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Abstract

Developing a Bayesian Network has a high workload, also for domain experts, when not enough
data is available to learn the model. We aim to reduce this workload by reusing an existing
Bayesian Network when developing a new network. We study this by developing an initial
model for African Swine Fever (ASF) by reusing the already existing Classical Swine Fever
(CSF) model. African Swine Fever is a highly contagious disease, which is currently present in
Poland and the Czech Republic. The risk of contamination in the Netherlands is substantial,
and especially because no vaccine is available, a quick diagnosis is essential. Therefore, we
developed a Bayesian Network to support early detection of the disease without having to wait
for lab results.

The existing model for CSF consists of five phases, each representing a part of the body
affected. These phases are used as a base, on which to build the reused model. The initial
structure of the ASF model is determined, using only literature, very limited expert interviews
and data of inoculation studies. When learning the parameters of the model, the probabilities
of the CSF model where reused where possible. The remaining conditional probability tables
are determined by using a variant of the EM algorithm.

The resulting network displays how a good initial model can be made in significant less time
compared to developing a new one.
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1 Introduction

Bayesian Networks are a powerful tool for combining expert knowledge with knowledge from
data into a decision model. A Bayesian Network is a probabilistic data structure depicted as
a directed acyclic graph. The graph consists of variables represented by the nodes and their
interdependence represented by the arcs. For each node there is a probability table, representing
the prior probabilities of the variable. Constructing such a Bayesian Network model demands
a lot of effort and time, from both developers and domain experts. When an initial structure
of the model is made, conditional probability tables (CPTs) have to be determined, the model
has to be tested and results should be discussed with domain experts. This will be repeated
until a proper model is found, causing an intensive iterative process for both developers and
domain experts. Bayesian Networks are frequently developed to support medical and veterinary
doctors with diagnoses, combining doctor’s knowledge with prior experiences. Until now, for
each application, a whole new model is developed. However, diseases can show a few or even
a lot of the same clinical symptoms. This suggests parts of a network might be reusable for
different diseases. Hence, we suggest reuse of software can be of help for faster development of
Bayesian Networks. Besides reducing workload and thus cost, reuse of software also improves
the reliability of the software (Kang and Frakes [16]) by accumulated checks (Lim [17]) and
more time for details. We aim that reuse in the case of a Bayesian Network will give a better
first model, and therewith the iterative development process will be substantially shortened.

We will explore the above concept for two swine fevers, Classical and African Swine Fever.
In animal healthcare, an also relatively new research field is syndromic surveillance of diseases.
Syndromic surveillance, or disease surveillance, amounts to monitoring the health of animals by
on-going collection, validation and interpretation of data (Veldhuis [28]). The intent is to early
detect and control diseases or disease outbreaks before diagnoses are confirmed (J. Henning
[15]). In the Netherlands, disease monitoring is done by GD Animal Health (GD). The national
pig health monitor consists of several surveillance components. Pig veterinarians can phone
to a help desk for expert advise on pig health problems that they encounter. Furthermore,
the veterinarians have to enter data of their finding during monthly obligatory farm visits in
an Online Monitor programme. We will construct a decision model for ASF as support of
syndromic surveillance by valuable interpretation of this monthly health data. This model
will give a probability of a pig having ASF. With this probability, the veterinarian can decide
whether to warn the authorities, who will take the appropriate actions.

Such a model is already been made for Classical Swine Fever (CSF) and found successful
(van der Gaag et al. [27]). The CSF and ASF viruses show nearly the same clinical picture,
so we believe a lot of the CSF model can be reused. The CSF model is built up from five
distinguishable parts, each describing a part of the pig’s body affected. We attempt to use the
five parts as a base when reusing the model. In general, preservation of such a structure in a
Bayesian Network can make the model reusable for other diseases of animals or even human
diseases.

African Swine Fever is a highly contagious disease with a mortality rate up to 100% (for
Animal Health [10]). The first clinical signs are aspecific and pigs can even die without showing
signs. Currently the disease is not present in the Netherlands but it has already been detected in
Poland and recently OIE World organisation for Animal Health announced a wild boar infected
with ASF was found in the Czech Republic [23]. ASF can be spread via direct contact between
infected and healthy animals, via fomites (cloths, vehicles, pork, etc.) and via ticks carrying
the virus [9]. Since many people from Poland are visiting our country, there is an increased
risk of infecting wild boars, by bringing infected meat. Today’s methods for elimination of
the disease rely on rapid diagnosis, movement restrictions, hygiene protocols, quarantine and
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culling (de Carvalho Ferreira [9], for Animal Health [10]). As the pig industry is substantial in
the Netherlands, occurrence of the disease will have an enormous (economical) impact. ASF is
logically a notifiable disease and rapid diagnosis with e.g. syndromic surveillance is essential.

As ASF is spreading in Europe already, quick development of an appropriate model is
essential. Therefore, in this thesis we explore if we can shorten the development time of a
Bayesian Network by reusing an existing network, applied for Classical and African Swine
Fever.

To accomplish this, we first define the similarity of the diseases using literature and a few
expert interviews. With the five parts of the CSF model as a base, we will determine the
network’s structure with the obtained knowledge. We will refine the structure of the model by
analysis of data from inoculation studies. When the structure is determined, we define which
probabilities of the CSF model are reusable and learn remaining CPTs with an Expectation-
Maximisation (EM) based algorithm.

The remainder of this paper will be organised as follows. In section 2 we describe Classical
Swine Fever by the five phases that are distinguished for CSF. We will illustrate the surveillance
model, based on these phases. In section 3, we give an overview of today’s knowledge about
(clinical signs of) African Swine Fever. In section 4, we define a first rough model for ASF, by
first determining general reusability of the CSF model. Thereafter, we establish what is reusable
for ASF specific and the order of the phases. In section 5, we process data of inoculation
studies, to conclude the structure of the ASF model in section 6. In section 7, we will explain
the algorithm used for parameter learning in section 7 and how we applied it in our case. The
results and discussion are listed in section 8.
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2 The Bayesian Network for Classical Swine Fever

We start off with a description of the existing Classical Swine Fever (CSF) model by first ex-
plaining the course of a CSF infection and thereafter explaining the Bayesian Network developed
for CSF by van der Gaag et al. [27].

The CSF network is designed by van der Gaag, in collaboration with an experimental CSF
expert and a senior epidemiologist from the Central Veterinary Institute of the Netherlands
van der Gaag et al. [27]. In-depth interviews were held with Dutch swine veterinarians, of
which some were operating during a CSF epidemic in the Netherlands. First a network of 42
variables was generated, which was evaluated briefly. This evaluation revealed the network
gave many false CSF warnings. The reviews however displayed that a veterinarian easily can
tell most of the cases are not CSF. While diagnosing, veterinarians used information about the
combination of the clinical signs that were not covered by the model. When a pig showed certain
signs without other signs first, they could rule out CSF for this case. With this knowledge the
course of CSF consisting of five phases, as described below, was determined. Besides including
this expert knowledge in the model, other variables that did not contribute anything were
removed, resulting in a final model of 32 variables [27] which is shown in figure 1.

2.1 Classical Swine Fever

A Classical Swine Fever infection typically progresses through five phases (van der Gaag et al.
[27], van der Gaag [26]). The first reaction of the pig’s body after entrance of the virus will
be an immune reaction. This reaction will show as high fever and general malaise, manifested
by signs such as a loss of appetite and lethargy. Following the immune reaction, the intestinal
tract is affected, with an inflammation of the mucous membranes as a result. The pigs will
have abnormal faeces, mostly aspecific diarrhoea after initial dry faeces, as a consequence of
the high fever. In the third phase, the virus also affects the respiratory tract: coughing, nasal
discharge, conjunctivitis and breathing difficulties are observed with the diseased pigs in this
stage. In the fourth phase of the infection, the virus enters the blood stream. Leaking blood
vessels will cause cyanosis and pin-point skin haemorrhages, mostly seen at the ears and in the
groins respectively. In the last phase of CSF, the central nervous system is assaulted, whereby
ataxia is developed. Due to accumulating failure of body systems, the pig will die ([27], [26]).

