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Abstract

The Dinantian carbonate platforms in Northern Netherlands are marked as potential reser-
voirs for Ultra Deep Geothermal Energy (UDG). Permeability and therefore flow in these
reservoirs is thought to be primarily defined by natural fracture networks. For the purpose of
UDG, an analysis is made of the fracture network characteristics of the Dinantian Friesland
platform. Due to recent developments in reprocessing of 3D seismic data and fault extraction
algorithms, a first attempt is made to determine fracture network characteristics from 3D
reprocessed seismic data. First, the 3D seismic data is filtered by the non local means (NLM)
algorithm, using different filter parameter combinations. By doing so we aim to determine
the influence of the filter settings on the characteristics of the fracture networks, extracted
from the data. We are especially interested to see if by filtering the data, small fractures are
removed in addition to noise. Next, the Petrel ant track workflow is used as sampling method
for automatic detection and extraction of fractures, which are exported as fault stick files.
A program is built to calculate fracture attributes, such as barycenter coordinates, strike,
azimuth, dip, length, offset and aspect ratios. These fracture attributes are then used for
fracture network characterization, computing fracture length distributions, clustering and ori-
entation distributions. To quantify the scale invariance of the fracture network, we aim to find
power law behavior in the fracture network attributes of length and spatial distribution, such
that it fits Davy et al.’s (2010) double power law: n(l, L) = αLDl−a. Length exponent a is
determined via computing the density-length distribution and the fractal dimension D using
the pair-correlation function. Power law behavior is found for the fracture length distribution
below the truncation cut-off, with varying length exponents a depending on the NLM param-
eters used: 3.59 ≤ a ≤ 4.57. However, the fracture length distribution is more sensitive to the
Petrel attribute settings than to the NLM filter parameters. This implies a large uncertainty
on the results. Furthermore, the sampling method (Petrel ant track workflow) is found to be
unsuitable for detection of fractal behavior (D), due to the limits of seismic resolution.

2



Contents
1 Introduction 5

1.1 Fracture network characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7
2.1 Fracture length distribution of 2D sampled fracture systems . . . . . . . . . . . . . 7

2.1.1 Correction methods for sampling effects . . . . . . . . . . . . . . . . . . . . 8
2.2 Spatial distribution of fracture networks sampled in 1D and 2D . . . . . . . . . . . 9
2.3 Translating between fracture networks sampled in 1D, 2D or 3D . . . . . . . . . . 9
2.4 Non local means filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methods 11
3.1 Non local means filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Petrel ant track workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Ant tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Automatic fault extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Database design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Fracture network characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1 Fracture length distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4.2 Fractal Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.3 Orientation distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Results 21

5 Discussion 27
5.1 Petrel ant track workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Seismic resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6 Conclusions and recommendations 30

7 Notations 31

8 Acknowledgements 31

9 Appendix A: Influence of NLM on the seismic volume 32

10 Appendix B: Influence of NLM on the variance volume 33

11 Appendix C: Influence of NLM on the ant track volume 34

12 Appendix D: Influence of NLM on the fault extraction 35

3



List of Tables
1 Ant track parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Automatic fault extraction parameters . . . . . . . . . . . . . . . . . . . . . . . . . 16
3 Fault attribute calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

List of Figures
1 Paleogeographic map of the Netherlands during Early Carboniferous . . . . . . . . 5
2 Fractal dimension and length exponent . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Density length distribution from Bour et al. (2002) . . . . . . . . . . . . . . . . . . 8
4 workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 sample window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6 Influence of NLM filter parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
7 Variance parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
8 Petrel fault patch to fault stick file . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9 Fault attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
10 Density length distributions as a function of NLM parameters . . . . . . . . . . . . 22
11 Effect of NLM filter on fault extraction . . . . . . . . . . . . . . . . . . . . . . . . . 23
12 Spatial distributions as a function of NLM parameters . . . . . . . . . . . . . . . . 24
13 Orientation distributions as a function of NLM parameters . . . . . . . . . . . . . 25
14 Dip distributions as a function of NLM parameters . . . . . . . . . . . . . . . . . . 26
15 fracture length distribution of NLM filtered data as a function of fault extraction

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
16 fracture length distribution as a function of fault extraction parameters . . . . . . 29
17 Fault extraction for different ant track settings . . . . . . . . . . . . . . . . . . . . 30
18 Influence of NLM on seismic volume . . . . . . . . . . . . . . . . . . . . . . . . . . 32
19 Influence of NLM on the variance volume . . . . . . . . . . . . . . . . . . . . . . . 33
20 Influence of NLM on the ant track volume . . . . . . . . . . . . . . . . . . . . . . . 34
21 Influence of NLM on the automatic fault extraction . . . . . . . . . . . . . . . . . . 35

4



1 Introduction
As proven by several successful projects, the subsurface in the Netherlands (1000-4000 m) is suitable
for deep geothermal energy exploration. Water extracted from these depths has a temperature of
about 40-130◦C and is mainly used for heating in green houses. However, 31% of the industrial
heat demand in the Netherlands concerns temperatures of 100-200◦C [EZ, 2016]. Heat to cover
this demand could be obtained by Ultra Deep Geothermal energy (UDG). Sources for ultra-deep
geothermal energy are characterized by temperatures exceeding 120◦C and depths between 4-8 km
[Boxem et al., 2016]. To date no ultra-deep doublets have been drilled in the Netherlands, due to
the lack of data and knowledge of the subsurface below 4 km depth.

TNO has done research to potential UDG reservoirs in the Netherlands. By combining a
3D temperature model of the Netherlands [Bonté et al., 2012] with the Digital Geological Model
(TNO, 2013), it shows which geological units are present at depths of certain isotherms. All UDG
plays were ranked by parameters such as; geothermal potential, rock properties, size of the play,
permeability and match with heat demand in the area. The best ranked UGD reservoirs in the
Netherlands are the carbonate platforms of the Dinantian [Boxem et al., 2016]. Figure 1 shows
these early carboniferous (Dinantian) carbonate platforms in blue. For this study we will focus on
the platforms in northern Netherlands, since there is much more data available of this region, as a
result of a rich history in gas exploration.

Due to deep burial, reservoir rocks for UDG are characterized by low porosities (primary perme-
ability). In addition, platform carbonate rocks are already marked by low porosities of themselves
[Collins et al., 2014]. However, permeability of these reservoirs can increase by the presence of
karst or natural fracture systems [Goldscheider et al., 2010]. In the Dinantian platforms in the
Netherlands permeability seems to be defined by natural fracture networks [Lipsey et al., 2016]. If
the permeability in these fracture networks is still not sufficient to obtain economical flow rates, hy-
draulic stimulation can be applied. This concept is referred to as an Enhanced Geothermal System
(EGS). Due to shearing of the rough fracture surfaces dilation occurs, increasing the permeability
of the fracture.

Figure 1: Paleogeograhpic map of the Netherlands during Dinantian by TNO [Boxem et al., 2016].
Red square indicates the study area. Black dots indicate wells drilled to Dinantian rocks.
FP=Friesland Platform, GP=Groningen Platfrom and LP=Luttelgeest Platform.
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Figure 2: A visualization of parameters of Davy et al.’s (1990) double power law for Euclidean
dimensions 2 and 3. A fractal dimension equal to the Euclidean dimension shows a homogeneous
distribution of fractures, while a decreasing D implies an increase in clustering. A decreasing
length exponent a implies a relative increase in larger fractures. Figure from [Darcel et al., 2003a]

The possible side effect of hydraulic stimulation is micro-seismicity or occasional larger earth-
quakes [Häring et al., 2008]. To reduce seismic risk in the case of EGS and for optimal doublet
location and orientation for both EGS and UDG, it is necessary to make an in-depth analysis of
the natural fracture networks in these reservoirs.

1.1 Fracture network characterization
A widely used tool to characterize fracture network attributes, such as length and spatial distribu-
tion of fractures, is Power law scaling and fractal geometry [Bonnet et al., 2001]. The advantage
of power law distribution and fractal geometry is their scale invariance, which allows extrapolation
of fracture network attributes to different scales [Bour et al., 2002]. For the purpose of this study,
of which the fracture network data is obtained from 3D seismic data, this relationship can help us
to get an idea on the abundancy and spatial distribution of small scale faults which are beyond
the resolution of the seismic data.

[Davy et al., 1990] proposed a model which describes both the length and spatial distribution
of fracture networks and follows a double power law:

n(l, L) = αLDl−a (1)

where n(l, L) is N(l, L)/dl, the number of fractures whose length is in the range [l, l+dl] divided
by the bin size (dl) and whose barycenter is within the volume of size L3, l is the fracture length
and L is the typical system size, α is the fracture density term, D the fractal dimension of the
fracture barycenters and a is the exponent of the density distribution of fracture lengths (see Figure
2). A fracture network is commonly called fractal when any kind of fracture characteristic (length,
aperture, displacement etc.) shows a power law distribution. However the term fractal should only
be used for spatial distributions [Mandelbrot, 1983]. A fractal system implies a spatial correlation
(clustering) between objects which is described by the fractal dimension [Bonnet et al., 2001]. In
this paper we shall stick to the original definition of the term fractal and only use it to describe
spatial distributions.

