a perfectly suitable criterion to check
whether our constructed spectral function corresponds indeed to a single fermionic operator.

However, the above sum rule holds for single-particle Green’s functions16, while the AdS/CFT
correspondence provides n-point functions of composite operators. To reconcile this incompat-
ibility, we shall employ a variation of the holographic principle that came to be known under
the term semi-holography. This approach was first introduced by Faulkner and Polchinski in
[13] and was further applied in the case of non-Fermi liquids [14], in heavy-ion collisions [15]
as well as strange metallic behaviour [16].

What the semi-holographic prescription suggests is that the strongly coupled CFT, whose
gravity dual we are after, is coupled to another QFT that is treated in a conventional field
theoretic manner. This approach allows for a more powerful and effective bottom-up approach
to the correspondence. Schematically, this approach can be seen in the following action

S = −i~c
∫
ddxψ̄γµ∂µψ + ig

∫
ddx(ψ̄O + Ōψ) + SCFT [Ō, O]. (1.14)

The first term denotes a the free term of the Dirac fermion ψ, which is coupled to the operator
O of the strongly coupled CFT with coupling constant g. The last term denotes the action
describing the CFT itself. Effectively, the coupling of the CFT operator O to the Dirac fermion
will generate a self energy term modifying the free Green’s function. This modification is
proportional to the two-point function of the operator O, i.e.

Σ(~k, ω, T ) ∝ g2〈ŌO〉CFT . (1.15)

To conclude, and as an appetizer for what will be more thoroughly discussed in chapter 4,
we mention that what we will do to introduce interactions into WSMs boils down to this. First,
we construct a gravity theory that is the dual of the field theory describing the WSM and then,
we introduce an extra field leaving in this world and being coupled to it, to some extend. This
model reduces on its boundary, to an interacting fermion and this boundary description will
provide us with the interacting Green’s function17.

1.6 Disclaimer

This introduction had no intention of being exhausting, and therefore couldn’t have been ex-
haustive! Instead, the intention was to cover in a concise and physically intuitive way the
primary features of the topics that will be further discussed in the rest of the thesis. At the
same time, the author is not claiming on any ground that has reinvented the wheel. On the
contrary, he was heavily influenced by many excellent reviews on the topics that are covered.
This introduction followed their steps and tried to include their main points, hopefully, in an

16This is because the sum rule of eq. (1.13) is a direct consequence of the anti-commutation relations of the single
fermion creation and anihilation operators

17We are confident that all that will be made more clear after we introduce the field theory description of WSM in
chapter 2 and even more in chapter 4, where a more thorough description of the holographic model is given.
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explanatory level for the level of a Master student. For deepening his/her knowledge, through
examination of the original work, the reader could consult [17, 18], in the area of TIs, while a
beautiful journey in the topology of quantum vacua is elegantly presented in [19] and in the
classical [20]. More specifically, thorough and well written reviews on Weyl semimetals can be
found in [21, 22, 23, 24] and partly in [25].

At the same time, on the AdS/CFT part, there was some focus on the intuitive plausibility
of the conjecture and the reasons that we thought it would be a useful tool to be used in
the description of WSM. Nice reviews on the correspondence abound in the literature. Some
prominent examples with application in the AdS/CondensedMatter program can be found in
[26, 27, 28]. Any reader interested in diving deeper into a more mathematical analysis of
the concepts we briefly discussed, is eagerly encouraged to consult the rich and pedagogical
literature that can be found therein.

As a last remark, it must be heavily stressed that this thesis is critically influenced and
builds upon relevant work that was carried out in the Institute for Theoretical Physics in Utrecht
University, such as [29, 30, 31].

1.7 Thesis Outlook

The rest of the thesis is organised as follows. In Chapter 2, we introduce a phenomenological
model that incorporates the splitting of the two Weyl fermions in energy. There, we present
the first of the two results of this thesis, which is a re-derivation of the already known formula
for CME. The novel element in this derivation, is the use of spectral functions which enables
application of the derived formula in the case of interacting fermions, whose propagator is
obtained via the AdS/CFT correspondence in Chapter 4.

In Chapter 3, we attempt a resolution of the conceptual problem related to the nature of
CME, that was already apparent in the derivation we did in Chapter 2. Such resolution is
achieved via a thorough examination of the related literature that approaches CME both from
a high energy perspective, as in our case, but also from a condensed matter approach, where
a full band structure model is considered. After a reconciliation is achieved, the chapter ends
with a short discussion on the recent experimental status of CME.

In Chapter 4, we move on with the description of interacting Weyl semimetals using the
AdS/CFT correspondence. After the model is introduced, plots of the resulting spectral func-
tions resembling Weyl fermions split in energy, are presented for different values of the model
parameters Short comments on the dependence of the results on these parameters are then
put forward.

The thesis concludes with Chapter 5, where a short Outlook is presented. On the one hand,
we comment on further steps to be taken, directly related to the present work, as well as more
general ones related to a way towards a more accurate holographic model of Weyl semimetals.
On the other, we comment on possible open questions regarding the nature of WSM, as seen
from a condensed matter point of view.

12



Chapter 2

CME Part I:
A controversial formula

2.1 Introduction

In this chapter we move on to the main theme of this thesis, which is no other than the Chiral
Magnetic Effect or CME. We start our approach to the phenomenon by building a field theory
model that describes two Weyl fermions separated in energy space. This splitting is done in
a phenomenological way, simply with the introduction of an additional term in the free Dirac
action that explicitly breaks inversion (I) symmetry. Then, after perturbing the system with a
magnetic field in the x direction, we calculate the system’s response in the linear regime. What
we find is an electric current parallel to the magnetic field whose magnitude, in the DC and
uniform limit, is proportional to the energy separation between the two nodes. Therefore, we
conclude the, theoretical, existence of CME. Nonetheless, the result we arrive at, will depend
on the limiting procedure we use. The physical implications of this dependence will occupy us
in the next chapter.

Up to a point our analysis will remain rather general and only after a general formula for
the CME conductivity is obtained in terms of the spectral functions of the system under study,
will we make explicit use of the free nature of the model. This generality in the description of
CME, allows us to generalise the results to interacting Weyl fermions once their corresponding
propagators are known. It is exactly at this point where the field theory approach meets the
AdS/CFT results we obtain in Chapter 4. We will comment more on this point in the outlook.

2.2 WSM Green’s functions

Our starting point is the free, massless Dirac Lagrangian

LD = ψ̄
(
−i~/∂

)
ψ, (2.1)

where from now on we set c = 1. Eq. (2.1) results in two 2-fold degenerate dispersion relations
touching at a 4-fold degenerate Dirac point as can be seen in Figure 2.1(a). To describe a
WSM we need to break this degeneracy by separating the two nodes either in momentum, as
in Figure 2.1(b), or in energy, as in Figure 2.1(c). In our case we discuss WSM with broken
inversion (I) symmetry, which amounts to two Weyl cones separated in energy. There are two
reasons why we are interested in this scenario. Firstly, it is the one that gives rise to the unique
phenomenon of CME which as we will see in chapter 3 has directly observable effects. Secondly,
having our minds set towards the interacting regime, a holographic model that incorporates
the energy splitting is a feasible thing to do. On the contrary, a gravity dual theory of a WSM
with momentum cone-splitting is still under investigation.
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Figure 2.1: (a) In the presence of TR and I symmetries, two doubly degenerate bands touch at
a 4-fold degenerate point. (b) TR symmetry breaking leads to momentum cone-splitting. (c) I
symmetry breaking leads to energy cone-splitting. The figure is borrowed from [32].

There is a straightforward, phenomenological way to construct a Lagrangian that incor-
porates such a splitting. It simply requires the introduction of an extra term, proportional
to ψ̄γ0γ5ψ to the free Dirac Lagrangian density. The proportionality factor b0, that we shall
assume positive without any loss of generality, denotes the magnitude of the splitting. Then
the free WSM Lagrangian will read

LWSM = ψ̄
(
−i~/∂ + ~b0γ0γ5

)
ψ. (2.2)

Before moving any further, a notational clarification is in order. Although the Lagrangian
(2.2) is written in a general form, to avoid confusion, we state that in the rest of the thesis the
following realization of the Dirac matrices will be used, namely

γ0 =

(
0 −I
I 0

)
, γi =

(
0 σi

σi 0

)
, γ5 =

(
I 0
0 −I

)
, (2.3)

where

I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.4)

To verify that the Lagrangian (2.2) indeed describes a WSM with cones separated in energy,
let us have a closer look at the Green’s function. Performing our analysis in the more convenient
momentum space, by Fourier transforming the Dirac spinor as

ψ(xµ) =

∫
d4k

(2π)4
ψ̃(kµ)eik

µxµ , (2.5)

we see that the inverse Green function for the WSM is

G−1 = γ0(/k + /bγ5) =

(
−k0 − b0 − kiσi 0

0 −k0 + b0 + kiσ
i

)
. (2.6)

Inverting the above matrix we have

G(k) =

(
G+(k) 0

0 G−(k)

)
, (2.7)

with

G+(k) =
−(k0 + b0) + ~k · ~σ
(k0 + b0)2 − |~k|2

, (2.8)

and
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G−(k) =
−(k0 − b0)− ~k · ~σ
(k0 − b0)2 − |~k|2

. (2.9)

In the above notation the ± signs denote the chirality of the fermion that each 2 × 2 Green’s
function describes. It will be convenient to further decompose the chiral fermion propagators
in the basis of Pauli matrices, as

G± = G±µ σµ = G±0 I + G±i σ
i, (2.10)

with coefficients that read

G±0 = − k0 ± b0
(k0 ± b0)2 − |~k|2

, (2.11)

and
G±i = ± ki

(k0 ± b0)2 − |~k|2
. (2.12)

Whenever we feel it is notationally convenient, we shall denote both chiralities with a chirality
index α, taking values ±1.

To see that indeed the propagator given in eq. (2.8) indeed describes a Weyl fermion that is
shifted upwards in energy, we simply need to look at its poles. As we know, the poles of the free
Green’s function define the dispersion relation of the particle. Hence, the poles of (2.8) read1

(k0 + b0)
2 − k2 = 0

(−ω + b0)
2 − k2 = 0

ω = ±k + b0,

(2.13)

which indeed describes a linear dispersion shifted in energy by b0. Similarly, the dispersion
relation of a particle whose propagator is given by eq. (2.9) is

(k0 − b0)2 − k2 = 0

(−ω − b0)2 − k2 = 0

ω = ±k − b0,
(2.14)

where in this case the shift is done downwards by the same amount. In eqs. (2.13) and (2.14)
I converted the wavenumber k0 in frequency ω via the relation

k0 = −ω
c

= −ω, (2.15)

where we have made explicit use of the metric that we adopt, namely

ηµν = (−1, 1, 1, 1). (2.16)

2.3 Linear response of a WSM

Now that we have constructed a field theoretical model that provides an effective description
of our system, we want to check its response to an external electromagnetic perturbation. The
way to incorporate the perturbation in the system, follows the standard steps of field theory.

The first thing to note is that the system possesses a global symmetry

1Whenever there is no ambiguity, we will use the notation |~k| and k interchangeably to denote the norm of the
spatial part of the wavevector.
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ψ → eiαψ, (2.17)

that according to Noether’s theorem leads to a classically conserved current that reads

jµ = ψ̄γµψ. (2.18)

Next, we assume that the system is perturbed under the influence of an external electromag-
netic field that is conveniently described by a U(1) gauge field that we denote as Aµ. Ignoring
the kinetic term of the gauge field, which is of no concern in the present analysis, we couple
the gauge field to the current jµ with a coupling constant e. In essence, the gauge field will act
as the source of the fluctuations of the current around its equilibrium value2, that we suppose
is zero, i.e. 〈jµ〉

∣∣∣Aµ=0. With that in mind, the perturbed Lagrangian reads

L = ψ̄
(
−i~/∂ + ~b0γ0γ5

)
ψ + ejµAµ = ψ̄

(
−i~/∂ + ~b0γ0γ5

)
ψ + eψ̄γµψAµ, (2.19)

and what we are after, is the expectation value 〈jµ〉.
Our approach will be based on linear response theory. In this regime, we assume that the

disturbance in the system is sufficiently small, so that quadratic and higher order terms can
be considered negligibly small. As a result, the response of the system is a linear function of
the source which reads

〈jµ(~x, t)〉 =

∫
dd~x′dt′χµν(~x′, t′; ~x, t)Aµ(~x′, t′), (2.20)

where the proportionality constant is given by the Kubo formula

χµν(~x′, t′; ~x, t) = −iθ(t− t′)〈
[
jµ(~x, t), jν(~x′, t′)

]
〉. (2.21)

Assuming spatial and temporal translational invariance, the linear response formula can be
recast in momentum space as

〈j̃µ(~k, ω)〉 = χ̃µν(~k, ω)Ãν(~k, ω). (2.22)

Crucially, in the linear response regime, the system does not introduce new frequencies in the
response. In essence, the appearance of new frequencies is a higher order phenomenon that is
not captured in this approximation. This property is evident in eq. (2.22) where the response
of the system is at the same frequency and momenta as its disturbance.

Specifically, we are interested in the system’s response to an external magnetic field. Due
to the spherical symmetry of the problem, and without loss of generality, we assume that the
magnetic field points along the x-direction; i.e. ~B = Bxx̂. In order to express the magnetic
field in terms of the gauge potential, we recall from electrodynamics that

Bl = εlmn∂mAn → B̃l = iεlmnkmÃn, (2.23)

where the arrow denotes taking the Fourier transform on both sides of the equation, with km
being the Fourier variable corresponding to spatial direction m.

Next, we gauge fix Aµ such that the only non-vanishing component of the gauge field is Ay
and hence we can express the Fourier components of the magnetic field in terms of the gauge
field components as3

Bx = −ikzAy, (2.24)

or equivalently
2Its value when Aµ = 0.
3For the rest of the chapter we will work exclusively in momentum space. Thus, and for notational economy, we

will drop the tilde symbol over the Fourier coefficients.
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Ay(~k, ω) =
i

kz
Bx(~k, ω). (2.25)

As a last step, recalling that we are interested in the electric current in the same direction
as the applied magnetic field, we set in eq. (2.22), µ = x and keep only the ν = y term in the
summation due to the gauge condition. Then, we get

〈jx(~k, ω)〉 = χxy(~k, ω)Ay(~k, ω) =
i

kz
χxy(~k, ω)Bx(~k, ω), (2.26)

where χxy(~k, ω) is the (~k, ω) Fourier mode of χµν(~x′, t′; ~x, t). Denoting the proportionality con-
stant between the electric current and the magnetic field as σx we have that4

σx(~k, ω) =
〈jx(~k, ω)〉
Bx(~k, ω)

=
i

kz
χxy(~k, ω). (2.27)

In general, the magnetoconductivity σx is a complex quantity. However, we will focus on its
real part since the imaginary component describes transient and oscillatory phenomena that
are not of primary interest to us in the present analysis. So what we are interested in is

Re[σx(~k, ω)] = Re[
i

kz
χxy(~k, ω)]. (2.28)

To calculate χxy(~k, ω), we first define

~Πµν(q) =

∫
d4(x− y)〈Jµ(x)Jν(y)〉e−iq(x−y)

= e2
∫

d4k

(2π)4
Tr
[
G(k)γ0γµG(k + q)γ0γν

]
,

(2.29)

where in the above, Wick’s theorem was used and disconnected Feynman diagrams were omit-
ted as we are interested in the connected correlator. Going to imaginary frequency, both for
the external electromagnetic field and for the internal fermionic one finds5

~Πµν(~q, iωb) =
e2

~β

∫
d3~k

(2π)3

+∞∑
n=−∞

Tr
[
G(~k, iωn)γ0γµG(~k + ~q, iωb + iωn)γ0γν

]
. (2.30)

Then, by analytic continuation back to the real frequency domain, i.e.

iωb → ω+ = ω + iε, (2.31)

we see that the CME conductivity reads6

σx(~q, ω) =
i

qz
Πµν(~q, ω+). (2.32)

The analysis to arrive at eq. (2.32) was undoubtedly rather sketchy. Nonetheless, the steps
we took are rather standard and can easily be found in any textbook that applies field theory
techniques in condensed matter systems, such as [33, 34].

