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Using particle tracking to simulate sediment transport

in estuaries

Abstract

The morphology of estuaries is characterized by a complex channel-shoal pattern. Interaction
between river and tidal currents produces a wide variety of sand bar types. These sand
bars are not static and migrate due to tidal and residual currents. Sand bars can move
into shipping channels or harbors and removing them requires costly dredging activities.
Eventually sand bars may regrow and pose the same problem. Hence, understanding how
sand bars develop and evolve in estuaries is of importance. Currently, already a few theories
exist that predict sand bar shapes and dimensions given some estuarine properties. However,
predictions are wrong compared to observations, suggesting a lack of understanding. To this
end, a numerical model was set up which simulates sediment transport in a different way
than usual. Instead of an Eulerian approach, particle tracking is used for the advection
of sediment. Particle tracking offers additional information on the flow dynamics that is
lost in the Eulerian approach. This potentially can help to improve understanding of sand
bar dynamics. An outline of particle tracking and some examples of particle trajectories
are presented. Furthermore a few preliminary results on the simulation of sand bars are
discussed.
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1 Introduction

The morphology of estuaries is characterized by a complex channel-shoal pattern. Interaction between river
and tidal currents produces a wide variety of sand bar types. These sand bars are not static and migrate
due to residual and tidal currents. Sand bars can move into shipping channels or harbors and removing
them requires6 costly dredging activities. Eventually sand bars may regrow and pose the same problem.
Next to this, morphology also influences36 flow dynamics which in turn may have consequences for ecology.
Hence, understanding how sand bars develop and evolve in estuaries is of importance. Complex numerical
models can already simulate15 the development of sand bars, but these models are too complex to extract the
physical mechanisms responsible for sand bar formation. However, current theoretical models17 cannot yet
accurately reproduce tidal bars and dimensions in relation to estuarine width and depth. Theoretical models
are often based on a mathematical tool called linear stability analysis.10,26 According to these theoretical
models, tidal excursion length determines sand bar length, while observations17 suggest that estuarine width
is the most important lengthscale that determines sand bar length. This suggests that an essential physical
mechanism is missed by the current theories.

In this project, a numerical model was developed that uses particle tracking to simulate sediment trans-
port. This implies that, instead of the conventional Eulerian approach to sediment transport, a Lagragian
viewpoint is used. This Lagrangian viewpoint comprises that the water volume is divided in numerous small
sub-volumes. Each sub-volume can hold sediment and can freely move throughout the domain according to
the hydrodynamics. While this sub-volume moves throughout the domain, it can pick up sediment by erosion
but also loose sediment by means of deposition. Information about the movement of these sub-volumes is
lost in an Eulerian description. The question is, can we, by introducing a Lagrangian viewpoint, capture
physical mechanisms that are missed by theoretical models?

For the Eulerian approach only the Navier Stokes equations, or a simplified version of these equations,
are used to solve the dynamics. Additionally, the concentration equation is solved for every gridcell in
the domain. By using this Eulerian approach, information about where the water (which holds sediments)
moves to, is not explicitly obtained. This can only be obtained by solving the kinematic equations, which
are nonlinear ordinary partial differential equations due to its nonlinear righthand side:

dxxx

dt
= uuu(xxx, t) (1)

In this way, more rich and complete dynamics of the water flow can be captured. For simplicity, from
now on, we refer to the small sub-volumes of water as: particles. Even for simplified velocity fields, very
complicated trajectories of these particles can be expected. Nevertheless, information on particle trajectories
may improve our understanding of sediment transport. By using particle tracking, the morphology is studied
as a function of both estuarine length and width. Hence, the main question of this project can be formulated
as: can we predict the evolution of estuarine morphology by using particle tracking?

Since it is difficult to improve our understanding of sand bar formation by using very complicated numer-
ical models, a conceptual numerical model to solve the hydrodynamics was developed. Hence, in this project
a simple geometry is used: a rectangular estuary with only one open boundary. At the open boundary, tidal
forcing is applied with the main tidal constituent M2. This is the only external forcing: river dynamics are
neglected by assuming river input is weak. Moreover, this estuary is assumed to be shallow, implying that
the velocity fields are assumed to be approximately two dimensional. Therefore, the 2D depth averaged
shallow water equations are numerically solved.

In the process of developing both the hydrodynamic and sediment transport models, many benchmark
problems were used as a verification. The hydrodynamic model is capable of reproducing velocity structures
and patterns that closely follow analytical solutions, see section 4. Even though the sediment transport
model uses a Lagrangian viewpoint, the hydrodynamic model still provides an Eulerian velocity field. This
Eulerian velocity field is in turn used by the sediment transport model to solve the kinematic equations,
which requires a Lagrangian viewpoint. Subsequently, for each particle the concentration equation is solved,
more details follow in sections 2 and 5.
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In addition to studying the initial formation of sand bars, another interesting point of research is to
investigate the coupling between hydrodynamics and morphodynamics on long timescales. Erosion and
deposition lead to changes in the bedprofile, and this in turn changes the hydrodynamics. Even though the
dynamics on longer timescales received attention, this deserves more research.

Summarized, this study aims to improve our understanding of sand bars by using a conceptual model
that uses particle tracking to simulate sediment transport. By doing so, information about where the water
and the sediment it is holding, is obtained. Ultimately, this provides knowledge about the development of
sand bars and contributes to our ability to predict sand bar characteristics in estuaries.
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2 Physics and literature review

This section reviews the mismatch between theory and observations regarding sand bar shapes and dimen-
sions. In addition, theory on hydrodynamics and sediment transport is presented, which is required to set
up the numerical model. This includes a short introduction to dynamical systems required to understand
particle tracking.

2.1 Tidal bar dimensions and characteristics

As a starting point, before comparing theory on tidal bars with observations, a short introduction about sand
bars is given. Depending on estuary geometry, sediment properties and hydrodynamic conditions, different
tidal bar types prevail. Tidal bars can be classified based on their shape17 and the following types can be
distinguished:

• Linear bars

• U-shaped bars

• Sidebars

• Compound bars

Compound bars have more complex structures as can be observed in figure 1, moreover: each bar type has
its own length to width ratio. For linear bars, the ratio17 is L = 6.9W . Even though the length scale of
the bars in figure 1 is in the order of a few hundred meters, tidal bars can have a length of more than ten
kilometers.17
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Figure 1: Satellite images used by Leuven et al. (2016) to classify bar types in estuaries. a & b: side bars,
c & d: linear bars, e & f: u-shaped bars, g & h: compound bars. For more details the reader is referred to

Leuven et al (2016).

Two parameters are often used when it comes to tidal bar descriptions, bar mode (figure 2) and the
aspect ratio, which is the ratio of estuary width over average water depth.
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Figure 2: Illustration of different bar modes in a channel. BI stands for braiding index, which is a quantity
that is also used to describe bars, and is linearly related to bar mode. Figure by Leuven et al (2016).

In the literature many potential important factors that determine bar shapes and dimensions have been
identified, examples include: estuary width, the aspect ratio, current velocity, tidal period, estuary geometry
and tidal asymmetry. To summarize, a few important general findings17 are listed below.

• Bar height is linearly related to local water depth.

• Bar length is best correlated with estuary width.

• Bar length can be (and is often) shorter than the tidal excursion length.

• Bar width increases with estuary width. However, bar width reduces when a higher bar mode (m) is
reached.

Current velocity may also be important for bar shape and dimensions. However, according to observa-
tions,17 bar length is independent of current velocties for current velocities in the range of 0.8 to 1.2 ms−1.
Except for that specific range of velocities, bar length increases with current velocities. On the other hand,
bar length correlates for the full range of current velocity with estuary width: L = 0.97 W 0.87. However,
in particular for narrow estuaries, predicted theoretical bar length by Schramkowski et al. (2002) cannot
match observations.17 Especially for increasingly more narrow estuaries, theory overpredicts bar length by
an order of magnitude. In figure 3 the difference between theoretical and observed values is expressed as
a fraction of theoretical and observed values. This fraction is plotted against both estuary width and the
aspect ratio (width over depth). For both bar length and width in relation to estuary width and the aspect
ratio the differences between theory and observations are visualized. In any case, there is a large spread and
almost always theory overpredicts bar length.

7



Figure 3: Theoretical bar length divided by observed bar length for different estuarine widths. In particular
the large error for narrow estuaries and the enormous spread are remarkable. Figure by Leuven et al

(2016).

Currently, theories use a mathematical tool called linear stability analysis to analyze the development of
tidal sand bars is. Linear stability analysis provides10 knowledge on sand bar appearance and characteristics
i.e. wavelength and migration speed. As a starting point, a morphodynamic equilibrium state (or basic
state) is defined with a simplified geometry and or topography. Subsequently, a small spatially periodic
perturbation is applied to the bedprofile. This in turn leads to perturbations in the velocity field and water
level. Eventually, depending on the perturbation wavelength, growth or decay occurs. By assuming the
perturbation to be small, the problem can be linearized. As a consequence, this limits the applicability of
linear stability analysis to the initial stage of the sand bar development. However, the perturbation with the
wavelength that has the highest growth rate, the fastest growing mode (FGM), is still assumed to become
dominant.

2.2 Hydrodynamics in estuaries

Estuaries can be classified based on the dominant hydrodynamic forcing: tide dominated, wave dominated
or river dominated. In this project, we focus on sediment transport solely due to tide, therefore the estuary
considered in this project is fully tide dominated. For tide dominated estuaries, rivers are of minor importance
and are not implemented in the hydrodynamical model. By considering river input to be negligible, it follows
that this particular estuary type is well-mixed, i.e. a constant density is assumed. Hence, density driven
circulations cannot be resolved by this hydrodynamical model. In fact, density stratification is another
often used classification type, in this case: a well-mixed estuary. Another assumption that characterizes the
estuary to be investigated, is that the geometry is approximated by a very simple rectangular model domain,
see figure 4.
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Figure 4: Schematized view of the domain used in the numerical model, basically a rectangular domain.
Length L and width W have to be specified.

On this domain, a simplified version of the Navier Stokes equation is solved. Starting from the Navier
Stokes equations and assuming a hydrostatic pressure distribution, the governing equations become:

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw)− ρfv +

∂p

∂x
− ∂τxx

∂x
− ∂τxy

∂y
− ∂τxz

∂z
= 0 (2)

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) +

∂

∂z
(ρvw) + ρfu+

∂p

∂y
− ∂τyx

∂x
− ∂τyy

∂y
− ∂τyz

∂z
= 0 (3)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,

τij
ρ

= ν(
∂ui
∂xj

+
∂uj
∂xi

),
∂p

∂z
+ ρg = 0. (4)

For the purpose of a conceptual model, we used a relatively simple set of equations, without neglecting
essential processes. In order to simplify, a scale analysis was used to identify the relative importance of each
term. Since this research is applied to estuaries, the shallow water equations are the governing equations.
By using scaling arguments we can assume4 lateral friction to be negligible compared to bottom friction.
Firstly, define dimensionless variables:

x = x∗/L y = y∗/L z = z∗/H u = u∗/U v = v∗/U .

As an example, the viscous terms are made dimensionless: (equation 5 in the x-component of the momentum
equation, equation 2)

∇2u =
U

L2

∂2u

∂x2
+
U

L2

∂2u

∂y2
+

U

H2

∂2u

∂z2
. (5)

In case of estuaries, horizontal length scales are much larger than vertical length scales: L >> H. Hence, as
can be observed from equation 5, lateral friction can be ignored. Furthermore, as already mentioned, density
effects are ignored because the estuary is classified as well-mixed. Other notable assumptions are:

• Wind shear stress is ignored.

• Incompressible fluid

• Constant viscosity
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• Quadratic bottom stress parametrization

Furthermore, whether Coriolis force is dynamically important or not, can be determined by evaluating the
Rossby deformation radius LR. If the width of the estuary (or basin), W , is small compared to this radius,
Coriolis force may in fact be neglected, where W << LR.

LR =

√
g H

f
(6)

For this project, shallow seas will be considered, i.e. estuaries. Whether or not a sea can be characterized
as ’shallow’ can be decided by considering horizontal (L) and vertical length scales (H). If H<<L a sea
can be called shallow. In this case L is of the order of 100 km, while a typical water depth is 10 m. The
flow for a domain where H<<L can be described as a boundary layer type of flow.37 Hence, hydrodynamics
are assumed to be uniform throughout the water column. This allows the use of depth averaged horizontal
velocity components, equations 2 and 8.

ū =
1

H

∫ ζ

−H
u dz (7)

v̄ =
1

H

∫ ζ

−H
v dz (8)

Using these definitions of depth averaged horizontal velocity components and dropping the overbars, the
final form of equations 2 and 3, is:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g ∂ζ

∂x
− 1

ρH
τxb (9)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g ∂ζ

∂y
− 1

ρH
τyb (10)

∂(uH)

∂x
+
∂(vH)

∂y
+
∂H

∂t
= 0. (11)

However, the vertical component of the bottom stress still has to be specified. As already mentioned, scaling
arguments were used to establish dominance of bottom friction over lateral friction. Bottom friction is the
result of boundary conditions in 3D flow,37 hence bottom friction has to be parametrized since only a 2D
model is used. In a linear vectorized form bottom friction is described by:

τττ b = ρruuu r =
8

3π
CdUmax. (12)

This parametrization is often not used, instead a quadratic dependence on the depth averaged velocity is
adopted:

τττ b = ρCd uuu |uuu|. (13)

Vreugdenhil (1994) explained that a quadratic parametrization is used because it is related to turbulent
boundary layer theory. A characteristic value for the drag coefficient is CD = 10−3 and this value will be
used in all computations for this project. Nevertheless, the linear friction law is still consistent with the
quadratic formulation in the sense of energy dissipation.41
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2.3 Residual velocity and vorticity

As can be expected from the shallow water equations, depth variations induce variations in the velocity field.
These variations persist through time and result in residual currents. When considering a spatially periodic
bottom perturbation on a flat bedprofile, this results in residual circulation cells due to nonlinear terms in
the momentum equations. Mathematically, the velocity field can be described in a very general way by a
superposition of many spatially and time dependent components:

u = Ru +A(t) sinπx cosπy

v = Rv −A(t) sinπy cosπx.
(14)

The subscript u, v indicates which vector component is involved (R is a vector). For scaling of these equations,
a typical length scale is the perturbation length scale LE was taken23 and for time the tidal period T . In
equation 14, R represents a spatially homogeneous tide (including all tidal harmonics and the residual (0)
component), with R = R0 +R1(t) +R2(t) + ... Additionally, A with A = A0 +A1(t) +A2(t) + ... represents
oscillatory eddies of the basic tide, A1 and the residual A0 and harmonic components A2, A3, .., caused by
fluctuations in the bottom topography. To illustrate the first order behaviour of the velocity field, this set
of equations can be heavily truncated. Retaining only the components R1 and A0, as was done by Beerens
et al. (1994), the set of equations become:

u = πλνΨy(x, y) + πλ cos(2πt)

v = −πλνΨx(x, y)
(15)

with the streamfunction defined as Ψ(x, y) = 1
π sin(πx) sin(πy) and subscripts indicating derivatives. Flow

is assumed to be incompressible, essentially meaning that it is volume preserving. A volume preserving
system is characterized as a Hamiltonian system, with the streamfunction acting as the Hamiltonian. In
this case, this type of system is a strongly perturbed Hamiltonian system. This system of equations is a
simplification23 of the system given by equation 14.