Another advantage of this model is the stereological relationship. These relationships make
it possible to extend spatial distributions from 1D bore hole data to 3D seismic data and vice
versa [Darcel et al., 2003a, Darcel et al., 2003b] (section 2.3). There are many examples in liter-
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ature of applying this model to 2D fracture trace maps [Lei, 2016, Davy, 1993, Bour et al., 2002,
Davy et al., 2010, Bonnet et al., 2001] and to 1D scanlines [Valley et al., 2016, Boadu & Long, 1994].
In the case of the 1D scanline only the spatial distribution and thus the fractal dimension D can
be obtained, since the length of a fractures intersecting a bore hole can not be determined. To
this end, the model has not been applied to fracture networks extracted from 3D seismic data
[Bonnet et al., 2001]. Note that in this paper the term fault and fracture are used interchangeably.
The correct terminology defines faults to be a type of fracture which fails due to shear stress,
whereas a fracture could also be caused by tensile stress and not show any displacement. However,
since this study focuses on fractures extracted from seismic data, all fractures detected are per
definition offset and therefore faults. In this study we, therefore, make no distinction between
fractures or faults.

The aim of this study is to apply Davy et al.’s double power law model to identify the frac-
ture network characteristics of the Dinantian carbonate platforms, based on reprocessed vintage
3D seismic data. A work flow is designed to compute fracture network characteristics from faults
extracted from 3D seismic data. The faults are automatically extracted using the ant track work
flow of Petrel, which allows for fast computation and minimizes human interaction. The repro-
cessing of the seismic data is a necessary step because the quality of the seismic data at depth
of the Dinantian carbonates is relatively poor. Filtering of data is required to avoid interpreta-
tion of noise as faults. The post stack reprocessing is done by the non local means (NLM) filter
[Carpentier & Steeghs, 2016], which will be discussed in more detail in section 2.4. The amount of
filtering done by the NLM filter can be controlled by filter parameters. We expect, that depending
on the NLM filter parameters, the reprocessing will remove small fault indications in addition to
noise, which might negatively influence our fracture network characteristics. Therefore, this study
also focuses on determining the influence of the NLM filter parameters on the fracture networks
characteristics extracted from the seismic data.

2 Related work

2.1 Fracture length distribution of 2D sampled fracture systems
There are several ways to describe the length distribution of a fracture network: frequency (2),
density (3) and the cumulative frequency (4) distribution [Bonnet et al., 2001].

N(l) = αl−adl (2)

n(l) = αl−a (3)

C(l) =

∫ lmax

l

n(l)dl (4)

where N(l) the number of fractures whose length is in the range [l, l+ dl], l is the fracture length,
lmax is the largest fracture found in the system, dl is the bin size, a is the powerlaw exponent
and α is the density constant. If the length distribution of a fracture network fits a powerlaw,
the length exponent can be derived from all three distributions. However, the length exponent
value will differ depending on the distribution and the bin type used. When assuming the length
exponent of the density distribution powerlaw fit is a, the value of the length exponent of a cumu-
lative distribution will be a− 1, as will be the frequency distribution when binned logarithmically
[Bonnet et al., 2001]. It is important to know the relation of the length exponent between these
distributions and bin types in order to compare length distributions from different studies. In this
work we will focus on the density distribution (equation 3), since this is the distribution used in
the Davy’s double powerlaw model. However, the frequency distribution is needed to compute the
density distribution. The density distribution n(l, L) is the frequency distribution N(l, L) which
is the number of faults with a length in the range [l, l + dl], divided by the bin size dl. The
cumulative distribution can be computed separately, without the need to bin the data and can
thus be used as an extra check for the estimated length exponent a. The frequencies per fracture
lengths are summed without binning, resulting in a smoother curve than the frequency and density
distribution.

As mentioned before, the convenience of a fracture length distribution that fits a power-
law, is the scale invariance of the system. There is no characteristic length scale to which
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Figure 3: Figures from Bour et al.’s (2002) paper on a statistical scaling model for fracture
network geometry. (a) density fracture length distribution of a single scale fracture trace map
showing truncation and censoring effects. A powerlaw is fit to the non-truncated part and after
correcting for censoring effects. (b) Density length distributions for fracture trace maps of different
scales combined. Single distributions shows a log-normal distribution similar to (a), but when
considering truncation effects the parental distribution is a powerlaw.

the system is restricted. When a characteristic length scale is present, for example lithologi-
cal layering, one of the following distributions might show a good fit: log-normal, exponential
or gamma law distributions [Zeeb et al., 2013, Bonnet et al., 2001]. However, when a system at
multi scale is characterized by a powerlaw length distribution, the length distribution at single
characteristic scale lengths often still represents a log-normal distributions, which is a result of
the incomplete sampling of small fractures due to resolution effects, called truncation (figure 3)
[Einstein & Baecher, 1983, Odling, 1997, Bonnet et al., 2001]. The continuity of a powerlaw length
distribution is limited by two types of cut-offs, sampling effects (including truncation and censor-
ing) and the physical upper and lower bounds of the system. Truncation is a sampling effect caused
by the limit of resolution. Small fractures are incompletely sampled, resulting in a shallowing of
the slope of the length distribution at the lower end of the scale range. Truncation effects are best
observed in density length distributions. Censoring is the phenomenon of large fractures which are
incompletely sampled because they partially fall outside of the sample (observation) window. This
phenomenon causes the slope of the length distribution to steepen at the upper end of the scale
range [Bonnet et al., 2001]. Both sampling effects are clearly depicted in figure 3. The second
limitation to the extent of the powerlaw distribution are the physical upper and lower bounds
to the system. The question of a physical lower bound to the system is not often addressed in
literature, because the resolution limitations are usually encountered before the physical lower
bound is reached. Bonnet et al. (2001) suggests the lower limit to be defined by atomic bonds or
grain sizes, where as Odling (1997) suggests the physical lower cut off to be around 1m for joints
(a fracture without displacement) in sandstones. For the purpose of our study, which is based
on 3D seismic data, we do not have to worry about the physical lower cut off, since the seismic
resolution limit will always be reached beforehand. The upper physical limit for powerlaw length
distributions mentioned in literature are finite thickness of sedimentary beds and the brittle crust
[Davy, 1993, Bonnet et al., 2001]. Apart from these limitations the cumulative distribution suffers
from an additional effect that causes steepening of the distribution at larger scale. When l reaches
lmax, C(l) goes to zero, curving the cumulative distribution slope for an l range were the density
distribution might still represent a powerlaw fit. This effect decreases the range to estimate length
exponent a on a cumulative distribution to an even smaller part of the graph as the part which is
affected by truncation and censoring.

2.1.1 Correction methods for sampling effects

To compute a powerlaw exponent from a density length distribution, the above mentioned sampling
effects (truncation and censoring) should be considered and corrected for. This is to avoid under
or overestimation of the ratio of small fractures with respect to large fractures. The only method
mentioned in literature to correct for truncation effects is to remove the part of the distribution
affected by truncation (figure 3). No quantitative method of determining the truncation threshold
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is mentioned in literature. According to Bonnet et al. (2001) the truncation threshold for 2D
fracture trace maps lies between 0.5-25% of the map size with an average around 5%. The map size
is defined by L, the squared root of the map area. According to Odling et al. (1997) the truncation
threshold lies between 5-10% of the map size. Correction methods for censoring effects are discussed
more thoroughly in literature on 2D samples fracture systems. Three methods are mentioned: the
method of [Laslett, 1982], which is based on the probability that a fracture of length l will be
observed completely with in the system of size L. For this method fractures intersecting the system
boundaries and whose real length is not known, should be excluded from the length distribution
before the correction is applied [Bour et al., 2002]. The Kaplan-Meier method [Odling, 1997] is
based on the number of fractures intersecting the system boundaries. The last method suggested
by [Pickering et al., 1995] is to increase the frequency of large fractures until the best fit with the
powerlaw is obtained.

2.2 Spatial distribution of fracture networks sampled in 1D and 2D
Similar to the studies on length distributions of fracture networks, most information on spatial
distribution of fractures comes from 2D outcrops converted to trace maps. Unlike the attribute
length, spatial clustering of fractures can be measured in 1D borehole data. This can be done by
using the Fullbore Formation MicroImager (FMI) tool in a bore hole, as sampling method. The
FMI tool creates an electrical image of the bore hole wall from micro-resistivity measurements.
Micro-resistivity changes on the image can be interpreted as fractures with a resolution as high as
5 mm [Schlumberger, 2002].

Methods to determine the fractal dimension of a fracture network have thus been developed for
both 1D and 2D data. Examples of these methods are the box-counting method [Mandelbrot, 1983],
the Cumulative distribution method [Valley et al., 2016] and the density-density or pair-correlation
method [Hentschel & Procaccia, 1983]. According to [Vicsek, 1992] the pair-correlation method is
the most efficient method to determine the fractal dimension of a natural system. In addition,
Bour et al. (2002) and Valley et al. (2016) have concluded that for both 2D and 1D systems,
the pair-correlation function characterizes the clustering degree of fracture centers the best. The
pair-correlation method is computed accordingly:

C2(r) =
2Np(r)

N(N − 1)
(5)

where Np are the number of pairs of points whose Euclidean distance is less than r and N is the
total number of points. The method in 2D is applied on fracture barycenters and in 1D on the
intersection of the fracture with the borehole. Similarly, r in 2D is the radius around a barycenter,
in 1D it is a distance along the borehole. The pair-correlation function C2(r) is then expected to
scale with r as follows: C2(r) ∼ rDc . If C2(r) fits a powerlaw, then the correlation dimension Dc

is equal to the fractal dimension D and is the local slope of C2(r), which is computed as follows:

Dc =
d logC2(r)

d log r
. (6)

The local slope is a good measure to determine the uncertainty of the computed correlation di-
mension. Only if the graph of the local slope shows a significant plateau, indicating the scale range
over which the slope of the the pair-correlation function is constant, a line can be fit to C2(r) by
linear regression, giving a meaningful determination of the fractal dimension D. If no such plateau
is visible, no fractal dimension can be determined [Bonnet et al., 2001].

