
THESIS

High-quality interactive path tracing

Student:
Mathijs LARDINOIJE

Project supervisor (first examiner):
dr. ing. J. BIKKER

Second examiner:
dr. A. VAXMAN

Daily supervisor:
Huub VAN SUMMEREN

ICA-3760219

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Master’s programme Game and Media Technology
Department of Information and Computing Sciences

March 31, 2018

Abstract

Although still computationally expensive, path tracing is continually becoming
more promising as a render technique for use in a production environment, due
to the continuing increase in generally available compute power. We research the
feasibility of path tracing in a scenario where high-quality images must be rendered
at interactive rates, by integrating a path tracer in a product configurator framework
and evaluating its performance. We evaluate the current state-of-the-art in path
tracing postprocessing denoising filters, and propose our own novel filter aimed
specifically at interactive path tracing, to reduce render times significantly.

Contents

1 Introduction 1
1.1 3DIMERCE . 2
1.2 Objective and contribution . 3
1.3 Research methodology . 3
1.4 Test method and evaluation . 4
1.5 Thesis structure . 5

2 Preliminaries 6
2.1 Path tracing . 6
2.2 The rendering equation . 7
2.3 Monte Carlo integration . 7

3 Previous work 9
3.1 Filtering . 9
3.2 STAR filter selection . 11
3.3 Summary . 14

4 Implementation 15
4.1 Ray Histogram Fusion . 15
4.2 Feature Distance Filter . 17

5 Results 24
5.1 Quality . 24
5.2 Interactivity . 26
5.3 Filter performance . 27

6 3DIMERCE 31
6.1 The Pancakes framework . 31
6.2 Path tracer integration . 32
6.3 Objective and results . 35

7 Discussion and future work 36

8 Acknowledgements 38

1

Chapter 1

Introduction

Path tracing is a physically based render technique that has the capability of
producing images of higher quality than traditional renderers based on rasterization.
Compared to rasterizers however, path tracing requires at least an order of
magnitude more compute power to render images of such quality. Path tracing is
already used in many production environments where high-quality rendering has
priority over short render times: Computer generated effects in movies are often
rendered by means of path tracing, and some movies are even completely path
traced. High-quality product renders, promoting a new car model for example,
are often rendered by means of path tracing too. The aforementioned applications
for path tracing share the fact that all images can be pre-rendered, tolerating long
render times taking minutes or in some cases hours to finish. However, as compute
power continually increases due to technological advances, these render times are
continually becoming shorter. While high-quality real-time path tracing, applicable
to for example games, is still likely to be impossible today, high-quality interactive
path tracing could be feasible, or become feasible in the near future.

We refer to render times of ideally under a second, but possibly up to a couple
of seconds, as being in the domain of interactive rendering. A practical use case
requiring render times of this order in a production environment is the on-demand
rendering of high-quality product images, as is needed in a product configurator. A
product configurator is a service, usually made available through a website, where
a user can customize a product they are interested in before buying. Arguably
the most well-known example of this is the possibility to customize a car you
are interested in on the maker’s website, choosing your own desired exterior and
interior colors and possible options and extras. However, product configurators are
employed in many more markets, like for example in furniture or clothing.

A number of key aspects fundamental to product configurators are suited
particularly well to high-quality interactive path tracing:

• High-quality rendering, path tracing’s main strength, is of utmost importance,
to provide the best possible impression of the product to a potential buyer.

• Short wait times are tolerable, allowing the use of interactive rendering.

• Pre-rendering is not feasible due to the amount of possible combinations of a
customizable product, thus an on-demand solution is required.

To evaluate the feasibility of high-quality interactive path tracing, we integrate a
path tracer in an existing product configurator framework, created by 3DIMERCE,
and optimize it for interactive rendering by implementing state-of-the-art and novel
postprocessing filter techniques to significantly decrease render times.

http://3dimerce.com/

Chapter 1. Introduction 2

1.1 3DIMERCE

3DIMERCE is a small company located in Eindhoven, and was founded in 2001.
Their main service is the conversion of real-life objects to 3D models of which then a
cloud service is provided that hands out on-demand renders of these models.

To obtain accurate 3D models the client’s objects are scanned with a 3D scanning
tool, and the object’s materials are scanned with a material scanning tool, to obtain
material details such as textures and bumpmaps. Any customizable options of
the objects are also digitalised. After the conversion process to 3D is completed,
an API is given out through which clients can request renders of their objects.
3DIMERCE’s servers handle the requests and reply with rendered images. In the
requests, configuration options can be supplied, such as object color, background
scene, camera location, and whether or not to add some accessories. Commonly the
client owns a web application with some sort of product configurator, which uses
3DIMERCE’s service for generating renders of the configured products (figure 1.1).

FIGURE 1.1: A product configurator with an image rendered by
3DIMERCE’s service.

A lot of care is taken to make sure that the rendered images are of high quality,
to keep customer satisfaction high and 3DIMERCE ahead of rivaling companies.
Therefore, 3DIMERCE is always researching new techniques to increase image
quality. Currently, they are using Unity3D’s rasterization engine to render the
images. Over the past few years 3DIMERCE has constantly been augmenting
and upgrading this engine to keep increasing image quality. Because of this,
3DIMERCE’s in-house version of the Unity engine has become quite cumbersome.
It contains many post-processing effects that are being applied one after the other,
and makes use of a single large shader for simulating many different effects.

3DIMERCE’s latest effort in increasing image quality is to try and add global
illumination to their renderer. However, this is proving to be difficult. Due to the
high amount of effects already in use, finding or implementing a global illumination
algorithm that is compatible with these effects is problematic. Because of the high
number of effects the renderer is hard to maintain too. Also, most global illumination
algorithms for rasterization engines are merely approximations of physically correct
algorithms, resulting in inferior quality compared to path tracing.

Because of the problems mentioned above, 3DIMERCE wants to research
whether switching from a rasterizer to a path tracer might be beneficial for them.

http://3dimerce.com/

Chapter 1. Introduction 3

1.2 Objective and contribution

Our main objective is to find out whether high-quality interactive path tracing for
use in a production environment is possible today, or in case it is not, how far off we
currently are from this goal. Subsequently, we pose our main research question as:

How fast can high-quality images be rendered, by means of path tracing?

With the following remarks:

• The image should be of a visibly higher quality than its rasterization
counterparts, and free of any noise, bias, or other types of glitches and errors
associated with path tracing, to be deemed high-quality.

• The scenes to be rendered are production environment ready, portraying
customizable high-polycount products rendered at production-level
resolutions, as would be the case in a product configurator.

• We aim for interactive render times, which take ideally under a second, but
can possibly take up to a couple of seconds.

To decrease required render times significantly, thus increasing the odds of a
positive answer to the main research question, we extend the current path tracing
algorithm with state-of-the-art and novel postprocessing filter techniques. We
provide a scientific contribution by researching, implementing, and comparing such
techniques.

1.3 Research methodology

We first integrate a path tracer in 3DIMERCE’s framework, to enable the rendering
of product configurator scenes of high-quality. Albeit with long render times, this
gives us a frame of reference to improve upon with postprocessing filters. We choose
to integrate a custom, highly-optimized and state-of-the-art path tracer, giving us the
maximum currently possible path tracing performance. We have access to this path
tracer’s source code, which enables us to perform the modifications required for a
successful integration.

Next, we implement a reference filter, based on the most promising state-of-the-
art filtering technique for interactive path tracing, as concluded by our literature
study. We then start iteratively researching and implementing other state-of-the-
art and our own novel filtering techniques, to improve upon the reference filter
implementation. The iterations are driven by actively targeting weaknesses of the
current implementation, to try and end up with a more robust and better performing
filter.

Finally, we perform both an absolute and relative evaluation of our final
implementation, by measuring the time required for rendering high-quality images
with and without our filter, and comparing our filter to the current state-of-the-art
in postprocessing filters. We also compare the path traced renders against reference
renders to assess the improvement in quality and ensure no glitches or errors are
introduced in the path traced renders.

Chapter 1. Introduction 4

1.4 Test method and evaluation

We evaluate the work proposed in three areas: the absolute quality of the path traced
images, the amount of time required to render these images (with and without our
filter), and the performance of our filter compared to the state-of-the-art.

Quality We must consider two aspects when evaluating render quality: the correct
presence of graphical effects caused by path tracing, and the absence of any noise,
bias, glitches or errors caused by path tracing. We compare a reference image
rendered by a rasterization engine and a path traced image of the same scene side
by side. The scene to be rendered is production environment ready, portraying a
high-polycount product using complex materials like translucent surfaces. In this
evaluation, render time is irrelevant. Therefore the path tracer will be configured to
keep rendering until all visible noise has disappeared, and no postprocessing filter
will be applied to speed up render times.

For the graphical effects evaluation, we compiled a list of the most prominent
graphical effects that should be present in the path traced image (table 1.1).

Effect Rasterizer Path tracer
Indirect lighting: Not directly
lit surfaces receiving light
reflected off other surfaces

Ambient lighting
(physically incorrect)

Natural effect of
path tracing
(physically correct)

Color bleeding: Surfaces
receiving colored light
reflected from nearby surfaces

- Natural effect of
path tracing
(physically correct)

Contact shadows: Darkening
of creases and other areas
occluded from light

Ambient occlusion
(physically incorrect)

Natural effect of
path tracing
(physically correct)

Soft shadows: Shadows
dissipating smoothly at their
edges

- Natural effect of
path tracing
(physically correct)

Reflections: Correct reflection
of light by specular surfaces

Screen space
reflections
(physically incorrect)

Natural effect of
ray tracing
(physically correct)

Anti-aliasing: Removal of
jagged edges

Supersampling Pixel area random
sampling

Translucency: Correct
transmission of light through
transparent surfaces

- Natural effect of
ray tracing
(physically correct)

TABLE 1.1: A list of the required graphical effects that should be
visible in the path traced image.

We perform a visual inspection to check for noise, bias, errors, and glitches in the
path traced image. Noise should not be present as we will let the path tracer render
until the image is fully converged. Bias shouldn’t be present either, as this is usually
introduced only after applying a postprocessing filter. The most important aspect to
check will be any presence of errors or glitches, which can be caused by improper
integration of the path tracer in the product configurator framework.