2.2 The CSF network

The final network for CSF is based on the five phases as illustrated above. The phases are
modelled by hidden variables, i.e. a variable that can not be observed, along with the evidence
they give for CSF[27]. Each phase is described by a single hidden variable. The hidden variable is
not an observable sign, but it holds information about combinations of the observable variables.
For each phase i the hidden variable φi is called CSF Phase i. Since we know that phase i
will most likely develop into phase i + 1 (for i = 1, ..., 4), the phase variables are connected in
chronological order. Therefore, the CPTs capture the probability that phase i occurs given the
presence or absence of phase i − 1, P (φi|φi−1) and P (φi|¬φi−1) respectively. As the disease
processes chronologically through the phases, the latter is put to zero. The other probabilities
are assessed by an expert, since predisposing factors have to be taken into account.

In the lower part of the model (together with Trembling and Stillborn piglets in the upper
part) are 14 observable variables, which represent all the clinical signs. Each sign is connected
directly or indirectly to the corresponding phase they appear in. For some phases, one or two
underlying causes in the body are also added as hidden variable. For example for phase 1,
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Body Temperature and Malaise are added as cause of for example Fever and Lethargy, but
are not observable themselves.

In addition to these variables, also seven so called ”explaining away” variables (Wellman and
Henrion [29]) are added to the network; these variables reside in the upper part of the model.
An explaining away variable is another possible cause of an observed sign, which can explain
why the sign is observed without the disease being present. As an example in the network,
when a pig has diarrhoea but not likely CSF, the diarrhoea might be caused by a change of
food, so Feed is added as explaining away variable to the model.

The performance of the CSF model is determined in terms of the sensitivity and specificity.
The sensitivity of the model is the percentage for which the model actually finds that a pig
has CSF out of all cases that the pigs have CSF. The specificity is the percentage of all not
diseased pigs, for which the model indeed returns a negative diagnosis for CSF. We will clarify
how to determine this with a Bayesian Network in section 8.1. For establishing the sensitivity,
experimental data is used from three different countries. The sensitivity is determined for each
day, by filling in the clinical signs shown by a pig so far. Adding up the number of pigs found
positive for CSF thus far, gives the cumulative sensitivity up to that day. For specificity, data
of pigs without CSF was collected by veterinarians in the Netherlands. The enhanced network
described above was found to have a specificity up to 99% [27], and a cumulative sensitivity of
30% [25].

Figure 1: Bayesian Network for early detection of CSF
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3 African Swine Fever

In this section, to get a proper picture of the disease, we will explain African Swine Fever in
detail.

African Swine Fever is caused by the African Swine Fever virus (ASFV), which is a DNA
virus [10]. ASFV can be transmitted in various ways: via direct contact between pigs, via
fomites (cloths, vehicles, pork, etc.) contaminated by (excretions of) infected pigs, and via
ticks as carrier of ASF [9]. The virus enters the body via the tonsils or a mucous membrane
in the throat, from there it enters the blood stream via lymph nodes near the mouth and
therewith, the virus spreads through viremia (i.e. the virus is present in the blood) [11]. During
the inoculation studies of Guinat et al. [12], both inoculated or infected via direct or indirect
contact pigs are found viraemic 1-3 days before the virus was detected in nasal or oral excretion,
and just before/at the same time as the onset of clinical signs. This substantiates the virus
enters the bloodstream very quickly, independent of the infection route.

A variety of different strains of the virus are known, each with a different virulence, i.e. a
different capacity of infecting the host [5], and an incubation period from 4 to 19 days [9, 10].
In recent studies, an average incubation period of 4.4 and 6.15 was found for European virus
strains ([12, 20] respectively). Highly virulent strains will cause peracute or acute disease, which
have both a mortality rate up to 100% [10]. But also a sub-acute and chronic form, caused by
less virulent strains, exist [11, 9]. These are not reported in Africa but they are in Europe and
the Caribbean [2]. Below we will discuss the disease by summarising the clinical signs of each
form of ASF.

3.1 ASF described by clinical signs

With the peracute form of ASF pigs may die without showing any clinical signs. Only a high
fever (41-42◦C), increased respiratory rate and hyperaemia (redness) of the skin can be seen in
infected pigs when consistently observed. When these signs are observed, pigs will die within
1-3 days [9].

With the acute form, high fever is often seen as the first sign [2, 13]. The fever is manifested
by signs as loss of appetite or anorexia, depression and huddling together [10, 2]; these are the
most consistent signs of ASF [20, 12]. After the initial phase, other signs are commonly seen
[2, 9]. One is redness of the skin, especially at the abdomen and extremities of the pig’s body
[10, 2]. It is described as flushing of the skin [2, 11], erythema [24] or hyperemia (i.e. increase
of blood flow [7]) [20, 12]. Besides flushing, also cyanosis, a blue-ish purple discoloration [8], of
the skin is frequently observed [9, 10]. The pigs also show respiratory problems: an increased
respiratory rate is typical [10, 9]. Beside, conjunctivitis, an inflammation of the outer membrane
of the eye [11], and sometimes thick whitish [2] discharges of the eyes [10] and nose [9] may be
seen. The gait of the pigs is affected too, they show incoordination [9, 2, 10] with sometimes hind
legs appearing weak [2]. The last frequently occurring clinical signs are vomiting, abortion [11]
and bleeding from the rectum [20]. Less regular signs are, constipation or diarrhoea (sometimes
bloody); bloody foam at the nostrils [2]; bleeding from nose and rectum [2] and abdominal pain
[2]. In the recent study of Olesen et al. [20], also convulsions are reported. The last stage of the
disease is characterised by coma and death [9]. 1-2 Days before death [10], anorexia, listlessness
[10] or lethargy [11], cyanosis and incoordination can be seen [10] as the last stage of the disease
[11]. Death will occur within 6-13 days [10].

For the sub-acute form, the most important signs are a fluctuating fever, depression and
loss of appetite [2, 9]. Furthermore, swelling of the joints, dyspnoea (shortness of breath)[11]
and heart failure will occur [2, 9]. Some pigs will show some less severe signs also seen with
the acute form, and some pigs give an alert impression [9]. With this form they can be sick for
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5-30 days and will die, possibly due to heart failure [2], in 15-45 days [10]. The mortality rate
is lower than for the (per)acute form, and is extremely variable from 30 to 70% [10].

Pigs with the chronic form of ASF show some unspecific [11] and extremely variable signs
[9] and can be sick for many months [9, 10]. The most commonly seen signs are loss of weight
[11] or emaciation [9], stunting of growth, respiratory signs, skin ulcers, fever peaks [9, 11] and
arthritis [9, 11] or swollen joints [2]. For the chronic disease, the mortality rate is low [10], less
than 30% [11].
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Variables CSF Variables ASF

CSF ASF

No
Yes

No
Yes

Climatic problem Climatic problem

No
Yes

No
Yes

Dust Dust

Normal
Abnormal

Normal
Abnormal

Feed Feed

Unbalanced
Balanced

Unbalanced
Balanced

Pig type Pig type

Suckling piglet
Weaned piglet
Finishing pig
Sow
Boar

Suckling piglet
Weaned piglet
Finishing pig

Poisoning Poisoning

No
Yes

No
Yes

Primary other infection Primary other infection

None
Respiratory
Respiratory+intestinal

None
Respiratory
Respiratory+intestinal

Snivelling Snivelling

No
Yes

No
Yes

Stillborn piglets -

No
Yes
n.a.

Trembling piglets -

No
Yes
n.a.

