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Abstract 

 

When a disruption occurs on the rail track, the disruption management of ProRail is 

responsible for recovering the function of the failed infra object as safe and soon as possible, 

so the hindrance is minimalized. An important aspect of the disruption management is 

predicting the function recovery time (FRT). The four main parties of the disruption 

management faces challenges in estimating the FRT, due to decision making on invalidated 

information and the lack of information sources. The nature of this problem fits the 

characteristics of a multi-agent system (MAS) simulation. In the present study, I have built a 

MAS, which simulates the disruption management deterministically. I extended this baseline 

model with algorithmic modules and adjusted communication lines between the agents, 

which aimed to improved decision making on the predicted FRT. I have tested the extended 

MAS on five scenarios in which a switch was disrupted. The extended MAS predicted the FRT 

better than the original prediction in four of the five scenarios. The performance of the 

presented MAS is a proof of concept, showing that MAS modelling and extending the model, 

makes it able to generate a better prediction on the FRT.   
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1 Introduction 

This report gives an overview of my research project at ProRail into modelling disruption 

management as a multi-agent system, with the aim to make better prediction on the function 

recovery time (FRT). The project is named MASSIEF (meaning massive in Dutch), which is an acronym 

that stands for Multi-Agent System Storing Incident En Functiehersteltijd (translated to English: Multi-

Agent System Disruption Incident And Function recovery time). Firstly, I will give a brief motivation, 

shortly describe the problem and present the research question. At the end of this chapter, I will give 

an outline of this report.   

1.1 Motivation 

Disruptions in the Dutch railway network are still inevitable. ProRail, the Dutch railway infrastructure 

manager, has to deal with 10.800 rail infrastructure related disruptions a year. These disruptions 

cause delays for train travellers. To minimize delays, ProRail has the aim to solve disruptions as soon, 

safe and proper as possible. At the moment a disruption occurs, a group of officials and experts 

comes into play, called the disruption management team. This team is responsible for solving 

disruptions in a fast and safe way. An important element in the solving process, is predicting the 

moment on which the disruption is repaired, called the prognosis at ProRail.    

 A reliable prognosis makes it possible to anticipate optimally on the disruption, in the sense 

of rescheduling trains, informing train travellers or minimizing hindrance in some way or another. In 

general, an accurate prognosis and knowing that it is accurate, leads to minimal impact. However, 

the disruption management faces challenges in making reliable prognosis. Evaluation reports on 

disruptions and related data analysis have made this clear.   

1.2 Problem description 

Considering the performance of the disruption management, it turns out that the disruption 

management experience difficulties in sharing information properly and making decisions based on 

validated information. This leads directly to inaccurate prognosis about the function repair time. 

Inaccurate prognosis leads to a higher impact of disruptions on train travellers. In the light of this 

challenge, ProRail is interested in optimal information sharing and validating the correctness of 

information between the disruption management team.  

1.3 Research Objective 

This study aims to make a model that uses additional information according to disruptions of infra 

and a more effective use of information is realised among the disruption management team.   

Therefore, the following research objective was formulated: 

The more extensive and smarter usage of information by the disruption management team, in 

favour of facilitating the estimation of the function recovery time.      

1.4 Research question and approach  

To achieve the research objective, it is necessary to explore the possibilities to use the current 

information more beneficial and add sources in the disruption management process. It turns out that 

in the disruptions recovery process, information is distributed among the disruptions management in 
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an improper and ineffective way, which leads to poor decision making and difficulties in estimating 

the disruptions recovery time.          

  Moreover, ProRail has access to information that is currently not used during the 

disruptions process. To be more precise, information about the engine power for switches, the 

position of a relay, the movement of switches, exact location of the disruption and predictive models 

developed for function recovery time. This leads to opportunities to use this additional information 

in the disruption management.          

 In short, information that can be gained during the process is hard to share properly, which 

leads to misinformed people and unnecessary waiting time for information that was already 

available. As a consequence, people make incorrect decisions and delays the disruption management 

process.   

In the light of these demands, the main research question is as follows:    

• Can the disruption management system of ProRail be modelled as a multi-agent system 

to evaluate the quality of estimated function recovery time when using information 

smarter through better information sharing among the participating agents. 

From this main question, several sub-question are formulated 

• How can the disruption management system be modelled as a multi-agent system? 

• How can the multi-agent system use information in a smarter way, i.e. how to make the 

information sharing protocol smarter?  

• How to evaluate the modified multi-agent system to check if it improves the quality of 

the estimated function recovery time?   

Once the puzzle is solved, it should give more insight in the disruptions management and facilitate 

the process of creating reliable repair time prognosis, so it becomes possible to make an alternative 

train plan in an early stage, which minimizes the delay for train travellers. 

1.5 Outline 

I will give some background to the disruption processes at ProRail as well as multi-agent systems and 

predicting function recovery time in Chapter 2. In Chapter 3 I will argue methodological choices. 

Chapter 4 contains the experiments, evaluation and discussion. In Chapter 4 I will explain the process 

of developing a multi-agent system (MAS), how this is used for simulation experiments and present 

the performance of the MAS, which are the results of this study related to predicting FRT. Moreover, 

I will evaluate the results and I dive into the discussion of the results, limitations and validity of this 

study. Finally, I will conclude in Chapter 5 by answering the sub-questions and main research 

question, followed by a few possible future studies. 
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2 Literature and Background 

In this chapter, I will discuss the disruption management at ProRail, zooming in on the participating 

parties and important principles. Moreover, relevant literature on multi-agent systems (MAS), the 

development of such systems and prognosis in MAS will be discussed.  

2.1 Disruption management – Current Situation 

Disruptions and incidents on the rail way are inevitable. Therefore, the disruption management, that 

has to deal with these issues, plays an important role at ProRail. The disruption management has the 

mission to solve and communicate as efficient, effective and costumer directed as possible, 

according to a disruption on the rail infra (Handboek storingsmanagment, 2017). The management 

consist of several parties, each with its own role, expertise and responsibility. In the next section 

these roles will be described in more detail. Which parties are participating in the process depends 

on the type and impact of the disruption. If a disruption causes substantial delay or harms people 

and nature, the decision has to be made on a higher level, so different parties are participating 

compared to a more regular disruption. To solve an infrastructure disruption, the parties 

communicate, share information and make decisions with each other. This process could be 

distinguished in several steps. In each step, the participating parties have to perform specific tasks, 

according to their role.  

2.1.1 Parties 

In this subsection, I will describe the participating parties in the disruption management process. For 

each party, their role and responsibility will be described.  

Dispatcher  

The Dispatcher plays a central role for a safe transportation of passengers and goods. In the 

transportation process, the Dispatcher has the goal to let the trains drive as safely as possible. A 

Dispatcher has its own area of the rail infrastructure to work in. In this specific area, the Dispatcher is 

capable of controlling switches and signs. Onwards, the Dispatcher is responsible for arranging a safe 

work place for people that have to enter the rail track to repair, for instance, a failed switch. So the 

Dispatcher determines the moment on which it is safe to enter the rail track. If a disruption occurs 

somewhere, the notification of this is received by the Dispatcher via his own equipment or by a 

phone call of the train driver. The Dispatcher is part of the traffic control team, which is responsible 

for the logistic part of the rail infrastructure.  

Meldkamer Spoor (MKS) 

The MKS is responsible for coordinating the disruption management process. The MKS coordinates 

the process by communicating, sharing information and having an overview of the situation. In the 

beginning of the process, the MKS makes a Rapport van Onregelmatigheid (RVO, which stands for 

Report of Irregularity) in cooperation with the Dispatcher. A RVO is a concise report, containing all 

the information that is needed for the Contractor to go to the location of the disruption. During the 

process, the MKS asks for the estimated time of arrival (ETA) of the Contractor and the general 

leader, current status of the repairing process and estimation of the time it will take to the repair the 
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disruption. Overall, the MKS functions as a central organ that should have a clear overview of the 

progress being made.   

General Leader (GL) 

The GL has the task to coordinate the operational part of the disruption management process. In the 

light of this goal, the GL is present at the place where the infra disruption is occurring. The GL 

discusses with the Contractor the progress of the process. The GL is allowed to overrule decisions, 

since the GL has an overview of the process, by staying in close contact with relevant parties. The GL 

and MKS communicate closely with each other about the function repairing process.  

Contractor 

The Contractor is responsible for maintenance of the infra and the final repairing of the disruption. 

The Contractor is contacted by the MKS if a disruption occurs. Most Contractor have a PGO contract 

with ProRail. A PGO contract is based on the idea that a Contractor gets fee for infra failures and 

receives a bonus if the number of disruptions is lower than expected. So the better the performance 

on these aspects, the more they get paid. The idea behind this type of contract is that a Contractor is 

motivated to perform the best they can.  

2.1.2. System’s sequence  

The parties that are active during the disruption system, could be view as a chain-like structure. In 

the system’s structure, parties follow protocols that describe what actions to perform in which order. 

The process of repairing a disruption could be partitioned in states, that are connected in a 

chronologically way. In Figure 1 the states that are part of the disruption management are presented. 

The whole disruption management could be divided in these timeslot. This is a simplistic and clear 

way of looking at the time intervals of which the disruption management process consist of.    

Figure 1: Disruption management portioned in time slots 

 

The process begins with a notification of a disruption, received by the MKS or the Dispatcher. 

Depending on the type of disruption, the notification could automatically be generated by a control 

system or by a phone call of someone, for instance a train driver that sees that something is broken 

on the rail track. After the notification, the Contractor is contacted. An RVO is send to the Contractor. 

https://www.draw.io/?scale=2#G1gTgvA4hwpOKhoNVemrrXo-F9JwIcrtr6
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With the information from the RVO, the Contractor knows where to drive to, when to start driving 

and which equipment’s probably will needed to repair the disruption. This process corresponds with 

T0 in Figure 1. This forms the starting point of four time slots. Namely, the time is takes for the 

Contractor to drive to the location (tannounce). The estimated time of arrival is at T0 formulated by 

the Contractor and send to the MKS. Another important timeslot is about the time it takes to repair 

the function by the Contractor (tfunction recovery Contractor). This is simply the moment from receiving the 

RVO and the moment in which the function is repaired completely. The end point of this timeslot is a 

crucial moment in the system’s sequence. Since the main goal of the disruption management is 

repairing the function and to get the rail track working again as soon as possible. Besides this main 

goal, the failure management has the aim to predict the time on which the function is repaired. In a 

following section an elaboration on this predicting will be given. The main point of this subsection is, 

due to the chain-like structure of the system, timeslots are connected and actions performed in one 

timeslot will influence actions in upcoming ones.  

