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Abstract

The research discussed in this paper aims to simplify the creation and modification of

adaptive behavior for a robot. The following research question was formulated. How can a

framework for robots be created that simplifies the off-line creation and modification of adaptive

behavior? To answer this question, two sub-questions answer how this can be technically

realized and how this framework can be operationally embedded. The technical realization has

been done by writing policies in Drools, the creation of behavior trees in a virtual environment

created in Unity and their combination in a policy engine. TNO developed the Policy Engine

TNO (PET) that allowed the policies and the behavior trees to communicate with each other,

creating a policy-driven behavior tree. Both policies and behavior trees are intuitive to use

and encourage non-experts to experiment with the creation and alteration of adaptive behavior

strategies. The framework entails this combination and was specifically developed for a house

search mission, simulated in a 3D virtual test environment. An ontology was written in the

policy engine so that the robot is able to classify objects in the virtual environment in relation

to other objects. The robot may recognize a weapon in the virtual environment and know

that this is classified as a dangerous object. With this ontology, several policies were created

to function as a conflict-solving mechanism and allow the robot to follow these policies and

overrule any previously issued policies. The scenario that followed from this house search

mission was carefully created in collaboration with domain experts that are closely working

together with TNO. With the creation of this scenario and a simulation run to prove that

the integration of policies and a behavior tree works, the sub-question regarding operationally

embedding was fulfilled.
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1 Introduction

Robots play an ever-increasing role in human society. A robot is defined as a machine, pro-

grammable by a human, capable of carrying out difficult and complex sets of actions automati-

cally. We are slowly shifting towards a future where robots are (partially) replacing the actions

performed by humans. Traditional vacuum cleaners are replaced by automated, self-driving robot

vacuum cleaners, which use different sensors to find and clean dirt without the need for human

interaction (Abramson, Levin, & Zaslavsky, 2006). The continuous development of autonomous

cars will gradually shift towards a future which requires less and less human involvement, where

the autonomous car can sense its environment and navigate without the need for human input.

Industrial robots are automated, programmable robot systems that are used for manufacturing.

Typical applications of an industrial robot include painting, picking up objects and dropping them

at the desired place, product inspection, assembly and testing (Nof, 1999).

In basic robotics, machines are designed to do the tasks specified to them. These are often static,

pre-defined tasks and they have no way of dealing with unexpected situations. Basic robotics may

be, for example, the manufacturing process of a watch by fitting small pieces of the watch together.

Advanced robots are designed to be adaptive and autonomous. Adaptive behavior means the robot

can respond according to the changing environment and autonomous means that the robot is capa-

ble of making decisions on its own (Martius, Der, & Ay, 2013). The autonomous car can recognize,

for example, a kid crossing the street, adjusting its speed to avoid collision.

This shifting towards a robot-centric future is gradually taking place and is limited by the pos-

sibilities and limitations of the robot itself. While robots may largely or completely replace humans

in some areas, there are still many areas where the role of humans is central and robots fulfill a

supplementary role. The activities performed by the fire brigade could greatly benefit from the

presence of robots. Consider a scenario where a house burns down and people are trapped in-

side. Quick decision-making skills are mandatory and could save lives. Current technology is not

ready yet to replace firemen, who are required to enter the building, making decisions based on an

ever-changing dynamic environment. Making a mistake could be dangerous and life-threatening.

Robots, however, could greatly increase the success chance of a mission. A drone could quickly
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elevate towards the upper floors of a building, spotting victims trapped inside the building by using

cameras. An unmanned ground vehicle (UGV for short) is a vehicle that operates while in contact

with the ground and has no onboard human presence. An unmanned ground vehicle could accom-

pany firemen inside the building, moving through places that are too small or too hot for firemen

to enter, exploring new areas and communicating its findings.

These are scenarios where the collaboration between humans and robots is crucial, greatly influenc-

ing the outcome of a mission. Situations like these require fast and accurate decision-making skills,

where a mistake could have great consequences. It is exactly here that it is very important that

the robot can adapt its behavior based on developments during the mission, resulting in new, more

effective behaviors. Human-Robot Interaction (HRI) and Human-Robot Communication (HRC) in

particular are of primary importance when dealing with human-robot teams that operate outside

of production lines (Klingspor, Demiris, & Kaiser, 1997). The common thread between robots and

humans is that they form a team with common goals.

1.1 Human-Robot Teaming

When working in high-intensity domains, tasks are often well-defined but involve complex coordina-

tion in stressful and dynamic situations. An example of such an environment is where human-robot

teams assist in disaster response efforts, as is the case in the TRADR-project (Long-Term Human-

Robot Teaming for Robot-Assisted Disaster Response). Using a proven-in-practice user-centric

design methodology, TRADR develops technology for human-robot teams to assist in disaster re-

sponse efforts, with the challenge to make experience persistent over time. In the TRADR scenario,

various kinds of robots collaborate with human team members to explore the environment and

gather physical samples. Throughout this collaborative effort, the team gradually develops its

understanding of the disaster area over multiple possibly asynchronous missions. The goal is to

improve the team’s understanding of how to work in the area and to improve team work between

humans and between human and robot. The TRADR use cases involve response to a medium

to large scale industrial accident by teams consisting of human rescuers and several robots (both

ground and airborne). TRADR missions will ultimately stretch over several days in increasingly
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dynamic environments 1.

The research discussed in this paper is closely related to the TRADR-project in that its research

should be of interest for, and directly applicable in the TRADR framework. Because of this,

the Human-Robot Teaming (HRT) project was created at TNO2 (Soesterberg, The Netherlands)

and this research paper is written in concordance with this project. The Human-Robot Teaming

project is meant to be a separate project with its own distinctive goals, but provides support for

the TRADR-project at the same time. Where TRADR is focussed on disaster response areas where

(typically) the fire department plays an active role, HRT has its roots in militaristic operations and

house search missions in particular.

1.2 The Need for Adaptive Behavior

When a robot participates as an active team member in combination with humans in a militaristic

house search mission such as in the HRT-project, it will need to operate in complex and dynamic

situations that could change any moment. In order to operate functionally well, a robot needs to be

able to adapt its behavior depending on the situation. Adaptive behavior is a type of behavior that

is used to adjust to another type of behavior or situation. This is used to characterize the way an

individual (or a robot in our case) can shift from a less effective behavior to a more effective, con-

structive behavior, allowing for a more positive outcome, depending on the effect it tends to improve.

The complexity of the behavioral model of the robot correlates with the complexity of the en-

vironment. A more complex environment has more variables influencing the effectiveness of the

strategy chosen by a robot. A vacuum cleaning robot in a controlled lab experiment in a square

room of 10 square meters, with no obstacles and easy-to-recognize dirt to clean up, may perform

very well (always recognizing the dirt and always cleaning it up). Once the same vacuum cleaning

robot is used in a real-world scenario, things become more complex. Chairs, tables, many corners,

stairs and difficult to recognize dirt in difficult to reach positions may greatly influence the perfor-

mance of the robot, requiring a different skill set and a different approach. It will, for example, need

1http://www.tradr-project.eu
2https://www.tno.nl/nl/over-tno/locaties/?q=&cat=&gsa City=Soesterberg
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to make sure to keep away from the stairs. Falling down may damage the (most-likely expensive)

robot.

1.3 The Need for Simplification

Robots don’t think or communicate in natural languages like we humans do. They are operated by

a programming language, a formal language that generally consists of instructions for a computer.

A more complex environment requires more and different types of behaviors, resulting in a more

complex robot with more code. Writing the code on which robots function requires technical skills

and is limited to those who are familiar with the system of the robot.

When a robot executes adaptive behavior in ever-changing environments, it should have a vast

repertoire of different behaviors. A behavior can vary depending on the situation at hand. It may

need to execute the behavior ”open door” when standing at a door, or execute the behavior ”report

dangerous object” when it finds an object worth reporting such as blood stains or weapons. These

behaviors have to be created in order for the robot to know how to react in certain scenarios.

Easily modifying and creating the behaviors of the robot as a human operator would greatly

benefit human-robot teaming. Robots in the HRT-project are active in high-intensity domains

where military soldiers are accompanied by an unmanned ground-vehicle (the robot) on a house

search mission. If the robot needs to adapt swiftly to an abrupt change in the scenario, the robot

should have the proper behavior that corresponds to this abrupt change. Easily-creatable behavior

should not require the need for technical expertise to change and/or write code on which the robot

functions.

1.4 Problem Description and Research Question

A more complex environment requires a more complex robot that is able to execute more and

different types of adaptive behavior. The robot needs to apply different strategies to cope with

the current situation that is happening in real time. If a robot is exploring a house and finds an

explosive, it should be able to do more than just ”explore” and (at the very least) communicate
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the location of the explosive to its human supervisors. If the robot only knows how to explore, it

may accidentally trigger the explosive, or miss the fact that an explosive is actually dangerous and

should be handled in some way. It is clear that a robot in such an environment should have a vast

repertoire of behaviors and strategies in order to function well, because mishandling a situation or

not having the proper behavior for a situation could result in deathly casualties.

Implementing more and different behaviors requires technical knowledge, time and resources. Sim-

plifying the process of modification and creation of robotic behavior by the human operator could

greatly improve several aspects of the system on which the robot functions. Firstly, the system will

be more accessible. More people will be able to understand the system and participate in under-

standing/creating behavior. The professional programmer is no longer the only one able to access

the system. Secondly, it will be easier to modify the behavior by either changing existing behaviors

or adding new ones, attuned to the specific situation. Thirdly, it will be cost-reducing because of

the improved accessibility by different users (with less technical programming skills).

Because of this, the research discussed in this paper aims to simplify the creation and modification

of adaptive behavior for a robot. The following research question, divided in two sub-questions, is

formulated:

Research question:

1. How can a framework for robots be created that simplifies the off-line creation and modifica-

tion of adaptive behavior?

(a) How can this technically be realized?

(b) How can this be operationally embedded?

With off-line creation, it is meant that the creation of behavior is done before the actual mission is

put in motion. When robots roll out of the factory, they can still be regarded as having a clean slate

with no pre-configured behaviors. With the off-line creation of behavior and a framework that can

be easily implemented on newly assembled robots, these robots can be provided with a basic model

of behavior strategies that can be tweaked and altered depending on the preferred usage of the robot.
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Within the technical realization, two questions are central. When will certain behavior be per-

formed? Who is in charge of choosing this behavior strategy? In order to give answers to these

questions, we chose two methods and their integration to tackle these problems. To determine who

is in charge for choosing a specific behavior strategy, a policy-based approach is used. A policy is

a deliberate system of principles to guide decisions and achieve rational outcomes (Kagal, Finin, &

Joshi, 2003). A policy is a statement of intent and is implemented as a procedure or protocol and

are based on prohibitions and obligations. Policies will be used to determine if a robot has to follow

the commands of the human supervisor, or is able to freely choose its own strategy, disobeying

the strategy designated by the human operator. Some situations may require the need for quick

decision making with an appropriate, pre-defined reaction. Consider the self-driving car example,

where a kid crossing the street will result in an immediate activation of the breaking system by

the operating system of the car. Even if the human driver may want to drive through (because the

driver didn’t notice the kid), the car will ignore this and decide that breaking is the best option -

and should be followed considering the situation. This way, policies are used to determine who is

in charge of choosing a behavior strategy - human, or robot. The policies used in our research are

written in Drools 3, a Business Rules Management System (BRMS).