Wasting Wasting

No
Yes

No
Yes

Effect AB -

No
Yes

Table 1: All variables with values of the upper part of the network, for the CSF and ASF model
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4 The initial ASF model

Classical and African Swine Fever are often stated to be indistinguishable by clinical signs
only[10, 2], which is promising for reusing the CSF model to construct a BN for ASF. To study
the reusability of the CSF model, we will compare the two diseases by clinical signs. The five
phases described for CSF in section 2, each represent a part of the pig’s body affected. Clinical
signs are connected to specific phases, as these signs show when that particular part of the body
is affected by the virus. As many sings are corresponding for both diseases, we will maintain
this global structure in the model. We will only rename the phases to the corresponding parts
of the body affected; so CSF Phase 1 will become Immune reaction etc. Per part, we will
determine which signs should be reused, deleted or added in the case of ASF. Furthermore, we
try to find whether an ordering in which the parts are affected, as with CSF, exists for ASF. For
all reused variables we can copy or easily adapt the CPTs, so not too many new probabilities
have to be estimated (by a domain expert).

Using this approach, the general reusability of the model will increase, since for each virus,
we can check whether parts of the body are affected, with what kind of signs this is expressed,
and if there is a pattern in the course of the disease.

In this section, we will only use literature and a few interviews to determine an initial model
for ASF. First, we will show some results for the general reusability of the CSF model. After
that, we will decide which variables will be reused, added or deleted, on the basis of the body
parts.

4.1 General reusability

Van der Gaag (personal communication, June 2017) declared some parts of the CSF model were
not as well designed as others. First of all, the part of the network about the late intra-uterine
infection of sows has been considerably less validated than the other parts, and therefore cannot
be reused just like that. Also, the validation of the effect on boars is poor. Lastly, the effect
of antibiotics (AB) on a pig is ambiguous to use as explaining away variable. When the pig
has low resistance caused by CSF infection, bacteria will also attack the pig more easily and so
an antibiotic treatment can seem to have effect, even if the pig is (also) affected by the virus.
Therefore, the late intra-uterine part and the variable effect AB will be left out of the initial
ASF model and we will develop the model only for suckling piglets, weaned piglets and finishing
pigs.

Besides the above, a mistake was found in the CSF model. The vertex representing the
presence of dust in a pen, is now connected with lung infection. However, dust in a pen will
not cause a lung infection by itself, but can cause coughing or related respiratory problems. So
dust should be connected to respiratory problems instead of the lung infection vertex, which is
what we will apply for the ASF model.

4.2 Reuse of the five phases

4.2.1 Immune reaction

The first part of the CSF model we will discuss is the immune reaction. Variables that belong
to this phase are CSF phase 1, Body temperature, Appetite, Huddling, Fever, Activity and
Malaise. All values of the variables can be found in table 2. High fever is frequently named
to be the first sign of a pig with ASF. Loss of appetite, depression and huddling together are
also signs for ASF (see section 3). Apart from these, lethargy is often described as depression,
but from a veterinary perspective lethargy and depression are the same (van Schaik, personal
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Phase Variables CSF Variables ASF

Immune Body temperature Body temperature
Normal
Increased

Normal
Increased

Appetite Appetite
Normal
Decreased

Normal
Decreased

Huddling Huddling
No
Yes

No
Yes

Fever Fever
No
Yes

No
Yes

Activity Activity
Normal
Lethargic

Normal
Lethargic

Malaise Malaise
No
Yes

No
Yes

- Erythema
No
Yes

Table 2: All variables with values belonging to the immune reaction, for the CSF and ASF
model

communication, June 2017). Besides this, there is one new variable that possibly has to be
added here. For ASF, flushing of the skin is regularly described. This could be part of the
immune reaction and thus be different from cyanosis, which is bleeding under the skin and
caused by the virus attacking the circulatory system. In conclusion, all the variables in the
immune part appear to be reusable and we add a variable for flushing of the skin, named as
Erythema, with values No and Yes. The model describing the immune reaction for ASF is
shown in figure 2 and the corresponding values in table 2.

Figure 2: Model of the immune reaction for ASF.
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Figure 3: Model of the gastrointestinal tract for ASF.

Phase Variable CSF Variable ASF

Gastrointestinal
tract

Feaces Faeces

Normal
Dry
Aspecific diarrhoea
Marked diarrhoea

Normal
Dry
Aspecific diarrhoea
Marked diarrhoea
Bloody diarrhoea

Late intra-uterine inf. -
No
Yes
n.a.
- Vomiting

No
Yes

Table 3: All variables with values belonging to the gastrointestinal tract, for the CSF and ASF
model

4.2.2 Gastrointestinal tract

Secondly, we look at Phase two of CSF, the virus’ attack of the gastrointestinal tract. The
model contains only Faeces as a variable for this part. As stated in section 3, with an ASF
infection, vomiting, sometimes (bloody) diarrhoea and abdominal pain is observed. Hence,
vomiting will be included in the ASF model, with values No and Yes. Since diarrhoea only
appears sometimes, we will keep it in the model but with different probabilities. Also, the
values of faeces will change a little. Bloody diarrhoea will be added since it is mentioned for
ASF where it is not for CSF. Aspecific diarrhoea is diarrhoea which clearly belongs to another
disease than CSF and ASF, so will be reused. Abdominal pain is not observable by veterinarians
(van Schaik, personal communication, June 2017), so will not be added. This part of the ASF
model is shown in figure 3 and values in table 3.

4.2.3 Respiratory tract

The third phase of CSF is the affection of the respiratory tract. Variables included are respi-
ratory problems, snivelling, mucositis and lung infection. The clinical signs for the respiratory
tract seem quite similar from literature for both swine fevers. Only the discharges of nose
and eye might be bloody with ASF. As these signs are less regular, we will determine with
the inoculation study data, if this should be added as value. de Carvalho Ferreira (personal
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Figure 4: Model of the respiratory tract for ASF.

Figure 5: Model of the circulatory system for ASF.

communication, July 26, 2017) stated that the respiratory problems where not that special or
different for both diseases. So for now, we assume the respiratory problems can be reused as-is.
This part of the model and values per variable can be found in figure 4 and table 4 respectively.

4.2.4 Circulatory system

Next, we look at the signs of the virus’ attack at the circulatory system. In the CSF model,
this part consists of the variables skin haemorrhages and cyanosis. Both signs are seen with
ASF as well, and hence should be reused. Beside these two, bleeding from nose and rectum are
signs for ASF and should be appended, named Epistaxis and Bleeding from rectum respectively,
both with values No and Yes. This part of the initial model can be seen in figure 5 with the
variables explained in table 5.

4.2.5 Nervous system

In the final stage of CSF, the nervous system is affected. The variables included for CSF
are ataxia (a collective noun for bad coordination of muscle movement) and wasting. In the
CSF model, ataxia has the values No, Aspecific and CSF-specific (which is sitting like a dog).
For ASF the signs stated are: incoordination and sometimes hind legs appearing weak. This
suggests we should change the value names of the values of this variable to No, Incoordination
and Dog sitting. As the pig will die eventually, wasting should be included for ASF too. This
part of the model and the corresponding variables are shown in figure 6 and table 6.
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Phase Variable CSF Variable ASF

Respiratory tract Mucositis Mucositis

No
Yes

No
Yes

Lung infection Lung infection
No
Yes

No
Yes

Respiratory problems Respiratory problems
No
Yes

No
Yes

Snivelling Snivelling
No
Yes

No
Yes

Conjunctivitis Conjunctivitis
No
Yes

No
Yes

Effect AB -
No
Yes

Table 4: All variables with values belonging to the respiratory tract, for the CSF and ASF
model

Phase Variable CSF Variable ASF

Circulatory system Cyanosis Cyanosis

No
Yes

No
Yes

Skin haemorrhages Skin haemorrhages
No
Yes

No
Yes

Table 5: All variables with values belonging to the circulatory system, for the CSF and ASF
model

Figure 6: Model of the nervous system for ASF.
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Phase Variable CSF Variable ASF

Nervous system Ataxia Ataxia

No
aspecific
csf-specific

No
Incoordination
Dogsitting

Wasting Wasting
No
Yes

No
Yes

Table 6: All variables with values belonging to the nervous system, for the CSF and ASF model

4.3 Sequence of the phases in ASF from literature and interviews

Now that we have defined the parts of the initial ASF model, we have to determine the order
in which they appear. All the variables of the upper part of the CSF network that are not
discussed above, will be reused in the ASF network as well, together with their probabilities,
because they are connected with one or more variables we want to reuse in the middle and/or
lower part of the network.