We first turn to the calculation of the trace that appears in the expression of eq. (2.30), i.e.
4Not to be confused with the Pauli matrix of course!
5Since the electromagnetic field is bosonic, its corresponding Matsubara frequency iωb will be of the same type.

Similarly for the Matsubara frequency iωn corresponding to the fermionic field.
6To avoid confusion, let us note explicitly that upon analytic continuation, iωb → ω+ = ω + iε, Πµν(~q, iωb)

coincides with χµν(~q, ω).
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Tr
[
G(~k, iωn)γ0γiG(~k + ~q, iωn + iωb)γ

0γj
]
. (2.33)

Recalling

γ0γi =

(
0 −I
I 0

)(
0 σi

σi 0

)
=

(
−σi 0

0 σi

)
, (2.34)

so that

Gγ0γi =

(
G+ 0
0 G−

)
γ0γi =

(
−G+σi 0

0 G−σi

)
, (2.35)

and

Gγ0γiGγ0γj =

(
G+σiG+σj 0

0 G−σiG−σj

)
, (2.36)

we get

Tr
[
Gγ0γiGγ0γj

]
=
∑
α

Tr
[
GασiGασj

]
=
∑
α

GαµGαν Tr
[
σµσiσνσj

]
. (2.37)

For notational convenience, the argument of G is implied by its order in the product7. We
have also splitted the analytic part of the Green’s function from its matrix part, using the
decomposition Gα = Gαµσµ, where σµ = (I, ~σ).

First we further manipulate the analytic part of the Greens function. To that end, it is
re-expressed in terms of the spectral function as

Gαµ (~k, iωn) =

∫ +∞

−∞
dω
Aαµ(~k, ω)

iωn − ω
. (2.38)

Then

∑
n

GαµGαν =
∑
n

∫
dω
′
dω
′′Aαµ(~k, ω

′
)

iωn − ω′
Aαµ(~k + ~q, ω

′′
)

iωn + iωb − ω′′

=

∫
dω
′
dω
′′Aαµ(~k, ω

′
)Aαν (~k + ~q, ω

′′
)
∑
n

1

iωn − ω′
1

iωn + iωb − ω′′

= ~β
∫
dω
′
dω
′′Nf (ω

′
)−Nf (ω

′′
)

iωb + ω′ − ω′′
Aαµ(~k, ω

′
)Aαν (~k + ~q, ω

′′
).

(2.39)

In the last line, the Matsubara summation over the fermionic Matsubara frequencies was
implicitly performed, and in the resulting expression, only the external, bosonic Matsubara
frequency associated with the photon field is left.

Now lets turn our attention to the matrix part.

σµσiσνσj = (δµ0 I + δµkσ
k)σi(δν0 I + δνl σ

l)σj

= δµ0 δ
ν
0σ

iσj + δµ0 δ
ν
l σ

iσlσj + δµk δ
ν
0σ

kσiσj + δµk δ
ν
l σ

kσiσlσj .
(2.40)

Then, checking each term separately, we get8

7I.e. GG ≡ G(k)G(k + q)
8In the calculations, when the σ -matrices "disappear", we have implicitly taken the trace using Tr[σi] = 0 and

Tr[σiσj ] = 2δij .
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σiσlσj = (i
∑
c

εilcσc + δil)σj = 2iεilj , (2.41)

similarly

σkσiσj = 2iεkij = −2iεikj (2.42)

and

σkσiσlσj = (i
∑
c

εkicσc + δki)(i
∑
d

εljdσd + δlj)

= −
∑
cd

εkicεlidσcσd + δkiδlj + i
(∑

c

εkicδljσc +
∑
d

εljdδkiσd
)

= −2
∑
c

εkicεlic + 2δkiδlj = −2
(
δklδij − δkjδil

)
+ 2δkiδlj .

(2.43)

Putting all the above together we see that

Tr[σµσiσνσj ] = i2εilj(δµ0 δ
ν
l − δν0δ

µ
l )

+ 2
[
δµ0 δ

ν
0δ
ij − δµk δ

ν
l

(
δklδij − δkjδli − δkiδlj

)]
.

(2.44)

Then, replacing eq. (2.44) in eq. (2.30), and using the well known formula

1

ω + ω′ − ω′′ + iε
= PV

( 1

ω + ω′ − ω′′
)
− iπδ(ω+ + ω

′ − ω′′), (2.45)

we get9

σx(~q, ω) =
2e2

~qz

∫
d3~k

(2π)3
dω
′
dω
′′∑

α

P.V.

(
Nf (ω

′
)−Nf (ω

′′
)

ω + ω′ − ω′′

)
×

(Aα0 (ω
′
,~k)Aαz (ω

′′
,~k + ~q)−Aαz (ω

′
,~k)Aα0 (ω

′′
,~k + ~q)).

(2.46)

Therefore, when a WSM, described effectively by the Lagrangian (2.2), is perturbed by a mag-
netic field along the x direction having momentum ~q and frequency ω, its magnetic conductivity
is given by eq. (2.46)10.

Nonetheless, what we are mostly interested in, is the DC and uniform limit response of
the system. That is, its response at ~q = ~0 and ω = 0. As a first comment, we see that
the qx and qy components of the momentum vector can be set to zero without any problems.
However, qz appears in the denominator of eq. (2.46) and therefore taking it to zero might lead
to divergences. The way to deal with this issue, is to expand the term containing the spectral
functions of the system in power series in qz and check if this approach can sort things out.

Moreover, there is a second issue that arises at this point. The ambiguity that we are facing
has to do with the limiting procedure that we will use to get to the DC and uniform limit. Put
differently, magnetoconductivity can be considered a multivariable function in frequency and
momentum of the external magnetic field, i.e. σx = σx(qz, ω). As it happens with functions
of more than one variable, not all limits are uniquely defined. Instead, one might depend on
which path in the multi-dimensional space we choose to approach the limiting point. Therefore,

9As we will focus only on the real part of the conductivity, σx will stand for the more rigorous Re[σx].
10After eq. (2.46), the principal value perscription will be implied and not explicitly noted.
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different paths may lead to different results and, as a result, to different interpretations of the
underlying physics. We will comment more on the implications of this possible non-analyticity
of magnetoconductivity around the origin of the 2D plane (qz, ω) in the next chapter. For now
let us simply examine both limits and see if indeed the limiting procedure affects the result we
arrive at.

2.4 Static limit

The first limit order we will examine, is the one that, as we will see, can give us a sensible result.
Furthermore, a similar analysis uses the same limiting procedure to arrive at the same result
[36]. Hence, the way to get a finite answer is if we first take the frequency of the external field
to zero and then its momentum. That translates to first assuming a static, time independent
magnetic field whose spatial variations are taken to zero only in the end. For apparent reasons,
we will refer to this order as the static limit. Physically this amounts to studying an equilibrium
property of the system and it is due to this interpretation that we will have to reconsider if this
is indeed the physical limit order to take. Nonetheless, let us be naive in first instance and try
to see where this road will take us.

The crucial technical point where this limit appears useful is in the product of the Fermi-
Dirac distributions with the spectral functions. We see that, after taking ω+ → 0 the first term
in the product is symmetric under the exchange of the two frequencies we integrate over, i.e.
ω
′ ↔ ω

′′
. So we can exchange the frequencies in one of the two terms containing products

of spectral functions in order for same components of the spectral function to have the same
integration frequency. Due to the above mentioned symmetry, the Fermi-Dirac distribution
term can again factor out of the sum11. Eventually, after we perform this trick we see that the
conductivity (2.46) reads

σx(~q, ω = 0) =
2e2

~qz

∫
d3~k

(2π)3
dω
′
dω
′′∑

α

Nf (ω
′
)−Nf (ω

′′
)

ω′ − ω′′

× (Aα0 (ω
′
,~k)Aαz (ω

′′
,~k + ~q)−Aαz (ω

′′
,~k)Aα0 (ω

′
,~k + ~q)).

(2.47)

Before taking the uniform limit, let us denote the term involving the spectral functions as

I = A0(ω
′
,~k)Az(ω

′′
,~k + ~q)−Az(ω

′′
,~k)A0(ω

′
,~k + ~q)) (2.48)

where for notational convenience the chirality index α was dropped for now. Moreover the
spectral functions can be rewritten as

A0(ω
′
,~k) = g(ω

′
, |~k|)

Az(ω
′′
,~k) = f(ω

′′
, |~k|)kz

(2.49)

where they still retain a general form. Using these two relations, I can be rewritten as

I = g(|~k|)f(|~k + ~q|)(kz + qz)− f(|~k|)kzg(|~k + ~q|)

= kz[g(|~k|)f(|~k + ~q|)− f(|~k|)g(|~k + ~q|)] + qzg(|~k|)f(|~k + ~q|)
(2.50)

Next, we Taylor expand the f and g factors in eq. (2.50) in a power series in qz. As we
have commented before the qx and qy components of ~q can be set to zero easily. So using ~q in

11This is a technical trick that we will use again at later points without explicitly mentioning it.
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eq. (2.50) we actually mean ~q = (0, 0, qz). Working first abstractly, we see that for a general
function h(|~k + ~q|) the following expansion holds12

h(|~k + ~q|) = h(λ(qz)) = h(qz) = h(qz = 0) + qz
d

dqz
h(qz)|qz=0 +O(q2z)

= h(0) + qzh
′
(λ)

dλ

dqz
|qz=0 +O(q2z)

= h(0) + qzh
′
(|~k|) kz
|~k|

+O(q2),

(2.51)

where
λ(qz) = |~k + ~q| =

√
k2x + k2y + (kz + qz)2 (2.52)

and h
′
(λ) denotes the derivative of h with respect to λ.

Then, we have

g(|~k|)f(|~k + ~q|)− f(|~k|)g(|~k + ~q|)

= g(|~k|)(f(|~k|) + qzf
′
(|~k|) kz
|~k|

+O(q2z))− f(|~k|)(g(|~k|) + qzg
′
(|~k|) kz
|~k|

+O(q2z))

= qz
kz

|~k|
(g(|~k|)f ′(|~k|)− f(|~k|)g′(|~k|) +O(q2z),

(2.53)

and
qzg(|~k|)f(|~k + ~q|) = qzg(|~k|)f(|~k|) +O(q2z). (2.54)

The crucial point to note here is that the 0th order terms of the expansion vanish identically
and therefore there are no infinities appearing when taking the uniform limit. In the same limit,
O(q2z) also vanish. So the only term contributing in the conductivity is the linear one. Explicitly,

lim
qz→0

1

qz
I = k cos2 θ(g(k)f

′
(k)− f(k)g

′
(k)) + g(k)f(k), (2.55)

where we have readopted the more convenient notation k = |~k| and we also used that kz =
k cos θ.

Next, we focus on the integral over the 3D momentum space which can be decomposed as∫
d3~k =

∫ ∞
0

dkk2
∫ 2π

0
dφ

∫ π

0
dθ sin θ = 2π

∫ ∞
0

dkk2
∫ π

0
dθ sin θ, (2.56)

where in the last step the φ-integral was trivially performed since there is no such φ-dependence
in the formulas. Then we turn our attention to the θ-integrals. The second term in eq. (2.55)
does not depend on the angle θ either. Therefore the θ-integral can also be performed trivially
giving an extra factor of 2. On the contrary, the first term has an extra cos2 θ that after
integration over a range of π will give∫ π

0
dθ sin θ cos2 θ = −

∫ π

0

d cos3 θ

3
=

2

3
. (2.57)

Eventually, the DC and uniform limit of the Weyl fermion CME conductivity reads
12In the following analysis we focus on the momentum dependence and therefore we suppress the frequency

argument.
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σx(~q = 0, ω = 0) =
e2

~π2
∑
α

∫ ∞
0

dk

∫ +∞

−∞
dω
′
dω
′′
k2
Nf (ω

′
)−Nf (ω

′′
)

ω′ − ω′′

×
[
k

3
(g(k)f

′
(k)− f(k)g

′
(k)) + g(k)f(k)

]
.

(2.58)

Eq. (2.58) is a central result for this thesis. It provides the general formula to calculate the
CME conductivity of the system, provided that its spectral functions are known and are of the
form of eq. (2.49).

This is an important formula on two grounds. Firstly, it can be used in the case of free
fermions when the spectral functions are explicitly known. Thus we can first check the validity
of this formula by comparing with the CME conductivity formula found in the literature. Sec-
ondly, it is a suitable framework to apply the AdS/CFT calculations we carry out in Chapter
4. The holographic model that we construct there, provides us with the holographically inter-
acting Weyl fermions’ propagator, whose imaginary part is precisely the spectral function we
need. Therefore, we can use eq. (2.58) to obtain a holographic CME conductivity.

2.5 Free fermions

As a first check of eq. (2.58), we will try to apply it in the free fermion case, where a closed for-
mula already exists in the literature and was obtained via different approaches and arguments
[35, 36, 37, 38, 39]. In these attempts, CME is treated from a high-energy perspective and
as we will see there is a fundamental difference in the interpretation of the effect compared to
the condensed-matter analogue. Nonetheless, the discussion is rich and useful for a general
brainstorming on the phenomenon.

As far as calculations are concerned, the free case is also the most convenient one as the f
and g factors reduce to delta functions and analytic calculations can be performed. As we will
show in Appendix A, the first term, containing derivatives of the f and g factors, is vanishing
in the static limit for free Weyl fermions. Hence, in this section we shall concentrate only on
the second term.

2.5.1 Right chiral contribution

Let us first concentrate on the right chiral fermion and recall that

G+0 (kµ) = − k0 + b0
(k0 + b0 + iε)2 − k2

G+z (kµ) =
kz

(k0 + b0 + iε)2 − k2
, (2.59)

which can be further decomposed as

G+0 (kµ) = − k0 + b0
(k0 + b0 + iε)2 − k2

= −1

2

( 1

k0 + b0 − k + iε
+

1

k0 + b0 + k + iε

)
G+z (kµ) =

kz
(k0 + b0 + iε)2 − k2

=
1

2k

( 1

k0 + b0 − k + iε
− 1

k0 + b0 + k + iε

)
kz.

(2.60)

Then, using the identity

lim
ε→0

1

x+ iε
= PV (

1

x
)− iπδ(x), (2.61)

we can easily see that the spectral functions read
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A+
0 (kµ) = − 1

π
Im[G+0 ] = −1

2
(δ(k0 + b0 − k) + δ(k0 + b0 + k))

A+
z (kµ) = − 1

π
Im[G+z ] =

1

2k
(δ(k0 + b0 − k)− δ(k0 + b0 + k))kz.

(2.62)

Thus, from eqs. (2.49), we can see directly that the f and g factors are simply

g+(kµ) = −1

2
(δ(k0 + b0 − k) + δ(k0 + b0 + k)

f+(kµ) =
1

2k
(δ(k0 + b0 − k)− δ(k0 + b0 + k)),

(2.63)

or using eq. (2.15)

g+(ω, k) = −1

2
(δ(−ω + b0 − k) + δ(−ω + b0 + k))

f+(ω, k) =
1

2k
(δ(−ω + b0 − k)− δ(−ω + b0 + k)).

