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Abstract

We present a generic prediction framework in Haskell. This framework consists
of two parts. The first part introduces a fixed structure for supporting various
prediction models. A few of those models have been implemented. The latter
part introduces a DSL to guide the programmers in making predictions. The
interpretation of this DSL can be defined in an arbitrary fashion to allow dif-
ferent semantics. Furthermore, we also elaborate and discuss a few examples of
the framework. One of these examples is a case study at Channable. This case
study tries to improve the utilization of server resources by first estimating the
resource usage of a specific job and then using that estimate to schedule the job
on an appropriate server. Finally, this scheduling algorithm is compared with
the original algorithm by modeling a theoretical simulation.
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1 Introduction

Technology enables companies to automate repetitive tasks like sending the daily
newsletter to all customers or making backups. In the digital world, many of
these tasks can be performed automatically at a specific time by a task scheduler.
The task scheduler keeps track of the planning activities and carries them out.
This has the advantage that tasks will not be forgotten to be executed. The
tasks can be scheduled in an arbitrary manner. When jobs use on a regular
basis a lot of computing power, it might be better to spread the work of the
jobs across multiple servers. The total amount of servers needed to carry out
these jobs depends on the required resources needed for performing the jobs.
The resource usage of a job is, therefore, an important factor in planning the
job. Resource information of new incoming job can be obtained by making
estimates that are based on the resource use of previous jobs. This kind of
information can be included in the planning of the jobs. Let’s say we need
to schedule three tasks over N servers. When the tasks are sent to the task
scheduler, we also include the estimated resource usage of the task. When
scheduling the tasks, we first look at the current resource usage of each of the N
servers. The scheduler then assigns the task to the server that is most suitable
for executing the task. Maximizing the throughput of the jobs allows more
jobs to be carried out in the same time frame. Making such estimates often
requires in-depth knowledge about the different types of models. We, therefore,
introduce a generic prediction framework that helps to make such estimates.
Next, for a proof-of-concept, this framework will be applied in a case study to
help with the scheduling of jobs.

1.1 Case study: Channable

The number of platforms on which digital products can be offered is enormous
and grows by the day. Manually offering all of the different products to each
of the channels requires a lot of time. Channable has developed a tool for
distributing digital products to various online channels such as Marktplaats and
eBay. The customers of Channable use this tool to manage their own products
on the various channels. The products of the customers consist of all kinds of
items that can be offered across the web. For example, the items of a webshop,
but also sports activities can be shared across the different channels. For adding
products to the tool, they support various input formats such as XML, CSV, and
Magento. All of these different input formats can be submitted simultaneously.
Then Channable merges the products and delivers them in parallel to all the
supported channels. Each of these operations follows a strict order of operations.
That is why each of these tasks is performed by a batch job.

1.2 Motivation

Machine Learning explores the data to make predictions about a particular
domain. This area focuses on data-driven algorithms for constructing models



and use those models to make predictions. These predictions are often based on
historical events. Suppose team X won 18 out of 20 times from team Y. Then, we
expect that based on this information, team X will win again at a new meeting
between the two teams. The use of these algorithms often requires in-depth
knowledge of the different models. Many popular higher-level programming
languages often already consist of an implementation of the popular Machine
Learning models. These models are often implemented by experts in the field
of Machine Learning and the specific language. This ensures that these types of
models are often implemented in an efficient manner. Therefore, it is not wise
for a normal programmer to manually implement these models. It is better to
use the libraries developed by the community. The use of these type of models
is often followed by a fixed procedure. First of all, a form of historical data
will be loaded into the environment. Next, this data will be analyzed by a self-
learning algorithm. The result of this analysis can be used to make estimates
of certain events. Unfortunately, the components of this procedure are often
subdivided into different libraries. This is also the case in Haskell. Finding and
understanding the various components takes a long time. We, therefore, develop
a GPF(generic prediction framework) in Haskell that assists the programmer in
making predictions. The library provides an interface for writing and using
models that could be used to predict continuous labels. It is developed in
Haskell due to its type-safety, yet flexible possibilities of the language. The
disadvantage of a functional programming language is that it is less easy to
define a sequence of operations. In Haskell, you can easily solve this problem
by using lets and wheres. However, this can quickly become unclear when we
need a lot of continuations, which is likely to happen when we want to make
several predictions. In order to improve this process, we added a DSL to the
library that guides the programmers to make multiple predictions. This DSL
also allows additional functionality like loading a CSV file to the environment.

Channable developed its own job scheduler tool for managing their jobs. This
tool is written in Haskell and it’s called jobmachine. The jobmachine consists
of two parts. The first part of the jobmachine determines the schedule of when
jobs have to be executed. The second part delivers the jobs to a small but
variable number of workers. Each of the workers has a limit of X slots available
for the jobs that can be performed at once. The following four properties need
to hold for the job scheduler:

1. Job priority must always be honored: Higher-priority jobs (e.g. interactive
jobs from users) must always run before lower priority jobs

2. Jobs may only run if all their dependencies are satisfied

3. Jobs should run as close as possible to the time that they were scheduled
(without violating the first two requirements of course)

4. Jobs should never crash (the code must be correct and the workers need
to consists of enough resources



The first two properties are satisfied by the current schedule. The third is
satisfied as long as there are enough free worker slots available. However, this
property is violated when all the slots are filled. This means that new jobs that
are satisfied by the above criteria still have to wait until there is a slot free.
This violation is currently solved by providing the servers with a lot of CPU,
memory and network throughput. Much more than actually needed. This is
known as over-provisioning.

Despite the over-provisioning, there are some very memory intensive jobs,
that forces the server to use more memory than available in the RAM. The
Operating System solves this by using VM (Virtual Memory,) which is a memory
management method that is implemented by using both hardware and software.
The purpose of a VM is to map virtual addresses of a process into the physical
memory. The VM uses as default storage for the processes the RAM of a
computer. The RSS(Resident set size) is the amount of memory allocated for
the process in the ram memory. However, the virtual memory switches to the
secondary storage when a process uses more RSS than available. This part
of the memory is called the swap space. In the worst case, it could kill the
jobs when the server runs out of swap space. This does not happen in practice
due over-provisioning. This brings us back to the first problem: The current
Jobmachine makes inefficient use of the resources since it does not know how
many resources a job needs. They have to over-provision and even then they
cannot guarantee that they will not accidentally schedule a lot of memory-heavy
jobs to the same worker.

From this, we conclude that over-provisioning of the servers is not the most
optimal solution. It’s better to optimize the workload of the servers, such that
we can maximize the throughput. In addition to the more efficient execution of
the jobs, it can also reduce the cost of the necessary hardware.

We will realize this by taking into account the resource usage of a job while
planning the distribution of the jobs to the various servers. Although it’s not
possible to take into account the exact resource usage, we are going to make
estimates about it. The estimates are based on a historical dataset that consists
of the domain knowledge of the jobs. Various statistical methods are going to
be applied to this dataset to obtain the models. Then these models are used
to predict the resource usage of new incoming jobs. After obtaining the results
of the prediction, we look at the current hardware usage of the servers. Then
we combine these two usages to determine the server that is most suitable for
performing the job. The goal is to keep the workload as high as possible, but
with a sufficient probability that the servers do not use the swap space.

1.3 Research Question

The goal of this thesis is to develop a framework that assists the programmers
in making predictions. We apply this framework to a concrete use case at
Channable. For investigating this problem, we defined the following research
question: “Can we improve the resource utilization by using estimated resource
usage of a job as meta-information for scheduling a job at Channable?”. This



question is divided into the following three subquestions:

1. Is it possible to define a framework in Haskell to implement and use various
prediction models?

2. Can we predict the resource usage of a job with sufficient accuracy?

3. Can we use the predictions to improve the resource utilization?

The following sections will provide more details on all of these questions.

Is it possible to define a framework in Haskell to use and implement
various prediction models? This question investigated what the possibili-
ties are for defining a generic prediction framework. The main purpose of the
framework is that it can be used in Haskell as an auxiliary tool for creating and
applying various prediction models in a structured fashion. Eventually, this
framework is used to estimate the dependent variables of the jobs.

Can we predict the resource usage of a job with sufficient accuracy?
The first part of this thesis investigated whether it is possible to make predictions
about the resource usage with a sufficient accuracy. Making these predictions
requires a historical dataset that consists of the domain knowledge of the jobs.
Prior knowledge of Channable is used to determine the domain knowledge of the
jobs. Construction the dataset is done in the initial phase of this question. Then
we will apply various simple statistical models(e.g. mean, standard deviation
and variance) on the dataset. The results of these simple models are used to
visualize the data in a more human-readable format. By using prior knowledge
and the result of the previous models we tried to identify several patterns in
the data. These patterns are used to define a strategy to obtain for each of
the relevant resource properties of a job a sufficient prediction accuracy. This
strategy includes applying a supervised learning algorithm and feature selections
on the selected subsets. All of these approaches are compared with each other.
From this comparison, the model that resulted in the best outcome will be
chosen to estimate the resource usage of future jobs.

Can we use the predictions to improve the resource utilization? This
question investigated whether the proposed scheduling algorithm improves the
resource utilization. The goal of the new scheduling algorithm is to optimize
the utilization of the available resources while minimizing the risk of going over
capacity.

1.4 Thesis Structure

This section provides an overview of the thesis. The next chapter describes the
inner workings of the generic prediction framework. We first explain the two
main components (Interface and DSL) of the framework. The next subchapter



discusses a few optimizations. Finally, we describe what kind of tests have been
added to the framework.

The third chapter describes how we obtained the estimated workload. The
first subchapter discusses which resource usages affect the performance of the
different jobs. The next subchapter explains various insights of a dataset that
consists of the domain knowledge of the jobs. 80% of this dataset is used to
determine the most suitable prediction models.

The remaining 20% of the dataset is used during the drafting of a schedul-
ing simulation. Chapter four discusses the result of this simulation. During
this simulation, we compared the original scheduling algorithm with the new
proposed algorithm. Chapter five discusses the related work of this thesis. Fur-
thermore, chapter six explains the limits and possible additions to this study.
Finally, the research questions are answered in the last chapter.

2 Generic Prediction framework

This chapter discusses the inner workings of the generic prediction framework.
The predictions of this framework will be based on historical data. Making
these predictions requires, therefore, a dataset of that particular domain. This
dataset will then be analyzed to obtain the predictions. The framework consists
of two parts. The initial part introduces an interface that allows programmers
to implement several statistical methods in a structured fashion. The latter
part introduces a DSL that assists the programmer in describing prediction
programs.

2.1 Interface

The DSL of the framework requires a fixed and generic interface that can be
used to implement and use various prediction models. There are several libraries
available that assists the user in making predictions based on historical data.
Unfortunately, these libraries often consist of different structures and function
names for making the predictions. This makes it unsuitable for the DSL. We,
therefore, introduce a generic interface to create various models and use these
models to predict real values. The goal of this interface is to develop a fixed
structure that makes it possible to systematically train and use different mod-
els. At the time of writing, one library[12] is known that developed a similar
interface. Unfortunately, this library is not well documented and is no longer
maintained. This study will, therefore, use a self-developed interface.

2.1.1 Definition

The two main approaches to train data are online and batch algorithms. In the
case of batch algorithms, the entire data is used for training the model. Online
algorithms can be used to stream new data points to the current model. This has
the advantage that the entire dataset does not have to be re-trained. The final



version of the framework only supports batch learning algorithms. However, in
the optimization section, we discuss which adjustments must be made to the
interface to comply with online algorithms. Furthermore, the interface only
focusses on a subset of supervised learning. Supervised learning algorithms are
interested in constructing a mapping function that takes x as input variables,
and as a result y. This can be formally written as a function f (x) = y. We
mainly focus on regression problems. These are problems where the outcome is
a real value, such as the total amount of euros. The interface only offers support
for a single variable at y.

Eventually, each of supported models needs to have an implementation for
the following functions:

train :: X a =Y a — model a

predict :: X a — model a — a

The X should be represented as a Matrix and the Y as a sequence of values.

2.1.2 Type class

The purpose of the interface is to maintain the same structure(eg. same function
names) for using different models. Haskell is a strongly typed language. This
makes it an ideal language to indicate at type level which model will be used.
The use of the same functions can be realized by overloading functions. This is
supported in Haskell by using type classes. When calling a function of the type
class, Haskel determines at type level which instance of type class is used.

Representing multiple input variables is realized by the Matriz data type
from the Matrix[I0] package. The advantage of this package is that it contains
several mathematical Matrix operations. These are useful to assists the user in
calculating a mapping function. Internally the Matriz uses the Vector from the
Data.Vector|[17] module. The advantage of this vector is that it is compatible
with other parts of the framework.

Finally, we developed the following interface:

data TrainingStructure datapoint = TrainingStructure{
xData :: Matrix datapoint ,
yData :: Vector datapoint

}

data PredictStructure model datapoint = PredictStructure{
model :: model datapoint ,

datapoint :: Vector datapoint

}

class Interface model datapoint where
mkTrain :: TrainingStructure datapoint — model datapoint
mkPredict :: PredictStructure model datapoint — datapoint

The datatypes TrainingStructure and PredictStructure are used to make it
more clear to the programmer which information is needed because let’s say the
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Interface would allow multiple dependent variables. It’s likely that this would
be represented as a Matrix. In this case, the TrainingStructure requires for both
of the arguments a Matriz. When we omit the TrainingStructure, it would be
unclear to the user whether it is zData or yData.

2.1.3 Models

This section covers the implemented statistical models. We focused on rather
simple models:

1. Average
2. Minimum
3. Maximum

4. Ordinary least square

The usage of the interface is described using an example.