Figure 5: Schematized view of residual eddies represented by the streamfunction in equation 15, as was
made by Beerens et al. (1994).

Non-dimensionalizing the velocity field yields two important parameters that determine particle trajectories
(phase-space of the system), which are:

λ =
LT
LE

=
tidal excursion

eddy diameter
, ν =

u

U
=

velocity in residual eddies

tidal velocity amplitude
(16)

To simulate the movement of sub-volumes (now called particles), the kinematic equations are solved. The
accompanying kinematic model5 for tidal flow becomes :
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dx

dt
= πλνΨy(x, y) + πλ cos(2πt)

dy

dt
= −πλνΨx(x, y)

(17)

A visualization of the phase-space of this dynamical system is built by creating the positions of some particles
stroboscopically (once every tidal period) and is called a tidal map. This tidal map indicates the tide averaged
net movement of (small) particles through space. A tidal map is often characterized by trapped regions
and mixing regions.5 Regions where particles theoretically remain forever are called trapped regions, on the
other hand mixing regions are characterized by chaotic particle trajectories. Chaotic stirring in time-periodic
flows can therefore significantly contribute to horizontal dispersion. Since this system is technically still a
(perturbed) Hamiltonian system, this type of Lagrangian chaos is volume preserving. Mathematically seen,
hyperbolic points of the residual velocity field, such as (0,0), (1,0), (0,1) and (1,1) in figure 5, are associated
with these mixing regions while elliptic points are associated with trapped regions. In this case, see figure
5, with a residual velocity field in the form of residual circulation cells, hyperbolic points are located in the
corners of such cells. On the other hand, elliptic points are located in the centre of these circulation cells.
In figure 6 chaotic regions can observed around these hyperbolic points, while elliptic points are surrounded
by trapped regions.

Figure 6: Visualization of the dynamical system (eq. 17) with parameter values λ = 10 and ν = 0.08.
This example illustrates both chaotic and trapped (i.e. clear and structured trajectories) regions. Length

scales are dimensionsless.

Randomness of the Eulerian velocity field is not required for particles to display chaotic behaviour. Even a
time periodic and deterministic 2D velocity field allows particles to have trajectories described by random
functions. While the model by Beerens et al. (1994), equation 17 - makes simplifications about the velocity
field, in this project the velocity fields provided by the hydrodynamic model are more complicated. With
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a free surface, local convergence or divergence is allowed, so in particular for shallow water, the particle
dynamics are not Hamiltonian anymore. This furthermore implies that no streamfunction can be established
that governs this more complex velocity field.

Along with residual circulation cells, a residual vorticity field exists. The vorticity equation can be derived
from the depth averaged shallow water equations for 2D flow by only combining the horizontal momentum
equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv = −g ∂ζ

∂x
+

1

ρH

∂

∂x
(Hτxx) +

1

ρH

∂

∂y
(Hτxy)− 1

ρH
τxb (18)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂ζ

∂y
+

1

ρH

∂

∂x
(Hτyy) +

1

ρH

∂

∂y
(Hτxy)− 1

ρH
τyb. (19)

The simplifying assumptions used to derive equations 9 and 10 of neglecting both Coriolis force and lateral
friction are omitted because this is not necessary to derive analytical solutions for vorticity. Including Coriolis
force and lateral friction, the dimensionless vorticity equation can be derived:40

∂tη +UUU · ∇η +
r

H
η =

f

H
· ∇h− r

H2
UUU ×∇h. (20)

Vorticity is defined as η = ∇xuuu. H is a characteristic vertical scale while h represents variations in the
spatially dependent topography. The tidal unperturbed velocity is indicated with UUU and the topographically
induced velocity with uuu. The solution for the residual vorticity can be obtained5,40 analytically. Furthermore
the topographic wavenumber is assumed to be equal for both x and y direction. From the solution it can be
concluded that a maximum in the residual vorticity occurs for wavenumbers that are common for sandbars
in tidal areas.5 This suggests that the fastest growing mode has a wavelength that corresponds to the
wavelength with a vorticity maximum.

2.4 Sediment transport and bed evolution

Two different types of sediment transport exist: bed-load and suspended load transport. Bed-load transport
is defined as transport of sediment by rolling, sliding and saltation. This type of sediment transport takes
place in a layer close to the bottom. In this project, only fine sediment is considered, which remains in
suspension. Dynamics of suspended sediment is often28,29,34described using an advection-diffusion equa-
tion with a source/sink term. For depth averaged models, the concentration equation with C (unit: m)
representing the volume concentration of sediment in a column of seawater per unit area, is:

∂C

∂t
+∇ · (uC − κ∇C) = S∗. (21)

Here u indicates the depth averaged velocity velocity field while S, with units m/s, represents contributions
of erosion (S > 0) and deposition (S < 0). Multiplying C with sediment density yields the depth integrated
mass concentration. Omitting the diffusion term and rewriting the equation using ρsC/H = M/V = Ĉ
yields:34

∂ĈH

∂t
+∇ · (uĈH) = ρsS∗ (22)

with H indicating the total water depth. In this equation, Ĉ now represents a depth averaged sediment mass
concentration with units kg/m3. Reworking the brackets yields:

H
∂Ĉ

∂t
+ Ĉ

∂H

∂t
+ Ĉ∇ · (uH) +Hu∇ · (Ĉ) = ρsS∗ (23)

and rearranging gives:
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H

(
∂Ĉ

∂t
+ u∇ · (Ĉ)

)
+ Ĉ

(
∂H

∂t
+∇ · (uH)

)
= ρsS∗. (24)

In this equation, the continuity equation for shallow water can be recognized, equation 11, and hence can
be omitted. Subsequently, H is moved to the right hand side:

∂Ĉ

∂t
+ u∇ · (Ĉ) = ρs

S∗
H
. (25)

To frame this equation in a more Lagrangian form, it is rewritten to an equivalent form. For this purpose,
the definition of material derivative (indicated by d/dt), which contains local and advective derivatives, is
used:

dĈ

dt
= ρs

S∗
H

(26)

Many parametrizations have been used for both erosion and deposition, ranging from empirical and
engineering type to more physics based parametrizations. Source/sink terms include erosion and deposition,
basically: S∗ = E −D. Examples of older erosion-deposition parametrizations are by Partheniades (1965)
and Krone’s (1962) formulation for deposition. Essentially erosion scales linearly with bottom stress in these
parametrizations and a critical shear stress is used for both erosion and deposition. Other similar (but
nonlinear) formulations for erosion exist,19 for example in the form of E = A(τb − τc)n with n= 1.5, τb is
the bottom stress, τc a threshold value for erosion to occur and A a constant. Another parametrization,34

which will be used in this project, is described below. For erodible boundaries, the erosion-deposition flux
S∗ of volume concentration, derived by using boundary conditions,9,34 is:

S∗ = wsca − wsc0. (27)

In equation 27, ca is a reference concentration and c0 represents the suspended sediment concentration at the
bottom, both ca and c0 have yet to be specified. Additionally, an import parameter is the settling velocity
ws that emerges in the deposition-erosion flux and mainly depends on grain size.35 For fine sediment (silt
or very fine sand, diameter of 60 µm) the settling velocity is in the order of a millimetre per second and
this value is used for all the results in this project. Furthermore, c0 is determined by using the concept
of equilibrium concentration. Sediment concentration has a vertical dependency and this structure can be
obtained by solving a balance between settling and stirring (by eddies) of sediment for ĉ:

wsĉ+ κv
∂ĉ

∂z
= 0. (28)

with C the volume concentration of sediment in a column of seawater per unit area. The boundary condition
at the bottom (z = −H + h) reads: ĉ = c0. It is assumed that the vertical distribution of sediment in
the water column remains the same, regardless of hydrodynamic conditions (stationary or transient). For
simplicity, the turbulent vertical eddy diffusion coefficient κv (and ws), is assumed to be constant. Using
these assumptions, ĉ becomes:8

ĉ = c0 exp

(
ws
Kv

(z +H − h)

)
. (29)

Integrating ĉ over z yields C, the volume concentration of sediment in a column of seawater per unit area:

C = c0
Kv

ws
(1− exp

(
−ws
Kv

(H + h)

)
) ≈ c0

Kv

ws
. (30)

Here it is assumed8 that the thickness of the suspended layer (measured by the ratio Kv over ws) is small
compared to the total water depth. This provides a simple relation between C and c0 according to equation
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30. For the reference concentration ca, which is determined by hydrodynamic conditions, observations11

have led to the establishment of:

ca = (1− p) γs

1 + γs
, s =

τ − τc
τc

(31)

with γ = 7.8 ∗ 10−5 a dimensionless parameter (determined empirically) and p represents porosity of the
sediment. τ is the bottom stress and τc is a threshold value for erosion to occur. Most sediment consists
of quartz9 which has a density of ρs = 2650 kg/m3 and this density will be used throughout this report.
Sediment porosity is set to p = 0.3. Now that the erosion-deposition flux S∗ is specified, the bottom evolution
equation8 is:

(1− p)∂h
∂t

+∇ · qqqb = −S∗ (32)

can be used to determine morphologic changes due to erosion and deposition. h represents the bedprofile,
which depends on time on a morphologic timescale and qb denotes volumetric sediment transport. This
equation governs the conservation of mass applied to sediment in water and describes changes in bed elevation.
In this project, convergence or divergence of volumetric sediment transport in the bedload layer is ignored,
∇ · qb = 0, because only fine sediment is considered. As already mentioned, S∗ (units: m/s) describes the
contributions of deposition and erosion.

2.5 Compound tides

With regards to sediment transport, residual velocity fields due to nonlinear terms are relevant to analyze.
If we assume a simple tidal velocity field to be given by a tidal constituent with frequency ω, nonlinearities
can give rise to both a residual part and tidal superharmonics or overtides. In other words, in addition to a
residual part, oscillations with higher frequencies (a multiple of ω) are produced. This is best illustrated38

by considering the 1D shallow water equations:

∂u

∂t
+ u

∂u

∂x
= −g ∂ζ

∂x
− u|u|

h0
− ζu|u|

h20
. (33)

In equation 33, the frictional terms are split in two parts to distinguish between the effect of depth
variations and the nonlinear friction part (|u| stands for the velocity vector length). Hereby it is assumed
that surface variations are small compared to the total water depth. This is a Taylor series expansion and
it is of second order (ζ/h)2 accuracy.
For example consider the inertial term and substitute u(x, t) = U(x) cos(ωt−kx) with ω the forcing frequency
M2. This yields after a straightforward derivation both a residual part (first term on the right hand side)
and an overtide part (the other two terms on the r.h.s.), as can be observed in equation 34. In this case
the overtide compound’s frequency is twice the forcing frequency M2; subsequently this specific overtide
compound is called M4.

u
∂u

∂x
=

1

2
U
∂U

∂x
+

1

2
U
∂U

∂x
cos 2(ωt− kx) +

1

2
U2k sin 2(ωt− kx) (34)

For a derivation of the interaction between two different modes, the reader is referred to Wang et al.(1999).
The derivation of the effect of the frictional terms is more difficult but eventually they also produce a residual
part. Furthermore frictional terms contribute multiples of the main frequency, especially M6 and to a lesser
extent M4. To the lowest order approximation, the contribution of u|u| is 1

2 + 1
2 cos 2ωt, For details about

the derivation of the interaction between different modes and the influence of friction, see Wang et al.(1999).
Compound tides cause the tide to be asymmetric. Effects of tidal asymmetry on sediment transport are
twofold, since sediment transport can be distinguished in two types: bed load transport and suspended load
transport. In this project, a depth averaged concentration is used, in this sense sediment transport can
be viewed as suspended load transport. To this end, only the settling lag mechanism for suspended load
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transport is discussed here. When compared to bed load transport, suspended load transport has more
subtle dynamics.13 As mentioned before, bottom friction and nonlinear interactions between tidal forcing
and topography generate overtides, for example M4 and M6. The resulting velocity curve can be asymmetric,
depending on the relative phase33 of the overtides compared to M2. This asymmetric nature is important
to sediment transport, both for bed load and suspended sediment transport. Retaining only M2 and its first
overtide M4, the tidal current can be formulated as:

u(t) = u2 cos(ωt) + u4 cos(2ωt− β). (35)

Here β determines whether or not the velocity curve becomes asymmetric and additionally, β also determines
strength and duration of both ebb and flood. Last but not least, it also determines the duration of high and
low water slack. In figure 7 the velocity curve corresponding to the superposition of the contribution of M2

and M4 to the tidal current is depicted. Even though the maximum of ebb and flood velocities is equal, the
velocity curve is not symmetrical due to a difference in (high and low water) slack time. During high water
slack (at t=T/2) sediment has more time to settle, while during low water slack (at t=0) this is not the
case due to a rapid transition towards high water. This implies that when high water comes up, a relatively
large part of the sediment is still in the water column. The consequence is in this case net transport in the
direction of the flood current. This mechanism is described as temporal settling lag.

Figure 7: Groen (1967) used this graph to illustrate tidal asymmetry due to differences in high and low
water slack time.