2.1.3 Priority level 

In general, a failure notification is processed into an RVO, which consists a priority level. This priority 

level is determined by the Dispatcher and the MKS. At ProRail, the priority level could be divided into 

six categories, labelled as 1, 2, 4, 5, 8, and 9. Priority levels 4, 8, and 9 are the non-urgent ones, which 

lays out of the scope of this research. Priority level 1 and 2 are related to urgent disruptions. Urgent 

in this sense means that the repairing process of the function should be started immediately, since 

further damage, delay or risks to the environment is a possible consequence. In this situation, the 

Contractor is directly contacted and starts repairing the function as soon as possible. Priority level 5 

is marked as urgent as well, but with a time appointment. In this situation, there is no necessity to 

repair the function immediately, but decisions on what to do has to be made directly. That is the 

reason why priority level 5 is labelled as urgent as well. In practice, most of the time, disruption with 

priority level 5 results in repairing the function at night, since during night times train traffic is barely 

executed. To place the priority level in the broader picture of the disruption management, the level 

of priority determines the tasks of the Contractor in relation to repairing the function, prediction the 

function recovery time and the way of communication.  

2.1.4 Entering the rail track 

In relation to the level of priority, the Contractor and the GL enters the rail track on a specific 

moment of time. This specific moment of time is determined by the Dispatcher. A party is only 

allowed to enter the rail track if the Dispatcher has explicitly given permission to do so. The 

Dispatcher has to find a gap in the train schedule on which the Contractor can safely, and with 

minimum impact on train traffic, enter the rail track. At ProRail this principle is called a BUTA, which 

stands for the period of time on which the rail track is not been used by trains. In urgent situations, 

priority level 1 or 2, a BUTA could lead to cancelling trains. So, in the system’s sequence, a BUTA is a 

factor that influences the time on which parties are allowed to enter the rail track, which has 

influence on the starting times of upcoming actions.  

2.2 Function recovery time 

In Figure 1 the function recovery time is the time from T0 to T3. Parties in the disruption 

management are interested in the prediction of the function recovery time. This prediction gives 
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valuable information about the moment on which trains are allowed to use the rail track again. The 

more accurate the prognosis, the better. Moreover, the earlier the prognosis is given, the better. It is 

valuable to have an accurate and early prognosis because the train traffic could in this case anticipate 

on the disruption as proper as possible. The first prognosis is generated automatically right after the 

disruption intake. This initial could be adjusted by the GL, if he has reasons to do so. The second 

prognosis is given by the Contractor and GL, after the failure cause has been found. This prediction is 

highly made on expertise and experience. The prediction depends on the available equipment that 

have to be used during the repairing process. The final prognosis is given at least half an hour before 

the function is completely repaired. The reason behind this half an hour is the time it takes to let the 

train traffic most efficiently anticipated on the disruption. The Dispatcher needs at least 30 minutes 

to reschedule the trains in such a way that hindrance is the lowest.  

2.2.1. Data 

During the disruption management, specific information is logged. A platform called SpoorWeb 

serves as an integrator of all information that is relevant for the process of repairing the function. 

Loggings in SpoorWeb give a clear overview of specific actions and information that is related to the 

process. For instance at which time the Contractor arrived at the location, how long it took to find 

the failure cause and which adjustments have been made on the prognosis. These loggings, starting 

from the time the failure notification reaching the Dispatcher and ending at the moment the function 

is definitely repaired, gives insight in cases that the disruption management has to deal with. 

Moreover, these loggings makes it possible to evaluate the function repairing process.   

 A research group at ProRail called OPOZ evaluates the disruption management process in 

cases with significant hindrance (labelled as hindrance-class 1). The reports they make give a detailed 

reconstruction of the disruption. OPOZ uses various data sources the analyse the quality of the 

process as good as possible. Each report concludes with some recommendations, for instance to 

adjust a protocol or extend the authority of a party. I will use these reports for simulating specific 

cases.   

2.3 Agents 

In artificial intelligence the agent paradigm is a well-known topic of research. Besides the extended 

literature one this subject, there is no definitive single definition of the term agent (1). According to 

Russell, “an agent is an entity that senses its environment and acts upon it ” (2). This is a very simple 

definition of an agent. A more extended definition is from Wooldridge (1995) which states that an 

agent is a computer system, situated in some environment and is capable of autonomous action in 

order to meet its design objectives (3). The definition I will use in this thesis states that an agent is 

“anything that can be viewed as perceiving its environment through sensors and acting upon that 

environment through actuators" (4). 

 Within the field of agent-based modelling, the belief-desire-intention (BDI) (25) architecture 

has been widely used. The BDI paradigm approaches the reasoning of agents from a rational 

perspective. Rational in this sense means that an agent performs those actions that takes him a step 

closer to its goals, given information from its environment. Beliefs, in this architecture, are an 

internal representation of information about the environment of the agent. Desires are states that 

the agent wants to achieve. Lastly, intentions are actions that are part of a plan. Taken this three 

concepts together, agents perform actions, based on plans, to further their goals. An example of an 
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implementation and a specific used methodology of developing such a multi-agent system can be 

found in (26).   

 

2.3.1 Multi-agent system 

 

MAS is the technique used in this thesis to approach the problem. A MAS is a collection of multiple 

autonomous agents, each acting towards its objectives while all interacting in a shared environment, 

being able to communicate and possibly coordinating their actions (5). A MAS could be defined as a 

network of problem solvers that work together to reach achievements that could not be reached 

individually (6). The essential characteristics of a MAS is the interaction between the agents. From 

this interaction, interesting behaviour could emerge (5). This interaction could take place by 

communication, norms and roles (7). The advantages of MAS have been mentioned by numerous 

authors. (8) mentions modularity, parallelism and scalability as some advantages. Others arguing the 

explanatory power or the metaphors for the way people conceptualize and implement many types of 

software (6). Most industrialist are interested in agents that tackle problems in planning, resource 

and decision making, diagnostics, control and real-time replanning and simulation and modelling 

(11). For an overview on MAS see (9, 12).  

 

2.3.2 Simulation  

 

Simulation has proven to be a valuable approach for various research purposes and for several issues 

at ProRail (33, 34). In an multi-agent based simulation a researcher explicitly describes the decision 

processes of simulated actors at the micro-level. Interaction among those agents and their 

environment results in the emergence of structures at macro level (10). Simulation in MAS is a 

suitable technique to study the effect of different scenarios on a given output, like different 

situations in demand and supply in the energy market (10).  

More close to this thesis’ topic on disruption management, MAS simulation has been applied 

to streamline emergency services in car accidents (13), in disaster management, in which the 

allocating of resources is simulated to handle the effects of, for instance, earthquakes and floods (14, 

16) or simulating human decision making for evacuation scenarios (15). In the latter, the impact of 

several factors, like demographics, number of police officers and information sharing via speaker are 

tested on evacuation performances. This characterizes the power and possibilities of MAS simulation. 

 

2.3.3 Prognosis and Forecasting 

 

As described in the previous subsections, estimating the function recovery time at ProRail is an 

important issue. MAS could be applied for the purpose of generating prognosis or forecasting about 

future events. A common approach for making prognosis in a MAS is by using a Bayesian network. A 

MAS could be enriched with a Bayesian network to measure the probability of several hypothesis. 

The hypothesis with the highest probability is considered as the final prognosis (17). This general 

principle could be applied to many different purposes, like medical prognosis (18) or control 

prognosis in manufacturing organizations (19).  

MAS are not usually regarded as forecasting tools. Although, MAS could be used to make 

forecasts about future events (20, ). Forecasting in MAS simulations refers to the prediction of the 

value of a quantitative variable based on known past values of that variable or other related 
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variables. In (20) a guideline for forecasting with MAS is presented. In this guideline, forecasting is 

realized by using sources of data on which simple statistical methods are perform that are integrated 

in the MAS. This approach, of using additional modules to enrich a MAS, is part of this study.  

 

2.3.4 Developing Intelligent Agent Systems  

 

The MAS paradigm is making its way from academia to industry more and more (23). Previous agent-

orientated programming languages serve as an obstacle to develop MAS in industry. In the past 

decades, various programming languages and frameworks have been proposed to support the 

development of multi-agent systems. Some programming languages extended well-known standard 

programming technology such as Java (e.g. Jade and Jack). The languages are different in the sense 

that each language is specialized in some features of MAS. In (24) an initial Java library of object-

oriented design patterns for MAS concepts and abstractions is presented. This library, called OO2APL, 

has the aim to implement autonomous agents and multi-agent systems directly in Java Programming 

language. OO2APL is suitable language to develop MAS in industry since it is an object-orientated 

library which uses the BDI framework to model multiple agents. For this reasons, I will use OO2APL to 

build and simulate the disruption management as a MAS.     

 I will describe some general components of OO2APL, which play a key role in  the MAS that is 

developed for this thesis. To start with, the context. A context is anything that an agent uses to make 

decisions and act in its environment. The context of an agent is exposed to relevant methods for 

gathering information and executing actions. In agent terms, the context could be viewed as a belief 

base. Secondly, a plan scheme. A plan scheme specifies when a certain plan is relevant and applicable 

given a trigger and a context of the agent. A plan scheme could be a message plan scheme, which 

makes it possible for an agent to send a specific message to a receiving agent. Next, a trigger. A 

trigger is anything that can trigger a plan for an agent. Triggers makes it possible to start the right 

action at the right time. These three components form the most important building blocks of 

developing a MAS in OO2APL.  

  

2.3.4.1 The Prometheus approach 

 

Prometheus is a general purpose methodology for the development of software agent systems. 

Although several methodologies have been proposed, this is arguably the most mature. Prometheus 

is intended to be viewed as a set of guidelines, which should be interpreted by the user own common 

sense. The core of this methodology consist of three phases:  

 

1. The system specification phase focuses on identifying the goals and basic functionalities 

of the system, along with inputs (percepts) and outputs (actions). 

2. The architectural design phase uses the outputs from the previous phase to determine 

which agent types the system will contain and how they will interact. 

3. The detailed design phase looks at the internals of each agent and how it will 

accomplish its tasks within the overall system. 

 

In this thesis I will use these core ideas of Prometheus in combination with my own common sense 

and insights, to develop a MAS simulating the disruption management at ProRail. 
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2.4 Conclusion 

 

In this chapter I have given an overview of the various aspects of the disruption management system. 

In line with these aspects, I discussed topics of the MAS paradigm that are in close relation to the 

research question. In the following chapters, I will go through the steps in answering the main 

question of this thesis.   
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3  Methodology 

In the previous chapter I have described the working of the disruption management system. In this 

chapter I will clarify and motivated the process of modelling the disruption management system as a 

multi-agent system. According to A Framework of effective modelling (35), a model is an idealized, 

simplifying and with respect to certain aspects similar representation of an item, system or some 

other part of the world. The purpose of the model is to allow a better study of specific properties 

than using the original system. According to the Prometheus approach (30), the first phase of 

developing a MAS is looking at the system specification. For this thesis, I will give a specification of 

the system goals, specifying the agent types and the interactions among agents.   