Average A well-known statistical method is the average. zThe interface re-
quires that each of the models consists of a datatype. The average is represented
using the following datatype:

data Avg dp = Avg {avg :: dp} deriving (Show, Read, Eq, Generic)

This allows us to define the functions of the interface:

instance Fractional a => Interface Avg a where
mkTrain ms =
let values = yData ms

in Avg $ sum values / fromlIntegral (length values)
mkPredict = avg . model

Minimal and Maximal Computing the minimal and maximal is also sup-
ported by the interface:

data Min a = Min {getMin :: a} deriving (Generic, Eq, Show)
instance (Ord a) => Interface Min a where
mkTrain = Min . minimum . yData

mkPredict pr = getMin $ model pr

data Max a = Max {getMax :: a} deriving (Generic, Show, Eq)
instance (Ord a) => Interface Max a where
mkTrain = Max . maximum . yData

mkPredict pr = getMax $ model pr
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Ordinary Least square The above models do not rely on the supplied input
variables. As a result, the mkPredict function always results in the same value
as the corresponding model. Predictions often depend on multiple input vari-
ables. One of the models that can deal with multiple variables is the ordinary
least square. This model is based on the following equation:

y=XpB+e
B=x"X)"x"y

The Matrix package consists of various functions to solve the above equation.
It is not always possible to compute the inverse of a matrix. In this case, the
inverse function returns an error message to the user. Unfortunately, this error
message is not always correct. We have therefore chosen to return a generic error
message. We did this by catching the error message of the inverse function:

computelnverse :: (Fractional a, Eq a, NFData a)
—> Matrix a
— Either SomeException (Either String (Matrix a))
computelnverse x = unsafePerformIO $ try evaluate force (inverse (
multStd2 (transpose x) X))

The use of unsafePerformIO is safe because the function does not produce
any side effects. Next, we added the ordinary least square to the interface:

data OLS a = OLS{
intercept :: a,
coefficients :: Vector a
} deriving (Show, Read, Generic, Eq)

instance (Show a, Read a, Fractional a, Eq a, NFData a) =>
Interface OLS a where
mkTrain ms = linearRegression (xData ms) (colVector $ yData ms)
mkPredict (PredictStructure ols dp) =
foldr go (intercept ols) $ zip dp (coefficients ols)
where go (a,b) ¢ = (a * b) + ¢

linearRegression
(Read a, Show a, Eq a, Fractional a, NFData a)
—=> Matrix a
— Matrix a
— OLS a
linearRegression x t =
let rows = nrows x
x’ = force $ fromList rows 1 (replicate rows 1) <[> x
in case computelnverse x’ of
Right (Right m2) — toOLS $ getMatrixAsVector $
multStd2 (multStd2 m2 $ transpose x’) t
_ — error "Linear regression went wrong."

toOLS :: V.Vector a — OLS a
toOLS vs
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| not $§ null vs = OLS (head vs) (tail wvs)
| otherwise = error "Result of OLS is empty"

2.1.4 Example

This section describes the usage of the interface by giving an example. Suppose
we are interested in the expected score of a player on a basketball team. To
find the expected outcome, we first collect the height, weight, and score of the
previous players. This allows us to compute different types of models. First
of all, we are interested in the average of the score. This is calculated by the
following function:

avgScore = [9.2, 11.7, 15.8, 8.6, 23.2, 27.4, 9.3, 16, 4.7]

height’ = [6.8, 6.3, 6.4, 6.2, 6.9, 6.4, 6.3, 6.8, 6.9]
weight ’ = [225, 180 ,190, 180,205,225,185,235,235]
trainAvg :: Avg Double
trainAvg = mkTrain TrainingStructure{
xData = Matrix. transpose $ Matrix.fromLists [height’,6 weight’],
yData = Vector.fromList avgScore
}
predictAvg :: Double
predictAvg = mkPredict PredictStructure{
model = trainAvg,

datapoint = Vector.fromList [6.5, 200]

> predictAvg
> 13.99

Then we are curious whether the height and weight of the player provide
extra information about the score. We include this information during the
executing of the ordinary least square. This can be easily arranged by changing
the type of the trainAvg function to the OLS datatype:

getAvgAge :: OIS Double
> predictAvg

31> 13.63

Changing the type, completely changes the behavior of this function without
changing the structure of the program.

2.2 DSL
2.2.1 Primitives

Haskell is a purely functional language. Let’s say we need a dataset from the file
system. Loading such a file produces side effects. However, when we manually
insert the dataset as code, we do not produce any side effects. In this case, it is
better to keep the code pure. We, therefore, propose a number of primitives that
can be used to describe the procedure. Then this description can be interpreted
in various ways. We defined the primitives as an ADT based on the Free monad.
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The Free monad makes it easy to distinguish between the logic and the data
types. The free monad is defined in the following way:

data Free f r = Free (f (Free f r)) | Pure r

As a constraint, the Free monad states that the f is a Functor. The advantage
of such a constraint is that it is easy to write a sequence of Functors. We are
using the Free monad of the package Free[I4]. This package contains several
useful functions that assist in using the Free monad. The description of the DSL
is subdivided into the three main components(dataset, training, predicting).

Dataset The first part of the GPF is focused on loading data into the en-
vironment. There are many different types of formats to store data (eg CSV,
MySQL and PostgreSQL). For this framework, we decided to focus on the CSV.
Nevertheless, we expect that the proposed approach is also applicable for the
different data formats. To represent the data, the DSL works with the same
type of Vectors as the interface. This Vector is compatibility with the CSV
parser Cassava. Cassava is a library for parsing CSV files to Haskell code. It
uses the type class FromRecord to parse the CSV. This type class contains a
function for parsing a sequence from Bytestrings to an arbitrary type. The type
class contains an instance for the Generic data type. This makes it easier to
create an instance for new datatypes because GHC consists of a mechanism for
automatic deriving generics for arbitrary types. This vector is wrapped around
the Dataset datatype:

data Dataset schema = Dataset {
_database :: Vector schema
} deriving (Show, Functor)

Working with wrappers has the advantage that the primitives know whether
the origin is from another primitive or outside this framework. It’s also conve-
nient to store a lot of information in a compact format at the type level.

Training a model often does not require all of the attributes of a CSV, rather
a subset of the attributes. This is described in statistics as a feature selection.
The DSL represents the feature selection using the following wrapper:

newtype Feature schema datapoint =
Feature {getFeature :: [schema — datapoint]}

This datatype wraps a list of record names of the corresponding schema
datatype. This allows the programmers to define all the attributes that are
needed as input for the training function. This provides us with enough infor-
mation to define the first three primitives:

10




data Instruction next where

LoadDataset :: Vector.Vector schema — (Dataset schema — next)
— Instruction next
LoadDatasetFromFile :: FromRecord schema —>

FilePath — (Dataset schema — next) — Instruction next
FeatureGPF

[schema — datapoint |
— (Feature schema datapoint — next)
— Instruction next

We represent the primitives with the Instruction ADT. The first construc-
tor allows the user to directly represent the data in Haskell code. The second
constructor requires a FilePath as an argument. The idea is that the file lo-
cated at this FilePath will be loaded to the Haskell environment by one of the
interpreters. The last construction is used to represent the Feature.

Training Training a model requires various types of information about the
model. First, we need a dataset. Next, it must be clear which attributes are used
as input variables of this dataset. Subsequently, an attribute must be defined
on which the prediction is based. Finally, it must be clear which model should
be trained. Using such a model requires access to this kind of information. We
introduce the following Model wrapper to store this kind of information:

data Model schema datapoint model = Model {

_modelfeature :: Feature schema datapoint,
__modelResponse :: schema — datapoint,
_modelDef :: model datapoint,
_statistics :: Statistics

}

newtype Statistics = Statistics{
timeInSeconds :: Maybe Double

} deriving Show

The Model datatype also contains statistics about creating the model. Cur-
rently, this datatype only supports the statistic to measure the time of comput-
ing the model. Working with Statistics has the advantage that in later stages of
the framework we can easily extend this with additional statistics. Measuring
the time requires the use of 10. It is however not necessary to measure the time.
We will, therefore, add an option to the train instruction to configure this kind
of meta information. This is determined by the following data type:

data Metalnfo = Metalnfo{

pathObject :: Maybe FilePath ,
timingEnabled :: Bool,
validateCorrectness :: Bool

Training a model could take a lot of time. It is better to avoid time-
consuming operations. We, therefore, introduce the option to store a model
to the filesystem. This allows the usage of the same model multiple times, with-
out retraining. The pathObject defines the location of where the model should

11




be stored. The last argument of Metalnfo is discussed in the error prevention
section.

Storing a model requires a function to convert a model to a sequence of
characters, and vice versa. This forces us to use a certain data format. We
chose to use JSON. This is a standardized format that is easy to read and write
for both the computer and programmer.

Fortunately, there exists a package in Haskell that allows conversion be-
tween a datatype and the corresponding JSON format. This is arranged by the
aeson[22] package. Converting a datatype to JSON is solved by the ToJSON
type class. The type class FromJSON is used to convert a JSON format to a
particular datatype. The datatype of a model requires, therefore, an instance
for both of the type classes. Fortunately, there is an instance of the Generic
representation.

To support the explained functionalities, we added four additional construc-
tors to the Instruction ADT. These will be discussed in the remainder of this
section.

data Instruction next where

Train :: (Interface model datapoint ,ToJSON (model datapoint),
NFData (model datapoint))
- Metalnfo

— Dataset schema

— Feature schema datapoint

— (schema — datapoint)

— (Model schema datapoint model — next)
— Instruction next

The Metalnfo of the Train constructor is used to indicate which meta infor-
mation should be included in the calculation of a model. The second argument
represents the historical dataset that will be used to train the model. The
Feature determines which attributes of the dataset will be used as the zData.
The fourth argument is used to indicate which attribute should be used as the
yData. The last argument is a function that serves as the continuation of the free
monad. We also added an alternative training constructor to the instructions.
This constructor does virtually the same, but also offers support for filtering
the dataset. This has been implemented by the datatype below:

data Instruction next where

TrainWithFilter :: (Interface model datapoint, ToJSON (model
datapoint), NFData (model datapoint))

=> Metalnfo

— Dataset schema

— Feature schema datapoint

— (schema — datapoint)

— (schema — Bool)

— (Model schema datapoint model — next)

— Instruction next

However, it is not always necessary to train a model. For example, the user
could also manually implement a model using the corresponding datatype of the
model. We, therefore, introduce the following constructor:

12




data Instruction next where
LoadModel :: ToJSON (model datapoint)
> model datapoint
— Feature schema datapoint
5 — (schema — datapoint)
ﬁ.
—

N}

(Model schema datapoint model — next)
Instruction next

The next instruction describes that a model should be loaded from the filesys-
tem:

1| data Instruction next where

2 LoadModelFromFile :: (Interface model datapoint, FromJSON (
model datapoint),ToJSON (model datapoint))

3 => FilePath

Feature schema datapoint

(schema — datapoint)

(Model schema datapoint model — next)

Instruction next

—
—
—
—

Predicting The third part of the framework focusses on making predictions.
We introduce the following Predict constructor:

data Instruction next where
Predict :: (NFData datapoint, Interface model datapoint, Show
datapoint)

: > Metalnfo

! — Model schema datapoint model

5 — schema — (datapoint — next)

6 — Instruction next

2.2.2 Design

In order to use the Instructions as a Monad, we have to lift each of the con-
structors to a free monad. To improve the readability of the code, we defined
the following type synonym to represent the Instruction as free monad:

1| type GPF a = Free Instruction a

The Instructions are lifted by using the liftF’ function from the Free package.
As an example, we write the Predict constructor in the following style:

1‘ liftF $ Predict mempty model input id

It is annoying for a user to give this extra information every time. Smart
constructors solve this problem by adding extra constraints to a value. Each
of the smart constructors is represented as a function. An example of a smart
constructor for the Predict instruction is defined in the following fashion:

predict :: (NFData datapoint, Interface model datapoint, Show
datapoint)

2 > Model schema datapoint model — schema — GPF datapoint

3| predict mdl row = liftF $ Predict mempty mdl row id

13



A W N

N

Many of the other smart constructors have a similar structure. These are
therefore not covered in this thesis. Smart constructors also offer the option of
simply adding more functionality. This allows us to make multiple predictions
by mapping over the predict constructor:

predicts :: (NFData datapoint, Interface model datapoint, Show
datapoint)
—> Model schema datapoint model
— [schemal]
— GPF [datapoint |
predicts mdl rows = mapM (predict mdl) rows

When training the models, it is not always necessary to provide metalnfor-
mation. Adding smart constructors allows us to distinguish between these two
kinds of training approaches. An example of this distinction is the functions
train and train WithMetalnfo.

train
(Interface model datapoint, ToJSON (model datapoint),
NFData (model datapoint))
> Dataset schema
— Feature schema datapoint
— (schema — datapoint)
— GPF (Model schema datapoint model)
train ds ft project = liftF $ Train mempty ds ft project id

trainWithMetalnfo
(Interface model datapoint, ToJSON (model datapoint),
NFData (model datapoint))

> Metalnfo

Dataset schema

Feature schema datapoint

(schema — datapoint)

GPF (Model schema datapoint model)

trainWithMetalnfo mlInfo ds ft project = liftF $ Train mInfo ds ft
project id

L4 dd

It is not elegant to write the Metalnfo constructor directly in a function.This
makes the code less readable. It is better to define an instance to the Monoid
type class, such that we can add various Monoid operations. This allows us
to configure the meta information using independent functions. We added the
following Monoid instance:

instance Monoid Metalnfo where
mempty = Metalnfo Nothing False False
mappend (Metalnfo a b ¢) (Metalnfo a’ b’ ¢

’) =
Metalnfo (a <|> a’) (b || b’) (¢ || ¢’)

Subsequently, a number of auxiliary functions have been defined for config-
uring the meta information. This is done by the following functions:

allMeta :: FilePath — Metalnfo
allMeta filePath = store filePath <> measureTime <> validate
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store :: FilePath — Metalnfo
store filePath = Metalnfo (Just filePath) False False

measureTime :: Metalnfo
measureTime = Metalnfo Nothing True False
validate :: Metalnfo

validate = Metalnfo Nothing False True

2.2.3 Evaluators

The explained instructions allow the users to describe a program. Interpreting
these instructions can be done in an arbitrary manner.