The policies combined can be seen as a system of rules, and a way is needed to translate these

rules into actual behavior. If the robot has the policy to take a photo of every painting in the

house, it should also have the behavior ’take photo’ when a painting is visible for the camera.

Behavior trees will allow the actual implementation of these intentions into actions. Behavior trees

will be used for when certain actions will be performed. A behavior tree is a hierarchical tree with

nodes that control the flow of decision making of an AI (Artificial Intelligent) entity (Marzinotto,

Colledanchise, Smith, & Ögren, 2014). At the end of the tree are the leaves. They are the actual

actions that control the AI entity. The branches of the tree are different kind of utility nodes that

control how the tree will be walked down to the leaves. A utility node (a branch of the tree) may

restrict the firing of the leaves (the actions) till a certain condition is met. As an example, the

action node open door may only be triggered once the condition standing in front of door is met.

A behavior tree can be extremely deep consisting of many sub-trees where a sub-tree represents a

specific behavior or strategy.

3http://www.drools.org/
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The research question regarding how this framework can be operationally embedded will be an-

swered by performing a case study. A house search mission has been simulated in a virtual envi-

ronment. A script was written that resembles a real-world situation and has been developed with

domain experts that work in close collaboration with TNO. An evaluation is given based on the

application of the framework in this case study.

1.5 Scope of this Thesis

The objective of this thesis is to design a framework to enhance human-robot teaming by simplifying

the creation and alteration of adaptive robotic behavior. The framework consists of a policy-driven

behavior tree that is implemented in a virtual simulated environment, created in Unity 4. The

policies are written in Drools 5 and the behavior tree is created in Behavior Designer, a third-party

behavior tree implementation plugin for Unity 6. The policies and the behavior tree are created

separately. Because the framework should be accessible to more users without the need to actually

change code, a graphical user interface is used for the implementation of behaviors in the behavior

tree and policies in Drools. In collaboration with TNO 7 a tool is developed that is capable of

linking policies to sub-trees within the main behavior tree. This way, policies translate directly to

behavior performed by the robot. The tool developed by TNO is called PET (Policy-Engine TNO)

and shows which policies are active and which policies are not, while at the same time allowing the

human operator to enable or disable specific policies.

This will be researched by performing a case study. A militaristic house search mission has been

chosen to demonstrate a scenario that requires adaptable behavior. A script was written that allows

a human operator to play, or operate, the virtual simulation in a 3D environment with the robot

as a team member, accompanying the human operator during this mission. This script outlines the

movement of the robot through the house in the most realistic way, resembling a real-life mission.

The script was written in concordance with domain experts that are collaborating with TNO. Ide-

4http://www.unity3d.com/
5http://www.drools.org/
6http://www.opsive.com/assets/BehaviorDesigner/
7https://www.tno.nl/
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ally, the realization of this framework should be a workable example that can be used in future

militaristic scenarios. This virtual environment can be used to gain insights in implications of these

robots on current and future operating procedures. To the best of our knowledge, the combination

of policies and behavior trees is a novelty and due to its ease of use, could encourage the community

to further explore the possibilities of this policy-driven behavior tree combination.

1.6 Thesis Outline

The literature study will be described in Chapter 2. The literature study will be performed to

support the choice for policies and behavior trees. How policies work and the integration of policies

in Drools will be explained in Chapter 2.1. A deeper, more precise elaboration on behavior trees is

given in Chapter 2.2.

After the literature study, Chapter 3 explains the scenario that is used for the house search. The

house search scenario is developed in Unity. The choice for a virtual test environment is explained

in Chapter 3.1. A map of the ground floor and first floor is given in Chapter 3.2 with routes that

the robot will walk.

In Chapter 4 the implementation of policies and behavior trees is explained. It will be explained

how this policy-based behavior tree influences the strategy the robot chooses. A more extensive

elaboration will be given on how we realized this technically, by explaining policies in detail in

Chapter 4.1 and behavior trees in Chapter 4.2. The combination of the policies and the behavior

trees, and the policy engine developed by TNO is discussed in Chapter 4.3 and a simulation run is

shown in Chapter 5. An answer to the research question will be given in Chapter 6, followed by a

discussion.
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2 Background literature

As discussed earlier, there are two main questions regarding adaptive behavior. When will certain

behavior be performed? Who is in charge of choosing this behavior strategy? A policy-based ap-

proach will be used to answer the question who is in charge for choosing a specific behavior strategy.

Policies are introduced in Chapter 2.1. Policies are written in Drools, a Business Rules Management

System (BRMS) solution. Whereas the policy-based approach has a strong foundation in creating

rules and providing statements of intent, behavior trees will allow the actual implementation of

these intentions. Behavior trees will be used for when a certain behavior actions will be performed

and are discussed in Chapter 2.2. Chapter 2.3 explains why behavior trees and policies are chosen

to answer the research question in this thesis.

2.1 Introduction to Policies

A policy is a system of principles with the goal to guide decisions and achieve desirable outcomes.

Policies are known to be extensively used in the security, network routing and management systems.

Policies have a dynamic nature, without the need to change the internal mechanism of the entities

involved (Kagal et al., 2003).

A distributed system is a piece of software that ensures that a collection of individual, independent

computers appears to its users as a single coherent system. The need for policies to specify and

govern the behavior of distributed systems emerged as a result to answer the increasing complexity

within these distributed systems. In order to function in an environment with changing require-

ments, large distributed systems must be able to change and adapt its behavior while they are

still active and running (Bradshaw & Montanari, 2014). An example of a distributed system is a

network system. Network management software typically specifies and measures acceptable perfor-

mance thresholds for each machine in the network without creating additional traffic. It manages

and automates administrative tasks across multiple machines in a network, and one method of

detecting problems is via a policy. A policy can be seen as a set of specifications that define specific

thresholds and conditions that have to be met in order to trigger certain network administrative

actions. These policies are constantly searching for abnormal behavior within the network system,
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monitoring the system and providing correct actions to prevent server downtime (Richardson, 2001).

In this research, policies are used as a way to easily create and modify adaptable behavior in a

robot. We narrow it down to the following definition to avoid any unwanted confusions and to

improve the readers’ understanding.

Policies are a way of defining the behavior of a robot by rules for permissions and

obligations.

In order for robots to understand policies, we will need a suitable policy (or rule) engine. A policy

engine is a software component that allows the organization, creation and the ability to monitor

and enforce rules. In a policy engine, policies are specified in a machine readable policy-language.

The goal is that the policies can be used by a policy enforcement mechanism which runs on every

robot and other autonomous system to ensure that each autonomous system at least adheres to a

specified set of obligations and permissions. For example, a policy might state that any information

about victims must be immediately communicated to the team leader, or a policy might state that

robots are not allowed to use their weapons without permission of the platoon commander. We

will use Drools for our policy engine and the specification of these policies 8 (Salatino, De Maio, &

Aliverti, 2016).

2.1.1 Policy Engine: Drools

Knowledge representation and reasoning (KR) is the area of Artificial Intelligence that focuses on

how knowledge is represented and manipulated. Knowledge representation is dedicated to pre-

senting information about the world in a form that a computer can understand. Expert systems

use knowledge representation for the codification of knowledge into a knowledge database. This

knowledge database can then be used for reasoning, meaning that we can process data with this

knowledge database in order to deduce conclusions. Drools is a Rule Engine that uses the rule-

based approach to implement an expert system and is more correctly classified as a production rule

system (Salatino et al., 2016).

8https://www.drools.org/
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A Rule Engine allows you to define what to do, and not how to do it. Rules are pieces of knowledge

and are often expressed in the form when a certain condition is met, then do some tasks.

1 when

2 <cond i t i ons>

3 then

4 <act ions >;

Imagine this simple scenario. When a robot is near a door, we want the robot to open the door.

The Drools rule implementation for this could be the following.

1 rule ”OpenDoor”

2 when

3 Robot ( l o c a t i o n == Locat ion . Door )

4 then

5 ac t i on (OpenDoor ) ;

6 end

The rule ”OpenDoor” states that when the robot is at the location of a door (specified by the

code Robot (location == Location.Door) ), then the robot will open the door (specified by the action

action(OpenDoor) ).

The brain of a production rule system is an inference engine that is able to process a large number of

rules and facts. The process of matching the new or existing facts against production rules is called

pattern matching, which is performed by the inference engine. The inference engine matches facts

and data against rules to infer conclusions which result in actions (Salatino et al., 2016). Drools

uses the Rete algorithm for the inference engine. When a large number of rules and facts are used,

multiple rules may be applicable for the same facts assertion, resulting in rules that are in conflict.

When this is the case, the agenda will define the order of execution of these rules. Chapter 4.1.2

discusses how conflicting policies are handled in our case study. The Rete algorithm is used to

determine which of the system’s rules should fire based on its data store. A detailed treatment of
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Rete is beyond the scope of this thesis. For more information about this algorithm, see the original

article (Forgy, 1982).

Figure 1: High-level view of a Rule Engine

Figure 1 illustrates the functioning of a rule engine. Rules are stored in the production memory

and the facts are stored in the working memory. The pattern matcher matches the rules against the

facts. To illustrate this with a working example, take the rule ”OpenDoor” we created earlier. The

complete rule is stored in the production memory. The pattern matcher will check if the conditions

for this rule are satisfied. So if the fact Robot (location == Location.Door) is true, the working memory

will return that this condition (or fact) is true. The pattern matcher will match this rule and the

fact, pushing it to the agenda, leading to the action action(OpenDoor) .
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2.2 Introduction to Behavior Trees

A Behavior Tree (BT) is used to organize the switching between tasks of an autonomous agent, such

as a robot or a virtual entity in a video game. BTs were developed in the game industry and later

adopted by the academic world (Marzinotto et al., 2014). In the game industry, BTs functioned as a

powerful tool to shape the behavior of NPCs (non-player characters). BTs excel at creating complex

systems that are modular and reactive, properties that are crucial for many modern applications

(Colledanchise & Ögren, 2017). Reactivity is the ability of the robot to swiftly react to changes.

If a robot is about to collide with a wall, it should be able to quickly steer away from the wall,

avoiding collision. Modularity means that certain behaviors or parts of behaviors can be seperated

into building blocks and recombined in others (Gershenson, Prasad, & Zhang, 2003). When the

robot becomes modular, components of the robot can be enabled, tested, created and reused inde-

pendently of one another. Because of this modularity and reactivity, the application of BTs has

been extended beyond video games towards AI and robotics. More recent works propose the use of

behavior trees for robotic manipulation, multi-robot systems and multi-mission control frameworks

for UGVs (Unmanned Ground Vehicles) and UAVs (Unmanned Air Vehicles, such as a drones)

(Marzinotto et al., 2014)(Colledanchise, Marzinotto, & Ögren, 2014)(Ogren, 2012)(Klöckner, 2013).

Chapter 2.2.1 describes Finite-State-Machines (FSMs), the predecessor of BTs. In games, the

control structures of NPCs were often defined by FSMs before BTs were developed. In Chapter

2.2.2 BTs are introduced. BTs provide an alternative option for FSMs because they support mod-

ularity. Sub-trees within the main tree can express a particular behavior, and these sub-trees can

be re-used in other parts of the main tree.