(2.64)

Next, we note that the product that appears in eq. (2.58) has four constituent terms that
read

g+(ω
′
, k)f+(ω

′′
, k) = − 1

4k
{δ(−ω′ + b0 − k)δ(−ω′′ + b0 − k)− δ(−ω′ + b0 − k)δ(−ω′′ + b0 + k)

+ δ(−ω′ + b0 + k)δ(−ω′′ + b0 − k)− δ(−ω′ + b0 + k)δ(−ω′′ + b0 + k)}.
(2.65)

After that, we perform the ω
′

and ω
′′

integrals that can be easily carried out. As a result, we
get four corresponding terms that read

∫ +∞

−∞
dω
′
dω
′′Nf (ω

′
)−Nf (ω

′′
)

ω′ − ω′′
g+(ω

′
, k)f+(ω

′′
, k) =

=− 1

4k

[Nf (−k + b0)−Nf (−k + b0)

−k + b0 − (−k + b0)
−
Nf (−k + b0)−Nf (k + b0)

−k + b0 − (k + b0)

+
Nf (k + b0)−Nf (−k + b0)

k + b0 − (−k + b0)
−
Nf (k + b0)−Nf (k + b0)

k + b0 − (k + b0)

]
.

(2.66)

There are two comments at this point. Firstly the second and third terms in the above sum
cancel each other. These are the interband contributions, that we will say more about in
Chapter 3, and they appear not to be contributing in the static limit. Secondly, the first terms
appear to be undefined since they lead to ambiguities of the form 0

0 . Correspondingly, these
are the intraband contributions, which are eventually responsible for the CME conductivity in
the model we are building. However, this ambiguity is raised if we recall that the corresponding
ratio, is define within the Principal Value procedure. That simply amounts to examining what
happens as ω

′′
approaches infinitesimally ω

′
at the singular value. This is nothing else than

the derivative of the underlying function, in our case the Fermi-Dirac distribution, evaluated
at the singular value. Therefore the sum in eq. (2.66) simply reads

dNf (x)

dx

∣∣∣
x=−k+b0

−
dNf (x)

dx

∣∣∣
x=k+b0

= −δ(−k + b0) + δ(k + b0). (2.67)
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In the last step, we took the extra approximation that we are working in the zero temperature
limit. In this limit, the Fermi-Dirac distribution simplifies greatly as it reduces to a step
function, namely Nf (x) = θ(−x). Therefore, its derivative is a delta function with a negative
sign due to the form of the step function, i.e.

dNf (x)

dx
= −δ(x). (2.68)

Finally, we may perform the momentum integral that can also be easily calculated since we
have reduced it to an integral of two delta functions. Namely, we have∫ ∞

0
dkk2(− 1

4k
) (−δ(−k + b0) + δ(k + b0) =

b0
4
. (2.69)

2.5.2 Left chiral contribution

The above result, denotes the contribution to the conductivity arising only from the right chiral
cone. To get the full result, we need to follow the same procedure for the left chiral cone and
add up the two contributions. Since the two procedures are nearly identical, we will present
the derivation for conductivity of the left chiral fermion only in a brief and sketchy manner.

Our starting point is the components of the propagator of the left chiral fermion that read

G−0 (k) = − k0 − b0
(k0 − b0 + iε)2 − k2

G−z (k) = − kz
(k0 − b0 + iε)2 − k2

. (2.70)

Following the steps of the previous analysis, one easily sees that the f and g factors for the left
chiral fermion simply read

g−(ω, k) = −1

2
(δ(−ω − b0 − k) + δ(−ω − b0 + k))

f−(ω, k) = − 1

2k
(δ(−ω − b0 − k)− δ(−ω − b0 + k)).

(2.71)

The two difference from the corresponding equations for the right chiral fermion, eq. (2.64), is
a minus sign in front of b0 due to the opposite chirality, as well as an extra minus sign for the
f factor due to the the corresponding minus sign in the G−z component of the propagator.

Then, in complete analogy with the right chiral fermion, we can perform the ω
′

and ω
′′

integrals that will again lead to two delta functions of the form

dNf (x)

dx

∣∣∣
x=−k−b0

−
dNf (x)

dx

∣∣∣
x=k−b0

= −δ(−k − b0) + δ(k − b0), (2.72)

and the momentum integral will read∫ ∞
0

dkk2
1

4k
(−δ(−k − b0) + δ(k − b0) =

b0
4
. (2.73)

As symmetry considerations might have led us believe, eqs. (2.69) and (2.73) imply that the
two cones contribute equally to the conductivity. Then, replacing the two contributions in eq.
(2.58), we see that the DC and uniform CME conductivity of a pair of chiral fermions separated
in energy by 2b0, in the static limit, reads

σx =
e2

2π~
b0 (2.74)
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2.6 Uniform limit

In this section we will try to use a second limiting procedure to get to a DC and uniform CME
conductivity. Contrary to path we took in the previous sections we will now attempt to take first
any spatial fluctuations of the magnetic field to zero and then go to the DC limit. For obvious
reasons, we will refer to this procedure as the uniform limit and the current this procedure
describes is a non-equilibrium property of the system. Rather it is the DC limit of a transport
phenomenon.

Looking again at the general CME conductivity formula in eq. (2.46), one sees that the
qz → 0 limit is again problematic due to the presence of qz in the denominator of the fraction.
Thus, we will resort again to Taylor expansion of the spectral function term. However, in this
limit order the term involving Fermi-Dirac distribution is no longer symmetric in the exchange
of frequencies ω

′ ↔ ω
′′
. In any case, let us proceed with the Taylor expansion as in the static

limit case. Omitting, for the time being, any chirality index, and adopting the same form for
the spectral functions as in eq. (2.49), we have

Nf (ω
′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
A0(ω

′
,~k)Az(ω

′′
,~k + ~q)−Az(ω

′
,~k)A0(ω

′′
,~k + ~q)

)
=
Nf (ω

′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, |~k|)f(ω

′′
, |~k + ~q|)(kz + qz)− f(ω

′
, |~k|)g(ω

′′
, |~k + ~q|)kz

)
=
Nf (ω

′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, |~k|)f(ω

′′
, |~k + ~q|)− f(ω

′
, |~k|)g(ω

′′
, |~k + ~q|)

)
kz

+
Nf (ω

′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, |~k|)f(ω

′′
, |~k + ~q|)

)
qz

(2.75)

As before, we try to Taylor expand the first term in the sum of eq. (2.75), namely

Nf (ω
′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, |~k|)f(ω

′′
, |~k + ~q|)− f(ω

′
, |~k|)g(ω

′′
, |~k + ~q|)

)
kz. (2.76)

Using the power series from eq. (2.51), we can expand again the f and g factors as

f(ω, |~k + ~q|) = f(ω, k) + qzf
′
(ω, k)

kz
k

+O(q2z)

g(ω, |~k + ~q|) = g(ω, k) + qzg
′
(ω, k)

kz
k

+O(q2z).

(2.77)

In this case, we need at first retain explicitly the frequency dependence of the two factors as
in one factor g depends on ω

′
, while in the other it depends on ω

′′
. This feature cannot change

simply by an exchange of the dummy integration variables, ω
′

and ω
′′
, as the Fermi-Dirac

distribution is no longer symmetric under the exchange of the two. Therefore we need to be
careful with the different frequency arguments. Then using the expansions from eq. (2.77) we
get

g(ω
′
, |~k|)f(ω

′′
, |~k + ~q|) = g(ω

′
, k)f(ω

′′
, k) + qz

kz
k
g(ω

′
, k)f

′
(ω
′′
, k) +O(q2z)

f(ω
′
, |~k|)g(ω

′′
, |~k + ~q|) = f(ω

′
, k)g(ω

′′
, k) + qz

kz
k
f(ω

′
, k)g

′
(ω
′′
, k) +O(q2z).

(2.78)

Subtracting the two equations, we get
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kz

[
g(ω

′
, |~k|)f(ω

′′
, |~k + ~q|)− f(ω

′
, |~k|)g(ω

′′
, |~k + ~q|)

]
=

= k cos θ
[
g(ω

′
, k)f(ω

′′
, k)− f(ω

′
, k)g(ω

′′
, k)
]

+ qzk cos2 θ
[
g(ω

′
, k)f

′
(ω
′′
, k) + f(ω

′
, k)g

′
(ω
′′
, k)
]

+O(q2z)

(2.79)

Now, recalling that eventually we want to take the limit limqz→0
1
qz

, let us focus on each
term in the above expansion. Obviously, second and higher order terms vanish in the limit so
we do not have to worry about them. Next, the linear order contribution reads

k cos2 θ
Nf (ω

′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, k)f

′
(ω
′′
, k)− f(ω

′
, k)g

′
(ω
′′
, k)
)
, (2.80)

while the zeroth order one is given by

k cos θ
1

qz

Nf (ω
′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
(
g(ω

′
, k)f(ω

′′
, k)− f(ω

′
, k)g(ω

′′
, k)
)

(2.81)

The second term in eq. (2.75) is linear in qz and therefore the limqz→0
1
qz

can be taken
straightforwardly giving

Nf (ω
′
)−Nf (ω

′′
)

ω+ + ω′ − ω′′
g(ω

′
, k)f(ω

′′
, k). (2.82)

Eqs. (2.80), (2.81) and (2.82) are the three contributions to the CME conductivity in the uniform
limit. Evidently, the 0th order term as given by eq. (2.81) is problematic. If the uniform limit
is to be taken upon this term, we readily see that we end up with a divergent term. On the
contrary, in the static limit this term vanishes, in accord with our previous analysis. Therefore,
this analysis shows that CME must be an equilibrium property of the system, rather than the
DC limit of a transport phenomenon. In Chapter 3 we will have to say more about this result,
its interpretation as well as the objections that it gives rise to.
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Chapter 3

CME Part II:
Resolving the controversy

3.1 Introduction

Among the various interesting properties that emerge out of the topological character of the
WSM, the chiral magnetic effect (CME) bears great significance and a big part of the thesis is
devoted to it. In the field theory model we constructed in the previous chapter to model WSM,
CME was indeed found to be present. Nonetheless, the result we get appears to depend on the
limiting procedure we use. It is the purpose of this chapter to try and clarify the ambiguities
that arise and provide a self consistent and physically acceptable framework for CME. In the
end, we turn to the final judge of every physical theory and briefly explore an experimental
attempt to capture CME.

3.2 Ambiguous limit order

As we saw in the previous chapter, the result for the CME conductivity depends crucially
on the limiting procedure that we use. Nonetheless, this non-analyticity of σ(~q, ω) near the
point (~q, ω) = (~0, 0) is not a peculiarity unique to WSM. Many other response functions are
known to behave non-analytically in the neighbourhood of zero frequency and zero momentum.
Two prominent situations where a non-analytical behaviour is present, are the static current-
current correlation function of superfluids as well as the dielectric response function of an
electron gas.

The key in understanding non-analyticity lies in the interpretation of the results. To put
it differently, different limiting procedures describe different physical processes in the system.
Consequently, a priori, there is no physical law that indicates which limit is the "correct" one;
in principle, both are equally acceptable. However, the physics that these two limits describe
are different and it is up to the physicist to determine which limit he/she should take based
on the effect that he wants to study and possibly on extra considerations that allow or prohibit
one.

So, how does all that apply in our situation? The field theory model that we set up clearly
suggests that the CME current is an equilibrium property. What led us to this interpretation
is precisely the limiting procedure we chose. Setting first ω → 0, means that we have removed
all time dependence from our problem, turning it into a static one, and then see what happens
when also any spatial variations of the external magnetic field are absent.

Is there, then, a problem with CME being an equilibrium current? Actually, yes! And there
are two simple arguments to understand why this is the case, that are nicely put forward in
[40]. The first one stems from a simple energy consideration. Suppose that the system is in
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global equilibrium and in the presence of a magnetic field, along say the x-axis, an electric
current appears along the same direction, in accord with the CME formula. Next, suppose I
turn on also an electric field. Then, from ordinary electrodynamics, the energy input/output
in the system, will be given by

dP

dt
= ~J · ~E ∝ ~E · ~B, (3.1)

where P denotes the energy transfer1 in the system. However, what this formula suggests is
that by placing the electric field in the opposite direction of the magnetic field, I could extract
energy from the system. However, this means that at zero temperature we can extract energy
from a system in global equilibrium. And this directly contradicts the definition of a global
equilibrium as the ground state of your system; as the state of lowest energy.

The same thing can be viewed in a different way. Recall again, that we chose to model WSM
as two independent chiral fermions that are split in energy. And it was in this context that
we found the existence of CME. However, in high energy physics the infinite Dirac sea of both
fermions is assumed to be filled. The condensed matter analogue of this situation can be seen
in Fig. 3.1(b). In this case, both Weyl cones are filled up to the touching points, but since the
two cones are split in energy, different fillings is equivalent to different chemical potential for
each cone. But the necessity for two chemical potentials and the absence of a Fermi level in the
system is exactly what makes the situation an non-equilibrium one. Equilibrium is depicted
in Fig. 3.1(a). There a Fermi level is established in the system and the two cones are filled up
to the same level. Although the cones are still separated in energy, what is important in the
formula are the levels up to which each cone is filled. Therefore in the static case, we should
expect a zero CME current.

A a last remark on the resulting ambiguity, let us say this. On the one hand, the field theory
model indeed describes an equilibrium situation. An equilibrium as viewed from a high-energy
physics point of view where the infinitely filled Dirac seas make sense. However, in condensed-
matter systems, this model cannot describe an equilibrium situation. By construction it leads
to a non-equilibrium situation whose stability must be ensured by some external mechanism.
Otherwise, the system will tend to find its proper equilibrium in which case no CME current
can be observed. In the end of the chapter, we will see how nicely this picture is verified by the
experimental attempt to capture CME.

3.3 Full band models give a puzzling answer

From the previous discussion it was clear that if CME is to exist in a condensed matter context,
then it should be a transport rather than an equilibrium property of the system we are studying.
However, the theoretical model we have constructed, and indeed predicts CME, suggests the
latter interpretation. Therefore, there is clearly something that we are missing in the analysis.

As we have concluded in the last section, the problem arises due to the mismatch between
the characteristics of the theoretical model and the actual physical properties of the system
that is being modelled. To be more specific, the field theory model that we are using requires
that the two fermions in the model are independent and there is by no means any coupling
between them. Equivalently, the "Dirac sea" associated to each chiral fermion is infinitely deep
and the two dispersion cones never meet. However, in real systems there is no such thing
and the two cones inevitably meet at some point. In other words, the description of WSM as
two fermions of opposite chirality is only valid in the low energy regime. In higher energies
the quasiparticles’ dispersion relations meet and the model breaks down. It is precisely these
deviations from the realistic case that lead to a misinterpretation of the CME, as we will shortly
see.

1Either input or output.
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Figure 3.1: Physical condition for a non-vanishing CME. In the left panel, a global equilibrium
has been established and the two cones are filled up the Fermi level. In this case the chiral
chemical potential is evidently vanishing, µ5 = 0. In the right panel, the two cones are kept at
different fillings and the system is out of equilibrium. Therefore, µ5 = E2−E1

2 6= 0. The figure is
borrowed from [40].