This gives users the flexibility to decide for themselves how the instructions
should be evaluated. The current framework contains three different evaluators,
but this can easily be extended by the user. For example, it would be interesting
to evaluate the instructions in parallel. At the time of writing this thesis, the
following evaluators are supported:

eval :: GPF a — a
evallO :: GPF a — 10 a
evalMaybe ::GPF a — Maybe a

To evaluate the Instruction, we defined various auxiliary functions to assists
in interpreting certain components of the DSL. These are also applied in each of
the pre-implemented evaluators. The first function allows us to load CSV files
from the file system to the Haskell environment:

import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL
import Data.Csv

readCSVFromFile :: (FromRecord schema) => FilePath — IO (V.Vector
schema)
readCSVFromFile filePath = do
content <— BL.readFile filePath
case decode HasHeader content of
Right x — return x
Left y — error y

This function forces that each of the provided CSV files needs to consists
of a header. This reduces the risk of selecting the wrong column because a
header describes each of the fields explicit. The second function parses a file
to a particular model. This function requires that the file must conform to a
JSON format. This has been implemented by readModelFromFile:
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readModelFromFile ::
(Interface model datapoint, AE.FromJSON (model datapoint))
=> FilePath
— Feature schema datapoint
— (schema — datapoint)
— 10 (Model schema datapoint model)
readModelFromFile filePath ft project =
do
let cantReadModelMsg = error "Can’t read model from file"
mdl <— AE.decode <$> BS.readFile filePath
return $§ Model ft project (fromMaybe cantReadModelMsg mdl)
emptyStatistics

The AESON package is used to convert a JSON format to a particular
datatype. The evaluation of the meta information can be performed by one of
the following two functions (mdiMetalnfo and predMetalnfo):

predMetalnfo
(NFData predict , Show predict)
=> Metalnfo
— predict
— 10 predict

mdlMetalnfo :: (NFData (model datapoint), ToJSON (model datapoint))
> Metalnfo
— Model schema datapoint model
— IO (Model schema datapoint model)

measurelnSeconds :: NFData a = a — IO (Double,a)

The mdlMetalnfo evaluates the meta information for training a model. The
predMetalnfo calculates the meta information for measuring the prediction.
Both of these functions use the function measurelnSeconds to measure the time
that an expression takes to evaluate to normal form. The next function that
will be covered assists in training:

train
(Interface model datapoint, NFData (model datapoint)) =>
Dataset schema
— Feature schema datapoint
— (schema — datapoint)
— Maybe (schema — Bool)
— Model schema datapoint model
train ds ft yProject rule =
Model ft yProject mdl nostats

where
ds’ = filterDs rule ds
mdl = mkTrain TrainingStructure{
xData = fromLists $ toList
$ fmap (toRow $ getFeature ft) ds’,
yData = map yProject ds’
}

This function uses the interface to train the models. The remaining of the
evaluation section discusses each of the implemented evaluators.
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evallO The evallO evaluates the GPF in the IO monad. This evaluator sup-
ports all of the explained functionalities. However, when the provided DSL does
not require 10 operations, it is better to use one of the remaining evaluators.
The evallO is implemented in the following way:

evallO :: GPF a — 10 a
evallO (Free (LoadDataset ds next)) = evallO $ next (Dataset ds)
evallO (Free (LoadDatasetFromFile filePath next)) =
readCSV filePath >>= evallO . next . Dataset
evallO (Free (LoadModel mdl ft project next)) =
6 evallO $§ next $ Model ft project mdl nostats
7| evallO (Free (LoadModelFromFile filePath ft project next)) = do
8 x <— readModelFromFile filePath ft project
9 evallO $ next x
1| evallO (Free (Train mInfo ds ft project next)) = do
11 x <— mdlMetalnfo mInfo $ train ds ft project Nothing
12 evallO $ next x
13| evallO (Free (TrainWithFilter mInfo ds ft project rule next)) = do
14 x <— mdlMetalnfo mInfo $ train ds ft project (Just rule)
15 evallO § next x
16| evallO (Free (Predict mInfo mdl row next)) = do
17 x <— predMetalnfo mInfo $ predict mdl row
18 evallO $ next x
10| evallO (Free (FeatureGPF ft next)) = evallO $ next (Feature ft)
20| evallO (Pure x) = return x

L

All of the remaining evaluators have a similar coding structure.

eval The second evaluator is the eval function. The purpose of this function
is to remain as pure as possible. This has the disadvantage that we cannot
compute IO operations(Like the constructor LoadModelFromFile). Neverthe-
less, the instructions offer the possibility to write them. In this case, the eval
throws an error.

evalMaybe The final evaluator is the function evalMaybe. This function sup-
ports the same functionalities as the eval, but without having to throw an error.
Instead, when an instruction occurs that requires IO operations, we return the
Nothing constructor. In all other cases, the result will be wrapped around the
Just constructor.

2.2.4 Example

The basketball example from the interface section is also implemented using
the entire framework. This section discusses the implementation. The statistics
are based on a CSV file that is stored at the filesystem. Furthermore, we are
interested in the following statistics:

1. Percentage of field goals of 100 attempts
2. Percentage of Free throws of 100 attempts

3. Average score per game
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The CSV also consists of the additional attributes height and weight of the
players.The schema of the CSV file is represented using the following ADT:

data Player = Player {
height :: Double,
weight :: Double,
fieldGoals :: Double,
freeThrows :: Double,
avgPerGame :: Double

} deriving (Generic, Show, Eq)

instance FromRecord Player

Next, we used the generic representation of Player to use it as CSV schema.
Furthermore, we used the height and weight as input variables. This is estab-
lished by defining the ftPerson feature:

ftPerson :: [Player — Double]
ftPerson = [height, weight]

Next, we add various type synonyms to improve the readability of the code.

type Mdl mdl = Model Player Double mdl
type Mdls mdl = (Mdl mdl, Mdl mdl, Mdl mdl)

data ScorePrediction = ScorePrediction{
fieldGoalsP :: Double,
freeThrowsP :: Double,
avgPerGameP :: Double

} deriving Show

The statistics are based on the ordinary least square and the average. Training
these models requires the same procedure. We, therefore, introduce a generic
description for training and using a model. This description can be interpreted
in various ways:

genericResult
(Interface mdl Double, ToJSON (mdl Double), NFData (mdl Double))
—=> Player — Dataset Player
— GPF (ScorePrediction , Mdls mdl)
genericResult p ds = do
ft <— feature ftPerson

fieldGoalsM <— train ds ft fieldGoals
threeThrowsM <— train ds ft freeThrows
perGameM <— train ds ft avgPerGame

fieldGoalsP <— predict fieldGoalsM p

threeThrowsP <— predict threeThrowsM p

perGameP <— predict perGameM p

return (ScorePrediction fieldGoalsP threeThrowsP perGameP,
(fieldGoalsM , threeThrowsM, perGameM))

Next, we define the function predictStatistics. This function requires as first
argument a player with the height and weight. Then it describes the procedure
of the prediction. This procedure first wants to load the file "basketball.csv"
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to the environment. This requires the Player as a scheme. Next, we apply the
generic function to compute the ordinary least square and Average based on the
defined feature.

predictStatistics :: Player — GPF (ScorePrediction ,
ScorePrediction)
predictStatistics p = do
ds <— loadCsvFromFile "data/basketball.csv"

(resultAvg, ) :: (ScorePrediction, Mdls Avg) <— genericResult p
ds

(resultOls, ) :: (ScorePrediction, Mdls OLS) <— genericResult p
ds

return (resultAvg, resultOls)

The actual execution of this code is performed in the following way:

main :: IO ()

main = do
(_avg, ols) <— DSL.evallO $ predictStatistics (Player 5.8 160 0
0 0)
print $§ "Average: " ++ show _avg
print $§ "ols: " 4+ show _ols
> main

Average: ScorePrediction {
fieldGoalsP = 0.45,
freeThrowsP = 0.74,
avgPerGameP = 11.79}

ols: ScorePrediction {
fieldGoalsP = 0.40,
freeThrowsP = 0.79,
avgPerGameP = 12.29}

2.3 Optimization

The proposed framework currently consists only of simple statistical models.
This ensures that the training of the models requires relatively little time to
construct. With large datasets and more complex models, it could take weeks
before a model is trained. This chapter focusses on the optimization of such
models.

2.3.1 Lazy evaluations

Haskell is a non-strict language. This ensures that expressions are not evaluated
until they are needed. This has, in addition to advantages, also many disadvan-
tages. Many of these benefits are unfortunately not applicable in the current
version of the framework. Reserving these thunks requires a lot of memory
for executing Haskell code. These thunks are only evaluated if the argument
is needed. To reduce the memory usage, we have to force evaluate the data
structures.

The complete evaluation of the structure can be arranged by the package
deepseq. This package contains various functions for evaluating. For evaluating
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an ADT to normal form we need an instance of the NFData type class. With
more complex structures (eg. tree structures) this can give a performance boost.
However, laziness makes Haskell not the most suitable language for carrying
out these operations. It might be better to work with stricter languages. In
addition to performance, laziness also offers less control over how expressions
are evaluated. This control is necessary for measuring the time required for
computing operations. We, therefore, added as a constraint the NFData to the
following constructors of the Instruction:

1. Train
2. TrainWithFilter
3. Predict

FEach model datatype requires, therefore, an instance of the NFData. Fortu-
nately, this type class has an instance of Generic. This makes it easy to create
an instance for the NFData type class.

The following two remaining parts have not been added to the library, but
serve as a proof of concept.

2.3.2 Online learning

If a lot of new data points tend to be uncorrelated, it is likely that the models
become less accurate. This can be improved by retraining the model. In the
case of batch algorithms, the entire data set plus the extra collected data will
have to be trained. Training models can take a lot of time. It could potentially
take weeks for certain complex models to be trained. A more efficient option
is to use online learning algorithms. These type of algorithms stream incoming
data points directly to the model and update the model without having to look
at the original dataset. Suppose we use the average as a model. Then we want
to update the average with an online learning algorithm. First, the average is
represented in the following way:

data Avg dp = Avg {

_avg :: dp,

_length :: dp
} deriving (Show, Read, Eq, Generic)
onlineTrain :: Avg dp — dp — Avg dp

The avg argument contains the current average and the _length contains
the number of rows provided as input. This information is enough to calcu-
late the new average. An example of the onlineTrain function is shown in the
following code:

> onlineTrain (Avg 24 5) 3
Avg 20.5 6

We have to modify various components of the framework to support online
learning algorithms. First of all, the interface will be adjusted such that it is
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able to merge the same type of models. This allows the interface to combine
the above example of (Avg 45 5) and (Avg 3 1) to (Avg 20.5 6). We solved this
by adding as a constraint that all of the Model should consist of the Monoid
instance:

class Monoid (model datapoint) => Interface model datapoint where
mkTrain :: TrainingStructure datapoint — model datapoint
mkPredict :: PredictStructure model datapoint — datapoint

This gives the advantage that we can automatically derive online algorithms
from batch algorithms:

mkTrainOnline :: (Monoid (model datapoint),Interface model
datapoint)
=> TrainingStructure datapoint — model datapoint — model
datapoint

sl mkTrainOnline ts me = mkTrain ts <> m

Next, we have to adjust all the current models such that they comply with
the new interface. For example, the average would have the following Monoid
instance:

instance Fractional a => Monoid (Avg a) where
(Avg a b) ‘mappend‘ (Avg a’ b’) =
let total’” = (a * b) + (a’ * b’)
length’ = b + b’
in (Avg (total’ / length’) length’)

This allows us to give the following instance of the Interface:

instance Fractional a => Interface Avg a where
mkTrain ms =

let values = yData ms
length’= fromIntegral $ Vector.length values
avg’ = Vector.sum values / length’
in Avg avg’ length’
mkPredict = _avg . model

This instance can then be used for both batch and online learning algorithms.

TrainOnline :: (Interface model datapoint ,ToJSON (model datapoint),
NFData (model datapoint))
—=> Metalnfo
— Dataset schema
— Feature schema datapoint
— (schema — datapoint)
— (model datapoint)
— (Model schema datapoint model — next)
— Instruction next

Finally, to support the online learning algorithms, all models will have to
change into a form, from which the original value can be retrieved from the
model.

However, as stated at the beginning. We chose not to support this func-
tionality because the current interface is mainly intended for supporting simple
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models. Training these models do not take much time, and it is only annoying
for the users to give an extra Monoid implementation.

2.3.3 Parallel training

The current version of the framework only supports the usage of 1 core for
training a model. With large datasets or/and complex models, training can
take a long time. It can, therefore, be better to spread the work across multiple
cores. This section covers the modification we have to apply to the framework to
support parallel training. However, the final version of the framework does not
support this feature. These modifications will be applied under the assumption
that the framework has support for online learning algorithms. This makes it
easier for merging different models into one model. The idea is that we divide
the dataset into X parts, and then we train each of these parts in parallel. The
parallel training is performed by the following function parallelTraining:

parallelTraining

(Interface model datapoint,

Monoid (model datapoint),

(NFData (model datapoint)))

=> Int — TrainingStructure datapoint — model datapoint
parallelTraining n (TrainingStructure x y) =

let _intervals = intervals 0 ((Matrix.nrows x) ‘div‘ n) (Matrix.
nrows x)
xVars = map (splitMatrix (Matrix.ncols x) x) _intervals

yVars = foldr splitVectors (y,[]) _intervals
in fold $ parMap rdeepseq mkTrain
$ map (uncurry TrainingStructure) $ zip xVars $ snd yVars

intervals :: Int — Int — Int — [(Int,Int)]

intervals a step max’
| a <= max’ = (a,atstep): intervals (atstep) step max’
| otherwise = [(a,max’) ]

splitVectors

(Int,Int)

— (Vector.Vector a, [Vector.Vector a])
— (Vector.Vector a, [Vector.Vector a])
splitVectors (_min, max) ( _residual, xs) =
let (a,b) = Vector.splitAt _max _residual

in (b,a : xs)

splitMatrix
Int
— Matrix . Matrix a
— (Int,Int)
— Matrix. Matrix a
splitMatrix ncols ms ( min, max) = Matrix.submatrix min max 0
__ncols ms

We use parMap for the parallelization of the structures. This is the parallel
version of the map function. This function is from the parallel package.
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2.3.4 Error prevention

Making mistakes leads to unexpected behavior. This section describes the mea-
sures that have been taken to prevent errors as much as possible that are related
to this library. For the underlying code of the framework, we added various unit
tests. These are described in the next section.