2.2.1 Finite-State Machines (FSMs)

BTs originated from finite-state machines (FSMs) (Colledanchise & Ögren, 2017). A FSM is a

technique that can be used to implement the behavior of agents and can be seen as a model where

each state is a behavior that can be executed by the agent. The FSM consists of a set of states,

transitions and events. See Figure 2 for an example FSM, designed to carry out a simple explosive-

search task. Only one state can be active at a time and is defined as the current state. The
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current state determines the possible next action the agent can make, changing the state from one

to another. For example, the robot may be in state Patrol , from which it will enter the state

Find explosive if and only if an explosive is near, as illustrated by the transition Explosive is near . If

no explosive is near (as illustrated by the transition Explosive is not near ), it will continue patrolling.

Once it enters the new state, it will be limited to the choices given in this new state. So once an

explosive is near, the state Find explosive becomes active. The robot will then communicate its

location, resulting in the active state Report explosive . When communication is successful, the

robot will go back to patrolling the area.

Figure 2: Graphical representation of a finite-state-machine designed to carry out a simple
explosive-search task, showing its possible states (squares) and transitions (arrows).

FSMs are used because of three main advantages (Colledanchise & Ögren, 2017).

• Easy implementation

• Easy to understand/intuitive use

• It has a very common structure

There are, however, some problems with FSMs in real applications when the system modelled grows

in complexity with more states (Colledanchise & Ögren, 2017).

• Scalability. Imagine a model with 500 states instead of 3 as in Figure 2. Removing or adding

one state could lead to complex problems that are difficult to solve, because this new state

may be linked to a couple of hundred other states, changing the whole model. A FSM with
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many states is difficult to modify by both humans and computers.

• Maintainability. When there are 500 states, the graphical representation of the model

becomes hard to read and understand due to the number of states and transitions connecting

states. Adding or removing a state in the model requires the re-evaluation of practically every

transition and internal state in the model. Because of this, FSMs are highly susceptible to

human error.

• Reusability. Because the states are strongly connected and interdependent of each other, it

is difficult to copy a certain behavior from one model to another.

• Parallelization. It is difficult to run multiple states parallel in one FSM model, often

requiring external modules to resolve conflicts and deadlocks.

• Goal-oriented. The model knows when a state is active, but it is independent of the previous

states. This means it will be difficult to coordinate states to achieve a certain goal.

2.2.2 What are Behavior Trees?

A behavior tree (BT) is a directed rooted tree where the leaf nodes are called execution nodes (the

actual commands that control the robot) and the internal nodes are called the control flow nodes

(Thulasiraman & Swamy, 1992). There are two types of execution nodes (action and condition)

and four types of control flow nodes (sequence, fallback, parallel and decorator). These node types

are discussed below and summarized in Table 1. A node can be a parent or a child in relation to

another node. The root of a BT (at the top) is the node without any parents; all other nodes have

exactly one parent. The control flow nodes have at least one child (Colledanchise & Ögren, 2017).

A node can have 4 different states (Champanard, 2012). These are:

• SUCCESS : The success status will be returned when a condition node has met a certain

criteria, or when an action node has been successfully fired.

• FAILURE : The failure status will be returned when a condition node has not met a certain

criteria, or when the action node could not be fired due to a particular reason.
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• RUNNING : The running status will be active when a node is initialized but still waiting to

be completed.

• ERROR : The error status will be returned when the node could not be executed due to some

error, probably caused by a programming error.

Action nodes. Action nodes are most likely the easiest to understand in the way that they alter

the state of the game in some way. The action implementation depends on the agent type. For

example, the actions of a robot may be defined by making a sound through the speakers or making

a photo with the camera. For an NPC (non-player character in a digital simulation) the action

could be directed towards playing a certain animation or a sound. Actions don’t have to be external

(interacting with the environment), but could be internal too (creating a registry log, saving a file

and so on). An action node will return SUCCESS if the action has been completed, FAILURE if

the action was not completed and RUNNING while still executing the action.

Conditional nodes. A conditional node tests whether a certain condition is met or not. The

conditional node must have some target variable, such as target distance and a criterion to base the

condition ( target distance < 100 ). These nodes will return SUCCESS if the condition has been met

or FAILURE is the conditional node was not met.

Sequence nodes. The sequence node controls its children from the left until it finds a child

that returns either FAILURE or RUNNING , then it returns FAILURE or RUNNING accordingly

to its own parent. It returns SUCCESS if and only if all its children succeed. Note that when a

child returns running or failure, the sequence node will not evaluate the state of the next child (if

there are any). The symbol of the sequence node is a box containing the label → , shown in Table 1.

Fallback nodes. A fallback node measures its children from the left until it will find a child

that either returns SUCCESS or RUNNING . When it has found such a child, it will return the sta-

tus of its child to its parent. So if the child returns RUNNING , the status of the fallback node will

be reported as RUNNING . It returns FAILURE if and only if all of its children return FAILURE . A

fallback node only needs one child to return SUCCESS to succeed himself, in contrast to a sequence
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node which requires all its children to succeed. If one child returns RUNNING and another child

returns SUCCESS , the fallback node will still return SUCCESS .

Decorator nodes. The decorator node is a control flow node with a single child that manipulates

the return status of its child according to a user-defined rule. For example, an invert decorator

inverts the success/failure status of the child, so if the child may return FAILURE , the decorator

node will return SUCCESS by inverting the status of its child (Colledanchise & Ögren, 2017).

Node type Symbol Succeeds Fails Running

Action text Upon completion If impossible to complete During completion

Condition text If true If false Never

Sequence → If all children succeed If one child fails If one child returns running

Fallback ? If one child succeeds If all children fail If one child returns running

Decorator � Custom Custom Custom

Table 1: All the node types for behavior trees (Colledanchise & Ögren, 2017).

Figure 3 shows a simple high level BT of finding a painting, taking a picture and sending the

picture.

Figure 3: Graphical representation of a behavior tree, designed to carry out the simple node to
find a painting, take a picture of the painting and send the picture.

The root of the BT in Figure 3 is illustrated with the control flow node → (a sequence node type)

and has three children, all action nodes. A BT is always read from left to right. When Find painting
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is returned with SUCCESS , the second action Take picture is RUNNING . Once its status is changed

from RUNNING to SUCCESS , the third action Send picture will be RUNNING . Once the status of

the last action node in this sequence is successful, all children in Figure 3 have returned successful,

so the complete sequence returns SUCCESS (see Table 1; a sequence succeeds if all children succeed).

A BT can be extremely deep, where certain nodes contain sub-trees that specify a certain be-

havior. With these sub-trees, the developer can create and link many different behaviors together,

resulting in rich, adaptive behavior. An example of a sub-tree is given in Figure 4.

Figure 4: The action ”Take picture” from Figure 3 is accommodated in a sub-tree, where the
painting is approached until close enough, resulting in the execution of the camera taking a picture.

This sub-tree, captured in the node Take picture , contains a sequence node → with one fallback

node ? , and this fallback node contain two execution nodes. As Table 1 points out, the sequence

node at the top is successful if all its children succeed, so it will need both the fallback node and the

action node Make a picture to return SUCCESS . The fallback node succeeds if one of its children

succeeds. So, if it finds a painting, it will measure if the painting is close enough. If this is not the

case, it will evaluate the action node Approach painting and if this returns SUCCESS , the fallback

node ? will return SUCCESS , continuing with the action node Make a picture . After this, the
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complete sequence returns SUCCESS , evaluating the Send Picture node. Once this node returns

SUCCESS , the whole tree displayed in Figure 4 returns SUCCESS .

2.3 Summary: Policies and Behavior Trees

BTs have been used, and are still used, extensively in the field of robotic manipulation, in contrast

to FSMs. Modularity is one of the main advantages of BTs, because (parts of) individual behaviors

can be reused in different applications and behaviors, without needing to specify how these newly

imported behaviors relate to subsequent behaviors (Bagnell et al., 2012). BTs are simple to design

and implement, scalable when models become larger and more complex, and support modularity

to create reusability and portability. One of the main advantages of using behavior trees is that

they are easy to understand and can be created using a visual editor, giving end-users the power

to create adaptive behavior with the same amount of complexity as traditionally-written programs

(Paxton, Hundt, Jonathan, Guerin, & Hager, 2017). Because of this, implementing, using and

changing behavior trees is less error prone.

Policies define what to do with obligations and permissions, and the behavior trees define how

to do it. By using an ontology, it is possible to give the robot a sense of understanding about

its surroundings, allowing it to make decisions on its own. An ontology can be seen as an ex-

pression of a terminology, allowing the system to classify basic objects, statuses and actions and

how they may relate to one another. For example, a Robot is classified as an Actor and has the

status Location which tracks the location of the robot. Because of the modularity of BTs and

their ease of implementation, it is possible to combine policies with behavior trees. As discussed,

a behavior tree can become very big, with many sub-trees controlling the behavior of the robot.

When policies are attached to sub-trees of the original behavior tree, the behavior of the robot

can be controlled by disabling or enabling these sub-trees. For example, take the following policy:

Robot is NOT allowed to move . When linking this policy to nodes in the behavior tree that define

movement, these movement nodes will return FAILURE on firing this node since movement is not

allowed, defined by the active policy. This means that the particular part of the behavior tree is

not executable. How this was realized technically can be found in Chapter 4.
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3 Scenario for Adaptive Behavior

This research focusses on robots as autonomous team members in a team combined with humans,

instead of the alternative where robots are operated by a human. In order to answer the research

question on how to develop a framework that allows the creation and alteration of behavior, it has

been decided to go for a militaristic house search scenario. In such a mission, a large variety of

factors may influence the required behavior of the robot in order to operate effectively. Professional

teams working in safety-critical domains (such as in the military domain) often operate in unpre-

dictable, stressful, time-pressured environments. Failure or malfunction may result in death, loss of

equipment/property or severe damage. The robot will need to be adaptive in such an environment

while scanning the area for guns and other dangerous objects.

The collaboration between the human and the robot will be in an operational task. This task

should not be too complex and the usage of a robot should show enough realism. To successfully

participate as a complete team member, the robot should possess a diverse set of communication

skills, e.g. to whom it should report its findings or if it is allowed to pick up objects without the

permission of the human team member. There should be a possibility for the robot to communicate

with the human team member, allowing the behavior of the robot to change based on the strategy

provided by the human team member through several available options.

Creating a house search mission in real life is an expensive and time-consuming process. For this

master thesis, there were no funds available to sponsor such a scenario. Because of these limitations,

a more practical approach was taken that has some benefits over a real world scenario. In order to

answer the research question discussed in Chapter 1.4, a virtual environment was created. Chapter

3.1 indicates the choice for a virtual environment and why it suits this case study. Chapter 3.2

shows the floor map of the house in a top view. The locations of dangerous objects are marked and

the overall route of the robot from start to finish is explained. Chapter 3.3 explains the scenario

and discusses the objective of the house search mission. The script was written in concordance with

domain experts working closely with TNO and should reflect a realistic scenario that is based on

actual field work.
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3.1 Virtual Environment

Digital games and robotics in real-life scenarios have a common goal. That goal is to design smart,

autonomously behaving and adaptive agents that are able to interact with the environment (whether

a real environment or a digital simulation) and to interact with other agents (whether those are

humans or not). An applied game has the intention to express a ’serious’ note that often entails

the capability to learn or experiment with something new in a meaningful, practical, yet virtual

way (Peeters, Van Den Bosch, Meyer, & Neerincx, 2012). These applications are often found in

areas like scientific exploration, health care, education, defense and others. They often encom-

pass some form of simulation, which is the imitation of the operation of real-world processes over

time (Susi, Johannesson, & Backlund, 2007). By creating a virtual environment that is suited for

testing policy-driven behavior trees instead of building a real-world test environment, a quicker,

less expensive and more controlled environment can be created. And maybe the most important

argument is that building a virtual environment instead of a real world test environment, is equally

(or better) suited to answer the research question: How can a framework for robots be created that

simplifies the off-line creation and modification of adaptive behavior? A virtual environment is a

more controlled environment that is easier for testing and development.