In addition, even without tidal asymmetry a net transport of sediment can occur due to a spatial settling
lag mechanism. This behaviour can be derived27 by starting from the (1D) concentration equation:

∂C

∂t
+
∂uC

∂x
= αu2 − βC (36)

with the right-hand side describing respectively erosion and deposition. The first step is to make an assump-
tion about the structure of the velocity: u = U(x) cos(ωt). Neglecting advection, the tidally averaged net
transport follows27 from time averaging (tidal average):

< uC >= −3

4

α

β
U3 du

dx
F (a), F (a) =

a

1 + a2
(1 +

11− 2a2

21 + 4a2
) (37)

with settling lag parameter a being the fraction of the deposition timescale (measured by β) and the tidal
period. F solely depends on this settling lag parameter but in any case F ≥ 0. From equation 37 it follows
that a net transport of sediment occurs towards areas of small tidal amplitudes. If the current flows towards
areas with a decreasing tidal current (flood), local sediment concentration will increase in that area,9,27 i.e.
convergence of sediment occurs. During the opposite tidal phase (ebb), sediment is transported away, leading
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to a decrease in concentration (divergence of sediment) in this area of small tidal amplitudes. Subsequently,
sediment transport during flood exceeds sediment transport during ebb, leading to a net transport towards
areas with smaller tidal amplitudes.
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3 Methods

The project goals require decisions for both hydrodynamical and morphological aspects. In the process of
constructing the numerical model, the results need continuous verification, before proceeding and extending
the model. Hence, this section is divided into two parts, namely, model description and verification.

3.1 Hydrodynamical model

Three main strategies can be distinguished regarding hydrodynamics:

• Analytical approximation of hydrodynamics

• Setting up a conceptual numerical model

• Using an existing numerical model (Delft3D)

Each method comes with advantages and limitations. In this project the second option was chosen as it
provides more control compared to using an existing numerical model. As a starting point, the governing
conservation equations were determined. The most relevant processes were identified by a scaling analysis.
Moreover, an important reason to use an idealized depth averaged model is that important physical processes
can be reproduced while avoiding complexities of 3D models and processes. Subsequently, identifying and
quantifying important processes from results is also easier since 3D processes are excluded. A 3D model is
computationally seen also more expensive to run and hence does not suit a relatively short term project well.

Once the decision was made to set up a conceptual model, further choices had to be made, in particular
with respect to numerical methods and language. For this project, Python was selected as programming
language. Several finite difference methods exist, each come with certain advantages and disadvantages. An
important requirement is decent stability, which is achieved by (semi-) implicit methods rather than explicit
methods. In section 4 an extensive description of the numerical methods used for the hydrodynamic model
is given. Furthermore, the verification of the hydrodynamic model is presented.

3.2 Kinematic model

This part of the model requires the output of the hydrodynamic model, e.g. depth averaged velocity fields.
Subsequently, velocity fields are used to integrate the kinematic equations over time yielding particle tra-
jectories. For the numerical integration several numerical methods are available. Multiple methods were
tested on their efficiency and accuracy. Afterwards, the best performing method was selected and used in
any following computation. Additionally, the kinematic model was verified in various stages. As a reference,
the kinematic model described in section 2 by Beerens et al. (1994) was used. See section 5 for more details.

3.3 Sediment transport model

Lastly, another part was added to the model that computes erosion, deposition, bottom evolution and
incoming sediment. Deposition and erosion occur on small subgrid scales and have to be parametrized. The
parametrizations of erosion and deposition used in the sediment transport model, are described in section 2.
Using the numerical framework established by the aforementioned kinematic model, erosion and deposition
parametrizations were implemented. An outline of the numerical implementation and the verification of this
part of the model is given in section 5.

3.4 Model outline

As already explained, the numerical model consists of two coupled parts: a hydrodynamic model and a
sediment transport model. As already mentioned in section 2, bathymetry influences the (residual) velocity
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field. The numerical model has as input the spatially dependent bathymetry. Subsequently, the hydrody-
namic model computes the currents corresponding to the initial bathymetry. Next, the sediment transport
model computes erosion and deposition, leading to changes in the bathymetry. When the bottom topography
changes its shape, this leads to changes in the residual velocity field. This in turn, leads to changes in sedi-
ment transport. In this way, hydrodynamics and sediment transport processes interact, which is visualized
in a flow chart, figure 8.

Figure 8: Flow diagram of the numerical model.

To be more precise, given an initial bathymetry, the hydrodynamic model delivers space and time depen-
dent data, i.e. u(x, y, t), v(x, y, t) and H(x, y, t) to the sediment transport model in the form of text files.
Afterwards, the sediment transport model processes all hydrodynamic data and computes the correspond-
ing sediment transport. If this leads to considerable changes in the bathymetry (exact threshold value is
specified along with the results), the sediment transport model delivers the updated bathymetry to the hy-
drodynamic model. Basically this coupling involves a loop where the bathymetry is updated. The evolution
of the topography can be formulated as equation 38. Indices i, j refer to a particle gridcell with location
(xi = i · dx, yj = j · dy), k refers to the Lagrangian particle trajectories contributing to deposition at each
location xi, yj . The bathymetry (at stage n) and hence hydrodynamics is kept fixed, until erosion and de-
position contributions exceed a threshold value. If this occurs, the bathymetry is updated to stage n+ 1, in
which n is a measure of time.

Hi,j,n+1 = Hi,j,n − Ei,j,n +
∑
k

Si,j,n,k (38)

After the simulation has finished, data on the residual field, bathymetry and parameters are saved in the
form of text files. Depending on the simulation type, additional data are saved: particle trajectories and
perturbation growth or decay rates.
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4 Hydrodynamic model

In this section an outline of the hydrodynamic model and all numerical aspects involved is presented. This
includes a description of the exact discretization procedure, the grid, boundary conditions and the verification
of this model.

4.1 Computational grid

For discretization, the Arakawa C grid is used. In this model central difference is used in the interior, while
at the boundaries either forward or backward differentiation is used. The use of staggered grids reduces,
according to Stelling (1984), so called ’2 4x’ waves.

Figure 9: Staggered grid for u,v,h and regular grid for ζ, as was used in Stelling (1984).

4.2 Alternating direction implicit method

The shallow water equations are classified as nonlinear hyperbolic partial differential equations, implying that
solutions are wave-like. If these type of equations are explicitly solved, one has to limit timestep-size in order
to avoid instabilities. The numerical solution can be achieved by means of different finite difference methods
(FDM), which can be characterized as either explicit, semi-implicit or fully implicit. One of the benefits
of implicit methods is that (greater) numerical stability is obtained. Some examples of implicit methods
are Crank Nicholson and Alternating direction implicit method(ADI). ADI methods are popular because
tridiagonal matrices are involved, which can be inverted very efficiently using the Thomas algorithm (see
Appendix). For this project a rectangular spatial region is used, which justifies12 the choice of an Alternating
Direction Implicit method (ADI). As explained later in this section, this is a very efficient method. The
ADI procedure of solving the shallow water equations was first proposed by Leendertse (1967). Afterwards,
more sophisticated (and complicated) versions of his method have been introduced. However, to serve the
project goals best, more complicated numerical methods proposed by Stelling (1984) are avoided. Stelling
basically extended the ADI method by Leendertse (1967) and treats the advective terms in a more implicit
way. Eventually, the so- called WAQUA and Cyclic method were developed to handle horizontal advective
terms even fully implicitly. To this end iterations are required. The numerical model Delft3D makes use of
the same but extended ADI method and additionally incorporates the WAQUA and Cyclic method. Delft3D
is a well known model that is used for computations of sediment transport and hydrodynamics and applied
to coastal and estuarine environments. Below the set of equations proposed by Leendertse is repeated here
for convenience. This set of equations is used for the numerical solution of the shallow water equations in
this project.
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2 4t -
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ζn+1 = ζn+
1
2 − ∂(Hu)

∂x

n+ 1
2

− ∂(Hv)

∂y

n+1

(44)

This scheme allows a fluent switch between linear and nonlinear bottom stress. If a nonlinear bottom
stress law is used, then r effectively becomes a function of the velocity itself. Nevertheless this does not
involve any additional computations or considerable change of the discretized equations. If r is linear (eq.
12), it is a just a prescribed value (see literature review section). In case of nonlinear friction, r will be
treated explicitly according to equation 13. In that case, to compute the length of the velocity vector, values
for the velocity components on the previous timestep are used, both of which are already known. Therefore
the finite difference equations still remain linear even though the bottom stress is nonlinear, because the
bottom stress uses velocity components from the previous timestep or stage. Even though linear friction can
easily be adopted, in this project always nonlinear bottom stress is used.

Note that the total water depth H is a superposition of a reference depth, H0, bathymethry variations,
H ′(x, y) and sea surface variations: ζ(x, y, t), yielding H(x, y, t) = H0 +H ′(x, y) + ζ(x, y, t).

In the first stage the u-momentum equation and the continuity equation are solved simultaneously,
leading to an equation with a tridiagonal matrix. This equation is obtained by substituting respectively
the u-momentum equation in the continuity equation during the first stage while in the second stage the
v-momentum equation is substituted in the continuity equation. This procedure is also used in Delft3D,
for an extensive description of this procedure, see Stelling (1984). In the Delft3D model this is even more
extended, for example iterations are added and advective terms can be treated fully implicitly.

as=1ζ
n+ 1

2
i−1,j + bs=1ζ

n+ 1
2

i,j + cs=1ζ
n+ 1

2
i+1,j = ds=1

n (45)

as=2ζ
n+1
i,j−1 + bs=2ζ

n+1
i,j + cs=2ζ

n+1
i,j+1 = ds=2

n+ 1
2 (46)

Equations 45 and 46 can be written in matrix and vector notation: AAAxxx = bbb. Subscript 1,2 indicates
the stage wheras i,j refers to the computational grid. Using the Thomas algorithm, this equation can be
effectively solved in O(n) operations while Gaussian elemination requires O(n3) operations. In equations
45 and 46 the right hand side indicated with d consists of variables u, v, ζ at the previous stage, see as an
example the right hand side for the first stage :
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with v̄ representing an average of all four gridpoint v-values surrounding ui,j . The coefficients a, b, c depend
on the variables u, v of the previous stage and are formulated in equations as an example for the first stage
in equations 48, 49 and 50. a, b and c essentially make up the diagonals of the three-diagonal matrix (figure
10).
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With K = g4t2
44x2 . For the second stage, these diagonals look similar, the main difference being that instead

of the u velocity component the v component is used.

Figure 10: Matrix A in Ax = b with only three non-zero diagonals.

4.3 Boundary conditions

While in the interior often central difference methods are used, close to the open boundary this is avoided.
Changing central difference method is theoretically not always necessary.30 However, in practice, this might
produce artificial boundary layers or even instabilities. This is the case when discretization is unaltered
near the boundary and variables at the boundaries (which are zero) are included in computations. In the
hydrodynamic model two types of boundaries exist: one open boundary and three closed boundaries.

4.3.1 Closed boundaries

As is stated in the project goals, the aim is to investigate morphologic features in estuaries with simple
geometries, for example rectangular geometries. The allowed degree of complexity in the input, i.e. input
of geometry, largely determines the complexity of the closed boundary conditions. Particularly for irregular
geometries, this requires extensive work on the boundary conditions. For simplicity, a very basic discretiza-
tion is used: either forward or backward Euler such that the variable value at the boundary is not used by
the discretized shallow water equations. Using this variable values at the boundary should be avoided.30
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4.3.2 Open boundary

Specification of all three variables at the open boundary is less straightforward. Since the model is forced
at the open boundary, this controls the quality of the model solution. Moreover, if one fixes all variables at
the open boundary, the model becomes over-specified. This implies that the specified variables at the open
boundary are not coherent with the interior. Nevertheless several strategies have been proposed to treat this
problem at the open boundary. A number of main strategies can be distinguished:3,20,30

• fix u,v at x= L

• fix ζ at x=L

• Flather condition

• Riemann invariants

• QH discharge boundary

• Radial inflow

• Radiation boundary conditions

The Flather condition prescribes the longitudinal velocity component by removing deviations from the tidally
induced current velocity. While several options may work as well, the straightforward second option is
selected for this project. In the numerical model the tidal forcing is applied at the boundary (x = L, y). For
simplicity, only one tidal constituent, M2, is used in the model, hence N = 1 in the following equation:

ζ(t) =

N∑
j=1

ζj cos(σjt). (51)

In order to improve stability of the hydrodynamical model, the discretization scheme proposed by Stelling
(1984) is used and repeated for convenience:
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4x if ui=nx−1 1
2
≤ 0 : u

∂u

∂x
= ui−1 1

2

ui− 1
2
− ui−1 1

2
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index i corresponds to x, and i=nx corresponds to the open boundary. In figure 11 the computational
grid is shown to clarify where the discretization for u is changed.
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Figure 11: Grid in the vicinity of the open boundary, which is located at i=nx. The small horizontal lines
indicate the location where u is computed. At i=nx-1/2 and i=nx-1 1

2 the discretization scheme for u
proposed by Stelling (1984) is used.

4.4 Initial conditions

By default, u(x, y, t = 0) = 0, v(x, y, t = 0) = 0 and ζ(x, y, t = 0) = 0 is used as initial condition. The
hydrodynamic model spin up always uses this as initial condition.

4.5 Model input and output

The hydrodynamic model is imported in the Main file and can be run by a single line by specifying the
following:

• 4x, 4y, 4t

• Tidal forcing amplitude

• Domain length L, domain width W

• Bedprofile H(x,y)

• Output frequency

Output consists of text files containing data of the velocities u, v and surface elevation ζ on staggered grids
during one single tidal period. Before starting the simulation, the output frequency of data can be specified
(either every 5 or every 15 minutes). After the model spin-up is concluded, the model runs for one more
tidal period and saves the aforementioned variables to a folder.

4.6 Comments on stability, accuracy and consistency

In this project the method proposed by Leendertse is used since this offers a relatively stable method.16,37

This ADI-method is second order accurate in space and only first order time accuracy. Nevertheless, they
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mentioned that a proof of unconditional stability does not exist, this is only the case for a more simplified
version of the shallow water equations. Thus before embarking on particle tracking and sediment transport
processes, it is necessary to evaluate the limitations of the model with respect to grid size, timestep and
water depth. A less favourable combination of the aforementioned model parameters may lead to inferior
hydrodynamic results. Since particle trajectories can be very sensitive to small changes in position or veloc-
ity, it is important to consider this. When it comes to describing the (dis-)advantage of a numerical model,
three important definitions of numerical concepts1,39 are used:

Consistency: a finite difference method (FDM) is consistent if the truncation error vanishes in the limit
of the gridsize or timestep going to zero. This is the case if the scheme has at least a first order approxima-
tion. If the truncation error vanishes, the numerical solution approaches the true P.D.E solution.