Different parts of the framework could go wrong. The following points pro-
vide an overview of what could go wrong:

1. Provide wrong structure of the database (When you read it from the file
system)

2. Provide wrong structure of the model(When you read it from the file
system)

Provide an invalid path of either a database or model
Evaluate 1O operation using a non-10 evaluator

The supplied dataset does not meet the condition of the model.

SR

The supplied row(independent attributes) does not meet the condition of
the model

7. Additional rules of the models should be followed

8. Wrong feature

Many of the above problems are caused by side effects. These problems are
often difficult to solve during compile time. However, these type of problem
can often be dealt with at runtime. The first four points are automatically
caught at runtime by the current framework. Loading various files into the
environment is managed by the readFile function. This function throws an error
when it receives an invalid input. The remaining problems are not caught by
the current design. Point three is determined by the evaluators. The remaining
points are not automatically caught by the framework. These points depend on
the implementation of the models. The framework supports the implementation
of an arbitrary amount of models. Each model has it owns conditions that it
has to satisfy. For example, the average could only allow a non-empty Matrix.
Such a condition is not known in advance. We, therefore, extended the interface
with the following two functions:

class Interface model datapoint where
mkTrain :: TrainingStructure datapoint — model datapoint
mkPredict :: PredictStructure model datapoint — datapoint

trainConstraint :: TrainingStructure datapoint — model datapoint
trainConstraint = mkTrain

predictConstraint :: PredictStructure model datapoint —
datapoint
predictConstraint = mkPredict
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This allows us to check for these conditions. Both functions call the corre-
sponding train or predict functions as the standard implementation, but could
be used to define any additional constraint that should be satisfied. Next, we
extend the Metalnfo to provide users the option to check whether the pro-
vided information of the prediction or training function satisfies the defined
constraints:

data Metalnfo = Metalnfo{

pathObject :: Maybe FilePath ,
timingEnabled :: Bool,
validateCorrectness :: Bool

Then the evaluators are adjusted such that when the validateCorrectness
argument is true, it will call the corresponding constraint function.

2.4 Tests

This section discusses the tests that are defined to validate the correctness of
the code. There are several testing methods. We chose to focus on unit testing
because this allows us to test independent parts of the code. This has the
advantage that when we modify the code, we can verify whether the code works
according to the defined behavior. The HSpec library is a testing framework
that was used to implement these unit tests. All of the models are validated
using fixed values. This includes training and using the model to predict a value.
We also validate whether it is possible to write a model to a file and later load
the model to the environment. The feature selection is validated whether the
selected columns are correctly selected. Furthermore, we added a unit test to
validate the evaluators on loading a CSV file.

3 Case study

For the case study, we investigated the resource usage of the jobs at Channable.
The result of this chapter is used during the scheduling of the jobs.

3.1 Business Understanding

This phase provides an overview of the hardware usage of the jobs. We have
conduct research into the behavior of the jobs at Channable. A job is a process in
the operating system. The hardware usage of the jobs depends on the behavior
of the job and the environment(eg. parallel jobs) where the job runs. The
execution of the jobs is determined by the Jobmachine, which is the scheduler
developed by Channable. It is written in Haskell. The scheduler choices between
an X number of workers to distribute the jobs. Each of these workers has a
capacity of Y slots that can be filled by the jobs. All the workers use Debian X64.
The scheduler uses a worker that has enough slots available. The management
of all the processes is controlled by the CPU (Central Processing Unit) in the
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computer. This component reads the instructions of the process and performs
the operations by communicating with the other hardware components. The
capacity of these components determines the time needed for performing the
operation. Channable consists of seventeen different types of jobs. The behavior
of each of these jobs is determined by the Requestmachine. It’s written in
Python. From the literature, we found that finding similarities in the jobs
improves the accuracy of the estimates. We will, therefore, apply the idea of
templates[11], 27, O] to Channable’s jobs. The behavior of the job depends on
the job type. It has therefore been chosen to subdivide the jobs into seven
categories, each of which has its own template.

Group Name Description

API Jobs to perform API operations

Adwords Adwords jobs(ie. Google)

Export Job to export feeds

Import Jobs to receive new feeds

Shopping Jobs that deals with the job operations for shopping

Project Merge the result of each of the jobs.

Analytics Jobs that deal with analytical operations(eg. google analytics)

No meta information Internal / less frequent jobs

Table 1: Job type categories

A computer roughly consists of the following components:

1. CPU
2. Storage
3. Network

These components are also used by the workers at Channable during the ex-
ecution of the jobs. Therefore, we investigated which factors were of importance
to the jobs. These factors indicate the dependent variables in the model phase.
A dependent variable serves in the statistics as the variable that is estimated.
After determining the dependent variable, we investigated which variables could
be interesting to make a prediction about the dependent variables. These vari-
ables are described as the independent variables.

3.1.1 Dependent variables

For the dependent variables, we examined various hardware component which
information affects the resource utilization of the jobs. This information is
described in the following sections.
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Storage The storage of a computer is divided into the primary storage and
secondary storage. The primary storage is also called memory. Operating Sys-
tems requires memory to execute a process. The operating system uses virtual
memory to manage the memory of these processes. The virtual memory is a
memory management system that connects the memory location of a process
(virtual address) to the physical addresses. The physical address refers to an
address in the RAM or hard disk. The memory of a computer is divided into
blocks. Virtual memory allows the operating system to allocate more mem-
ory than physically available. It then uses secondary storage to store it. The
physical memory stored on the hard disk is called swap space. A hard disk is
significantly slower than RAM memory. When the memory of a process exceeds
the storage of the swap space, it will be killed by the operating system. In order
to avoid the swap space, we chose to the investigate the maximum RSS usage of
the processes. The RSS(Resident set size) is the amount of memory allocated
for a process in the ram memory.

CPU The CPU fetches instructions from the memory and executes those. It
is not relevant to the study how these will be performed. However, an important
part of the CPU is how it deals with the virtual memory. Modern CPU’s divides
the virtual memory into two modes: kernel mode and user mode. Processes
that affect the operating system(eg. drivers) are mainly executed in kernel
mode. The other processes(eg. applications) are performed in user mode. An
operating system distinguishes between these two modes to prevent dangerous
operations that can affect the operating system. The time that the processor
takes to fully execute a process can be useful when we have to schedule a job.
This type of information can, for example, be used as an indicator of the time
that we have to take into account the resource usages of another job. Channable
already expected that not all the jobs are active the entire time that the job is
running because some jobs rely on external tools to respond. This means that
the total running time of a job is not a realistic indicator of the actual time a
job is busy and uses resources. Therefore, in order to get a better idea of the
time that the job spends in non-idle mode, we need to measure the time that
the process uses the kernel and user space. The kernel + user represents the
time that a job spends in a non-idle mode. The factor to improve the resource
utilization is most likely the amount of the time a process takes to be executed
and the usage of the process. This study, therefore, chose to collect the following
data:

Wall clock time The total amount of time a job takes to be terminated.

User time The total amount of time a job spends in the user space.
System time The total amount of time a job spends in the kernel space.
CPU usage The percentage of CPU time in non-idle modus.

Table 2: Dependent variables description
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Network Nowadays, almost everything goes over the internet. In agreement
with Channable, we have, however, decided that a network component is not
an interesting resource factor for performing the jobs. Channable has a high
network connection, which means we cannot optimize much in network usage.
Also, the jobs do not send extremely high amounts of data across the network.

Summary This phase investigated the network, storage and CPU usage of a
job. For each component, we discussed which attributes are interesting for the
scheduling of a job. We call these the dependent variables. The following table
provides an overview of dependent variables:

wall-clock time

User time

system time

CPU usage
Storage  Maximum resident set size
Network N/A

CPU

Table 3: Dependent variables

The goal of this chapter is to obtain a method that predicts the dependent
variables of new incoming jobs. However, when a new job arrives, we have no
information about the resource usage. Therefore, we have to make predictions
about the dependent variables. The literature has shown that finding similarities
in the data improves the prediction accuracy. Therefore, in the next section,
we go into more detail in finding attributes that assist in making the data more
similar. These attributes are called independent variables.

3.1.2 Independent Variables

This phase provides more details about the attributes that assist in finding sim-
ilarities in the data. These type of attributes are called independent variables.
We investigated this by looking at the behavior of the jobs. There are in total
seventeen different types of jobs. The type of the job determines the behavior
of the job. We, therefore, used the type of a job as an independent variable.
Each of the types consists of its own behavior, however, during the execution
of the jobs, many of the jobs also access similar additional independent vari-
ables. Channable provides information to the jobs using a database. This type
of information affects the behavior of the job and can help to find similarities in
the data. Different job types use the same kind of information. Therefore, this
analysis chose to categorize the different types of jobs that use the same meta
information into six different categories.
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Group Name Jobs

API clear api, export _api

Adwords

Export export_ feed
Import

Shopping

Project merge imports

adwords _generate, adwords pause old, adwords reset, adwords update

download feed, sequential download feed
shopping generate, shopping reset, shopping update, show shopping factory

Table 4: Job categories

The table above does not show all of the jobs. We have decided to only
classify the jobs where we have access to additional meta information about the
job. From these jobs, the following attributes were chosen:

Attribute

job type

project id

company id
#products
#categories
#affected products

#affected products initial

#rules

#campaigns
#adgroups

#keywords

#negative keywords

#negative keywords _static

#templates
#adgroups__template

#negative keywords template

Description

Type of the job

Reference to the corresponding project

Reference to the corresponding company

The total amount of products that the project contains

The number of categories that are used to categorize the products
The number of products sent to a particular channel.

The number of products sent to a particular channel of the
previous job run.

Channable provides a rule-based product filtering system.

This attribute determines the total amount of rules.

The total amount of campaigns for adwords

The total amount of group for adwords

For Adwords jobs,

these are the total amount of keywords

that will trigger a product when these are inside the query.

For Adwords jobs, these are the blacklisted keywords which

will not show the product when the keyword is inside the query.
These keywords are determined dynamically.

For Adwords jobs, these are the blacklisted keywords which

will not show the product when the keyword is inside the query.
These keywords are determined static.

The total amount of templates for creating new adwords campaigns.
The total of templates for creating defining adgroups

The total amount of templates for defining negative keywords.

Table 5: Independent attributes description

Each category has its own unique subset of attributes. The grouping of the
categories is shown in the image below.
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Job type API | adWords | Export | Import | Shopping

Project

total products X

X

affected products initial

affected products
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templates
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Table 6: Grouping of the categories

3.2 Data Understanding

A number of factors have emerged from the previous section that might be
useful for improving resource utilization. At this stage, we discuss the strategy
we took to gather all of the relevant attributes of the jobs. All of this information
is used to construct a historical dataset that contains the resource usage of an X
number of jobs. Each of the dependent variables was measured using the built-
in command-line tool Timdof Ubuntu 16.04. It is chosen due to its ease of use
and keeping a record of various relevant information of the resource usage of a
job. The tool itself spawns a new child process which executes the command
that it is given. In our case, this is the command for executing a job. When the
child process terminates, it returns a summary of the various resource usages
of the child process. An advantage of this tool is that format of the summary
can be defined by the user of the tool and automatically be appended to a file.
Which is very convenient for our case to store additional information about the
independent variable of the job to the same format and store all of the records
to one single file. As a format, we chose JSON(JavaScript Object Notation)
to store all of the relevant information of the jobs. The time tool was used to
collect the following information:

e Clock time e Percent of CPU this job got
e User time e Maximum Resident Set Size
e System time e Exit status

INot all fields of the time are maintained. This means that some fields always result in the
value 0 (e.g., average resident set size). The time used for this thesis can be found in Ubuntu
16.04 under /usr/bin/time.
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3.2.1 Collecting of the data

To gather the data, we added an option to the Requestmachine that collects the
variables of this chapter when executing a job. Collecting all of the attributes is
performed in two steps. First of all, the corresponding independent variables are
extracted from a database, except for total products and affected products.
Then the job is executed as a child process of the time tool. After termina-
tion of the child process, it automatically appends the measured information
with the corresponding independent attributes to a file. The latter step is per-
formed when the time tool is terminated. This step collects all of the additional
attributes total product and affected products and appends the result as a
JSON format to a different file. Then, both of the files were merged to con-
struct the final dataset. This option is visualized using the following graph:

config.py
ENABLE_TIMINGS

JOB_TIMINGS_PATH

JOB_METRICS_PATH

'

< ENABLE_TIMINGS >
yes

~

time_process.py requestmachine.py

S

3.2.2 Insights

This section discusses various insights about the dataset that are obtained by
applying several simple statistical models on the dataset. We enabled the mea-
surement of the jobs for 3 days in a row, which resulted in a total of 228k jobs.
There were in total measurements of 10 different types of jobs. Figure 2 shows
the distribution of each of the jobs over the entire collection.
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s shopping_generate

Figure 1: Distribution

Almost ninety percent of the collected data has been filled by the job types
export_feed, download feed, adwords update, and adwords generate. These
jobs have the highest probability consisting of a realistic distributed data. To
gather more insights about the data, we applied various statistical methods on
the dataset and created a scatterplot for each of the dependent variables. The
result of the maximum RSS will be discussed in the next section. The insights
of remaining dependent variables are added to the appendix.

Maximum RSS For the first insight, we focused on finding patterns in the
maximum RSS. On average the maximum RSS of a job is 111.62 megabytes.
Each of the jobs consists of its own behavior. We, therefore, looked at the
distribution of the maximum RSS per job. We did this by creating a scatterplot
that adds a point for each of the jobs in the dataset to the graph, where the
x-axis is equal to the job type and the y-axis is the corresponding value of the
RSS. Furthermore, the following table shows a number of basic statistics:
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job_type min | max avg median | stddev | count
merge _imports 95.87 | 118.59 | 96.92 | 97 0.54 15758
shopping update 95.14 | 3613.46 | 186.38 | 132 229.93 | 2041
adwords_generate 91.54 | 2540.16 | 102.87 | 98 39.81 53205
sequential download feed | 96.64 | 99.04 97.66 | 97 0.79 43
download _analytics 95.89 | 494.20 | 108.77 | 99 19.59 2432
adwords _update 94.67 | 1466.84 | 129.55 | 129 44.29 42516
export feed 92.32 | 6489.71 | 115.12 | 105 71.53 60785
download _feed 91.71 | 757.34 | 100.56 | 98 24.97 44175
export _api 96.32 | 1233.58 | 126.57 | 105 52.90 5365
shopping _generate 96.04 | 314.84 104.53 | 99 17.90 2222

Table 7: Maximum RSS - Basic statistics

The average of each of the jobs lays between 96.92MB and 186MB, which is a
rather high difference given that the average is 111 megabytes. However, looking
at the maximum values, a number of jobs consist of extreme high maximum RSS.
For example, a job of the type export feed has a maximum of 6489 megabytes,
which is very high given that the average only consists of 115.12 MB. Such
wide range of values makes it hard to make accurate predictions. We, therefore,
created a scatterplot that shows the maximum RSS per job type. The x-axis is
subdivided into the jobs and the y-axis is divided into the maximum RSS usage.