Since both diseases are caused by a virus, it is likely that an ASF infection starts with an
immune reaction of the body too. Also, as said above, high fever is frequently mentioned as the
first sign, which substantiates this assumption. De Carvalho Ferreira (personal communication,
July 26, 2017) who has done a PhD study of ASF, declared that the signs of damage of the
circulation system, nervous system, gastrointestinal and respiratory tract all seem to appear at
once. So we can not assume the phases will be sorted as with CSF. In section 3.1, anorexia,
listlessness, cyanosis and incoordination are named to be seen in the last stage of the disease.
Nevertheless, these signs can be present during the whole infection, so we can not say they
appear later than others. Accordingly, further research is needed to determine how the phases
should be connected. In the next section we will complete the structure of the ASF model by
using data of inoculation studies, which are experimental setups where pigs are observed very
closely after inoculating (some of) the pigs with ASF, to complete the structure of the ASF
model.
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Figure 7: Results of the average duration of latent and incubation period for the inoculated
pigs and time to onset of infectiousness and clinical signs for the contact pigs

5 Inoculation studies

To gain more insight in the ordering of the signs appearing, we will look at inoculation studies.
As mentioned above, inoculation studies are an experimental setting with a group of pigs, where
some of the pigs are inoculated with the disease. All the pigs are observed daily and the clinical
signs they show are listed. With this daily data of clinical signs, we can check whether some
parts of the body seem to be affected before others. To achieve this, we will make plots where
we count each day how many pigs are showing certain signs in each part of the body.

Below, we will look at two different inoculation studies. From the first one, from Guinat
et al. [12], we have the clinical data per day. Of the second inoculation study of Olesen et al.
[20], we do not have the data, but the results are described in great detail in their paper.

5.1 Inoculation study of Guinat et al. [12]

Guinat et al. [12] recently performed an inoculation study with the Georgia strain of ASF.
Stated that this strain is not significantly changing [12], this is a pretty good study to use as
basis to further define the structure of the network. The goal of this study was to get more
detailed information about the clinical signs, viremia and virus excretion of the ASF virus, via
different infection routes. For this, they inoculated a fraction of 40 pigs with the virus strain
in a controlled environment. The pigs were divided in four rooms. In each room, only some
of the pigs were inoculated with ASF. The other pigs are within-pen or between-pen contact
pigs, susceptible to the ASF virus. In room B and C, four pigs were separated by a 80 cm high
partition, being the between-pen contact pigs, the remaining pigs were within-pen contact pigs.

Each pig was examined daily to obtain the rectal temperature, clinical signs and blood,
oral, nasal and rectal fluid samples. When gathering the clinical signs a form is used with ten
clinical signs listed, each with a score of severity. The form can be found in appendix A. Fever
is determined as a temperature higher than 40◦C for two consecutive days. From the fluid
samples the location of the virus in the body at a given day post inoculation is determined,
which is shown in figure 7. For welfare reasons, the pigs were euthanized as soon as they showed
a rectal temperature of 40◦C or higher for three consecutive days, or showing three different
clinical signs.

To gain more insight in the moment of onset of the clinical signs corresponding to the
five phases, we used this data to make plots that show which signs appear on which day post
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Figure 8: Clinical signs observed in room A-D.

infection (dpi). Note here that the definition of dpi by Guinat et al. [12], actually means days
post inoculation of the inoculated pigs. The contact pigs were of course not infected immediately.
Since we are interested in the onset of clinical signs after infection, we had to shift the data. As
Guinat et al. [12] found that clinical signs appeared at day 4.4 ± 1.0 for inoculated pigs, and
9.9±1.6 for withing-pen contact pigs (see figure 7), we assume the pigs were infected with ASF
5.5 days after inoculation. So we shift the data for the within-pen contact pigs so that dpi 0
is at day 4. We rounded down, as rounding up resulted in the within-pigs showing signs and
dying earlier than the inoculated pigs, which is not plausible. For between-pen contact pigs we
did the same, we defined dpi 0 on day 7.

For each day, we counted how many pigs have signs corresponding to a phase. Defining
these counts, we are indifferent how high the signs are scored (as in the assessment form is
shown). So for example, when a pig shows lethargy with score one or higher, we count this pig
for showing an immune reaction. The plots are shown in figure 8 for each rooms separately and
figure 9 shows the result for all rooms together. Note that we look at fever apart from the other
immune reactions, to verify the statement in section 3 that fever is often seen as the first sign
for the acute form of ASF. To gain the right conclusion for our model, we had to slightly change
the definition of fever. As we make a model for single day observations, we have to define fever
as a temperature at one day. Since equipment and age of the pigs can influence the definition
of fever, we will define fever as one day above 40◦C conform with the temperature specified by
Guinat et al. [12].

As we can see in the plots explained above, fever is always the first sign seen. Other
immune reactions appear later than fever, and sometimes earlier and sometimes later than the
other phases. Of the remaining phases circulatory system sometimes appear earlier but mostly
together with the gastrointestinal tract, respiratory tract and nervous system. The last four
phases are hardly observed, which can be due to the fact that the pigs were euthanized before
natural death.
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Figure 9: Clinical signs observed in all rooms together.

5.2 Inoculation study of Olesen et al. [20]

Even more recently Olesen et al. [20] preformed a inoculation study with an virus isolate from
Poland. We do not have data of this inoculation study, but the results are fairly detailed. As
this is the closest country to the Netherlands where ASF is reported, it seems useful to check
whether there are some big differences with the study in the previous section. In this study
there were again four pens used, now creating four groups: 1) inoculated pigs, 2) within-pen
contact pigs, 3) between-pen contact pigs 4) air-contact pigs. Olesen et al. [20] also obtained the
viremia, clinical signs and transmission parameters (e.g. time until onset of infectiousness or
onset of clinical signs) of the virus for within-pen, between-pen but also for air-contact pigs. The
pigs of group 1 were intranasally inoculated on post infection day 0 (PID as by their definition).
As above, the contacts pigs were not directly infected with the ASF virus, so we shifted the data
for these pigs by the same argumentation as described above, using the transmission parameters
stated in figure 11. So PID means indeed post infection day from now on. Clinical signs were
again collected with a form, which can be found in appendix B.

We summarised the results given in paragraph 3.2.1 of Olesen et al. [20] to get a same
plot as in the previous section. We translated the text as much as possible into numbers,
obtaining the number of pigs showing clinical signs of a certain phase, per day. The results are
shown in figure 10. Here, fever and other immune reactions appear together as first signs seen,
followed by circulatory problems and attack on the nervous system. After that problems with
the gastrointestinal tract seem to appear. Respiratory problems were not reported.
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Figure 10: Clinical signs observed in all pens together by Olesen et al. [20]

Figure 11: Results of transmission study from Olesen et al. [20]

19



6 The structure

6.1 Global structure

The result figures above suggest that fever indeed can be seen as one of the first signs of ASF.
And therewith, the immune reaction should be the first in ordering of the phases in the model.