Stability: if the errors (truncation error and round-off errror) decay or are at least not amplified proceeding
to the next timestep, then the FDM is considered to be stable.

Convergence: convergence (approaching of the P.D.E by the numerical solution) is achieved by the FDM if
it is consistent and furthermore also stable.

These concepts are used in the following part of this section. As mentioned in section ’Boundary condi-
tions’, the discretization scheme for the open boundary proposed by Stelling (1984) is used. Stelling stated
about this scheme that it only provides a zero order consistent approximation of the momentum equations
close to the open boundary. Furthermore it yields first order convergence. Hence, the open boundary dis-
cretization can be considered a weak part of the hydrodynamic model. Increasing timestep size leads to
problems at the open boundary. Secondly, another weak part is that advective terms are not time-centered:
these terms are not treated fully implicitly. Since this project focuses on long waves in coastal waters, these
terms are expected to have a small magnitude, justifying that they are not treated fully implicitly. This
is completely in line with idea behind the model, to keep it relatively simple but well suited for the main
purpose: tidal sediment transport in estuaries. However, this approximation of these advection terms may
still allow instabilities to occur21.30 In order to monitor model convergence, the root mean square difference
between the velocity field (u-component) at different integer multiples of a tidal period is computed and
added as solver output, see equation 54. A lower and upper RMSD bound can be specified, the upper bound
is implemented to force the model to quit running if it becomes unstable, while the lower bound decides the
degree of convergence.

RMSD =

√√√√√ nx∑
i=0

ny∑
j=0

(uT+1
ij − uTij)2

nx · ny (54)

If the model tends to converge to a dynamic state, the RMSD approaches zero. Nevertheless, inaccuracies
close to the open boundary can occur even though numerical stability is achieved. In figure 12 and 13 it is
illustrated for different timesteps what happens with the velocity patterns close to the open boundary. In
general taking smaller timesteps (partly) removes oscillations close to the open boundary. This makes sense,
since a small timestep allows the model solution for the interior to adapt to the forcing.
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Figure 12: Influence timestep size on the phase and amplitude of the velocity component v. Results are
plotted for a timestep size of respectively 25 and 50 s.

Figure 13: Influence timestep size on the phase and amplitude of the velocity component u. Results are
plotted for a timestep size of respectively 25 and 50 s.

As is already clear from the (discretized) shallow water equations, model accuracy depends on a combi-
nation of timestep size, gridsize and water depth. In this case, water depth variations induce these irregular
oscillations close to the open boundary in figure 12 and 13. With a flat bottom (close to the open boundary)
these oscillations do not occur at all. Concluding, errors close to the open boundary can only be avoided by
selecting small timesteps and hence an unacceptable computational time. This motivates to select five kilo-
metres of the model domain near the open boundary as adaptation area. Moreover, this spin-up domain will
have a flat bottom to further ease hydrodynamic computations. This can be observed from the (discretized)
shallow water equations, where every spatial derivative with respect to H(x, y) nullifies. Lastly, this area
is excluded from morphologic computations, e.g. no bedprofile changes, no sediment in the water column.
It should be noted that fixing the bathymetry in the spin-up domain may, for longer simulations, result in
unusual bathymetry gradients. These inferior gradients may arise in the region where the transition between
the spin-up domain (with fixed bathymetry) and the inner part of the estuary takes place.
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4.7 Verification hydrodynamical model

The hydrodynamical model was developed from scratch, thus this requires continuous verification of the
results. Ideally one would use analytical solutions to test the hydrodynamical model against simplified
cases. For this purpose, some assumptions have to be made regarding hydrodynamics in order to test model
performance against analytical solutions. In this section the model is verified by means of the ability of
reproducing Kelvin waves, resonance effects, residual currents and velocity field patterns.

4.7.1 Kelvin waves and harmonic analysis

A well known benchmark problem is the Taylor problem: Kelvin wave reflection in a rectangular rotating
basin with constant depth. In order to simplify the dynamics described by the shallow water equations given
by equations 2, 3 and 4, the following list of assumptions are made:

• Dynamics are approximately 2D, hence depth averaging the velocity field is justified.

• Flat bedprofile

• Small velocities; nonlinear products are negligible.

• f-plane approximation.

• Linear friction

With these assumptions, the full set of governing equations becomes:

∂u

∂t
− fv = −g ∂ζ

∂x
− ru (55)

∂v

∂t
+ fu = −g ∂ζ

∂y
− rv (56)

∂ζ

∂t
= −H(

∂u

∂x
+
∂v

∂y
) (57)

Analytical solutions for a semi enclosed basin with the dynamics governed by setting r = 0 in equations
55, 56 and 57 were derived by Taylor (1920).32 Although Taylor’s solution captured the important feature
of an Amphidromic point, there was still room for improvement. Throughout time, it was attempted to
generalize or extend the solutions by Taylor by adding for example friction, as was already present in the
aforementioned equations in a linear form. In the next section the results of the hydrodynamical model
reproducing Kelvin waves and Amphidromic points are presented.

In Rizal (2002),25 the location of amphidromic points was investigated by using the analytical model
of Rieneker and Teuber (1980).24 An outline of the basin geometry assumed by the analytical solution is
presented in figure 15. The dimensions of the basin (domain outline figure 15) are: width of approximately
500 km and a length of 1250 km. A flat bottom was used and the water depth 74 m.
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Figure 14: Semi-enclosed basin for which analytical solutions are available governing (damped) Kelvin
waves. View is from top. As was used in Rizal (2002).

This exact set of dimensions are used in the hydrodynamical model used in this research. Rizal also
varied the strength of the Coriolis effect by varying latitude. In the hydrodynamical model a typical value
f = 10−4 is used. With this the basin dimensions match the situation in Rizal (2002) completely. However,
the hydrodynamical model still solves dynamics including advective terms. One can demonstrate by scaling
that advective terms are negligible in this case:

x = x∗
L y = y∗

L z = z∗
L u = u∗

U v = v∗
U t = t∗σ

Scaling yields the parameter ε = U
σL , also called the Strouhal number, which determines the order of the

advective terms. Using typical values: U = 1m/s, L = 100 km, and σ = 10−4 s−1, we have ε = 10−1. Hence
advective terms will not influence the dynamics that much. The Kelvin wave amplitude and phase is plotted
in figure 15.
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Figure 15: Phase and amplitude of M2 constituent in a basin with a flat bottom at a depth of 74m,
dimensions are 1250 km by 500 km with a grid size of 25 km. This is the result by the numerical model of

this project.

This is the only time in the results of this project that linear friction was used (r = 5 · 10−5), the same
value that was used by Rizal (2002). The result by Rizal (2002) is visualized in figure 16 where on the
axis the number of gridcells is indicated. To convert to dimensions in kilometers one has to multiply the
x-coordinate with 25 (4x = 25 km) and the y-coordinate with 20 (4y = 20 km). By comparing the model
results with the analytical solution, it can be concluded that the numerical model performed very well, e.g.
similar Amphidromic point locations and similar phase and amplitude contour lines.

Figure 16: Phase and amplitude of M2 constituent in a basin with a flat bottom at a depth of 74m,
dimensions are 1250 km by 500 km with a grid size of 25 km. Result by Rizal (2002).

4.7.2 Velocity field analysis

For simplified estuary geometries and dynamics, analytical solutions for the temporal and spatial structure of
the velocity components are available. In Schuttelaars and de Swart (1998), the coupled system of momentum
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and vorticity equations, concentration equation and bed evolution equation was considered for a non-rotating
basin. Basically this is a set of 5 equations with 5 unknowns: u,v,ζ, C and h. Applying a tidal forcing at
x = L with the main tidal consitituent M2, ζ(x, y, t) = cos(t) allows as a dimensionless equilibrium solution:
u = − sin(σt) and heq(x) = x. Additionally it was assumed that there is no variation in the y-direction. For
a (dimensional) bedprofile that is formulated like h(x) = H(1 − x

L ) (sloping in the opposite direction), the

solution for u, with v = 0 everywhere reads u = σL
H sin(σt). This can be considered to be a basic state, no

perturbations are applied to the bedprofile yet. As a starting point, the ability of the hydroydnamic model to
reproduce the velocity components is tested for this basic state. A harmonic analysis was used to determine
amplitude and phase variations in u. In figure 17a it can be observed that clearly the velocity amplitude
depends on x showing a decrease towards the closed end of the domain. Technically speaking, the bathymetry
used for the computation of the numerical results was slightly different, i.e. h = H(1 − x/L) + 3.0 instead
of h = H(1 − x/L). The bedprofile had to be modified, because otherwise at x = 0, the waterdepth would
have been zero, which is not acceptable for the numerical model. This minimum waterdepth of 3 m cannot
be decreased even more, otherwise a blow up of the model occurs during the spin-up. This minimum water
depth becomes relatively more important towards the closed end, causing a decrease of velocity amplitude in
that area. On the other hand, the maximum velocity amplitude, which is about 0.3, corresponds greatly to
the amplitude predicted by the equilibirium solution, figure 17, 18 and 19. Furthermore, the velocity phase
is almost spatially independent (figure 17a), greatly corresponding to the analytical solution.

(a) Amplitude and phase of velocity component u for a
bedprofile h = H(1− x/L).

(b) Model solution u(t) and ζ(t) versus time, the model
solution is only approximately a sine.

Figure 17: Respectively a harmonic analysis of u as a function position and time series of ζ and u from a
location exactly in the middle of the basin.

Parameters used for this model run were: H = 25 m, L = 50 km and σ = 2π
T with T = 43200 s ,

approximately the tidal period. This yields a velocity amplitude of 2π ∗ 50000/(25T ) = 0.29 m/s thus the
numerical solution corresponds greatly to this amplitude. However, due to other interfering frequencies, the
velocity curve is not a perfect sine, as can be observed in figure 19. Frequency peaks other than the tidal
forcing frequency have periods of 1/2 and 1/3 of the tidal period, see figure 18. For the hydrodynamical
model the nonlinear form of the shallow water equations is used, instead of a linearized form which is required
for analytical solutions. Due to nonlinear effects, small M4 and M6 components arise and contribute to the
time series. A period of about 6 hours (half the tidal period) corresponds to M4 and 1/3 correspond to M6.

Until now, only a basic state with a flat but sloping topography was examined. By linearizing the system
of equations (vorticity-, momentum-, concentration- and bed evolution equation), the response of the system,
e.g. changes in velocity patterns, to 2D perturbations on the bedprofile can be analyzed. In the analysis by
Schuttelaars and de Swart (1998) all variables are split in a zeroth order part (corresponding to the previous
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Figure 18: Power spectrum of the time series ζ(t)
produced by the model for a linear sloping but flat

bottom. One large peak is present, representing the
M2 constituent.

Figure 19: Numerical solution versus analytical
solution for the amplitude and phase of u in case of

a flat but sloping bedprofile.

equilibrium solution) and a 2D perturbation:

ΨΨΨ(x, y, t) = ΨΨΨeq(t) + ΨΨΨ′(x, y, t). (58)

As already explained in the literature review, ΨΨΨ denotes a vector containing all variables Ψ = (u, v, ζ, C, h).
The governing equations and the accompanying boundary conditions allow for velocity perturbation struc-
tures as in equations 60 and 61 in response to the perturbation in the bedprofile, equation 59.

h′ =

∞∑
n=0

hn(x) cos(lny) (59)

u′ =

∞∑
n=0

[ucn(x) cos(t) + usn(x) sin(t)] cos(lny) (60)

v′ =

∞∑
n=0

[vcn(x) cos(t) + vsn(x) sin(t)] sin(lny) (61)

Solving the longitudinal structure for all variables (in the x-direction) requires numerically solving an
eigenvalue problem: AΨΨΨ = ωBΨΨΨ. However, for vorticity conserving velocity fields (no dissipation of vorticity
due to friction), analytical solutions can be derived for the longitudinal structure of the velocity components.
Depending on the choice of the form and the number of bottom modes, one generates a perturbation on the
velocity field u′ and v′. As an example, we may select only one mode: h′ = A sin(πx) cos(l1y), figure 20.
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Figure 20: Plot of the structure of the perturbation h’ in h = heq + h′ with h′ = A sin(πx) cos(l1y).
Negative perturbation values correspond to more shallow areas.

Substituting the equations for u′ and v′ in the continuity and vorticity equations yields differential
equations for us, vs, uc and vc. As an example equations for the v component are given below with x-
subscripts denoting derivatives with respect to x :

vsnxx −
vsnx

1− x − l
2
nv

s
n = ln

hnx
1− x (62)

(1− x)vcnxx − vcnx − (1− x)l2nv
c
n = 0. (63)

The governing equation for ucn, v
c
n can be characterized as a homogenous differential equation. Since the

boundary conditions are homogenous too, these components (ucn and vcn) are zero over the whole domain
and do not contribute to the perturbation solution u′ and v′. Even though for irrotational flow fields
these components do not contribute, they will in case when vorticity is produced (either by friction or
Coriolis force). As demonstrated by Schuttelaars and de Swart (1998), non-trivial analytical solutions for
respectively usn, v

s
n exist. Equation 62 is an inhomogeneous Bessel equation but the analytical solution is

rather complicated. usn is related to vsn by: usn = −ln ∂v
s
n

∂x . These equations can also be solved numerically,

the numerical solution of equation 62 with boundary conditions v′ = 0 at x=0 and h′

1−x = finite at x=1 is
presented in figure 21.
Here ln = nπL

B , so in case of n=1, we have l1 = πL
B and from now on, subscript or index n is omitted, since

it is set to 1. If equation 61 is considered at y = B
2L in non-dimensional coordinates, then equation 61 is

simplified to: v′ = vc(x) at t= (0, 1, 2, ..)π and v′ = vs(x) at t=(0, 1, 2, ...)π + 0.5π.
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Figure 21: Plot of the structure in x-direction of the solution for respectively us and vs. This is for the
case that t= 0.5π and respectively y = 0 and y = B

2L to illustrate the structure in x-direction best. Compared
to Schuttelaars and de Swart (1998), in our case x=1 represents the open boundary and not x=0, the

analytical solution is mirrored in x=0.5.