If all required graphical effects are present, and no other defects can be found in
the path traced image, we deem the generated images to be of high quality.

Chapter 1. Introduction 5

Interactivity We evaluate the interactivity of the integrated path tracer by
measuring the required time to render a high-quality image. We differentiate
between an evaluation with applying a postprocessing filter and without, to be able
to record the reduction in render times the postprocessing filter provides. For the
evaluation without a postprocessing filter, we keep rendering until any visible noise
has completely disappeared from the image. For the evalution with a postprocessing
filter, we keep rendering until any visible bias has completely disappeared from the
image. This differentiation is due to the inherent design of postprocessing filters,
removing all noise in a render but doing so at the cost of introducing bias, usually in
the form of blurring or general loss of detail. The scenes used for the evaluation will
be of the same type as in the previous area of evaluation.

We plot graphs of the measured mean squared error (MSE) of filtered and
unfiltered renders over time too, to provide scientifical measurements. This is
a frequently used metric in path tracing to quantify the difference between two
renders. We use it to measure the difference between a perfectly rendered noise-
free image and the image to evaluate. The noise-free image is obtained once by
instructing the path tracer to render without a time limit and without applying a
filter, until the image is fully converged (no longer containing any noise). Given
every RGB pixel in the reference image y1, . . . , yn and every RGB pixel in the image
to evaluate y′1, . . . , y

′
n, we calculate MSE as:

1

n

n∑
i=1

(|y′iRED − yiRED|2 + |y′iGREEN − yiGREEN |2 + |y′iBLUE − yiBLUE|2)

Not only images with noise will be penalised by MSE, but also images that overblur,
lose detail, or that contain other graphical glitches, as the MSE metric penalizes all
pixels that diverge from the ground truth image, regardless of the type of diversion.

Filter performance We compare our novel filter to the state-of-the-art by
measuring MSE on various scenes and sample counts, for all filters. To avoid
integrating all filters in our path tracer, we compare on well-known scenes only
which are commonly used in filtering literature. These scenes are integrated in the
publicly available path tracer pbrt, for which implementations of all state-of-the-art
filters exist. We use this path tracer to generate the filtered images for the state-
of-the-art filters. We also plot the measured runtimes (overhead) of each filter, to
evaluate filtering performance in relation to filter overhead.

1.5 Thesis structure

We start with a preliminary chapter (2) about path tracing, for readers who are
not familiar with the technique. The following chapter (3), contains our literature
study about postprocessing filters and its results. Next, we detail our own
implementations of existing and novel filters (4), and share the results of our
evaluation (5). The study of the product configurator framework, integration of
the path tracer into the framework, and the objective, evaluation, and results for
3DIMERCE are placed in a separate chapter (6). We finish with a discussion about
the work presented and its results, and discuss any possible future work, in the final
chapter (7).

6

Chapter 2

Preliminaries

2.1 Path tracing

A path tracer is a physically based renderer, meaning the render process aims to
simulate the way light is transported in real life. In nature, light sources emit
photons that travel in straight lines until they hit a surface, which we model as rays
in a path tracer. If a surface gets hit, it can (partially) absorb the ray’s energy, and/or
(partially) reflect the ray. For example, a diffuse red surface will absorb all energy
of the incoming ray except the red wavelength’s energy, which gets reflected in a
random direction. Next, the reflected ray travels in a straight line again until it hits
another surface, which will manipulate the ray again, and so on. Some of these rays
might eventually hit our eyes, which enables us to see the world in front of us. A
path tracer simulates this process by shooting rays in a reversed direction, starting
from an artificial eye, and then letting the rays bounce around until they hit a light
source. The light information obtained while tracing such a ray’s path determines
the ultimate colors in the finished render.

By simulating light transport as described above, a renderer can produce
photorealistic images without relying on the addition of artificial effects. Effects
commonly used in rasterization engines, such as global illumination and soft shadows,
occur naturally when performing light transport simulation. Regarding global
illumination for example (figure 2.1), one can perceive a visual effect known as color
bleeding: the coloring of surfaces with reflected light from nearby surfaces. This effect
is inherently visualized in a path tracer when a ray is reflected off a surface onto
another one nearby. In a rasterization engine, a separate effect has to be implemented
that simulates this behaviour.

FIGURE 2.1: Color bleeding in a path tracer: the red surface bleeds its
color on the nearby gray surface.

Chapter 2. Preliminaries 7

2.2 The rendering equation

Path tracing revolves around physically correct simulation of light transport.
Generally, path tracers approximate light transport by solving the rendering equation,
first introduced by Kajiya [Kaj86]. It is defined as:

I(x← x′) = G(x← x′)[E(x← x′) +

∫
S
R(x← x′ ← x′′)I(x′ ← x′′)dx′′]

Where:

• I(x← x′) is all light passing from x′ to x.

• G(x← x′) describes the geometry factor between x and x′, returning 0 if x and
x′ are not directly visible to eachother, otherwise returning a factor based on
the distance and surface angle between x and x′.

• E(x← x′) is the light directly emitted by x′ to x, returning 0 unless x′ is a light
source.

• S is the domain of integration, containing all surface points of the entire scene.
This can include the scene’s hemisphere, if skybox lighting is implemented.

• R(x ← x′ ← x′′) is the light reflected from x′ to x, that originates from x′′ and
is calculated by evaluating I(x′ ← x′′).

Solving this equation for every possible I(x ← x′), by iterating over every pixel
to render for x, and iterating over every surface/hemisphere point in the scene
for x′, would result in the exact answer to the rendering equation, synthesizing a
perfect physically based image. However, this is impossible, practically due to the
computation time required and theoretically due to the fact that the amount of points
on a surface is infinite, as points have no area. Therefore path tracers make use of
Monte Carlo integration to approximate the answers, as described in the next section.

2.3 Monte Carlo integration

With Monte Carlo integration the integral over the set S in the calculation of I(x← x′)
is replaced by the sampling of a uniformly chosen subset x′1, . . . , x

′
N ∈ S.

By stochastically sampling this subset we can approximate the integral’s value:

∫
S
≈ 1

N

n∑
i=1

x′i ∈ S

This holds true because the law of large numbers ensures that the Monte Carlo
integration equals the integral over the set S, when N =∞. As N increases, the
variance in the approximation of the integral decreases. We only reach the integral’s
exact value after taking infinite samples.

Chapter 2. Preliminaries 8

Practically, this implies that S can be sampled by tracing a path if, everytime
a surface is hit, a random direction within the cone of available directions for that
surface is chosen. The cone’s properties are dependent on the surface. For example,
on a purely specular surface (a mirror) there is only one available direction in this
cone: the direction with angle of reflection equal to angle of incidence (proportional
to the surface). But for a purely diffuse surface, all directions contained in the
surface’s hemisphere are inside the cone of available directions.

Another aspect to consider is that the paths in the rendering equation are
theoretically infinite, as it is an equation where I(x← x′) is called recursively. To
be able to still compute paths within finite time, a technique called Russian Roulette
is employed. Every time a ray hits a surface, the ray is not allowed to bounce
(i.e. evaluate another I(x← x′)) with probability p, terminating the traced path
at that point and returning its results so far as a valid sample. Paths that are not
terminated then have their sample weights scaled by 1

p , to compensate for the fact
that light energy has been removed from the equation by terminating some other
paths. Eventually all paths reach a light source or get terminated.

Evaluating one sample of the render equation for each pixel, using random
directions within the available cone of directions for each bounce, and terminating
the path at each bounce with probability p, is the foundation of applying a render
pass in a Monte Carlo path tracer. After each render pass the results of that pass are
added to the rendered image. The final correct color for a pixel is the average of the
colors that all traced paths through that pixel return. An example of this incremental
rendering system, as used by Monte Carlo path tracers, is provided in figure 2.2.

FIGURE 2.2: Incremental rendering with a path tracer. Noise is
reduced with more render passes.

9

Chapter 3

Previous work

Monte Carlo path tracing is slow. Depending on the scene, thousands of samples
per pixel are needed to obtain a perfect noise-free image. In turn, to calculate one
sample of the render equation, multiple rays have to be traced. Therefore, to render
an image containg a couple of million pixels, multiple billions of rays need to be
traced. Currently, the fastest GPUs reach a throughput of about a hundred million
to one billion rays per second on fully optimized Monte Carlo path tracers. Thus, to
render a noise-free image, render times in the order of tens of seconds are needed.
To increase path tracer performance as much as possible, and possibly enable
interactive rendering, a denoising filter can be implemented. This filter receives a
noisy image as input, and transforms it into a noise-free image, by analyzing the
results so far and then filtering out the noise. For the denoising filter to successfully
enable interactive rendering, it should be able to reduce the required sample count
by at least an order of magnitude.

We first introduce the different types of denoising filters currently popular in
literature, and explain which type of denoising filter we target and why. Next,
we selected a list of the most promising state-of-the-art filters currently available
in literature, and describe them in detail. Finally, we compare the chosen filters in
the context of interactivity and reason how they can help us in implementing a filter
suitable for interactive rendering.

3.1 Filtering

Denoising filters come in two variants: post-processing and adaptive filters.

Post-processing filters These are applied once on the finished render. One analysis
is performed, making use of all the results so far, after which the image is filtered.

Adaptive filters These are applied iteratively, inbetween a predetermined number
of render passes. They perform an analysis to estimate local variance (noisiness)
of the render so far. Using this information, a sampling density is allocated to the
pixels. During the successive render passes, the noisy pixels are then sampled more,
to reduce the total amount of noise more efficiently than with uniform sampling.
Often, every iteration the image is also filtered.

Chapter 3. Previous work 10

Another important aspect of filters to consider, is their knowledge of (aspects of)
light transport, and their level of generality because of this. Filters can be divided
again into two variants: a priori and a posteriori filters.

