
Version Control Systems: Diffing with Structure

Thesis

Giovanni Garufi
5685109

Supervisors:
Wouter Swierstra

Victor Cacciari Miraldo

Department of Computing Science
University of Utrecht

March 12, 2018

Contents

1 Introduction 1
1.1 Overview . 3

2 Background 4
2.1 Sum of Products . 7
2.2 Building our Universe . 8

3 Type-directed diff 11
3.1 Spine . 12
3.2 Alignment . 15
3.3 Atoms . 16
3.4 Recursive alignments . 17
3.5 Putting everything together 18
3.6 Applying Patches . 22
3.7 Disjointedness . 24
3.8 Clojure . 27

4 Heuristics 29
4.1 Basic Oracles . 30

4.1.1 NoOracle . 31
4.1.2 NoDupBranches . 32

4.2 Oracle composition . 33
4.3 DiffOracle . 33

4.3.1 Edge cases . 36
4.4 Cost . 41
4.5 Bounded Search . 43
4.6 Visualization . 44

5 Experimentation 45
5.1 Domain specific conflict resolution 45
5.2 Results . 47

6 Conclusion 48
6.1 Related Work . 50
6.2 Future Work . 51

1

Abstract

Today’s version control systems rely on the Unix diff utilities to detect
which lines in a file have been changed and to merge different changes to the
same file. Not all such changes, however, are best represented in terms of
modifications to lines of code. This may lead to unnecessary conflicts that
must be resolved manually by developers. This paper explores the usage of
an alternative algorithm for merging the syntax trees of the programming
language Clojure. As a result, a significant number of conflicts drawn from
existing Clojure repositories may be merged automatically, providing evi-
dence that tree-based algorithms offer better precision than the traditional
line-based approach in determining which changes give rise to conflicts.

1 Introduction

Version control systems (VCS) have been steadily becoming an ubiquitous
and central tool in programming. Many big projects, with hundreds of
collaborators, fundamentally rely on these kind of tools to enable different
users to interact with one another and to keep a structured log of the units
of change. At the heart of most modern VCS is the Unix diff utility. This
tool computes a line-by-line difference between two files of text, determining
the smallest set of insertions or deletions of lines that transform one file into
the other. This sequence of transformations produced by diff is called an
edit script. When two collaborators have modified the same source file
in independent ways and the VCS wants to reconcile the two independent
changes into a single one it will attempt to produce a single edit script that
encompasses both changes, this is commonly referred to as a merge. This
operation is clearly not always possible: if two collaborators have modified
the same line the two resulting edit scripts will “overlap”, it is not clear
which one of the two modifications should be picked. The algorithm used
to calculate these merges in most VCS is diff 3, which works by calculating
the two edit-scripts with diff, and attempting to merge them.

In general not all merges can be performed automatically; some conflicts
will always require a manual intervention: when two people change the
same thing in two different ways there is no general way of deciding which
should be the resulting transformation; however the diff tool makes a big
assumption in considering lines to be the basic units in which change is
observable.

The shortcomings of the approach in diff 3 can be seen in this simple
example. Suppose we have the following function in any lisp-like language:

(defn head [l]

(first l))

Suppose we make two independent modifications to this function obtain-
ing two distinct versions. The first adds a default parameter to be returned
in case the list is empty

(defn head [l, d]

(if (nil? l)

(d)

(first l)))

The second one changes the name of the function from head to fst.

1

(defn fst [l]

(first l))

When attempting to reconcile these two changes with the diff 3 algorithm
we will run into problems; despite the two patches are modifying disjoint
pieces of the actual code, the result will be a conflict. The reason is that both
changes occur on the same line; this is a nuisance as manual intervention
is required to solve the conflicts. Furthermore it also introduces some level
of non-determinism, as the presence of conflicts may depend on things like
indentation instead of being a fundamental property of the transformation.

The core idea that will be explored in this thesis is to design an alterna-
tive to diff which offers a finer grained control over the units of change. By
attempting to extend the diff algorithm to operate on an AST that repre-
sents the parsed program, we are able to focus on smaller units of change;
this allows us to produce more accurate patches.

The drawback of this approach is that it lifts the problem from one on
strings to one on trees – computing a patch between two elements suddenly
becomes computationally more expensive. Approaches similar to this one
have already been explored in previous literature [5, 4, 24]. In these pa-
pers, the problem of computing the difference between two trees was always
reduced to the problem of computing the difference of a flattened represen-
tation of the tree. While the flattened representation makes the problem
of computing a difference easier, it makes reconstructing a valid tree from
the representation more complex, and patches are more likely to generate
ill-structured data. The novelty in the work of Dagand, Miraldo and Swier-
stra [6] lies in the idea of enforcing a structure-preserving, type-directed
approach. On one hand structural information is directly encoded in the
patches, so that applying a patch will always produce well-formed tree. On
the other hand, the type information encoded in the grammar of the AST
is exploited in the creation of a patch, making the process potentially more
efficient.