For a more realistic model to be constructed, the system’s full band structure needs to
be taken into account. People have been working on such models, but neither there could
a unanimous answer be found. A.A Burkov and L. Balents were the first to pave the way in
this line of research by constructing a multilayer periodic structure of Topological and Normal
Insulators that could support Weyl fermions [41]. Building upon this model Burkov’s group
proposed the existence of CME as a non-dissipative, equilibrium current in Weyl semi-metals
[42]. A few months later, Vazifeh and Franz performed an equilibrium calculation in their full
band structure model and they showed that, up to numerical accuracy, CME was actually
absent [32]. Convinced for their discovery, the former group came back with a new paper [43].
There, they showed that although Vazifeh and Franz were indeed right in their discovery, this
was the case only because they were performing an equilibrium calculation. They managed to
prove analytically that indeed in the static limit there should be no CME, in accord with the
findings of Vazifeh and Franz. However, when the uniform limit is taken, then their analysis
resulted in a non-zero CME conductivity that reads

σcme = −e
2∆ε

4π2
. (3.2)

As it appeared, the crucial point to unlock the mysteries of CME was its non-equilibrium
nature. Once this feature was properly taken into account, a full band structure model proved
indeed that in equilibrium there is no CME current, while in the uniform limit a CME exists.

3.4 The remark to resolution

Although Burkov’s results verified our physical intuition, the puzzle remained; if not got bigger.
And the reason for the puzzle was simple. An ideal calculation gave us a certain result in an
unphysical limit, while a full band structure theory gave the same result in the more physical
one; albeit with a minus sign difference. Then the question was, how can an ideal calculation
in the wrong limit provide, nearly, the correct result?

The answer to the above question, came with a recent paper2 by Chang and Yang [44].
The crucial point that this paper puts forward is the distinction between intra and inter band

2I am thankful to Joel Moore for pointing out this paper.
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Figure 3.2: Conductivity can be attributed to two types of electron transitions. Either electrons
moving within partially filled bands, intraband transitions, or electrons moving between the
valence and conduction band, interband transition. In the figure the two bands are depicted
exhibiting a band gap, yet the interpretation is similar for the general case.

contributions in the CME conductivity. The term intraband contributions refers to electron
transitions within the same energy band. Instead, interband contributions refer to electron
transitions within different bands. The situation is nicely depicted in Fig. 3.2. For presentation
purposes, the bands shown have an energy gap. Therefore, interband transitions cannot occur
at zero frequency and zero momentum. However, in the case of WSM the bands touch at a
point. Thus, there and there only interband transitions are allowed even at the zero frequency
zero momentum limit.

Their findings suggest that the interband and intraband components of CME conductiv-
ity behave differently in zero momentum, zero frequency limit. On the one hand, interband
conductivity behaves analytically in the dc and uniform limit. On the other, the intraband
part is limit dependend; vanishes in the uniform limit while it gives a non-zero result in the
static limit. However, when both contributions are taken into account, it is the static limit that
vanishes while in the uniform a net current appears. Clearly, this suggests that the interband
contribution exactly cancels out the intraband one in the static limit, while it is the only one
that survives in the the static. This interpretation explains also the difference in the sign in the
CME formula between the ideal and the full band structure model.

To sum up, our current understanding that appears to reconcile the two pictures, is that
our model is incapable of capturing the interband part of the conductivity. This appears to be
the reason we end up with an unphysical interpretation of the current. Nonetheless, it seems
that these contribution behave in such a way that using an ideal model and an unphysical
limit, we can indeed get the correct result that a full band structure model would give in the
physical limit3. This concluding remark is comforting and reassuring as it justifies our choice
of using field theory results in our attempt to introduce holographic interactions in WSM.

3.5 Chiral anomaly

As we mentioned, this chapter will conclude with a short discussion related to experimental
evidence supporting the existence of CME. But before going any deeper into the experiment,
we need to take a detour through chiral anomaly4. Apart from being a vital element in the
experiment to follow, chiral anomaly is interesting on its own right as it is a typical example of
contradictions between the classical and quantum mathematical description of a system.

3Up to a sign difference as we have already mentioned.
4This detour will be short and will focus on the physics governing the anomaly. For a mathematically thorough

walk, the reader could address to [45, 46] as well as references therein.
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Chiral anomaly is a field theoretical concept. As with all anomalies it describes the non-
conservation of a classically conserved quantity, when quantum corrections come into play.
To understand chiral anomaly we need to recall the two currents that correspond to the two
global symmetries of our Lagrangian. For clarity we simply note that these currents read

jµV = ψ̄γµψ

jµA = ψ̄γµγ5ψ.
(3.3)

To give a more physical interpretation of these currents, suppose that the Dirac fermion ψ is
decomposed into its chiral, 2-component spinors ψ+ and ψ−. Then, it is easy to see that the
vector and axial currents decompose as

jµV = jR + jL

jµA = jR − jL,
(3.4)

where the currents jR and jL are related to the each individual chiral component separately.
Conservation of the vector current implies that the sum of right and left chiral fermions remains
constant, while conservation of the axial current is related to their difference. Classically,
both currents are conserved and therefore the corresponding right and left charges are also
conserved. Therefore, a classical description of the system of chiral fermions suggests that
there is a well defined number of fermions of each chirality.

However, in the quantum mechanical description of the system, the above considerations
are not valid any more. We shall not dwell on the mathematical details of why this is happening
as it would go beyond the scope if the thesis. Nonetheless, we consider worth mentioning, that
the problem lies in the non-trivial Jacobian that the path integral measure acquires upon a
chiral transformation. Therefore, the partition function of the system will change under a chiral
transformation because although the action remains indeed invariant, the measure is not. This
non-trivial Jacobian is exactly the chiral anomaly term.

The problem, though, is not that none of these currents is conserved. Actually, a suitable
choice of the renormalisation procedure, can lead to a consistent scheme that conserves any of
the two. The problem arises when one attempts to conserve both currents simultaneously. A
scheme that conserves the vector current has an anomalous axial one, and vice versa. Therefore
it is up to the theorist to decide which current he/she will choose to save.

To be honest, in the end of the day it is not much of a choice as another principle, that we
consider of fundamental importance, dictates that we must conserve the vector current. This
principle is no other than charge conservation. Usually the gauge field that we couple the vector
current to, is the U(1) field of electromagnetism. Therefore fermions acquire electric charge,
and the conservation of their total number simply denotes ekectric charge conservation. If we
consider electric charge conservation, and we do, a cornerstone of physics, then we are left
with no other option than abandon axial current conservation.

But what implications will this anomaly bring about? Well, it is again more instructive if
we consider the anomaly in terms of the corresponding chiral vector currents. It can be shown
that each current is on its own anomalous, with the anomalies being equal in magnitude but
opposite in sign. Explicitly,5 they read

∂µj
µ
R =

e2

4π2
~E. ~B

∂µj
µ
L = − e2

4π2
~E. ~B.

(3.5)

5In suitably chosen units.
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Figure 3.3: The presence of a magnetic field rearranges the linear dispersion of the Weyl nodes
into Landau levels. Only the chiral 0-th order levels contribute to the anomaly.

The above equations make the physical meaning of the anomaly more than transparent.
Namely, in the presence of a pair of non-orthogonal electric and magnetic fields, the number
of right chiral fermions increases by a certain rate, given by Eq. (3.5) while the number of left
chiral fermions decreases by the same amount. In other words, according to chiral anomaly,
in the presence of a suitable configuration of the electromagnetic field, left chiral fermions
disappear in the chiral vacuum with the simultaneous appearance of right chiral fermions
from it. In the end, no charge is lost but the relative number of the two chiralities has changed.

All the above analysis is captured quite vividly in Fig. 3.5. There we see that the external
magnetic field has rearranged the linear dispersion relations of the two Weyl nodes into Landau
levels. The only levels that contribute to the chiral anomaly are the 0th order levels that cross
zero energy. The crucial property of these levels is that they are chiral, meaning that their
inclination (positive/negative) depends on the chirality they belong to (right/left). Therefore,
if an electric field would create a right handed chiral fermion out of the infinite Dirac sea,
a left one should at the same time sink into it. The pioneering paper that put forward the
connection between the chiral anomaly and condensed matter systems captures the physics of
the anomaly really vividly and the interested reader is eagerly encouraged to study it [47].

So as a concluding remark, due to chiral anomaly, a pair of non-orthogonal electric and
magnetic fields drives an imbalance between right and left chiral fermions. This is exactly the
point we will need to understand the experiment that follows.

3.6 Experimental evidence

And now comes the crucial question: "Can we check if the chiral magnetic effect is an actual
physical phenomenon and not simply a theoretical artifact of our mathematical construction?".
Our answer will try to describe the big picture regarding an experimental effort [48] without
focusing on technical details and difficulties in the realisation of the experiment. For a deeper
discussion, the interested reader is once again referred to the original paper and references
therein. Similar experiments to broaden our understanding of Weyl semimetals are an on
going process [49, 50].

As it is clear by now, a crucial property for the existence of chiral magnetic effect is a chiral
imbalance between left and right handed fermions. The way this was achieved experimentally
was via the chiral anomaly. At first, the system was in equilibrium and the two cones were
located at the same energy level; the Fermi level of the system. Then, the experimentalist
turned on a pair of parallel electric and magnetic fields and the analogue of chiral anomaly
in condensed matter physics took place. As we have commented before, the magnetic field
reorganised the cones into Landau levels and the electric field started to move the electrons in
the zeroth mode. Due to their negative charge, electrons abandoned the right chiral cone and
then populated the left one. The situation is clearly shown in Fig. 3.4.

There is a crucial point in this analysis. If this was the only mechanism taking place then

32



Figure 3.4: (A): Initially, the system is at equilibrium and both nodes are at the Fermi level
of the system. (B): Parallel electric and magnetic fields pump electrons from the right chiral
node to the left chiral one, via chiral anomaly, leading to a chiral imbalance that is dynamically
preserved. The figure is borrowed from [49].

at some point all right chiral fermions would have turned into left and the whole model of
the material would collapse. Besides, this picture ignores scattering phenomena that might
turn some left handed fermions back to the right chiral cone. The theoretical model that they
used took into account these processes by an additional term in the differential equation that
determined the chiral charge ρ5, which is related to the chiral chemical potential µ5 via [35]

ρ5 =
µ35

3π2v3
+

µ5
3v3

(T 2 +
µ2

π2
), (3.6)

through the differential equation

dρ5
dt

=
e2

4π2~2c
~E. ~B − ρ5

τV
, (3.7)

where τV denotes the chirality changing scattering time. For t >> τV , the chiral charge will
have reached an equilibrium value and so will the chiral chemical potential, with the value of
the latter being given by

µ5 =
3v3e2

4π2~2c
~E. ~B

T 2 + µ2

π2

τV . (3.8)

What this means is that the system has reached a state of dynamical equilibrium with chiral
imbalance. By the term dynamical equilibrium, I refer to the situation where the system is at
steady state, but this stability of this state is supported by an external mechanism. In the case
we are discussing, the role of this external mechanism is played by the electromagnetic field
that drives chiral anomaly. If this input is turned off, the the system will reorganise itself in
its proper ground state and then we can say that the system is at a static equilibrium. What
happens physically, is that the system is characterised by a constant chiral imbalance because
the rate of production of left chiral fermions due to the anomaly is balanced by the production
rate of right chiral fermions due to scattering processes.

Now that we know have an understanding of this dynamical chiral imbalance, we turn to
look for evidence of CME. The experimentalists looked for such evidence in the resistivity of a
ZrTe5 sample. The important feature that we need to remember for this material, is that it has
an intrinsic positive magnetoresistance. In simple words, this means that its electric resistance
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Figure 3.5: Left panel (a): Temperature dependence of resistivity for various values of the
external magnetic field. Central panel (b): Positive magnetoresistance of ZrTe5 at T=20K◦due
to dominance of Lorentz force for not aligned electric and magnetic fields. Right panel (c):
Evidence of negative quadratic magnetoresistance at φ = 90◦. The figure is borrowed from [48].

changes in the presence of an external magnetic field in positive way; it increases with an
increasing ~B field. This behaviour is depicted in Fig. 3.5(a). There we can see the temperature
dependence of the resistivity of the sample for various values of the external magnetic field.
Apart from the peak that all curves exhibit at a critical temperature, the important point to
note here is that for increasing magnetic field th resistivity also increases.

With that in mind, they applied an electric field along one side of the sample, say along
the a−axis as in Fig. 3.5(b) and a magnetic field at an angle φ with the axis perpendicular to
the sample, say b−axis in the figure. Then measuring the current that appears in the same
direction as the electric field, they get the resistivity curves that one can see in Figs. 3.5(b,c).

To better appreciate these figures, let us first understand why they measured resistivity.
They assumed that if CME current was present, the total current along the a−axis should have
two components. Namely the usual ohmic current, and an additional CME part

jtot = johm + jcme. (3.9)

Next supposing that the CME has indeed the theoretically predicted expression, jcme = e2

2~π2µ5
and replacing µ5 from eq. (3.8) it is easy to see that the current reads

jtot = (σohm + λB2)E, (3.10)

where we have introduces a parameter λ > 0 to account for all numerical prefactors that are
unimportant in this qualitative discussion. Inverting this proportionality factor, we see that
the resistivity of the sample should have a dependence on the magnetic field of the form

ρtot =
1

σohm + λB2
. (3.11)

That means that if the chiral magnetic is there, and its expression is given by the theoretically
predicted formula, we should expect a magntoresistance that depends inversely proportional
to the magnetic field.

Let us then see what the experiment has shown. At an angle φ = 0◦, the two fields are
perpendicular to each other and their inner product vanishes. As a result no chiral anomaly
is expected. Indeed the black curve which corresponds to φ = 0◦ clearly shows the inherent
positive magnetoresistance of ZrTe5. As the angle φ increases, we see that the same qualitative
behaviour persists, yet it appears to be weaker. The explanation for this result is that in the
presence of non-orthogonal electric and magnetic fields, the chiral anomaly has started to show
its presence. However, the inherent character of the material is strong enough to dominate its
overall behaviour. This situation continues up to angles of φ = 75◦.
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The situation changes drastically when φ = 90◦ when the two fields are aligned in parallel.
In that case two interesting things happen. On the one hand, chiral anomaly reaches its
maximum value and therefore will have the maximum contribution to the composite behaviour
of the material. More importantly, though, at φ = 90◦ we are at the so called, Lorentz-force free
regime because electrons move in the same direction as the magnetic field and therefore the
Lorentz force on them vanishes. In Fig. 3.5(b), the resistivity for φ = 90◦ appears to be nearly
insensitive to the magnetic field. However, a closer look in this curve, as shown in Fig. 3.5(c),
shows that this impression was simply a matter of scale. Upon closer examination we can
see that the material exhibits negative magnetoresistance that to a pretty good approximation
appears also to be quadratic.

To conclude, the experiment has clearly shown a quadratic negative magnetoresistance
which can be elegantly described within the context of CME. Therefore, we have clear evidence
that CME is an actual current that we can measure in an experiment, and not simply a
mathematical artifact.
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Chapter 4

A touch of interactions

In this chapter we will try to introduce interactions into the Weyl semimetals using the AdS/CFT
correspondence. In essence what we do is construct an interacting Green’s function for the
system. The approach that we will take, follows the lines of semi-hoplography as was briefly
discussed in Chapter 1. That means that we will deviate from a strict holographic framework
by introducing an additional bulk field that will capture the fermionic natre of the system under
study. A boundary term of this field, that will not alter its bulk equations of motion, will provide
the free part of the Green’s function we are after. In addition, the bulk contributions, will give
rise to the self energy component of the Green’s function. Interestingly enough, Weyl fermions
shall appear rather straightforwardly in the model we will create, making holographic AdS/CFT
an really interesting means of introducing interactions in systems with an effective description
as Weyl fermions; a prominent example being of course WSM.

Several attempts have been made to construct a gravity dual to study CME and chiral
anomaly [51, 52, 53, 54]. However, these efforts focus on a more pure AdS/CFT approach and
the subtleties of CME need to be carefully taken into account. Instead, the semi-holographic
path that we take, and builds upon previous similar work on fermionic systems [55, 56, 57,
58, 59], is inherently characterised by the chiral charge imbalance.