In both studies, circulatory problems seem to appear a little earlier than the remaining
phases. Note that these figures are based on very few data points, so we must be careful.
Beside looking at clinical signs, we can also look at the blood samples taken. In figure 7 of the
first inoculation studies, we compare Blood }with the onset of clinical signs (i.e. clinical score
> 3). We see, for within-pen and between-pen contact pigs respectively, the virus is present
in the blood from day 10.3(±1.6) and 13.9(±3.0). And the onset of the clinical signs is from
9.9(±1.6) and 12.7(±2.0). So the virus is present in the blood 0.4 and 1.2 day(s) after onset of
clinical signs. For the second study, we compare Sera # with CS > 3 in figure 11. We see in the
left table that for group 3a (between-pen contact pigs), 4a (air-contact pigs) and 2b (within-pen
contact pigs) the virus is 0.5, 0.8, and 0.3 days earlier detected in blood than clinical signs start
to appear, respectively. For the remaining groups the virus is in the blood less than 0.7 day
after clinical onset.

Combining the above knowledge with the clinical signs data, we draw the following conclu-
sion. As we do not see all clinical signs within one day, the above numbers substantiates that
the attack of the circulatory system will appear earlier than or together with the other phases,
except Immune what is mostly the first sign seen. This is an important contrast with CSF,
were it appears at the very end. As the above reasoning is not conclusive to determine further
ordering of the other four phases, we will put the last four phases together, after the immune
reaction. Further testing is needed to verify this assumption.

According to the above conclusions, we will define the overall structure by connecting Immune

to all other parts of the body and connect all these parts to Wasting. That way all phases not
immune, appear together after the immune reaction and probably just before the pigs dies. The
global structure is shown in figure 12.

6.2 Clinical signs

In section 4.2.3 we were left to determine whether to change the nodes corresponding to the
respiratory problems. As only coughing is observed once in the studies ofGuinat et al. [12] and
no other respiratory problems, there is no cause or enough evidence to change the snivelling
node. The total structure of the ASF model is shown in figure 13.
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Figure 12: Global structure of the ASF network

Figure 13: Total structure of the ASF network
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7 Learning the parameters

Now the structure is determined. We have to obtain the second part of the BN, the conditional
probability table (CPT) of each variable. We can do this by asking experts to estimate these
probabilities, but we aim to keep the workload low for experts. So we will first find initial values
by learning the parameters from data, whereafter we can calibrate.

As the CSF model is tested pretty well, we will reuse probabilities from the network as well
for the ASF model. To learn the remaining CPTs, we will use the data of the inoculation studies
of Guinat et al. [12], from section 5.1. This time, per pig we noted if a clinical sign appeared,
irregardless when the sign showed in time. When a sign is not described on the assessment
form (Appendix A) and not observed, it is set to Not Available (NA). This means the data has
missing values, and for some variables, no data points are available. To be able to learn from
this data anyway, we will use a parameter learning algorithm applicable for missing values and
hidden variables.

In this section, we will first describe which probabilities of the CSF network can be reused.
Then, we give a short overview of the learning algorithms used nowadays. Thereafter, we will
explain two variants of the Expectation-Maximisation algorithm and we conclude by showing
how we applied these algorithms in our network.

7.1 Reuse of parameters

Before learning parameters, we define which of the probabilities can be reused. Prior proba-
bilities for the explaining away variables, such as Dust and Poisoning, can surely be reused,
assuming the situation in the pig herds of the Netherlands have not changed that much. Also,
the probabilities of the hidden variables excluding the five representing the body parts, can be
reused. As an example, the probability that Fever is established, given that there is actually
a raised body temperature, will be reusable, as this captures the human and/or machine error
rate. The parameters we want to learn are the five hidden variables representing the body
parts: Immune (Immune reaction), Gastro (Gastrointestinal tract), Resp (Respiratory tract),
Circ (Circulatory system) and Nerv (Nervous system), and the new parameters or parameters
with new values: Erythema, Faeces and Vomiting. Note that Bleeding from rectum and
Epistaxis are both also new variables but there is no observed data available. Therefore, we
can not learn these parameters and so they should be estimated by an expert.

When reusing parameters, it can appear that the number of parents of a variable in the ASF
does not equal the number parents it had in the CSF model. When a variable has more parents
in the ASF model, we will simply duplicate the probabilities, i.e. we use P (X | Y,Zj) = P (X |
Y ),∀j. In the case of less parents, we marginalise over the missing parent(s): P (X | Y, Z) =∑

i P (X | Y, Z,Wi)P (Wi) [18].
The prior probability of CSF appearing in the Netherlands is 0.0000019, for ASF, this is a

little higher, 0.0019, as it is present in neighbouring countries.

7.2 Parameter learning algorithms

Learning from data is gaining popularity. Learning from data is done in machine learning,
artificial intelligence and also in data mining [4] to find patterns or relations. For learning
Bayesian Networks, you can learn both the structure and/or the parameters. We will only look
at parameter learning as we will only learn the CPTs from data. In our case, we have to learn
discrete distributions, with two or more values per variable, for both hidden and observable
variables.
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The general goal of learning parameters, or obtaining the CPTs, can be described as follows.
We set the probabilities of parameters w to some start value. We have some data D and we
want to find w which represent the data best. Finding w with missing values is done by an
iterative process, taking little steps, to a global maximum.

A common way to do this, is via a Maximum likelihood estimate (MLE) method, where the
likelihood of the BN is maximised. This method however has problems when there are zero
observations of certain values in the data. In this method, the parameters are estimated by the
number of occurrences Nijk that node Xi equals value k, divided by the total number of times
node i’s parents are equal to the jth assignment. But if the jth assignment of the parents never
occurs in the data, you divide by zero ([30]). In our case, the data has missing values or even
hidden variables, so this problem can possibly arise. A different approach is the Maximum a
posteriori (MAP), where you start with a prior (Dirichlet) distribution [30, 19], and maximise
from this.

Different algorithms for both methods are known. Most well known are Expectation-
Maximisation (EM) and Gradient Descent, less commonly also Markov Chain Monte Carlo
based algorithms (such as Gibbs Sampling [22, 21]) are mentioned. Furthermore, a number of
variations or extensions of these algorithms are explored, e.g. using auxiliary networks [18] or
include expert knowledge by implementing constraints for parameters [30].

Gradient Descent is a fairly convenient method. In this algorithm, a nonlinear function
describing the CPTs is determined and this function will be maximised. Each iteration, the
gradient vector of partial derivative with respect to the CPTs is computed, whereafter a step is
taken into this direction. When the gradient is zero, you have reached a local maximum for the
CPTs [22]. Gradient descent can take a lot of iterations to find this maximum and so become
computational expensive [6].

Very powerful for very complicated high dimensional probability distributions are the MCMC
methods [1]. These methods are based on sampling from the CPTs [3], making a chain of possi-
ble models. These methods are not often mentioned for learning Bayesian Networks with hidden
variables.

The EM algorithm is a popular [21], mathematically grounded and frequently mentioned
algorithm when learning parameters including hidden variables [21, 3]. The EM algorithm
iterates between computing expected values with respect to the data, and computing new
probabilities with this expected values. EM has the downside that it sensitive to starting values
of the CPTs and it can be computational expensive when you have a large network [21].

In this thesis, we will use a MAP version of EM as described by Neapolitan [19], to learn
parameters for which all data points are available, but possibly not for all their parents. For
learning the hidden variables’ CPTs, we use another version of EM, using Bayes inference in
the maximisation step [14].