3.1 Goal of the  disruption management system 

The disruption management system at ProRail has the goal to minimize the time the infra is not 

available, due to disruptions. Therefore, the systems operates as fast and safe as possible.  

To act fast and safe, the operation has to be reliable, accurate and creative, according to ProRail 

guideline for disruption management. In line with this way of operating, the participating parties 

have a clear defined role in the disruption system. Each role share a common sub-goal, namely, 

making sure that information is reliable and correct. Parties have to gained relevant information and 

properly share this among each other. Information, in this sense, could be anything sort of 

knowledge that is shared among the agents. For instance, facts about the situation, estimations 

about the time of arrival or the time a function will be solved. To achieve this, parties perform checks 

to be sure that information is reliable. Moreover, they have to reason about the situation to make 

sure that the estimations they make are as good as possible. In Table 1, there is a list of sub-goals 

that contributes to the main goal. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: The systems’ main goal and sub goals.  

 

Main goal 
Minimum hindrance of time infra is 
not available 
 
Sub goals 
Making RVO 

Choosing priority level 

Determining initial prognosis 

Sharing estimated time of arrival 

Approving BUTA 

Finding failure cause 

Brining equipment 

Making prognosis 

Repairing infra function 
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These sub-goals are linked to the parties of the disruption management system. The system works on 

the basis of sharing information, coming from these different parties. Each parties plays a role in the 

whole disruption management and in estimating the function recovery time. Therefore, the 

disruption management system could be viewed as a distributed system. In the field of distributed 

problems, multi-agent systems is a suitable and effective approach for solving these kinds of 

problems (8).   

3.1.1 Belief-Desire-Intentions Framework 

In a distributed system, information is shared among parties, on which actions and decisions are 

based. Each party has its own sub-goal, related to its role in the disruption management. In the light 

of these goals, parties collaborate to solve the disruption as proper as possible and make the best 

possible function recovery time estimation. To accomplish their goals, they interact with each other. 

In this interaction, parties revise and adjust their beliefs in the disruption process. Towards a parties’ 

goal and according to their beliefs, actors perform well-defined actions. In this mechanism, a party 

has some sort of mental state, which depends on their goals and interaction with other parties. The 

disruption management system behaviour fits the BDI framework. In the sense that each party has 

beliefs, which correspond to information that the parties has about the world. For instance, the 

information that is stored in the beliefbase of the Contractor by receiving the RVO. Desires represent 

states of affairs that the party would wish to be brought about, for instance, sending the ETA to the 

MKS. Finally, intentions represent actions that are part of a plan, which an agent performs. This way 

of framing a party is in line with the existing studies on BDI and support application described in 

section 2.3.2. Moreover, a BDI framework could be appropriately extended with algorithmic modules 

to enrich the model (18, 20).  

3.2 From actor to agent 

In this subsection I will descript the modelling of the parties involved in the disruption management 

system as agents. According to Prometheus, the next step in developing a MAS is specifying the 

agent types, what the agent should be and the tasks an agent should have. For this thesis, I will give a 

description of each agent and define the agents’ relationships. Each party described in the 

background section can be modelled by an agent whose task is to perform certain actions. I will 

describe each agent separately.  

3.2.1 Meldkamer Spoor agent (MKS) 

The MKS can be modelled as an agent that is responsible for managing the function recovery process. 

The main goal of the MKS agent is to assist the other agents as appropriate as possible. According to 

this goal, the MKS agent has several tasks to perform. In the start of the disruption process the MKS 

agent is involved in making a RVO. The RVO is build up in cooperation with the Dispatcher. The 

priority level of a disruption is determined in collaboration with the Dispatcher. Depending on the 

prognosis, diagnosis, priority, time of the day and other factors, the MKS agent and Dispatcher agent 

decide whether the problem needs to be fixed immediately or at another time. This decision has on 

an effect on the estimated FRT (22). Furthermore, the MKS agent checks if other agents perform 

their tasks on time. So the MKS agent is specialised in giving deadlines and checking of those are 

achieve. Finally, the MKS has the important task to share information among different agents. The 

MKS agent sends the most recent information about the process to relevant agents. In Table 2 a 

descriptor of het MKS agent is presented.  
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Table 2: Descriptor of the GL agent 

 

3.2.2 General Leader agent (GL) 

The GL can be modelled as an agent that is in charge during the operational process of repairing the 

function. The GL agent has the goal to let the function recovery process run as safe and smooth as 

possible. Therefore it closely communicates with the agents involved in the disruption management. 

In particular, the MKS agent and the Contractor agent. His first task is to send his ETA to the MKS 

agent. The GL agent and Contractor are both presented at the location of the failed infra object. In 

light of his goal, the GL agent is aiming to determine an estimation of the function recovery time. To 

make a reliable prognosis, the GL agent communicates closely with the Contractor. In Table 3 a 

descriptor of the GL agent is presented.     

 

 
Table 3: Descriptor of the GL agent.  
 

 

3.2.3 Contractor agent 

The Contractor agent has the goal to repair the failed object as soon as possible. To achieve this goal, 

several tasks have to be performed. After sending his ETA, the Contractor has to search for the cause 

of the failure. Quite often this takes some time. During the process, the Contractor agent determines 

in cooperation with the GL agent the estimated failure repair time. This FRT prediction depends on 

the availability of equipment that are required to repair the failure and de duration of the repairing 

process itself. In Table 4 a descriptor of the Contractor agent is presented.   

 

 

 

 

Name: MKS agent.  

Description: Makes RVO, sourcing information, manages process.  

Lifetime: Instantiated on Dispatcher messages on making RVO. Demise at the time function is 

repaired. 

Goals: Making RVO, determining priority level, collecting and sharing information, asking for FRT 

prognosis, checking deadlines.  

Percepts responded to: Incoming RVO message, initial prognosis, knowing failure cause.  

Name: GL agent.  

Description: Manages operational process, adjusts prognosis.  

Lifetime: Instantiated on request for sending ETA. Demise at the time function is repaired.  

Goals: Sending ETA, approving initial prognosis, discussing prognosis, checking work Contractor 

Percepts responded to: RVO with initial prognosis, information about available equipment.   
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 Table 4: Descriptor of the Contractor agent.  

 

3.2.4 Dispatcher agent  

The Dispatcher agent is responsible for safety of train traffic in his/her own designated area. 

Therefore, the Dispatcher agent is able to regulate the rail infra objects. From this position, the 

Dispatcher agent could adjust the train traffic. For instance, let trains switch track. In the disruption 

management, the Dispatcher agent plays a role in making a RVO. Furthermore, the Dispatcher agent 

is in charge of approving BUTA, requested from the Contractor agent. In Table 5 a descriptor of the 

Dispatcher agent is presented. 

 

 
Table 5: Descriptor of the Dispatcher agent.  

 

3.3 Relationships among agents  

Once the agent types are decided, the next aspect of the architectural design is to specify the 

interaction between agents, capturing the dynamic aspects of the system (30). Since the  role of the 

agents are clear, formulating their relationships is another import step in the modelling process. In 

the disruption process, the relations agents share can be quite broad. For the topic of this research, 

the focus lays on the relationships among agents that are relevant for the predicted FRT. Figure 2 

below shows schematically the relationships among agents in the FRT predicting process. The figures 

contains the participating agents and their life lines. In the figure, all the relevant communication, 

information units and decision making are presented. Relevant in this sense means that the play a 

role in in estimating the function recovery time. A line with double arrows means that agents actively 

interact with each other. Two agents, namely the GL and the Contractor, interact in an iterative 

process, as could be seen in the Figure. The iterative process of asking for the current prognosis and 

sending the current prognosis terminates if the prognosis is shorter than 30 minutes. In de following, 

a concise description of the active interactions (e.g. double arrowed lines) will be given.  

 

Name: Contractor agent.  

Description: Repairs failed function, discusses prognosis.  

Lifetime: Instantiated on request for repair. Demise at the time function is repaired.  

Goals: Sending ETA, finding failure cause, bringing equipment, discussing prognosis, repairing 

failed function 

Percepts responded to: RVO, approved BUTA, request for (final) prognosis.    

Name: Dispatcher agent.  

Description: Makes RVO, approves BUTA.  

Lifetime: Instantiated on incoming failure notification. Demise at the time function is repaired.  

Goals: Making RVO, determining priority level, making and approving BUTA,  

Percepts responded to: Failure notification, ETA of Contractor.     
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Figure 2: Overview of the aspects and their relations in the disruption management system.  

3.3.1 Handling incoming disruption notification 

The most important aspect of the disruption anamneses is to formulate an appropriate RVO with a 

proper priority, so the Contractor agent is well-informed, which benefits the recovering process (36). 

In this case, the question raises what an appropriate RVO is. In general, a RVO consists of the name 

and code of the failed object, a description of the disruption, generic location and a priority level. The 

https://www.draw.io/?scale=2#G14D9HbH39i4UQt-fKpdkJmWL4W2qbQD9E
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MKS agent is responsible for asking the right questions to the Dispatcher, to realise an appropriate 

RVO. For the scope of this thesis, the MKS agent is interested in two issues, see Figure 3.  

 

 

Figure 3: Interaction for making a RVO.  

These two questions cover the most crucial information in relation to the recovery time. Namely, an 

exact location makes the ETA of the GL agent and Contractor agent more reliable. The answer on the 

second question covers the level of priority. If it is necessary to repair immediately, the priority level 

is set to level 2.   

3.3.2 Prognosis after diagnosis 

The second active interaction takes place right after finding the failure cause. The GL agent and the 

Contractor agent discuss which each other in what proportion the prognosis has to be adjusted. This 

is done by sending a message from the GL agent to the Contractor agent by asking which influence 

the specific cause type has on the length of the prognosis. Depending on the cause type, the 

prognosis is either made longer or shortened by the Contractor.     

 Onwards, during the repairing process, the GL sends requesting for the current prognosis to 

the Contractor. This process of requests and responses can iterate several times, according to the 

time is takes to repair the function and the amount of new information that is gained during the 

process. The iterations stops if the Contractor has enough information to be sure that the repairing 

process will take less than thirty minutes from this point, the current prognosis is transformed to a 

final prognosis, which results in finishing the repairing process. 

https://www.draw.io/?scale=2#G1Vne2SZHgdHrlvEE3-8J8CJdWNSB5BMFF
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Figure 4: Decision making for failure cause and corresponding adjustment on prognosis.  

 

3.3.3 Modelling failure repair time prediction 

An important part of the systems behaviour is the process of predicting the function recovery time. 

As described in section 2.2 the initial prognosis has a value that is generated automatically. Onwards, 

this prognosis flows through the system and is adjusted based on reasoning with new information 

that becomes available during the process. Depending on the information and the decision that an 

agent makes, the current prognosis is either made longer or shorter. Factors of different kinds could 

result in an adjustment of the prognosis.   