4.1 Introducing the model

It is the purpose of this section to introduce the gravitational dual model that will give rise to
the interacting Green’s function of our strongly interacting CFT. A defining working assump-
tion of the correspondence is that the spacetime we will be working on should be AdS; meaning
negatively curved, with a constant radius of curvature. Such a spacetime can be directly ob-
tained simply by minimizing the Einstein-Hilbert action in 4+1 dimensions1, with an additional
negative cosmological constant, namely

SEH =

∫
d5x
√
−g(R− 2Λ), (4.1)

where R denotes the Ricci scalar and Λ the cosmological constant. Solving the correspond-
ing equations of motion, we find that the metric minimizing eq. (4.1), in a suitably chosen
coordinate system, reads

ds2AdS =
l2

r2
dr2 − r2

l2
dt2 +

r2

l2
d~x2, (4.2)

which is precisely the AdS space we were looking for, with l being the AdS radius that from
now on we set to unity. As we can see, the AdS bulk in d+1 dimensions, can be thought of as a

1We shall henceforth restrict to the case d=4.
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collection of flat Miknowski surfaces of one dimension less. Each such slice is scaled with the
extra coordinate r, with r →∞ corresponding to the boundary of the AdS bulk. It is exactly at
this boundary that our CFT will live in.

As a next step, we want to encode the physical characteristics of the strongly coupled field
theory we are about to study in the gravity dual description. The first important feature we need
to consider is that it describes a system at a constant temperature. As the AdS/CFT dictionary
suggests, and is arguably an easy first guess, the way this is achieved is by introducing a
black hole of equal Hawking temperature in the bulk. Strictly speaking, because of the special
structure of the AdS spacetime as a collection of Minkowski surfaces, we no longer talk about a
black hole but rather of a black brane. The second ingredient that our boundary theory should
contain, is a constant chemical potential. Recall, that a crucial requirement for the existence
of CME was that the two chiral cones are filled up to different chemical potentials. Looking
up again in the AdS/CFT dictionary, we find that to describe a constant scalar field on the
boundary we need a gauge field in the bulk that will asymptotically tend to a constant value.
Hence, both of our requirements can be met by the introduction of a U(1) gauge field in the
bulk action.

It is a rather cumbersome procedure2, to prove that the bulk configuration that satisfies
the above requirements reads

gµν = diag(−rf(r),
1

rf(f)
, r, r, r), (4.3)

with
ds2 = −r2f2(r)dt2 +

1

r2f2(r)
dr2 + r2d~x, (4.4)

and f(r) is the so called "emblackenning factor" defined in this case as

f(r) = 1− Q2

r4
+
M

r6
. (4.5)

Also, the gauge field reads

Aµ = µ(1−
r2h
r2

)δ0µ, (4.6)

where Q is the charge of the black brane, M its mass, rh is the location of the horizon defined
as the first zero of the emblackening factor, and µ a parameter that is related to its charge and
will be the chemical potential of the boundary theory. Therefore, with the above scheme we
have fully defined the bulk configuration.

The next step we will take, is based on the character of the system we want to describe on
the boundary; i.e. a system of two Weyl fermions. As it has been shown in the literature, this
can be achieved with the introduction of a Dirac fermion in the bulk. This extra field we add
in the description of the system, is exactly what we have anticipated when we were discussing
the semi-holographic approach.

Since the Dirac equation that describes a Dirac fermion is first order in time, a chiral
fermion will arise almost naturally in the boundary theory. A crucial property of the Dirac
fermion that we will introduce, is that it lives in the probe-limit. This condition simply means
that the fermion will not back-react to the metric; i.e. its energy-momentum tensor will be
assumed zero for all practical purposes and will not appear in the right hand side of the
Einstein equations. On the contrary, we will allow the Dirac fermion to be charged under the
U(1) gauge field and the coupling between the two fields is expressed in terms of a coupling
constant e, the charge of the fermion. As we will see later, choosing fermions with opposite
charge leads to a difference in the chemical potential for the two chiral fermions. It is precisely

2And not part of this thesis.
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this difference that we are interested in because it is the crucial ingredient of CME. But we will
have time to say more about this in due course.

For now, we only add a fermion in the bulk that couples to the gauge field with a coupling
constant e. The coupling between the two fields is done in the usual procedure of minimal
coupling. That means that we start from the free Dirac action for the fermion that has a global
U(1) symmetry. According to Noether’s theorem, this symmetry leads to a conserved current
with which the gauge field couples simply by taking the inner product of the two. Explicit,
yet trivial, mathematics show that in essence the coupling boils down to the replacement
DM → DM − ieAM , where DM = ∂M + 1

4ωMABS
AB denotes the covariant fermion derivative

whose deviation from the ordinary partial derivative is due to the curvature of spacetime3.

4.2 Right chiral fermion propagator

As we said, the first step to take, is to add a fermion field in the bulk. That simply amounts to
adding a Dirac action in the total action of our theory. Such an action reads

SF = igf

∫
d5x
√
−gΨ̄(

1

2

−→
/D − 1

2

←−
/D −M)Ψ

= igf

∫
d5x
√
−g
(

1

2
Ψ̄ΓµDµΨ− 1

2
DµΨ̄ΓµΨ−MΨ̄Ψ

)
,

(4.7)

where D̃µ = ∂µ + 1
4ωµABS

AB − ieAµ.
Varying SF with respect to Ψ and Ψ†, we get the equations of motion for this field. Although

we know what the equations of motion will be, obviously the Dirac equations, what will be of
greater importance to us, are the boundary terms that will emerge. Hence, we have4

δSF = igf

∫
d5x
√
−g
(

1

2
δΨ̄ΓµD̃µΨ +

1

2
Ψ̄ΓµD̃µδΨ−

1

2
D̃µδΨ̄ΓµΨ− 1

2
D̃µΨ̄ΓµδΨ−MδΨ̄Ψ−MΨ̄δΨ

)
= igf

∫
d5x
√
−g
[1

2
δΨ̄ΓµD̃µΨ +

1

2
D̃µ

(
Ψ̄ΓµδΨ

)
− 1

2
D̃µ

(
Ψ̄Γµ

)
δΨ

− 1

2
D̃µ(δΨ̄ΓµΨ) +

1

2
δΨ̄D̃µ(ΓµΨ)− 1

2
D̃µΨ̄ΓµδΨ−MδΨ̄Ψ−MΨ̄δΨ

]
= igf

∫
d5x
√
−g
[1

2
δΨ̄ΓµD̃µΨ +

1

2
D̃µ

(
Ψ̄ΓµδΨ

)
− 1

2
D̃µΨ̄ΓµδΨ

− 1

2
D̃µ(δΨ̄ΓµΨ) +

1

2
δΨ̄ΓµD̃µΨ− 1

2
D̃µΨ̄ΓµδΨ−MδΨ̄Ψ−MΨ̄δΨ

]
= igf

∫
d5x
√
−g
[
δΨ̄(ΓµD̃µΨ−MΨ)− (D̃µΨ̄Γµ +MΨ̄)δΨ

− 1

2
D̃µ(δΨ̄ΓµΨ) +

1

2
Dµ

(
Ψ̄ΓµδΨ

) ]
.

(4.8)

In the above we could take the Γ-matrices outside the fermionic covariant derivative since

D̃µ(ΓµΨ) = (Dµ − ieAµ)(ΓµΨ) = Dµ(ΓµΨ)− ieAµΓµΨ

= Dµ(ΓaeµaΨ)− ieΓµAµΨ = ΓaeµaDµΨ− ieΓµAµΨ

= ΓµD̃µΨ.

(4.9)

3A reader interested in following the mathematical derivations of this chapter should be familiar with the tetrad
formulation of General Relativity. A well written review of the topic can be found in [60]

4For notational clarity, note that in the absence of a parenthesis, the derivative acts only in the factor that come
after it.
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There, we also used that the flat gamma matrices Γa are constant, that the tetrad postulate
holds, namely Dµe

ν
a = 0 and that AµΓµ = ΓµAµ since Aµ is not a matrix. In the above

notation D̃µ = Dµ − ieAµ, where Dµ is the fermionic covariant derivative due to the curvature
of spacetime, while D̃µ is the fermionic covariant derivative after the coupling with the gauge
field.

Demanding δSf = 0 we immediately get the two equations of motion for Ψ and Ψ̄ which are
indeed the Dirac equations as we expected in the first place, namely

ΓµD̃µΨ−MΨ = 0

D̃µΨ̄Γµ +MΨ̄ = 0.
(4.10)

However, the on-shell variation of the action does not vanish as it is the case for a well
posed variational problem. Instead we are left with two boundary terms,

δSF = igf

∫
d5x
√
−g
[
− 1

2
D̃µ(δΨ̄ΓµΨ) +

1

2
D̃µ

(
Ψ̄ΓµδΨ

) ]
= igf

∫
d5x
√
−g
[
− 1

2
Dµ(δΨ̄ΓµΨ) +

1

2
Dµ

(
Ψ̄ΓµδΨ

)
+ ieAµδΨ̄ΓµΨ)− ieAµΨ̄ΓµδΨ

]
= −1

2
igf

∫
d4x
√
−hnµ

[
δΨ̄ΓµΨ− Ψ̄ΓµδΨ

]
= −1

2
igf

∫
d4x
√
−h
[
δΨ̄ΓrΨ− Ψ̄ΓrδΨ

]∣∣∣r=r0
r=rh

= −1

2
igf

∫
r=r0

d4x
√
−h
[
δΨ̄ΓrΨ− Ψ̄ΓrδΨ

]
.

(4.11)

In the fourth line, Stokes theorem was used which simply states∫
V
dnx
√
−g∇µJµ =

∫
∂V
dn−1x

√
−hnµJµ, (4.12)

where h is the induced metric and nµ the normal vector on ∂V 5. In this case V is the bulk
AdS spacetime bounded by the flat hypersufaces at the horizon r = rh and at the boundary
r = r0. By definition of rh, as the first zero of f(r) we can easily see that the determinant of
the induced metric vanishes at the horizon and that is why we are left only with the boundary
term at r = r0.

Next we decompose the Dirac fermion into its chiral components, and the various terms
read

δΨ̄ΓrΨ = ( δΨ†+ δΨ†− )(
0 1
1 0

)(
Ψ+

Ψ−
) = δΨ†+Ψ− + δΨ†−Ψ+

Ψ̄ΓrδΨ = ( Ψ†+ Ψ†− )(
0 1
1 0

)(
δΨ+

δΨ−
) = Ψ†+δΨ− + Ψ†−δΨ+.

(4.13)

Also, using the notation

Ψ = ΨR + ΨL = (
Ψ+

0
) + (

0
Ψ−

) = (
Ψ+

Ψ−
), (4.14)

5Eq. (4.12) contains an important notational feature. As happens throughout the chapter, we do not use different
types of indices to denote spaces of different dimension. Specifically, we used the µ index to denote coordinates
both in space V and on its boundary ∂V . The reader should be able to infer from the context which the spacetime
the index is referring to.
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we have

δΨ̄RΨL = ( δΨ†+ 0 )(
0 −1
1 0

)(
0

Ψ−
) = −δΨ†+Ψ−

Ψ̄RδΨL = ( Ψ†+ 0 )(
0 −1
1 0

)(
0

δΨ−
) = −Ψ†+δΨ−

δΨ̄LΨR = ( 0 δΨ†− )(
0 −1
1 0

)(
Ψ+

0
) = δΨ†−Ψ+

Ψ̄LδΨR = ( 0 Ψ†− )(
0 −1
1 0

)(
δΨ+

0
) = Ψ†−δΨ+.

(4.15)

Hence, after straightforward replacement, we get

δSF = −1

2
igf

∫
r=r0

d4x
√
−h
[
− δΨ̄RΨL + δΨ̄LΨR + Ψ̄RδΨL − Ψ̄LδΨR]

=
1

2
igf

∫
r=r0

d4x
√
−h
[
δΨ̄RΨL + Ψ̄LδΨR − δΨ̄LΨR − Ψ̄RδΨL

]
.

(4.16)

Since the Dirac equation is a first order differential equation, we cannot impose δΨ+ =
δΨ− = 0 simultaneously. Instead, only one of the two conditions can be chosen and the
chirality of the boundary fermion will depend on this choice. In any case, there will be a
leftover boundary term that we need to eliminate. To do so, we introduce by hand an additional
boundary term in the action that will not affect the bulk equations of motion. This term can be
easily seen that reads

S∂ = ±1

2
igf

∫
r=r0

d4x
√
−h
[
Ψ̄LΨR + Ψ̄RΨL

]
. (4.17)

A small comment is in order here. Although the above choice of the boundary action will
make the variational problem well posed, it doesn’t come for free. What we are ultimately
interested in, are interacting Green’s functions on the boundary. In general we expect that the
Green’s function is complex and its imaginary part will give the spectral function of the system.
However, the above choice renders the Green’s function real and no information about the
Green’s function can be deduced. Interestingly enough, the solution to this problem is simply
to drop one of the two terms in the boundary action according to which chirality we want to
keep on the boundary [58]. In the end, the appropriate boundary term has the form

S∂ =


1
2 igf

∫
r=r0 d

4x
√
−h
[
Ψ̄RΨL

]
if δΨ+ = 0

−1
2 igf

∫
r=r0 d

4x
√
−h
[
Ψ̄LΨR

]
if δΨ− = 0

(4.18)

In essence, setting the variation of one chiral component of Ψ to zero on the boundary, will give
us an effective field theory for it on the boundary.

Our ultimate goal is to have a semi-holographic description of WSM. In order to achieve
this, we need two chiral fermions of opposite chirality on the boundary. Hence, as a starting
point let us assume that for the first fermion that we put in the vacuum, we set δΨ+ = 0. This
choice, will eventually amount to an effective description for a right-handed chiral fermion on
the boundary. Once an interacting Green’s function is obtained, then we will put a second
Dirac fermion in the bulk with the boundary condition δΨ− = 0, that will give an interacting
Green’s function for a left-handed chiral fermion. But for now, we concentrate on the analysis
for the first Dirac fermion.
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Having set δΨ+ = 0 on the boundary, we can add more boundary terms that depend only
on Ψ+ without affecting the equations of motion in the bulk. We exploit this freedom to add a
kinetic term for Ψ+, namely

Skin = iZ

∫
r=r0

d4x
√
−h√grrΨ̄RΓµDµΨR. (4.19)

It is precisely this term that will give the free part of the full, interacting Green’s function. At the
same time, such a term renders the Green’s function obey ARPES sum rule, which is a crucial
criterion for the Green’s function to correspond to a single particle operator as we mentioned
in Chapter 1 [59].

At this point we have all the necessary ingredients to build the first part of the semi-
holographic dual theory of WSMs. As a recap, the total bulk action reads

Stotal = SEHM + SF + S∂ + Skin. (4.20)

Imposing the equations of motion, the on-shell boundary action reads

Son−shell[ΨR,ΨL] = Skin[ΨR,ΨL] + S∂ [ΨR,ΨL]

= iZ

∫
r=r0

d4x
√
−h√grrΨ̄R /̃DΨR + igf

∫
r=r0

d4x
√
−hΨ̄RΨL.

(4.21)

In order to have an effective action for the boundary value of ΨR we need to eliminate ΨL.
We can easily do so, recalling that the two chiral fields are related via the Dirac equation. Thus,

if we write the Dirac operator as a matrix in the general form D = (
A B
C D

) then

DΨ =

(
A B
C D

)
(

Ψ+

Ψ−
) = 0 ⇒ Ψ− = −iξΨ+, (4.22)

where ξ is a 2 × 2 matrix that can be determined from the Dirac equation. For the moment,
we ignore its exact form and we try to see what the effective action looks like after eliminating
ΨL. After an expression for the interacting Green’s function is obtained, we will return to the
important question of how to determine this proportionality factor.