32




Distribution of the max_RSS.
Total products: 228542

6000 -

5000 -

4000

e
> 8
Q
©
(@)}
@ 3000 A
°
2000 8
' [ ]
°
°
* ®
® [
woo{ : N @
g s
o i
. °
' [ ]
. ] . [
0
& seet eed eed oo Aate T e o> e
k00" poft- ‘., ﬂ\uad wn\oad’e,s e gfdsf‘w 9 gen® D"“Q’up e oo . aneV
Aov® w0t aw P07 o® e P\ CLaad
aad = ad gno® o =

The scatterplot clearly shows that most of the jobs use less than 1000MB
as maximum RSS. However, there are few extreme high outliers. Particularly,
the jobs adwords__generate, adwords_update, and shopping update consist of
extreme outliers, which indicates that the data is not a normal distribution.
The above table also shows that the maximum RSS of these jobs is much higher
than the other jobs. Due to these high maximum values, it was surprising that
the average was quite close to each other. The highest average has a value of
186.38MB and the median 132MB, which is a relatively high average given the
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median. We, therefore, wanted to investigate the usage further. This allowed
us to determine a boundary such that at least 95% of the jobs fit inside this
boundary. In total 225636 of the 228542 jobs used less than 200MB RSS. This is
ggggig = 98.73% of the jobs. This means that without any prediction method,
we are able to correctly predict 98.73% of the jobs. The maximum RSS of
each of the jobs differs greatly from each other. We, therefore, applied the 200-
megabyte limit to each of the individual job types. The result is visible in the

next table:

Total jobs Total jobs | Percentage jobs .
Jobtype < 200MB | >200MB | < 200MB | Total jobs
merge _imports 15758 0 100% 15758
shopping update 1650 391 80.84% 2041
adwords_generate 52637 568 98.93% 53205
sequential download feed | 43 0 100% 43
download _analytics 2429 3 99.88% 2432
adwords__update 41917 599 98.59% 42516
export feed 60074 711 98.83% 60785
download feed 44006 169 99.62% 44175
export api 4908 457 91.48% 5365
shopping _generate 2214 8 99.64% 2222

Table 8: Maximum RSS

The percentage column gives a solid indication of how well the jobs fit in-
side the dataset based on the 200MB boundary. Almost all of the individual
job types consist of a percentage higher or equal to 98.59%. Except for the
shopping update and export api. We, therefore, determined the maximum
RSS boundary of these job types for obtaining the percentage of 95% or higher.
Shopping update requires a limit of 390 MB and export api 230 MB. The
results of the other dependent variables are added to the appendix.

3.3 Data Preparation

This section discusses the approach we took to utilize the construction of the
final dataset. Most of the raw data was already suitable to our needs, but we
applied a few modification to the original raw data. These modifications are
described in the first subsection. The follow-up section provides details about
the relevant attribute selection for the modeling phase.

3.3.1 Feature selection

Feature selection is an important approach for finding interesting patterns in the
provided dataset. Let us say we have a dataset that consists of the attributes:
id, name, gender, and hobbies of a person. Our goal is to predict the gender of
a person. Using prior knowledge, we think that it is likely that the name and
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hobbies could improve the prediction accuracy. However, it’s not very likely
that the id assists in improving the accuracy. We, therefore, are only interested
in the attributes name and hobbies to predict the gender of a person. Predicting
the resource usage of a job had a similar problem. Fortunately, it turns out that
for this problem the amount of attributes is relatively small. There are in total
21 different attributes, but not all of the attribute are related to each other.
We determined per job, which attribute could improve the prediction accuracy.
This was shown in the previous section Independent Variables.

3.3.2 Database setup

The accumulated dataset of the previous phases is divided into two parts. This
allows us to determine how well a model performs. The initial part(80%) of the
dataset is used to train the models. This sample is randomly selected without
the replacement of each of the rows. The remaining (20%) is to validate how
well the trained models perform in a theoretical scheduling simulation. This
result is validated in the next chapter.

3.4 Modeling

This section covers all of the models that determine the resource usage of new
incoming jobs. From the insights of the previous phase, we also determined
fixed boundaries for the resource usages such that at least 95% of the jobs are
below this boundary. The disadvantage of a fixed limit is that this value does not
depend on the supplied data. We could be unlucky in choosing a sequence of jobs
that consist of high resource usages. This could result in that the workers require
more capacity than available. It might be better to include the independent
variables while making a prediction. For example, let’s say we have two jobs of
the same type. The first job delivers 1 million products to a particular channel
and the seconds delivers 1 product to the same channel. It likely that the initial
job requires more resources. Making estimates based on the supplied data can be
arranged by supervised learning algorithms. We have therefore chosen to focus
on regression algorithms. This is a subpart of supervised learning algorithms.
The advantage of a regression problem is that the outcome is a real value.
Another component of the supervised learning algorithm is the classification of
new incoming data points. This has the similarity with a regression problem
that the outcome of the model depends on the supplied data. Classification
algorithm work mainly with a fixed number of categories. A finite number of
categories has the disadvantage that it is hard to take into account huge outliers.
Furthermore, these types of models are often more complex and often takes more
time to calculate. We do not expect that the estimates will become much more
accurate. This is also the reason that we only focused on the Ordinary Least
Square. This method is described in the section below.
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3.4.1 Ordinary least squares

The disadvantage of the average is that it is a fixed number. This makes it
hard to take into account the variability of the data. From the insights, we
observed that some of the dependent variables had a lot of variation in the
data. Linear Regression models the relationship between different variables.
The aim of Linear Regression is to minimize the difference between the observed
value and the predicted value, which is also described as minimizing the sum of
squares. This allows us to take into account the variability. The predictions are
based on multiple parameters. This has the advantage that the estimated value
of the dependent variable depends on the supplied data. We will, therefore, use
the Ordinary Least Square to predict the resource usages.

3.4.2 Cross validation

The constructed dataset consists of fifteen different independent attributes. The
relevance of the independent variables depends on the job type. None of the
job types uses all 15. Computing the ordinary least square is also not a heavy
computation. We, therefore, chose to generate all possible combinations of
attributes based on the relevance for a particular job type. This means that
we had to train a total of 640 models. Ultimately, the best 45 (job types *
labels) models are used to estimate resource usages. Cross-validation is used
to determine the 45 best suitable models. This is used to measure how well a
model performs in practice. The idea of cross-validation is to divide the dataset
into k parts. Then each run it trains one of the parts and validates this model
against the remaining (k-1)parts. This process will be repeated until all of the
individual parts have been trained once.

3.4.3 Root Mean Squared Error

The purpose of the cross-validation is to determine the best suitable models per
job type for each of the dependent variables. We use the RMSE(Root Mean
Squared Error) as the validation measure. This means that we calculate the
average of the total difference between the predicted value and the observed
value. The model with the lowest RMSE score was chosen as the most suitable
model. Formally, this validation technique is written down using the following
formula:

1 ~
MSE = ~5(Y; - ;)
n

3.5 Evaluation

The 45 best OLS models were determined in the previous phases. The result is
shown in the appendix. Some of these models result in a rather high RMSE.
This indicates that the observed value differs a lot from the predicted value.
The theoretical simulation cannot cope with the need for more resources than
available in a worker. This would indicate that the jobs require more time to
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finish than the observed time. To prevent this, we use a different prediction
model when the RMSE is relatively high. In this case, we chose to use the
average plus the standard deviation to take into account a buffer. This approach
could be too safe, but it keeps the simulation fair. A too high RMSE is a vague
concept, but this depends on the variables. For the maximum RSS, 10 is not a
high value, but for system time 10 is a high value. Determining these values is
not discussed because there are too many models to discuss.

4 Result

This section compares the original scheduling algorithm with the new proposed
algorithm. The proposed algorithm uses the estimated workload of incoming
jobs to validate whether the worker has sufficient resource capacity to execute
the job. In the case there is sufficient resource capacity, we send the job to the
worker. However, when the remaining capacity is insufficient, we wait till the
worker has enough resource capacity with respect to the estimated workload.
The original algorithm validates this based on the available slots.

The jobs at Channable produce various side effects. This makes it difficult
to execute a job twice. Let’s say we have two jobs. The first job deletes a few
products at a particular channel. The next adds the same products to that
channel. Re-executing the first job results in fewer products than specified at
the settings of the customer. This kind of behavior is not desirable. The result
is, therefore, based on a theoretical simulation. Both of the algorithms will be
compared through a simulation that should produce results as close as possible
to the results from the workers running the actual jobs. The drafted simulation,
unfortunately, has several limitations. These limitations are discussed in the
next section.

4.1 Constraint

The jobs are only allowed to be executed once due to the side effects that a
job produces. This currently makes it impossible to have a precise scheduling
simulation. This section describes per dependent variable which constraints we
have added to the simulation.

4.1.1 Maximum RSS

The maximum RSS provides misleading information about the RSS usage in
general. Let’s say we keep track of a particular process. The maximum RSS is
2GB. However, the average is 50MB. This is a huge difference. Choosing the
maximum RSS is, however, a safe option. The actual RSS is difficult to obtain.
This depends on many different factors, such as the behavior of a process. These
types of factors are difficult to take into account while planning a job. It should
be emphasized that the maximum RSS is perhaps a too safe option and that in
practice probably a less safer option will result in a better utilization. For this
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theoretical simulation, we used the maximum RSS to minimize the chance that
a process must use the swap space to be fully executed.

4.1.2 CPU usage

The second attribute that is used in this simulation is the percentage that
a process spends in non-idle modes. This is measured by the (user time -+
system _time) / wall clock time. However, this dependent variable also con-
sists of various constraints when it’s used in the theoretical simulation. We don’t
know the exact moments that a process is in non-idle modus. We have therefore
chosen to further simplify the simulation. We did this by adding the assump-
tion that we do not take into account the variations of the exact moments.
Such variations occur, for example, when several processes at the beginning are
in idle modus. This type of information is virtually impossible to include in a
theoretical simulation. The insights have shown that this happens frequently at
Channable. Subsequently, if a lot of these processes simultaneously change their
modus to non-idle, it would probably require the workers to use more capacity
than available. This extends the wall-clock time of the processes. The result
may, therefore, deviate from the truth.

4.1.3 Wall-clock time

The predicted wall-clock time of a job could be used to further optimize the
utilization. For example, it may be of interest to assign a higher probability to
jobs that take less time to terminate. This could possibly improve the utilization.
However, we decided to not use the predicted wall-clock time, because it is hard
to simulate. The observed wall-clock time is used to determine whether a job is
finished.

4.1.4 User time and System time

The user time and system time can potentially be used to optimize the resource
utilization by introducing job priorities. Unfortunately, these attributes are
quite difficult to validate in a theoretical simulation. Prioritizing the jobs would
probably result in a change in the order of the jobs. As a result, it can be stated
with a lesser probability that the observed wall-clock time remains the same.
These two variables are not used in the simulation.

4.2 Scheduling simulation

The simulation is developed in Haskell. The choice is based on the GPF frame-
work, such that it can be used to make estimates. This also has the advantage
that it uses the same language as the Jobmachine. We have developed the
following data type for representing a worker:

1| data WorkerD = WorkerD {
2 jobs :: !(Int, [(UTCTime, (Job,Job))]),
logic :: (Job,Job) — WorkerD — Bool,
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workersCapacity :: !(Capacity, Capacity),

statistics :: ![(UTCTime, (Capacity, Capacity))]
}
data Capacity = Capacity {

ram :: !Double,

cpu_power :: !Double,

total jobs :: !lInt

} deriving (Eq, Show)

data Job = Job{

cpu_usage :: Double,
max_ RSS :: Double,
real time :: Double,
user time :: Double,
system time :: Double

} deriving Show

The WorkerD data type consists of two different types of jobs. The different
job types are needed to demonstrate the empirical evidence between the different
jobs. Both of the jobs types also consist of their own corresponding capacity.
These are updated when the number of jobs in the worker is modified. The
number of jobs that can be executed simultaneously depends on the defined
property of the logic argument. When adding a new incoming job, it will be
validated whether the worker meets the requirements of this property. Aslong as
the worker does not meet the requirements it will keep deleting jobs. When the
jobs require more resources than available in the worker, it will throw an error
message. Furthermore, the changed capacity is added to the fourth argument.
This collection will be compared with each other to determine the empirical
evidence. The results of the experiments will be displayed in a line graph.

4.3 Experiment

The originally proposed scheduling algorithm is based on a fixed number of
slots available in the worker for executing the jobs. During this experiment, we
decided to reserve 13 slots for the execution of the jobs. This number maximizes
resource usages without going too much over the capacity. Such an experiment is
more likely to have a similar outcome in the real world. The proposed scheduling
algorithm uses the estimated resource usages for scheduling a job. We added
the code for obtaining the estimates of the resource usage to the appendix. The
GPF framework was used to make these estimates.

For the experiment, we used a worker that consist of 8 cores and 8GB ram.
During the experiment, the resource usage of external processes was not included
(eg. os services, etc). The next section evaluates the result.

4.4 Evaluation

The result of this experiment is evaluated on the RSS, CPU, and utilization of
the jobs. Each of these components is evaluated using a line graph that visualizes
the empirical evidence. The red line represents the old situation and the green
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being the new one. The results are discussed in the following three paragraphs.
The x-axis of the first two graphs refers to the number of occurrences of the
jobs.