A harmonic analysis was conducted to obtain the perturbation on the velocity field. Using the slightly
modified equilibrium profile from Schuttelaars and de Swart (1998), which is, as already mentioned h =
H(1 − x/L) + 3.0, the structure of the perturbations was investigated for different timestep-sizes, namely
for 25 and 50 seconds. If the perturbation on the linearly sloping bottom profile was not present, then v=0.
Adding the perturbation on the bottom profile immediately yields the perturbation in v. However, to obtain
the perturbation in u′ in u = ueq + u′, first time series of ueq(t) were obtained. Subsequently the model
was run and u(t) was obtained. Afterwards these time series were substracted from each other to derive the
perturbation structure. Qualitatively, the patterns in the perturbation structure by the numerical model,
figure 22 match with the analytical solution, figure 21. At the sides y = 0 and y = B, the perturbation in v
becomes zero, whereas u becomes zero at y = B/2. This is in line with equations 60 and 61. Furthermore,
if the analytical solution changes sign, so does the phase of the perturbations according to the numerical
model. In addition, the locations with strongest perturbation velocities match with the analytical solution.
However, quantitatively, the numerical results of velocity component u close to x = 0 are smaller compared
to the analytical solution. As already mentioned, the bathymetry used for the computation of the numerical
results uses a minimum water depth of 3 m to prevent a blow up, i.e. h = H(1 − x/L) + 3.0 instead of
h = H(1− x/L). This causes a decrease in velocities towards the closed end of the domain. Hence, this can
explain weaker perturbation magnitudes.
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Figure 22: Perturbation structure for respectively v and u. Close to the open boundary, structures in the
velocity field become more irregular due to numerical inaccuracies.

4.7.3 Resonance effects

If the basin lengthscale is similar to one quarter of the tidal wavelength, resonance effects occur,2 i.e.
amplification of the tidal amplitude. For the sake of verification, a frictionless narrow elongated basin was
tested on resonance effects. A water depth of 20 m and a domain length of 150 km was used such that the
domain length corresponds to one quarter of the tidal wavelength. Strong resonance effects occurred with
the model producing wave heights of up to 10 m before the model blows up, as can be observed in figure 23.

Figure 23: Resonance in a narrow elongated channel with H = 20m and L = 150km, with L being
approximately one quarter of the tidal wave length, one would expect resonance. Friction was almost turned

off (factor 100 decrease).

Concluding, the numerical model is able to capture this mechanism.

4.7.4 Residual current verification

In the previous section it was established that the hydrodynamical model was capable of reproducing os-
cillatory perturbation structures correctly. Since nonlinear effects (friction, inertia) also produce residual
velocity fields, the ability of the model to reproduce this should be examined too. Residual fields produced
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by the model are presented and analyzed qualitatively (in terms of patterns) as well quantitatively (mag-
nitude of the residual field). Analytical solutions for residual velocity fields exist only in simplified cases,
the shallow water equations have to be linearized in order to obtain analytical solutions. In figure 24 the
residual velocity field produced by the numerical model is visualized for a water depth of 10 meters. The
analytical solution for the same bedprofile perturbation is given is shown in figure 25 where both the left
and the right boundary are open (semi-infinite domain). The analytical solution for the residual velocity
field follows from time-averaging the vorticity equation, as explained by Schuttelaars et al. (2002). Since
the analytical solution is valid for a semi-infinite channel, the numerical residual velocity field is computed
in the middle of a channel with a length of 100 km to resemble the analytical solution better. In this way,
(closed and open) boundary effects are minimized.

Figure 24: Residual field produced by the hydrodynamical model for a perturbation of 1 meter. The
residual velocity field shown, is in the middle of channel with a length of 100 km instead of 20 km, in order

to resemble the analytical solution better of figure 25, which is valid for a semi-infinite channel.
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Figure 25: Residual field according to analytical solutions of Schramkowski et al. (2002) to the simplified
and linearized shallow water equations by Tjebbe Hepkema. Here both the left and the right boundaries are

open.

The patterns are more or less the same: the numerical model is capable of producing reasonable residual
velocity fields.

In the computation of the residual velocity field by the numerical model, the Stokes flow effect has been
removed to visualize the effect of bathymetry variations on the residual flow. Next to a varying bathymetry,
Stokes flow also causes gradients in the horizontal velocity field. Stokes flow can be separated from the
residual velocity field to highlight the residual part due to bathymetry variations. Before embarking on how
to do so, the Stokes flow mechanism is briefly discussed. The tidal wave can be characterized as a purely
progressive wave in an infinitely long channel, whereas in estuaries, the tidal wave is in fact a superposition
of an incident wave and a reflected wave.18,38 Bottom friction causes a loss of tidal wave energy, which
implies that the reflected wave is relatively weak with respect to the incident wave. Moreover, if the reflected
wave is weak, the tidal wave has a more progressive nature. For a purely progressive wave there is no phase
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difference between surface elevation and flow velocity. Furthermore, maximum ebb and flood velocities are
almost equal, resulting in a net transport of water. During flood, the total water depth is larger than ebb,
while the flow velocities remain the same, hence during flood more water is transported landward. This
causes a nonzero mean surface elevation which increases landward yielding a negative pressure gradient in
the surface elevation which in turn evokes a seaward flow, called Stokes flow.14 In order to capture residual
variations in the horizontal velocity field caused by bathymetry variations only, we have to determine average
velocity by making use of equation 64, with uuu the velocity vector.

ū̄ūu(x, y) =
1

T (H0 +B(x, y))

∫ T

0

[H0 +B(x, y) + ζ(x, y, t)]uuu(x, y, t) dt (64)

In all the residual velocity field plots presented in this research, Stokes flow is excluded by using equation
64.
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5 Sediment transport and bed evolution model

In this section, an outline of the second part of the numerical model is presented. This second part consists
of a kinematic model and the other part accounts for sediment transport processes. Firstly, erosion and
deposition parametrizations are discussed, secondly the numerical implementation of particle tracking and
sediment transport processes is described. Lastly, the process of model verification is presented. Before
continuing, a few assumptions that are (implicitly) made in deriving the results presented in later sections
are listed below:

• Non-erodible estuary banks

• No bedslope effects

• No diffusion of sediment

• Unlimited sediment availability, i.e. erodible bottom layer

• Bottom sediment is characterized by fine grained sediment (diameter ≈ 60µm)

• Flocculation and fragmentation is not accounted for

• No net residual bed load transport, only suspended sediment (fine sediment, diameter ≈ 60µm ) is
considered.

• Bottom layer consists of non-cohesive and uniform sediment.

• Suspended sediment does not influence the fluid density

5.1 Numerical implementation particle tracking

In order to solve the advection of particles, the kinematic equations (equation 1) have to be integrated over
time. For the time integration both Euler forward and Runge Kutta 4 (abbreviated RK4) were tested.
Basically, Euler Forward is a simplified form of RK4. The difference is determined by the truncation order
of the Taylor series of function y around a certain point x0. Compared to Euler Forward, RK4 truncates the
Taylor series at a later stage. RK4 has better stability properties,37 more than compensating the fact that
it is computationally more expensive than Euler forward.

However, during the first numerical experiments with integrating the kinematic equations, a problem
concerning mass conservation quickly surfaced. Mass conservation is defined in terms of transport (water
depth multiplied by depth averaged velocity) or discharge, not in terms of velocities. Uing flow velocities
only does not quarantee divergence-free particle movement (it does in 3D, not in 2D). This problem can be
deduced by observing the continuity equation for shallow water:

∂(uH)

∂x
+
∂(vH)

∂y
+
∂H

∂t
= 0. (65)

Clearly the influence of both bedprofile and surface height variations become increasingly more important
for decreasing water depths. Hence, the problem of local convergence/divergence of particle trajectories
becomes more significant too.

To illustrate the need for a divergence free method, an Eulerian viewpoint is employed to monitor local
convergence or divergence of mass. Basically, the concentration of particles in gridcell i with (gridcell)
coordinates (xi, yi) is determined by accumulating each particle labelled k present in this particular grid cell
i. Subsequently, the total amount of particles is divided by the grid cell volume which in turn is determined
by grid size 4x,4y and water height.

Cxi,yi =

N∑
k

Mk/Vxi,yi (66)
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A spatially periodic perturbation was applied to the bedprofile to provide a realistic test case. Starting
from a fully uniform particle distribution (50 particles per gridcell volume of V0 = 4x 4yH0, it can be
observed that the classical method (eq. 1) quickly yields inferior results, figure 26. Some areas experience
a strong convergence of particles, corresponding to an accumulation of water, whereas in other regions, no
particles are left at all, corresponding to a dry area.

Figure 26: Particle concentration after respectively 1 and 10 simulated tidal periods. Especially after 10
tidal periods, some regions experience strong convergence of particles, i.e. accumulation of water.

To overcome this mass conservation problem, a few strategies are available. For this project, the solution
proposed by Postma et al. (2012) is followed. This solution assumes particles to have their own volume (and
location), which is exactly how in this project a particle is defined, i.e. a subvolume. In this way, persisting
convergence and divergence is not acceptable. For convenience, the definition of a particle is repeated below:

ParticleParticleParticle: a sub-volume of water which moves throughout the domain with its own location.

In the method of Postma et al. (2012), particle velocties are determined by using volumes and discharges
rather than velocities. Instead of velocties, rates of ’fraction of grid cell volume per second’ are defined at
the gridcell boundaries. In figure 27 the sides of an example gridcell coincide with locations of the velocities
on the staggered grids provided by the hydrodynamical model. Therefore the output location of the u-
component coincides with the left and the right cell edge while the v-component coincides with the lower
and upper cell edge. At these locations, the depth averaged velocities u, v provided by the hydroydnamic
model are converted to discharges, respectively Qx and Qy. This is achieved by multiplying u, v with the
total water depth and gridcell width (respectively dy and dx) over which u, v enter the gridcell.
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Figure 27: Illustration of the curvlinear grid by Postma et al. (2012). All the Q’s are discharges with
units m3/s. The flow rates are computed by dividing each Q by the average grid cell volume. dx and dy

form an area which should be interpreted as a sub-volume within the gridcell.

Subsequently, to obtain flow rates (unit: 1/s), the discharge is divided by the gridcell volume. A simple
linear interpolation yields the particle velocities within each gridcell:

u = u0 + x (u1 − u0), v = v0 + y (v1 − v0) x, y ε [0, 1] (67)

This flow rate indicates how fast the particle travels trough the gridcell, expressed in fraction of the
gridcell volume per second. Within such a gridcell, both the x and y coordinate are in the range between
0 and 1. This is because particle coordinates inside a grid cell are viewed as volumetric (dimensionless)
coordinates. In figure 28 the particle concentration by the non mass conserving method is compared with
the Postma method. The results of the Postma method more or less preserves mass because the particle
concentration remains about spatially uniform. However, after simulating hundred or a few hundreds of tidal
periods using the Postma method, the results eventually displayed convergence or divergence, possibly due
to numerical inaccuracies. Nevertheless, this is not harmful for sedimentation processes since this happens
on a timescale much larger than a particle spends time in the water column. Note that at this point, no
additional particles enter the channel during flood (hence a particle concentration of zero towards the open
boundary) and no particles left the domain during this simulation.
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(a) Particle distribution after one tidal period, mass
conserving method

(b) Particle distribution after one tidal period, non consistent
method

(c) Particle distribution after 10 tidal periods, mass
conserving method

(d) Particle distribution after 10 tidal periods, non consistent
method

Figure 28: Comparison of the results produced using the method by Postma et al. (2012) on the left and
the non-conserving method that uses velocities on the right, after respectively one and 10 tidal periods.

To quantify the improvements of using the Postma method, the mean and standard deviation of particle
concentration was monitored for two different basins. The first half of the domain was initialized with a
particle concentration of 50 particles per V0. For each basin the mean and standard deviation (equation 68,
N is the number of particle containing gridcells) at specific moments in time were determined for different
water depths. Whereas the non-consistent method (where velocities are used and not volumes) displays
large variations in particle distributions, the Postma method does not, see table 1. Variations in the mean
concentration of particles are minor and the standard deviation is relatively small compared to the non-
consistent method. This means that a particle density of 50 particles (or higher) per V0 prevents the
existence of voids or empty areas.

µ =
1

N

N∑
i

Ci, σ =

√√√√ 1

N

N∑
i

(Ci − µ)2 (68)
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Number of H = 2.5 m H = 5 m H = 10 m
tidal periods σ µ σ µ σ µ

1 3.7 49.8 3.3 49.8 2.1 49.8
5 6.1 49.8 3.4 49.8 3.4 49.8
10 8.1 49.7 3.9 49.8 3.4 49.8
20 10.9 49.9 4.5 49.8 3.6 49.8

Number of H = 2.5 m H = 5 m H = 10 m
tidal periods σ µ σ µ σ µ

1 4.8 49.6 4.0 49.9 2.5 49.8
5 16.7 48.7 13.7 50.7 5.5 49.9
10 29.8 48.3 25.4 51.7 9.5 50.0
20 48.8 49.1 41.2 51.2 17.8 50.4

Table 1: Mean and standard deviation of the particle concentration within particle containing grid-cells on
a domain of 8 × 80 km. On the left the consistent method by Postma and the non-consistent method on the

right.