The paper introduces a theoretical and practical framework to define
and compute patches between structured data. This framework is generic
and makes extensive use of dependent types in order to guarantee structure
preserving transformations.

The main contributions of this thesis are the following

• Porting the algorithm presented by Miraldo et al. from Agda to
Haskell. This requires some non-trivial setup as we need to replicate
the more advanced type-level features that are present in Agda.

2

• The authors define a non-deterministic specification of the algorithm
to compute all possible patches between two ASTs, this implies the
solution space is still too large when dealing with data collected from
bigger projects. We present different heuristics which can be combined
to prune the search space and make the problem tractable.

• Mining data from real-world Clojure repositories. This consists of
picking suitable repositories to be investigated and devising techniques
to extract real-world conflicts from their history branches.

• Finally, we want to measure the performance of our type-directed
structured-diff against the standard diff. Competing against diff in
terms of speed is definitely unfeasible as diff has linear complexity, in
contrast to the exponential behavior of our implementation. However,
we want to investigate if the quality of patches produced by our algo-
rithm is better than the ones produced by diff. For this reason we will
measure performance in terms of the conflicts that may arise when ap-
plying two patches with the same origin one after the other; intuitively
more accurate patches should lead to a smaller chance of conflicts in
this kind of scenario.

1.1 Overview

The chapters are structured as following: We start by showing a full Haskell
implementation of the algorithm presented by Miraldo et al. [6], which is
presented in Agda in the original paper. The original algorithm is imple-
mented generically and described through dependent types in the paper;
one of the main contributions of this thesis is to provide a Haskell imple-
mentation, instantiated for the Clojure language, that is suitable to run
experiments on real-world data. Haskell is scheduled to land full support
for dependent types in the next couple of years [9], in the meanwhile, they
can only be partially supported and require some additional effort to encode.
Both Generics and Dependent Types require some language extensions and
machinery which are non-trivial in Haskell.

The following section starts with an introduction to dependent types
in Haskell as they will be crucial in encoding the structure we want to
express in our data types and their transformations. Essentially we want to
characterize patches by the transformation they operate on the source code
(e.g. the patch that adds an extra argument to a function) as such, we need
dependent types to reflect onto the type system the action of a patch on a

3

certain value. This will assure that any code produced by the algorithm is
structurally valid by construction.

Following dependent types we will need to introduce sums of products:
these give us a general way to view types and will allow us to define an algo-
rithm that is independent of the representation of the AST for the language
we are treating. In this regard there is a fine balance between having a
core algorithm which is generic and can be applied to any language, and the
use of domain-specific strategies to guide the generation of patches by using
knowledge specific to the language in question. Despite the generality of the
algorithm, we have instantiated it for the Clojure programming language
[8]; this choice is motivated by the general simplicity of parsing languages
that derive from LISP and by the need to select a language that is popular
enough to have large active projects, available on Github, that will provide
us a good sample of data to test.

After presenting the algorithm for a type-directed diff, alongside its
Haskell implementation, we will analyze the performance of the non de-
terministic specification and conclude that it is still to slow for real-world
data. To solve this problem we will introduce different heuristics to guide
the process of patch generation and analyze their performance and short-
comings. Finally we will introduce the notion of disjointedness, a predicate
that attempts to capture the intuition that two patches that are not ”over-
lapping” should be mergeable. We will use this predicate to run experiments
on conflicts gathered from public repositories on Github and compare the
amount of merge conflicts obtained by our approach compared to diff 3.

2 Background

With time, Haskell’s type system has kept evolving from its Hindley-Miller
origins and through the use of different language extensions it has gained
the ability to express more complex types. In particular, many efforts have
gone to add some support for dependently typed programming in the latest
years. A dependent type is a type whose definition depends on a value. For
example, a list of Int is a standard type, but a vector of Int of a fixed
length n is a dependent type, as the static type depends on the dynamic
information about how many elements are actually in the list.

One major stepping stone in this direction is the DataKinds [3] extension
which duplicates an ordinary data type, such as

data Nat = Z | S Nat

4

at the kind level; this means that from this declaration we automatically
get two new types, namely Z of kind Nat and S of kind Nat -> Nat.