The virtual environment has several requirements in order to answer the research question:

• A realistic 3D representation of a house.

• The possibility to implement an agent in the virtual environment (the robot exploring the

house).

• The possibility for a human to operate the scenario in collaboration with the robot.

• The possibility to coordinate movement and behavior of the robot through behavior trees.

• The possibility to control parts of the behavior tree through policies.

Unity was chosen as the game engine to build this virtual environment 9. Unity is a powerful

cross-platform, all-purpose game engine that is not only used for developing games, but also suited

for developing simulations and scenarios such as the one discussed in this research. Unity allows for

9https://www.unity3d.com/
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the implementation of agents and allows for a human counterpart to collaborate together with the

robot on the mission. Unity has an Asset Store that is home to thousands of assets, developed by

third-party developers 10. These assets are free or accessible for a small fee. One of these assets is

Behavior Designer, developed by Opsive 11. Behavior Designer is a behavior tree implementation

with an intuitive visual editor that works well together with Unity. More information about the

technical implementation of the behavior trees and how they work can be found in Chapter 4.

3.2 Map of the House

With Unity, it is possible to build a realistic 3D house that is suited for a house search mission.

For our research, an existing Unity Asset was found with a 3D model of a house 12. This house was

further altered in order to suit our needs for the mission.

10https://www.assetstore.unity3d.com
11http://www.opsive.com/assets/BehaviorDesigner/
12https://www.assetstore.unity3d.com/en/#!/content/48976
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Figure 5: High-level view of the map and the route of the robot - floor plan first floor.

Figure 5 shows the floor plan of the first floor in the house. This map was created using an online

house-planning application 13 and is an identical match of the virtual 3D house in Unity. There are

no people in the house. We assume there are several objects of interest in the house. The robot will

enter the house through the front door. A script was written that outlines the route of the robot

and some of its points of interest. The script was written to resemble a house search mission, but

then altered for use with a robot. The script was written and tested in concordance with domain

experts working with TNO 14. Several weapons are placed through the house and are marked on

the floor plan with a big red X. Once the robot finds a weapon, it will open a dialogue with the

human operator. The human operator will be able to press a button to order the robot to pick up

the weapon. There are also other objects that can be found randomly in the scene. These objects

13https://www.homestyler.com/floorplan/
14http://www.tno.nl/
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are boobytraps, a fire, or explosives. How these situations are interpreted by the robot is discussed

in detail in Chapter 4.1 and Chapter 4.3. The robot will move through the rooms, starting with

Room 1, till it reaches Room 5. Then the robot will move towards the stairs and make its way up

to the second floor, illustrated in Figure 6.

Figure 6: High-level view of the map and the route of the robot - floor plan second floor.

After the robot finishes searching the ground floor, it will use the stairs to move to the second floor.

Figure 6 shows a high-level view of the second floor and the locations of weapons, marked by a red

X. The same procedure will be used as on the ground floor; when the robot finds a weapon or

other dangerous objects, it will activate a specific behavior strategy corresponding to the object it

finds. The robot will move through the rooms, starting with Room 6, till it reaches Room 11. The

scenario will end when the robot reaches Room 11.
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3.3 Scenario

As discussed in Chapter 3.2, the robot moves from room to room, searching for guns or other

dangerous objects found throughout the scenario. The scenario in Unity is played as a soldier that

accompanies the robot and works just like any other 3D video game. Looking around can be done

by moving the mouse and the WASD keys on the keyboard function as movement keys. Interaction

with objects (such as doors, light switches and other objects) is possible with an interaction button,

mapped to the E button on the keyboard. The robot can be out of sight from the player and moves

autonomously. The human operator is allowed to move freely through the house. An image of the

robot is shown in Figure 7.

Figure 7: A preview of the robot that accompanies the human operator.

Figure 8 illustrates the situation inside the house, standing on the ground floor just before the

staircase (see Figure 5 for the exact location).
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Figure 8: Example of what the house looks like.

Figure 9: Example of a gun lying on the floor.

Figure 9 gives an example of a dangerous object (in this case a weapon), placed somewhere in the

house. The moment the robot sees a weapon, it will move towards the weapon and a dialogue will

be started between the robot and the human operator. The scenario will be paused and the robot
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will stop moving. In the particular case of the weapon encounter, the human operator will be able

to order the robot to pick up the weapon. The robot will then pick up the weapon and it will

be removed from the actual scene. The robot will then continue the house search, moving to the

next room in line. The scenario will end when the robot reaches Room 11, the last room in the house.

The description of the scenario given here is rather limited and functions mostly as a stepping

stone for the next part, where we explain the technical details and how the policies and behavior

trees connect and work together. Chapter 5 gives a more detailed step-by-step explanation of a

simulation run and is an extension of this Chapter.
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4 Policy-Driven Behavior Trees

In this Chapter the combination of policies and behavior trees will be explained. But before this

combination will be discussed in Chapter 4.3, a deeper elaboration will be given in Chapter 4.1 how

policies work and which policies are used. A complete list of all the policies used in the scenario is

given in Chapter 4.1.3. The actual behavior tree that has been used will be discussed in Chapter

4.2, describing several specific behaviors in detail.

4.1 Policies

Chapter 2.1 already gave a general description of policies and how they work in Drools. This

subchapter gives a more in-depth explanation of how policies are used in the scenario described in

Chapter 3. First, the ontology is introduced and described in Chapter 4.1.1, allowing the system to

classify basic objects, statuses and actions and how they may relate to one another. For example,

a Robot is classified as an Actor and has the status Location which tracks the location of the robot.

After the ontology, deontic logic is introduced in chapter 4.1.2. Deontic logic is used to define

the logical construction of our policies based on prohibitions and obligations and is used as a formal

method of representation for our policies. Here, the policies will be introduced and some alternative

policies are discussed that resolve conflicting policies. A complete list of the policies is given in

chapter 4.1.3. Chapter 4.1.4 explains how policies are constructed in Drools.

4.1.1 Ontology

An ontology is used to provide a shared and common understandig of a domain that can be com-

municated between different agents (humans and software). They have been developed in the field

of Artificial Intelligence to facilitate knowledge sharing and reusing this knowledge, and is used

as a terminology. An ontology organizes information by representing entities, objects and events,

along with their properties and relations, according a to a system of categories. An ontology is a

description of the concepts and relationships that can exist for agents (Fensel, 2001). Every object

is an instance of an ontology class, providing a clear structure for the data that allows software
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agents and humans to understand each other. For example, a robot is a child of an agent, or an

obligation is a child of a policy decision.

Figure 10: Ontology- tree view
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A list of the ontology classes used in this research is shown in Figure 10 and is also included in

Appendix C. Here, we see a tree view for all the ontology classes and how they relate to other

classes. A Door is an Object with the available property Opened Door . The ontology class Action

has several properties it may adhere to, such as In Progress , Planned , Finished and others. All the

classes are Java Classes.

4.1.2 Policies and Logic: a Deontic Concept

Policies, just as legal systems, are based on prohibitions, obligations and permissions. Deontic logic

is the logic that is concerned with these concepts and attempts to capture their essential logical fea-

tures. With deontic logic, it is possible to further define the logical basis of these concepts (Prakken

& Sartor, 2015). Policies can be used to allow a user to restrict the robot’s autonomy in a dynamic

way. Deontic logic uses Obligations, defined by O, and Permissions, defined by P. Oφ means

that it is obligated that φ, and Pφ means that it is permitted (or permissible) that φ. Negations,

denoted by ¬, allow the construction of prohibitions: O¬φ, meaning that it is obligated to not do φ.

There are three basic behaviors (movement, communication and searching), each with an obli-

gation rule and a prohibition rule. Obligations state that the robot is obligated, or committed,

to do the specified behavior. Prohibitions state that the robot is prohibited, or forbidden, to do

the specified behavior. These policies are not allowed to be active at the same time, or simply

cannot be active at the same time, because they are in conflict with one another. The robot cannot

adhere to the policy ObligateMove , obligating it to move, while simultaneously applying the pol-

icy ProhibitMove , prohibiting it from moving. There is either movement, or no movement. Thus,

Omove∧O¬move, where the move stands for movement, cannot be true. In order for these policies

to have some method to resolve these conflicts, an ontology is used as a terminology and a way of

classifying objects and situations that can be used in the creation of new policies.

Normally, the human operator chooses the active policy and the robot will follow. How the human

operator can choose which policies the robot should adhere to is discussed later in Chapter 4.3. In

some cases the robot is able to overrule the current active policy with its counterpart when the

robot deems that this new approach is essential for the success of the mission, depending on the
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situation. The policy ProhibitMove , issued by the human operator, may be overruled by the robot

with ObligateMove if the robot follows the policy to move outside of the house due to a specific

dangerous situation. The following rules were defined, with the following propositions: [(A) a large

fire], [(B) a bomb about to explode], [(C) a boobytrap nearby] and [(D) an object classified as

Dangerous].

The policy ObligateMove can be expressed as Omove, where move stands for movement. Thus,

the robot adheres to the policy that obligates it to move. The policy ProhibitMove can be expressed

as O¬move, since prohibiting the robot to move is considered the same as obligating it to not

move. If the human operator issues a ProhibitMove policy, the robot may choose to overrule this

policy with ObligateMove under these conditions: if there is a [A: large fire], or there is a [B : bomb

about to explode], and there is no [C : boobytrap nearby]. The idea here is that a boobytrap might

be triggered by moving the robot, causing an explosion that might harm the robot and the mis-

sion, and moving away from an exploding bomb or a large fire may result in a successful retrieval

of the robot, increasing the success rate of the mission. This corresponds to the logical syntax

(A ∨ B) ∧ ¬C ⊃ Omove, where ∨ is equivalent to the or operator, ∧ stands for the and operator

and move means to move outside of the house. Thus, if (A) there is bomb about to explode, or (B)

there is a large fire, and (C) there is no boobytrap nearby (that may be triggered by moving) then

the robot is obligated to move outside of the house. It is believed that these situations require the

robot to move to safety. There is an ontology class for a bomb which can have the property about

to explode, and there is an ontology class that defines a large fire and a boobytrap. These object-

s/situations (boobytrap, large fire) or statuses of an object (bomb (object) that is about to explode

(status)) can be recognized by the robot in the virtual environment. If these ontology classes in the

current scene correspond with this logical rule, the robot will activate the ObligateMove policy with

the corresponding behavior and moves outside. The other way around, if an ObligateMove policy is

active, the robot can overrule this with ProhibitMove if [(C) a boobytrap is nearby]. This can be

logically structured with C ⊃ O¬move, because moving may trigger the boobytrap from exploding.

The policy ProhibitCommunicate prohibits the robot to communicate with the human operator,

O¬comm, where comm stands for communicating with the human operator. This policy can be

overruled by the robot with the policy ObligateCommunicate if the robot encounters an object or
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situation with the status Dangerous, obligating the robot to communicate this to the human op-

erator. As can be seen in Figure 10, the status Dangerous is applicable for the objects weapon,

bomb, large fire and boobytrap. It is believed that if one of these situations hold true in the current

environment, it is important to communicate this with the human operator, even it it means to

ignore the current ProhibitCommunicate policy. Once these objects are within sight of the robot, the

robot knows these objects are classified as dangerous and the human operator should know about

them. So, if we have the proposition [(D) an object with the status Dangerous], we have the logical

construction D ⊃ OComm, where [(D) an object with the status Dangerous] entails the possible

sightings of a weapon, a bomb, a large fire or a boobytrap. We argue that if the human operator

issues a ObligateCommunicate policy, there are no situations that requires the robot to overrule this

policy with its counterpolicy ProhibitCommunicate .