4.4.1 CPU

The graph below uses as y-axis the remaining CPU capacity of the worker. This
means that below zero the worker requires more CPU capacity to perform the
jobs that are currently running in the worker. Both situations have a large
amount of variation in the CPU capacity. The graph shows that the new situ-
ation tends to be too cautious in the estimates of the CPU usage. This ensures
that it does not need extra CPU capacity to carry out the jobs. However, it
is likely that we could obtain a higher utilization by reducing the value of the
predicted CPU usage. The original approach uses a few times more CPU ca-
pacity than available. This indicates that the original situation would require
more wall-clock time to perform the job.
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Figure 2: cpu result

4.4.2 RSS

The y-axis describes the remaining RSS of the worker. With a negative RSS,
an Operating System would automatically use the designated swap space. This
greatly reduces the performance. For both situations, we have tried to minimize
this as far as possible. There are not many differences between the original
situation and the new situation. Both of algorithms consists of two outliers that
would possibly require the use of the swap space to carry out these jobs. Because
of these minimal occurrences, we do not think it has any major consequences
to the utilization.
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Figure 3: rss result

4.4.3 TUtilization

This section compares the utilization based on the above results. It turns out
that the new situation improves the utilization. This is rather surprising given
that the above graphs indicate that the original approach uses several times more
CPU than available. The x-axis shows the time of when the jobs were being
executed at the worker. The image shows that this is a period from 7 December
to 9 December. The y-axis shows the number of jobs that are executed at a
particular time. The difference in time is shown in the following table:
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Figure 4: Utilization
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Algorithm Time
Original 50:03:53
New 48:29:47

Table 9: Completion time

This indicates that the proposed algorithm improves the original algorithm
with a percentage of 3.1 based on the theoretical simulation. This is a relatively
low difference, but still a surprising outcome when looking at the previous two
comparisons. The original approach seems to use more or an equal amount
of CPU and RSS. In a realistic situation, this approach would probably delay
the executions of the jobs when they used more resources than available. The
improvement is therefore expected to be higher than 3.1 percent. Due to the
variations in the CPU usage, we cannot state with certainty that this estimated
result corresponds to the observed scheduling. However, we don’t expect much
difference in the variation of the theoretical simulation, because these are mainly
caused by external parties. For example, many of the jobs often have to wait
for the result of an external party. The result also shows that the proposed
approach doesn’t maximize the CPU usage. The remaining capacity can be
used for dealing with unexpected CPU usage variance. We, therefore, expect to
obtain a similar utilization in reality.

4.4.4 Conclusion

Based on the collected resource information and theoretical simulation, we can
state that our proposed algorithm brings a positive change to the utilization of
the jobs at Channable. Both of the approaches used a few times more RSS than
physically available on the worker. Due to the low number of occurrences of
this, we do not think that this will affect the result.

The CPU usage is a less secure indicator because it does not take into account
the variation of when the process is needed. The experiment shows that the
original approach requires various times additional CPU capacity, while the
proposed approach never request extra CPU capacity.

The outcome of both of the indicators is surprising given that the utilization
also improved. We expect from this result that the proposed method will also
improve the actual utilization. Unfortunately, due to the different constraints,
we cannot state this with certainty.

5 Related work

The structure of the related work is divided into two components. Both of these
components are independent of each other. The first component discusses re-
lated work about improving the resource utilization. The latter section discusses
the related work for building a generic prediction framework in Haskell.
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5.1 Improving resource utilization

This section discusses various related work for predicting the resource consump-
tion of future jobs. Previous work has shown that having knowledge about the
resource usage of a job is useful for scheduling future jobs. Richard Gibbons
presented a technique in [II] to gather knowledge about the workload of jobs
on parallel jobs. This paper studies the log files of three parallel servers and
examines how to categorize these jobs into categories. He proposes a historical
profiler that stores information about the program usage. This information is
used to predict the execution time of future jobs. He then uses the estimates to
improve the resource utilization of the servers. The input of the historical pro-
filer determines the accuracy of the estimations. For estimating the executing
time, he uses the executable name, the user that executed the process, number
of processors, wall clock time and memory usage. For computing the estimated
execution time he used statistical methods like mean and confidence interval.

Downey [9] presented a more advanced technique for predicting the execu-
tion time of parallel jobs. He did this by looking for similarities in Jobs. For
finding these similarities he defined templates that consist of a subset of at-
tributes that could be useful for predicting the resource consumption of a job.
A template is a tuple that could, for example, be defined as (username, appli-
cation name, submission time). When the dataset consists of similar jobs, it
applies a statistical method to estimate the execution time of these jobs. The
execution time is defined as a confidence interval. The idea of a template is
to categorize jobs into several categories. According to their technique when a
template of a job falls into the same category, they are considered to be similar.
W. Smith et al also uses the idea of templates in [27], but rather in a more ad-
vanced manner. Instead of an easy definition or just one definition, they defined
a number of templates. Then they applied a search technique that results in
the template with the best outcome. The authors applied this technique to four
workload records of the Cornel Theory Center. They show that this approach
improves the accuracy of the prediction comparing to the ones of Downey|[9]
and Gibbons|[II] when they compared it to the four workloads. The author
discusses two algorithms for this search technique to identify the template that
performs the best and uses that one to categorize the job. The first technique
is a Greedy and the second is a Genetic algorithm. Both of these algorithms
are divided into three phases: Initialization, prediction, and incorporation of
historical information. According to the authors, it is not trivial to determine
how many templates are needed to choose the best one. Too few means they
will group unrelated jobs, but too many means that there are too few jobs to
make accurate predictions. According to the experiments of this paper is that
the Genetic approach performed the best.

All of the previous papers only focused on predicting the wall clock time.
The paper[24] extended this to multiple predictions of a job workload. This
could aid in a better resource utilization. The authors of this paper performed
several experiments for predicting the RSS, CPU time and maximum virtual
memory. The purpose of this paper was only to show that it is possible to
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estimate multiple attributes of a job using a historical dataset. For this reason,
they did not use search technique described in the previous for optimizing the
result.

All of the previous work only used either linear regression or the mean to
compute the predictions. The authors of [I8] use machine learning to classify the
workload of a job. Several experiments have been performed to evaluate which
algorithm results in the best accuracy. From these experiments, the PQR2
algorithm performed the best. This algorithm combines a number of classifiers.
The experiments are performed on two historical datasets that consist of job
knowledge.

Not all techniques are directly applicable in the case of Channable. For
example, none of the papers make use of additional meta-information about a
particular job. Every job at Channable has its own meta information. This
kind of information will be used to improve the prediction accuracy.

Research has also shown that by having more control over the required hard-
ware we can reduce the energy usage of the servers. The papers [5] [6, [19] 23]
15, 28] investigated the relationship between the resource utilization and energy
usage. In [23] they show that we could save a lot of energy by improving the
resource utilization. For example, we can use this information to determine on
demand how many workers are needed in a cluster. The papers [15] 28] [8] 6]
have investigated the workload of the server in a virtualized server environment,
where it is easy to adjust the capacity of the hardware. Finding the right amount
of capacity is a tradeoff between efficiency and costs. If the capacity is too low,
it takes longer to compute a process. The authors of [28] discussed a technique
that automatically allocates resource capacity. This is often based on the avail-
able hardware, power-cost and application utilities. The paper[26] investigated
the use of estimated workload to improve the resource utilization. The indus-
try is also interested in reducing the energy usage. Google investigated[19] 20]
the workload of Google Cloud to reduce the energy usage. They described a
method for classifying the workload. This estimated resource usage can then be
used to improve the resource utilization, which also results in a better energy
usage. The authors of [20] discussed how to derive the models for estimating
the workload. They also discuss how to deal with various utilization patterns.

5.2 Generic Prediction Framework

Various literature has been consulted for the development of the library. The
library will consist of an EDSL that can be used to structurally implement and
apply statistical models. The host language in which the EDSL will work is
Haskell. Literature shows that Haskell is very suitable for implementing an
EDSL. This is because of Haskell consist of various powerful features (e.g Type
classes and Algebraic Data Types). Two papers that make use of these features
for creating a DSL are the papers [I3] Concurrent Orchestration in Haskell and
[16] Paradise: A two-stage DSL embedded in Haskell. The authors of [13] have
developed a DSL that was built as a higher layer on the current concurren-
t/parallel primitives of Haskell. This helps the programmer to use concurrent
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programs without having to worry about certain annoying background effects of
concurrent programming. The authors of [I6] have developed a DSL for defining
pricing models. These models are used to value financial products across the
security trading division of a bank. Their DSL helps to build the pricing tools
as reusable components.

The book [2I] discusses two possibilities for training models that can be
used to make estimates. The traditional way of training a model is performed
by offline supervised algorithms. These types of algorithms convert a set of data
to a particular model. The second form is training through online algorithms. In
this form, incoming data points are streamed to the existing model. These types
of algorithms are often much more complex than standard offline algorithms.
However, online algorithms are often more efficient in re-training the model. In
practice, offline algorithms are not feasible to use as large data sets.

Machine Learning in the world of functional programming is less mature than
in the imperative world. This is visible from the number of available libraries and
academic papers. Machine Learning is often used in a higher level imperative
languages like R or Python. The disadvantage of higher level languages Is that
the programmer has less control over certain operations. This often causes the
language to be slower. Therefore, these languages use the services of a lower level
language often to make predictions. Using these services requires most of the
time an expert level knowledge of that language. Understanding the models is
often hampered by the fact that there is no standard interface for implementing
models. This problem is also known in the Machine Learning community[30].
Little effort has been made to solve this problem. Due to the many possibilities
in Haskell, the authors of the papers [2], 3, [12] performed research in construction
a standard interface in Haskell that can be used to develop machine learning
models. The papers [2] B] discusses the semantics of such an interface. Both of
the papers use type classes and datatypes to construct the interface.

M.Izbicki published in 2015 the paper [12] "HLearn: A Machine Learning
Library for Haskell". This paper discusses the techniques behind the Haskell
library HLearn. This library consists of a DSL that could be used for structural
defining various machine learning models. It is possible for this library to train
datasets through offline as well as online algorithms. Furthermore, training
these models can be performed in parallel. Unfortunately, at the time of writing
this proposal, the library was deprecated and was no longer maintained. Also, it
does not support feature selection and the DSL cannot be used to make multiple
estimates without using lets and wheres.

Therefore, we proposed the GPF library that solves this problem. Training
a prediction model requires the use of a database. The concept the design
and implementation of a database in a functional programming language are
discussed in [25]. The authors argue that a functional programming language
is suitable for this purpose.

The paper "Data Mining the yeast genome in a lazy functional language" [4]
presents a data mining application in Haskell. In this paper, they discuss the
pros and cons of a lazy functional language for Data Mining. Laziness causes a
lot of problems in controlling the heap space. However, they solved this using
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various methods. Reading data required huge amount memory usage. They
argue that tools like Happy produce a better performance and a reduction in
memory usage.

Another drawback of the current design of the GPF library is the lim-
ited use of the type system of Haskell. The paper "Strong types for Relation
Databases"[I] addresses a similar problem. This paper exploits the type level
of Haskell for defining a strongly typed model of relational databases and op-
erations. They did this by embedding a subset of SQL in Haskell. For dealing
with arbitrary-length columns they used heterogeneous lists to indicate on type
level what kind of type will be expected of the database fields.

Haskell also consists of various libraries that solved similar problems. The
package postgresql-simple[7] is a client library for PostgreSQL. It uses a tuple
based approach to determine the types on the type level. Cassava|29] is a library
for parsing CSV’s. This library lets the programmer define its own datatypes for
storing the columns of the CSV. Exploiting the type-level reduces the chance of
making errors at run-time. Most of the error will, therefore, already be caught
at compile time.

6 Discussion

The current interface mainly focusses on supporting simple models. This can
be extended to more complex models. The current form of the interface does
not support all of the possible models. Let’s say we want to implement one
of the classification algorithms. Most of these algorithms require a predefined
collection of categories. Such a requirement does not comply with the current
interface. Therefore, research will have to be performed in finding other inter-
faces. Hlearn already offers support for more complex models, but this library
is no longer maintained and is not well documented.

Training the more complex models often takes a lot of time. This could be
improved by using multiple cores for constructing these models. The optimiza-
tion section discusses an approach fo parallel training. However, it might be
better to use an existing methodology. A known method for parallel training
is the map reduce. Map reduce is an approach that divides data into multiple
parts, such that we can compute an operation in parallel on each of the different
parts. Finally, each of the computations will be reduced to one.

Several other parts of the DSL can be expanded. Currently, the framework
only offers support for reading CSV files. We expect that a similar approach as
the Cassava library also supports other data formats. Furthermore, expanding
the evaluators could be useful. For example, evaluating the DSL in parallel
could improve the runtime.

The estimated workload is based on various simple statistical models. Com-
plex models could possibly improve the accuracy. For example, classification
algorithms allow us to define various labels. However, due to their complexity,
it also takes more time to compute. The proposed framework also does not
support the use of classification algorithms.
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The number of resource variables can also be expanded with the average
RSS and network usage. The former can give a relatively better view of the
RSS than only the maximum RSS. Let’s say that a job uses for 1 percent of the
time 1000MB, and the remaining time 100MB. This indicates that reserving the
maximum RSS might be too safe.

Jobs can only be executed once due to the side effects that they cause. This
forced us to introduce constraints on the theoretical simulation. Unfortunately,
therefore, we cannot state with certainty that the introduced algorithm improves
the utilization. Nevertheless, the theoretical simulation shows that the intro-
duced algorithm has a positive effect on the utilization. We, therefore, expect
that it also has a positive effect on reality. The actual determination of whether
it is improved is a difficult problem. Determining the utilization depends on var-
ious factors. For example, the number of jobs may vary per day or the moment
of executing a job also makes a lot of difference. Let’s say we have to schedule a
lot of memory intensive jobs simultaneously. This can lead to that the processes
are performed more often in the swap space, which is not fair when this does
not happen in the other algorithm. It is therefore difficult to determine which
algorithm provides a better utilization. We, therefore, recommend analyzing
both situations for a longer period of time.