7.3 Expectation-Maximisation algorithm by Neapolitan [19]

The general idea of EM by Neapolitan [19] is that data is extended where data points are
missing. These data points should be missing at random, otherwise the missing variables are
dependent on the values of the other variables. The probability that each extended row occurs
is set to a starting probability. With these occurrences, a expectation with respect to the data
is computed. With this expectation, a new probability is determined and this will be the new
occurrence of corresponding rows. By iterating this, a (local) maximum of the prior probabilities
is reached. Below we will first give some notation, after which we show the algorithm applied
on an example network in section 7.3.2.
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Figure 14: Example network for notation

Figure 15: Bayesian Network of run-through example

7.3.1 Notation

A Bayesian Network is represented by a graph G(V,E), where V are the nodes (or ver-
tices) and E the arcs (or edges). Each node Xi ∈ V has ri values and cXi denotes the
conjunction of its values. We define PAi as the parents of Xi and paij is the jth instan-
tiation of the values of the parents of Xi, whereby there is a defined ordering for all pos-
sible assignments. In total, qi possible instantiations of Xi’s parents exist. For example,
we look at X4 in the example BN in figure 14, where all variables are binary. We have
PA4 = {X1, X2, X3}, for which there are q4 = 8 possible assignments. When assigning the
ordering: {X1, X2, X3} = {(1, 1, 1), (2, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (2, 1, 2), (1, 2, 2), (2, 2, 2)},
then pa43 = (1, 2, 1).

For each node, we denote its probability as

fijk = P (Xi = k | paij)

where k ∈ cXi stands for the current value of the node. All probabilities of the network are
denoted by f , so in the example from above we have

f = {f111, f112, f211, f212, f311, f312, f411, . . . , f481, f412, . . . , f482}.

When learning the parameters from data, we will start with a initial probability. This probability
is described by aijk’s, where

P (Xi = k | paij) =
aijk∑
k aijk

.

In words, we believe that value k appears aijk times of a total of
∑

k aijk cases. For intance, in
the same example network, when we have no prior knowledge, we are indifferent which value of
X1 appears more often. Then we set a111 = a112 = 1 and we get an initial probability f111 of

P (X1 = 1) =
a111

a111 + a112
=

1

2
.

7.3.2 EM algorithm detailed

Now that we have the notation, we will explain EM as defined by Neapolitan [19] by a run
through example. We will work with the Bayesian network represented in figure 15 existing of
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Case X1 X2

1 1 1
2 1 ?
3 1 1
4 1 2
5 2 ?

Case X1 X2 Occurrences

1 1 1 1
2a 1 1 1

2
2b 1 2 1

2
3 1 1 1
4 1 2 1
5a 2 1 1

2
5b 2 2 1

2

Table 7: Data with missing values (left) and extended data (right) of run-through example EM
[19].

two binary nodes X1 and X2 with an arc from X1 to X2. We have some data available shown
in table 7(right). In this data, a few data points are missing for node X2.

To learn with this data, we start by extending the data with all possible options of values
of the node for which data is missing. In the case of our example, we duplicate the data row
where X2 is missing and fill in both possible values of X2, as is shown in the right table of table
7. We add a column where we list the occurrences of each row. When the row does not have
missing values, the occurrence is one. Where data is missing, we fill in the initial probability
we believe this row will occur. We start with no knowledge at all, so we fill in the probabilities
P (X2 = 1 | X1 = 1) = 1

2 and P (X2 = 1 | X1 = 2) = 1
2 .

Now we can compute the expected value for each probability from this data as extended
above. We call this expectation sijk and it is simply defined as counting the number of occur-
rences of node i being equal to k given the jth instantiation of his parents. More formally,

sijk = E(Xi = k, paij |d, f) =
∑

row∈d
P (Xi = k, paij |d, f). (1)

where d is the data and the probability P per data row is the occurrence of this row. This is
called the expectation step of the algorithm.

Next, we compute new probabilities fijk with this expectations, the maximisation step.
This we do by simply adding up the expected values to our previous probabilities in the following
way:

fijk =
aijk + sijk∑

k∈cXi
aijk +

∑
k∈cXi

sijk
.

In our example, we first compute the expected values for X2 given X1 = 1 (j = 1 when
X1 = 1 and 2 otherwise). We count

s211 =

5∑
h=1

P (X
(h)
1 = 1, X

(h)
2 = 1 | d, f)

= 1 +
1

2
+ 1 + 0 + 0 = 2

1

2
,

(2)

where (h) stands for the hth row. The same way we get

s212 = 0 +
1

2
+ 0 + 1 + 0 = 1

1

2
. (3)
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Now we can compute the new f211 of the maximazation step by:

f211 =
a211 + s211∑

k∈cX2
(a21k + s21k)

=
2 + 21

2

2 + 2 + 21
2 + 11

2

=
7

12
.

(4)

This new probability for f211 = 7
12 can now be filled in for row 2a in the right table of table

7. And f212 = 5
12 as occurrence of row 2b.

The same procedure can be done for X2 given X1 = 2. After filling in all new probabilities,
we can start over with computing the new expectations, then compute the probabilities again,
etc. After a certain amount of iterations of the algorithm, a local maximum will be reached.

7.3.3 Defining aijk

Above, we started with simple values for aijk. But we should be careful choosing these values.
Below we describe why we can not just choose 1 for each node, as this gives odd results, by
explaining an example with coin tossing (Neapolitan [19]). We show that an equivalent sample
size prevents this problem, and how we can still start with prior indifference as our knowledge.

Equivalent sample size Take the same example network as above in figure 15. Let both
nodes represent a coin toss, with value 1 if it lands heads and value 2 if it lands tails. Assuming
we have fair coins, our prior believe would be that each coin lands heads half of the time. As
stated in section 7.3.1, we can take a = b = 1 for both nodes, getting f111 = 1

1+1 = 0.5 as our
prior believe for X1. And also:

P (X2 = 1) = P (X2 = 1 | X1 = 1)P (X1 = 1) + P (X2 = 1 | X1 = 2)P (X1 = 2)

=
1

2
· 1

2
+

1

2
· 1

2
=

1

2

(5)

as our prior believe for X2.
Now say we update the probabilities with the data from 8 tosses, shown in table 8. We get

P (X2 = 1 | X1 = 1) =
1 + s211

2 + s211 + s212

=
1 + 1

2 + 1 + 2

=
2

5
.

(6)

And in the same way we get

P (X2 = 1 | X1 = 2) =
1 + 3

2 + 3 + 2
=

4

7
,

P (X1 = 1) =
1 + 3

2 + 3 + 5
=

2

5
, and

P (X1 = 2) =
3

5
.

(7)
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With these new probabilities, the probability of P (X2 = 1) becomes:

P (X2 = 1) = P (X2 = 1 | X1 = 1)P (X1 = 1) + P (X2 = 1 | X1 = 2)P (X1 = 2)

=
2

5
· 2

5
+

4

7
· 3

5
≈ 0.50286.

(8)

But if we look at the data, we see the second coin landed head exactly half of the time of
the experiment. So the outcome is not what we expect, as we will still believe X2 is a fair coin
after these 8 tosses.

What we did in this case, was defining a different amount of prior occurrences X1 and X2

and combining these different sample sizes while computing P (X2 = 1). We stated that X1

equals 1 once out of two times. But for X2, the initial probability is explained as the second
coin lands heads once out of two times that the first coin landed head. In this case, we have
defined two prior occurrences for X1 and four for X2 (two for each outcome of X1). So, we do
not believe P (X1 = 1) = 0.5 as much as the probabilities of X2 indicate we should.

To prevent this, we should define the same prior sample size for each node in the BN. In this
example, we take for instance a = b = 2 for X1 and a = b = 1 for X2. This way, we also have
four prior occurrences for X1. The initial probability remains a half: P (X1 = 1) = 2

2+2 = 1
2

and the updated probability of X1 becomes:

P (X1 = 1) =
2 + 3

4 + 3 + 5

=
5

12
.

(9)

With this probability, we indeed get a probability of a half for X2 after updating:

P (X2 = 1) =
2

5
· 5

12
+

4

7
· 7

12

=
1

2
.