As usual, we are interested in the Green’s function in momentum space. That means that
the chiral spinor should be Fourier transformed. However, not all 5 coordinates, of our 5-
dimensional bulk AdS spacetime, need to be transformed. After all, the fifth coordinate will not
correspond to a physical coordinate of the 4d spacetime where the CFT lives in. That is why,
we will Fourier transform the chiral field at constant r-slices. As a result, the components of
the Fourier expansion will depend both on the 4-momentum kµ but also on the given r-slice.
This is a quite natural thing to do, as the physics we are trying to describe lives at the constant
r →∞ slice. Therefore, we can write

Ψ+(r, x) =

∫
d4p

(2π)4
Ψ̃+(r, k)eikµx

µ
. (4.23)
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Using eqs. (4.22) and (4.23), the second term in eq. (4.21) reads

igf

∫
r=r0

d4x
√
−hΨ̄RΨL = igf

∫
r=r0

d4x
√
−h( Ψ†+ 0 )(

0 −1
1 0

)(
0

Ψ−
) = −igf

∫
r=r0

d4x
√
−hΨ†+Ψ−

= −igf
∫
r=r0

d4x
√
−hΨ†+(−iξΨ+) = −gf

∫
r=r0

d4x
√
−hΨ†+ξΨ+

= −gf
∫
d4x
√
−h{

∫
d4p

(2π)4
Ψ̃†+(r0, p)e

−ip.x}ξ{
∫

d4k

(2π)4
Ψ̃+(r0, k)eik.x}

= −gf
∫
d4pd4k

(2π)8

√
−hΨ̃†+(r0, p)ξΨ̃+(r0, k){

∫
d4xe−i(pµ−kµ)x

µ}

= −gf
∫
d4pd4k

(2π)8

√
−hΨ̃†+(r0, p)ξΨ̃+(r0, k)(2π)4δ(pµ− kµ)

= −gf
∫

d4p

(2π)4

√
−hΨ̃†+(r0, p)ξΨ̃+(r0, p).

(4.24)

In order to treat the kinetic term, we first need to find the expression of the covariant
derivatives. It can be shown [30], that the metric of eq. (4.3) leads to a covariant derivate with
components

D̃r = ∂r

D̃t = ∂t −
1

2
rf(r)∂r(rf(r))ΓtΓr − ieAt(r)

D̃i = ∂i +
1

2
rf(r)ΓiΓr.

(4.25)

Now that we know how to take the fermionic covariant derivative in this spacetime, let us
have a closer look at the kinetic term. But before that, a simplifying remark will prove useful.
Although the covariant derivatives seem to have a rather complicated form, we need to keep in
mind that they are to be calculated on the boundary of the AdS spacetime. In other words we
are calculating them for r = r0 with the requirement r0 →∞. This leads to great simplification,
since in this limit the spin connection contribution vanishes and the gauge potential tends to
its limiting value µ, as can be easily seen from its explicit form in eq. (4.6). In the end, the
derivatives can be written as

D̃r

∣∣∣
r0→∞

= ∂r

D̃t

∣∣∣
r0→∞

= ∂t − ieµ

D̃i

∣∣∣
r0→∞

= ∂i.

(4.26)

With an explicit form for the boundary covariant derivatives, we see that the kinetic term of
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the Dirac field reads

Ψ̄R /̃DΨR = ( Ψ†+ 0 )ΓtΓt(∂t − ieµ)(
Ψ†+

0
) + ( Ψ†+ 0 )ΓtΓi∂i(

Ψ†+
0

)

= −ett(r0)Ψ
†
+(∂t − ieµ)Ψ†+ − eii(r0)Ψ

†
+σ

i∂iΨ
†
+

= −
∫
d4pd4k

(2π)8

{
ett(r0)Ψ̃

†
+(r0, p)e

−ipµxµ(∂t − ieµ)
(

Ψ̃+(r0, k)eikµx
µ
)

+ eii(r0)Ψ̃
†
+(r0, p)e

−ipµxµσi∂i

(
Ψ̃+(r0, k)eikµx

µ
)}

= −i
∫
d4pd4k

(2π)8

{
ett(r0)Ψ̃

†
+(r0, p)k̃0Ψ̃+(r0, k) + eii(r0)Ψ̃

†
+(r0, p)σ

ikiΨ̃+(r0, k)
}
e−i(pµ−kµ)x

µ

= −i
∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†+(r0, p)σ

aΨ̃+(r0, k)
}
e−i(pµ−kµ)x

µ
.

(4.27)

Also,we have that

iZ

∫
r=r0

d4x
√
−h√grrΨ̄R /̃DΨR = Z

√
−h√grr

∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†+(r0, p)σ

aΨ̃+(r0, k)
}∫

d4xe−i(pµ−kµ)x
µ

= Z
√
−h√grr

∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†+(r0, p)σ

aΨ̃+(r0, k)
}

(2π)4δ(pµ − kµ)

= Z
√
−h√grr

∫
d4k

(2π)4

{
eµa(r0)k̃µΨ̃†+(r0, k)σaΨ̃+(r0, k)

}
.

(4.28)

Hence, putting the two results from eqs. (4.24) and (4.28) together, we see that the on-shell
action in momentum space for the right chiral component of the bulk Dirac fermion, eq. (4.21),
reads

Seff [Ψ+] = −
∫

d4k

(2π)4

√
−h√grrΨ̃†+(r0, k)

{
gf
√
grrξ(r0, k)− Zeµa(r0)k̃µσ

a
}

Ψ̃+(r0, k)

= −
∫

d4k

(2π)4
r30Ψ̃†+(r0, k)

{
gfr0f(r0)ξ(r0, k)− Z 1

r0f(r0)
k̃0 − Z

1

r0
σiki

}
Ψ̃+(r0, k)

= −
∫

d4k

(2π)4
Ψ̃†+(r0, k)

{
gfr

4
0f(r0)ξ(r0, k)− Z r20

f(r0)
k̃0 − Zr20σiki

}
Ψ̃+(r0, k)

→ −
∫

d4k

(2π)4
Ψ̃†+(r0, k)

{
− k̃0 − f(r0)σ

iki + gfr
2
0f

2(r0)Z
−1ξ(r0, k)

}
Ψ̃+(r0, k)

=

∫
d4k

(2π)4
Ψ̃†+(r0, k)

{
k̃0 + f(r0)σ

iki − gfr20f2(r0)Z−1ξ(r0, k)
}

Ψ̃+(r0, k).

(4.29)

In the fourth line, we have performed a fermion rescaling of the form Ψ+ →
√

Z
f(r0)

r0Ψ+.
Finally, in order to take the limit r0 →∞, we must be sure that all terms are well behaved.

Of course the emblackening factor f(r0) → 1 as we approach the boundary of the AdS space-
time; this was by construction what we wanted. As for the third term, we use the fact that for
large r0, ξ ∼ r−2M0 and therefore r2M0 ξ → constant. To use this property, we introduce another
parameter g ≡ gf

Z r
2−2M
0 such that in the double limit g → ∞ and gf → 0 this new parameter

tends to a constant value. Then the third term in eq. (4.29) reads

Σ+(k) ≡ −g lim
r0→∞

r2M0 ξ(r0, k). (4.30)
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With these convention we can easily read the Green’s function for the right chiral fermion
as

G−1+ (k) = −(ω + eµ) + σiki + Σ+(k) = −(ω + eµ− Σ+
0 ) + σi(ki + Σ+

i ), (4.31)

where we have performed an expansion of the self energy matrix in the Pauli matrices basis as

Σ+(k) = Σ+
0 I + σiΣ+

i , (4.32)

where, for presentation clarity, we have used upper indices to denote the chirality of the com-
ponents of the self energy.

Finally, inverting eq. (4.31) we see that the interacting propagator reads

G+(k) = −
(
ω + eµ− Σ+

0

)
I +

(
ki + Σ+

i

)
σi(

ω + eµ− Σ+
0

)2 − (ki + Σ+
i

)2 . (4.33)

Nonetheless, in order to have a final answer for the interacting Green’s function we need
to compute the proportionality factor ξ(k), that we introduced in eq. 4.22. We will turn our
attention to this point right now.

4.2.1 Finding ξ

Here comes a crucial part of the calculations we are performing. Ultimately, we are using the
AdS/CFT correspondance to model the interactions of the system. This information is encoded
in the self energy term of the boundary fermion propagator, which in the AdS/CFT model we
have created depends on the ξ proportionality factor. Of course here the word factor doesn’t
mean that ξ is a c-number. Instead, as we have commented before, Ψ± are 2-component
spinors, so their proportionality factor is a 2 × 2 matrix. It is this matrix that we will try to
determine using the Dirac equation in the bulk. Let us see how can we do this.

By definition of the ξ matrix, we have Ψ−(k) = −iξ(k)Ψ+(k). Now lets try to find a plane
wave solution at a constant r-slice to the Dirac equation, i.e. a solution of the form

Ψ(r, x) = Ψ(r, k)eikµx
µ
.

Hence,

( /̃D −M)Ψ(r, x) = ( /̃D −M)Ψ(r, k)eikµx
µ

= (ΓrD̃r + ΓtD̃t + ΓiD̃i)Ψ(r, k)eikµx
µ

= (ΓrerrD̃r + ΓtettD̃t + ΓieiiD̃i)Ψ(r, k)eikµx
µ
.

(4.34)

Now lets see each term separately

ΓtettD̃te
ikµxµ = Γt

1

rf(r)
(∂t −

1

2
rf(r)∂r(rf(r))ΓtΓr − ieAt(r))eikµx

µ

=

(
Γt
i (kt − eAt(r))

rf(r)
+

1

2
∂r(rf(r))Γr

)
eikµx

µ

=

(
−Γt

i (ω + eAt(r))

rf(r)
+

1

2
∂r(rf(r))Γr

)
eikµx

µ

=

(
−iΓt ω̃

r
+

1

2
∂r(rf(r))Γr

)
eikµx

µ
,

(4.35)

where ω̃ ≡ ω+eAt(r)
f(r) . This definition of ω̃ will simplify some notations later on. Similarly
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ΓieiiD̃ie
ikµxµ = Γi

1

r

(
∂i +

1

2
rf(r)ΓiΓr

)
eikµx

µ

=

(
Γi

1

r
iki +

1

2
f(r)ΓiΓiΓr

)
eikµx

µ
,

(4.36)

and quite trivially

ΓrerrDr = Γrrf(r)∂r. (4.37)

Replacing the above relations in the Dirac equation we have

( /̃D −M)Ψ(r, x) =
[
Γrrf(r)∂r +

i

r

(
Γiki − Γtω̃

)
+

1

2
Γr∂r(rf(r)) +

1

2
Γrf(r)(d− 1)−M

]
Ψ(r, k)eikµx

µ

=
[
Γrrf(r)∂r +

i

r

(
Γiki − Γtω̃

)
+

1

2
Γrw(r)−M

]
Ψ(r, k)eikµx

µ
,

(4.38)

where w(r) ≡ ∂r(rf(r)) + (d− 1)f(r).
Let us, next, introduce the spinor Φ(r), defined through the following decomposition of the

Ψ-spinor

Ψ(r, k) = Φ(r, k) exp{−1

2

∫ r

0
dr̃
w(r̃)

r̃f(r̃)
}. (4.39)

Then

Γrrf(r)∂rΨ(r, k) = Γrrf(r)(−1

2

w(r)

rf(r)
)Φ(r, k) exp{−1

2

∫ r

0
dr̃
w(r̃)

r̃f(r̃)
}

+ Γrrf(r)∂r(Φ(r, k)) exp{−1

2

∫ r

0
dr̃
w(r̃)

r̃f(r̃)
}

= −1

2
Γrw(r)Φ(r, k) exp{−1

2

∫ r

0
dr̃
w(r̃)

r̃f(r̃)
}

+ Γrrf(r)∂r(Φ(r, k)) exp{−1

2

∫ r

0
dr̃
w(r̃)

r̃f(r̃)
}.

(4.40)

Hence, instead of solving the Dirac equation for the spinor field Ψ we can solve the equivalent
and slightly easier equation for Φ that after the above replacements reads(

Γrrf(r)∂r +
i

r
Γ.k̃ −M

)
Φ(r, k) = 0, (4.41)

where as before k̃ = (−ω̃,~k).
The above equation is simpler than the one we started with, but it would be nice if we could

simplify it even further. To do so, we recall that the system we are working with is rotationally
invariant. That means that we do not have to work with a vector ~k that has in principle
aribitrary components. We can work in any given direction and the same result should apply
to all other directions. In other words, spherical symmetry reduces the independent degrees
of freedom of our system from 3 to 1; namely the distance from the origin of the system. That
means that the result we will get, can only depend on the magnitude of the vector ~k.

Having said that, lets assume that ~k points along the positive z-axis, i.e. ~k = (0, 0, k3) with
k3 > 0. Then we can recover the general result simply by replacing k3 → |~k|. Such a choice, is
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rather convenient because the third Pauli matrix σ3 is diagonal just like the unit matrix. We
shal see why this is the case soon enough! With this assumption and recalling that

Γt =

(
0 −1
1 0

)
Γr =

(
1 0
0 −1

)
Γi =

(
0 σi

σi 0

)
, (4.42)

we have

[(
r(rf(r)∂r −M) 0

0 −r(rf(r)∂r +M)

)
+ i

(
0 −1
1 0

)
(−ω̃) + i

(
0 σ3

σ3 0

)
k3

](
Φ+(r, k)
Φ−(r, k)

)
= 0,

(4.43)

that reduces to two equations for the two 2-component spinors Φ±

A(M)Φ+ + i(ω̃ + σ3k3)Φ− = 0

−A(−M)Φ− − i(ω̃ − σ3k3)Φ+ = 0,
(4.44)

where for notational convenience we have defined A(M) ≡ r(rf(r)∂r −M).
It is exactly at this point that the convenience of the choice for the momentum vector

becomes transparent. The above are differential equations that relate the two spinors Φ±. The
matrices that relate them are diagonal and hence the ξ matrix should itself be diagonal. That
means, that we can write

Ψ− = −i
(
ξ+ 0
0 ξ−

)
Ψ+. (4.45)

Note that here we might have some notational abuse. To make matters clear, the ± indices
in the diagonal components of ξ have nothing to do with chirality6. It is just a label for the
upper left and lower right components of the ξ matrix. Maybe an unfortunate, but still just a
labelling!.

Then, we further decompose the Weyl spinors as Ψ± =

(
ũ±
d̃±

)
to get

ξ+ = i
ũ−
ũ+

ξ− = i
d̃−

d̃+
. (4.46)

A similar decomposition of the Φ± spinors as Φ± =

(
u±
d±

)
leads to 4 equations relating the

4 components u± and d±. Namely,

A(M)u+ + i(ω̃ + k3)u− = 0

A(M)d+ + i(ω̃ − k3)d− = 0

−A(−M)u− − i(ω̃ − k3)u+ = 0

−A(−M)d− − i(ω̃ + k3)d+ = 0.

(4.47)

From the definition of the Φ we can see that the ratios between components of Φ equal the ratio
of the corresponding components of the Ψ field. In other words

ξ+ = i
ũ−
ũ+

= i
u−
u+

ξ− = i
d̃−

d̃+
= i

d−
d+
. (4.48)

6At least not in principle.
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We will now try to solve this system for the two ratios that are of interest to us. Solving
the system for these ratios ammounts to obtaining differential equations where the unknown
functions are these ratios. With that in mind, we have

r2f(r)∂rξ+ = r2f(r)∂r

(
i
u−
u+

)
= +i

r2f(r)∂ru−
u+

− ir
2f(r)u−∂ru+

u2+
, (4.49)

with

i
r2f(r)∂ru−

u+
= −irM u−

u+
+ (ω̃ − k3) = −rMξ+ + (ω − k3)

i
r2f(r)u−∂ru+

u2+
= (ω̃ + k3)

(
u−
u+

)2

+ irM
u−
u+

= −(ω̃ + k3)ξ
2
+ + rMξ+.