2.3 Translating between fracture networks sampled in 1D, 2D or 3D
Bonnet et al.(2001) suggests that characterization of fracture networks from 3D data, as seismic
data sets, is not yet possible because 3D data sets seldom contain sufficient data to achieve robust
statistical analysis. This is due to the lack of resolution, the presence of noise in the data and the
computationally demanding process of interpreting and extracting fault surfaces from seismic data.
However, with recent developments in the reprocessing of seismic data and the algorithms available
to automatically extract fault surfaces from seismic data, these obstacles can be overcome. We
have found no literature on attempts to analyze fracture network characteristics of 3D systems.
However, there are studies that have found relations between 1D, 2D and 3D systems, which we
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can use to verify our results with the numerous studies on 2D systems. Another advantage of
these relations is that it allows to use sampling techniques of different dimension to determine
fracture network characteristics. This can be an advantage, because when a sampling method
in one dimension does not provide sufficient data due to resolution, it can be replenished by a
sampling technique at a different dimension. [Darcel et al., 2003a] has found stereological rules
which describe the relation between the characteristics of fracture systems which are sampled in
different dimensions. These rules are

D2D = D3D − 1 a3D > 2 (7)

D2D = D3D − a3D + 1 D3D − 1 ≤ a3D ≤ 2 (8)

a3D = a2D + 1 a3D > 2 (9)

where the subscript 2D and 3D refer to two- and three-dimensional (Euclidean) systems respectively
[Darcel et al., 2003b]. These equations show that simple stereological rules apply as long as a3D >
2. [Bonnet et al., 2001] has analysed many 2D fractures systems and concludes that the length
exponent a2D ranges between 1.7 and 2.75, suggesting that a3D should range between 2.7 and 3.75.
The fractal dimension D2D ranges between 1.5 and 2, which results according to the stereological
rules in a D3D range from 2.5 to 3. These values can provide a check on the validity of our own
results from the analysis of a 3D fracture network.

2.4 Non local means filter
The attenuation or removal of random noise from seismic data is an important seismic processing
step. Several random noise attenuation methods have been introduced in the past. Examples are fx-
deconvolution [Canales, 1984] and the Karhunen-Loéve transform [Jones & Levy, 1987]. The dis-
advantage of these methods is the lack of edge preservation. While removing random noise and en-
hancing continuity, energy gets smeared across sharp discontinuities [Carpentier & Steeghs, 2016].
Since fracture detection is the purpose of this study, it is essential to use a noise attenuation filter
that preserves fault indications. We therefore use a new method which outperforms other meth-
ods on its edge preservation ability: the non local means (NLM) random noise attenuation filter.
The method was originally developed by [Buades et al., 2005] for image processing and is adapted
by [Bonar & Sacchi, 2012] for 2D seismic data denoising. The algorithms used in this study are
built by TNO and are suitable for filtering of both 2D and 3D seismic data. The NLM algo-
rithm is based on the assumption of a high level of redundancy in an (seismic) image. For a more
detailed description on the algorithm used, see [Carpentier & Steeghs, 2016, Buades et al., 2011,
Bonar & Sacchi, 2012]. The filter parameters to be changed in the algorithm are the search window
(S), the neighbourhood window (N) and the filter parameter (h).

Figure 4: The workflow for the characterization of fracture networks used in this study. Green
boxes are input values or data, blue boxes are processing steps and the orange box are the results
of this study.
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Figure 5: Crossline 1746 of L3NAM1987F Tietjerkstradeel West. Dinantian Friesland platform
is marked by transparent white and the cropped minicube used in this study is indicated with a
black box.

3 Methods
Before we determine the characteristics of fracture networks of the Dinantian carbonate platforms,
the fractures are extracted from the 3D seismic data and translated into a data type suitable for
further calculations. The total work flow to be followed in this study is visualized in figure 4).

To decrease computation time, a small (mini)cube is cropped from the original 3D seismic survey
(L3NAM1987F, Tietjerkstradeel West) positioned in the Friesland Dinantian carbonate platform
(figure 5). The size reduction of the data is necessary because the runtime for the 3D NLM filter
increases drastically with number of samples and the size of the parameters. The size of our 3D
cube after cropping is 231 inlines by 231 crosslines, where each trace contains 191 samples. A total
of 231x231x191 voxels. Inline and crossline spacing is 25m, resulting in a surface span of about
33 km2. The location and size of the cropped volume are chosen, so that the largest possible and
most isotropic cube encapsulates the Friesland platform. A large study area is preferred to extract
a larger amount of faults, which will increase the robustness of the statistics and an isotropic shape
of the area increases the robustness especially of the spatial distribution. A polygon was drawn
around a timeslice of the cube and exported as a shapefile, which was used to identify the sample
boundaries and size of our sample window.

This new seismic cube was reprocessed using different NLM filter parameters. After reprocessing
the data is reloaded in Petrel and several edge detection and enhancement attributes, known as
the ant tracking work flow [Schlumberger, 2016], are applied to the data. The last step of the ant
tracking work flow is the automatic fault extraction. The fault sticks constructing the fault patches
are exported as text files. These files contain the x,y,z-coordinates of the points, constructing the
fault sticks of the fault patches. Fault sticks are roughly vertical (curved) lines, representing the
slope of the fault. x and y coordinates of these points are defined, using the Netherlands RD
new coordinate system. This coordinate system uses meter as unit of measurement and the y-
axis defines North. The z coordinate is still defined in two-way-travel time (ms) and needs to
be converted to depth in order to calculate fault attributes as surface dip angle. For time depth
conversion a combination of seismic data, clearly defining the top and bottom of the reservoir and
a suitable well are used. There are only a few suitable wells in the Netherlands that are drilled
deeper than 5 km and reach the Dinantian carbonates (figure 1). One of these wells, the Luttelgeest
well LTG-01 is drilled through the Luttelgeest Dinantian carbonate platform and, therefore, was
used for time-depth conversion. An average velocity was computed for the platforms overburden,
by comparing the top of the platform from the 2D seismic line intersection the platform and bore
hole (in TWT) and the top of the platform (in meters) from the end-slip of the bore hole. Using
the same technique an interval velocity for the Dinantian carbonate platform was also computed.
The average overburden velocity was calculated to be 3226 m/s and the interval velocity for the
Dinantian carbonates 6039 m/s. These velocities were used for time-depth conversion of the z
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coordinates of the fault sticks extracted from the Friesland platform as well as to define the depth
of the top of the reservoir (4.4 km). In the following sub sections all workflow steps are discussed
in more detail.

3.1 Non local means filter
Since applying the non local means filter to 3D seismic data is computationally demanding, the
effects and suitable quantities of varying filter parameters are first tested on a 2D seismic line
(L2NAM1981M_815015). This line intersects the Luttelgeest Dinantian carbonate platform. Fig-
ure 6a and b show the effect of the NLM filter with varying parameters h and N on the 2D data
set, respectively. The effect is quantified as the normalized sum of absolute difference (L1) between
the original data and the filtered data. It is normalized by the total amount of data samples and
displayed as the percentage of the amplitude range (difference between minimum and maximum
amplitude in the data). These normalization steps are taken to enable the comparison between
different data sets. In figure 6b and d, the NLM parameter N (neighbourhood window) is nor-
malized by the number of samples in the dominant wavelet of the data. The dominant wavelet is
determined by taking the Fourier transform of all traces and computing an average power spectrum
of the whole dataset, from which the dominant frequency is extracted. The dominant frequency is
then translated to a dominant period, from which the number of samples of the dominant wavelet
is computed, using the sampling rate (dt = 0.004s). The dominant frequency of the 2D dataset is
35 Hz, resulting in a dominant wavelet of on average 7 samples.

Figure 6: Normalized sum of absolute difference (L1) between original (non-filtered) data and
filtered data with different NLM parameters for a 2D seismic line (L2NAM1981M_815015, a and
b) and a 3D seismic cube (L3NAM1987F minicube, c and d). NLM parameters are (a) S=9, N=19
and h is varying between 0.0005 and 0.0045, (b) S=9, N is varying between 1 and 30 and h=0.001,
(c) S=3, N=3 and h is varying between 0.0005 and 0.0045 and (d) the blue line is S=3, N is varying
from 1 to 21 and h=0.001, the orange star is L1 for S=9, N=3 and h=0.001, the yellow star S=3,
N=3, h=0.001 and the purple star is S=3, N=9 and h=0.001.
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Figure 6b clearly shows that in a 2D seismic image the amount of filtering increases until the
neighbourhood window (radius) is roughly the same size as the dominant wavelet. When the
size of the neighbourhood window exceeds the dominant wavelet size, the algorithm becomes more
selective and the amount of filtering decreases. Since the neighborhood window parameter is defined
as the radius of the window, the dominant wavelet actually fits twice in the diameter of the window
at the point were filtering becomes more selective. However, the power spectrum of the 2D dataset
shows a wide range of frequencies, since frequencies change with depth. Therefore many wavelets
will be larger than the dominant one and the decrease in NLM filtering is therefore also at a higher
number of samples. This is in agreement with [Bonar & Sacchi, 2012], who suggests that the the
neighbourhood size must be chosen such that it is large enough to encapsulate the structures of
interest within the data. Figure 6c and d show the effect of varying the filter parameters h and
N on the 3D minicube of the Friesland platform. The dominant frequency of the 3D dataset is 20
Hz, resulting in a dominant wavelet of on average 13 samples. The power spectrum of frequencies
of the 3D data set is much more defined as the one of the 2D set, since we have cropped the
3D dataset at a small depth interval, which excludes all the high frequencies present at shallow
depths. Striking in figure 6c and d is the absence of the kink in graph d at N = dominant wavelet
(N/wavelet=1). We suggest this effect is somewhat eased by the addition of an extra dimension
perpendicular to the time (trace) direction. Similarity of the neighbourhood windows is calculated
in 3 dimensions, of which 2 are horizontal and only one parallel to the traces depicting the wavelets.
The influence of the wavelet size on the similarity calculations has therefore decreased, compared
to the 2D case. Due to long computation times of filtering 3D data, we were unable to denoise the
3D data set with an neighbourhood window larger than 21 samples, to test if the sum of absolute
difference decreases with larger N values. Figure 6d shows the difference in L1 for increasing the
neighbourhood window N and keeping the search window S constant (yellow and purple stars) and
the difference in L1 when keeping the neighbourhood window constant and increasing the search
window S (yellow and orange stars) with the same amount of samples. Figure 6 does not show the
extend of h and N toward zero. Note that setting h and N to zero, results in zero filtering of the
data and therefore also an L1 value of zero.