We can use the Nat kind to index generalized algebraic data types
(GADTs) in a way that allows us to create an analogue of a dependent
type. In the case of Nat, we can use it to define a GADT for vectors of a
given length.

data Vec :: * -> Nat -> * where

Vn :: Vec x Z

Vc :: x -> Vec x n -> Vec x (S n)

Such a vector is either the empty vector, of type Vec x Z, or a vector
which is built by adding an element of type x in front of a vector of xs of
length n, yielding a vector of xs of length S n.

This allows us to define safer alternatives to some of the functions which
operate on lists. The infamous head function will crash our program when
passed an empty list; equipped with Vec, we can rule this out by construc-
tion.

This is how we can define a head function on vectors.

head :: Vec x (S n) -> x

head (Vc h t) = h

Informally, we are saying that the head function takes as argument a
vector with length strictly greater than 0. In this way, if we try to pass an
empty vector to head we will get a compile time error instead of the usual
run time one.

Another extension which plays a crucial role in dependent types is Type-
Families: informally it allows us to write functions which operate on types,
we will use this to define concatenation between Vecs.

The following type family can be seen as a function that takes two types
of kind Nat and returns another type of kind Nat representing the result of
adding those two types.

type family (m :: Nat) :+ (n :: Nat) :: Nat where

Z :+ n = n

(S m) :+ n = S (m :+ n)

Equipped with this type family we can now define concatenation between
vectors.

5

vappend :: Vec x n -> Vec x m -> Vec x (n :+ m)

vappend Vn ys = ys

vappend (x `Vc` xs) ys = x `Vc` (vappend xs ys)

One interesting thing to note is that up to this point, we never use the
Nat part of a vector at run time. That information is only used at compile
time to check that everything “lines up” the way it should be, but it could
actually be erased at run time.

Suppose we want to write a split function; this function takes an n of
kind Nat, a vector of length n :+ m and splits it into a pair of vectors, with
respectively n and m elements.

The first problem is that we can not pass something of kind Nat to our
split function, in fact the types Z and S have no inhabitants, so we can
not construct any term of those types. Furthermore, we want to express
that this n of kind Nat that we pass as a first argument, is the same n as in
the vector length. The idea is to wrap this type into a singleton data type,
giving us a dynamic container of the static information.

data SNat :: Nat -> * where

SZ :: SNat Z

SN :: SNat n -> SNat (S n)

The name singleton comes from the fact that each type level value of
kind Nat (namely Z or S applied to another type of kind Nat) has a single
representative in the SNat type.

To sum things up: DataKinds extension promotes members of the type
Nat to inhabitants of the kind Nat. Singletons allow us to take one step
back in this ladder, associating to every thing of kind Nat a term from the
singleton type SNat. The following picture, borrowed from Eisenberg et al.
[2], gives a good representation of this process.

We can think of the DataKinds extension as a way of embedding dynamic
information into the static fragment of the language. Singletons, on the other

6

hand, are a way to reflect this static information back to the dynamic level,
and make run-time decisions based on the types we obtain.

Singletons solve the two problems outlined above: they have kind * and
contain a Nat that we can later refer to in the function type. We can now
define split as follows:

split :: SNat n -> Vec x (n :+ m) -> (Vec x n, Vec x m)

split SZ xs = (Vn, xs)

split (Sn n) (x `Vc` xs) = (x `Vc` ys, zs)

where

(ys, zs) = split n xs

With these three tricks up our sleeve (data kind promotion, type level
functions and singletons) we can emulate some of the features that are
present in dependently typed languages such as Agda. These features al-
low us to emulate explicit dependent quantification. We can actually go
even further in Haskell: Lindley et McBride [1] show us how to emulate im-
plicit types via type classes and ultimately how all kinds of quantification,
modulo some boilerplate, are possible in Haskell. Much like the encoding
of a dynamic property such as the length of a vector in its type, we will
use the same techniques to represent values of the data type we construct
patches on. This extra information encoded in the type will be crucial in
guaranteeing the transformations to be structurally and type preserving.

2.1 Sum of Products

The basic idea of the Sum of Products (SOP) approach is to define a “normal
form” for all generic representations of data types and to define generic
functions by induction on this form. It is, in some sense, similar to the
Disjunctive Normal Form for propositional logic in the sense that every
proposition can be expressed in DNF and we can write theorems (functions)
which assume the expression is represented in DNF. The bulk idea is to
view each type as a choice between a constructor and all the arguments that
are passed to that constructor. It is useful to think about the two different
levels: on the first level we make a choice about which constructor to pick;
this corresponds to a sum over all the constructors of the type. On the
second level, we are choosing a certain number of arguments to feed to that
constructor and this can be viewed as a list, or product, of those arguments.
Clearly the products will depend on the choice of constructor, each of which
could take a different number of arguments of possibly different types. This

7

motivates the need to represent the product as some sort of heterogeneous
list. A constructor can also take no arguments, in which case we can simply
use an empty list to represent that, but can also take an argument of the
same type it is trying to construct (like the S constructor from the previous
section). In this case, the recursive argument can itself be encoded as an
SOP and the same encoding can be used all the way down to the leaves.