The policy ObligateSearch , logically structured as Osearch, can be overruled with ProhibitSearch if

there is a [(C) boobytrap nearby], resulting in the logical structure C ⊃ O¬search. It is believed

that when a boobytrap is nearby and the human operator may not know about this, it is desirable

to stop searching to prevent the boobytrap from being triggered.

4.1.3 Policy List - All Policies

The following policies are all the policies used in the scenario. These are the three basic behaviors

movement, communication and searching with an obligation policy and a prohibition policy as de-

scribed in Chapter 4.1. Combining these with the exceptions described above in Chapter 4.1.2 we

get the following policies, where (A) stands for a large fire, (B) stands for a bomb about to explode,

(C) stands for a nearby boobytrap and (D) stands for an object or situation classified with the

status Dangerous. Move stands for movement, comm stands for communication and search stands

for searching. OperatorSaysMove, OperatorSaysCommunicate and OperatorSaysSearch stands for

the human operator who accompanies the robot in the house search mission and is equivalent to

the human operator issuing a specific obligation or prohibition. A prohibition is one of these obli-

gations with a negation. For example, OperatorSaysMove is an obligation and ¬ OperatorSaysMove is

a prohibition. The human operator is able to enable or disable certain policies in the Policy Engine.

How this works is further defined in Chapter 4.3.
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The complete policy list:

• DangerousImpliesCommunication policy: D ⊃ Ocomm

When there is an object with the status dangerous within sight of the robot, the robot is

obligated to communicate its findings with the human operator.

• FireOrBomb policy: (A ∨B) ∧ ¬C ⊃ Omove

When there is a fire or a bomb nearby, and no boobytrap, the robot is obligated to move

outside of the building so it may reach a safe location.

• Boobytrap policy: C ⊃ O¬move ∧O¬search ∧Ocomm

When a boobytrap is nearby, the robot is obligated to communicate with the human operator

and prohibited to move and prohibited to search (because moving or searching may trigger

the boobytrap).

• ObligateMove policy: (((operatorSaysMove) ∨A ∨B) ∧ ¬C) ⊃ Omove

This policy obligates the robot to move to a specific location in the virtual environment if

the operator orders the robot to move (defined with (operatorSaysMove)), or there is a large

fire or a bomb (specified with A∨B), and there may be no boobytrap nearby (specified with

¬C). If these conditions hold true, the ObligateMove policy becomes active.

• ProhibitMove policy: ((¬operatorSaysMove) ∨ C) ∧ ¬(A ∨B) ⊃ O¬move

This policy prohibits the robot to move and stops all movement. The policy is activated when

the operator orders the robot to stop moving or if there is a boobytrap nearby (denoted by

(¬operatorSaysMove) ∨ C), and no large fire or a bomb nearby (denoted by ¬(A ∨B)).

• ObligateCommunicate policy: ((operatorSaysCommunicate) ∨D) ⊃ Ocomm

This policy orders the robot to communicate with the human operator and is activated when

the human operator wants to activate this policy with (operatorSaysCommunicate), or if

there is a dangerous object. Because a boobytrap is defined as a dangerous object in the

ontology, it is not necessary to include the boobytrap individually.

• ProhibitCommunicate policy: ((¬operatorSaysCommunicate) ∧ ¬D) ⊃ O¬comm

This policy prohibits the robot to communicate with the human operator and may be applied

when a stressful situation requires the full attention of the human operator, but may only be
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fired when there is no dangerous object nearby and the human operator consciously wants to

activate this policy.

• ObligateSearch policy: ((operatorSaysSearch) ∧ ¬C) ⊃ Osearch

This policy obligates the robot to search for weapons or other dangerous objects that are

within sight of the camera of the robot, as long as the human operator wants to activate this

policy and there is no boobytrap nearby.

• ProhibitSearch policy: ((¬operatorSaysSearch) ∨ C) ⊃ O¬search

This policy prohibits the robot to search for weapons or other dangerous objects, and may

only be activated when the human operator wants to activate this policy or if there is a

boobytrap nearby.

The Boobytrap , FireOrBomb and DangerousImplicesCommuncation policies will be (forcefully) acti-

vated by the robot if their conditions hold true, even if it means that it will overrule the opposite

policy currently activated by the human operator. They will also prevent the activation of the

opposing policy by the human operator.

4.1.4 Policies in Drools

Two opposing policies will be explained how they technically work; the ObligateMove policy and

the ProhibitMove policy, followed by the conflict-resolving policies DangerousImpliesCommuncation ,

FireOrBomb and Boobytrap . A complete list of the policies in Drools code can be found in Appendix

A.
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1 rule ”ObligateMove”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists LargeFire ( ) or exists Bomb( aboutToExplode

)

4 not BoobyTrap ( )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveObl igat ionPol i cyDec i s ion ob l i g a t i o n = new

MoveObl igat ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( o b l i g a t i o n ) ;

10 end

ObligateMove policy: (((operatorSaysMove) ∨A ∨B) ∧ ¬C) ⊃ Omove

This policy obligates the robot to move to a specific location in the virtual environment if the op-

erator orders the robot to move, or there is a large fire or a bomb (specified with A∨B), and there

may be no boobytrap nearby (specified with ¬C). If these conditions hold true, the ObligateMove

policy becomes active.

A policy is formulated in the way as described in Chapter 2.1: when certain conditions are met,

then do some tasks. The Policy ObligateMove is interpreted as follows. The code

PolicyDecision(appliesToActor == $robot, appliesToAction == $action)or exists LargeFire()

or exists Bomb(aboutToExplode) is the Drools code for the deontic logic (operatorSaysMove)∨A∨B.

With this, the policy checks if the human operator wants to activate this policy, or if there is a large

fire or a bomb about to explode. The policy then makes sure that there is no boobytrap nearby,

since moving the robot with a boobytrap nearby may trigger the boobytrap. This is done with

the Drools code not BoobyTrap() and is the same as the deontic logic ¬C. The variable $robot is

defined by the Java Class (or ontology class) Robot() and makes sure that this policy applies to the

robot. The $action variable is linked to the Java Class MoveAction() . If these conditions are met

(the policy applies to the robot and involves the action to move), then a new obligation is defined

with

MoveObligationPolicyDecision obligation = new MoveObligationPolicyDecision($robot, $action); , where the $robot

variable is linked to the Robot() and the $action variable links to the class MoveAction() that makes
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sure we are creating an obligation for movement. Finally, this new obligation for the robot with

the move action is inserted in the active policy agenda with the code insert(obligation) .

1 rule ”ProhibitMove”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists BoobyTrap ( )

4 not LargeFire ( ) or not Bomb( aboutToExplode )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveProh ib i t ionPol i cyDec i s ion p r oh i b i t i o n = new

MoveProh ib i t ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( p r oh i b i t i o n ) ;

10 end

ProhibitMove policy: ((¬operatorSaysMove) ∨ C) ∧ ¬(A ∨B) ⊃ O¬move

The policy ProhibitMove is roughly the same as the policy ObligateMove . The policy checks if the

policy is activated by the human operator or if there is a boobytrap nearby. Then the robot and

the action are defined. If these conditions are met, a new prohibition policy is created and inserted

in the active agenda. In short, a PolicyDecision can be an obligation or a prohibition applied to a

certain Actor, specifying a certain Action

1 rule ”DangerousImpliesCommunication”

2 when

3 exists DangerousObject ( )

4 $robot : Robot ( )

5 $ac t ion : CommunicateAction ( )

6 then

7 CommunicateObl igat ionPol icyDecis ion ob l i g a t i o n = new

CommunicateObl igat ionPol icyDecis ion ( $ ro bo t , $ac t ion ) ;

8 insert ( o b l i g a t i o n ) ;

9 end

DangerousImpliesCommunication policy: D ⊃ Ocomm. When there is an object with the status

dangerous within sight of the robot, the robot is obligated to communicate its findings with the

human operator.
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The DangerousImpliesCommunication policy works the same as the ObligateCommunicate policy spec-

ified in Appendix A, the only difference found on line 4, exists DangerousObject() , that checks if a

dangerous object exists. When the robot moves in the virtual environment and a dangerous object

is within sight of the robot, this exists DangerousObject() becomes true and the conditions for this

policy are met. If this is the case, a new obligation is created with

CommunicateObligationPolicyDecision obligation = new CommunicateObligationPolicyDecision($robot, $action);

that obligates the robot to communicate. The variable $action : CommunicateAction() is used here

so the obligation knows the variable $action refers to the CommunicateAction() .

1 rule ”FireOrBomb”

2 when

3 exists LargeFire ( ) or exists Bomb( aboutToExplode )

4 not Boobytrap ( )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveObl igat ionPol i cyDec i s ion ob l i g a t i o n = new

MoveObl igat ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( o b l i g a t i o n ) ;

10 end

FireOrBomb policy: (A ∨ B) ∧ ¬C ⊃ Omove. When there is a fire or a bomb nearby, and no

boobytrap, the robot is obligated to move outside of the building so it may reach a safe location

by moving to safety.

The FireOrBomb policy checks if there is a fire or a bomb about to explode with the variables

exists LargeFire() or exists Bomb(aboutToExplode) and makes sure there is no boobytrap with not Boobytrap() .

The action for movement has been specified: $action : MoveAction() . This action is then used to

create an obligation: a move obligation

MoveObligationPolicyDecision obligation = new MoveObligationPolicyDecision($robot, $action); that uses $action ,

the action that entails the MoveAction() .
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1 rule ”Boobytrap”

2 when

3 exists Boobytrap ( )

4 $robot : Robot ( )

5 $act ion1 : MoveAction ( )

6 $act ion2 : SearchAction ( )

7 $act ion3 : CommunicateAction ( )

8 then

9 MoveProh ib i t ionPol i cyDec i s ion p r oh i b i t i o n = new

MoveProh ib i t ionPol i cyDec i s ion ( $ ro bo t , $act ion1 ) ;

10 insert ( p r oh i b i t i o n ) ;

11 Sea r chProh ib i t i onPo l i cyDec i s i on p r oh i b i t i o n = new

Sea r chProh ib i t i onPo l i cyDec i s i on ( $ ro bo t , $act ion2 ) ;

12 insert ( p r oh i b i t i o n ) ;

13 CommunicateObl igat ionPol icyDecis ion ob l i g a t i o n = new

CommunicateObl igat ionPol icyDecis ion ( $ ro bo t , $act ion3 ) ;

14 insert ( o b l i g a t i o n ) ;

15 end

Boobytrap policy: C ⊃ O¬move ∧O¬search ∧Ocomm. When a boobytrap is nearby, the robot

is obligated to communicate with the human operator and prohibited to move and prohibited to

search (because moving or searching may trigger the boobytrap).

The Boobytrap policy checks if there is a boobytrap with exists Boobytrap() . Because the policy re-

sults in two prohibitions (no movement and no searching) and one obligation (obligated to communi-

cate), three action variables are defined that can be used in the corresponding prohibitions and obli-

gation policy decisions. $action1 : MoveAction() , corresponds with the MoveProhibitionPolicyDecision

prohibition, $action2 : SearchAction() corresponds with the SearchProhibitionPolicyDecision prohibition

and $action3 : CommunicateAction() corresponds with the CommunicateObligationPolicyDecision obliga-

tion.