3.4 Improving a MAS  

The first sub question of this thesis is about the way the disruption management could be modelled 

as a MAS. If this step is taken, the second sub question, on improving the MAS, becomes the next 

step. Extensions in MAS exists in various forms. In (27) a basic BDI architecture is improved by using a 

neural network, which results in a hybrid BDI agent model that could handle many different types of 

activities in a container terminal. In this model, agents have, beside simple plans, complex plans that 

could be viewed as a tuple and consist of many components. Using such complex plans in agents 

makes it possible to let them make decisions in more complex environments (27). Using data-driven 

algorithmic modules to improve the performance of a MAS is a common approach. Another common 

technique to enhance a MAS is data mining, for instance, using sequential pattern mining to derive 

prediction rules about what actions or situations might occur if certain predictions are satisfied (28). 

Moreover, to make decision-making in a MAS more human-like, models could be enhanced with 

several descriptive models of decision making from psychology (29). So, there are various methods 

for improving a MAS. The principle of using a baseline model and enriching it with a broad range of 

extensions, forms the basis of the approach I will use in this research.   

3.4.1. List of extensions 

Several studies at ProRail have been conducted with the aim to gain more insight in the effect of 

possible enhancements in the disruption management system (22, 36). These studies resulted in the 

development of algorithmic modules, adjusted communication protocols or recommendations to 

extend the actions a party has to perform. A list of extensions could be found in Table 6 below. I will 

briefly discuss each extensions and give a motivation why some extensions are being part of the MAS 

of this thesis and others don’t. Especially overlap between extensions is a reason to pick one and not 

https://www.draw.io/?scale=2#G1F3z597sobFcfgR4uOgKORSjmHyqL9d0A
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both. Moreover, I will clarify where an extensions will be integrated in MAS and how this could 

enhances decision making.  

             *This extensions is not part of the enriched MAS 

Table 6: List of extensions that aims to enrich the baseline MAS 

3.4.1.1 Bayesian network  

The first extensions is developed in a PhD project a TU Delft (31), which used a Bayesian Network to 

predicted the disruption length. The prediction of the disruption length is split in two components, 

namely the latency time, this is the time slot between the notification of the disruption and the 

moment the Contractor has arrived at the location of the disruption. The Bayesian network takes the 

location, weather and cause type of the switch into account regarding the latency time. The second 

component is the repair time, so the time it takes from the moment the Contractor arrived at the 

location and enters the rail track to repair the failed infra object. This algorithm is developed on a 

sufficient dataset and has proven to perform well (31). Therefore, this extension will be part of the 

MAS in this thesis.          

Type Extensions Profit 

Data Driven 

Delft PhD on Bayesian Network 

and FRT 

More accurate prognosis given some 

characteristics of the failed infra object 

ProRail DataLab switch failure 

cause algorithm 

Well-informed cause search performed by 

Contractor 

BUTA length/Type of Switch 
The longer the BUTA, the longer the 

Contractor has to find the failure cause 

ETA calculated by Google Maps* 
More accurate ETA that take the traffic 

situation into account 

Semi Data Driven 

Time of the day* 

During rush hour the repairing process could 

be postponed which results in a later 

moment of repairing the function 

Extended RVO More specific disruption location 

Internal communication 

GL checks and shares 

information in a more proper 

way 

No decision made on misleading information 

GL confirms initial prognosis 

after have spoken with the MKS 

Initial prognosis will be more accurate 

therefore train traffic will be able to drive 

right after function is repaired 

External factors Weather 
In extreme weather condition, the repairing 

process is slowed down 
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 This extension will be integrated in the beliefbase of the MKS. Namely, the MKS has all the 

information available that is needed for the Bayesian network to generate a prediction. In the MAS, 

the MKS has the information at hand and is capable of sending a request to the network. In return, 

this network, modelled as an artefact, responds to the request by sending a prediction of the 

function recovery time. This prediction for the Bayesian network becomes the initial prognosis that 

the MKS adjust based on other extensions, after which it is send to the GL. In this situation, the initial 

prognosis is still automatically generated, namely by an algorithm. Although automatically generated, 

this is an extension of the initial prognosis since the Bayesian network takes more factors into 

account than the current calculation. The current calculation for determining the initial prognosis 

only takes the average time of the disruption length of a specific infra object. 

3.4.1.2 Predicted failure cause algorithm        

A second extension is developed at the DataLab of ProRail. A team of data scientists has developed 

an algorithm that predicts the type cause of a switch failure. This is valuable information for a 

Contractor. If a Contractor knows the failure cause before entering the rail track, he is capable to 

search for the failure cause in a well-informed way. Having this information by forehand available will 

result in a faster cause search and benefits the time to repair the function. Due to this clear benefit 

of the algorithm I will use this to extend the baseline model.      

 This extension will be integrated in the belief base of the Contractor. The Contractor is 

responsible for discovering the failure cause by entering the rail track and start searching. The 

Contractor will be capable of using this extension by sending a request for the predicted failure 

cause. The switch failure cause algorithm, modelled as an artefact, will respond with the estimated 

cause of the failed switch. This additional information would result in sending an extra prognosis by 

the Contractor, namely right after receiving the predicted failure cause and before entering the rail 

track. This improves the model because a prognosis based on the failure cause is send earlier in the 

process. Knowing a correct prognosis earlier in the process increases the possibilities for participating 

agents to anticipated on this information, according OPOZ. I will not elaborate on the content of this 

extension, since this lays out of the scope of this thesis.      

 This extension would result in enhancing the function recovery time, so the process of 

repairing a disruption. Since the extended MAS has the aim to better predict the FRT, the influence of 

this extension of the FRT itself is predicted. Therefore, this extension is part of improving the 

prognosis in the extended MAS.   

3.4.1.3  Type of switch failure algorithm     

The third possible extension is about predicting the time a Contractor needs to repair a failed infra 

object corresponding to the specific type of this infra object. This difference from the cause type of 

the Bayesian network, that only takes this into account to predict the latency time. The switch failure 

algorithm takes the repair time into account. A master thesis at ProRail has made clear through data 

analysing that there exist a relation between recovering time and the type of failed switch (22). See 

Table 7 for the results.  
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Table 7: The time in minutes at which 90 % of specific type of switch failures are repaired 

If a regular switch is NIC, after 112 minutes of repairing, 90 % of these types of disruptions will be 

repaired. For a diamond switch that is not in control and a disturbed switch, this is 87 minutes and 

114 minutes respectively. This forms valuable information for making a decision about the prognosis 

after the type of switch is known.         

 The type of failed switch is known at the very beginning of the disruption process. So, the 

MKS could, besides the Bayesian network, takes the information about the type of switch into 

account to make a decision about the initial prognosis. This extension will be implemented by an 

artefact which could be requested by the MKS agent.  

3.4.1.4 Determine ETA by route planner  

The estimated driving time of the GL and Contractor could be predicted by using a route planner. 

Using a sufficient route planner that takes the current traffic situations into account would lead to an 

accurate estimated time of arrival. This accurate prediction benefits the disruption process in the 

sense that the first prognosis of the GL is partly based on this estimation. As discussed earlier, the 

first prognosis is an important concept in the MAS. Although, in real life most of the time the GL and 

the Contractor use a sufficient route planner already, so this makes the choice to use it as an 

extension less convincing. Therefore, this route planner will not be used as an extension.  

3.4.1.5 Extended RVO 

An adjustment in the process of making a RVO could improve the disruption management (36). In 

this master thesis at ProRail a fault tree and event tree analysis showed that more specific 

information in a RVO leads to a faster disruption process. In the light of predicting the function 

recovery time, applying this technique would assumingly result in a more accurate estimation in the 

MAS.             

 An extended RVO is established by asking more specific questions between the MKS and the 

Dispatcher. There is one key aspect that results from these additional questions, namely a more 

precise location of the disruption. Knowing the location more precisely, will result in a more accurate 

ETA of the Contractor and GL. Due to the chain-like structure of the system, this will result in a more 

accurate prognosis. Since the clear benefit of this extension and the feasibility of implementing it in 

the baseline model, this extension will be integrated in the baseline MAS.    

 This extension would result in enhancing the function recovery time, so the process of 

repairing a disruption. Since the extended MAS has the aim to better predict the FRT, the influence of 

this extension of the FRT itself is predicted. Therefore, this extension is part of improving the 

prognosis in the extended MAS.   

 

Type of switch: 90 % repaired (min) 

NIC - Regular 112 

NIC - Diamond 87 

Switch disturbed 114 
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3.4.1.6 Time of the day 

During rush hour, the number of people travelling by train is maximum. If a disruption occurs in this 

period of time, the impact is higher compared to other moments of the day. Giving accurate 

prognosis in these moments of the day is favourable. Rush hour in the rail world means on the same 

time rush hour on the road. Busy traffic could hinderance the driving time of the GL and Contractor. 

So taking the rush hour into account in estimating the FRT is valuable. However, rush hour is also part 

of the Bayesian network extension discussed firstly. So the influence of rush hour on deciding the 

estimated function repair time is already taking into account in the first extension. Therefore, this 

extension, on its own, will not be part of the enriched MAS.   

3.4.1.7 Extended tasks of GL 

OPOZ, a research team at ProRail, recommended to improve the quality of GL by adjusting their 

training, tasks and responsibilities. By evaluating major impact disruptions, the research team has 

found that a GL would improve the process if he contacts the MKS after receiving the automatically 

generated initial prognosis. During this moment of communication, the GL could decide to adjust the 

prognosis. Assuming that an adjusted prognosis would be more accurate and has a beneficial effect 

on the system as a whole. For this reason, the communication between the MKS and GL, after 

sending the first initial prognosis, will be explicitly added to the baseline MAS.   

 A second extension for the responsibility of the GL, that is recommended by OPOZ, is 

performing checks to validate information. In the past, it turned out that parties sometimes 

understand shared information differently from each other, without being aware of it. As a 

consequence, decisions are made on misinterpreted information, which as well leads to mistakes in 

predicting function recovery time. This extension will be realised in the MAS by adding check-actions 

performed by the GL. These checks have the aim to be sure that agents understand and therefore 

work with the same information. This would lead to prognosis that are based on validated 

information.           

 This extension would result in enhancing the function recovery time, so the process of 

repairing a disruption. Since the extended MAS has the aim to better predict the FRT, the influence of 

this extension of the FRT itself is predicted. Therefore, this extension is part of improving the 

prognosis in the extended MAS.   

3.4.1.8 Weather influence 

Repairing a rail infra object is mostly done outside and therefore, has to deal with weather 

conditions. The weather type could influence the repairing process, performed by the Contractor. 

Especially heavy weather conditions, like extreme rain falling, snow, temperatures below zero 

degrees or above thirty degrees, will probably play a role in the time it takes to repair the function. 