A priori These filters perform an informed analysis, where the logic used is based
on light transport theory that has been acquired in advance. Often these filters
focus their analysis on certain specific aspects of light transport, e.g. diffuse global
illumination or soft shadows. This is done because the complexity of the used light
transport analysis is often so high that only by reducing the analysis to one or a
couple of aspects it can become computable within reasonable time. As these filters
try to model light transport equations, often a lot of information is required for the
analysis, such as geometric and material information of all samples. Filtering of the
targeted aspects is often of good quality, however applying these filters to scenes
that do not have the targeted aspects as prominent features gives mixed results.

A posteriori Filters that perform an uninformed analysis have no explicit
knowledge of light transport theory. Instead of requiring a lot of information they
usually only work on the information that is contained afterwards in the resulting
image, e.g. the colors, normals, and textures of the final pixels or samples. Because
of this, these filters are more general: They do not perform exceptionally well on
certain light transport effects, but do however provide more consistent results. In
comparison to a priori filters, these filters often only work in image-space.

Note that most adaptive filters are a priori, to estimate variance resulting from a
certain light transport aspect, and that most post-processing filters are a posteriori,
since both work best after image rendering. Combinations the other way around are
not very uncommon however. Also, many adaptive filters perform post-processing
like filtering steps in each iteration, to enhance their effectiveness.

We focus on a posteriori post-processing filters. Implementing a post-processing
filter is a lot more practical than implementing an adaptive filter. Adaptive filters
are tightly intertwined with the used renderer, being applied in between render
passes and allocating sample budgets to the renderer. It is more straightforward
to implement a filter that is only applied after the render process has finished. We
consider a posteriori filters superior to their a priori counterpart because of their
increased generality. Ideally, a filter should be able to denoise all thinkable material
and lighting conditions successfully. A priori filters are limited in this generality,
targeting one or more specific light transport effects. Moreover, the implementation
is again more practical, since likely a lot less intrinsic information has to be extracted
from the renderer in order for the filter to perform its analysis.

A short list of the most promising state-of-the-art a posteriori post-processing
filters, accompanied with descriptions of their workings, effectiveness, and runtime,
is provided in the next section.

Chapter 3. Previous work 11

3.2 STAR filter selection

Random parameter filtering (RPF) The first idea for denoising path traced
images would be naïvely applying general denoising filters targeted at for example
photography, but this has often proven ineffective. Sen and Darabi [SD12] noted that
this is the case because these filters assume that the noise is uniformly divided over
the image, while Monte Carlo renders generally have large local noise variations.
Furthermore, they reason that noise is a result of the random parameters used in
Monte Carlo sampling, e.g. the random selection of surface bounce directions. They
propose an approach that filters samples rather than pixels, and assigns variable
weights to a pixel’s neighbouring samples for the filtering, depending on the amount
of similarity between the samples. Sample similarity is calculated by comparing
their random parameters: samples with parameters mostly randomized over the
same domains are assigned higher weights since they are both trying to approximate
the same integral to a certain degree. In contrast, samples with low random
parameter similarity are assigned lower weights. To calculate random parameter
similarity a lot of feature information is needed: the normal, position, and texture
for the first and second scene intersection of every sample. This approach yields
impressive results, especially for low sample counts. However, it is also slow to
compute, in the order of hundreds of seconds.

Park et al. [Par+13] propose a more efficient method, that makes use of the same
principle, but doesn’t compare all samples between a pixel and its neighbours, to
greatly reduce compute complexity. Instead, only the samples between roughly a
tenth of all pixels are compared, and all other pixel samples are interpolated. This
technique reduces computation time significantly, while retaining nearly identical
denoising performance. Although still too slow for use in a product configurator,
ideas of their algorithm could be incoporated in an interactive filter.

General image denoising (GID) Kalantari and Sen [KS13] decided to keep
exploring the possibilities of general denoising filters and proposed a method that
allows effective use of them on Monte Carlo renders. Their approach is also based
on the notion that these filters assume uniformly divided noise, requiring adaptation
to the noise variations in Monte Carlo renders. First, they create a histogram of
pixel noise levels of the entire render, and choose a small set of noise levels that
encompasses most of the render’s noise densities. For each chosen noise level, a
copy of the render is filtered with a filtering intensity appropriate for this noise level,
resulting in a set of images filtered with different intensities. The final filtered render
is created by choosing the best filtered result for each pixel individually.

Bauszat et al. [Bau+15] generalized this approach by not only using one filter
with different intensities, but by also using different types of filters. First they
apply all filters separately, then they estimate the per-pixel noise error of the filtered
results, and finally they combine the results to one optimal image. Their per-pixel
filter choosing algorithm also favors the filters chosen for neighbouring pixels, as
continually using different filters for neighbouring pixels reduces smoothness of the
final image.

As used by both methods, state-of-the-art general image denoising algorithms
are the Non-Local Means (NL-means) filter by Buades, Coll, and Morel [BCM05], the
Block-Matching 3D filter (BM3D) by Dabov et al. [Dab+06], and the Bayesian Least
Squares - Gaussian Scale Mixture filter (BLS-GSM) by Portilla et al. [Por+03].

Both implementations run in the order of tens of seconds on the CPU, but might
be suitable for interactive needs when implemented on a GPU.

Chapter 3. Previous work 12

Denoising using feature and color information (DFC) Where RPF uses features
(normal, position, texture) as filter input, and GID uses pixel colors as input (since
they make use of general image denoising algorithms), Rousselle, Manzi, and
Zwicker [RMZ13] propose a new filter in which both types of input are used to
denoise renders more robustly. They reason this could be beneficial since some
image details are only captured well by features, while others are only captured
well by pixel color. Their method applies three filters separately: one filtering on
color information alone, one filtering on feature information alone, and one that
uses both. For the color filtering the NL-means filter is used. For the feature filtering
an approach similar to RPF is used, but instead of feature filtering per-sample, or
feature filtering per-sample with interpolation, the filtering is applied per-pixel to
reduce compute complexity even more. After the filtering, the three filtered renders
are combined on a per-pixel basis, using noise estimation to determine the best
candidate, similar to GID.

The authors of this approach implemented the filter on the GPU, where it took
only a couple of seconds to execute. Optimizing this filter might render it fast
enough to be used in the product configurator, when using a high-performance
GPU.

Ray histogram fusion (RHF) Delbracio et al. [Del+14] reason that general image
denoising algorithms, like in GID, often have trouble preserving image detail simply
because only using pixel color information does not always provide sufficient
information for high quality denoising. Using features on the other hand, like
RPF, while yielding good denoising results, currently takes too much computation
time and memory to be used in interactive applications. They propose a novel
method, wherein instead of using pixel color information, they use sample color
information. With this approach they aim to increase denoising quality over general
image denoising algorithms, while still retaining the short computation time of
such an algorithm. First, they create color histograms of each pixel, using the
color samples of each pixel as input data. Next, they compare the pixel color
histograms to neighbouring pixel color histograms. If two pixel’s histograms are
found to be similar, their samples get shared between the pixels, smoothing out
noise. For comparing histograms, a chi-squared distance threshold is used. They
apply their filter multiple times at different scales. When filtering at a higher scale,
the image simply gets upsampled before filtering, i.e. a patch of pixels (with their
accompanying samples) gets averaged into one pixel with accompanying sample
set.

They implemented their filter on the CPU, where it achieved runtimes in the
order of tens of seconds, reaching their goal in regard of achieving roughly the
same level of overhead as denoising filters that make use of general image denoising
algorithms.

Szeracki et al. [Sze+15] expanded upon this approach, by implementing an
optimized GPU version of RHF. Their version runs in a couple of hundred
milliseconds, proving that this filter is suitable for interactive applications.

Chapter 3. Previous work 13

Learning based filtering (LBF) Kalantari, Bako, and Sen [KBS15] conclude that
all previous approaches tend to perform as promised in certain cases, but perform
subpar in others. They reason this is the case because these approaches failed to
model the relationship between Monte Carlo noise and filter parameters correctly
enough to produce a filter that provides satisfactory results on a wide variety of
scenes. Furthermore, they reason that modeling this relationship correctly is too
complex to model explicitly. They propose the idea of using a supervised learning
algorithm to learn this relationship. To do this, they train a nonlinear regression
model, using a neural network. For the training they use a set of noisy renders,
with accompanying converged renders as ground truth. From every render a
large number of features (square patches of pixels) are extracted to train the neural
network on. Using the ground truth features as reference, the neural network learns
rules for modifying the noisy features to get as close as possible to the ground truth
features as possible.

The results in their proposal prove that their neural network learned to
filter efficiently, outputting high quality denoised images. They implemented
the filter on the GPU, where it took some seconds to execute. If their current
implementation leaves room for significant optimizations, runtimes might be able
to be reduced enough to allow for interactive filtering, in conjuction with using a
high-performance GPU. The learning process was implemented on the CPU, and
took almost a day to complete. The obvious downside of LBF is that it has to be
trained before being ready for use, and if the trainig set is not representative of the
renders used for filtering, the filter won’t work optimally.

First-order regression for denoising (FOR) Bitterli et al. [Bit+16] introduce a
Nonlinearly weighted First-Order Regression model for filtering. They analysed
state-of-the-art denoising algorithms, and based on these findings, proposed a
model that should combine their strengths, while avoiding their weaknesses.

DFC and LBF use prefiltered features as input. The prefiltering is done by
applying NL-means to the feature buffers. They found this to significantly improve
denoising performance and therefore also incorporated it in their model.

All previously discussed filters use zero-order regression models, comparing
single pixel or sample colors and features. Sometimes this results in artifacts,
when a single large distance in a certain feature buffer prevents the pixels to be
combined, like for example could happen on the constantly changing normal value
of a curved surface. Using a first-order regression (used in some recent adaptive
filters), linearly changing feature buffers can be captured in the regression, allowing
pixels or samples to still be combined where doing so is desirable.

Zero-order filters RPF, DFC, and LBF use NL-means to compute filtering
weights, whereas previous first-order filters do not. The zero-order filters still often
provide exceptional denoising results, and they reason this is partly because of
the effectiveness of using NL-means to compute filtering weights. Therefore they
propose to compute the weights for their first-order regression with NL-means also.