The choice for these behaviors and their prohibition and obligation policies was made to illus-

trate this case study. The policies correspond with the behaviors in the behavior tree, and a policy

corresponding to communication, movement or searching, will atleast occur once during a test run

in the virtual environment. These basic behaviors are described in detail in Chapter 4.2.1.
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4.2 Behavior Tree

Creating a behavior tree in Behavior Designer 15 in Unity gives us the flexibility of an intuitive

visual editor. Basic behaviors can be created and linked together, combining these solitary behavior

actions into adaptive, responsive behavior patterns. Examples of some basic behavior actions could

be Within Sight , Move Towards Location and Pick up Object . Linking these behaviors together could

create many different behavior patterns. For example, if a weapon is within sight, then move

towards it and pick up the object. A different example could be: if a fire is within sight, then move

towards the exit of the building.

4.2.1 Behavior Tree - Basic Behaviors

The following behaviors (actions and conditional behaviors) have been specified and used in our

scenario. There are many more behaviors that can be implemented, but those were not deemed

necessary for this scenario. The decision for these behaviors was a conscious decision to limit the

complexity of the framework.

Move Towards Location. Moves towards a specific location, specified by a tag.

Figure 11: Properties of the Move Towards Location node

Figure 11 shows the properties of the Move Towards Location node on the left, and the node itself

on the right. When a node is selected in the behavior tree, the properties of this particular node

can be changed. The property screen is unique for each node and contains different property fields,

15https://www.opsive.com/assets/BehaviorDesigner/
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depending on the type of node that is currently selected. The property field Move Towards String de-

fines where to go and corresponds to an (in)visible object or location in the 3D environment with a

certain tag. This tag is a string of text and can be used in this Move Towards String property field. A

recognition point is placed outside the house with the tag StartPoint . The node returns SUCCESS

once the robot is in close proximity to the location or object. The Can I Move Towards Location

checkbox determines if this node can be fired at all, or not. The status of this checkbox is decided

by the policy that is currently active; see Chapter 4.1. If the policy ObligateMove is active, this

checkbox will be checked and the Move Towards Starting Point node will be able to fire. If the policy

ProhibitMove is active, this node will not be active and automatically returns FAILURE . More

about this policy influencing the behavior tree can be found in Chapter 4.3. The Message to Console

property field sends the corresponding string to the console for logging and error reporting.

Human Instructions. Communicates a message to the human operator.

Figure 12: Human Instructions node - properties

Figure 12 shows the properties of the Human Instructions node. This is roughly the same as the

Move Towards Location node. There is a checkbox corresponding to the currently active policy. If

the policy ObligateCommunicate is active, the checkbox is checked, allowing this node to be run. The

policy ProhibitCommunicate unchecks this checkbox, returning FAILURE upon running this node.

The property field Human Instructions Text is the text that is displayed while playing the scenario.

The property field Text on Button is a string that is printed on a clickable button. Once this but-

ton is clicked on the screen, the node returns SUCCESS and the behavior tree will continue with

the next node in line. The Message to Console property field sends the corresponding string to the

console for logging and error reporting.
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Wait. Waits for a specific amount of seconds.

Figure 13: Wait node - properties

Figure 13 shows the properties of the Wait node. This node waits for a number of seconds,

specified in the Wait Time property field. When the number of seconds has passed, the node re-

turns SUCCESS .

Within Sight. This behavior checks if a certain object or item is within sight.

Figure 14: Within Sight node - properties

Figure 14 gives us an example of the Within Sight node. It scans the visible area around itself,

comparable to how vision or a camera works. Once an object is within sight that has a tag that

corresponds to the tag specified in the Target Tag property field, the node returns SUCCESS .
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Open Door. Opens a door. This node is a behavior that only works when standing in close

proximity to a closed door.

Figure 15: Open Door node - properties

Figure 15 shows the Open Door node. It has only one property field. The Target Tag property

field uses a shared variable that is defined earlier in the behavior tree. The action to open a

door is dependent on an earlier node that defines which door we are talking about, most likely

a Move Towards Location node that moved towards a specific door. Then the Open Door node can

open this specific door.

4.2.2 Behavior Tree - Sub-Trees Explained

The behavior tree will now be discussed, zooming in on different sub-trees within the complete

tree.
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Figure 16: Behavior Tree - Entry

Figure 16 is the main tree that contains the rest of the sub-trees. The Entry node acts as the

root of the tree and that is its only function. The Behavior Tree Reference is a node that contains

another tree, minimizing the current visible tree for an optimized overview of the total tree (since

the complete tree that is completely collapsed, and thus not minimized, can become very large).

The Selector node is similar to an ’or’ operator and will return SUCCESS as soon as one of its child

nodes returns with SUCCESS . If a child node returns FAILURE then it will sequentially run the

next task. If both child task returns FAILURE then the selector task will return FAILURE .

The Sequence node on the right of the selector task in Figure 16 is a fail-safe behavior that

triggers when the complete behavior tree on the left fails. The sequence node will then re-

sort to a single message ’Scenario aborted - Returning to starting point’ (defined in the node
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Human Instructions ) that returns the robot to the starting point outside the house (defined in the

node Move Towards Starting Point ) and stops the behavior tree. This fail-safe behavior will only be

triggered when the Behavior Tree Reference returns FAILURE ; this will normally (and ideally) not

happen.

Figure 17: Behavior Tree Reference

The Behavior Tree Reference contains the rest of the behavior tree and the node is shown in Figure

17. The external behavior under Element 0 is called MoveThroughRooms . Variables can be defined

by increasing the size and appointing a variety of different variables that are then used in the

complete tree entailed by the behavior tree reference node. For example, a Bool variable (true

or false) named CanIOpenTheDoor that is checked will keep this checkbox checked for every node

in this behavior tree reference with the same variable name CanIOpenTheDoor . The behavior tree

within this reference is too large to display here. See Appendix E for a visual representation. This

sub-tree includes several other sub-trees, mainly behaviors that are created to express a specific

behavior.
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Figure 18: Sub-tree - front door behavior

The first in line is the sub-tree that defines the behavior that deals with the front door. Figure 18

is this sub-tree in a collapsed state. This sub-tree checks if the front door is within sight with the

Within Sight node. If this node is triggered it returns SUCCESS and the Human Instructions node is

triggered. The robot sends a message that it spotted the front door and after the human operator

clicks the button to continue the mission, the node’s status changes to SUCCESS and the robot will

move towards the front door with the Move Towards Door node. The last Human Instructions node

communicates that it reached the door and it will continue the mission.
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Figure 19: Sub-tree - moving through rooms

Figure 19 shows the sub-tree MoveThroughRooms . The right part of the selector node will be active

first, in this case the Move Towards Room node. This sub-tree has a selector node where the left

sequence is of a lower priority abort (defined by the icon in the top left corner in the Sequence

node). Behavior trees can be organized from more important tasks to least important tasks. A

lower priority abort will re-evaluate when any task to the right of the current branch is active.

If a door is obstructing the movement towards the room, the right part of the selector node is

aborted and the left part starts running. It will open a dialogue with the Human Instructions node,
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communicating that a door is in its path and that it will open the door. After the human operator

clicks the button to open the door, the Open Door action will open the door and the robot will

eventually continue moving towards the room.

Figure 20: Sub-tree - Check the Stairs

Figure 20 contains the sub-tree that checks the stairs for boobytraps. It communicates with the

user through the Human Instructions nodes before, during and after the scan. The Wait nodes will

be running for 3 seconds each before returning SUCCESS .

4.3 Combining Policies and Behavior Trees

The combination of policies and behavior trees is done in several steps. As is shown in Chapter 4.2,

sub-trees are captured in behavior tree references. A behavior tree reference node can hold a variety

of variables, including those that communicate with the policies written in Drools. The same is

applicable to single nodes. See figure 11 for the Move Towards Location node or figure 12 for the

Human Instructions node. These nodes work with a bool that if checked, the Move Towards Location

node or Human Instructions node are allowed to be executed. If unchecked, they will automatically

return FAILURE . The true-or-false states are influenced by the Drools policies. When the policy
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ObligateMove is active, the bool in the behavior tree will be true and the corresponding nodes

are allowed to have the status RUNNING or SUCCESS . Once the policy ProhibitMove is active,

the bool in the behavior tree will return false and the corresponding node or sub-tree will return

FAILURE , continuing with the next node or sub-tree in line.

In collaboration with TNO, the Policy Engine TNO was developed, or PET in short. The main

function of PET is to infer decisions for all connected agents based on available ontology classes.

An ontology defines the relations between objects by inheritance. For example, a Robot is a child

of an Agent , or a Bomb is a child of a Dangerous object and can have the status About to explode .

Every object used is an instance of an ontology class, creating a clear structure of hierarchy and

relations for both the user and the system to understand how data and objects are related to each

other. Policies are not limited to a specific ontology, but do require a basic ontology. These are

the ontology classes Action and Actor , allowing policies to always address an agent as an actor

performing a certain action.

Figure 21: Policy Engine HRT

The complete model can be visualized as shown in figure 21. The agent (the robot) asks for policy

decisions to the policy engine. The human interacts with the robot, and defines policies using the

policy engine. The agent is connected to Unity, the virtual environment in which it acts. The agent

53



shares its knowledge in the Drools knowledge base. Objects in the virtual environment are classi-

fied, corresponding with ontology classes in the ontology knowledge base. This way, the robot may

encounter a weapon and knows it is a weapon, and what its relation is compared to other objects.

A boobytrap can be recognized in the virtual environment, triggering the Boobytrap policy that

overrules any other policies previously activated.

PET comes with a user interface, PETUI in short. The PETUI is a Java application written

in Eclipse 16. This policy engine hosts the policies written in Drools and is capable of communi-

cating these policies with Unity through a websocket connection. An asset from the Unity Asset

Store called Socket.IO 17 was used to establish this connection. Websockets provide a persistent

connection between a client and server that both parties can use to start sending data at any time.

They provide a persistent, low latency connection that can support transactions initiated by either

the client or server.

A brief description of the PETUI will follow. These can also be found in Appendix D, showing

them with annotations and without annotations.

16http://www.eclipse.org/
17https://www.assetstore.unity3d.com/en/#!/content/21721
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Figure 22: PETUI - overview of the active policies.

Figure 22 shows an overview of the PETUI with the policies that are currently active. Clicking

a policy will show the Drools rule in code. New policies can be loaded into the policy engine,

creating different strategies for a different approach. The specific obligation or prohibition policy

that is currently active can also be overruled by its opposing policy by clicking the green or red

button at the end of each line, switching the approach from an obligation towards a prohibition or

the other way around. This way, the human operator can change the appropriate strategy at real-

time by controlling basic behaviors for the robot. As discussed, the DangerousImpliesCommunication ,

Boobytrap and FireOrBomb policies are activated when certain situations arise during the house

search. When this happens, the robot will overrule the previously activated policies by the human

operator and makes it temporarily impossible for the human operator to change these policies. How

they are activated and how they correspond with the behavior tree is discussed in Chapter 5.
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Figure 23: PETUI - overview of the active ontology classes.

Figure 23 shows the PETUI with the ontology classes that are used in the scenario and that

are active. A full list of the ontology classes in a tree view used can be found in Appendix C.