(4.50)

Hence, the differential equation for ξ+ reads

r2f(r)∂rξ+ + 2rMξ+ = (ω̃ − k3) + (ω̃ + k3)ξ
2
+ (4.51)

from which one can easily deduce the form that the differential equation should have for an
arbitrary ~k, namely

r2f(r)∂rξ+ + 2rMξ+ = (ω̃ − |~k|) + (ω̃ + |~k|)ξ2+ (4.52)

In a similar manner we can find the corresponding differential equation for ξ−. Once again,
we have

r2f(r)∂rξ− = r2f(r)∂r

(
i
d−
d+

)
= +i

r2f(r)∂rd−
d+

− ir
2f(r)d−∂rd+

d2+
, (4.53)

with

i
r2f(r)∂rd−

d+
= −irM d−

d+
+ (ω̃ + k3) = −rMξ− + (ω̃ + k3)

i
r2f(r)d−∂rd+

d2+
= (ω̃ − k3)

(
d−
d+

)2

+ irM
d−
d+

= −(ω̃ − k3)ξ2− + rMξ−.

(4.54)

The differential equation for ξ− reads

r2f(r)∂rξ− + 2rMξ− = (ω̃ + k3) + (ω̃ − k3)ξ2−, (4.55)

and the one for arbitrary ~k is

r2f(r)∂rξ− + 2rMξ− = (ω̃ + |~k|) + (ω̃ − |~k|)ξ2− (4.56)

where ω̃ = ω+eAt(r)
f(r) . In what follows we shall use k to denote the magnitude of ~k but for the

sake of simplicity we will assume that the only non-vanishing component is along the z-axis.
It is clear that we can map eq. (4.52) to eq. (4.56), with the substitution k ↔ −k. Therefore,

ξ+(k) = ξ−(−k). (4.57)

In other words we don’t need to solve both equations; as soon as we have ξ+ we can easily find
ξ− and vice-versa.

Then the ξ-matrix reads
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ξ =

(
ξ+(k) 0

0 ξ−(k)

)
=

(
ξ+(k) 0

0 ξ+(−k)

)
=

(
ξs+(k) + ξa+(k) 0

0 ξs+(k)− ξa+(k)

)
= ξs+(k)

(
1 0
0 1

)
+ ξa+(k)

(
1 0
0 −1

)
= ξs+(k)I + ξa+(k)σ3,

(4.58)

where

ξs+(k) =
1

2
(ξ+(k) + ξ+(−k))

ξa+(k) =
1

2
(ξ+(k)− ξ+(−k)).

(4.59)

Therefore, solving eq. (4.22) for the unknown function ξ+(k) we can calculate the coefficients
ξ
s/a
+ of the ξ matrix when decomposed in the Pauli matrices via eq. (4.59). Consequently, we

can also calculate the coefficients of the decomposition of the self energy matrix via

Σ+
0 (k) = −g lim

r0→∞
r2M0 ξs+(r0, k)

Σ+
3 (k) = −g lim

r0→∞
r2M0 ξa+(r0, k)

(4.60)

4.3 Adding a second fermion

What we did in the previous chapter, was to introduce a free Dirac fermion in the bulk that
could interact with the gauge field via a coupling constant e. This construction led to an
effective description of an interacting right handed chiral fermion whose chemical potential is
proportional to that coupling constant.

However, to describe WSM we need two fermions of opposite chirality. Therefore, the next
step we need to take is rather straightforward and trivial up to a point. We simply add a
second Dirac fermion in the bulk that will interact with the gauge field with a different coupling
constant, say e2. In this case, though, we impose a different boundary condition, namely
δΨ−

∣∣∣
r=r0

= 0, that in complete analogy with the previous section, will lead to an effective

description of a chiral fermion of left chirality.
Nonetheless, in the previous chapters our attention was mostly focused on the unique

property of WSM which is CME. We saw, that a crucial condition for the existence of CME
was the separation of the two chiralities in energy. Therefore, if we want to discuss CME
in a holographic context we need to find a way to implement this separation. As we noted
the chemical potential for the right chiral fermion was proportional to the coupling constant
between the Dirac fermion and the gauge field. Hence, it is easy to see that choosing a different
coupling constant for the second Dirac fermion that we put in the bulk, results in a different
chemical potential for the boundary chiral fermion! Since our field theoretical analysis adopted
a symmetric separation, where the positive chirality was shifted by +b0 and the negative by
−b0, we will maintain this approach in the AdS/CFT calculation by setting e2 = −e.

4.3.1 Left chiral fermion propagator

The procedure we will follow resembles to a large extend the one we followed to introduce the
first Dirac fermion. For simplicity we shall omit putting indices, e.g. 1, 2, to distinguish between
the two fermions. It is clear that Ψ in the previous section meant Ψ1, i.e. the bulk Dirac fermion
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that led to a boundary right-handed chiral fermion, while in this section Ψ means Ψ2, i.e. the
bulk Dirac fermion that will lead to a boundary left-handed chiral fermion. In complete analogy
with the previous chapter we start from the on-shell action

Son−shell[ΨR,ΨL] = Skin[ΨR,ΨL] + S∂ [ΨR,ΨL]

= iZ

∫
r=r0

d4x
√
−h√grrΨ̄L /̃DΨL − igf

∫
r=r0

d4x
√
−hΨ̄LΨR.

(4.61)

In this case, the boundary kinetic term, analogue of eq. (4.19), involves the left chiral compo-
nent ΨL and the boundary term that we include to have a well posed variational problem, is
the appropriate one according to eq. (4.18).

Again we proceed with each term separately. Hence,

−igf
∫
r=r0

d4x
√
−hΨ̄LΨR = −igf

∫
r=r0

d4x
√
−h( 0 Ψ†− )(

0 −1
1 0

)(
Ψ+

0
) = −igf

∫
r=r0

d4x
√
−hΨ†−Ψ+

= −igf
∫
r=r0

d4x
√
−hΨ†−(iξ−1Ψ−) = gf

∫
r=r0

d4x
√
−hΨ†−ξ

−1Ψ−

= gf

∫
d4x
√
−h{

∫
d4p

(2π)4
Ψ̃†−(r0, p)e

−ip.x}ξ−1{
∫

d4k

(2π)4
Ψ̃−(r0, k)eik.x}

= gf

∫
d4pd4k

(2π)8

√
−hΨ̃†−(r0, p)ξ

−1Ψ̃−(r0, k){
∫
d4xe−i(pµ−kµ)x

µ}

= gf

∫
d4pd4k

(2π)8

√
−hΨ̃†−(r0, p)ξ

−1Ψ̃−(r0, k)(2π)4δ(pµ− kµ)

= gf

∫
d4p

(2π)4

√
−hΨ̃†−(r0, p)ξ

−1Ψ̃−(r0, p),

(4.62)

and

Ψ̄L /̃DΨL = ( 0 Ψ†− )ΓtΓt(∂t + ieµ)(
0

Ψ−
) + ( 0 Ψ†− )ΓtΓi∂i(

0
Ψ−

)

= −ett(r0)Ψ
†
+(∂t + ieµ)Ψ− + eii(r0)Ψ

†
−σ

i∂iΨ−

= −
∫
d4pd4k

(2π)8

{
ett(r0)Ψ̃

†
−(r0, p)e

−ipµxµ(∂t + ieµ)
(

Ψ̃−(r0, k)eikµx
µ
)

− eii(r0)Ψ̃
†
−(r0, p)e

−ipµxµσi∂i

(
Ψ̃−(r0, k)eikµx

µ
)}

= −i
∫
d4pd4k

(2π)8

{
ett(r0)Ψ̃

†
−(r0, p)k̃0Ψ̃−(r0, k)− eii(r0)Ψ̃

†
−(r0, p)σ

ikiΨ̃−(r0, k)
}
e−i(pµ−kµ)x

µ

= −i
∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†−(r0, p)σ̃

aΨ̃−(r0, k)
}
e−i(pµ−kµ)x

µ
,

(4.63)

where k̃0 = k0 + eµ = −ω + eµ and σ̃a = (I,−~σ). Therefore,
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iZ

∫
r=r0

d4x
√
−h√grrΨ̄L /̃DΨL = Z

√
−h√grr

∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†−(r0, p)σ̃

aΨ̃−(r0, k)
}∫

d4xe−i(pµ−kµ)x
µ

= Z
√
−h√grr

∫
d4pd4k

(2π)8

{
eµa(r0)k̃µΨ̃†−(r0, p)σ̃

aΨ̃−(r0, k)
}

(2π)4δ(pµ − kµ)

= Z
√
−h√grr

∫
d4k

(2π)4

{
eµa(r0)k̃µΨ̃†−(r0, k)σ̃aΨ̃−(r0, k)

}
.

(4.64)

Putting together eqs. (4.62) and (4.62), the effective, on-shell boundary action for the left
handed chiral fermion, eq. (4.61) reads

Seff [Ψ−] =

∫
d4k

(2π)4

√
−h√grrΨ̃†−(r0, k)

{
gf
√
grrξ−1(r0, k) + Zeµa(r0)k̃µσ̃

a
}

Ψ̃−(r0, k)

=

∫
d4k

(2π)4
r30Ψ̃†−(r0, k)

{
gfr0f(r0)ξ

−1(r0, k) + Z
1

r0f(r0)
k̃0 − Z

1

r0
σiki

}
Ψ̃−(r0, k)

=

∫
d4k

(2π)4
Ψ̃†−(r0, k)

{
gfr

4
0f(r0)ξ

−1(r0, k) + Z
r20

f(r0)
k̃0 − Zr20σiki

}
Ψ̃−(r0, k)

→
∫

d4k

(2π)4
Ψ̃†−(r0, k)

{
k̃0 − f(r0)σ

iki + gfr
2
0f

2(r0)Z
−1ξ−1(r0, k)

}
Ψ̃−(r0, k).

(4.65)

As before, the last term in the brackets is of great importance and we want to calculate it in
the double limit gf → 0 and r0 → ∞. As we mentioned before, for large r0, ξ ∼ r−2M0 . Hence
ξ−1 ∼ r2M0 and ξ−1r−2M0 → ct. We further define g ≡ gfr

2
0f

2(r0)Z
−1 that remains constant in

the above double limit. Then we can define, in analogy with the right chiral fermion

Σ−(k) ≡ −g lim
r0→∞

r−2M0 ξ−1(r0, k). (4.66)

Then the inverse Green’s function for the boundary left handed chiral fermion reads

G−1− (k) = −ω + eµ− σiki − Σ−(k) = −
(
ω − eµ+ Σ−0

)
−
(
ki + Σ−i

)
σi, (4.67)

where the left chiral fermion’s self energy component is expanded in complete analogy with eq.
(4.32) as

Σ−(k) = Σ−a σ
a = Σ−0 I + Σ−i σ

i. (4.68)

Finally we can invert the propagator, and the interacting Green’s function for the left handed
chiral fermion reads

G−(k) = −
(
ω − eµ+ Σ−0

)
I−

(
ki + Σ−i

)
σi(

ω − eµ+ Σ−0
)2 − (ki + Σ−i

)2 . (4.69)

4.3.2 Finding ξ−1

Up to this point, the analysis was nearly identical to the one we performed for the first Dirac
fermion we added in the bulk. Apart from a change in the coupling constant, that was trivially
incorporated in the analysis with a change of a sign, the second point where the analysis is
modified is eq. (4.66). Contrary to eq. (4.30), the self energy for the left chiral fermion is
proportional to ξ−1 and not to ξ. Nonetheless, the proportionality factor is still defined through

Ψ− = −iξΨ+ = −i
(
ξ+ 0
0 ξ−,

)
Ψ+. (4.70)
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and thus

ξ−1 =

(
ξ−1+ 0

0 ξ−1−

)
. (4.71)

Soon, we will see how the symmetries of the previously derived equations for the components
ξ±, namely eqs. (4.52) and (4.56), will help us draw conclusions for this case as well. For
clarity, we rewrite these equations bearing in mind that now all parameters, such as the mass
M , as well as the unknown functionsξ±, refer to the second Dirac fermion

r2f(r)∂rξ+ + 2rMξ+ = (ω̃ − k3) + (ω̃ + k3)ξ
2
+r

2f(r)∂rξ−

+2rMξ− = (ω̃ + k3) + (ω̃ − k3)ξ2−,
(4.72)

with ω̃ = ω−eAt(r)
f(r) .

To see how the symmetries can help us save some time from trying to find new differential
equations for ξ−1± , we replace in eq. (4.52) ξ+ → ξ−1+ to get

r2f(r)∂rξ
−1
+ + 2rMξ−1+ = (ω̃ − k3) + (ω̃ + k3)ξ

−2
+

− 1

ξ2+
r2f(r)∂rξ+ + 2rMξ−1+ = (ω̃ − k3) + (ω̃ + k3)ξ

−2
+

−r2f(r)∂rξ+ + 2rMξ+ = (ω̃ + k3) + (ω̃ − k3)ξ2+
r2f(r)∂r (−ξ+) + 2r (−M) (−ξ+) = (ω̃ + k3) + (ω̃ − k3)ξ2+

(4.73)

The last line clearly suggests that ξ−1+ satisfies the same differential equation as −ξ+ for
M → −M and k3 → −k3. In symbols

ξ−1+ (r;M,ω, k3) = −ξ+(r;−M,ω,−k3). (4.74)

The dependence of ξ+ on (M,ω, k3) is because these parameters appear as coefficients in the
differential equation that determines it as a function of r. In other words, for each set of
parameters (M,ω, k), we get a different differential equation, the solution of which is ξ+. In the
same way, it is straightforward to see that the same relation holds for ξ−1− , namely

ξ−1− (r;M,ω, k3) = −ξ−(r;−M,ω,−k3). (4.75)

Lastly, using a previous symmetry from eq. (4.57), which in the current notation would read

ξ−(r;M,ω, k3) = ξ+(r;M,ω,−k3), (4.76)

we get that

ξ−1− (r;M,ω, k3) = −ξ−1− (r;−M,ω, k3). (4.77)

As we did in all previous cases when dealing with 2× 2 matrices, we want to expand ξ−1 in
terms of Pauli matrices. Therefore we have

ξ−1 =

(
ξ−1+ (M,k) 0

0 ξ−1− (M,k)

)
=

(
−ξ+(−M,−k) 0

0 −ξ+(−M,k)

)
= −

(
ξs+(−M,−k) + ξa+(−M,−k) 0

0 ξs+(−M,−k)− ξa−(−M,−k)

)
= −ξs+(−M,−k)

(
1 0
0 1

)
− ξa+(−M,−k)

(
1 0
0 −1

)
= −ξs+(−M,−k)I− ξa+(−M,−k)σ3,

(4.78)
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where we defined

ξs+(−M,−k) =
1

2
(ξ+(−M,−k) + ξ+(−M,k))

ξa−(−M,−k) =
1

2
(ξ+(−M,−k)− ξ+(−M,k)).

(4.79)

Then the self energy matrix can itself be decomposed as

Σ−(k) = −g lim
r0→∞

r−2M0 ξ−1(r0, k)

= g lim
r0→∞

r−2M0 ξs+(−M,−k)I + g lim
r0→∞

r−2M0 ξa−(−M,−k)σ3

= Σ−0 I + Σ−3 σ
3.