DFC and GID apply several of the same filter passes with different parameters,
and then combine these for optimal results. They find this method, collaborative
filtering, to be very effective and implement it in their model.

Being based on the findings of previous filters, this filter provides exceptional
denoising results. However incorporating all these ’features’ also comes at a cost:
their CPU implementation runs slow, roughly at the same speed as RPF, with a GPU
implementation roughly halving the required computation time.

Chapter 3. Previous work 14

3.3 Summary

The discussed denoising filters are summarized in the table below. CPU runtimes
are adjusted to represent the theoretical speed on a recent Intel CPU with 8 threads.
GPU runtimes are adjusted to represent the theoretical speed on a Nvidia GTX
1080. Complexity refers to the amount of features considered when filtering. These
features are all needed as input for the corresponding filters. Higher amounts of
features needed for filtering result in a higher impact on path tracing performance,
reducing the amount of samples that can be traced by the path tracer within a given
amount of time. All filters have a computation time dependent on the number
of pixels in the image. Filters using pixels as input have a constant computation
time otherwise. Filters using samples as input have a computation time that is also
dependent on the number of samples traced.

Filter CPU GPU Complexity
RPF 100s unknown Samples: Colors, normals, positions, textures,

1st bounce normals, 1st bounce positions
GID 10s unknown Pixels: Colors

DFC unknown 2s Pixels: Colors, normals, textures, depth

RHF 50s 100ms Samples: Colors

LBF unknown 3s Pixels: Colors, coordinates, normals, positions,
textures, illumination, 1st bounce textures

FOR 200s 100s Pixels: Colors, coordinates, normals, depth,
textures, illumination

All discussed filters promise high-quality denoising. These assumptions are
however based on the examples given in their corresponding publications. It is not
unthinkable that the examples given in these publications are chosen specifically
to show the strengths of the proposed filters. Therefore the filters could perform
worse in our application than they are implied to. The only way to confirm this is to
implement or integrate (if a public implementation is available) a filter ourselves to
study its performance.

RHF on the GPU is the only filter with a measured runtime that is suitable for use
in an interactive path tracer. DFC and LBF need significant GPU optimizations to be
suitable. GID is probable to reach desired runtimes after a GPU implementation:
most of its runtime is used to execute general image denoising algorithms, of which
efficient GPU implementations are often publicly available and documented. RPF
and FOR are likely impossible to be made suitable for interactive filtering, but ideas
from their methods could be leveraged to improve an interactive filter.

We implement RHF as a reference filter, being the only state-of-the-art filter
we found to be suitable for interactive filtering. For the following iterative steps
of improving upon this implementation, we consider all filters and their proposed
methods, in an interactive context.

15

Chapter 4

Implementation

4.1 Ray Histogram Fusion

RHF is divided in two phases: the accumulation of sample colors in histograms
during rendering, and the post-process merging of pixels with similar histograms.

Accumulating sample color histograms For each pixel an empty histogram is
created. The histograms contain three sets of bins, one for each channel of the RGB
color space. Each set of bins ranges from the lowest possible color value (0), to
an arbitrarily chosen highest value (7.5). The number of bins and their sizes have
to be chosen in advance. We used 20 bins per channel per pixel, and bin sizes
increasing exponentially with an exponent of 2.2. Each sample is inserted in their
corresponding histogram, by calculating for each channel in the sample to which
bin it belongs, and then incrementing the counter of that bin by one.

Filtering This step is computed once as a post-processing filter. For each pixel,
its histogram is compared to the histograms of neighbouring pixels within a
prespecified window size. Histograms are compared using a chi-squared distance
threshold. If this distance is below a set user parameter, the pixels will be merged.
The rationale behind this, is that if two sample histograms are similar, the pixels
geometric, texture, and shading properties are likely similar, warranting a merge for
these pixels to increase the effective sample count, removing noise (figure 4.1).

FIGURE 4.1:
Top: The first pixel’s histogram distribution is unimodal. The other pixels lie on an edge and
their histogram distributions are both bimodal, and therefore only these other two pixels
should merge with each other. Bottom: These pixels differ considerably in color, but have
similar histograms, implying they will converge to the same color, and thus should merge.

Source: [Del+14]

Chapter 4. Implementation 16

RHF implementation and results We fully implemented RHF, to check its
denoising quality. We were pleased with the results for the most part. Unfortunately,
in specific cases, the results were disappointing. In low color contrast areas of a
render, for example on wooden surfaces with distinctive wood grain textures (figure
4.2), RHF merged too many pixels, blurring all fine details.

FIGURE 4.2: Left: 256spp input, Middle: RHF, Right: reference.

We concluded the reason for this failure case was the fact that most samples
belonging to this surface were contained in the same bin, as their color values were
very similar and the bins can only distinguish between 20 different color values per
channel. Only after the bin count increased tenfold, the problem began to disappear.
However, since the chi-squared distance compute time scales linearly with bin count,
this solution is unfeasable due to the massively increased filter time.

We explored the option of using different bin sizes, decreasing bin size within
the color regions where fine detail denoising was needed, effectively increasing
the bin count only where it would improve denoising performance. The problem
with this approach is however, that every render requires a different binning
strategy, with bins concentrated in different color regions. Furthermore, the binning
strategy must be known before rendering starts, as it is otherwise impossible to
determine during rendering in which bin a sample should belong. After testing,
we found automatically computing a succesful binning strategy beforehand to be
too unreliable.

We found that where RHF failed to discriminate between two pixels where it
should have, the texture color (albedo) or geometry normal values would often differ
significantly between these two pixels. After incorporating distance calculation
for these two features alongside the chi-squared metric, the problem was solved
(figure 4.3). However, disabling the chi-squared metric and keeping the two features
only to calculate pixel distance, we noticed only a marginal decrease in denoising
performance, alongside a large improvement in filter computation time. This led us
to believe RHF was too ineffective for our needs, and a fleshed out feature-based
filter could provide far better denoising results. This led us to the development of
our novel Feature Distance Filter, described in full detail in the next section.

FIGURE 4.3:
Middle: RHF overblurs low-contrast details.

Right: Detail is preserved when leveraging texture and normal features.

Chapter 4. Implementation 17

4.2 Feature Distance Filter

FDF is our novel filter implementation, and greatly based on the notion that filtering
based on feature buffers as input is very effective [RMZ13], [KBS15], [Bit+16]. As
input for our filter we make use of three feature buffers: texture features, normal
features, and our own novel shading features. The shading feature buffer is noisy,
and therefore we prefilter it using non-local means (NL-means) [BCM05], based
on the prefiltering step in the work by Bitterli et al. [Bit+16]. We improve the
prefiltering by extending the algorithm to become adaptive in strength based on
the noisy input image’s sample count, and by reducing computation complexity
while still retaining largely the same denoising quality. Using these three features,
we filter the noisy image by means of our own variant of the bilateral filter based
on the work by Rousselle, Manzi, and Zwicker [RMZ13]. To our knowledge, we are
also the first to implement a feature-based filter that ignores the input image’s color
feature buffer completely, proving it is unnecessary as a filter weight. A schematic
overview of the filter’s workings is shown in figure 4.4.

FIGURE 4.4: A schematic representation of FDF.

Texture and normal feature buffers We modified the path tracer to allocate three
feature buffers before rendering: For the texture and normal features, we allocate
two RGB color space buffers, and for the shading features we allocate a single-
channel grayscale buffer. While rendering, the feature buffers’ values are generated
by the path tracer. For each color sample the path tracer calculates for a pixel,
we accumulate corresponding feature values in the feature buffers. For the texture
feature buffer we accumulate the unshaded albedo value of the surface that was hit
by the primary ray of each sample. We do the same for the normal feature buffer,
but use the world-space normal value of the surface. Since world-space normal
axis component values fall in the range [−1, 1], we apply x = (x+ 1)/2 to each axis
component to map to the visible RGB color range of [0, 1]. Primary rays are always
traced through the area of the pixel they are supposed to render; their directions
are not dependent on random bounces. Therefore these buffers are not noisy, nor
aliased, thus not needing any prefiltering. An example of the texture and normal
feature buffers is provided in figure 4.5.

Chapter 4. Implementation 18

FIGURE 4.5: From left to right: 800ms noisy input, texture feature buffer, normal feature
buffer, and denoised shading feature buffer.

Using only texture and normal features as weights for a bilateral filter provides
surprisingly good denoising results. However, the denoised image still loses detail
in image regions where differences in reference image color are not captured well by
the features. This mostly manifests itself in lack of (correct) lighting effects, such as
shadows, color bleeding, global illumination, ambient occlusion, and translucency.
An example of this lack of lighting detail is shown in figure 4.6. Most filters try
solving this by utlizing the (noisy) input color buffer in some form for filtering
[Bau+15], [Del+14], [KBS15]. Rousselle, Manzi, and Zwicker [RMZ13] propose the
visibility buffer, which discriminates whether pixels receive direct lighting or not.
Bitterli et al. [Bit+16] apply a first-order model to the input to try and solve this
problem. All options however, have shortcomings and weaknesses in one or more
areas, and in our opinion, perfectly reconstructing all lighting effects in all possible
situations is the most difficult aspect of creating a denoising filter.

FIGURE 4.6: From left to right: 800ms noisy input, denoised using texture and normal
feature buffers only, denoised with the addition of our shading feature buffer, reference.

Shading feature buffer To try and solve the problem of denoising while
preserving lighting details, we propose a new method utilizing our novel shading
feature buffer. Our reasoning is that, having noted that denoising using feature
buffers is an effective strategy for preserving detail, this denoising approach could
also be successfully applied to preserve lighting detail, if a feature buffer could be
generated that captures lighting information well. With the shading feature buffer,
we try to achieve this goal. Figure 4.6 shows an example of the type of detail our
shading feature buffer can preserve, and figure 4.5 shows an example of a (denoised)
shading feature buffer.