5.2 Numerical implementation erosion and deposition

For every particle (sub-volume), while moving through the domain, the Lagrangian form of the concentration
equation is solved, repeated here for convenience:

dĈ

dt
= ρs

S∗
H

(69)

where Ĉ is the depth averaged sediment mass concentration with units kg/m3. The numerical model uses
an equivalent form of this equation, instead of using Ĉ as a variable, the mass M will be used as variable.
Naturally, the sediment concentration of each subvolume is related to the total sediment it holds by: Ĉ =
M/V . Here V represents the total volume of water of a subvolume. At the start of the simulation, each
particle is initialized with the same volume of water and this is equal to: V = 4x4y H0/N . N is the average
amount of particles present in a gridcell. Substituting M for Ĉ in the concentration equation yields:

dM

dt
=
V

H
ρsS∗ (70)

with d/dt denoting the total (material) derivative. Using V = 4x4y H0/N (in fact assuming: H0 ≈ H, see
section 7), gives:

dM

dt
=
4x4 y

N
ρsS∗. (71)

Using equations 27, 30 and 31 for the erosion and deposition term S∗ yields:

dM

dt
=
4x4 y

N
ρs

(
ws(1− p)

γs

1 + γs
− ws

2C

Kv

)
. (72)

C absorbs ρs according to HĈ = Cρs, yielding:

dM

dt
=
4x4 y

N

(
ρsws(1− p)

γs

1 + γs
− ws

2ĈH

Kv

)
. (73)

and subsequently using M/V = Ĉ and V = 4x4y H0/N , gives:

dM

dt
=
4x4 y

N
ρsws(1− p)

γs

1 + γs
− ws

2M

Kv
. (74)

In the numerical model a discretized form of the latter equation is used:

M i+1
p = M i

p +4t
(
4x4 y

N
ρsws(1− p)

γs

1 + γs
− ws

2M i
p

Kv

)
. (75)
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Now both erosion and deposition are explained, but how is the eroded or deposited mass transferred to
changes in the bathymetry? For this purpose, neglect erosion processes for simplicity. If only deposition is
taken into account, then the amount of sediment inside a subvolume p during the next timestep is equal to:

Mp
n+1 = Mp

n(1−4tws
2

Kv
). (76)

This yields the amount of sediment lost by deposition for particle p at timestep n: Mp
n4 tws

2

Kv
. As already

mentioned, this in fact happens on a sub-grid scale while only computations on the gridcell scale are possible.
Therefore, we assume that the mass lost by deposition is evenly distributed over the complete gridcell in
which the particle is located. The numerical model saves the amount of mass received by deposition and
lost by erosion for each gridcell. Before running the model, a threshold value can be specified after which
the model will update the bathymetry according to the net changes. The amount of eroded sediment lost
by gridcell with indices i, j due to erosion is equal to 4t4x4y ws(1− p) γsi,j

1+γsi,j
. In accordance with this,

the amount of sediment received by every particle present in gridcell i, j is:

Mn+1 = Mn +
4t ws(1− p)

Ni,j

γsi,j
1 + γsi,j

. (77)

For simplicity, one representative bottom stress value is used for the complete gridcell. In other words, no
sub-grid variations in the bottom stress are considered. Ni,j denotes the number of particles present in
gridcell i, j and Ni,j is selected in such a way that at least 100 particles are present in an area of one squared
kilometre. Technically deposition and erosion takes place on sub-grid scale while the bathymetry is defined
on a grid. In reality bathymetry is of course continuous. Basically, this implies that, while erosion and
deposition are taking place in each sub-volume, this can only have an impact on the (much larger) scale of a
gridcell. Each gridcell has its own bathymetry value and within such a gridcell there can be no bathymetry
variations.

5.3 Verification kinematic model

This part of the numerical model also required an extensive verification. In order to test the kinematic
model, particle trajectories by the numerical model are compared to the trajectories produced by the model
by Beerens et al. (1994), equation 17. For this purpose, firstly two sample estuaries and the accompanying
particle trajectories by the numerical model are presented. Some model domain properties and numerical
settings and results in the form of (individual) particle trajectories and parameter values are given. The two
examples are different in the sense that the second example has a relatively strong residual velocity field
compared to the first one. Beerens et al. (1994) considered a semi-infinite channel with a velocity field being
a superposition of a residual and an oscillating tidal part. Furthermore that model assumes a flat bottom
and makes the rigid-lid assumption, for more details see section 2. Next, the model by Beerens is slightly
modified and subsequently used to produce trajectories with parameters λ and ν matching the values found
in the numerical test cases.

5.3.1 Particle trajectories numerical results

First example:First example:First example:

Domain properties and numerical aspects:

• L = 80 km, W = 8 km

• H0 = 10 m.

• LE = 8 km, eddy length.
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• H(x, y) = H0 + cos(πx/LE) cos(πy/LE)

• 1 particle per grid cell

• 4x,4y = 500 m

• 50 tidal periods of simulation

Particle trajectories:

Figure 29: Particle trajectories indicated by black lines in a rectangular channel with a perturbation on a
flat bottom: positive values indicate deeper areas and the unit is m. Very structured particle trajectory

patterns can observed throughout the domain.

Parameter values λ and ν:

Figure 30: Parameter values as function of x, measured along y = W/2. ν is a measure of the strength of
the residual velocity field, whereas λ is the fraction of tidal excursion length over perturbation wavelength.

Since the velocity in the channel decreases towards the closed end at x = 0, so does the tidal excursion
length and correspondingly, λ.

Individual particle trajectories:
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Figure 31: Particle position at integers multiples of simulated tidal periods. Very structured particle
trajectory patterns are present in the domain. Each color indicates a different particle.

Second example:Second example:Second example:

Domain properties and numerical aspects:

• L = 80 km, W = 8 km

• H0 = 4 m.

• LE = 4 km, eddy length.

• H(x, y) = H0 + 2.5 cos(πx/LE) cos(πy/LE)

• 1 particle per grid cell

• 10 spin-up columns with a flat bedprofile

• 4x,4y = 500 m

• 50 tidal periods of simulation

Particle trajectories:

Figure 32: Particle trajectories in a rectangular channel with a perturbation applied to a flat bottom,
purple areas indicate shallow regions. Bifurcation of circular trajectory structures occurring between x = 30

and x = 40.

Parameter values:
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Figure 33: Parameter values as function of x, measured along y = W/2. The residual velocity field is
relatively strong in this case, with ν reaching values of 0.2 towards the closed end of the channel.

Individual particle trajectories:

Figure 34: Particle position at integers multiples of simulated tidal periods, each color indicates a
different particle. Towards the open boundary, some particles travel great distances throughout the domain,

switching between different circulation cells via the edges. When closeby particles diverge rapidly, this is
characterized as chaotic behaviour.

Below, some comments on the numerical results are made before these results are compared with the
model by Beerens. For convenience, the definitions of the parameters λ and ν used in the model by Beerens
et al. (1994), are repeated:

λ =
LT
LE

=
tidal excursion

eddy diameter
, ν =

u

U
=

velocity in residual eddies

tidal velocity amplitude
. (78)

Whereas the kinematic model by Beerens (equation 17) assumes λ and ν to be spatially uniform, this is
clearly not the case when applied to estuaries, figure 30 and 33. Hydrodynamic conditions change from the
open boundary towards the closed end of the estuary, on the left (x = 0) and this is reflected by the spatial
dependency of the parameters λ and ν. Especially λ has a strong dependency on the longitudinal coordinate
x. For every particle, the tidal excursion length is determined and given the perturbation wavelength, λ
can be computed. Close to the open boundary, flow velocity is strongest and this decreases almost linearly
towards the closed end. Since λ is related to the tidal excursion length (equation 16), it makes sense that
λ closely follows this trend. The perturbation wavelength can only amplify or weaken this trend. In the
second example the perturbation wavelength is halved, indicating that λ doubles. This is the case, as can
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be observed by comparing figure 30 and 33. In the second example, a relatively strong residual velocity
field is present, a magnitude stronger than in the first example. This is due to strong bathymetry variations
with an amplitude of 2.5 m (over a depth of 4 m): perturbation strength is increased and the water depth
is decreased. Both factors contribute to a stronger residual velocity field. Depending on the perturbation
strength and wavelength, ν is mostly in the range of ν ε [0, 0.20]. In numerical experiments it was found that
only for very strong bathymetry variations and larger wavelengths ν could reach up to 0.25 or at most 0.30
towards the closed end of the basin. Generally, larger values for ν (ν > 0.05) lead to chaotic behaviour,
according to the model by Beerens et al. (1994). Chaotic behaviour is characterized by particles travelling
large distances throughout the domain and often particles follow irregular trajectories. However, if large
values of ν are accompanied with small values for λ (λ < 1, this chaotic behaviour is suppressed. Often an
anticorrelation between ν and λ was found, this is best illustrated in a (parametric) plot of ν against λ in
figure 33. λ decreases towards the closed end, while on the other hand ν increases. Since the parameters λ
and ν are spatially dependent in estuaries, the phase space is spatially dependent too, i.e. particle trajectories
are different througout the basin.

In the first example, with the lowest energetic conditions and a relatively weak residual velocity field,
particle trajectories closely follow residual circulation cells. In figure 29 particle positions at integer multiples
of a tidal period are plotted and all these locations are connected with a line to distinguish individual
trajectories through time. Particles travel around in circles around (elliptic) fixed points in this first example;
they traverse a periodic orbit. If a particle situated at location xxx0 returns to this initial location after a
period T , then this point xxx0 (i.e. location) is part of a periodic orbit.22 If a particle is situated on a periodic
orbit after each tidal period, it returns to this exact location. The strongest variations in trajectory patterns
are found in the second example. While trajectories closely follow residual circulation cells near the closed
end, this behaviour changes around x = 30 km. At x = 30 km the circular trajectory patterns bifurcate and
the cell-like structures split in multiple smaller regions in which particles follow more irregular trajectories.
Particles are no longer limited to a specific circulation cell but can now switch between circulation cells,
figure 34. Since particles carry sediment, mixing of particles with other circulation cells leads to enhanced
sediment dispersion in chaotic regions. Regions where particles display this chaotic behaviour are associated
with hyperbolic points of the velocity field, as explained in section 2. In section 6, an example is given where
chaotic regions are more widespread.

5.3.2 Particle trajectories (semi-) analytical results

Now, the numerical results are compared with the model by Beerens et al. (1994) . However, the model by
Beerens greatly simplifies the velocity field, it only obeys a simplified continuity equation: ux + vy = 0. In
this way, no variations in the water depth are allowed. In order to provide a better verification, the model by
Beerens is generalized by introducing depth variations. Until now, bedprofile variations were only implicitly
included in the prescription of the residual velocity field. The reason for this is that residual circulation
cells are induced by and attached to this bedprofile variations. However, if bedprofile variations become
significant with respect to the total water depth, the prescribed velocity field has to be adjusted. Instead
of a divergence free velocity field (u, v), the model by Beerens et al. (1994) is changed to a divergence free
transport field (uH, vH):

dx

dt
= (πλνΨy + πλ cos(2πt))/H

dy

dt
= −πλνΨx/H.

(79)

H(x, y) = 1 + ε cos(πx) cos(πy) (80)

Here the subscript derivative notation is used, H is the dimensionless version of the waterdepth and equal
to H = 1 + εH ′(x, y) with H ′ representing the bedprofile perturbation and 0 < ε < 1. The new velocity field
(right hand side of equation 79 obeys a simplified version of the continuity equation:
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∂(uH)

∂x
+
∂(vH)

∂y
= 0. (81)

Of course, the model by Beerens can be extended even more by allowing the water depth to change due to sea
surface variations too. This changes the definition of H to H = 1 + ε cos(πx) cos(πy) + ζ0

H0
cos(2πt) with ζ0

the sea surface amplitude of M2 (1 meter). For simplicity, this additional term is omitted. Equations 79 and
80 were used as a verification for the numerical model. Characteristic values of the parameters in the first
example of the numerical results (figures 29, 30 and 31) are: λ = 1 or 2 and ν = 0.01. Using these parameter
values to drive the modified kinematic model gives nearly identical particle trajectories when compared to
the numerical results, figure 35.

Figure 35: Particle trajectories produced by the modified kinematic model (equations 79-81) for parameter
values characteristic for the estuary. Blue areas are shallow, perturbation strength is measured as a fraction

of the reference depth, H0 = 10m.

Interesting behaviour in the phase space occurs for combinations between λ and ν that are present in the
second estuary example (figures 32, 33 and 34). In the second example of the numerical results, ν ≈ 0.08
and this value is used for the modified kinematic model (equation 79). Subsequently, λ is changed: for
λ = 1.0, 1.4, 1.5 and 2.0, particle trajectories are visualized in figures 36 and 37. Particle trajectories are
very sensitive to changes around λ = 1.5, showing a bifurcation of cellular trajectory structures. This
bifurcation, present in the phase space of the dynamical system with a simplified (analytical) velocity field,
is for slightly different parameter values also present in the numerical results. In the second example of the
numerical results, a similar bifurcation of these structures occurred for λ = 2.5, figure 32. In the region of
35 < x < 45 each cellular trajectory structure splits in two smaller cellular trajectory structures.
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Figure 36: Pinching of the trajectories visualized for different parameters of λ. The perturbation strength
is measured as a fraction of the reference depth, H0 = 2.5m.

Figure 37: Pinching of the trajectories for different parameters of λ. As can be observed, exchange of
particles is possible between deeper areas but not over shallow (negative perturbation) areas. The

perturbation strength is measured as a fraction of the reference depth, H0 = 2.5m.

In the parameter space λ = 1.5 determines the bifurcation of the circular trajectories. Varying ν has less
influence, for weaker residual velocity fields ν ≈ 0.005, this exact bifurcation still occurs for λ = 1.5. Weaker
residual velocity fields occur for either weaker perturbations or perturbations with a smaller wavelength.
Only in case of relatively strong residual velocity fields, a change occurs: then the particle trajectories
detach from the bedprofile perturbation, see for example figure 38.
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Figure 38: Relatively large ν results in seemingly detachment of the structures in particle trajectories from
bedprofile perturbation. The perturbation strength is measured as a fraction of the reference depth,

H0 = 2.5m.

Slightly similar bifurcation behaviour around λ = 1.5 and ν = 0.08 does only occur in the original model
by Beerens for very different parameter combinations. In that case, a very strong residual velocity field (high
ν) and much higher λ is required, which is a region in the parameter space λ, ν that never occured in any
of the estuaries studied in this project. On the contrary, the numerical model for the estuary in general
suggests an anti-correlation between λ and ν, with λ decreasing towards the closed end and ν increasing,
figure 33. For perturbations with a small wavelength, λ will naturally increase but ν will decrease. Possibly,
if the perturbation has a longer wavelength, the flow can adjust to the perturbation more easily. This allows
a stronger residual velocity field to develop and vice versa. This anti-correlation between λ and ν is also
analytically confirmed by Beerens, figure 39. However, even though they established that ν and λ are not
independent of each other, in their kinematic model this dependency was omitted for simplicity.

Figure 39: Anti-correlation between parameters λ and ν, analytically derived. figure from (and more
details by) Beerens et al. (1994).
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As already mentioned, bifurcation behaviour around λ = 1.5 does occur in the modified kinematic model
and not in the original model by Beerens et al. (1994). This suggest that the inclusion of bottom variations
evokes this bifurcation behaviour. One way to analyze this bifurcation behaviour, is to analyze what happens
to the eigenvalues of the dynamical system (equation 79) around λ = 1.5, especially for interesting locations,
such as (x=0.5, y=0.4) or (x=1.0, y=0.4) in figure 37a.