7 Conclusion

We have developed a generic prediction framework in Haskell. As a proof of
concept, we elaborated a case study using this framework. In this case study,
we investigated the question: “Can we improve the resource utilization by using
estimated resource usage of a job as meta-information for scheduling a Job at
Channable”. This question has been answered by the following three subques-
tions.

Is it possible to define a framework in Haskell to implement and use
various prediction models? We have shown that the interface of the pro-
posed framework can be used for implementing various models. This interface
is focused on models that predict contiguous labels. Currently, the proposed
framework consists of a few simple models, but this can be easily extended.
The DSL of the framework assists programmers in making predictions using the
interface. The examples of DSL shows the use of various prediction models.
This DSL is based on the datatype Instruction. The Instruction consists of
several constructors to describe the primitives of a prediction program. Each
of these constructors is lifted to a Free monad using smart constructors. This
allows us to define arbitrary ways to interpret the DSL. The next question uses
this framework to predict the resource usages.

Can we predict the resource usage of a job with sufficient accuracy?
Most of the OLS models allow us to predict the resource usage with a sufficient
accuracy. Unfortunately, a few of the final OLS models resulted in a very high
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RMSE. For those models, we used the sum of the average and standard deviation
as an estimate for the resource usage. By adding the standard deviation to the
average, we build-up a buffer that allows us to estimate the resource usage with
a sufficient accuracy. From the graphs of the Result chapter, it clearly shows
that this buffer also takes into account higher resource usages.

Can we use the predictions to improve the resource utilization? We
showed in our simulation that we could improve resource utilization by 3.1%.
This was achieved by using the predictions from our framework about job re-
source usage to allocate jobs more intelligently and using the available resources
more efficiently. Unfortunately, due to a number of limits of the scheduling, we
cannot reproduce the scheduling exactly. The result of this simulation could,
therefore, deviate from the true value.
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8 appendices

8.1 Result
8.1.1 Maximum RSS

Jobtype min | max avg median | stddev | count
merge _imports 95.87 | 118.59 | 96.92 | 97 0.54 15758
shopping update 95.14 | 3613.46 | 186.38 | 132 229.93 | 2041
adwords_generate 91.54 | 2540.16 | 102.87 | 98 39.81 53205
sequential download feed | 96.64 | 99.04 97.66 | 97 0.79 43
download analytics 95.89 | 494.20 | 108.77 | 99 19.59 2432
adwords _update 94.67 | 1466.84 | 129.55 | 129 44.29 42516
export _feed 92.32 | 6489.71 | 115.12 | 105 71.53 60785
download _feed 91.71 | 757.34 | 100.56 | 98 24.97 44175
export _api 96.32 | 1233.58 | 126.57 | 105 52.90 5365
shopping generate 96.04 | 314.84 104.53 | 99 17.90 2222

Table 10: Maximum RSS - Basic statistics

Total jobs Total jobs | Percentage jobs .

Jobtype <2 200MB | >200MB | < 200MB. Total jobs
merge imports 15758 0 100% 15758
shopping update 1650 391 80.84% 2041
adwords_generate 92637 568 98.93% 53205
sequential download feed | 43 0 100% 43
download _analytics 2429 3 99.88% 2432
adwords__update 41917 599 98.59% 42516
export feed 60074 711 98.83% 60785
download _feed 44006 169 99.62% 44175
export_api 4908 457 91.48% 5365
shopping generate 2214 8 99.64% 2222

Table 11: Maximum RSS
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8.1.2 CPU usage

The CPU usage shows the percentage of time that a process spends in non-
idle mode, which is the percentage that the process is actually busy. This
information could be used to have some intuition about the time that the job
is actually busy. Let’s say we have a job and as wall-clock time it uses 3600
seconds, but the CPU usage states that it’s only active for 0,0001% of the time.
This allows us to make more sophisticated discussions about scheduling the job.
The average CPU usage of all the jobs is 41%, which indicates that at least
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half of the time the jobs are not doing anything. To provide a more detailed
statistics about the CPU per job, we added the following table:

Jobtype min | max | avg median | stddev | total jobs
merge imports 0% 83% 23.16% | 20.00% 15.01% | 15758
shopping_update 2% 1 99% | 52.57% | 51.00% | 23.23% | 2041
adwords__generate 1% | 103% | 46.13% | 50.00% | 19.85% | 53205
sequential _download feed | 5% | 72% | 37.40% | 35.00% | 19.72% | 43
download _analytics 1% | 6% | 30.38% | 30.00% | 11.73% | 2432
adwords update 0% | 90% | 21.30% | 17.00% | 19.49% | 42516
export_ feed 0% | 105% | 51.19% | 51.00% | 23.01% | 60785
download feed 0% 95% 45.40% | 43.00% 19.93% | 44175
export _api 0% 165% | 20.96% | 16.00% 20.30% | 5365
shopping generate 2% | 100% | 39.18% | 37.00% | 18.74% | 2222

Table 12: Cpu usage - Basic statistics

The third column(max) shows that a few of the job types used more than
100 percentage 100%. This indicates that the process used more than one core
to compute its goal. Although, most of them are still close to 100. Except for
the export _api, which used as maximum 165. Additionally, the table also shows
that the average is between 21.30 and 52.57 percentage is, which is a pretty big
difference. The median and average of each of the individual job types are close
to each other, which indicates that the data is evenly divided around the mean
of the job. However, the low CPU usage jobs still got our attention. Especially
the adwords update and export api jobs. The export api spends on average
% of its time non-idle. This is quite a low percentage, given that its maximum
is 165. It seems like the 165% is just a big outlier of the export api given that
the median is also just 16%. To investigate the outlier problem further, we
generated a scatterplot that represents each of the jobs in the dataset with a
dot. The x-axis is used to indicate which job type was used and the y-axis is

used to show the percentage of CPU usage.
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This scatterplot agrees with the intuition we had about the few outliers. The
graph also shows that the distribution of the jobs is pretty close to each other.

8.1.3 Wall-clock time

The elapsed wall clock time of a process is the total amount of time that a
process is alive in the Operation System. This is the same amount of time that
when you spawn a new process, you immediately start a stopwatch and end
the stopwatch after the termination of the process. This kind of information is
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useful during the scheduling of the job to have some indication of the time we
have to take into account the resource usages of the job. The jobs of Channable
use on average 60.5 seconds to be terminated. To investigate this further, we
applied various simple statistics on the dataset. This resulted in the following

table:

Jobtype min | max | avg median | stddev | total jobs
merge imports 3 342 23.19 17 21.97 15758
shopping _update 1 3014 50.94 14 171.80 2041
adwords _generate 2 10363 | 36.82 7 224.42 53205
sequential download feed | 3 53 18.60 | 17 14.33 43
download analytics 3 1688 | 59.21 19 156.04 2432
adwords _update 2 14283 | 154.64 | 35 468.95 | 42516
export feed 2 2547 | 3548 | 17 58.68 60785
download _feed 2 14099 | 34.36 | 13 232.31 44175
export _api 3 13055 | 187.82 | 73 503.86 | 5365
shopping generate 3 179 14.72 10 15.17 2222

Table 13: Wall-clock time - Basic statistics

This table shows clearly the difference between the average of each of the
individual job types. The average is between 14.72s and 187.64s, which is a
rather big difference given that the total average is 60.5s. However, when we
omit the two highest job types from the interval(export _api, adwords _update),
the average of the job types change to between 14.73 and 59.21. Which is rather
surprising, given that the total average is lower than the highest average of the
latter interval. This shows that these two jobs have a big influence on the
average time. Furthermore, the gap between the average and the median of
each of the jobs are quite different. This indicates that we consist of various
outliers. This could explain the extremely high values of the maximum column.
The maximum value is between 53 and 14283. To investigate this further, we
generated the following scatterplot:
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Total jobs | Total jobs | Percentage jobs .
Jobtype <= 2005 | >2008 <= 2008 Total jobs
merge imports 15748 10 99.93% 15758
shopping update 1947 94 95.39% 2041
adwords generate 51921 1284 97.58% 53205
sequential download feed | 43 0 100% 43
download _analytics 2328 104 95.72% 2432
adwords_ _update 36173 6343 85.08% 42516
export_feed 59379 1406 97.68% 60785
download _feed 43306 869 98.03% 44175
export_api 4318 1047 80.48% 5365
shopping generate 2222 0 100% 2222

Table 14: wall-clock - boundaries

The first thing that got out attention was the huge gaps between the jobs.
This clearly explains the huge differences in the table. Furthermore, this figure
shows that not many jobs take more than 2000 seconds. Then, when looking
at the table and image, we see that many jobs need less than 200 seconds. The

following table shows this:

%)




Distribution of the real_time.
Total products: 228542

14000 | g 8
® [ ]
8 °
12000 4 ° '
® ®
® 8 L]
° [ ]
. °
10000 4 ° '
[ ] ® [ ]
o ;
[ ]
@ ™ 8
) 80004 °
g i
c
o g
(@) [ ]
g .

6000

4000

2000

Bes

8.1.4 System time

The wall clock time does not provide information about the time that the job
spends as non-idle. Let’s say that a job takes 3000 wall-clock time seconds. This
means we have to take into account all the other resources for this amount of
seconds. However, this could be a huge restriction due to the minimum usages
of resources most of the time. For example, when the CPU only spends 1 second
in non-idle modus, it would make no sense to take into account it for the entire
time. We, therefore, were, also interested in the system and user time of a
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process. Another advantage of having this kind of information for Channable is
that it allows them to optimize their jobs contextually. However, these problems
will not be addressed in this thesis. From the wall-clock time, we have seen
that adwords update, download feed, export api consists of extreme outliers.
Therefore, it is likely that the system time or user time will also consist of the
various outliers. The jobs spend on average 0.52 seconds in the system space,
which is rather low given that the jobs spend on average 60.5 seconds as elapsed
wall-clock time. The following table provides more details about each of the

individual job:

Jobtype min | max avg | median | stddev | total jobs
merge _imports 0.06 | 2.16 0.26 | 0 0.13 15758
shopping update 0.08 | 19.56 0.50 | O 0.93 2041
adwords generate 0.06 | 203.95 | 0.64 | O 3.96 53205
sequential download feed | 0.11 | 0.9 031 |0 0.15 43
download analytics 0.07 | 6.08 047 | 0 0.46 2432
adwords _update 0.06 | 36.9 033 |0 0.45 42516
export_feed 0.06 | 48.14 | 0.58 | 0 1.01 60785
download _feed 0.07 | 143.12 | 047 | O 1.21 44175
export api 0.07 | 312.3 141 10 8.24 5365
shopping generate 0.08 | 9.73 0.28 | 0 0.30 2222

Table 15: System time - Basic statistics

The table is drastically different from the wall-clock. None of the statistics
have a relationship to these values. Although, It is noteworthy that the jobs that
consisted of the outliers in the wall-clock, also have the highest values for the
system time. However, it is in nowhere close to the wall-clock. This indicates
that the process does not use their resources to their maximum potential or
they spent a lot of time in userspace. The next section, therefore, discusses the
insights of the user time.
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8.1.5 User time

The jobs spend on average 11.95 of their time in userspace. Given the average
of the system time(0.52s) and wall clock time(60.5s), we know that on average
at least 2 7 of the time the jobs spend in idle mode. This indicates that the jobs
do not fully take advantage of the resources. To investigate this further, we
obtained the following statistics:
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Jobtype min | max avg median | stddev | total jobs
merge imports 1.7 14.3 3.27 |3 1.39 15758
zshopping update 1.68 | 1810.36 | 27.14 | 5 106.63 2041
adwords_generate 1.7 3484.37 | 10.60 | 3 68.66 53205
sequential download feed | 1.89 | 11.04 4.62 | 4 2.27 43
download _analytics 1.78 | 217.59 | 10.95 | 5 17.97 2432
adwords _update 1.68 | 4499.1 8.02 |5 420.29 42516
export_feed 1.68 | 2070.66 | 17.99 | 6 36.89 60785
download _feed 1.71 | 2108.83 | 11.50 | 5 30.50 44175
export api 1.81 | 1956.61 | 15.06 | 5 62.68 5365
shopping _generate 1.74 | 171.47 4.60 3 6.90 2222

Table 16: User time - Basic statistics

The table also shows that the maximum values in the userspace are many
times higher than the kernel space. Although, it’s by far not close to the maxi-
mum jobs of the wall-clock time. However, these high values stand out due to
the surprisingly low average values. The median also differs quite a bit. We,
therefore, expect that these huge values are due to a few high outliers. The
below scatterplot shows, therefore, the distribution of the job.

99




Distribution of the user_time.
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This clearly agrees with our expectation of having a few outliers. The picture
also indicates that the biggest part of the jobs uses less than 200 seconds. Which
we could use as a fixed boundary when we cannot determine a prediction model

with a sufficient accuracy.
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8.2 Using the GPF framework to obtain estimates of the
resource usage

1| {—# LANGUAGE DeriveGeneric #—}

2| {—# LANGUAGE MultiParamTypeClasses #—}
3| {—# LANGUAGE FlexibleInstances #-}

4| {—# LANGUAGE FlexibleContexts #—}

5| {—# LANGUAGE RankNTypes #—}

6| {—# LANGUAGE ScopedTypeVariables #—}

7| {—# LANGUAGE OverloadedStrings #—}

s| {—# LANGUAGE DeriveAnyClass #—}

10/ module Examples.JobAnalys where

1

2| import Structure.DSL (

3 feature ,

! trainFilterWithMetalnfo ,
5 loadModelFromFile ,

6 predict ,

7 allMeta ,

8 GPF,

9 )

1| import Structure.Interface (Interface)
2| import Data.Aeson (ToJSON, FromJSON)

s import Data.Csv (FromRecord, FromField (..))

1| import GHC. Generics (Generic)

5| import Models. Linear (OLS)

6| import Structure.Dataset (readCSV)

7| import Data.Vector (filter , Vector, map, zip)

sl import Data.Map (Map, fromList, keys, empty, insert , member, lookup
)

20| import Data.Maybe (fromJust)

s0| import Data.Time (UTCTime, parseTimeM, defaultTimeLocale)

si|import Control.DeepSeq (NFData)

32| import Models.Std (Std(..))