Chapter 4. Implementation 19

Generating the shading feature buffer is more complicated than generating the
texture and normal feature buffers. Where these buffers take values from each
sample’s primary ray hit, we take values from the endpoint of each sample’s fully
traced lightpath for the shading feature buffer. Every lightpath ends by one of two
possible means: either the path gets terminated by russian roulette, having bounced
around the scene for too long, or it reaches a light source and terminates there.
The light source can be a distinct light (e.g. a lightbulb), or when a lightpath
reaches the skybox of the scene, this skybox is used as a lightsource. If a lightpath
gets terminated, a value of 0 is accumulated to the shading feature buffer. If a
lightpath reaches a lightsource, the intensity of the lightsource is accumulated to
the shading feature buffer. Using this method, we can successfully approximate the
amount of light that reaches each pixel, regardless of whether the light reached that
pixel directly, or indirectly via for example color bleeding or through a translucent
material.

Downside of this approach however, is that the feature buffer is noisy. Because
the value accumulation relies on the outcome of random bounces and russian roulette,
each sample generates a different lightpath, resulting in a different value added to
the feature buffer. Therefore, we have to denoise the shading feature buffer before
it can be used as a weight for the bilateral filter. Otherwise, the noise present in the
shading feature buffer would be propagated through the bilateral filter weights to
the final denoised image. We denoise the shading feature buffer using a modified
version of NL-means. An example of the denoising is shown in figure 4.7.

FIGURE 4.7: Shading feature buffers from left to right: 800ms noisy input, 800ms denoised,
8.000ms denoised, 80.000ms denoised.

NL-means denoising Given the noisy shading feature buffer, which is a single-
channel greyscale image, a denoising algorithm is needed that works exclusively in
image space. Therefore we look in the class of general image denoising algorithms.
In recent work, the most effective general image denoising algorithm for monte carlo
images has already been elected: [RMZ13], [KBS15], and [Bit+16] all use NL-means
in some form for prefiltering, and [Bau+15] even use NL-means as a main filtering
step. Therefore, we chose to use this algorithm for prefiltering too.

NL-means, proposed by Buades, Coll, and Morel [BCM05] in 2005, is still state-
of-the-art for general image denoising today. It computes the final output for a pixel
as the weighted sum of a set of pixels contained in the region situated around the
input pixel. This also applies to bilateral filters, but with the difference that with
NL-means, the weight calculation between two pixels is not only determined by
these two pixels, but by two patches of pixels, centered around the two pixels to
be compared. By comparing patches instead of pixels, the influence of a single
pixel’s noise component greatly diminishes, allowing for much improved denoising
performance. An example of NL-means is shown in figure 4.8.

Chapter 4. Implementation 20

NL-means computes the filtered value f(p) of pixel p as the weighted average of
pixels in a square neighbourhoodN(p) centered at p of search window size (2r + 1)2,
with weight w(p, q) as the weight between pixel p and pixel q.

f(p) =
1

W (p)

∑
q∈N(p)

q ∗ w(p, q)

Where W (p) is a normalization term, scaling the final value of p by the total amount
of weight.

W (p) =
∑

q∈N(p)

w(p, q)

The weight w(p, q) is calculated as the average weight between all equal-offset pairs
of pixels contained in the patches P (p) and P (q) centered at pixels p and q of patch
size (2s+ 1)2, with O(n) denoting the offsets for all pixels within a patch, relative to
the pixel centered at that patch.

w(p, q) =
1

(2s+ 1)2

∑
n∈O(n)

d(p+ n, q + n)

Where d(p+ n, q + n) is the squared difference in color value v (or grayscale value)
between the pixels at p+ n and q + n, transformed to return a weight of 1 for a
distance of 0, and exponentially decreasing in weight for a linear increase in distance.

Even though patchwise filtering greatly reduces bias that is introduced by
comparing distances between noisy pixels, every pixelwise comparison in itself
is still significantly biased, due to the noise component in both pixels. To cancel
out the noise contribution as much as possible, a variance term is subtracted from
the calculated distance. The original NL-means algorithm targets general image
denoising, where the pixel variance (noise component) is uniform. Assuming
uniform variance σ, the distance metric can be improved by substracting 2σ2 from
the pixel values’ squared difference.

In Monte Carlo path traced images however, variance varies greatly between
pixels, depending on a multitude of different scene properties like geometry shapes,
light locations, and material properties. Therefore the distance metric between pixels
p+ n and q + n can be further improved by canceling out the variance values per
pixel, which gives us our final distance metric implementation:

d(p+ n, q + n) = exp(−
(v(p+ n)− v(q + n))2

ε+ V ar(p+ n) + V ar(q + n)
)

Where V ar(p+ n) and V ar(q + n) are the variance of pixels p+ n and q + n, and ε
is an extremely small constant value that prevents any possible division by 0.

To obtain variance values for all pixels, we allocate a second single-channel
grayscale buffer, which we accumulate parallel with the shading features buffer.
Only for the variance buffer, we accumulate squared values of the traced light
intensity. We can then calculate V ar(p), knowing that variance is the average of
the squared differences from the mean:

V ar(p) = (pv/spp)− (ps/spp)
2

Where pv is the variance buffer value of p, ps is the shading buffer value of p, and
spp is the number of samples the buffer accumulated per pixel.

Chapter 4. Implementation 21

FIGURE 4.8: NL-means patchwise denoising:
weights w(p, q1) and w(p, q2) for similar
patches are high, allowing the pixels centered
at patches q1 and q2 to contribute significantly
to the denoising of the pixel centered at p,
while weightw(p, q3) is low, ensuring that any
contribution made by the pixel centered at q3

will be very small or even non-existent.
Source: [BCM05]

For best performance, we implemented NL-means on the GPU. Since the GPU
excels in handling massively parallel workloads, and NL-means has to perform the
exact same instructions for every pixel in the shading feature buffer, the algorithm is
a good fit for the GPU, speeding up computation time considerably relative to a CPU
implementation. We also made a number of performance to quality considerations:

• For the window size r, we used a value of 5, and for the patch size s, we used a
value of 2. Usually recommended values are around 10-20 for the window size
and 5-7 for the patch size. Altough larger values increase the denoising quality
of NL-means, we found 5 and 2 to provide the best computation time tradeoff,
while still providing good denoising results. The computational complexity
of NL-means is (2r + 1)2 ∗ (2s+ 1)2 ∗ n (with n being the number of pixels in
the image); reductions in either window or patch size parameters influence the
algorithm’s runtime significantly.

• For the shading feature buffer, we opted for a single-channel grayscale buffer
instead of a RGB buffer, storing the light’s intensity value only, instead of the
light’s full color value. We found this simplification to induce an unnoticeable
difference in denoising quality, while speeding up the NL-means algorithm
3x. A distance calculation now has to consider one channel only, instead of
repeating the calculation process for all three RGB channels.

• We chose not to incorporate some more complicated variance estimation
methods after observing only limited quality improvements, at the cost of
significantly reduced performance. These are: using two independent variance
and shading buffers to cross-filter one with the variance values of the other and
vice versa to further reduce variance bias, and using a dual-parameter variance
cancellation term that clamps variance to the lowest between pixels p and q to
prevent overblurring. Both are explained in more detail in [Bit+16].

As the input image’s sample count increases, the amount of noise present in
the accompanying shading feature buffer decreases. To prevent NL-means from
overblurring on higher sample count images, we divide the variance estimate by
the sample count. This results in a linear reduction of the filters power in relation
to sample count, which we found to be the optimal relation. The effect this power
reduction has on denoising is visible in figure 4.7.

Chapter 4. Implementation 22

Weighted bilateral filter The main and final step of FDF employs a weighted
bilateral filter. A weighted bilateral filter is essentially a simpler version of the
NL-means filter: they are identical in functioning, except that with the weighted
bilateral filter, the weighting function w(p, q) works purely on a per-pixel basis,
instead of taking patches of pixels into account like NL-means does. The weights
for our bilateral filter are the three feature buffers: texture feature buffer t, normal
feature buffer n, and shading feature buffer s. We calculate the distance between
pixels p and q as the largest distance of the three feature distances, and apply the
same exponential function as with NL-means to transform the distance to a weight.

w(p, q) = exp(−max(d(pt, qt), d(pn, qn), d(ps, qs)))

The distance function d(pf , qf), with feature buffer f takes the largest distance of
the feature buffer’s channels c first, and then normalizes the distance using a user-
specified maximum feature distance parameter fmax.

d(pf , qf) =

max
i∈[1...c]

(|pif − qif |)

fmax

For the texture and normal feature buffers, c describes a three-channel RGB buffer,
and for the shading feature buffer, c describes a single-channel grayscale buffer.
The maximum feature distance parameters fmax were chosen empirically: we found
tmax = 0.03, nmax = 0.06, and smax = 5

spp to work best. The sample count variable
spp is employed for the same reason as why it is employed in the NL-means prefilter:
to extend the filter to adapt to variable sample counts. As the sample count increases,
the measured shading feature buffer distances increase too. On noisy images with a
low sample count, this extension allows FDF to still remove all visible noise, albeit
at a loss of fine detail. On relatively converged images with a high sample count
however, the increased shading feature buffer distances preserve the image’s fine
detail, while still allowing just enough leeway to remove the weaker noise left-over
in a higher sample count image. An example of this is shown in figure 4.9.

FIGURE 4.9: Denoising of a very difficult translucent material, with a logo on the other
side of the material. As sample counts increase, noise decreases, and FDF becomes able
to discriminate the logo’s fine details. From left to right: 800ms noisy input, 800ms FDF

denoised, 8.000ms FDF denoised, 80.000ms FDF denoised.

We implemented the weighted bilateral filter on the GPU too, for the same
reasons as we did with NL-means. For the window size for the weighted bilateral
filter, we used a value of 8. Here, values of 10-20 are recommended again, however
here too the algorithm’s total runtime depends on the window size. Because the per-
pixel evaluations of the weighted bilateral filter require less computation time than
the patchwise evaluation of NL-means, we could afford to use a higher value of 8
instead of the lower NL-means value of 5.