However, especially in the regime with λ > 5−10 and ν < 0.01, characteristic for perturbations with
a smaller wavelength, the modified kinematic model gives very different results than the numerical model.
Whereas the numerical model produces regular chaotic trajectories, the modified kinematic model predicts
trajectories as in figure 35. It is in this limit with ν approaching zero (as in figure 39) that comparison is not
useful anymore. This does not necessarily mean that the numerical results are wrong but it can also illustrate
a limitation of the (modified) model by Beerens. In the limit of λ approaching zero, numerical results match
the analytical results of the (modified) model by Beerens. Concluding, in the numerical results, a clear
bifurcation of cell-like particle trajectory structures was observed in estuaries. Variations in trajectory
structures occur due to changing hydrodynamic conditions. The kinematic model by Beerens does not
predict such a bifurcation of these cell-like trajectory structures unless unrealistic parameter combinations are
used. On the other hand, by introducing bathymetry variations in the kinematic model, similar bifurcation
behaviour is in fact reproduced for realistic parameter values. Next to this, the numerical model produces
an anti-correlation between λ and ν, which can also analytically be confirmed.5 From this, the ability of the
numerical model to simulate trajectories is considered to be decent.

5.4 Verification implementation sediment transport

Several simple experiments were conducted to ensure preservation of sediment mass. This includes verifica-
tion of erosion and deposition but also changes in the sediment balance due to open boundary conditions.
Below an outline of the numerical experiments is given:

• The first experiment was designed to test the implementation of deposition. Each particle was assigned
with the same sediment concentration C0. Erosion was turned off and it was made sure that no particle
left the basin through the open boundary. After simulating a few tidal periods, all sediment was lost
by the particles due to deposition. Afterwards, the model provided as output the net change in
the bedprofile which was exactly equivalent to the total mass initially present in the water column.
Moreover, this means that no errors are made in the mass balance due to the implementation of
deposition.

• During the second experiment, the erosion process was tested. The domain was initialized with particles
without any sediment, C0 = 0. Deposition was turned off and it was made sure that no particle left the
domain during the simulation. After simulating for a few tidal periods, the total amount of sediment
in the water column was compared to the net change in the bedprofile. Again, this was exactly the
case.

• Thirdly, a net balance between incoming and outgoing sediment through the open boundary was
ensured. During ebb, particles (still sub-volumes) leave the domain and may transport sediment out
of the domain in this way. During flood, new particles spawn at the open boundary according to the
amount of water that enters the domain. The model keeps track of the amount of sediment leaving
the domain during ebb and consequently distributes this evenly over all the particles entering during
flood. After a morphologic spin-up time of 5 tidal periods, the error made by doing so is of the order
of 10−2 %. When the spin-up is completed, morphological computations will start.

From these experiments, it can be concluded that no errors are made in the conservation of mass (sedi-
ment).

50



5.4.1 Spatial settling lag test case

As a first morphological experiment, it was tested if the model was capable of reproducing the spatial settling
lag mechanism, which is described in section 2. As an example, a basin with the following properties was
selected:

• L = 50 km, W = 5 km

• H = 5 m

• ws = 0.001 m/s

• Kv = 0.004 m2/s

• ρs = 2650 kg/m3

• γ = 7.8 ∗ 10−5

• 4x,4y = 500 m

• 4t = 25 s

In this case no perturbation was applied: the bedprofile is completely flat. Furthermore, the bedprofile
is updated if the accumulated result of erosion and deposition somewhere in the basin exceeds 10 cm.

Figure 40: The net change in the bedprofile after one tidal period is shown. Positive values (yellow)
indicate net deposition, negative (purple) indicates erosion in meters. A net sediment transport towards

direction of decreasing tidal amplitude occurs.

Based on the dimensions, a relatively large longitudinal spatial gradient in the u-component can be
expected. The reason for this is twofold: firstly it is a very shallow basin and secondly, it is a relatively
short basin. Both factors contribute to an increase of the longitudinal velocity gradient. To pronounce the
settling lag effect even more, a small fall velocity indicative of fine grained sediment is selected. In figure
40, the result is presented: a clear net transport of sediment in the direction towards decreasing velocity
amplitudes (towards the closed end at the left). This means that this system is not in equilibrium and will
adjust. For a similar basin with the same properties and parameters, except for the basin length, which is
now L = 100 km, the evolution of the morphology was simulated on the timescale of years. This pointed out
that the system is indeed not in equilibrium, figure 41. However, the net change in the bedprofile cannot be
fully attributed to spatial settling lag. For example, the presence of the M4 tidal constituent is also related
to sediment transport.
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Figure 41: Significant changes in the bathymetry occur on the timescale of years. For this figure, a cross
section of the domain is taken, at y = W/2.
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6 Numerical experiments and results

This section consists of three parts, each part describes a different numerical experiment. For each experi-
ment, the domain properties and numerical settings are briefly outlined. First of all, one example of particle
tracking is added to illustrate the large variations in particle trajectory structures. In this example, clear
boundaries between chaotic and trapped regions exist. In addition, two more experiments are designed to
give a first impression of the model performance regarding sand bar evolution. One experiment shows the
numerical results of linear stability analysis in terms of growth or decay rates. Another numerical experiment
studies the morphodynamic evolution of the bathymetry on a longer timescale, in the order of a decade.

6.1 Chaotic advection of sediment

Particle trajectories are analyzed for different estuary geometries. To illustrate the appearance of chaotic
regions in the domain, an example basin with the following dimensions was selected:

• H0= 5 m

• L = 100 km, W= 2,5 km

• 4x, 4y = 250 m

• 4t = 10 s

• kx = ky

• λ = 2500 m

A spatially periodic perturbation of the form:

H ′(x, y) = 0.1H0 cos(kxx) cos(kyy), kx,y = 2π/λ. (82)

was applied to the bedprofile. The resulting particle trajectories are visualized in figure 42, 44 and 45.
In the first figure an overview of the trajectories in the whole domain is given, in figure 44 and 45 two slices
of the domain are shown in detail. Only a small fraction of all the particle trajectories is shown for clarity.

Figure 42: Overview of particle trajectories in the domain. Each dot represents particle positions at
integer multiples of a tidal period. In respectively figure 44 and 45 a zoom in on the areas in the red boxes

labelled 1,2 is shown.

In figures 42, 44 and 45 the dots represent particle positions at integer multiples of a tidal period. Moving
from the closed end on the left towards the open boundary on the right, hydrodynamic conditions change
considerably. This is twofold: both the residual velocity field and the amplitude of the tidal velocity change.
Towards the closed end, the residual velocity field, measured by ν in figure 46, has strong variations in
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amplitude. Variations in the tidal velocity amplitude are reflected by λ, which has a strong longitudinal
dependency. λ is proportional to the tidal excursion length, which in turn is proportional to the tidal velocity.
These variations in hydrodynamic conditions are reflected by the strong spatial dependency of the structures
found in the particle trajectories. Towards the closed end, where less energetic hydrodynamic conditions
prevail (λ goes to zero), particles are generally present in trapped regions. Particles will always end up in
the same region after every tidal period. This means that there is no exchange with neighbouring residual
circulation cells. On the left of figure 44, which is in the vicinity of the closed end, the circular structures
show these trapped regions. Trajectories are circular, because they closely follow the residual circulation
cells, which look like figure 43. On the other hand, in chaotic regions particles (sub-volumes) can move great
distances through the domain. In figure 45 chaotic regions, in this case characterized by wavy structures,
are alternated with trapped regions. Within these chaotic regions, particles are persistently displaced in one
direction, leading to an increased dispersion (of sediment) when compared to particles in trapped regions.
Within these chaotic regions, displacement occurs at a speed of at most 1 mm/s. In other words, particles,
while carrying sediment, end up in other circulation cells and in this way contributing to the dispersion of
sediment. Especially from halfway the domain to the open boundary, these chaotic regions become more
widespread.

Figure 43: Residual velocity field. Towards the closed end the amplitude is in the order of 1 mm/s,
towards the open boundary it is in the order of 1 cm/s. Very structured horizontal circulation cells,

comparable to the model by Beerens et al. (1994), but here generated by the dynamical equations (equations
9-11).
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Figure 44: This is a zoom in of the left part (1) of the domain, to improve particle trajectories
visualization. Each dot represents particle positions at integer multiples of a tidal period. Positive (red)

values indicate deeper regions, while negative (blue) values are shallow regions.

Figure 45: This is a zoom in of the right part (2) of the domain, to improve particle trajectories
visualization. Each dot represents particle positions at integer multiples of a tidal period. Positive (red)

values indicate deeper regions, while negative (blue) values are shallow regions.

The accompanying parameter values λ and ν for the estuary are given in figure 46. Generally, chaotic
regions often occur towards the open boundary for high values of the parameter λ. High λ corresponds to
a relatively long tidal excursion length and smaller perturbation wavelengths (at most 3 km). According to
the model results, chaotic regions still occur for relatively weak residual velocity fields ν ≈ 0.005.
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Figure 46: Parameter values as a function of x, measured along y = W/2. ν is small in this case, which is
indicative of a weak residual velocity field. On the other hand, λ is large, reaching 12 close to the open

boundary. A large value of λ is often accompanied with the appearance of chaotic regions.

6.2 Linear stability analysis

This numerical experiment aims at identifying if perturbations of the bottom grow or decay by means of a
linear stability analysis. It is determined whether perturbations decay, grow or remain neutral for different
perturbation shapes (equation 83). To this end, both estuary width and perturbation wavelength are varied
and for each case growth/decay rates are quantified by observing the magnitude and patterns of changes in
the bedprofile after simulating one tidal period.

H ′(x, y) = A cos(kxx) cos(kyy), kx = 2π/λ. (83)

During this simulation, the bedprofile was not updated. Nevertheless, the model monitors changes that
will occur due to erosion and deposition after one tidal period. For all simulations in this experiment, the
following domain properties, parameters and numerical settings are used:

• L = 100 km

• H0 = 5 m

• ws = 0.001 m/s

• Kv = 0.004 m2/s

• ρs = 2650 kg/m3

• γ = 7.8 ∗ 10−5

• p = 0.3, sediment porosity

• 4x,4y = 250 m

• 4t = 10 s

Perturbation growth or decay is measured by the quantity ρ, equation 84. This involves the perturbation
itself, H ′(x, y), and the net change in the bedprofile after one tidal period.
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ρ(x, y) = H ′(x, y) 4H (84)

In section 4, the waterdepth is defined as H(x, y, t) = H0 +H ′(x, y) + ζ(x, y, t), this means that the total
water depth decreases if H ′(x, y) < 0. In other words, if H ′(x, y) < 0, it becomes more shallow. Furthermore,
the net change over one tidal period in the bedprofile is defined such that if 4H < 0, it means that net
deposition occurred, i.e. the total water depth decreases and vice versa. Since both the perturbation and
the net change 4H over one tidal period can change sign, this leads to four possible scenarios:

• H ′(x, y) < 0 and 4H < 0:
For slightly shallower regions (H ′(x, y) < 0) where net deposition occurs (4H < 0), it becomes even
more shallow, which means perturbation growth occurs, ρ > 0.

• H ′(x, y) < 0 and 4H > 0:
For slightly shallower regions (H ′(x, y) < 0) where net erosion occurs (4H > 0), it becomes less
shallow, which means the perturbation decays, ρ < 0.

• H ′(x, y) > 0 and 4H > 0:
For slightly deeper regions (H ′(x, y) > 0) where net erosion occurs (4H > 0), it becomes even more
deeper, which means perturbation growth occurs, ρ > 0.

• H ′(x, y) > 0 and 4H < 0:
For slightly deeper regions (H ′(x, y) > 0) where net deposition occurs (4H < 0), it becomes less deep,
which means the perturbation decays, ρ < 0.

Obviously, since both the perturbation and the net change4H are spatially dependent, so is ρ. Ideally, one
would label each different perturbation with one single growth or decay rate. To achieve this, ρ is averaged
over every gridcell that represents perturbation crests and troughs in the second half of the rectangular
domain (i.e 50 < x < 95). In this way, each different case (a certain perturbation wavelength and estuary
width) is represented with one single value that is a measure for growth or decay. Growth and decay rates are
determined for perturbations with equal longitudinal and transverse wavenumbers, kx = ky. Perturbation
wavelength is varied for three different estuary widths: W = 2.5, 5.0 and 10.0 km and for each case, ρ is
determined, figure 47. As can be observed, ρ is always negative, corresponding to decay of the perturbation.
Especially for perturbation wavelengths of a few kilometres, strong decay occurs. Over crests and troughs ρ
was always strongly negative, in between crests and troughs, rho was sometimes weakly positive.
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Figure 47: For every investigated combination between λ and W , it was found that ρ < 0. In this case
kx = ky in equation 83 with λ in the range of 1 to 10 km.

Afterwards, ky was fixed at a few different values and only kx is varied. For all different combinations
between kx and ky, estuary width is varied to investigate what happens to the growth or decay rate. ρ is
examined for longitudinal wavelengths in the range of 1 km up to 25 km, while ky = nπ

W . In figure 48 the
results are presented for n = 1 and n = 2. ρ < 0 for all investigated combinations of λ and W (with kx = ky
in equation 83). Consequently, a flat bedprofile is stable to these specific perturbations, suggesting that the
model tends to evolve towards a flat bedprofile again. See section 7 for a discussion on this trend.

Figure 48: ρ as function of longitudinal perturbation wavelength in meters with on the left n = 1 and on
the right n = 2 in ky = nπ

W
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Until now, the growth/decay rate was investigated for different prescribed combinations of kx and ky.
Lastly, growth/decay rate is investigated for a random perturbation. This time, the bathymetry is located
at a depth of H = H0 +H ′(x, y) with H ′ being either −0.1H0, 0 or +0.1H0. In words, for each gridcell the
bathymetry is either elevated by 10% of the waterdepth, 10% deepened or remains unaltered. Since there
is no single representative wavelength present in this case, ρ cannot be spatially averaged. Therefore a 2D
plot of ρ is shown in figure 49. In this case, ρ > 0 at several places, indicating perturbation growth. Hence,
the bedprofile is not stable against this random perturbation.