Objects in the virtual environment are classified with tags, so that when the robot encounters

a bomb, it knows this is classified as a dangerous object. With ontology classes, the robot can

understand its environment and may overrule policies issued by the human operator if it deems this

is beneficial.
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Figure 24: PETUI - overview of the active instances.

Figure 24 shows the PETUI with the active instances. Currently, there are not many instances

included in the virtual environment. These instances may vary, depending on the situation, and

they hold some knowledge about variables that can change during the house search mission. Here,

we illustrated two instances, communicating the location of the human operator and the robot,

and the battery percentage of the robot. When using multiple robots, they will also be listed

here.
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Figure 25: PETUI - overview of the log.

Figure 25 represents the log of the PETUI. The log shows an event that has occurred at a certain

point of time. The log can be refreshed with the use of a button and will automatically be reset

when the policy engine is closed.
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5 Simulation Run

In this chapter, a detailed description is given on each step that the human operator will take

and how the scenario develops through time. First, the policy engine will have to be launched.

This is done in a stand-alone Java application where the websocket client is started that allows the

communication between Unity and the policies written in Drools.

Figure 26: Simulation run - front door behavior.

When the policy engine is active, the virtual world in Unity can be activated. This can be done in

Unity or as a stand-alone application. When both the virtual environment in Unity and the policy

engine are active, the simulation run is started. Figure 26 shows the beginning of the simulation

run. The policy engine is shown as a stand-alone application in the top-right corner and the sub

tree of the behavior tree that corresponds with the behavior happening on-screen is shown in the

top-left corner. The first action of the robot is to check if the front door is within sight. If this is

true, the robot will issue a communication screen with the human operator (the current active node

in Figure 26), followed by moving towards the front door. When the robot is at the front door, the

human operator is asked to continue the mission when ready.
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Figure 27: Simulation run - movement to hallway.

Figure 27 shows the movement from the front door to the hallway. Because there is no door

obstructing the possibility to reach this hallway location, the right side of the behavior tree is

executed. See Figure 19 in Chapter 4.2.2 for a reminder how this particular sub-tree works.

Figure 28: Simulation run - boobytrap check.

Figure 28 is executed after reaching the hallway. The robot performs two boobytrap checks: one
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for the stairs going up and one for the route towards the second door. The inverter node makes

sure that if there are no booytraps found, the node returns SUCCESS so the tree can fire the next

node in line. If there is a boobytrap, this particular sub-tree returns FAILURE and the boobytrap

policy will be activated.

Figure 29: Simulation run - consolidation point and search order.

Figure 29 shows the situation in the first room. The robot creates a consolidation point and is

visualized in the virtual environment with a large floating arrow. Then the order of searching the

room is defined: the robot scans the left area of the room, the human operator will search the right

side of the room.

The robot will continue to walk through the house, moving from room to room as shown in Chapter

3.2. Instead of discussing each single room (which would be a repetitive process), the following sce-

narios describe particular situations that may occur during the simulation run in different rooms.

These situations entail the possibility of encountering a boobytrap (triggering the Boobytrap pol-

icy), a large fire or a bomb about to explode (triggering the policy FireOrBomb policy) and a weapon

(classified as a dangerous object, triggering the DangerousImpliesCommunication policy).
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Figure 30: Simulation run - boobytrap.

Figure 30 shows the activation of policies in the policy engine and the corresponding behavior

tree when a possible boobytrap has been spotted. The robot is able to recognize a boobytrap

because the object in the virtual environment has a tag boobytrap and the ontology tells the robot

how to classify and interpret a boobytrap in relation to other objects. See Appendix C for an

overview of the ontology. When a boobytrap is spotted, a specific sub-tree becomes active that

handles boobytraps. As discussed in Chapter 4.1.2, when the robot encounters a boobytrap, the

Boobytrap policy enforces the robot to adhere to a specific set of policies: the robot is obligated

to communicate, and prohibited to move and prohibited to continue searching. This is visualized

in the policy engine as can be seen in Figure 30. The buttons to change a policy are turned grey

to indicate that the human operator is not allowed to change these policies until the boobytrap

sub-tree has has been completed.
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Figure 31: Simulation run - dangerous object.

Figure 31 shows the behavior tree for a dangerous object. The robot starts a sequence when a

dangerous object is within sight, in this case a weapon. The robot moves towards the specific

object and communicates its findings with the human operator. Due to the ontology specified in

the policy engine, the robot knows a weapon is classified as a dangerous object. See Appendix C

for the complete ontology. In this case, the policy DangerousImpliesCommunication becomes active,

where the robot overrules any policies previously specified by the human operator and forcefully

activates the ObligateCommunicate policy. See Figure 31 for the activation in the policy engine for

this ObligateCommunicate policy that momentarily cannot be turned off. The human operator can

issue the command to pick up the weapon. After this, the robot continues the search and the human

operator is now able to overrule the ObligateCommunicate policy with the ProhibitCommunicate policy

if he or she deems this necessary.
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Figure 32: Simulation run - large fire.

Figure 32 shows the behavior tree for a bomb about to explode or a large fire, as long as there is

no boobytrap within sight. This corresponds with the FireOrBomb policy, see Chapter 4.1.4 for a

reminder for more information. In this particular case, a bomb that is about to explode has been

spotted. The current behavior tree checks if a large fire or a bomb about to explode is within sight.

If so, it moves closely enough to examine the situation. It will then open a communication screen

with the human operator, stating it will move outside of the building to avoid damage while also

advising the human operator to do the same. Once outside, it will ask the human operator if he

or she wants to proceed with the mission. As can be seen in the policy engine in Figure 32, the

policies ObligateMove and ObligateCommunicate are active and cannot be overruled by the human

operator.
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6 Conclusion & Discussion

The research questions formulated in Chapter 1.4 were:

1. How can a framework for robots be created that simplifies the off-line creation and modifica-

tion of adaptive behavior?

(a) How can this technically be realized?

(b) How can this be operationally embedded?

The adaptive behavior was achieved by combining policies and behavior trees, where certain policies

based on an ontology allowed the robot to overrule any policies previously issued by the human

operator. The technical realization of this framework has been done by writing policies in Drools

and creating a behavior tree in Unity, with sub-trees representing specific behaviors in a modular

fashion. The combination of these two was made possible by the Policy Engine TNO (PET), con-

necting the policies and the behavior trees through a websocket connection. In a small scenario we

were able to create a collaborative task between a human operator and a robot, where a virtual

environment allowed them to collaboratively perform a house search mission. This scenario could

be implemented with the use of a policy engine, with policies written in Drools, and a behavior tree

implementation in Unity. The policy engine and the behavior tree made it possible to implement

adaptive behavior without losing explainability, where the robot followed the strategy chosen by

the human operator, with some exceptions where the robot overruled the human operator when it

deemed these new strategies to be more important. These exceptions have been written as policies

in Drools and functioned well when used simultaneously with the other policies. The complete

house search and the triggering of these specific policies has been proven to work in Chapter 5,

where a simulation run has been discussed step by step. The case study discussed in this thesis

shows that it is possible to combine policies and behavior trees in a scenario, creating a framework

for the creation of adaptive behavior. Because the framework was developed in close collaboration

with domain experts working with TNO, it has been found that the framework is operationally

embedded and could hold value in future missions.

The complexity of the behavioral model of the agent correlates with the complexity of the en-

vironment. A more complex environment has more variables influencing the effectiveness of the
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strategy chosen by a robot. It was a conscious choice to restrict the possible behaviors and policies

to the ones discussed in this thesis, to research the value of a framework that combines behavior

trees and policies. A more complex, uncontrollable environment is believed to lead to requiring

more behaviors and policies (in quantity and quality) in order for the agent to behave successfully.

To summarize, three policies and their counterparts were chosen to illustrate this scenario. Each

obligation policy has an opposite prohibition policy. The policies dictate about (1) moving, (2)

communicating and (3) searching. It is not possible for a robot to apply to both the ObligateMove

and the ProhibitMove policy, since one dictates the robot should move, while the other dictates the

robot is not allowed to move. Several policies were introduced that function as a conflict-solving

mechanism, giving the robot the possibility to autonomously overrule any policies issued by the

human operator in certain specific situations. It is believed that following these strategies is crucial

for the success rate of the mission and the robot will always adhere to these specific rules. By using

an ontology, the robot is able to classify and categorize objects in the virtual environment in rela-

tion to other objects. The use of an ontology gives the robot a sense of understanding the current

situation, choosing its own strategy over that of the human operator if it deems this necessary. This

way, the human operator may activate the policy ObligateMove , while the robot may overrule this

policy with ProhibitMove if it believes this policy to be crucial at that moment. Our case gives an

example that this may happen if a boobytrap is nearby, since movement may trigger the trap. The

Boobytrap policy also makes sure the robot stops searching for any other objects and obligates the

robot to communicate the finding of the boobytrap with the human operator.

66



Discussion

There is no consensus yet amongst researchers on what is the best way to create adaptive robotic

behavior. Current research of robotic behavior focusses on behavior-based robotics with a form of

machine learning, where the robot learns how to behave with data in a given scenario. This can

be done by trial and error, such as with reinforcement learning, or rule-based machine learning,

where the robot identifies, learns or evolves rules to store, manipulate or apply knowledge (Witten,

Frank, Hall, & Pal, 2016). There are many applications of machine learning to facilitate adaptive

robotic behavior. Our approach is not focused on the learning capability of the robot, but more on

the ease of implementation of adaptive behavior for the robot. A robot in a militaristic situation

is not allowed to learn by trial and error, since an error could lead to severe injuries or even death.

Behavior strategies should be pre-defined, where the robot is able to do what the human operator

wants it to do, but overrule their authority in certain situations. It should always have a certain

set of behaviors that allow it to behave autonomously to a certain extent. Ideally, the realization of

this framework should be a workable example that can be used in future militaristic scenarios. The

virtual test environment has been created in collaboration with TNO and other domain experts and

resembles a real world scenario that can be used to gain insights in implications of these robots on

current and future operating procedures. It will also enable the Defence organization to experience

a wider range of future operational robot scenarios, expanding potential beneficial use of robots

in the future. The combination of policies in Drools and behavior trees appears to be a novel

concept and could encourage the community to further explore the possibilities and boundaries of

this policy-driven behavior tree combination.

The Policy Engine TNO (PET) has been developed by TNO and its development was not part of

this master thesis. The PET and the PETUI have not been developed to its full potential. The

PETUI as discussed in Chapter 4.3 and shown in Appendix D functions as a guideline to how the

PETUI should work in its final state. The PET was limited in its application power while this thesis

was written during the research period at TNO. Because of time constraints and implementation

difficulties, the deontic logic rules described in detail in Chapter 4.1.2 were implemented in PET,

but were developed after the research period at TNO. The implementation of the ontology and these

extra policies was done without the guidance of TNO. Because of my limited knowledge on Java

(the PET was written in Java), extra time was needed to become familiar with the policy engine
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and the connection with the behavior tree in Unity. The implementation of some conflict-resolving

policies and the usage of the ontology was deemed necessary for this research and in the final state,

it was possible to implement these successfully. These extra policies illustrate the possible strategies

the robot could use to handle conflicting policies, by overruling the human operator.

Policies generally require application-specific information to reason over, forcing researchers to

create policy languages that are bound to the domains for which they were developed. This pre-

vents policy languages from being flexible or being applicable across domains. In order to enable

agents to function well in dynamic and pervasive environments, which consist of different domains

and systems and to understand and interpret policies correctly, we propose that they are presented

in a semantic language like OWL 18. Currently, the ontology-data is stored in the Drools knowledge

base and each ontology class is written in Java. A semantic language like OWL allows different

systems to share a model of policies, roles and other attributes, while the current ontology base is

specifically designed for the purpose of this research. Future research may also focus on expanding

the ontology knowledge base, creating a more diverse scenario that allows for more realistic adaptive

behavior.