Chapter 4. Implementation 23

Computational and memory overhead We measured runtimes and memory usage
of FDF on a machine equipped with a Intel Core i7-7700K, Nvidia GTX 1080, and
32GB of RAM. FDF’s runtimes scale almost perfectly linear with the amount of pixels
in the image to be denoised. A graph of runtime against pixel count is displayed
in figure 4.10. Important datapoints have been highlighted: the commonly used
resolutions 720p and 1080p, and a typical product configurator resolution: 800x800.

FIGURE 4.10: FDF’s runtime in milliseconds.

Runtime is dominated by NL-means, making up 90% of the total time, of which
80% is spent evaluating distance metrics. Only 10% is used by the bilateral filter.

FDF requires 9 32-bit floats per pixel to be allocated in GPU memory (2 RGB
feature buffers + single-channel NL-means shading input, output, and variance),
thus FDF’s memory overhead is 36 bytes per pixel, visualized in figure 4.11.

FIGURE 4.11: FDF’s VRAM usage.

24

Chapter 5

Results

First we evaluate the absolute quality of the renders generated by the path tracer,
integrated in the product configurator framework. Then, we evaluate the amount
of time needed to render images of this level of quality, with and without a
postprocessing filter. Finally, we evaluate the denoising performance and overhead
of FDF, compared to the current state-of-the-art.

We use three product configurator scenes for the quality and interactivity
evaluation. The scenes differ in complexity and material types, allowing the results
to more accurately reflect the range of quality and performance achievable in a wide
variety of scenes. The first scene is a worst-case scene of a high-complexity Bugaboo
Bee5 stroller using translucent materials for its canopy, which is typically difficult to
path trace. The second scene is a comparable scene of the same product, but without
a translucent canopy, to measure performance on high-complexity scenes without
translucent materials. The third scene uses a low-complexity model of a Prominent
Pure luxury armchair, to measure performance on a more common scene of average
difficulty. Path traced renders of all three scenes are shown in figure 5.1.

FIGURE 5.1: Bugaboo Bee5 transparent, opaque, and Prominent Pure.

5.1 Quality

On the next page, we show the quality evaluation on the most difficult scene,
checking correct presence of all the effects targeted in evalution table 1.1. For each
effect we have described where and how it is visualized in the path traced render.
As can be seen, we can successfully render the image, visualizing all requested
graphical effects, and showing no defects or glitches. Also, no significant differences
between the rasterizer and path tracer are present regarding material types, textures,
and scene setup, showing that our path tracer integration is working correctly. The
other scenes performed the same (5.1). We can therefore conclude that our integrated
path tracer can successfully render images of high-quality.

Chapter 5. Results 25

Effect Example of visualization Path tracer evaluation
Indirect lighting Underside of seat support frame

no longer uniformly lit by ambient
lighting

Underside seat support
is now darker, since less
light rays reach there

Color bleeding Parts of the metal bars being
lightly colored yellow due to color
bleeding from the yellow canopy

Left upper metal bar
shows yellow
reflections

Contact shadows Realistic darkening between two
close surfaces, not approximated
by ambient occlusion

Darkening on canopy
near right upper metal
bar’s extension button

Soft shadows Proper soft shadow on the ground
cast by the stroller instead of the
current blurred hard shadow

Smoothly dissipating,
wide-range, soft
shadow on the ground

Reflections Correct reflections of the metal
bars and chrome bolts instead of a
screen space approximation

Chrome bolts visualize
skybox and object
reflections correctly

Anti-aliasing No visible aliasing in the image
due to pixel area random
sampling

No aliasing, and of a
better quality than the
rasterization method

Translucency Yellow light cast on the seat,
transmitted through the yellow
canopy

Upper part of white
seat is lightly colored
by a yellow glow

TABLE 5.1: Table of the requested effects, visualization examples, and
visualization evaluation for the path tracer.

FIGURE 5.2: Left: Rasterizer, Right: Path Tracer.

Chapter 5. Results 26

5.2 Interactivity

We evaluate the amount of time required to render the aforementioned scenes at a
resolution of 800x800 pixels to high quality (table 5.2). All measurements were taken
on a machine equipped with a Intel Core i7-7700K, Nvidia GTX 1080, and 32GB of
RAM. We found this evaluation to be impossible to compute exactly: the MSE at
which a render becomes noise-free (for unfiltered renders) or bias-free (for filtered
renders) to a human differs for every scene, and depends on whether the render was
filtered not. Therefore we measured render times by human evaluation. The point
at which we accepted a render was professionally determined by 3DIMERCE’s 3D
visual expert Huub van Summeren, aligning the point of acceptance with the quality
requirements for using renders in a production environment.

Scene Unfiltered Filtered
Bee5 transparent 38.4s 12.8s
Bee5 opaque 38.4s 9.6s
Pure 19.2s 4.8s

TABLE 5.2: The required render times for achieving high-quality.

The results are far under performance target: For filtered renders, the render
times are about 2-16x too slow to be marked as interactive. We also plotted graphs
displaying the filter’s MSE improvements over time in figure 5.3.

FIGURE 5.3: Dark colors: unfiltered MSE, light colors: filtered MSE.

Around the 1 second mark, we achieve significant MSE improvements. As time
progresses, the relative improvement decreases: as the error of the unfiltered render
decreases, less opportunity is left for the filter to improve upon its input. We achieve
a larger improvement on the Pure scene due to its reduced complexity, containing
less areas of fine detail for bias to appear. On the opaque Bee5 scene, we lose quality
starting at 6.4s, according to the MSE metric. However, the filtered render still
converts all noise to bias. A human evaluation could find the filtered render to be of
better quality (figure 5.4).

FIGURE 5.4: Opaque Bee5 6.4s equal MSE: input, filtered, reference.

Chapter 5. Results 27

5.3 Filter performance

We compare FDF’s denoising performance against the current state-of-the-art in
postprocessing denoising filters aimed at non-realtime reconstruction (16 to 1024
samples per pixel as input): the original Non-Local Means algorithm by Buades,
Coll, and Morel [BCM05] applied to the pixel color output buffer on multiple scales
(NLM), Ray Histogram Fusion by Delbracio et al. [Del+14] (RHF), Robust Denoising
Using Feature and Color Information by Rousselle, Manzi, and Zwicker [RMZ13]
(DFC), Learning Based Filter by Kalantari, Bako, and Sen [KBS15] (LBF), Weighted
Local Regression by Moon, Carr, and Yoon [MCY14] (WLR), and Nonlinearly Weighted
First-Order Regression by Bitterli et al. [Bit+16] (FOR).

We tested all filters on the sample counts 16, 64, 256, and 1024 on two scenes:
San Miguel by Guillermo M Leal LLaguno, and Bedroom by SlykDrako. We found
integrations of all state-of-the-art filters for the open source path tracer pbrt. San
Miguel is included in pbrt, and a port of Bedroom to pbrt was made available by
Benedikt Bitterli. Currently, FDF is only integrated in our own path tracer. We
imported San Miguel and Bedroom into our path tracer to compare our results
against the state-of-the-art filters. Due to differences between pbrt and our path
tracer, small discrepancies regarding materials, objects, and tone mapping exist
between the scenes. However, we did manage to replicate the lighting setup of pbrt
exactly in our path tracer, allowing for a fair comparison. The exact scene setups
used are displayed in figure 5.5.

FIGURE 5.5: Top: San Miguel, bottom: Bedroom, left: ours, right: pbrt.

http://www.evvisual.com/
https://www.blendswap.com/user/SlykDrako
http://pbrt.org/resources.html
https://benedikt-bitterli.me/resources/

Chapter 5. Results 28

5.6 contains the results for the San Miguel scene. All filtered images only contain
bias and no noise, allowing use of the MSE metric for a reliable comparison.

FIGURE 5.6: MSE of filtered renders of San Miguel.
Actual MSE values are multiplied by a factor 10.000 to increase readability.

Values from left to right represent sample counts 16, 64, 256, and 1024.

FDF achieves excellent results here, managing the best score on all sample
counts, albeit with a tight margin in some cases.

The same test is repeated for the Bedroom scene, displayed in figure 5.7.

FIGURE 5.7: MSE of filtered renders of Bedroom. The same format applies as in figure 5.6.

Here, FDF only manages a mediocre result, scoring a fourth place on average.
The gap between FDF and better scoring filters however, is not extreme.

The results above show that FDF can compete with the current state-of-the-art in
terms of absolute denoising performance.

Chapter 5. Results 29

Next, we measured runtimes of all filters, displayed in figure 5.8. All
implementations make use of the GPU. The test system is the same as before: Intel
Core i7-7700K, Nvidia GTX 1080, and 32GB of RAM. The runtimes are of a single
full denoising pass on a 720p image.

FIGURE 5.8: Runtimes of all filters in milliseconds. FOR and WLR
contain a break, since their runtimes do not fit in the chart.

Here, FDF achieves outstanding results, managing a second place, receiving
competition from NLM and RHF only.

Summary Purely from a denoising point of view, FDF, NLM, LBF, FOR, and
marginally DFC score decent to good results. RHF and WLR stand out with subpar
results. From a runtime point of view, FOR and WLR run for an extremely long
amount of time, making them only suitable for multi-minute rendering. The same,
altough to a lesser extent, applies to LBF and DFC, making these filters only suitable
for non-interactive rendering. LBF also needs to be trained once before use, which
took approximately 4.5 hours on our system. The results of training can be saved
for reuse though. This leaves FDF with real competition from NLM and RHF only.
During our own implementation, we have found RHF to perform subpar, which the
state-of-the-art comparison tests confirms, showing RHF to perform significantly
worse than other filters, especially on lower sample counts typically associated with
interactive rendering. NLM finally, performs consistently slightly worse than FDF,
while also requiring slightly more compute time.

Putting all of the above in perspective, we find our filter to be the best performer
in this evaluation, when runtimes and denoising performance are both taken into
account.

For visual reference, we compiled a set of images to compare the denoising
performance of the various filters in figure 5.9. Note that FDF’s images look
slightly different due to small scene differences caused by different conversion and
importing methods between pbrt and our own path tracer.

Chapter 5. Results 30

FIGURE 5.9: Comparison between all tested filters.