(10)

Formulating the above solution more formally, we should define a prior sample size Nij for
each node, such that the network has an equivalent sample size N [19] where:

Nij =

ri∑
k=1

aijk = P (paij)×N. (11)

We do this by defining the aijk as

aijk =
N

riqi
. (12)

We will show why the network has equivalent sample size N when we define aijk as such. Recall
that qi is the number of instantiations of the parents of node i, and therefore is defined as

qi =
∏

pa∈PAi

rpa. (13)

27



Case X1 X2

1 1 2
2 1 1
3 2 1
4 2 2
5 2 1
6 2 1
7 1 2
8 2 2

Table 8: Data on coin tossing.

With aijk as in (12), the initial probability of each node is given by:

P (Xi = k | paij) =
aijk∑
k aijk

=

N
riqi

ri
N
riqi

=
N

riqi
· qi
N

=
1

ri
.

(14)

With that, the probability of a certain instantiation of parents becomes the probabilities of
each parent multiplied:

P (paij) =
∏

pa∈PAi

1

rpa

=
1∏

pa∈PAi
rpa

Use formula (13)

=
1

qi
.

So now we know P (paij) = 1
qi

for all i and j. Therefore,

ri∑
k=1

aijk = ri
N

riqi
=
N

qi
= P (paij)×N, (15)

and indeed (11) holds and thus the network has equivalent sample size N .

Prior indifference Bigger values of aijk represent a stronger believe in this starting value.
So for prior indifference, we should take values not too large. Reasonable for describing prior
indifference can thus be aijk = 1

ri
(where r are the number of values of i). Combining this with

the equivalent sample size, we should take an equivalent sample size of N = maxr, the largest
number of values of a variable appearing in the network. The rationale doing this is that for a
node Xp with maxr values, it is reasonable to believe we have seen each of the value once, and
it is as small as possible.
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Figure 16: Example network adjusted EM

Case X1 X2 X3 P (X1 = 1 | d, f)

1 NA 1 1 a
a+b

2 NA 1 1 a
a+b

2 NA 1 2 a
a+b

3 NA 1 1 a
a+b

4 NA 2 2 a
a+b

Table 9: Data with hidden variable

7.4 Adjusted EM for the hidden variables [14]

The EM algorithm described above works well if there only a few or none data points are missing
for a certain variable. When a variable is however hidden, the above algorithm will not learn
anything from the data. In this section, we will show why this happens by giving an example
and thereafter explain an adjusted version of EM, which can learn with hidden variables.

Take the example BN shown in figure 16 and say we have no data points for X1. We extend
each row for X1 and fill in the initial probability, as shown in table 9. To keep the formulas
readable, we will use a111 = a and a112 = b. We start with:

P (X1 = 1) =
a

a+ b

P (X1 = 1) =
b

a+ b
.

(16)

We follow the EM algorithm as above and start with computing the new expectation by
counting the occurrences (expectation step):

s111 = 5 · a

a+ b

s112 = 5 · b

a+ b
.

(17)

Computing the new probabilities we get (maximisation step):

f111 =
a+ 5 a

a+b

a+ b+ 5 a
a+b + 5 b

a+b

f112 =
b+ 5 b

a+b

a+ b+ 5 a
a+b + 5 b

a+b

.

(18)
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Now we can rewrite the upper formula as follows:

f111 =
a+ 5a

a+b

a+ b+ 5a
a+b + 5b

a+b

get same denominators:

=

a(a+b)
a+b + 5a

a+b
(a+b)(a+b)

a+b + 5a
a+b + 5b

a+b

merge fractions:

=

a(a+b)+5a
a+b

(a+b)2+5(a+b)
a+b

rewrite:

=
a(a+ b) + 5a

���a+ b
·

���a+ b

(a+ b)2 + 5(a+ b)
simplify:

=
a(a+ b) + 5a

(a+ b)2 + 5(a+ b)
rewrite:

=
a(a+ b+ 5)

(a+ b)(a+ b+ 5)
which equals:

=
a

a+ b
.

As we see, the new probability equals the initial probability. So the algorithm will never
learn a new probability for a hidden variable. The same holds of course for the lower formula
of (18).

But when we look at the data, we see X2 and X3 are equal to one, three out of five times.
Because of the structure of the network, this should also tell us the probability P (X1 = 1)

should be about this 3
5

th
(unless the probability of X2 and X3 given X1 state otherwise). This

is why we should also use information of the nodes below the hidden variable, by using Bayes
inference.

And that is the idea of this adjusted algorithm. We again start with a initial probability,
but now we fill this in as prior probabilities of the BN. Next, we compute the occurrence of
each data row by filling in all known data points as evidence, and determine the posterior
probability of the hidden variable with Bayes inference. Then, we perform the expectation and
maximisation step similarly as above. Note that the expectations/occurrences are now displayed
as probability that the data row occurs. We clarify this with an example.

We start with initial probabilities f for the network in figure 16:

f111 = P (X1 = 1) = 0.6

f211 = P (X2 = 1|X1 = 1) = 0.55

f221 = P (X2 = 1|X1 = 2) = 0.4

f311 = P (X2 = 1|X1 = 2) = 0.45

f321 = P (X2 = 1|X1 = 2) = 0.65.

(19)

We use this as the prior probabilities of our network. Now for each row, we set the value
of X2 and X3 as evidence and determine the probability P (X1) with Bayes inference. This
probability is then the occurrence of the corresponding data row as shown in table 10.

As the expectation step, we compute the total occurrences as above determined. For in-
stance, we compute

s111 = 3 ∗ 0.588 + 0.764 + 0.639 = 3.167.
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Case X1 X2 X3 P (X1 = 1 | d, f)

1 NA 1 1 0.588
2 NA 1 1 0.588
2 NA 1 2 0.764
3 NA 1 1 0.588
4 NA 2 2 0.639

Table 10: Data with hidden variable

Then, in the maximisation step, we compute the new probability with

P (X1 = 1) =
E(X1 = 1)

E(X1 = 1) + E(X1 = 2)
=

3.167

5
= 0.6334.

Note that the prior probabilities now are taken into account in the inference step instead of
the maximisation step. You compute these new probabilities for all nodes of the network
and fill these new probabilities in as prior probabilities of the network. You can compute
the occurrences P (X1) with inference again and repeat the above procedure until the (global)
maximum is reached.

7.5 EM applied on our network

In the above examples, all the parameters of the network where learned from the data. As
already mentioned in the beginning of this section, we want to reuse most of the probabilities
and only learn Erythema, Faeces, Vomiting, Immune, Gastro, Resp, Circ, and Nerv. When
a variable is Not Available in the data, but we reuse their probability, we will also extend the
data for this variable. When determining the occurrence of each data row, all probabilities of
the variables with NA in the data are multiplied. Only these probabilities will not change for
reused variables.

Erythema, Faeces, and Vomiting are leaf nodes and no data is missing, so we apply the EM
algorithm as described by Neapolitan [19] in section 7.3.2. Obviously, in this case we only need
one iteration, counting the occurrence of each value of the node, as nothing will change in the
data in the next iteration. However, we learn these variables simultaneously with the remaining,
hidden variables, because some of these variables are parents of this clinical sign variables. As
they are hidden, their probability will change every iteration and so the probabilities can differ
per instatiation of the parents of the observed variables. Thus, also Erythema, Vomiting, and
Faeces will be learned every iteration.

For the phase variables, we use the adjusted EM algorithm. Note that this algorithm is
a MLE method and is defined for learning root nodes, so the problem of dividing by zero
described in the beginning of section 7.2 will not occur. But the phase variables we want to
learn in our network, are not root nodes. Therefore, we split the learning process in two parts.
Using domain knowledge obtained from the inoculation studies in section 5, we know that the
immune reaction appears first. So we will learn that part of the model first. This part is shown
in figure 17. We learn with the data of the inoculation studies, and in this data the variables
ASF, Dust, Poisoning, Primary other infection, Feed, and Climatic problems have fixed
values. So learning with these parameters fixed, is the same as learning Immune as the root as
above.