Since changing the search window S does not have a great influence on the amount of filtering
and is computationally very demanding, we have chosen to not vary this parameter, but keep it
constant. The search window is chosen as large as the computation time allows for, which is S = 3
in the 3D case. For filtering the 3D cube and the rest of the study, filter parameter h is varied
between 0.001 and 0.005 and neighbourhood window radius N between 3 and 15.

3.2 Petrel ant track workflow
3.2.1 Variance

The trace-to-trace variance (Edge method) volume attribute in Petrel is a semblance based co-
herency analysis [Petrel, 2015]. Variance is an edge detection method and is often used as a tool
for better identification of faults in seismic data and is assumed to be a suitable input for the
ant tracking algorithm [Silva et al., 2005]. There are several ways to quantify similarity of seismic
data. According to [Petrel, 2015] Petrel software uses a semblance algorithm to compute vari-
ance (1-semblance). Semblance is calculated between a target trace and its surrounding traces.
The amount of surrounding traces is the horizontal analysis window (inline and crossline range).
Within a chosen time window (vertical smoothing) the energy of the input traces is calculated
and an average is computed. The semblance is the ratio of the energy of the average trace to
the energy of the input trace [Liu & He, 2012, Taner et al., 1979, Marfurt et al., 1998]. Semblance
should always be calculated parallel to the orientation of the reflector, to avoid the computation of
high values of variance due to the dipping reflectors rather than actual structural discontinuities.
Figure 7 shows the effect of the size of the horizontal and vertical analysis windows on the com-
puted variance of our 3D seismic cube. In general, keeping the windows small, increases resolution
and will result in the detection of smaller faults. However, calculating variance with small windows
is more sensitive to noise. Figure 7a to c show the effect of the vertical analysis window. Making
the vertical window (time interval) smaller than the dominant wavelet (figure 7a) results in a very
wormy pattern. When looking at an inline of this variance cube, it shows that this pattern is
the result to high variance values along the reflectors, rather than discontinuities in the horizontal
continuity of amplitude. Even applying a dip correction to the attribute does not entirely fix this
response. In order for the variance attribute to focus on the vertical discontinuities like faults, the
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Figure 7: Variance of time slice at 2968 ms of original seismic data, using window sizes: inlines x
crosslines x time samples (a) 3x3x6, (b) 3x3x15, (c) 3x3x191, (d) 6x6x15 and (e) 11x11x15.

lower bound for the vertical windows is the number of samples of the dominant wavelet. Figure
7 b, d and e show the effect of varying the horizontal analysis window. Enlarging this window
increases the averaging and between traces and reduces the resolution. A larger horizontal window
is less sensitive to noise and when looking at a larger area it is suitable for detecting large scale
faults. However, since our cube only covers a small area and we want to find both small and large
faults, a small analysis window was chosen (3x3x15). The choice of variance parameters for the
purpose of fault detection is thus dependent on the size of your study area, the size of faults you
want to detect, the amount of noise in your data and the length of the dominant wavelet.

3.2.2 Ant tracking

The ant tracking algorithm in Petrel is based on the behavior of ant colonies in nature. Ants in a
colony mark their paths using pheromones for other ants to follow in their search for the shortest
way towards food [Silva et al., 2005]. This principle is used in the algorithm. Virtual ants (agents)
are placed on a seismic discontinuity volume (variance cube) and move along planar discontinuity
structures while emitting pheromone. Surfaces which are likely to be faults will be traced by
many agents deployed at different positions in the volume and will thus be strongly marked by
pheromones, while unstructured surfaces (like noise) will be tracked by fewer ants and therefore
weakly marked by pheromones [Pedersen et al., 2005]. Ants are only allowed a 15◦ deviation from
their original direction when tracking discontinuities [Schlumberger, 2016]. This constrained is
to enlarge the likelihood of ants tracking faults (planar structures) rather than random noise
[Fang et al., 2017, Zhao & Sun, 2013]. The resulting ant track discontinuity volume is strongly
affected by several parameters: Initial ant boundary, ant track deviation, ant step size, illegal step
allowed, legal step required and the stop criteria. Table 1 shows the default settings (Passive and
Aggressive) and the range for all ant track parameters. The definitions of these parameters and
their effect on the resulting fault interpretation of the variance cube, are discussed below.
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Initial ant Ant track Ant step Illegal step Legal step stop
boundary deviation size allowed required criteria

Passive 7 2 3 1 3 5
Aggressive 5 2 3 2 2 10
Minimum 1 0 2 0 0 0
Maximum 30 3 10 3 3 50

Table 1: Ant track parameters for predefined settings: passive and aggressive and the range per
parameter.

The first step in the ant track algorithm is defining the initial distribution of agents (ants).
This is done by choosing the initial ant boundary, which is the radius (in voxels) around each
ant. No ant is placed within the radius of another ant. A smaller boundary means more ants are
initially placed in the volume and so the seed points will be denser. Each ant makes an initial
estimate of orientation for the local maximum of variance within its boundary. This estimation
defines the tracking direction for that particular ant, from which it can not deviate more than
15◦. A larger initial ant boundary might help in a better estimation of the orientation of faults.
However, it has a much larger effect on the number of faults that are extracted from the volume. It
also results in less defined faults. Since ants are located relatively far from each other, they are less
likely to follow the same tracks. The user has no influence on the location where ants are placed
during this initial distribution, nor what minimum variance value to define as an edge value (local
maximum). Ants are not allowed to track outside of the 15◦ range from the initial orientation, to
maintain planar structures. Voxels within this 15◦ range are defined as legal positions. A local
maximum just outside this range can be taking into account however, using the ant track deviation
parameter. When the ant track deviation parameter is set to 1 the ant is allowed to deviate by
one voxel in both directions from the legal position to search for a local maximum. If it finds one,
the legal position closed to the maximum will be tracked (marked as a legal step). The ant step
size parameter defines the number of voxels an ant advances in one step and can search in for a
local maximum. A higher value will increase the chance of finding a local maximum parallel to the
track orientation per step, but will decrease the resolution of the tracks. The illegal steps allowed
constrains how many steps (amount of voxels depending on ant step size) an ant track can continue
without finding any local maximum. If it exceeds the set value for this parameter, the ant track
is terminated. This parameter has to be considered in combination with the legal step required
parameter. This parameter defines the number of continues steps that must contain a valid edge
value (local maximum). It is a constraint on how connected a track has to be, to be determined as
a fault. The last ant track parameter is also related to the illegal step parameter. The stop criteria
is the percentage of illegal steps allowed throughout an ants entire search space. A track might
satisfy the conditions of the illegal steps allowed and legal steps required, but after continuation
the percentage of total illegal steps might become so large, the likelihood of the track being a fault
becomes questionable. When this percentage is reached the ant track in this direction is terminated.
Petrel offers two different default settings of ant track parameters, passive and aggressive (table
1). The passive mode contains parameters which results in detection of only major regional faults
zones. The ants require a strong and continuous signal in order to proceed. The aggressive mode
consists of parameters which allow the ants more freedom to detect also subtle connections. This
mode is designed to extract both major and subtle faults zones [Schlumberger, 2016]. Since we
want to determine the widest possible range of fracture sizes, the aggressive mode was chosen for
fault detection.