31

Chapter 6

3DIMERCE

This chapter contains all work and research specific to 3DIMERCE. First, we share
a study of their product configurator framework. Then, we describe how we
implemented the integration of our path tracer in this framework. Finally, we show
the results of our evaluation, regarding the feasibility of using a path tracer in their
product configurator framework in a production environment.

6.1 The Pancakes framework

The Pancakes framework is 3DIMERCE’s internal name for the software developed
in-house that their servers are running, compiled by Unity3D.

Each running Pancakes instance constantly listens for incoming messages, which
can be sent by clients to request a render. Each message contains a multitude of
details describing the render request: what object to render, the location and rotation
of the object, the location and rotation of the camera, the resolution to render at, what
background scene to use, what additional parts to add to the object, and what colors
and materials to use for the object and the parts. First, all information is parsed by
Pancakes. Then, an ingame Unity3D scene is arranged according to the message’s
information by spawning, translating, rotating, and texturing the specified objects,
cameras, and background props. As soon as everything is in place, the game engine
renders one frame of the scene to a texture, and closes the scene again. Finally, the
texture is converted to the requested file format (usually .png or .jpg) and sent back
to the client. A schematic representation of the pipeline is shown in figure 6.1.

FIGURE 6.1: A schematic representation of the Pancakes framework’s
main use case.

In our integration, the path tracer can setup a scene configured by Pancakes,
render the scene to a texture, and send it back to Pancakes: it replaces the blue
Unity3D block in the schematic. Pancakes is modified to send scene info to and
read a render texture back from the path tracer instead of Unity3D.

https://unity3d.com/

Chapter 6. 3DIMERCE 32

6.2 Path tracer integration

The path tracer and Pancakes are two standalone applications. When integrating
the path tracer into Pancakes, it is important to keep this independency. This
ensures both applications can still run without the need for one another, and that
development of one application can happen without dependency on the other.

First, we explain how Pancakes can send a request to the path tracer, and how
the path tracer can respond to this request. Then, we detail the process of exporting
scene information in Pancakes, and importing scene information in the path tracer.

Sending a request The path tracer is a C++ Microsoft Visual Studio project, which
compiles to an executable, created inside its project folder. The executable has to stay
within the project folder because it depends on a considerable amount of resources,
also located inside the project folder. If a user has both the path tracer and Pancakes
installed on his/her machine, the most practical way for Pancakes to run the path
tracer is by running the executable inside the path tracer’s project folder.

To inform Pancakes of this folder’s location, we added a new option to the
configuration file of Pancakes, containing the location of this folder. We also added
a new option to the Pancakes request messages, enabling them to ask for a path
traced image. This option is accompanied by a parameter, describing the amount
of time in milliseconds that the path tracer is allowed to spend on rendering the
image. Pancakes’ pipeline was edited to recognize this option, and forward the
render request to the path tracer instead of its internal renderer.

We converted the path tracer from a Windows Forms application to a console
application, allowing it to receive commandline arguments. Pancakes is modified to
be able to run the path tracer’s executable and send along commandline arguments
that contain the scene information needed by the path tracer to know what to render.

Replying to a request The path tracer continually renders to a window, and
provides no ways of exporting what it renders. Moreso, the rendering happens on
the GPU, and therefore the render data resides there too. Also, these renders only
contain RGB information.
To send a render back to Pancakes, we first copy the render data on the GPU back to
the CPU, where we store it in an array that resides in constant memory. For Pancakes
renders, alpha channel information is also needed to enable the rendering of images
with transparency. Therefore, we modified the path tracer’s render target to contain
four values (RGBA) per pixel instead of three (RGB), and incorporated rendering of
the alpha channel in the path tracing algorithm.

When the path tracer has completed a render, it writes the memory address
of the array back to the commandline. Pancakes, having started the path tracer
from the commandline, reads this memory address back. Then, Pancakes reads
the array from memory using the received memory address, and uses this data
to fill a new Unity3D render texture. This render texture is then passed back
to the regular Pancakes render pipeline, at the same location where the internal
Unity3D renderer would have returned a render texture containing a screenshot of
the Unity3D scene. Pancakes then continues handling the render request like any
other request, converting the texture to an image and sending it back to the client.

Chapter 6. 3DIMERCE 33

Pancakes: scene exporting The various scene configurations that Pancakes uses
are stored in the project. Before sending a render request off to the path tracer,
Pancakes has to gather all required scene information from the requested Unity3D
scene, which is listed below. For each item in the list, a different commandline
argument is used, that was designed specifically for this item.

• Resolution: contains a width and height parameter describing the requested
render’s resolution.

• Camera: contains the render camera’s world position, rotation, and field of view.

• Lights: Unity3D contains three types of lights: point lights, spot lights, and
directional lights. Support for these light types has been added to the path
tracer, to allow accurate scene recreation. For each light in the scene, a new
commandline argument is sent, containing the light type, light color (including
intensity), position, rotation, and angle. However, this only happens if the light
is configured in Unity3D to cast hard shadows. In Unity3D lights can cast
hard, soft, or no shadows. Only the casting of hard shadows is physically
correct for these light types. The path tracer is a physically based renderer,
and can therefore only render hard shadows for these light types. To avoid
bad looking hard shadows in the path traced renders where the 3DIMERCE
scene designers intended soft or no shadows, Pancakes only sends lights that
are configured to cast hard shadows to the path tracer.

• Environment: The environment for a Pancakes render consists of a skybox
and an invisible ground plane, to cast shadows on. The skybox path is sent,
along with an intensity. If Pancakes had to skip lights in the previous step,
the skybox intensity gets an additional increase to compensate for the missing
lights, ensuring the scene stays bright enough. The skybox is only used
for lighting, and should not be visible in the final render. For the visible
background, a background color is sent. If the alpha channel of this color equals
zero, the background of the image will be transparent. The size and shape of
the invisible ground plane is also configurable, limiting the area on the ground
that can receive shadows. For this, a shadow mask texture path is sent.

• Materials: All materials in Pancakes are based on the Hubershader, a custom
version of the internal Unity3D shader. All shader information needed by the
path tracer to correctly replicate a material is directly read from the shader file
by Pancakes and then sent to the path tracer. This information entails: name,
color, specularity, glossiness, translucency, scale, and a number of textures: diffuse
map, specular map, glossiness map, and up to three normal maps. For each texture,
their associated intensity, texture scale, and texture offset are also sent along.

• Meshes: The model(s) in a render usually consist of multiple meshes, to
allow optional and customizable parts for a model. For each mesh, Pancakes
calculates the world space location and rotation, and then sends the needed
data: mesh file path, material name, scale, position, and rotation.

Chapter 6. 3DIMERCE 34

Path tracer: scene importing The path tracer is a standalone application that
starts rendering a predetermined scene on startup. We modified it to read any
commandline arguments passed on startup. If commandline arguments are present,
it switches into commandline mode, parses the arguments, and configures a scene
accordingly. The most prevalent modifications to the path tracer that allow it to
configure a scene to Pancakes’ standards are listed below.

• Resolution: The path tracer could only use a single precompiled resolution.
We modified this to allow dynamic resolution, depending on the render
request.

• Environment: To visualize the background color, all rays that hit the skybox
are separated in two distinct types: primary rays, directly generated from the
camera, and extended rays, bounced from an object. The primary rays receive
the requested background color for the render, and the extended rays receive
the skybox color to shade the surface they bounced from.
Rendering an invisible ground plane that can receive shadows is physically
incorrect and therefore requires some substantial hacking: If a primary ray
hits the ground plane, a check is performed to determine if it falls within the
texture mask. If it doesn’t, we render the background color. If it does, we
let the ray bounce, and check what the ray hits next. If it hits an object, we
shade the ground plane with the received color, which gets visualized in the
form of shadow on the ground plane. If it hits the skybox, we render the
background color again. Rays hitting an object first and then bouncing onto
the ground plane receive a special treatment too: Rays falling outside of the
texture mask get forwarded to the skybox as extended rays. Rays within the
texture mask get separated into diffuse rays and specular rays, depending on
the last type of bounce off the object. Specular rays also get forwarded to
the skybox as extended rays. This allows visualization of skybox reflections
on specular surfaces. Otherwise, the ground plane would become visible
within the reflections of these specular surfaces. Diffuse rays get colored by
the background color, visualizing a global illumination effect on the underside
of the object.

• Materials: In Pancakes, a material has one layer, and both specularity and
glossiness parameters. In the path tracer, a material has two layers, both
having only a specularity parameter. Through testing, we found that always
setting one layer fully diffuse, matching the other layer’s specularity with
the Pancakes glossiness parameter, and setting the balance between the two
layers proportional to the Pancakes specularity parameter, to give the most
satisfactory results.
Support for the various material textures, with alpha, scales, and offsets, has
also been added to the path tracer, as well as support for partially translucent
materials, to cover Pancakes’ translucency parameter.

• Meshes: All Pancakes meshes are of the Filmbox (.fbx) format, developed
by Autodesk. A novel importer using Autodesk’s FBX SDK has been
implemented, to import the Pancakes meshes into the path tracer.

https://www.autodesk.com/

Chapter 6. 3DIMERCE 35

6.3 Objective and results

3DIMERCE’s wants to know whether using a path tracer in their product
configurator solution is feasible. The limiting factor is the render time required.
They impose a strict requirement on the render time: Rendering the Bugaboo Bee5

scene, with a resolution of 800x800 pixels, using a Nvidia GTX 1080, should not
take more than 800 milliseconds. Referencing the results in table 5.2, we are 48x
off performance target without, and 16x with employing our filter. Thus we can
conclude that using a path tracer is not feasible for 3DIMERCE, at least until a
combination of advances in hardware performance and significant optimizations in
path tracing and filtering result in a 16x speedup over what can be achieved today.

In 800ms, we do still achieve reasonable quality when employing our filter, but
not high enough for the render to be accepted as high-quality, as visible bias is still
left-over. Figure 6.2 shows an example of the reached and desired image quality:
here the quality of shadows after filtering on lower sample counts is insufficient.