Taking the influence of weather into account in determining the prognosis, will extend the baseline 

MAS.             

 This extension will be added to the decision making process of the Contractor, since this 

agent has to deal with the weather conditions the most. It is assumed that the extreme weather 

conditions just described, will delay the repairing process. So in determining the prognosis, the 

Contractor will in case of an extreme weather condition, increase the estimated function recovery 

time. Otherwise, the Contractor will leave the current prognosis unchanged.   
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3.5 Agent architecture 

As mentioned earlier, the aim of the extensions is to improve the quality of the estimated 

FRT. In Figure 5, an overview is given of the extensions that adjust the prognosis. The 

extensions are queried from the belief base of the agents. In OO2APL terms, the extensions 

are queried from the context of the agents. In sections 4.2.4, the specific settings of each 

extension is described. It depends on the setting of the experiment which extension is 

queried and which not. The queried information from the extensions is used in the belief 

base of the agent to decide on the adjustment of the prognosis. The adjustment is a certain 

amount of minutes that is either added or subtracted from the current prognosis. The exact 

amount of minutes that forms the adjustment could be found in section 4.2.4. In the results 

section, the selection of used extensions is discussed in more detail.  

 

Figure 5: Overview of the queries that agents send to the extensions. The agents queries the 

extensions from their belief base. Within their belief bases, the agents adjust the prognosis 

accordingly. The agents are capable of sending the prognosis to each other.       

 

3.6 Performance measurement 

Running MAS simulations should result in some sort of performance. The output of a simulation in 

this research is expressed by the prognosis given in minutes. For this thesis, I will run several 

scenarios in the baseline model, that should result in a prognosis in minutes equal to the prognosis in 

https://www.draw.io/?scale=2#G1yOVC9XAWFltuiWAo04JUfzRhZThfY21R
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real-life. The baseline model is in this sense a perfect simulation of real-life scenarios. For the 

extended model, the output is also a prognosis in minutes. The performance of the extended MAS is 

determined by calculating the difference between the extended MAS prognosis compared to an 

optimal prognosis. If this difference is smaller than the difference between the original prognosis 

compared to the optimal prognosis, the extended MAS prognosis is performing better. The 

difference could be calculated by using a statistical measure.  

3.7 Conclusion  

Approaching the problem of the disruption management process from a MAS perspective is done 

step by step. The Prometheus approach provides a useful method to build this steps on. All the 

necessary information about the system’s specifications, agent characteristics and extensions have 

been determined. The chosen performance measurement provides solid ground to check to quality 

of the extended MAS prognosis.   
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4 Experiments and Results 

In this chapter, I will motivate the steps to are involved in the MAS simulations experiments, the 

results from these experiments, consider validation issues and end with a discussion. Therefore, I will 

clarify the way I have developed the baseline model and the extended MAS. Moreover, I will present 

the simulation results and elaborate on them. Onwards, I will give an evaluation on the results and 

discuss the findings and research issues.   

4.1 Introduction 

Before going into the simulation experiments and corresponding results, I will briefly give a 

description of the steps involved in the simulation process.  At the start, I have chosen five 

disruptions that have taken place in the past. These disruptions, which I call scenarios, form the input 

of the simulations. Onwards, a baseline model is built which simulates each scenario 

deterministically. In the next step, the baseline model is extended with modules that have the aim to 

improve decision making on the prognosis. Lastly, the output of the extended MAS simulation is 

compared with the baseline MAS simulation. The results of this comparison gives insight in the 

performance of the extended MAS.  

4.2 Experimental setup 

In this section I will describe the setup of the simulation experiments. Therefore, I will motivate 

which scenarios are part of the MAS simulation. Onwards, I will describe the baseline MAS and the 

extended MAS that are developed for this research.  

4.2.1 Design of scenarios   

For each disruption at ProRail, relevant information is collected and stored at a database. From this 

database full of historical disruptions, I have chosen five disruptions that forms the baseline in the 

simulations, called a scenario. A scenario consists of a set of information that contains all the decision 

making and information sharing that has taken place in the disruption management system for that 

specific case.            

 The five scenarios that are part of this study are all related to switch disruptions. Since one of 

the extensions, the predicted switch failure cause, is only applicable for switch disruptions. The 

scenarios have taken place on the Dutch railway. More specific, at Amsterdam, Dordrecht, Zevenaar 

and two at Utrecht. I have chosen these five scenario for several reasons. Firstly, the scenario has to 

contain enough information about decision making and sharing information as represented in Figure 

2 in section 3.3. This is important, since a scenario has to simulate a real life case as proper as 

possible. For many disruptions, the data of ProRail lacks information to make it possible to construct 

a proper scenario. The data of disruptions is mainly stored manually by human operators. Which is a 

reason behind the fact that the disruption dataset that is largely incomplete.   Since important 

information is missing in the data, searching for essential information to construct a scenario is a 

time consuming activity. In the light of this time consuming activity, I managed to construct five 

scenarios. Second, the time on which a prognosis is shared has to be clear. Having information about 

the time a prognosis is given and knowing the final recovery time, makes it possible to evaluate the 

quality of the prognosis. Not for all disruptions information about the time on which prognosis are 

given, is presented in the data. The five scenarios that are part of this study contain information 
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about the time on which a prognosis and a final prognosis is given. Furthermore, according to expert 

knowledge, there exists a great variety in the quality of prognosis related to switch disruptions. In 

general terms, for switch disruptions, prognosis are sometimes pessimistic, somethings optimistic 

and in some cases relatively accurate. Therefore, I have chosen to pick scenarios in which the original 

prognosis was either too pessimistic, too optimistic or generally accurate. The five scenarios cover 

the variety of the quality of prognosis. Moreover, in the five chosen scenarios the parties followed a 

regular protocol. In this sense, the five scenarios are prototypically, since they represent the broad 

variety of the quality of prognosis and followed the regular protocol of switch disruptions. 

 Knowing the accuracy of a prognosis forms a relevant starting point to analyse the accuracy 

of the prognosis generated in the extended model. In section 4.3.1 the original prognosis related to 

each scenario will be presented.  

4.2.3 Baseline MAS 

In the previous sections I have discussed the system’s specifications and the architectural design of 

the disruption management system. The next step consists of developing the baseline model, that 

takes all the specifications and properties discussed earlier into account. The MAS is programmed in 

OO2APL which uses the BDI framework to model agents.      

 In the broad sense, the baseline model is a representation of Fig 2 in section 3.3. The baseline 

model starts by bringing all four agents alive. Although the agents become alive at the same time, 

each agent becomes active at a different moment. The only external trigger in the model, the 

incoming failure notification, starts the system dynamics, such as the communication, action 

execution and decision making of the agents. The baseline model mimics the chronologically 

behaviour of the disruption management system, in the sense that the order of executing actions in 

the baseline model corresponds to the real life structure. This characterizes the system’s sequence as 

described in section 2.1.2.          

 The prognosis is modelled as a variable that flows through the system and is adjusted based 

on decisions made by agents. The outcome of the decisions are equal to the value of the prognosis as  

could be found in the data. The prognosis is expressed in the number of minutes it will take to finish 

the repairing process. The baseline model is a simplified but complete automated version of the 

disruption management system and uses the prognosis data from the scenarios. The decision 

making, communication and prognosis of the baseline MAS corresponds one to one with the 

scenario.          

 Besides deterministically simulating the five scenarios, the baseline model has to be suitable 

to be enriched by the extensions listed in section 3.4.1. The baseline model is developed in such a 

way, that extensions of different kinds could easily be added to the MAS. Namely, the capabilities 

and belief base of agents are feasible to be extended through possible extensions. A capability is 

simply a collection of plans. Once a plan is triggered, it results in executing actions. In this collection 

of plans, a new plan, corresponding to an extension, could be added smoothly. This benefits the 

process of extending the baseline MAS with additional modules. The same principle goes up for the 

belief bases of agents.           

4.2.4 Extended MAS 

The extended model is an enriched version of the baseline model. Namely, those listed in section 

3.4.1. In the following, I will explain how each extension influences decision making in estimating 

FRT. Since prognosis are adjusted in chronologically order in the disruption management system, I 
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will give a concise description of the integration of the extensions in similar structure.   

 The Bayesian network is the first extension in line, see Figure 6. This algorithmic extension 

influences the adjustment of the automatically generated initial prognosis, if enough information is 

at hand. This precondition is formulated because in real life, the Bayesian network requires enough 

input variables to generate an alternative prognosis (31). If enough information is available, the 

Bayesian network replaces the initial prognosis with a prognosis of 140 minutes. This adjustment is 

roughly based on a four years research project of TU Delft (31). Otherwise, the initial prognosis is 

unchanged.    

 

Figure 6: the Bayesian network extension  

The second extension in the enriched model is the Switch type algorithm, see Figure 7. This 

extension is positioned at this part of the sequence, because information about the type of 

distributed switch is available at this point. The sooner an extension is taking into account, the 

better. Looking at the influence of this extension on the prognosis: based on a study at ProRail (22), 

the current prognosis is shortened with 20 minutes if either the disruption considers a regular switch 

that is not in control or if a switch is disturbed. Moreover, this extension could lower the prognosis 

with ten minutes if a diamond switch is not in control.  

     

Figure 7: the Switch type extension  

Thirdly, extending communication between the MKS agent and the Dispatcher agent enriches 

decision making on the estimated FRT, see Figure 8. Communication about the precision location of 

the disruption, results in a reduction of 40 minutes of the current prognosis. This reduction is roughly 

based on a research conducted at ProRail (22). It is assumed that knowing the precise location will 

https://www.draw.io/?scale=2#G15dlSIZFFBwPOkBnhzlQ-h6thG_Fnv86A
https://www.draw.io/?scale=2#G1AUJwia5_EJvwkQewcqUyl5gKDI7NnSA_
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result in an equal prognosis reduction for every scenario. After the third adjustment, the MKS agent 

sends the initial prognosis to the GL.  

 

 

Figure 8: the extended RVO extension  

An extension in the tasks of the GL forms the forth enrichment of the model, see Figure 9. 

Right after receiving the initial prognosis, the GL agent has the extra task to confirm the initial 

prognosis. Depending on the quality of the GL, a skilled GL either shortens the prognosis by 10 

minutes and a unskilled GL increases the prognosis by 10 minutes. This value has been roughly 

estimated by a GL. Moreover, skilled in this sense means that the GL has recently passed a training 

which focusses on more communication with other agents. As described in 3.4.1.7 ProRail has plans 

to start with such trainings.          

  

Figure 9: the extended tasks GL extension 

The fifth extension that influences the current prognosis takes the weather conditions into 

account, see Figure 10. This extensions is positioned at the decision making of the Contractor. Since 

this agent has to make an estimation about the repairing time right before entering the rail track. The 

current prognosis is adjusted on the following way: if the weather is cold, then the current prognosis 

is incremented with 20 minutes. If the weather is sunny, the current prognosis is shortened with 10 

minutes. Otherwise, the prognosis is left unchanged. The exact adjustment in minutes chosen here  

are roughly based on the PhD study described previously (31).  