33| import Models.Avg (Avg(..))

s4| import Structure.Evaluators (evallO, eval)

35| import Structure.Primitives (Model (..) ,Dataset (..) ,Metalnfo (..))

36| import Prelude hiding (filter , map, zip, lookup)

30| type JobType = String

10|— Reference type for each of the job types

11| mergelmports, shoppingUpdate, adwordsGenerate
download analytics label, sequentialDownloadFeed ,
42 adwordsUpdate, exportFeed, downloadFeed, exportApi,
shoppingGenerate :: JobType

13| mergelmports = "merge imports"

11| shoppingUpdate = "shopping update"

45| adwordsGenerate = "adwords generate"

16| sequentialDownloadFeed = "sequential download feed"
47| download analytics label = "download analytics"

18| adwordsUpdate = "adwords update"

10| exportFeed = "export feed"

50| downloadFeed = "download feed"

51| exportApi = "export api"
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90

91

101

102

103

shoppingGenerate = "shopping generate"

instance FromRecord Job
instance FromField UTCTime where

parseField = parseTimeM True defaultTimeLocale "\"%Y-—%m-%d YH:%

M:%S\"" . show

data Job = Job{

templates :: !Double,

systemTime :: !Double,

cpuUsage :: !Double,
affectedProductsInitial :: !Double,
nrRules :: !Double,
negativeKeywordsStatic :: !Double,
negativeKeywordsTemplate :: !Double,
jobType :: JobType,

nrCategories :: !Double,

campaigns :: !Double,
negativeKeywords :: !Double,
affectedProducts :: !Double,
jobExecutionDate :: !UTCTime,
maxRSS :: !Double,

adgroups :: !Double,

keywords :: !Double,

clockTime :: !Double,
adgroupsTemplate :: !Double,
userTime :: !Double,

totalProduct :: !Double

} deriving (Generic, Show, NFData, Eq)

type Resources a = [Resource a]
data Resource a = Resource{
_rss :: a,
_cpuUsage :: a,

_wallClockTime :: a

— wall—clock time feature for each of the jobs

;| — Type sysonym to store information about the resources of a job

clockTimeFeatures :: Map JobType [Job —> Double]|
clockTimeFeatures = fromList

[

(adwordsGenerate, [negativeKeywordsStatic , templates |),

(shoppingGenerate, [adgroupsTemplate , negativeKeywordsTemplate

, nrRules , totalProduct |),
(mergelmports, [affectedProducts |),

(downloadFeed , [ affectedProducts , totalProduct |),
(sequentialDownloadFeed , [affectedProductsInitial ,

affectedProducts , totalProduct |),

(adwordsUpdate, [nrRules , campaigns , adgroups , keywords ,
negativeKeywordsStatic , templates , totalProduct |),
(exportFeed, [affectedProductsInitial , nrRules , totalProduct

])7

(exportApi, [nrCategories , affectedProducts
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104 (shoppingUpdate, [adgroupsTemplate , totalProduct |)
105
106

107

10s|—cpu usage feature for each of the jobs

00| cpuUsageFeatures :: Map JobType [Job —> Double|

110] cpuUsageFeatures = fromList

111

112 (adwordsGenerate, [nrRules , campaigns , adgroups ,
negativeKeywords , negativeKeywordsStatic , templates |,

totalProduct |),
113 (shoppingGenerate, [adgroupsTemplate , nrRules , totalProduct

])’

114 (mergelmports, [affectedProducts |),

115 (downloadFeed, [affectedProducts , totalProduct |),

116 (sequentialDownloadFeed , [affectedProductsInitial |,
affectedProducts , totalProduct |), —totalProduct

117 (adwordsUpdate, [nrRules , campaigns , keywords |,
negativeKeywords , negativeKeywordsStatic , templates |,
totalProduct |),

118 (exportFeed, [affectedProductsInitial , nrRules , nrCategories
, totalProduct |),

119 (exportApi, [nrCategories , affectedProductsInitial |,
affectedProducts , nrRules , totalProduct |),

120 (shoppingUpdate, [adgroupsTemplate , negativeKeywordsTemplate |,
nrRules , totalProduct |)

121 |

122

123| —maxRSS feature

124| maxRSSFeatures :: Map JobType [Job —> Double]

125| maxRSSFeatures = fromList |

126 (adwordsGenerate, [adgroups , keywords , negativeKeywords |,

negativeKeywordsStatic , templates , totalProduct |),
127 (shoppingGenerate , [negativeKeywordsTemplate , nrRules ,
totalProduct |),

128 (mergelmports, [affectedProducts |),

129 (downloadFeed, [affectedProducts , totalProduct |),

130 (sequentialDownloadFeed , [affectedProducts |),

131 (adwordsUpdate, [nrRules , campaigns , adgroups |,
negativeKeywords , negativeKeywordsStatic , templates |,
totalProduct |),

132 (exportFeed, |[affectedProductsInitial , nrRules , nrCategories

, totalProduct |),

133 (exportApi, [nrCategories , affectedProductsInitial ,

affectedProducts , nrRules , totalProduct |),

134 (shoppingUpdate, [adgroupsTemplate , negativeKeywordsTemplate |,
nrRules , totalProduct |)

135 ]

136

137

138|— predicts Map

139
110| type PredictMap = Job
141 —> (Map JobType (Resource (Mdl OLS))

142 , Map JobType (Resource (Mdl Avg))
143 , Map JobType (Resource (Mdl Std)))
144 —> GPF Double
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145
146|— This function describes for the wall—clock time how to make the
prediction .

147| clockTimePredicts :: Map JobType PredictMap

125| clockTimePredicts fromList

149 [

150

(adwordsGenerate , avgPred adwordsGenerate _wallClockTime) ,
151 (shoppingGenerate , predLm shoppingGenerate wallClockTime) ,
152 (mergelmports, avgPred mergelmports _wallClockTime) ,
(downloadFeed, avgPred downloadFeed wallClockTime) ,
(sequentialDownloadFeed , predLm sequentialDownloadFeed
wallClockTime) ,
adwordsUpdate, avgPred adwordsUpdate _wallClockTime) ,
exportFeed , predLm exportFeed _wallClockTime),
exportApi, avgPred exportApi _wallClockTime) ,

154

155
156

157

e e

158 shoppingUpdate , avgPred shoppingUpdate _wallClockTime)

159

160

161

162|— This function describes for the cpuUsage time how to make the
prediction .

63| cpuUsagePredicts :: Map JobType PredictMap

164] cpuUsagePredicts = fromList

(adwordsGenerate, avgPred adwordsGenerate _cpuUsage),
(shoppingGenerate , avgPred shoppingGenerate cpuUsage),
168 (mergelmports, avgPred mergelmports cpuUsage),
(downloadFeed, avgPred downloadFeed cpuUsage),
(sequentialDownloadFeed , avgPred sequentialDownloadFeed
cpuUsage) ,
adwordsUpdate , avgPred adwordsUpdate cpuUsage),
exportFeed , avgPred exportFeed _cpuUsage),
exportApi, avgPred exportApi cpuUsage),
shoppingUpdate , avgPred shoppingUpdate _cpuUsage)

ey

77|— This function describes for the maximal RSS time how to make the
prediction .

17| maxRSSPredicts :: Map JobType PredictMap

170| maxRSSPredicts = fromList |

180 (adwordsGenerate , avgPred adwordsGenerate _rss),
181 (shoppingGenerate , predLm shoppingGenerate rss),
182 (mergelmports, predLm mergelmports _rss),

(downloadFeed, predLm downloadFeed _rss),
(sequentialDownloadFeed , predLm sequentialDownloadFeed rss),
(adwordsUpdate, predLm adwordsUpdate _rss),

186 (exportFeed , avgPred exportFeed rss),
(exportApi, predLm exportApi _rss),
(shoppingUpdate , avgPred shoppingUpdate rss)
]

192|— end predict maps

196|— Type sysonym to use a model with represent a model with a Double
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7| type Mdl mdl = Model Job Double mdl

19

N

198
199

200]— All jobtypes

201| jobtypes :: [JobType]

202| jobtypes = keys clockTimeFeatures
203
204

205

206|— Train all the different models(avg,ols,std) such that we can
load it later from the filesystem
207| trainAllModels :: FilePath —> IO (Resources (Mdl Avg), Resources (

Mdl OLS), Resources (Mdl Std))
20s| trainAllModels filePath = do

209 ds :: Vector Job <— readCSV filePath
210 x <— trainModel "avg" ds
211 y <— trainModel "lm" ds
212 z <— trainModel "std" ds

13 return (x,y,z)
1
5

5/— Train a model and write the model to the filesystem .

6| trainModel ::

17 (Interface mdl Double, ToJSON (mdl Double), NFData (mdl Double)
)
=> String
—> Vector Job
—> IO (Resources (Model Job Double mdl))

trainModel suffix ds = foldr (go (trainJobs suffix)) (return [])
jobtypes

2 where go f job b =

(evallO $ f (Dataset ds) job) >= (\x —> fmap (x:) b)

it
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6|— description of how the job should be trained.

7| trainJobs ::

8 (Interface mdl Double, ToJSON (mdl Double), NFData (mdl Double)
)

229 => String

230 —> Dataset Job

231 —> JobType

232 —> GPF (Resource (Mdl mdl))

233 trainJobs suffix ds job = do

234 maxRSSFt <— feature $ unsafeLookup job maxRSSFeatures

235 cpuUsageF't <— feature $ unsafeLookup job cpuUsageFeatures

236 clockTimeFt <— feature $ unsafeLookup job clockTimeFeatures

237 mMaxRss <— trainFilterWithMetalnfo (wrapper job ("maxRSS "
4+ suffix)) ds maxRSSFt maxRSS ((==job) . jobType)

238 mCpuUsage <— trainFilterWithMetalnfo (wrapper job ("cpuUsage
" 4+ suffix)) ds cpuUsageFt cpuUsage ((==job) . jobType)

239 mclockTime  <— trainFilterWithMetalInfo (wrapper job ("
clockTime " 4+ suffix)) ds clockTimeFt clockTime ((==job)
jobType)

240 return $§ Resource mMaxRss mCpuUsage mclockTime

3|— Load the models from the filesystem
1| loadJobs
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(ToJSON (model Double) ,FromJSON (model Double), Interface model
Double)
=> String
—> JobType
—> GPF (Resource (Model Job Double model))
loadJobs suffix job = do

maxRSSFt <— feature $ unsafeLookup job maxRSSFeatures
cpuUsageFt <— feature $ unsafeLookup job cpuUsageFeatures
clockTimeFt <— feature $ unsafeLookup job clockTimeFeatures
mMaxRss <— loadModelFromFile (modelLocation job $ "maxRSS "

++ suffix) maxRSSFt maxRSS

mCpuUsage <— loadModelFromFile (modelLocation job $ "

cpuUsage " ++ suffix) cpuUsageFt cpuUsage

mclockTime  <— loadModelFromFile (modelLocation job $ "

clockTime " ++ suffix) clockTimeFt clockTime

return $§ Resource mMaxRss mCpuUsage mclockTime
toJobCapacity :: Job —> Resource Double

toJobCapacity j = Resource (cpuUsage j) (maxRSS j) (clockTime j)

— Load all the models to a map, such that it easy to access each
of the different models

i3] jobsToMaps :: IO (Map JobType (Resource (Mdl OLS)), Map JobType (

Resource (Mdl Avg)), Map JobType (Resource (Mdl Std)))
jobsToMaps = do
x <— loadJobsToMap $ loadJobs "lm"
y <— loadJobsToMap $ loadJobs "avg"
z <— loadJobsToMap $ loadJobs "Im"

return (x,y,z)

— Load all the model of one type to a map

loadJobsToMap :: (JobType —> GPF a) —> IO (Map JobType a)
loadJobsToMap mdls = foldr go (return empty) jobtypes
where go job env = do

env’ <— env
value <— evallO $ mdls job
return $ insert job value env’

—Combine the observerd with the predicted job data
getJobsCombine :: IO (Vector (Resource Double, Resource Double))
getJobsCombine = do

js <— readCSV "data/jobs.test.csv"

mJobs <— jobsToMaps

let js’ = filter (\x —> (jobType x) /= "download analytics") js
trueJobs = map toJobCapacity js'’
predictedJobs = map (eval . predictResource mJobs) js’

return $ zip trueJobs predictedJobs

—— Looks up the correct OLS and uses that model to predict new data

predLm :: JobType —> (forall a . Resource a —> a) —> PredictMap
predLm name f job (lms, , ) = predict (f $ unsafeLookup name lms)
job

—— Looks up the correct AVG and uses that model to predict new data
avgPred :: JobType —> (forall a . Resource a —> a) —> PredictMap
avgPred name f _ (_,avgs,stds) =
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295 return $ (_avg $ modelDef $§ f $ unsafeLookup name avgs)

296 + (std $ modelDef $ f $ unsafeLookup name stds)
297

298

200| — predict each of the resources using it correct models

300 predictResource ::

301 (Map JobType (Resource (Mdl OLS))

302 ,Map JobType (Resource (Mdl Avg))

303 ,Map JobType (Resource (Mdl Std)))

304 —> Job

305 —> GPF (Resource Double)

s06| predictResource env job =

307 let lookup’ preds = unsafeLookup (jobType job) preds job env
308 in

309 do

310 rssCapacity > <— lookup’ maxRSSPredicts

311 cpuCapacity > <— lookup’ cpuUsagePredicts

312 terminationDate’ <— lookup’ clockTimePredicts

313 return $§ Resource cpuCapacity’ rssCapacity ’ terminationDate’

315|— Abbreviation to use all the meta information and provide the
correct store lcation

316| wrapper :: String —> String —> Metalnfo

s17| wrapper job response = allMeta $ modelLocation job response
318

319

320| modelLocation :: String —> String —> String

321 modelLocation job response = "data/models/" ++ job 4+ " " 4+

response ++ ".mdl"

—— Throws an error when the key does not exist

2

24| unsafeLookup :: (Show a, Ord a) —> a —> Map a t —> t

25| unsafeLookup name env

326 | member name env = fromJust $ lookup name env

327 | otherwise = error $ "The Key (" 4+ show name ++ ") does not
exist .. "
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