Second, we learn the probabilities of Gastro, Resp, Circ, and Nerv, and Erythema, Faeces,
and Vomiting and set the learned probability of Immune. The result probability of Immune is
P (Immune = Y es|ASF = Y es) = 1 and therefore we can fill in Yes for Immune in the data.
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Figure 17: Only the immune reaction part of the ASF model

With Immune filled in, as above, all parents of the four hidden variables are now fixed, and the
remaining four hidden variables become root nodes and can be learned with the adjusted EM
algorithm. When learning these remaining variables, we use the whole Bayesian Network.
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α Sensitivity

0.19 10%
0.019 37.5%
0.01 45%
0.005 82.5%

Table 11: Sensitivity of the ASF model

8 Results and discussion

Now that we have determined the structure and prior probabilities of the network, we will look
at the performance of the developed model. Thereafter, we will note some adjustments we had
to make and we will conclude the project.

8.1 Results

To determine the performance of the network, sensitivity and specificity together are a good
measurement. Recall that sensitivity establishes the percentage that the model actually evalu-
ates a pig has ASF, out of the cases where pig are infected with ASF. Specificity, as counterpart,
is the percentage of all not diseased pigs, of which the model indeed returns negative diagnosis.

The sensitivity will be defined as follows. A data row will be used as evidence, asking for
the posterior probability P (ASF = Y es). When this probability exceeds a certain threshold α,
we claim the model returns positive for this pig having ASF. The sensitivity of the model is:

sensitivity =
ASF notices

Total pigs in data with ASF
× 100 [25].

Note that sensitivity alone is not saying much, but is only giving an idea. Specificity should
be determined too, with data from pigs without ASF, but showing at least one sign of ASF.
With the formula:

specificity =
Total pigs in data - number of ASF positives

Total pigs in data
× 100 [25],

it should be checked if the model is not just given ASF warnings when it appears to be another
virus.

We conducted the sensitivity for a few alpha’s. The prior probability for ASF was 0.0019,
taking that as alpha resulted in 100% sensitivity which is not really plausible and probably
will give a low specificity. So we tried some different alphas, the results are shown in table 11.
Together with specificity, the most appropriate alpha should be determined. Due to lack of
time, the specificity is not yet determined.

8.2 Data adjustments

Because EM explodes in run-time with every non observed variable, we made some adjustments
to keep the run-time somewhat doable. On the basis of expert knowledge, we can argue some
of the signs can be put to a value rather than Not Available.

First, the pigs are euthanised early because of welfare reasons, and therefore Wasting will
probably never be seen in this experimental setting, whether it is checked or not. Besides, since
we aim for an early detection model, Wasting is not the most important variable, as the pig is
already almost dead at that point. Thus, we set Wasting to No.
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Second, for Ataxia we decided the assign the value No, recall that Ataxia has the values No,
Incoordination and Dogsitting. These values are not on the assessment form, but joint swelling
with difficult walking is checked. As difficulty in walking is therewith checked, it is reasonable
to assume Ataxia did not appear.

Finally, from domain knowledge, we can say there is no lung infection, as long as there are
no respiratory problems according to van Schaik (personal communication, June 2017). This is
substantiated by the prior probabilities of the the CSF network. The probability for no lung
infection given no respiratory problems is 0.99. So in the cases no respiratory problems are
observed, we will put lung infection to No as well, and NA otherwise. Note that now, the data
points with NA are not missing at random, but as we do not learn this variable, this is not a
problem.

8.3 Conclusion

The interpretation of the sensitivity without the specificity can not tell us much, as false warn-
ings should not appear too often as well. Also, the percentage of the sensitivity is difficult to
interpret, as the model is developed for a single pig. A veterinarian will always assess a herd
instead of one pig. For example, three pigs with a probability higher than 30% can be enough
to suspect ASF in a herd. Authorities will have to decide which combination of sensitivity and
specificity must be used in practice.

Even without formal performance measures, we can evaluate the development process and
the initial ASF network and answer the research question: does the reuse of an existing model
shorten the development time of a Bayesian Network?

We have shown that it will. The structure of the model is fairly understandable and re-
sembles the CSF network. Together with the good performance results of the CSF model, this
means that the ASF model is a promising model. By an experienced researcher, this initial
model can be developed in only months, where the design CSF model took years, of which a
major part was building the initial model. Many in-depth interviews with experts were held to
determine the first structure of the CSF model, where only a few are used for the ASF model.
Testing this initial model will give already a good insight of the performance of the model,
whereafter fine tuning already can be started.

8.4 Future research

Of course, in general, the model should be reviewed further and some (parts of) CPTs still have
to be estimated by experts because they could not be learned with data. The structure on the
new nodes should be firmly tested, as should the new values of variables. Testing the sensitivity
should also be done per day, where it now is the worst disease picture possible per pig. But the
model should perform well on every moment of the clinical picture the pig shows. Below, we
will name some specialities to taken into account for further development of the ASF model.

First, the current data includes only cases for very limited values of some variables, and thus
only parts of the CPTs could be learned. For example, Respiratory tract has parents Immune,
ASF and Pig type. When learning, only the case (Immune = Yes, ASF = Yes, Pig type =
Weaned) appears in this data. The other assignments hence can not be learned from the data
and have to be completed.

Second, in the data adjustments, we did put Ataxia and Wasting to No. But these two signs
together are the only children of the Nervous system node. So these assumptions can have an
important impact on the CPT of this node. In further research this should be checked closely.

As last, Faeces got Circulatory system as new parent, because we added the value bloody
diarrhoea which is probably caused by affection of the Circulatory system. We learned Faeces
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with the data. But the fact that bloody diarrhoea is caused by the affection of the Circulatory
system is not taken into account here. This should be checked with a domain expert.

Besides better testing of the performance and determining remaining probabilities, we also
suggest to study if adding an extra phase would improve the model. In the first inoculation
studies, we noted fever was appearing mostly before other immune signs. We would like to
recommend researching if fever is a phase of ASF by itself.

Further reuse of Bayesian Networks should definitely be explored for other pig diseases and
even for human diseases. This research showed that preservation of a global structure consisting
of five parts of the body affected, makes a Bayesian Network easy to reuse.
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A Clinical assessment form Guinat et al. [12]

   

Clinical Assessment for ASFV 
 

Experiment:  ………………………Starting Date/time …………………………………                                             

Responsible for assessment ……………………………………… 

 

Animal number       

Morning T°C       

Afternoon T°C       

Temperature 
<39 = 0 

39.0 < to < 39.5= 1 
39.5 ≤ to < 40 = 2 

40.0 to   40.5 = 3 

40.6  41 = 4 
>41 = 5 

      

Inappitence 
- Reduced eating (1) 
- Only picking at food 
(4) 
- Not eating (6) 

      

Recumbancy 
- Lethargic (1) 
- Get up only when 
touched (2) 
- Slow to get up when 
touched (4) 
- Remain recumbent 
when touched (6) 

      

Skin Haemorrhage* 
- Haemorrhagic areas 
on ears and body (1) 
- Generalised 
haemorrhage all over 
body (3) 

      

Joint Swelling 
- Joint swelling (1) 
- Severe swelling with 
difficulty walking (4) 

      

- Laboured breathing 
and/or coughing (1) 
- Severe (3) 

      

Ocular discharge (1) 
(gummed up eyes) 

      

- Diarrhoea (1) 
- Bloody Diarrhoea (4) 

      

Blood in Urine (4)       

Vomiting (4)       

Total 
 

       /40          /40         /40         /40          /40         /40 

39



B Clinical assessment form Olesen et al. [20]
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