3.2.3 Automatic fault extraction

Automatic fault extraction is the next step in the Petrel ant tracking workflow. It generates
fault patches from the ant track volume. The automatic fault extraction is used rather than
the classic human interpretation to decrease computation time of fracture interpretation and to
increase objectiveness. Faults are interpreted with minimum human intervention. This step in the
total workflow can therefore be seen as a constant, allowing us to compare differences of fracture
network characteristics based on differences in the seismic input rather than human subjectiveness.
However, the result of the automatic fault extraction process is still influenced by parameters set
by the user (see table 2). These parameters influence the accuracy of the fault picking and directs
the process to search for small or large faults [Schlumberger, 2016]. There is no standard set of
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Parameter Minimum Maximum Chosen value
Extraction sampling distance 3 30 6
Extraction sampling threshold Top 10% All Top 30%
Extraction background threshold Top 10% All Top 60%
Deviation from plane 2 21 5
Connectivity constraint 1 3 2
Minimum patch size (points) 3 100000 3
Patch down sampling (voxels) 1 50 4

Table 2: Range and chosen user parameters for the automatic fault extraction algorithm.

parameters suitable for each dataset. Parameters should always be chosen based on the quality,
size and expected fault patterns in the seismic data. The parameters and our argumentation on the
chosen value are described below. The first two parameters are the Extraction sampling distance
and Extraction sampling threshold. The first defines the distance between seed points, which
controls the minimum distance between extracted fault patches. The distance is a radius and is
quantified in voxels. The algorithm starts searching with steps defined by the extraction sampling
distance for the highest values in the volume (top 10%), when such a value is found a seed point is
created. The algorithm will continue searching and creating seed points of lower values (top 20 %,
30 % etc.) until the extraction sampling threshold is reached. The extraction sampling threshold is
defined as a percentage of the ant track volume signal range (figure 17c). It is important to realize
that the extraction sampling threshold percentages are based on the maximum and minimum ant
track values [-1,1] and not on the maximum and minimum ant track values found in the specific
input ant track volume, which might have a smaller range (e.g. [-1,0.2]). Once all the seed points
in the volume are picked, the algorithm will search around every seed point for values within the
value range defined by the extraction background threshold, the value range for this parameter is
the same as for the extraction sampling threshold. The search around a seed point is restricted
spatially by the Deviation from a plane parameter. A initial plane orientation is defined around
the seed point and surrounding points will only be included in the fault patch if they have a value
higher than the extraction background threshold and their deviation from the initial orientation
(in voxels) is less than the value set by the Deviation from a plane parameter. The deviation
from a plane parameter should always have a smaller value than the extraction sampling distance.
This to prevent the tracking of multiple events in one fault patch, which is likely to happen if two
near parallel faults are close together. The connectivity constraint defines how well connected a
point has to be to be included in the fault patch. A voxel is defined as box with faces around
the sample (point). The value of the connectivity constrained is the number voxel faces that has
to be connected to another voxel which also satisfied all previous parameters. Whenever there
is a lot of noise in your data, setting a high connectivity constraint will help in excluding noise
from the fault patch. Points that satisfy all previous parameter thresholds are points that together
form a possible fault patch. We shall call these validpoints. The last two parameters, minimum
patch size and patch down sampling together control the minimum size of fault patches extracted
and thereby the total number of fault patches extracted. The value for the minimum patch size
parameter defines the minimum number of points a fault patch has to contain to be added to the
fault patch set. Its minimum value is 3, since that is the minimum number of points needed to
create a surface. Whenever the patch down sampling parameter is set to 1 voxel, the value for
the minimum patch size defines the actual minimum number of valid points a fault patch should
contain to be extracted. The Patch down sampling parameter controls the density of points of
the extracted fault patch, a value of 1 is the highest possible density (every voxel is sampled).
Lower densities decrease the computation time and smooths the faults. However, increasing the
sampling distance (Patch down sampling) excludes fault patches with a small number valid points.
By multiplying the patch down sampling value with the minimum fault patch size value we get
the actual minimum size in valid points (voxels) a fault patch needs to contain, to be extracted.
The choice in filter parameter for this study (table 2) are based on finding the widest fracture
size range and to determine their spatial distribution within the cube. The constraints on both
requirements are vertical and lateral resolution. Faults with a throw (or offset) smaller than the
vertical resolution (λ/4) [Yilmaz, 2001] should not be visible in the seismic data and can thus not
be tracked as faults. Note that our study area is a cropped volume between the two-way-travel
time interval 2744 and 3504 ms. The power spectrum of the frequencies in the Fourier domain

16



Figure 8: Export of a fault patch in Petrel consisting of 9 fault sticks to an ASCII text file.
Column (1) x-coordinates, (2) y-coordinates, (3) TWT [ms], (4) name of fault and (5) fault stick
number.

(see section 3.1) is narrow and shows a clear peak around 20 Hz. We therefore assume a constant
frequency and wavelength with depth within our study area. Whenever discontinuities of a size
smaller than the vertical resolution are determined, it is most likely to be noise. The minimal
vertical component of the fault throw for our data should be 3 voxels. The number of samples
per wavelet is computed as the period of the dominant wavelet (∼50 ms in TWT) divided by
sampling rate (4 ms), see section 3.1 . A quarter of this wavelet is the vertical resolution, which
is ∼3 voxels. This is the minimal throw for a vertical fault. For a fracture with a dip of less than
90◦ the minimal throw has to be larger to overcome the vertical seismic resolution threshold. We
have therefore picked the patch down sampling parameter a bit higher than 3. No constrained
was set on the maximum fault length (along strike) to be extracted. The maximum fault size is
already restricted by the sampling volume. The lateral resolution was used as a lower bound for
the extraction sampling distance. Assuming, migration was carried out successfully, the Fresnel
zone of lateral resolution has collapsed to λ [Stolt & Benson, 1986], which translates to 12 voxels
(300m/trace spacing). The extraction sampling distance parameter was set to 6 voxels (λ/2)
however, for more detailed sampling. The choice of values for the parameters Extraction sampling
threshold and Extraction background threshold are based on the one of the predefined settings for
normal confidence fault extraction. All chosen fault extraction parameters are listed in table 2.

After automatic fault extraction was carried out, a fault patch set is created in Petrel. To export
these faults from Petrel, the fault patches first need to be converted to fault interpretations. For
this step it is important to set the fault stick interval (under the Settings tab in the Automatic
fault extraction window) to 1 trace. This should be done before the automatic fault extraction is
carried out. By doing so, detail will be preserved when transforming (discretize) fault surfaces to
fault sticks. These faults, consisting of fault sticks can then be exported as ASCII text files (figure
8), which are the input data for the python codes described in Database design.

3.3 Database design
The next step in the overall fracture network characterization workflow is to convert the fault stick
ASCII files exported from Petrel into individual fracture attributes. Per fault stick file, which
describes one fault, the following attributes are computed: fracture barycenter, strike length, dip
length (offset), strike, azimuth, dip and aspect ratio. The database design is constructed in python
and consists of 3 python codes: userinput.py, Fault_data_3D.py and faultcalculations_3D.py.
In userinput.py the user defines the following parameters: number of faults extracted, fault stick
interval in meters, average overburden velocity, top of reservoir in two-way-travel time (TWT),
bottom of reservoir in TWT, the path of the folder containing all the fault stick files, the path where
to save the faultcalculations file and the path where to find the polygon shape file determining
the systems edges. This data is then imported into the Fault_data_3D.py code. This code
loops over the total number of faults and during every iteration it reads the fault stick file under
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Fault attribute Input Equation

Barycenter End points of faultsticks i = [1, N ]

X0 (x1, y1, z1)i and (x2, y2, z2)i X0 = 1
2N

∑N
i=1 [x1 + x2, y1 + y2, z1 + z2]

Strike length Point at same z per faultstick li =
√
(xz,i+1 − xz,i)2 + (yz,i+1 − yz,i)2

l (xz, yz)i l =
∑N−1
i=1 li

Strike li, (xz, yz)i 0◦ ≤ ψ ≤ 180◦

ψ and (xz, yz)i+1 ψ = 1
l

∑N−1
i=1 tan−1

(
xz,i+1−xz,i

yz,i+1−yz,i li

)
Offset (x1, y1, z1)i and (x2, y2, z2)i Oi =

√
(x1 − x2)2i + (y1 − y2)2i + (z1 − z2)2i

O O = max [Oi]
N
i=1

Dip Oavg =
1
N

∑N
i=1Oi

θ dzavg =
1
N

∑N
i=1 |z1 − z2|i θ = sin−1 (dzavg/Oavg)

Aspect ratio ψ and O
ψ/O ψ/O = ψ

O

Azimuth ψ, (x1, y1, z1)i
φ and (x2, y2, z2)i 0◦ < φ ≤ 360◦

φ =



ψ + 90◦ ψ ≤ 45◦ and x1 ≥ x2
ψ + 270◦ ψ ≤ 45◦ and x1 < x2

ψ + 270◦ 45◦ < ψ ≤ 135◦ and y1 ≥ y2
ψ + 90◦ 45◦ < ψ ≤ 135◦ and y1 < y2

ψ − 90◦ ψ > 135◦ and x1 ≥ x2
ψ + 90◦ ψ > 135◦ and x1 < x2

Table 3: Fault attribute calculations carried out in faultcalculations_3D.py. Note that (x1, y1)i
is the first point of every fault stick of which the z-value is the highest (deepest) and (x2, y2)i is
the last point of every fault stick. The range of fault sticks per fault is denoted as i = [1, N ].

consideration, applies a time-depth conversion to the Z-coordinates of the fault sticks and calls the
functions which calculate fracture length, azimuth, dip, aspect ratio and barycenter.

These attributes are then stored and the loop moves on to the next fault stick file. After all
iterations are completed, all attributes of all faults are stored in in a text file and saved (figure
9). Some exceptions are built into the code. Faults that intersect or overlap with the system
boundary are excluded. In general, the ant track workflow of Petrel does not allow faults to touch
or intersect with the edge boundaries. However, if your seismic volume has indentations of no data,
the intersection between the no-data zone and the seismic volume are marked as high variance zone
and the ant track workflow extracts faults along these boundaries. Two functions are implemented
to correct for this misinterpretation. The first excludes faults which intersect or overlap with the
polygon surrounding the system and the second excludes faults which have a strike of exactly 0
or 90 degrees, which is the orientation of our cube. The purpose of this second function is also to
exclude faults which are based on migration artifacts, which are parallel to the inline and crossline
and are not filtered out by the NLM filter. The reason for assuming this exclusion to be valid,
will be clear when we explain the calculation of the strike attribute. Note that the code thus
assumes the study area to be orientated parallel to the inlines and crosslines and that the inlines
and crosslines are assumed to be north-south and east-west orientated. Another exception build
into the code is that faults that only consist of one fault stick are not taken into account. These
faults do not contribute to the statistics since no strike length or strike can be computed.