 

 

https://www.draw.io/?scale=2#G1k8ax_m26oiKJvr5UlBI1649Cmb_pz7k9
https://www.draw.io/?scale=2#G1pL63HYbtaYN-s7PXCkNMVJzq8UnPVy6R
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Figure 10: the weather extension 

The last extension consist of the predicted failure cause, see Figure 11. Having a prediction of 

the switch failure cause, would result in a shorter search time, as described in section 3.4.1.2. Since 

this algorithm have never been used in practice, it is hard to determine the precise adjustment in 

minutes that this extension brings about. Therefore, an expert is consulted. Based on his expertise I 

have chosen to shorten the prognosis with 30 minutes if the engine is the predicted failure cause. If a 

relay is the predicted disruption cause, the prognoses is shortened with 40 minutes. Otherwise, the 

prognosis is left unchanged.  

 

Figure 11: the predicted failure cause extension 

 

4.2.5 Simulation experiments 

In the previous section each extension for the MAS is described. The next step is running simulations 

experiments in the MAS in which all the extensions are integrated. Every simulation starts with an 

incoming disruption notification. This triggers the agents to communicate, share information and 

make decisions about the estimated function recovery time. The process of sharing information and 

making decisions is enriched by the extensions, which will lead to adjustments in the prognosis.

 Each simulation has a starting prognosis that is equal to the initial prognosis of the original 

scenario. The prognosis is defined as the number of minutes it will take to recover the function, 

starting from that moment of time. The simulation experiment is setup in such a way, that every 

possible selection of extensions is applied to the MAS. In a simulation, the prognosis is received, 

https://www.draw.io/?scale=2#G1vFqXWkvpqAWZOOIG2qbVeByWyCdIY-uf
https://www.draw.io/?scale=2#G1-I1w5KRZnyRIOqhZK8CCSkLUZuzhUo00
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adjusted and shared a number of times, depending on the number of extensions that is applied. At 

the moment the prognosis is less than 30 minutes, the current prognosis is defined as the final 

prognosis, and the system terminates.        

 In the experiments, three extensions are fixed per scenario. Namely, the switch type, 

weather conditions and predicted failure cause, since these are known by forehand and match the 

real situation of a scenario. In Table 8, for each scenario the settings for these three extensions are 

presented.  

 

  

  

  

 

 

 

Table 8: The settings of the three extensions that are fixed in each scenario. 

 

4.3 Results 

Before going into the results of the MAS simulations, three notable concepts will be further 

explained. Namely the original prognosis, the extended MAS prognosis and the optimal prognosis. 

These concepts forms an important base for discussing the results.  

4.3.1 Three types of prognosis 

Firstly, the original prognosis corresponds to the estimations of the function recovery time as stored 

in the data for each scenario. This prognosis is equal to the prognosis generated in the baseline MAS. 

The extended MAS prognosis is generated during the MAS simulation experiments as discussed in 

section 4.4. The optimal prognosis is based on the recovery time it truly has taken to repair the 

function. For each scenario, the true recovery time is known. The optimal prognosis has a starting 

value that is equal to the complete recovery time and decrease over time. See Figure 12 for an 

example of the optimal prognosis. The optimal prognosis will be used in the next paragraph 

 

 

 

 

 

 

 

Scenario Switch type Weather Predicted failure cause 

1 Regular NIC Normal Engine 

2 Regular NIC Normal Unknown 

3 Regular NIC Normal Engine 

4 Switch disturbed Sunny Relay 

5 Regular NIC Sunny Relay 
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Figure 12: An example of an optimal prognosis. The estimated FRT equals the true recovery time 

perfectly.  

  

The optimal prognosis is useful since it offers a measurement for the quality of the original and 

extended MAS prognosis. Before presenting the precise outcomes of these measurements, the 

original and optimal prognosis for each scenario will be plotted.  

 

Figure 13: Scenario 1, Utrecht 4-10-2017.  
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Figure 14: Scenario 2, Zevenaar 29-09-2017.  

Figure 15: Scenario 3, Amsterdam 7-09-2017 
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                 Figure 16: Scenario 4, Utrecht 15-09-2017 

 

Figure 17: Scenario 5, Dordrecht 31-08-2017. 

The previous five graphs gives an insight in the quality of the original prognosis of each scenario. The 

better the original prognosis fits the optimal prognosis, the better the original prognosis. For 

instance, in scenario 1, in the beginning the original prognosis is too optimistic and too pessimistic in 
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the end. However, the original prognosis in scenario 5 is pretty much in line with the optimal 

prognosis.            

 From this point, every original prognosis could be compared with the optimal one, just by 

looking at the graphs and calculating the precise error rate. This forms the baseline on which the 

extended MAS prognosis will be compared. The next paragraph contains results of the extended MAS 

simulation experiments.   

4.3.2 Extended MAS 

The aim of the extended MAS is to improve the quality of the estimated function recovery time. 

Therefore, the behaviour of the extended MAS has to be studied. To gain more insight in the 

behaviour of this MAS, the results from simulation experiments have to be correctly presented. A 

feasible way of presenting, is by plotting the twelve prognosis made by agents in one scenario. 

 An example of such a graph is Figure 18. This figure relates to the twelve extended MAS 

simulations for scenario 4. Similar figures of the other four scenarios are part of Appendix A. The 

green line with green triangles represents the optimal prognosis. The orange crosses represents the 

original prognosis. The blue dots represents the prognosis made by the agents in the extended MAS 

simulation. Each blue dot corresponds to the outcome of decisions made by agents according to the 

estimated FRT. The lines between the blue dots do not represent prognosis, since the prognosis are 

only given at specific moments (i.e. the blue dots). These blue lines make it more clear how an initial 

prognosis is adjusted by agents during the process. It represents the decision path of agents, which 

explains that at some points, branches occur. The branches occur because agents try every setting of 

the Bayesian network, extended RVO and extended tasks of the GL (corresponding to the numbers 

1, 3 and 5 in Figure 18 respectively). Every setting of these non-fixed extensions are part of the 

simulation, since these scenarios do not contain information to choose just one setting of the 

extensions. So, from the twelve simulations in Figure 18, six times the agents have requested the 

Bayesian Network and six times this extension was not requested. The same counts for requesting 

the extended RVO half of the time. Lastly, the agents have three choices for the extended tasks of 

the GL, namely the GL was trained or the GL was not trained or the extension was not queried. 

These possible number of combinations of these non-fixed extensions resulted in twelve simulation 

for scenario 2. The other three extension (see Table 8) differ from the non-fixed extensions. For the 

switch type algorithm, weather and predicted failure cause algorithm, only one setting is applicable 

for each extension, namely the one that matches the real condition of  a scenario. 
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Figure 18: The prognosis for scenario 2. The green line represents the optimal prognosis. The orange 

crosses represents the original prognosis. The blue dots represent the prognosis made by agents in the 

extended MAS. The number correspond to the extensions that adjust the prognosis in that moment in 

time. 1: Bayesian network. 2: Switch type algorithm. 3: Extended RVO. 4: No extension, just prognosis 

1 confirmed. 5: Extended tasks GL. 6: Weather. 7: Predicted failure cause algorithm. 8: Prognosis 2.  

Disclaimer: the blue lines do not represent prognosis. These lines only support the readability of the 

figure, by visualizing the decision paths.  

Although Figure 18 visualizes the prognosis of the extended MAS simulation, it lacks clarity to 

draw specific conclusions from it. However, there exists a statistical measurement to compare the 

original and extended MAS prognosis with the optimal one. This statistical measurement is known as 

the root-mean-square error (RMSE).        

 The RMSE is a statistical measurement for determining the difference between values 

predicted by a model and the values actually observed (32). The RMSE is an absolute error measure 

which states that the scale of the RMSE equals the scale of the used values. The lower the RMSE the 

better. For this thesis, the RMSE is used to calculate the difference between the optimal prognosis 

and the original and extended MAS prognosis. So the RMSE provides a measurement to determine in 

which quantity the prognosis difference from the optimal prognosis. In Table 9 below, for every 

scenario the RMSE of the original prognosis and the RMSEs of the extended MAS prognosis is 

presented. These results are generated by the MAS that applied all extensions in predicting the FRT.  
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Table 9: The RMSE scores for the original prognosis and the twelve extended MAS prognosis per 

scenario. RMSE scores which are lower than the original RMSE, are marked grey.  

 

For scenario, 2, 3 and 4, the agents in the extended MAS making prognosis that are in some cases 

closer to the optimal one than the original prognosis. Especially, for scenario 2 and 3 the extended 

MAS making estimations on the FRT that are closer to the optimal prognosis. The RMSE score of 

scenario 2 in Table 9 correspond to the prognosis presented in Figure 18. In which Extended 1 of 

Table 9 corresponds to the most upper prognosis in Figure 18. The prognosis right below this 

prognosis corresponds to Extended 2, and onwards.       

 In the previous results, each extension is part of the MAS prognosis, except from the dynamic 

extensions that are switched either on or off. However, in the MAS simulation experiment, every 

combination of extensions is applied to each scenario. The five prognosis with the lowest RMSE are 

presented in Table 10.  The letters in superscript at the RMSE scores correspond to the extensions 

that were applied accordingly. See the table description for the meaning of the superscript letters. 

These results give insight in which combination of extensions contributed to prognosis with a low 

RMSE.             

 The RMSE scores of scenario 1 in Table 10 are not lower than the original prognosis for this 

scenario. However, in general, the RMSE scores are lower compared to the scores in Table 9. So 

applying some extensions or only one extension in the MAS for predicting the FRT, results in 

prognosis that fits the optimal prognosis more closely.  

 

 

 

 

 

Prognose  Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Original 102 74 40 23 6 

Extended 1 107 94 35 16 27 

Extended 2 128 89 32 24 33 

Extended 3 134 83 32 24 41 

Extended 4 150 65 28 33 59 

Extended 5 149 61 28 35 64 

Extended 6 153 57 29 36 61 

Extended 7 108 32 39 20 31 

Extended 8 116 34 35 21 36 

Extended 9 120 36 35 24 42 

Extended 10 139 49 29 32 55 

Extended 11 146 55 30 36 60 

Extended 12 148 60 30 38 65 
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Table 10: The five lowest RMSE of the extended MAS prognosis that only used a specific selection of 

extensions. The letters in superscript correspond to the extensions that were applied in the MAS 

simulation accordingly. A: Bayesian network. B: Switch type. C: Extended RVO. D: Extended tasks GL. E: 

Weather. F: Predicted failure cause. RMSE scores which are lower than the original RMSE, are marked 

grey.    