It is much easier to write and read rules than to write and read code. Future research may focus on

applying Domain Specific Languages (DSLs). By creating Domain Specific Languages that model

the problem domain, it is possible to write rules that are very similar and closely correlated with

natural language 19. By creating a DSL file for our Drools rule database, it is possible to transform

Drools constructs to DSL sentences. Currently, there is no usage of a DSL due to implementa-

tion difficulties. Integrating a DSL into the Drools rule base will make it easier to read and write

rules and could prove to be beneficial for the simplification of creating and changing current policies.

In the real world, a house search is often executed in a squad with multiple team members. This

case study only uses one robot and one human operator. To create a framework that operates in

a more realistic scenario, it is recommended to simulate a house search with more than one robot

and/or human team member. This has currently not been investigated, because the aim was to

18https://www.w3.org/OWL/
19https://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/ch05.html#d0e6217
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create a workable example for the combination of policies and behavior trees. The choice for one

robot and one human operator was also to limit the complexity of the model. The usage of multiple

robots will require a different policy set and the active policy set may be different per robot. The

current policy engine is not capable of processing these kind of situations. Furthermore, it will be

difficult to implement this framework in a real world scenario. Currently, the recognition of objects

by the robot is simply done when an object with a specific tag (such as weapon) is within sight of

the robot. The robot will always recognize every object within sight as the correct object. In a

real world application, this will prove to be much more difficult since there is much more ambiguity

in interpreting situations correctly. A boobytrap is supposed to be hidden until triggered, and

the application of computer vision will prove to be difficult to recognize a boobytrap correctly in

these situations. Looking back, it might be more realistic to create a set of policies that adhere to

more easily-measured objects or situations. For example, the measurement of temperatures through

certain sensors may lead to the conclusion that a fire is spreading, instead of recognizing objects

through vision.
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Appendix

A Drools Policies - Code

1 rule ”DangerousImpliesCommunication”

2 when

3 exists DangerousObject ( )

4 $robot : Robot ( )

5 $ac t ion : CommunicateAction ( )

6 then

7 CommunicateObl igat ionPol icyDecis ion ob l i g a t i o n = new

CommunicateObl igat ionPol icyDecis ion ( $ ro bo t , $ac t ion ) ;

8 insert ( o b l i g a t i o n ) ;

9 end

1 rule ”FireOrBomb”

2 when

3 exists LargeFire ( ) or exists Bomb( aboutToExplode )

4 not Boobytrap ( )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveObl igat ionPol i cyDec i s ion ob l i g a t i o n = new

MoveObl igat ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( o b l i g a t i o n ) ;

10 end
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1 rule ”Boobytrap”

2 when

3 exists BoobyTrap ( )

4 $robot : Robot ( )

5 $act ion1 : MoveAction ( )

6 $act ion2 : SearchAction ( )

7 $act ion3 : CommunicateAction ( )

8 then

9 MoveProh ib i t ionPol i cyDec i s ion p r oh i b i t i o n = new

MoveProh ib i t ionPol i cyDec i s ion ( $ ro bo t , $act ion1 ) ;

10 insert ( p r oh i b i t i o n ) ;

11 Sea r chProh ib i t i onPo l i cyDec i s i on p r oh i b i t i o n = new

Sea r chProh ib i t i onPo l i cyDec i s i on ( $ ro bo t , $act ion2 ) ;

12 insert ( p r oh i b i t i o n ) ;

13 CommunicateObl igat ionPol icyDecis ion ob l i g a t i o n = new

CommunicateObl igat ionPol icyDecis ion ( $ ro bo t , $act ion3 ) ;

14 insert ( o b l i g a t i o n ) ;

15 end

1 rule ”ObligateMove”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists LargeFire ( ) or exists Bomb( aboutToExplode

)

4 not BoobyTrap ( )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveObl igat ionPol i cyDec i s ion ob l i g a t i o n = new

MoveObl igat ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( o b l i g a t i o n ) ;

10 end
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1 rule ”ProhibitMove”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists BoobyTrap ( )

4 not LargeFire ( ) or not Bomb( aboutToExplode )

5 $robot : Robot ( )

6 $ac t ion : MoveAction ( )

7 then

8 MoveProh ib i t ionPol i cyDec i s ion p r oh i b i t i o n = new

MoveProh ib i t ionPol i cyDec i s ion ( $ ro bo t , $ac t ion ) ;

9 insert ( p r oh i b i t i o n ) ;

10 end

1 rule ”ObligateCommunicate”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists DangerousObject ( )

4 $robot : Robot ( )

5 $ac t ion : CommunicateAction ( )

6 then

7 CommunicateObl igat ionPol icyDecis ion ob l i g a t i o n = new

CommunicateObl igat ionPol icyDecis ion ( $ ro bo t , $ac t ion ) ;

8 insert ( o b l i g a t i o n ) ;

9 end

1 rule ”ProhibitCommunicate”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) and not DangerousObject ( )

4 $robot : Robot ( )

5 $ac t ion : CommunicateAction ( )

6 then

7 CommunicateProhib it ionPol icyDecis ion p r oh i b i t i o n = new

CommunicateProhib it ionPol icyDecis ion ( $ ro bo t , $ac t ion ) ;

8 insert ( p r oh i b i t i o n ) ;

9 end
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1 rule ”Obl igateSearch ”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) and not BoobyTrap ( )

4 $robot : Robot ( )

5 $ac t ion : SearchAction ( )

6 then

7 Sea rchOb l i ga t i onPo l i cyDec i s i on ob l i g a t i o n = new

Sea r chOb l i ga t i onPo l i cyDec i s i on ( $ ro bo t , $ac t ion ) ;

8 insert ( o b l i g a t i o n ) ;

9 end

1 rule ”Proh ib i tSearch ”

2 when

3 Po l i cyDec i s i on ( appl iesToActor == $ ro bo t , appl iesToAct ion ==

$ac t ion ) or exists BoobyTrap ( )

4 $robot : Robot ( )

5 $ac t ion : SearchAction ( )

6 then

7 Sea r chProh ib i t i onPo l i cyDec i s i on p r oh i b i t i o n = new

Sea r chProh ib i t i onPo l i cyDec i s i on ( $ ro bo t , $ac t ion ) ;

8 insert ( p r oh i b i t i o n ) ;

9 end
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B Unity - C# scripts

B.1 WithinSight.cs

1 us ing UnityEngine ;

2 us ing BehaviorDes igner . Runtime ;

3 us ing BehaviorDes igner . Runtime . Tasks ;

4

5 pub l i c c l a s s WithinSight : Condi t iona l

6 {

7 // How wide of an angle the object can see

8 pub l i c f l o a t f ie ldOfViewAngle ;

9

10 // The tag of the targets

11 pub l i c s t r i n g targetTag ;

12

13 // Set the target variable when a target has been found so the

subsequent tasks know which object is the target

14 pub l i c Transform ta rg e t ;

15

16 pub l i c s t r i n g messageToConsole ;

17

18 // A cache of all of the possible targets

19 p r i va t e Transform [ ] po s s i b l eTa rg e t s ;

20

21 i n t t e s t v a l = 0 ;

22

23 pub l i c ov e r r i d e void OnAwake( )

24 {

25 // Cache all of the transforms that have a tag of targetTag

26 var t a r g e t s = GameObject . FindGameObjectsWithTag ( targetTag ) ;

27 po s s i b l eTa rg e t s = new Transform [ t a r g e t s . Length ] ;

28 f o r ( i n t i = 0 ; i < t a r g e t s . Length ; i++) {

29 po s s i b l eTa rg e t s [ i ] = t a r g e t s [ i ] . t rans form ;

30 }

31 }

32

33 pub l i c ov e r r i d e TaskStatus OnUpdate ( )

34 {
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35 // Return success if a target is within sight

36 whi l e ( t e s t v a l < po s s i b l eTa rg e t s . Length ) {

37 i f ( w i th inS ight ( po s s i b l eTa rg e t s [ t e s t v a l ] ,

f i e ldOfViewAngle ) ) {

38 // Set the target so other tasks will know which

transform is within sight

39 ta r g e t = po s s i b l eTa rg e t s [ t e s t v a l ] ;

40 Debug . Log ( messageToConsole ) ;

41 re turn TaskStatus . Success ;

42 }

43 }

44 re turn TaskStatus . Fa i l u r e ;

45 }

46

47

48 pub l i c void pickNext ( )

49 {

50 i f ( t e s t v a l < po s s i b l eTa rg e t s . Length )

51 {

52 t e s t v a l++;

53 }

54 }

55

56 pub l i c Transform getTarget ( )

57 {

58 re turn ta r g e t ;

59 }

60

61 // Returns true if targetTransform is within sight of current transform

62 pub l i c bool w i th inS ight ( Transform targetTransform , f l o a t

f ie ldOfViewAngle )

63 {

64 Vector3 d i r e c t i o n = targetTransform . po s i t i o n − trans form .

po s i t i o n ;

65 // An object is within sight if the angle is less than field of

view

66 re turn Vector3 . Angle ( d i r e c t i on , trans form . forward ) <

f i e ldOfViewAngle ;

67 }
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68 }

B.2 MoveTowardsLocation.cs

1 us ing UnityEngine ;

2 us ing System ;

3 us ing BehaviorDes igner . Runtime ;

4 us ing BehaviorDes igner . Runtime . Tasks ;

5

6 pub l i c c l a s s MoveTowardsRoom : BehaviorDes igner . Runtime . Tasks . Action

7 {

8 pub l i c SharedTransform moveTowardsNew ;

9 pub l i c SharedBool canIMoveTowardsRoom = true ;

10 pub l i c s t r i n g messageToConsole = "Reached destination. Continuing ..." ;

11

12 pub l i c ov e r r i d e TaskStatus OnUpdate ( )

13 {

14 i f ( canIMoveTowardsRoom . Value == true ) {

15 i f ( Vector3 . SqrMagnitude ( trans form . po s i t i o n −

moveTowardsNew . Value . p o s i t i o n ) < 0 .5 f ) {

16 Debug . Log ( messageToConsole ) ;

17 re turn TaskStatus . Success ;

18 }

19

20 UnityEngine . AI . NavMeshAgent agent = GetComponent<

UnityEngine . AI . NavMeshAgent> ( ) ;

21 agent . d e s t i n a t i on = moveTowardsNew . Value . p o s i t i o n ;

22 re turn TaskStatus . Running ;

23 } e l s e {

24 Debug . Log ( "This node is disabled. We will continue with

our next task ..." ) ;

25 re turn TaskStatus . Fa i l u r e ;

26 }

27

28 }

29 }
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C Ontology classes

Figure 33: Ontology - Tree View
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D PETUI

D.1 PETUI - policies

Figure 34: PETUI - policies

Figure 35: PETUI - policies explained
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D.2 PETUI - ontology overview

Figure 36: PETUI - ontology overview

Figure 37: PETUI - ontology explained
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D.3 PETUI - Instances

Figure 38: PETUI - instances

Figure 39: PETUI - instances explained
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D.4 PETUI - Log

Figure 40: PETUI - log

Figure 41: PETUI - log explained
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E Behavior Designer - Complete Behavior Tree
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