For the calculations of the fault attributes a few assumptions are made. The code is built for
the Netherlands RD new coordinate system, which uses meter as unit of measure and for which
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Figure 9: Output text file containing all fault attributes, of Fault_data_3D.py and
faultcalculations_3D.py. Barycenters x,y,z, maxdiplength (offset) and length are rendered in
meters. The unit for strike, azimuth and dip is degrees (◦).

the north is equal to the y-axis. Furthermore, fault stick files are assumed to have the standard
structure of fault stick files from automatically extracted faults. The features of this structure are:
per fault stick the first point is always the deepest (largest z-value, figure 8), the counting of fault
sticks is ordered from left to right or right to left, but does not start in the middle and there is no
limit to the number of fault sticks per fault or the number of points per fault stick.

Table 3 shows all the calculations carried out in faultcalculations_3D.py. Some additional
remarks concerning these calculations are discussed below. For most calculations the end points of
all fault sticks are needed, these are denoted by (x1, y1, z1)i and (x2, y2, z2)i. Where i is the fault
stick number within the fault, subscript 1 indicates the first point of fault stick i and subscript
2 the last point of fault stick i. The barycenter of each fault is computed by taking the mean
of all the end points within the fault patch. To compute the strike and the strike length some
linear algebra is used to find a point (xz, yz)i+1 on the line between the two end-points of a fault
stick at the same height as the middle point of the neighboring fault stick, as the strike along a
fault plane should always be measured horizontally. The strike is then computed as a weighted
average of all the separately computed strikes between fault sticks. The weights are defined as the
length between the succeeding fault sticks li. The total strike length is the sum of li. The strike
is computed with an implementation making sure the strike cannot exceed 180◦. Due to linear
algebra and the weighted average applied, it is very unlikely that a fault has an exact strike of
0 or 90 degrees. For this reason we conclude that our implementation of excluding these faults,
mentioned previously, is valid. The offset (dip length) is defined as the maximum fault stick length
in the fault. Whereas the dip is computed by trigonometry using the average fault stick length and
dz. This averaging is applied to minimize the effect of an odd fault stick. For the computation of
the azimuth of the fault patch under consideration, the already computed strike is used as input
variable, as well as the end points of all the fault sticks. Based on the relative difference in x and
y coordinates of the end points of the fault stick, we can determine whether 90◦ (or 270◦ to ensure
0◦ < φ ≤ 360◦) has to be added or subtracted from the strike to compute the azimuth. This is
computed for every fault stick in the fault, after which the most numerous occurring fault stick
azimuth is adapted as azimuth for the whole fault. This final implementation is included for faults
whose dip is close to 90◦ and of which some fault sticks might be dipping in the opposite direction
as the majority.

After all calculations are carried out, all fault attributes along with its fault ID (number) are
written to a text file (figure 9) which is used as input for the Fault_statistics.py code.

3.4 Fracture network characterization
Now that all fault attributes are determined, fracture network characteristics can be analysed. To
realize this we use 2 codes: Fault_statistics.py, which uses userinput.py and the text file con-
taining all fault attributes, as input. The second code is PairCorrelationFunction_3D.py, which
computes C2(r) and Dc from equation 5 and 6. In the Fault_statistics.py code, the distributions
of the following network characteristics are computed: fracture (strike) length distribution, spa-
tial distribution, orientation (azimuth) distribution and dip distribution. The computation and
analysis of these distributions will be discussed below.
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3.4.1 Fracture length distribution

The most commonly used method to obtain the length exponent (or scaling parameter) a of
a data set of which the length distribution is expected to follow a powerlaw (equation 1, 2 or
3), is to calculate the slope of a histogram of double logarithmic axis, by least-squares linear
regression. However, when using this method the choice of bin size dl is critical because it defines
the smoothness of the histogram [Davy, 1993, Bonnet et al., 2001]. A larger bin size will result
in a smoother curve, but the smoothness of the curve might influence the slope as well and thus
the length exponent a, associated with the distribution. To estimate a for a powerlaw fit to
our length distribution, we therefore used a method proposed by [Clauset et al., 2009], called the
method of maximum likelihood. A python package has been provided by [Alstott et al., 2014],
which computes a between user defined lmin and lmax. This method is based on the probability
that the data were drawn from a powerlaw model with scaling parameter a. The derivative of
the logarithmic likelihood is taken with respect to a and set to zero to get the maximum of this
function and thus the maximum likelihood that the data fits the powerlaw with parameter a. The
result is the following function, to estimate a without the need to bin our data:

a = 1 + n

[
n∑
i=1

ln
li
lmin

]
(10)

where n is the number of observations of the data, in our case the number of fractures of which the
length has been determined and lmin is the lower bound for which the powerlaw behavior holds.
The determination of lmin is discussed below. For visualization of the length distribution, fractures
were binned using logarithmic binning. The same binrange (25 to L) and number of bins was used
(40) for all data sets, for good comparison between distributions of the same data set but which
were filtered with different NLM parameters. Logarithmic binning was used rather than linear
binning to avoid empty bins at larger fracture lengths, since large faults are expected to be less
abundant than small faults.

The type of distribution used, is the density length distribution (equation 3), since it is less
affected by finite size effects as the cumulative distribution (equation 4) and the truncation effects
are more clearly visible. This makes estimation of the lower-cut off of the powerlaw fit, due to
resolution, easier. Furthermore, Davy’s double powerlaw model (equation 1), which we hope to
find for our data, is based on the density distribution.

Fitting of the powerlaw line with exponent a was done by finding the minimum first norm
between our binned data and a powerlaw fit line with constant slope a (determined by equation
10) but varying intersection points (b) with the y-axis (yfit = bl−a). In order to let all data points
weigh equally on the log-log scale, L1 was computed according to the exponents on the log scale, to
simulate linear regression on a log-log scale. The minimum found first norm was then normalized
by the number of data points (filled bins, I), which was used as a measure for the misfit of the
powerlaw (equation 11).

L̂1 =
min

[∑I
i=1 | log y

fit
i,b − log ydatai |

]
b

I
(11)

From studies on fracture length distributions of 2D trace maps the lower bound of the powerlaw,
due to resolution (truncation) effects, as explained previously, was found to be between 5-10% of
the domain size L (L =

√
area), as explained previously [Odling, 1997, Lei et al., 2015]. The lower

cut-off for the fracture length distribution from our 3D fracture network also seems to fall in this
range (where L = 3

√
volume). Since all length distributions tested in this study are from the same

original 3D seismic data set the lower cut-off for the length distribution, associated with resolution,
is assumed to be the same. The lower cut-off was determined within the range mentioned above,
by finding the minimum of the sum of the normalized first norms (L̂1) of the length distributions
from the same data set filtered by different NLM parameters. For determination we have used 9
different combinations of NLM filter parameters (N = [3, 9, 15] and h = [0.001, 0.002, 0.003]) and
fracture network from the non-filtered data (NLM = [0, 9]).

lmin = min

[
9∑

NLM=0

L̂1
NLM

]0.1L
0.05L

(12)
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For the fracture networks extracted from the L3NAM1987F minicube the trunctaion cut-off was
estimated to be at 7.5% of L, using the above method. By estimating and encountering the
truncation cut-off we have corrected for one of the two sampling effect, truncation. Correction for
the other sampling effect, censoring, was not applied. Since the ant track workflow of Petrel does
not allow fault patches to extend and intersect with the system boundaries, no estimation can be
made on the amount of faults affected by censoring.

3.4.2 Fractal Dimension

The spatial distribution of fractures were determined by computing the pair-correlation function
as in equation 5 and the local slope associated with it, equation 6. We have adapted this method
to our 3D situation and applied it to the fracture barycenters. Fault_statistics.py calls the pair-
correlation function in PairCorrelationFunction_3D.py and gives the the coordinates of the
fracture barycenters and the typical system size L as input parameters. Typical system size L is
computed as follows L = 3

√
polygonarea ∗ depthinterval. The pair correlation function computes

C2(r) as follows. The code loops over all points (barycenters) in the system and computes for
every points its distance to all the other points in the system, using Pythagoras for 3D. From this
computation the minimum distance between two points is used to define the lower bound rmin
for the bin range in which the number of pairs of points will be counted. The maximum value
for the bin range is the typical system size L and the bins are spaced in logarithmic order. The
algorithm than counts how many pairs of points have a distance between rmin and the edge of the
bin r, resulting in an array containing Np values per bin which upper edge is the corresponding
r. C2(r) is than computed according to equation 5 and Dc as in equation 6. Our is system is not
an isotropic volume (cube which sides all have the same length), Lx and Ly have the same length,
but Lz is smaller. This will affect the extend for which the pair-correlation function can follow
a powerlaw. Because L is larger than Lz, the number of pairs of points for r > Lz will go down
as an effect of our volume being anisotropic. Whenever a system is analysed which is even more
anisotropic as our system (Lx 6= Ly 6= Lz) it is possibly better to compute the pair correlation
function in 2D in the orientation for which the plane shows the highest isotropy and convert the 2D
fractal dimension to a 3D fractal dimension using the stereological rules of [Darcel et al., 2003a].
An implementation to compute the 2D pair correlation function for different depth intervals is also
built into the code.