(4.80)

where the self energy components are defined to be

Σ−0 = g lim
r0→∞

r−2M0 ξs+(−M,−k)

Σ−3 = g lim
r0→∞

r−2M0 ξa+(−M,−k).
(4.81)

4.4 Boundary spectral functions

At this point, let us briefly recapture what we have accomplished so far. In order to describe
a WSM on the boundary, we have placed two Dirac fermions in the bulk, coupled differently to
the gauge field. Choosing suitable boundary conditions, each Dirac fermion will lead to a chiral
fermion on the boundary of opposite chirality. The difference in the coupling constants will
create different energy shifts in the boundary chiral fermions. Thus, quite straightforwardly,
combining the two fermions into a single 4-component spinor7 we can have an interacting
propagator that effectively describes the boundary WSM.

To get the propagator, we neeed to solve the differential equation (4.52) for various values
of the parameters. Unfortunately, eq. (4.52) cannot be solved analytically for arbitrary values
of the parameters. Therefore, a closed form for the interacting propagator is not possible. For
that reason, we turn to numerical calculations of the differential equation with the help of
Mathematica.

In this section, we plot our numerical results for the spectral function of this composite
object for various values of the model parameters. However, we need to be more rigorous here.
The propagator of the 4-component composite, boundary fermion we have constructed is a
4 × 4 matrix. Hence, when we are talking about its spectral function we actually refer to the
imaginary part of the trace of the propagator8, i.e.

ρ(k, ω) = − 1

π
Tr [G(k, ω)] = − 1

π
Tr
(
G+(k) 0

0 G−(k)

)
. (4.82)

Our main focus will be on the dependence of ρ(k, ω) on the masses of the two Dirac fermions
we included in the bulk, and more importantly on their coupling constants with the bulk gauge
field, that is related to the chemical potential of the boundary fermions. Our reference model will
be the one shown in Fig. (4.1) where the model parameters take the values M1 = −M2 = −1

4

and µ1 = −µ2 = −
√

2.
7We choose the term 4-component spinor because this object is not a genuine Dirac spinor. It indeed consists of

a right and a left chiral component, but these are constituent parts of two other unrelated Dirac spinors.
8We acknowledge the abuse in terminology and only use it for convenience.
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(a) Density Plot (b) 3D Plot

Figure 4.1: M1 = 1
4 ,M2 = −1

4 and µ1 =
√

2, µ2 = −
√

2

With a first examination of these plots, we note that the dispersion relations of the two chiral
fermions are clearly recognised. Therefore, the holographic model that we have set up is on
the right track in the attempt to describe interacting WSM. Furthermore, the symmetry in the
model results in Weyl fermions evenly separated in energy, as was initially expected. Changes
in the values of the coupling constants lead to modifications of the interacting spectral function.
We can see the behaviour of the response for a few choices of the chemical potentials in Figs.
(4.5)-(4.4).

Two comments are in order. Firstly, we see that the values of the masses of the Dirac
fermions do not affect the spectral function qualitatively. Rather, it appears that the relation
between the masses and the chemical potentials affects the amplitude of the spectral function.
As a general remark though, the masses of the Dirac fermions they don’t seem to affect the result
in a crucial way. Similarly, neither do the values of the chemical potential. Nonetheless, as it
was expected, the latter are responsible for the energy separation of the Weyl. The dependence
is positive in the sense that the higher the charge, the greater the separation is. Interestingly,
when the chemical potentials are three times higher than their reference values, the form of
the spectral function appears to change qualitatively with the appearance of extra structure
that quite we shall call, in loose and vague sense for now, higher order peaks. Extra analysis
required to specify whether this is a proper feature of the system or simply a numerical artifact.
Eventually, it will be the actual system under study that will suggest which choice of parameter
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4.4.1 Tuning the Dirac masses

(a) Density Plot
(b) 3D Plot

Figure 4.2: M1 = 1
2 ,M2 = −1

2 and µ1 =
√

2, µ2 = −
√

2

(a) Density Plot
(b) 3D Plot

Figure 4.3: M1 = 1
8 ,M2 = −1

8 and µ1 =
√

2, µ2 = −
√

2

(a) Density Plot
(b) 3D Plot

Figure 4.4: M1 = 1
12 ,M2 = − 1

12 and µ1 =
√

2, µ2 = −
√

2
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4.4.2 Tuning chemical potentials

(a) Density Plot (b) 3D Plot

Figure 4.5: M1 = 1
4 ,M2 = −1

4 and µ1 =
√
2
3 , µ2 = −

√
2
3

(a) Density Plot (b) 3D Plot

Figure 4.6: M1 = 1
4 ,M2 = −1

4 and µ1 = 2
√

2, µ2 = −2
√

2

(a) Density Plot

(b) 3D Plot

Figure 4.7: M1 = 1
4 ,M2 = −1

4 and µ1 = 3
√

2, µ2 = −3
√

2
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Chapter 5

Discussion and Outlook

Based on a phenomenological, field theory model, a general formula for CME conductivity was
provided. This formula expresses σ in terms of the spectral functions of the model, which is
also the novel feature of the derivation. Its validity was checked in the absence of electron
interactions, and the CME formula found in the literature was derived. At the same time, a
holographic model for interacting WSM was constructed from which interacting single-particle
Green’s functions were obtained.

A first further step, would be to combine the AdS/CFT data with the conductivity formula
to study a holographic CME numerically. It will be rather interesting to see if holographic
interactions change CME qualitatively, destroying its topological origin. At the same time, a
parametric analysis will reveal how model parameters in the gravity dual theory affect CME
response. As a second step towards better understanding WSM, will be to create a holographic
model for Weyl cones separated in momentum. The suitable gravitational background that will
effectively create such a split is far from trivial and is still under thorough research. Provided
such a framework can be found, it will make it possible to study how holographic interactions
may alter AHE.

On the condensed matter side, a debate related to the true nature of CME is still ongoing.
In essence, the question resides on whether Berry phase or chiral anomaly is the main cause of
CME. An important argument in favor of the former is the existence of CME even in cases where
chirality cannot be accurately defined in the system. Moreover, it would be of considerable
importance to check whether finite size and/or disorder effects alter the behavior of CME
conductivity.
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Appendix A

Detailed calculation
for a vanishing term

In this Appendix we will go through a detailed calculation of the term

I =

∫ ∞
0

dkk2
∫ +∞

−∞

Nf (ω
′
)−Nf (ω

′′
)

ω + ω′ − ω′′
k
(
g(ω

′
, k)f

′
(ω
′′
, k)− f(ω

′
, k)g

′
(ω
′′
, k)
)
. (A.1)

The angular part in the momentum integration is trivial and gives rise only to numerical a
prefactor. Since we shall prove that eq. (A.1) vanishes, this extra factor will not be of any
importance. Following the steps we took in the main analysis, we will drop any chirality
indices from the f and g factors and perform the calculation only for the right chiral fermion.
Then the results we will get can be straightforwardly generalised in the case of a left chiral
fermion.

Using eqs. (2.64) one can easily see that

g(ω
′
, k)f

′
(ω
′′
, k) = −1

2
(δ(−ω′ + b0 − k) + δ(−ω′ + b0 + k))×

×
[

1

2k
(δ
′
(−ω′′ + b0 − k)− δ′(−ω′′ + b0 + k))− 1

2k2
(−δ(ω′′ + b0 − k)− δ(−ω′′ + b0 + k))

]
= − 1

4k
(−δ(ω′ + b0 − k) + δ(−ω′ + b0 + k))(δ

′
(−ω′′ + b0 − k)− δ′(−ω′′ + b0 + k))

+
1

4k2
(δ(−ω′ + b0 − k) + δ(−ω′ + b0 + k))(δ(−ω′′ + b0 − k)− δ(−ω′′ + b0 + k)),

(A.2)

and

g
′
(ω
′′
, k)f(ω

′
, k) = − 1

4k
(δ
′
(−ω′′ + b0 − k) + δ

′
(−ω′′ + b0 + k))(−δ(ω′ + b0 − k)− δ(ω′ + b0 + k)).

(A.3)

Then
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k[g(ω
′
, k)f

′
(ω
′′
k)− f(ω

′
, k)g

′
(ω
′′
, k)] =

=
1

2

[
(δ(−ω′ + b0 − k)δ

′
(−ω′′ + b0 + k))− (δ(−ω′ + b0 + k)δ

′
(−ω′′ + b0 − k))

]
+

1

4k

[
(δ(−ω′ + b0 − k) + δ(−ω′ + b0 + k))(−δ(ω′′ + b0 − k)− δ(−ω′′ + b0 + k))

]
= −g(ω

′
, k)f(ω

′′
, k) +

1

2

[
δ(−ω′ + b0 − k)δ

′
(−ω′′ + b0 + k)− δ(−ω′ + b0 + k)δ

′
(−ω′′ + b0 − k)

]
.

(A.4)

Therefore, we can decompose the initial integral as

I = I1 + I2 (A.5)

with

I1 =

∫ ∞
0

dkk2
∫ +∞

−∞
dω
′
dω
′′Nf (ω

′
)−Nf (ω

′′
)

ω + ω′ − ω′′
(
−g(ω

′
, k)f(ω

′′
, k)
)

I2 =

∫ ∞
0

dkk2
∫ +∞

−∞
dω
′
dω
′′Nf (ω

′
)−Nf (ω

′′
)

ω + ω′ − ω′′
×

1

2

[
δ(−ω′ + b0 − k)δ

′
(−ω′′ + b0 + k)− δ(−ω′ + b0 + k)δ

′
(−ω′′ + b0 − k)

]
(A.6)

We have already calculated the first integral in eq. (A.6) and we have found that I1 = − b0
4 .

Therefore we focus our attention in the second integral.
Treating the two terms inside I2 separately, we have

B = k2
Nf (ω

′
)−Nf (ω

′′
)

ω + ω′ − ω′′
δ(−ω′ + b0 − k)δ

′
(−ω′′ + b0 + k) = k2

Nf (b0 − k)−Nf (ω
′′
)

ω + b0 − k − ω′′
δ
′
(−ω′′ + b0 + k) =

=
d

dk

[
k2
Nf (b0 − k)−Nf (ω

′′
)

ω + b0 − k − ω′′
δ(−ω′′ + b0 + k)

]
− d

dk

[
k2
Nf (b0 − k)−Nf (ω

′′
)

ω + b0 − k − ω′′

]
δ(−ω′′ + b0 + k) =

=
d

dk

[
k2
Nf (b0 − k)−Nf (b0 + k)

ω − 2k

]
− d

dk

[
k2
Nf (b0 − k)−Nf (ω

′′
)

ω + b0 − k − ω′′

]
δ(−ω′′ + b0 + k).

(A.7)

Similarly for the second term, we get

C = k2
Nf (ω

′
)−Nf (ω

′′
)

ω + ω′ − ω′′
δ(−ω′ + b0 + k)δ

′
(−ω′′ + b0 − k) =

=
d

dk

[
k2
Nf (b0 + k)−Nf (b0 − k)

ω + 2k

]
− d

dk

[
k2
Nf (b0 + k)−Nf (ω

′′
)

ω + b0 + k − ω′′

]
δ(−ω′′ + b0 − k).

(A.8)

Two comments are in order here related to the delta functions in the above expressions.
Firstly, at some equalities the integrations over the frequency delta functions were implicitly
performed. We believe that the reader will not have a problem identifying these equalities.
Secondly, in order to perform these integrals the delta function and the test function should
not be "separated" by a derivative operator. In other words either none of them contains a
momentum derivative, or they are both under the same derivative operator.
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The second term in eq. (A.7) can be further decomposed as

d

dk

[
k2
Nf (b0 − k)−Nf (ω

′′
)

ω + b0 − k − ω′′

]
δ(−ω′′ + b0 + k)

=

[
2k
Nf (b0 − k)−Nf (ω

′′
)

ω + b0 − k − ω′′
+ k2

N
′
f (b0 − k)(ω + b0 − k − ω

′′
) +Nf (b0 − k)−Nf (ω′′)

(ω + b0 − k − ω′′)2

]
δ(−ω′′ + b0 + k)

=

[
2k
Nf (b0 − k)−Nf (b0 + k)

ω − 2k
+ k2

N
′
f (b0 − k)(ω − 2k) +Nf (b0 − k)−Nf (b0 + k)

(ω − 2k)2

]
,

(A.9)

and similarly for the second term in eq. (A.8) we get

d

dk

[
k2
Nf (b0 + k)−Nf (ω

′′
)

ω + b0 + k − ω′′

]
δ(−ω′′ + b0 − k)

=

[
2k
Nf (b0 + k)−Nf (b0 − k)

ω + 2k
+ k2

N
′
f (b0 + k)(ω + 2k)− (Nf (b0 + k)−Nf (b0 − k))

(ω + 2k)2

]
,

(A.10)

To see how I2 behaves in the limit ω → 0 it is instructive to do some regrouping in the
terms that we have found. We can start from the two terms in eqs. (A.7) and (A.8 containing
total derivatives of k. Upon subtraction we get

d

dk

[
k2 (Nf (b0 − k)−Nf (b0 + k)

(
1

ω − 2k
+

1

ω + 2k

)]
=

d

dk

[
2k2

Nf (b0 − k)−Nf (b0 + k)

(ω − 2k) (ω + 2k)

]
ω.

(A.11)

In a similar manner, the first terms of eqs. (A.9) and (A.10) give again upon subtraction

2k (Nf (b0 − k)−Nf (b0 + k))

(
1

ω − 2k
+

1

ω − 2k

)
= 4k

Nf (b0 − k)−Nf (b0 + k)

(ω − 2k)(ω + 2k)
ω (A.12)

while the second ones give rise to two more terms that eventually read

8k3
Nf (b0 − k)−Nf (b0 + k)

(ω − 2k)2 (ω + 2k)2
ω, (A.13)

and

k2
N
′
f (b0 − k)−N ′f (b0 + k)

(ω)2 − 4k2
ω + 2k3

N
′
f (b0 − k) +N

′
f (b0 + k)

(ω)2 − 4k2
. (A.14)

It is obvious that in the limit ω → 0 only the very last term survives. Therefore, replacing
the surviving term form eq. (A.14) into the second part of eq. A.6, we have

I+2 (ω = 0) =

∫ +∞

0
dk
k

4

(
N
′
f (b0 − k) +N

′
f (b0 + k)

)
=
b0
4
. (A.15)

In the last step, we took into account that we have assumed b0 > 0 and also that we are working
in the zero temperature limit, in which the Fermi Dirac distribution reduces to a step function.
That means
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Nf (b0 − k) = θ(k − b0)⇒ N
′
f (b0 − k) = δ(k − b0). (A.16)

Also, for reminding purposes, we have explicitly restored the chirality index in I2 to denote
explicitly that this is the contribuion to the conductivity coming from only the right chiral
fermion.

With simple arguments we can easily recover the analogous formula for the left chiral
fermion. This is easily obtained from I+2 by adding an extra overall minus sign due to the extra
minus sign in the f− factor, as well as by replacing b0 by −b0. Then we simply see that

I−2 (ω = 0) = −
∫ +∞

0
dk
k

4

(
N
′
f (−b0 − k) +N

′
f (−b0 + k)

)
=
b0
4
, (A.17)

since in this case

Nf (−b0 + k) = θ(−k + b0)⇒ N
′
f (b0 − k) = −δ(k − b0). (A.18)

Therefore

I2 =
b0
2

(A.19)

which exactly cancels out the total contribution coming from I1 when both chiralities are taken
into account.

To sum up, we have indeed shown that in the free case eq. (A.1) does not contribute to the
conductivity.
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has been supporting me, both morally and materially all these years of my studies. I will try to
prove that this support was worth giving!
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