Figure 49: This graph shows the spatial variation of ρ in case of a random perturbation on a flat
bedprofile: both growth and decay can be observed.

6.3 Transient morphodynamics

In the previous numerical experiment no feedback between hydrodynamics and bottom evolution was con-
sidered, i.e. simplifying the model flow chart presented in figure 8. This last experiment aims to give a first
impression of morphological changes with time. Morphodynamic evolution was simulated for a period of five
years, the results of the final bedprofile are presented in figure 50. As soon as the contributions of erosion
and deposition exceeded 5 cm in any gridcell in the domain, the bedprofile was updated. While parameters
and numerical settings are the same as in the previous experiment, the following changed:

• L = 100 km, W = 10 km

• H0 = 2.5 m

• 4x,4y = 1000 m

• 4t = 100 s

A spatially periodic perturbation was used:

H ′(x, y) = A cos(kxx) cos(kyy), kx = 2π/λ. (85)

with A = 0.1H0 and a perturbation wavelength of 10 km. In figure 50 the bathymetry after 5 years is shown.
While results on the short timescale suggest that the bedprofile becomes flat for this combination of λ and
W , the bedprofile clearly did not become flat. Towards the closed end slightly more deposition occurred due
to spatial settling lag: this region becomes even more shallow. In the region close to the open boundary,
deeper regions are connected and form a channel, alternated with very shallow regions: shoals.
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Figure 50: Bedprofile after 5 years of simulation, red represent deep areas whereas blue represents shallow
areas. A channel-shoal pattern emerges close to the open boundary with stronger depth variations occurring

towards the open boundary on the right.
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7 Discussion

In section 6, some preliminary results regarding sand bar formation are discussed. Sand bar formation
in its initial stage is investigated by applying a small spatially periodic perturbation to a flat bedprofile.
This allows a comparison between numerical and analytical results derived by using linear stability analysis.
According to the numerical results, ρ is always negative except for random perturbations. However, according
to observations,17 the strongest growth rate is expected for wavelengths according to: λ = 0.97 W 0.87.
Remarkably, the perturbation wavelength that corresponds to the most negative ρ is the observed dominant
wavelength in estuaries. In other words, while the model predicts fastest decay, observations suggest that the
same wavelength is actually the fastest growing mode (FGM). This can have different reasons. Technically,
the FGM according to the analytical solution26,28 applies to a semi-infinite channel, bounded in the y-
direction and unbounded in x-direction. Solving the eigenvalue problem (section 5 and more details by
Schuttelaars and de Swart, 2002) for a domain bounded in the x-direction changes the solution for the FGM.
By considering only perturbations of the form of A cos(kxx) cos(kyy), the FGM may not be captured by the
numerical model because the perturbation form should be different (for example Bessel functions instead of
cosines). To this end, the solution of the eigenvalue problem (determined either analytically or numerically)
should be used as perturbation.

Nevertheless, by using random perturbations, the correct solution of the eigenvalue problem may ap-
proximately (and accidentally) be captured. This can explain why only the random perturbations displayed
growth, figure 49. Moreover, analyzing the evolution of random perturbation through time can potentially
provide the FGM. Furthermore, only a small part of combinations between kx and ky was tested: kx = ky in
figure 47 and for two fixed transversal wavelengths, figure 48. Other combinations may still show perturba-
tion growth. Another reason that may partly explain why no growth is observed, is due to the assumption
of H0 ≈ H in the computation of sediment transport by:

dM

dt
=
V

H
ρsS∗. (86)

This assumption only effects the erosion term, which is part of S∗. To illustrate this, the assumption of
H0 ≈ H in the following equation is omitted for the moment. Instead S∗ is rewritten using equations 27, 30
and 31:

dM

dt
=
V

H
ρs

(
ws(1− p)

γs

1 + γs
− w2

s

C

Kv

)
. (87)

using HĈ = ρsC and Ĉ = M/V to rewrite the deposition term, see section 2 and 5, yields:

dM

dt
=
V

H

(
ρsws(1− p)

γs

1 + γs
− w2

s

HM

VKv

)
. (88)

Removing the brackets cancels both H and V in the deposition term, leading to:

dM

dt
= A(t)ρsws(1− p)

γs

1 + γs
− ws

2M

Kv
(89)

with A(t) = V/H indicating the area a particle (i.e. subvolume) covers. Using V = 4x4yH0/N and now
applying the assumption of H0 ≈ H leads to the equation used in the numerical model to compute the
evolution of sediment in each particle:

dM

dt
=
4x4 y

N
ρsws(1− p)

γs

1 + γs
− ws

2M

Kv
(90)

with N the amount of particles needed to represent the volume of water present in a gridcell. While the
volume remains constant, each subvolume can adjust its own water depth H and area as long as the product
remains constant, i.e. H · A = V . In other words, both the area and water depth can still vary, but the
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total volume remains constant. Variations in the area, computed by A = V/H, are neglected in equation 90,
which is used by the model. Neglecting variations in the area, has only implications for the erosion term,
the deposition remains unchanged when comparing equation 89 and 90. In shallow regions, A is slightly
larger while in regions with deep water, A is slightly smaller. Therefore in shallow regions, erosion is slightly
underestimated and vice versa. For the linear stability analysis the error in the computation of erosion made
by this assumption is in the order of 10 %. This follows from the amplitude of the perturbation, which is
10 % of the reference depth, H0. However, for the simulations on the timescale of years to decades, where
depth variations can become very large, the error becomes larger too. Basically, in shallow regions sediment
is reworked faster than in deep regions. By keeping track of the area A(t) each subvolume consumes, the
assumption of H0 ≈ H can be restored. This assumption possibly influences the quantity ρ but the error
is still expected to be relatively small. Since the water depth is provided by the hydrodynamic model (and
hence known at every location and time) and the total volume of a particle is constant, it is relatively easy
to keep track of the area each particle covers and to implement this numerically.

Simulations on the longer timescale indicate that a flat bedprofile is unstable with respect to perturba-
tions. In figure 50 the final bedprofile produced by a longer simulation is given. This result indicates that
the model tries to form a channel-shoal pattern by connecting deeper regions with shallow regions (shoals)
in between. Hibma et al. (2003) found a similar channel-shoal pattern. However, this simulation is still on a
relatively short timescale and by no means a morphodynamic equilibrium was reached, which was the case
after about 100 years of simulated time by Hibma et al. (2003). However, this longer simulation does still not
provide any information about the preferred bar wavelength, morphology was still changing rapidly. Thus
before the mechanism of sand bar formation is examined by means of particle tracking, the ability of the
numerical model to reproduce observed sand bar dimensions (on a longer timescale) has to be tested more
extensively. Furthermore, the verification of the sediment transport model can be extended by comparing
model results with Delft3D, or results in other papers. Nevertheless, section 6 already illustrates the benefits
of particle tracking. The first numerical experiment in section 6 shows what kind of information is otherwise
lost by using an Eulerian description of sediment advection. With an Eulerian viewpoint, no information is
obtained on where the water and the sediment it is holding is moving to. Due to residual currents particles
experience a net displacement after each tidal period. It is important to realize that particles still repre-
sent sub-volume of water that can hold sediment, as is defined in section 1. When it comes to sediment
transport, tidally averaged erosion and deposition determine morphology changes rather than instantaneous
erosion and deposition rates. Equivalently, a tidally averaged net displacement of particles (holding sedi-
ment) may provide information on morphology changes. Therefore, by using a different approach to sediment
transport, this can provide an additional tool to understand sand bar formation. Both chaotic regions and
trapped regions have implications for sediment transport and consequently, estuary morphology. In chaotic
regions sediment dispersion is enhanced because particles can travel larger distances through the domain.
Their irregular movement also contributes to an enhanced dispersion of sediment. On the other hand, in
trapped regions, no exchange between other circulation cells occurs. Analyzing particle trajectories and the
distribution of trapped and chaotic regions in relation to ρ and estuary dimensions (width or width to depth
ratio) can potentially be a first step towards understanding sand bar formation.

Concluding, this research has to be continued in order to make definite conclusions about particle tracking
and understanding sand bar evolution. As a starting point, the implementation of sediment transport may
be reviewed. By keeping track of the domain area each particle consumes, the assumption of H0 ≈ H can be
omitted in equations 90 and 89. Especially for simulations on the timescales of years benefit from this because
this assumption only holds for small amplitude variations in the bathymetry. Furthermore, the incoming
sediment concentration during flood at the open boundary can be changed from being constant to velocity
dependent. During flood, every particle entering the estuary is now assigned a constant concentration, which
is not realistic. Making the incoming sediment concentration velocity dependent can potentially also reduce
morphological spin-up time. Next, one may proceed with solving the eigenvalue problem ( section 5 and
more details in Schuttelaars and de Swart, 1998) for a semi-enclosed basin, instead of semi-infinite. The
solution to this eigenvalue problem can then in turn be used to determine the growth/decay rate ρ. In other
words, if this improved solution is used, the model should give ρ > 0.
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Additionally, the model can be improved by means of a vertically dependent eddy diffusion coefficient
Kv. Until now, Kv was assumed constant. This may even influence the wavelength of the FGM.7 Another
point of improvement is the open boundary condition. For example, during flood water in reality radially
enters the estuary rather than in the current uniform way.20 In fact, the asymmetry between radial-inflow
and rectilinear (jet-like) outflow, may be an important mechanism for sediment transport.31 This potentially
improves the simulation of sand bars close to the open boundary.
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8 Conclusion

In this project a Lagrangian approach to sediment transport was developed and was applied to study the
formation of sand bars in estuaries. Complicated numerical models can already greatly simulate the devel-
opment of sand bars but the models are too complex too unravel physical mechanisms. However, theory
on sand bars in estuaries still lacks an accurate predictive ability when it comes to sand bar dimensions.
Theories suggest that the wavelength of the fastest growing mode is equal to the tidal excursion length, while
according to observations, the bar length scales with the estuary width. This suggests that some mecha-
nism is still missed by the current theory. In order to improve our understanding of sand bar formation in
estuaries, particle tracking is used to monitor the movement of water and the sediment it is holding. This
information is lost if the common Eulerian viewpoint is used to simulate sediment transport. Subsequently,
a numerical model was developed, which consists of a coupled hydrodynamic and sediment transport part.
The hydrodynamic model comprises the numerical solution of the two dimensional depth averaged shallow
water equations. Both the hydrodynamic and sediment transport model were verified in various stages by
means of benchmark problems and analytical solutions for simplified cases. After the development and the
verification of the numerical model was completed, some preliminary results on sand bar formation were
produced. To simulate the formation of sand bars, perturbations are applied to a flat bedprofile. Sand
bar formation is investigated by applying small spatially periodic perturbations to a flat bedprofile. The
evolution of these perturbations in their initial stage was monitored. Perturbation growth or decay was
determined for different estuary widths and perturbation wavelengths. However, it appeared that for every
combination of estuary width and perturbation wavelength a negative ρ was found, which corresponds to
decay. Only for a random perturbation ρ was greater than zero. Perhaps the perturbation structure has to be
different for growth to occur. Additionally, the parametrization of erosion can still be improved, which may
also influence ρ. While the bedprofile was stable against all the tested perturbations on the short timescale,
the bedprofile did not become flat on the longer timescale but evolves towards a channel-shoal pattern. This
seemingly disagreement between short and longer timescales requires more research before particle tracking
can be used to improve our understanding of sand bar formation. Nevertheless, particle tracking already
proved to be useful during this project. Particle trajectories are very sensitive to changing hydrodynamic
conditions, which also has implications for sediment transport. Particles can be located in either trapped or
chaotic regions. Chaotic regions are characterized by irregular movement of particles through the domain,
enhancing sediment dispersion in this way. Combining information about trajectories in relation to hydro-
dynamic conditions and regions of enhanced sediment dispersion may contribute to our understanding of
sand bar formation. Concluding, even though particle tracking already proved to be useful, more research
is required why all perturbations decay on the short timescale.
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Appendix

The Thomas algorithm solves tridiagonal systems of n equations:

aixi−1 + bixi + cixi+1 (91)

with i= 1,2,... n and a1 = 0 and cn = 0. In matrix form this set of equations looks like:

where x in case of the shallow water equations corresponds to ζ. Coefficients a, b, c are known and also
the right hand side is assumed to be known. In case of the shallow water equations, see section 4, this is
indeed the case since a, b, c and d consist of model parameters and variable values at the previous timestep.
The solution procedure to solve for x, comprises a modification of all coefficients and the right hand side.
Consider the equation for x at i = 1 and i = 2:

i = 1 : b1x1 + c1x2 = d1 (92)

i = 2 : a2x1 + b2x2 + c2x3 = d2 (93)

Rewriting the equation for i = 1 gives:

x1 +
c1
b1
x2 =

d1
b1
. (94)

Introducing c′1 = c1
b1

and d′1 = d1
b1

:

x1 + c′1x2 = d′1. (95)

Multiplying with a2 yields:

a2x1 + a2c
′
1x2 = a2d

′
1. (96)

Substracting this rewritten equation at i = 1 from equation 93 gives:

(b2 − c′1a2)x2 + c2x3 = d2 − d′1a2 (97)

and subsequently rewriting:

x2 +
c2

b2 − c′1a2
x3 =

d2 − d′1a2
b2 − c′1a2

. (98)

In this way x1 is removed from the equation. Next, introduce: c′2 = c2
b2−c′1a2

and d′2 =
d2−d′1a2
b2−c′1a2

:

x2 + c′2x3 = d′2. (99)

Thus the new coefficients c′i and d′i are defined in the following way:

c′i =
ci

bi − aic′i−1
, d′i =

di − d′i−1ai
bi − c′i−1ai

(100)
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and hence:

xi + c′ixi+1 = d′i. (101)

For every i, xi−1, one of the unknowns, can be removed by this modification of coefficients. Eventually, at
i = n, we obtain: xn = d′n, since xn+1 = 0 Subsequently, this value for xn can be substituted in the equation
for i = n− 1, yielding xn−1. This backward substitution can be continued for every i, providing the solution
for xi. In other words, starting at i = n − 1 in equation 101, xn−1 can be computed, since xn is known.
Afterwards, equation 101 can be considered at i = n − 2 and xn−2 can be computed, since xn−1 is known,
etc.
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