3.4.3 Orientation distribution

The last network characteristic distributions to be computed, are related to orientation. Strike and
azimuth distributions are visualized by rose diagrams, whereas the dip distribution is represented
by a normal histogram. Data is binned in linear order. Bin sizes for the dip distribution are 5◦

and for strike and azimuth 10◦. The bars indicate the percentage of the total number of faults
N(L) in the system, having an orientation in the range [ψ,ψ + 10] or [φ, φ+ 10].

4 Results
We have determined the fracture network characteristics of automatically extracted fracture pat-
terns from a cropped 3D seismic cube, enclosing part of the Friesland Dinantian carbonate platform.
Several fracture patterns were extracted from the same 3D seismic data but filtered using different
NLM parameter combinations. Our results show the effect of the use of different NLM filter param-
eters on the fracture network characteristics as length, spatial and orientation distributions. Data
was filtered using a wide range of filter parameters. For visualization of the effects we have chosen
the following range, N = [3, 9, 15] and h = [0.001, 0.002, 0.003]. As mentioned before, the settings
of Petrel attributes (Variance, ant tracking and automatic fault extraction) were kept constant
(see tabel 1 and 2).
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Figure 10: Density length distributions of fracture networks extracted from L3NAM1987F Fries-
land platform minicube (a) filtered using different NLM parameters and (b) non-filtered. NLM
parameters, N and h, are varied as indicated along the outer axes. The search window parameter
(S) was kept constant at 3 for all filtered data. Note that the N indicated on the top-outer axis
is the NLM parameter: neighbourhood window and the N(L) inside the individual graphs is the
number of fractures.

Figure 10a shows the effect of the NLM filter on the length distribution of the fracture network
with respect to length distribution of the non-filtered data (figure 10b). The length distribution
is represented by a density distribution. The blue dots represent the middle points of the loga-
rithmically spaced bins. N(L) indicates the number of faults which were extracted, from which
the length has been determined. This means faults which only consist of one fault stick were not
included in this distribution. The orange line is the powerlaw fit to the data, bounded by the
truncation cut-off on the lower end, at lmin = 7.5%L and at the upper bound by lmax, the largest
fault found in the system. Since all distributions are derived from the same system L, the lower
bound (7.5% of L) is equal for all distributions. L1 is the measure of misfit of the powerlaw to
the data, the normalized sum of absolute difference (equation 11).The smaller this value the better
the fit of the powerlaw to the data. The length exponents of the powerlaw fits computed, range
between 3.15 for the non-filtered data, to max 4.57 for NLM filtered data. Recalling from section
2.3, the expected value of a powerlaw length exponent for a 3D system is between 2.7 and 3.75.
Possible reasons for slightly higher results are discussed in 5. A striking feature in all graphs is
the dip in the data between l = 25 and l = 50. This dip is the cause of a sampling effect, it is the
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Figure 11: Fault extraction and ant track time slice (2988 ms) of (a) non-filtered data set and (b)
of NLM filtered (S=3, N=15, h=0.002) data set. Red ellipse encircles large fault (a) in non-filtered
data which is extracted as (b) several small faults in filtered data.

difference between faults consisting of 2 (l ∼ 25m) and faults consisting of 3 fault sticks (l ∼ 50m).
When comparing the length exponent a of the powerlaw fit for the non-filtered data (figure

10b) with the filtered data (figure 10a), we observe an increase in the powerlaw exponent a for
filtered data. This suggests that the relative abundance of small fractures with respect to large
ones, has increased after filtering the data. At first sight this is in contradiction with our hypothesis
that filtering of the data will remove indications of small fractures along with noise and therefore
reduce the number of small fractures. However, we should take into account that our powerlaw fit
and thus the purpose of a does not extend to the distribution of the very small fractures, due to
truncation. When merely looking at the data point for the smallest detected faults (l ∼ 25m), we
do observe a clear decrease in the abundance of small fractures for the filtered data, in agreement
with our hypothesis. To explain the increase in length exponent a for the powerlaw range of the
filtered data with respect to the non-filtered data, we have looked at the fault patterns extracted
from Petrel in more detail. Figure 11a shows how a large fault (marked by the red ellipse) is
extracted from the ant track volume. Whereas in figure 11b we see that at that same location this
large fault is extracted as several small faults. We suggest this effect is the cause of the change
in the slope of the powerlaw between filtered and non filtered data. In non-filtered data, large
faults are extracted by linking small fault patches with noise to create large surfaces. When NLM
filtering is applied, these large fault patches are aligned as a series of smaller faults. Possibly,
this indicates the phenomenon of large fault zones being constructed of many aligned small faults
[Walsh et al., 2003]. This effect is mainly a result of the filter parameter h, as will be discussed
below. When looking at the trade-off between the NLM filter parameters (figure 10a) we observe
that in general the increase of filter parameter h causes the length exponent a to increase. which
results in the steepening of the slope. In contrast, increasing the neighbourhood window N , results
in a decrease of a and thus a shallowing of the slope of the length distribution. When looking at the
number of faults extracted N(L), this decreases drastically with increasing h value but increases
with increasing N . We suggest that the decrease in the number of faults N(L) extracted with
increasing filter parameter h, is a result of the decrease in the amplitude range of the seismic data.
Since the filter parameter h defines how much filtering is applied, a larger value of h results in the
overall weakening of the seismic amplitudes. The seismic amplitude range decreases approximately
with 1-3% per increase of 0.001 h. This results in weaker defined discontinuities, therefore lower
variance values and lower ant track values. Because the fault extraction threshold is kept constant,
most ant track discontinuities will not be registered by the fault extraction algorithm, resulting in
a smaller number of faults extracted. See figure 19 and 20 in the appendix to see the decrease in
amplitude in the variance and ant track cube, with increasing h value. To explain the increase in
N(L) and decrease in a with increasing neighborhood window N we looked at the values of the
ant track cube in more detail. This analysis shows that with increasing neighbourhood window
N , the percentage of high ant track values (0.4-0.6) increases with a few percent. This means that
that the algorithm is more robust with regard to the validity of the faults it has tracked. A larger
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number of values above the extraction threshold not only results in more faults to be extracted
but also in existing faults to be tracked over longer distances.

Figure 12: The spatial distribution of fracture barycenters of fracture networks extracted from the
3D seismic dataset: L3NAM1987F Friesland platform minicube, both (a) filtered using different
NLM parameters and (b) non-filtered. Petrel attribute parameters used can be found in table 1
and 2. C2 (blue curve) was computed by the pair correlation function. The right axis and black
line represent the local slope (−d(log(C2(r)))/d(log(r))) of the C2 curve. No plateau in the local
slope is visible in any of the graphs.

Figure 12 shows the the pair-correlation function and associated local slope of fractures ex-
tracted from non-filtered (figure 12b) and filtered data (figure 12a). As explained before, a fractal
dimension can only be extracted from the local slope of the pair-correlation function when a clearly
defined plateau is visible in the graph of the local slope. A plateau in the local slope indicates if
a sufficiently linear section exists to determine if the spatial distribution is fractal. Unfortunately,
no significant plateau is visible in any of the graphs of figure 12. We suggest the absence of a
sufficiently linear section of the pair correlation function is caused by two effects. The first is the
insufficient spatial resolution of the seismic data, mainly influencing the lower part of the the pair
correlation graph. The second causes the shallowing of the slope at the upper end of the graph
and is the result of the anisotropic shape (Lz < Lx,y, see section 3.4.2) of our system. Less pairs
of barycenters are detected at distances r > Lz, since at distances larger than Lz the algorithm
starts searching partially outside the study area, where no faults are extracted. The range of these
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two obstructions seems to be so large, that their upper and lower bound meet, leaving no range to
determine a fractal dimension.

Figure 13: Rose diagrams showing the azimuth (dip direction) of fractures extracted from (a)
NLM filtered data and (b) non-filtered data. The polar axis represent North (0◦), East (90◦),
South (180◦) and West (270◦) and the radial axis represent the percentage of faults with a dip
direction [φ, φ+ 10]. Radial axis tick mark intervals are 1% and the maximum radial axis is 7%.

Figure 13 shows the orientation distribution of the fractures extracted from the filtered and the
non filtered cropped 3D seismic cube. The highest frequency of fractures binned is 7% of the total
number of fractures extracted, suggesting no clear preferred orientation. The rose diagram patterns
do not seem to vary much between filtered and non-filtered distributions or between differently
filtered data. This suggests that the NLM filter only filters the random noise and does not filter
out structured patterns as faults.
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Figure 14: Histograms showing the dip distribution of fractures extracted from (a) NLM filtered
data and (b) non-filtered data.