FIGURE 6.2: From left to right: 800ms noisy input, 800ms denoised (spotty shadows),
9600ms denoised (acceptable quality), reference.

Our filter performs well at the 800ms mark, improving measured MSE by 3-16x
(table 6.1). FDF, taking about 200ms to execute, was designed to perform optimally
around the 800ms mark, since rendering images within this timeframe is the ultimate
goal of high-quality interactive rendering. As it turns out, to achieve images of
sufficient quality, the filter is applied after 5-15s, where it is relatively less effective:
a more complicated filter requiring 1-3s to execute could probably have achieved a
significantly larger speedup than FDF around this timeframe.

Scene Unfiltered Filtered Factor
Bee5 transparent 0.002344 0.000510 4.6x
Bee5 opaque 0.001503 0.000505 3.0x
Pure 0.001383 0.000087 15.9x

TABLE 6.1: FDF’s MSE improvement on 800ms renders.

Besides increasing compute power, we believe the results can be improved by
optimizing the meshes of the models used in the renders. The Bugaboo Bee5 has a
very high polycount of over 2 million polygons. The level of detail of such a high
polycount is too precise to be visible in a 800x800 render. Reducing the polycount
could significantly improve performance.

36

Chapter 7

Discussion and future work

Main research question Our main research question was related to finding out
whether high-quality interactive path tracing for use in a production environment
is possible today, or in case it is not, how far off we currently are from this goal. We
formulated the question as:

How fast can high-quality images be rendered, by means of path tracing?

Where the images are production environment ready, portraying customizable
and complex models of products at useable resolutions, and are of high quality,
containing no noise, bias, errors, or glitches, and visualizing all graphical effects
associated with path tracing where applicable. The answer to this question, on
the specific scenes and hardware we used for evaluation, is roughly 5-15 seconds.
Interactive render times are ideally under a second, but up to a couple of seconds is
acceptable. Thus, we currently are about 2-16 times off from this goal, depending
on scene complexity and the precise amount of allowed render time.

Discussion Given that we are still about 2-16x off target, we can estimate the
amount of time it will take for advances in hardware to catch up to this deficiency.
For this, we reference Moore’s Law, which states that roughly every two years the
number of transistors on integrated circuit chips doubles, and therefore in a best-
case scenario performance too. This means that we might be able to just start being
able to render interactively in as little as two years, and are likely to interactively
render complex scenes in under a second in less than a decade.

The premise of this research project was that enabling high-quality interactive
path tracing was likely to be possible today, with the help of a postprocessing filter
specifically tailored for interactive rendering. In hindsight, we believe this premise
to have been overly optimistic. Our novel filter FDF achieves comparable denoising
performance to the current state-of-the-art, while requiring only a couple of hundred
milliseconds to execute, allowing it to be used for interactive rendering, while the
current state-of-the-art could require multiple minutes of compute time. However,
our filter still needed roughly 10x more path tracing samples to be able to denoise
renders without visible bias than could be traced in under a second. Thus, for high-
quality interactive path tracing to be feasible today, we would have had to propose
a postprocessing filter that would improve over current state-of-the-art tenfold in
performance, while still needing only a couple of hundred milliseconds to execute.

Chapter 7. Discussion and future work 37

Scientific contribution We gave a scientific contribution related to postprocessing
denoising filters by researching current filters, implementing novel techniques, and
comparing between state-of-the-art and novel filters, summarized below:

We thoroughly examined Ray Histogram Fusion by implementing our own
version and found weaknesses in the algorithm, causing overblurring in low-
contrast areas, killing expectations of RHF being suitable for interactive rendering.

To combat RHF’s problems we went with a feature-based filtering approach,
of which we had to implement our own version Feature Distance Filter, since the
currently available feature-based filters required computation times at least in the
order of seconds. The main shortcoming of FDF was the overblurring of lighting
effects like shadows, translucency, and color bleeding. Pixels are discriminated
based on their distances to each other in feature buffers, and we could not find usage
of a feature buffer directly targeting lighting effects in the literature.

To address this shortcoming, we proposed a novel feature buffer, the shading
feature buffer. It is created by accumulating the amount of light that reaches each pixel
while sampling. This resulted in a noisy buffer, which we opted to denoise using
NL-means. NL-means buffer denoising has been implemented before in literature,
and we implemented our own variant, keeping computation time in mind, to create
a faster variant with relatively little denoising quality loss.

We compared our novel filter FDF to the current set of state-of-the-art filters
on two representative scenes and found it to achieve adequate denoising quality,
performing best overall in one scene and performing averagely in the other.
We compared runtimes and found our filter to be second fastest, 100ms behind
the fastest filter RHF, achieving 10-100x faster runtimes than other filters in the
comparison. In our opinion we have proposed a new filter that achieves the best
tradeoff between denoising quality and runtime so far, advancing progress in the
field of postprocessing denoising filters for path traced images.

FDF’s limitations Currently, FDF’s main limitation is the slight overblurring and
underblurring of certain areas. Ocassionally, on edges and complex areas of a scene,
FDF underblurs and leaves some residual noise, because all neighbouring pixels
are discriminated by one or more feature buffers, preventing the current pixel from
merging with any other pixels, leaving it noisy. Relaxing feature buffer distance
thresholds however poses no solution, as this increases overblurring in FDF: In
areas of extremely fine and low-contrast detail, FDF incorrectly overblurs, since the
feature buffer distance thresholds are too great to discriminate any neighbouring
pixels, pushing the current pixel to merge with all similar neighbours.

FDF future work Future work would be mainly focused around solving FDF’s
main limitation. It would be interesting to research any possible adaptive per-pixel
feature buffer distance threshold techniques. This technique should relax distance
thresholds on noisy pixels (e.g. on edges) to ensure they always get blurred enough
to look smooth, while it should tighten distance thresholds in cases where there are
many possible pixels to merge with, only merging with extremely similar pixels to
preserve fine detail. Another approach would be simply optimizing the complete
algorithm, to reduce computation time. This would allow for an increase in both
the NL-means and bilateral filter’s search window size, increasing the amount of
possible pixels to merge with, which in turn could allow for smaller feature buffer
distance thresholds, without inducing more underblurring.

38

Chapter 8

Acknowledgements

I wish to thank various people for their contribution to this project; Jacco Bikker, for
introducing me to 3DIMERCE, and providing an expert opinion and key insights
in various problems encountered during the making of this work. Huub van
Summeren, for always helping me out at 3DIMERCE, and providing a pleasant and
stimulating working environment. Kevin van Mastrigt and Olaf Schalk, for helping
me work out various programming issues and bugs. And Tessa Klunder, for her
love and support.

39

Bibliography

[Bau+15] Pablo Bauszat et al. “General and robust error estimation and
reconstruction for monte carlo rendering”. In: Computer Graphics Forum.
Vol. 34. 2. Wiley Online Library. 2015, pp. 597–608.

[BCM05] Antoni Buades, Bartomeu Coll, and J-M Morel. “A non-local algorithm
for image denoising”. In: Computer Vision and Pattern Recognition. IEEE
Computer Society Conference on. Vol. 2. IEEE. 2005, pp. 60–65.

[Bit+16] Benedikt Bitterli et al. “Nonlinearly Weighted First-order Regression
for Denoising Monte Carlo Renderings”. In: Computer Graphics Forum.
Vol. 35. 4. Wiley Online Library. 2016, pp. 107–117.

[Dab+06] Kostadin Dabov et al. “Image denoising with block-matching and 3D
filtering”. In: Electronic Imaging 2006. International Society for Optics and
Photonics. 2006, pp. 606414–606414.

[Del+14] Mauricio Delbracio et al. “Boosting monte carlo rendering by ray
histogram fusion.” In: ACM Trans. Graph. 33.1 (2014), pp. 8–1.

[Kaj86] James T Kajiya. “The rendering equation”. In: ACM Siggraph Computer
Graphics. Vol. 20. 4. ACM. 1986, pp. 143–150.

[KBS15] Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. “A machine
learning approach for filtering Monte Carlo noise.” In: ACM Trans. Graph.
34.4 (2015), p. 122.

[KS13] Nima Khademi Kalantari and Pradeep Sen. “Removing the noise in
Monte Carlo rendering with general image denoising algorithms”. In:
Computer Graphics Forum. Vol. 32. 2pt1. 2013, pp. 93–102.

[MCY14] Bochang Moon, Nathan Carr, and Sung-Eui Yoon. “Adaptive rendering
based on weighted local regression”. In: ACM Transactions on Graphics
(TOG) 33.5 (2014), p. 170.

[Par+13] Hyosub Park et al. “P-RPF: Pixel-based random parameter filtering
for Monte Carlo rendering”. In: Computer-Aided Design and Computer
Graphics (CAD/Graphics), 2013 International Conference on. IEEE. 2013,
pp. 123–130.

[Por+03] Javier Portilla et al. “Image denoising using scale mixtures of Gaussians
in the wavelet domain”. In: IEEE Transactions on Image processing 12.11
(2003), pp. 1338–1351.

[RMZ13] Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. “Robust
denoising using feature and color information”. In: Computer Graphics
Forum. Vol. 32. 7. Wiley Online Library. 2013, pp. 121–130.

[SD12] Pradeep Sen and Soheil Darabi. “On filtering the noise from the random
parameters in Monte Carlo rendering.” In: ACM Trans. Graph. 31.3 (2012).

[Sze+15] Sebastian Szeracki et al. “Boosting histogram-based denoising methods
with gpu optimizations”. In: Workshop Virtuelle Realität und Augmented
Reality der GI-Fachgruppe VR/AR. 2015.

	Introduction
	3DIMERCE
	Objective and contribution
	Research methodology
	Test method and evaluation
	Thesis structure

	Preliminaries
	Path tracing
	The rendering equation
	Monte Carlo integration

	Previous work
	Filtering
	STAR filter selection
	Summary

	Implementation
	Ray Histogram Fusion
	Feature Distance Filter

	Results
	Quality
	Interactivity
	Filter performance

	3DIMERCE
	The Pancakes framework
	Path tracer integration
	Objective and results

	Discussion and future work
	Acknowledgements