For each scenario, the prognosis with the lowest RMSE applied only one or two extensions for 

estimating the FRT. Taken these five RMSE scores per scenario into account, it seems that some 

extensions contributed to prognosis that fits the optimal one closely. I will evaluate these results in 

the next chapter.             

4.3.3 Results conclusion 

In this chapter, I have motivated the steps in developing the baseline MAS and the extended MAS. 

The baseline MAS simulates the original process of estimating the FRT perfectly. This forms a feasible 

base to develop the extended MAS on. The extensions of the extended MAS has the aim to positively 

adjust the estimation of the FRT. Although the influence of the extensions are a rough estimation on 

previous research, expert knowledge and common sense, the extended MAS generated more 

prognosis that are closer to the optimal prognosis in four of the five scenarios, compared to the 

original prognosis in these scenarios.  

4.4 Evaluation 

In the following, I will give an evaluation of the results from the simulation experiments. Therefore, I 

will dive into the extensions that influence agent’s decision making and elaborate on which 

combination of extensions resulted in well performing prognosis.   

4.4.1 Extended MAS 

The extended MAS as described in section 4.3.2, is a system of agents that uses additional 

information for decision making on the estimated FRT. The aim of these extra sources of information 

is to let the agents benefit from it, in the process of making prognosis. For scenario 2 and 3,  I will 

dive into some prognosis that fit the optimal prognosis better than the original one. I will start with 

given reasons for the fact that the extended MAS generates better prognosis in scenario 2, 3 and 

partly in 4, but performs worse in scenario 1 and 5.       

 In Figure 18 most extended MAS prognosis perform better than the original one. However, 

Prognose Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Original 102 74 40 23 6 

Rank 1 105A 6B 4C,D 1B 1A 

Rank 2 120A,B 12A,D 6C 7C,D 11A,B 

Rank 3 123A,D 17 A,D,E,F 16B,C,D 16C,D,E 15A,B,D 

Rank 4 127A,B,D 19A,B 17B,C,D,E,F 18C,E 15A,B,E 

Rank 5 130B 23A,C,E,F 19B,C 18B,E 17A,B,D,E 
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the RMSEs for scenario 5 makes clear that every extended MAS prognosis fits the optimal prognosis 

worse, compared to the original one.   

Figure 19: The prognosis for scenario 5. The green line represents the optimal prognosis. The orange 

crosses represents the original prognosis. The blue dots represent the prognosis made by agents in the 

extended MAS. Disclaimer: the blue lines do not represent prognosis. These lines only support the 

readability of the figure, by visualizing the decision paths.  

Figure 19 shows the optimal, original and extended MAS prognosis for this scenario. The original 

prognosis performance very well, as also could be seen in Figure 17. Focussing on the extended MAS 

prognosis, the pattern has similarities with the patterns in Figure 18 In both cases, agents decide to 

shorten the prognosis during the process. For instance, in Figure 18, the two far most right blue dots 

correspond to the weather and the predicted failure cause extension. Based on the scenario as 

stated in Table 8, the agents decide to shorten the prognosis with 10 minutes (weather type: sunny) 

and 40 minutes (predicted failure cause: engine) respectively. These decisions make the extended 

MAS prognosis in this scenario too optimistic. This optimistic behaviour of the extended MAS 

explains the fact that the MAS is performing well in  scenario 2 and 3. Since in these scenarios, the 

original prognosis is too pessimistic, see Figure 14 and 15. With this in mind, in the following, I will 

evaluate an extended MAS prognosis that outperform the original one.  
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Figure 20: The low blue dots represent the best performing (RMSE 32) extended MAS prognosis 7 in 

scenario 2. The black dots represent extended prognosis 6 (RMSE 57).  The green line is the optimal 

line. The orange crosses are the original prognosis. The numbers correspond to the  extensions that 

influenced the adjustment of the prognosis. 1: Initial prognosis. 2: Bayesian network. 3: Switch type. 4: 

Extended RVO. 5: No extension, just prognosis 1 confirmed. 6: extended tasks GL. 7: Weather. 8: 

Predicted failure cause. 9: Prognosis 2. 10: Prognosis 3.  

In Table 9, all the RMSEs of the original and extended MAS prognosis are presented. In scenario 2, 

extended 7 performs the best (RMSE of 32). In Figure 20 this extended MAS prognosis is presented. 

The labels in the figure correspond to the extensions that played a role in adjusting the prognosis. In 

the beginning of the process, the agents in the extended MAS have to deal with the initial prognosis. 

In this simulation, the MKS agent requests the Bayesian network, marked as number 2 in the figure, 

on which he changes the prognosis to 140 minutes. Due to the switch type, number 3, the prognosis 

is shortened with 20 minutes. For extension 6 in this case, the GL agent does not perform extended 

tasks, and therefore the prognosis is incremented with 10 minutes, which results in a better fit with 

the optimal line. So not performing extra tasks of the GL agent, results in a better prognosis, in this 

scenario. If the GL agent did perform extra tasks, then the prognosis would become worse in this 

scenario. This contradicts the aim of this extension. However, in extended prognosis MAS 6, 

represented by the black dots in Figure 20, the GL agents performs extended tasks, which results in a 

better fit with the optimal prognosis. It turns out that extending the tasks of the GL agents only 

results in a better prognosis if the previous prognosis was to long (i.e. above the optimal line). 

 This principle, that the quality of an extension depends on the initial prognosis and 

adjustments of previous extensions, gives difficulties in making general statements about the 

performance of each extension on its own.    
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4.4.2 Best performing prognosis 

However, in the MAS simulation experiment, every combination of extensions has been applied in 

predicting FRT, to gain more insight in the performance of the extensions. In Table 10 the five lowest 

RMSE scores are presented. Focussing on the lowest RMSE in each scenario, it turns out that only 

applying one or two extensions, results in the best extended MAS prognosis. For scenario 2 and 4, 

only applying the switch type extension resulted in prognosis with a RMSE of 6 and 1 respectively. 

For scenario 5, only applying the Bayesian network extension resulted in a prognosis with a RMSE of 

1, which is better than the original prognosis. In this scenario, the Bayesian network extension is part 

of all five best performing extended MAS prognosis. For scenario 4, applying both the extended RVO 

and the extended tasks of the GL in the MAS, resulted in the prognosis with the lowest RMSE. 

Combining these two extensions, resulted in scenario 4 the second best performing prognosis. 

Another relation of extensions between scenario could be found in scenario 1, 2, and 5. In these 

scenarios, the Bayesian network is part of almost every top five prognosis. In general, between the 

scenarios, there seems to be no further consistent relation among the extensions that contribute to 

well performing prognosis.          

 So far, the extensions that contribute to a well performing prognosis have been discussed. 

On the other hand, one extension does not played a sufficient role in the RMSE of well performing 

prognosis, as listed in Table 10. Namely, the predicted failure cause extension. This extension is only 

applied in three of the top five performing prognosis. Apparently, the predicted failure cause does 

not enrich the quality of the prognosis, as simulated in the MAS of this study .  

4.4.3 Evaluation conclusion 

In this previous sub-section I presented an evaluation of the results from the extended MAS 

simulation. Some extended MAS prognosis perform better than the original prognosis. In general, the 

extended MAS made better prognosis in scenarios in which the original prognosis was too 

pessimistic. Applying only one extension or a specific combination of extensions in the MAS, resulted 

in better prognosis in four of the five scenarios.   

4.5 Discussion 

In the following section I will elaborate on the meaning of the results, limitations and applicability of 

this research. The section begins with the validation of this study.  

4.5.1 Validation 

The validity of the research design has multiple aspects. To start with the internal validity, namely the 

design of the simulations. To determine the effect of the extensions on the quality of the prognosis, 

this research is designed to conduct simulation experiments. In this experiments, the results of the 

extended MAS is compared to the baseline MAS. The baseline simulates original decision making in 

the scenarios deterministically. Extending this baseline model and comparing the performance with 

the original scenario is a suitable design to measure the quality of the prognosis. This is a valid design 

to measure effect of the extensions.        

 In terms of external validity, this research provides insight in the usage of validated additional 

sources, to better predicted FRT. The results make clear that in some scenarios, the extended MAS 

does make better prognosis, based on validated extra information. To check the overall external 

validity, realisation data is acquired to check the validity of the extensions that are currently 
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applicable to the scenario (see Table 8). According to the extensions that has an impact on  the FRT, 

the parameters of these extension are based on expert judgement. Since there is no realisation data 

at hand, conducting experiments to test the impact of these extensions is a recommended next step.

  

4.5.2 Results elaboration 

The prognosis generated by the extended MAS simulation is discussed in more detail here. I will 

argue how valuable the results are. By taken the performance of each extension and the extended 

MAS prognosis into account.         

 First of all, take into account that the context is shaped by the optimal  prognosis. The 

optimal prognosis is an unrealistically well performing prognosis, that only serves a feasible base on 

which the quality of the other prognosis are calculated. So, performing less than the optimal 

prognosis is reasonable. The aspect to focus on is the comparison between the extended MAS 

prognosis and the original prognosis.         

 The results in Table 9 make clear that the extended MAS generates better prognosis in two of 

the five scenarios. For these prognosis, all the extensions are combined. For scenario 2 and 3, fifty-

fifth applying the dynamic extensions (i.e. the Bayesian network, the extended RVO and the 

extended GL tasks), in combination with the fixed extensions, resulted in better prognosis. In these 

two scenarios, an extension could adjust the prognosis negatively, although overall, still performing 

better than the original prognosis. These findings are valuable in the sense that for some scenarios, if 

the agents use a combination of all extensions, the estimated FRT is improved.  However, in the other 

three scenarios, the quality of the estimated FRT is worse compared to the original one.

 Besides these results, the extended MAS simulation generated prognosis in which only one 

extension or a combination of extensions was applied.  It turned out that from these prognosis, in 

four of the five scenarios, the extended MAS made better prognosis compared to the original one, 

see Table 10. Only for scenario 1, the extended MAS has not made a better prognosis. For scenario 5, 

only applying the Bayesian network resulted in a better prognosis compared to the original one. 

Overall, the best performing prognosis in each scenario only used one or two extensions (see Table 

10). For these scenarios, it turned out that less is more.      

 In an ideal situation, the extended MAS generated improved prognosis is every kind of 

scenario. Only for scenario 1 the extended MAS has not generated a better prognosis compared to 

the original one. For the other four scenarios, the agents used a specific combination of extensions 

that improved decision making on the predicted FRT.    

4.5.3 Limitations 

I will give reasons for some limitations of this research and explain the impact that each of them has. 

 Firstly, despite using existing research and expert knowledge, the parameters for the 

extensions are not as dynamic as they could be. Therefore, it is currently unknown how the extended 

MAS will perform in practice. This study requires further research when generalizing for additional 

scenarios, but appeared sufficient for the initial scenarios.      