Figure 14 shows the last computed fracture network characteristic, the dip distribution. All
distributions, for filtered (figure 14a) and non-filtered (figure 14b) show a peak at about 60◦ and all
distributions show relative more faults with high dip angles than low dip angles. This is expected
since fault offsets in seismic data can only be distinguished at higher dips. The histograms of
NLM filtered data with filter parameter h = 0.003 show more fluctuation than the other filtered
data. We suggest this effect is mainly the result of fewer fractures being extracted, resulting in
less robust statistics.
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5 Discussion

5.1 Petrel ant track workflow
All fracture characteristics discussed in section 4 show to some extent the influence of the varying
NLM filter parameters. However in many cases these differences seem to be related by choices made
in the different Petrel attribute settings. The threshold parameters of the Petrel fault extraction
algorithm seems to have a great effect, especially on the fracture length distribution. To check the
robustness of the length distributions found, we assessed their dependence on the Petrel attribute
settings. We have tested the influence of the Petrel attribute settings on the non-filtered dataset
as well as on a NLM filtered dataset. The NLM filtered dataset chosen is the one filtered using
setting parameter settings N = 3 and h = 0.002, since the fracture length distribution of this
dataset shows the best fit to a powerlaw (lowest L1 value). The first Petrel ant track workflow
attribute to be analysed is the fault extraction algorithm. The original choice for the settings of
this attribute is discussed in section 3.2.3. The following automatic fault extraction parameters are
varied: the connectivity constraint, the extraction sampling and background thresholds combined
and the extraction sampling distance and deviation from a plane combined. The last two sets
of parameters are changed simultaneously, since their influences are strongly dependent on one
another (see section 3.2.3). Figure 15 shows the effect of changing these attribute parameters,
on the NLM (S = 3, N = 3 and h = 0.002) filtered dataset. Figure 16 shows this effect on the
non-filtered data set. Both figures show a wide range in the length exponent variability. The length
exponent a for the non-filtered dataset varies between 2.39 and 3.58. For the NLM filtered dataset
the length exponent a varies between 2.73 and 4.88. The range of length exponents of the NLM
filtered dataset, affected by fault extraction parameters still shows overall higher a values as the
range of length exponents of the non-filtered data set. The range of length exponents as a result
of different fault extraction parameters is larger than the range of length exponents computed
through varying the NLM filter parameters. This suggests that the fracture network characteristic
of fracture length distribution is affected more by the settings of the fault extraction algorithm
than by the NLM filter.

An attempt is made to carry out a similar analysis of the influence of the ant track parameters
on the fracture length exponent a. An independent analysis appears to be impossible however, due
to the non-linearity of the ant track algorithm. Applying slight chances to the input parameters
of the algorithm, results in non proportional changes in the output values. This is the result of
the algorithm being self enhancing. The value of a planar discontinuity structure is dependent
on the amount of ants that have tracked the structure. Once one ant has found this connecting
path, many ants will follow, increasing the value of the discontinuity. The certainty of a planar
discontinuity being a fault is therefore not only dependent on how well connected the structure
is, but also on how many ants are placed on the volume in the first place and thus how many
ants can walk along the same track. Figure 17 illustrates this concept. Figure 17a shows the
ant track and fault extraction for normal aggressive ant track settings (initial ant boundary of 5
voxels) and 17b shows the ant track and fault extraction for the same settings, however for an
initial ant boundary value of 10 voxels. This means less ants are placed on the volume at further
distance from each other, resulting in less ants walking along the same paths and therefore lower
ant track values. However the certainty of the discontinuities found to be faults in figure 17b is not
necessarily less than the ones found in 17a. This effect is then enhanced by the fault extraction
parameters Extraction sampling threshold and extraction background threshold, which are based
on the scale bar in 17c. As discussed in section 3.2.2 this scale bar is set according to the minimum
and maximum values the ant track algorithm can produce, not the minimum and maximum values
actually found in the volume. For this reason, it is not possible to make an independent analysis of
the influence of the ant track parameters on the fracture network characteristics. To get a realistic
fault extraction pattern, the fault extraction parameters have to be adapted along with the ant
track volume, to avoid results as in figure 17b.

Another effect of the Petrel ant track workflow on the fracture network characteristics is related
to censoring. The fault extraction algorithm of Petrel does not allow the extraction of faults
touching the system boundary. Due to this implementation in the algorithm no estimation can
be made on the faults affected by censoring. This results in the fact that no censoring correction
method could be applied to the data. The slightly higher values estimated for a, compared to the
range indicated by [Bonnet et al., 2001], might thus be explained by the absence of a censoring
correction.
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Figure 15: Varying fault extraction parameters on the cropped 3D seismic volume filtered using
NLM parameters S=3, N=3 and h=0.002. Fault extraction parameters which are varied are: the
connectivity constraint (cc), the extraction sampling and background threshold (EST and EBT,
respectively) and the extraction sampling distance (ESD) and deviation from a plane (DFP). The
original settings used are CC=2 and EST=30% and EBT=60%.
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Figure 16: Varying fault extraction parameters on the non-filtered cropped 3D seismic volume.
Fault extraction parameters which are varied are: the connectivity constraint (cc), the extraction
sampling and background threshold (EST and EBT, respectively) and the extraction sampling
distance (ESD) and deviation from a plane (DFP). The original settings used are CC=2 and
EST=30% and EBT=60%.
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Figure 17: The difference between fault extraction of non-filtered L3NAM1987F minicube with (a)
aggressive ant track parameters (initial ant boundary of 5) and (b) aggressive ant track parameters
accept an initial ant boundary of 10. The same fault extraction parameters were used. The
corresponding ant track time slice at 3124 ms is shown in the background.

The ant track workflow attributes in Petrel highly affect the characteristics of our fracture
networks. This implies a great uncertainty on the validity of the fractures extracted from the
Petrel ant track workflow. Therefore, a small study is carried out to look for alternative automatic
fault detection and extraction algorithms. OpendTect is another software which uses the thin fault
likelihood algorithm [Hale, 2012] to detect and extract faults. This algorithm seems to be more
linear than the ant track algorithm, which could result in more robust fault patterns. However,
a great disadvantage of the fault extraction algorithm used in OpendTect is that the user has to
define the maximum number of faults to be extracted. The algorithm will aim to extract exactly
this amount of faults, which sometimes results in duplication of already detected faults. Since the
number of faults in the data is generally not known, this is a great disadvantage that will have
a large impact on the statistics of the fracture network. It would be interesting to compare the
patterns extracted using different detection and extraction algorithms, however, this goes beyond
the scope of this study.

5.2 Seismic resolution
Apart from the limitations the Petrel ant track workflow inflict on the fracture network analysis,
the largest obstacle of this study remains the seismic resolution of the data itself, as resolution
decreases drastically with increasing depth. We have aimed to take these limitations into account
by the choice in fault extraction settings (section 3.2.3), however, considering the quality of the
dataset this may not be sufficient. A quality check of the validity of the extracted fractures is a
necessary step, which could not be carried out due to the low seismic resolution of this particular
dataset. Further research is needed to apply the full workflow, presented in this study, on a
synthetic dataset of which the fracture characteristics are known.

6 Conclusions and recommendations
Due to recent developments in reprocessing of 3D seismic data and fault extraction algorithms, an
attempt is made to determine fracture network characteristics from 3D reprocessed seismic data.
The non local means (NLM) denoising algorithm is applied to a cropped 3D seismic volume encap-
sulating part of the Dinantian Friesland platform, a potential reservoir for ultra deep geothermal
(UDG) energy. The Petrel ant track workflow is used as sample method, for automatic fault de-
tection and extraction. A python code was build to compute the fracture network characteristics
of the faults extracted from the reprocessed seismic data. From analysis of these fracture network
characteristics the following conclusions were drawn:
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Fracture length distributions of both filtered and non-filtered data show powerlaw behavior
above the truncation cut-off. The powerlaw exponent a of the fracture length distributions from
NLM filtered data varies depending on the NLM filter parameters used, but remains in the following
range: 3.59 ≤ a ≤ 4.57. The NLM filter removes small discontinuities that fall below the truncation
threshold, but which are interpreted as small fractures in the non-filtered data. This dataset does
not allow us to determine whether these small discontinuities are in fact small faults which are
being removed by the filter or noise. We therefore recommend to apply this workflow on a synthetic
seismic dataset to determine if the Petrel ant track workflow can distinguish effectively between
noise and faults. This recommendation is supported also by the detection that the fracture length
distribution is more sensitive to the Petrel attribute settings than to the NLM filter parameters.

The sampling method applied in this study is not suitable to detect fractal spatial behavior, due
to the resolution limitations of 3D seismic data. However, since the requirement for stereological
rules is reached (a3D ≥ 2), translations can be made between sampling methods in 1D, 2D and
3D. We therefore recommend to apply spatial distribution analysis on FMI of borehole data to
determine the fractal behavior of the fractures, since the resolution of scanline data is sufficiently
higher than seismic data.

7 Notations

l fracture length
L Typical system (sample window) size
L2 area of sample window fracture network
L3 volume of sample window fracture network

n(l, L) density length distribution
N(L) number of fractures in system of size L

N(l, L) frequency length distribution
C(l, L) cumulative length distribution

D fractal dimension
a length exponent of density length distribution

1, 2, 3D euclidean dimension
N Non Local Mean parameter: radius in samples of the Neighbourhood window
S Non Local Mean parameter: radius in samples of the Search window
h Non Local Mean parameter filter parameter
L1 first norm or sum of absolute difference
L̂1 normalized first norm or sum of absolute difference
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9 Appendix A: Influence of NLM on the seismic volume

Figure 18: Influence of NLM parameters on the cropped 3D seismic cube. Inline 1536 of the
minicube is displayed for the differently filtered cubes.(a) NLM filtered cube, (b) non-filtered cube.
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10 Appendix B: Influence of NLM on the variance volume

Figure 19: Influence of NLM parameters on the cropped variance cube. Timeslice at 2968 ms
of the variance minicube is displayed for the differently filtered cubes. (a) NLM filtered cube, (b)
non-filtered cube.
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11 Appendix C: Influence of NLM on the ant track volume

Figure 20: Influence of NLM parameters on the cropped ant track volume. Timeslice at 2968 ms
of the ant track minicube is displayed for the differently filtered cubes. (a) NLM filtered cube, (b)
non-filtered cube.
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12 Appendix D: Influence of NLM on the fault extraction

Figure 21: Influence of NLM parameters on the faults extracted by the automatic fault extraction
algorithm. Timeslice at 2968 ms of the ant track minicube is displayed in the background. (a)
NLM filtered cube, (b) non-filtered cube.
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