 Secondly, the extended MAS performed better than the original prognosis for several of the 

scenarios. However, to classify these performance as significantly better, additional measurements 

are required. This is an option for possible future research.     

 Lastly, the performance of the extended MAS is measured in five scenarios. This small size of 

scenarios makes it hard to generalize the performance of the extended MAS. Due to time issues this 
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study contains a small set of scenarios. However, this thesis aims to provide a proof of concept, a 

goal that is achieved even using a few scenarios.      

4.5.4 Applicability 

It is yet to be investigated to what extent the extended MAS is applicable in practice. Since the MAS 

has only been tested in five scenarios, the question remains in how well the MAS should perform in 

other scenarios. However, in terms of applicability, the validity of each extension is relevant. For the 

extensions that influence the FRT itself, it would be recommended to test the influence they have in 

practice. This is a method to judge the validity of these extensions. For the other extensions, that 

have no influence on the operation, validation could be performed by using realisation data. These 

methods for validating the extensions and therefore the extended MAS itself, is a recommended 

approach to state more about the applicability of this research.  

4.6 Conclusion  

The present study shows the process of modelling the disruption management system as a MAS, and 

enrich the MAS with algorithmic modules and different communication lines, to better predict the 

FRT. The influences of the extensions are roughly estimated on existing research and expert 

judgement. In general, the developed MAS is able to improve its performance by using information in 

a smart way, which overall is a proof of concept. A proof of concept that makes clear that the impact 

of extensions, that improve FRT and the prediction of it, can be simulated in a MAS and tested 

accordingly. Keeping the validity issues, of the extensions that influence the FRT process itself, in 

mind.  
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5 Conclusion 

In this chapter, I will give answers to the research question and related sub-questions as stated at the 

beginning of this thesis. Besides giving answers, I will come up with topics for future research.   

5.1 Findings 

The developed MAS, results and conclusion form the previous chapters can be taken together to 

answer the main research question and related sub-questions. The main research question was: 

• Can the disruption management system of ProRail be modelled as a multi-agent system to 

make the usage of information smarter through better information sharing among the 

participating agents to improve the quality of the estimated failure recovery time? 

From this main question, three sub-questions were divided: 

• How can the disruption management system be modelled as a multi-agent system? 

• How can the multi-agent system use information in a smarter way, i.e. how to make the 

information sharing protocol smarter?  

• How to evaluate the modified multi-agent system to check if it improves the quality of the 

estimated function recovery time?   

The answer to the first question was acquired through defining the system’s specifications, so it’s 

main goal and sub-goals. These goals form the base for agent descriptors. These descriptors 

contained all the essential information for each of the four agents. Next step was specifying the 

relationship among agents. This approach of modelling the disruption management system as a MAS 

has been inspired by the Prometheus methodology. This approach resulted in a step by step 

modelling process. By modelling the disruption management system in such a structurally manner, 

the most important characteristics and components of the system arose. In particular, aspects 

according to decision making on determining prognosis. Having clarified the agent’s communication, 

tasks and decision making related to estimating the FRT, resulted in a functional disruption 

management MAS.          

 In order to answer the second sub-question, possible weak spots of the current disruption 

management system and additional modules that could enrich the system have been studied. 

According to studying current aspects of the system that could be improved, evaluation reports at 

ProRail were consulted. These reports and opinions of experts, made it clear that the role of the GL 

could be improved by changing its tasks. In the short sense, these changes in the tasks of the GL 

related to actively confirming the initial prognosis and communicating more on the validity of 

information.           

 Moreover, the information sharing protocol could become smarter by using additional 

modules for decision making. Some specific characteristics of the disruption management system 

have been topic of previous research. These previous research projects gained insight in factors that 

influence the function recovery time and developed algorithms that benefits the understanding of 

some characterises of the disruption management system. To shortly sum up these additional 

modules: a Bayesian network for generating an initial prognosis. The type of switch is a relevant 

aspect to take into account. Knowing the precise location of the disruption benefits the function 

recovery time. Taking weather conditions into account in the prognosis that is being shared. Lastly, 

having a prediction about the failure cause, shortens the search time on the track and therefore 
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benefits the recovering process. These extension have been integrated in the right place of the 

baseline MAS. Overall, these list of additional modules add value in making the information sharing 

protocol smarter.           

 The last sub-question was aimed to check if the additional modules and the adjustments in 

communications, improves the quality of the estimated FRT. To get an answer, a MAS has been 

developed that simulates the disruption management system and outputs the estimated FRT. This 

MAS simulates the estimated FRT of the five original scenarios perfectly. This forms the baseline 

MAS. Onwards, the posted extensions for the information sharing protocol are added to the baseline 

MAS, which results in an extended MAS. This extended MAS also outputs the estimated FRT. The 

next step consisted of conducting simulation experiments to gain insight in the performance of the 

extended MAS. To measure the performance of the extended MAS prognosis, an optimal prognosis 

was made for each scenario. This optimal prognosis served as a base to determine the difference of 

the original and extended MAS prognosis, by calculating the RMSE. The lower the difference, the 

better the quality of the prognosis. Lastly, the performance of each extensions could be determined 

in a similar fashion.            

 Each answer of the sub-questions contributes in answering the main research question. The 

goal of the research question was to come up with a MAS solution for better predicting the FRT in 

the disruption management system. Approaching this problem from a MAS perspective is something 

that has never been done before. In the light of the main goal, I managed to develop a MAS that 

simulates the disruption management system. In this MAS, all the communication lines relevant for 

predicting the FRT are incorporated. The communication takes place between agents, that represent 

the parties that are part of the disruption management system. The agents have capabilities, which is 

a collection of actions they can perform, like sending requests and make decisions. This network of 

agents that perform actions, communicate and make decisions simulates the mechanism of the 

disruption management system. In this system, making reliable prognosis early in the process is a 

difficult thing to do. Therefore, I added modules and changed communication lines in the original 

MAS, with the aim to enrich the process and improve the quality of the prognosis. These modules 

consists of existing algorithms and conclusions form data analysis that could support decision 

making. Extending the original MAS with these modules resulted in a modified MAS. With this 

modified MAS, simulation experiment were conducted. Therefore, the process of making prognosis 

was simulated in the modified MAS, which used all the possible combinations of extensions. It turned 

out that, if all extensions were applied, in two of the five scenarios, the modified MAS generated 

better prognosis than the original prognosis. Focussing on applying only one or a specific 

combination of extensions to the MAS, the agents predicted the FRT better in four of the five 

scenarios. So the modules improves the estimated FRT in some situations.    

 If a closer look is taken at the performance of the modified MAS, then it turns out that the 

quality of the prognosis depends on the scenario it is part of. This dependence makes it difficult to 

generalize the performance of the modified MAS to other scenarios. Moreover, for some modules, 

the influence they have on decision making is based on a rough estimation. However, the modified 

MAS is capable of using additional information and acting smartly on it, which results in better 

prognosis.           

 The modified MAS could also be viewed from a different perspective. Namely, a MAS that is 

capable of judging the quality of modules, which are aimed to improve the estimated FRT. So, some 

sort of judging system that checks the effect of on extension on the estimated FRT in the disruption 

management system. Since ProRail is working on improving the prognosis and optimizing the 
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disruption management in general, the MAS of this thesis could also be useful as an evaluation tool. 

     

5.2 Future subjects 

In this study, I demonstrated the use of multi-agent systems for better estimating the FRT in the 

disruption management system. A model can always be improved. In this case, for the modified MAS, 

the model could be improved by making it capable to process several incoming disruptions in 

parallel. The current modified MAS can only process one disruption at the time. However, at ProRail 

several disruption could occur on the same time. For instance, at the 25th of January, a heavy storm 

caused 344 incidents at ProRail’s territory. Although this is a unique situation, improving the 

modified MAS so it is able to handle disruptions parallelly, is a valuable topic for future research at 

ProRail.             

 The MAS of this research could also in another way be improved. By making the MAS capable 

of automatically use information from scenario, to test its performance on. Since this study only used 

five scenarios, automating processing scenarios would make it possible to test the performance of 

the MAS on a larger scale.          

 Another subject for future research is modelling the disruption process as a normative MAS. 

Normative MAS has been a well-study topic considering human and artificial agent cooperation and 

co-ordination, group decision making, secure multiagent systems, and so on. Approaching the 

behaviour of the disruption management system with typical normative concepts as norm violation, 

permission or prohibition and normative deadlines, to name a few, would shine a new academic light 

on a familiar problem.           

 Lastly, some agents that are part of the disruption management system could be assisted by 

an intelligent agent. For instance, the Dispatcher agent has difficulties in making an optimal RVO in 

cooperation with the MKS. Moreover, the Dispatcher is challenged in getting a clear picture of the 

details of a disruption. Using voice-to-text techniques, to grasp information that is shared among the 

parties, could be caught by an intelligent assistant agent. Who is supporting the Dispatcher in asking 

the right questions, prioritizing tasks and making correct decisions. This intelligent agent could be 

implemented besides the programmes that the Dispatcher is currently using.        

5.3 Conclusion 

This study has investigated the possibilities of using an improved MAS to better predicted the FRT 

during the disruption management process. Although the performance of the extended MAS 

depends on the scenario it is part of, the results made clear that in four of the five scenarios, the 

agents better predict the FRT, when using an extension or a combination of extensions. Overall, the 

developed MAS and it performance shows that the concept works in some situations. In this light, 

this study is a proof of concept which opens doors for future research.   
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Glossary 

 

Delay Vertraging The time difference between 

the actual activity and the 

planned activity  

 

Disruption Storing A collection of irregularities, 

with the consequence that the 

functionality of an infra object 

is not available 

 

Function Recovery Time (FRT) Functie herstel tijd Time it takes to recover the 

function of a failed infra object 

   

Prognosis Prognose Prediction of the time it will 

take to recover the function of 

a disrupted infra object 

 

Railway control room Meldkamer spoor (MKS) The failure-handeling 

organisation of ProRail’s Asset 

Management within the 

Operational Control Centre 

Rail 

 

Report of irregularity (RVO) Rapport van onregelmatigheid A report that contains all the 

relevant information, such as 

location, type of infra object 

and priority level, for the 

disruption management 

process 

 

Traffic control Verkeersleiding The department of ProRail that 

is tasked with directing train 

traffic through controlling 

switches and signals where 

necessary 
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Appendix 

 

A Prognosis figures 

For the figures, the green line represents the optimal prognosis. The orange crosses represents the original 

prognosis. The blue dots represent the prognosis made by agents in the extended MAS. Disclaimer: the blue 

lines do not represent prognosis. These lines only support the readability of the figure, by visualizing the 

decision paths. 
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B Agent’s capabilities 

The capability of each agent. The capability contains all the actions an agents can perform in the extended 

MAS.  

 

 

 

https://www.draw.io/?scale=2#G1hT4BALhLCjQzMg17IwlEbCWlr4H_YgxH