For example, given the simple data type

data T = A Int Int | B String | C String Bool

We can view a value of type T as a choice between one of the three
constructors, together with the list of arguments the constructor requires.

• an A constructor and a [Int, Int]

• a B constructor and a [String]

• a C constructor and a [String, Bool]

Since every regular data type can be encoded as a SOP, we can write
functions that act on this representation. For each data type we can first
convert it to the SOP representation and then pass it to the desired func-
tion. Since the SOP representation is isomorphic to the original type, we
can eventually reconstruct the desired term after we are done working with
the representation. This encoding is presented by Loh et al. [7] and repre-
sents one of the several different ways to approach generic programming in
Haskell. In the remainder of this section we will try to formalize the intuition
presented above by building the SOP representation of a data type.

2.2 Building our Universe

An AST consists of a family of data types, with a main one which represents
the outer structure of the language, and a number of other possibly mutually
recursive data types appearing as arguments to the constructors of the main
data type. We can define a very simple language which consists of only one
data type, IntTree which is isomorphic to binary trees of integers. This
choice is just for ease of presentation, the following construction can be
applied to a family of mutually recursive data types.

data IntTree = Node IntTree IntTree | Leaf Int

8

For each type in our family of data types, or any type appearing as
an argument to the constructors in our family of data types, we want to
introduce a kind representing that type.

Following the example above, we will define the following data type.
Keep in mind we only define the type so that the DataKinds extension will
automatically generate the corresponding kinds we are interested in.

data U = KInt | KIntTree

We will also need to associate each type with a singleton, which will
allow us to relate terms of our language to their type level representation.

data Usingl :: U -> * where

UInt :: Int -> Usingl KInt

UIntTree :: IntTree -> Usingl KIntTree

Now, we can group all the constructors appearing in our original data
types under the Constr type in a similar way as we did for the atoms.

data Constr = CNode | CLeaf

We have now deconstructed our original data type into two levels: Constr
corresponding to the level of sums (the constructor) and U corresponding to
the level of products (the atoms).

Since we had to define two additional data types that have no relation
between each other we need a way to tie them together on the type level.
To achieve this, we define the ConstrFor data type, which can be viewed
as a proof that a certain constructor builds element of a certain family. In
general an AST consists of a family of possibly recursive data types, hence
we will need the additional information about what family the constructor
Constr belongs to.

data ConstrFor :: U -> Constr -> * where

NodeProof :: ConstrFor KIntTree CNode

LeafProof :: ConstrFor KIntTree CLeaf

Finally we must encode one last bit of information: the “shape” of each
constructor. To do so, we can use a closed type family which can be viewed
as a function on types. This function takes a Constr and returns a list of
atoms representing the arguments the constructor accepts.

9

type family TypeOf (c :: Constr) :: [U] where

TypeOf CNode = '[KIntTree, KIntTree]

TypeOf CLeaf = '[KInt]

Since TypeOf returns something of kind [U] we will define another GADT
named All, that maps a type constructor k -> * over an argument of kind
[k] giving us something of kind * to quantify over a list of singletons.

The definition for All is straightforward:

data All (k -> *) :: [k] -> * where

An :: All p '[]

Ac :: p x -> All p xs -> All p (x : xs)

With this setup we can finally construct the View data type; this loosely
corresponds to a generic view as sum of products of a data type, and simply
deconstructs each term of a type into a constructor and a list of arguments
applied to that constructor

data View u where

Tag :: ConstrFor u c -> All Usingl (TypeOf c) -> View u

An element of type View u represents an element of type u deconstructed
into its SOP view; the first argument records the choice of the constructor
for that data type and the second is the heterogeneous list of arguments
that are required to build that constructor, note that we are dependently
relating the shape of the product to the actual choice of constructor (the c).

Finally, we want to define a pair of functions that allow us to move from
an Usingl to a View and from that, back to the singleton representation.

The view function, defined only for the recursive elements of the lan-
guage can be implemented as follows.

view :: IsRecEl r => Usingl r -> View r

view (UIntTree t) = viewTree t

viewTree :: IntTree -> View KIntTree

viewTree (Node t1 t2)

= Tag NodeProof (UIntTree t1 `Ac` UIntTree t2 `Ac` An)

viewTree (Leaf i)

= Tag LeafProof (UInt i `Ac` An)

10

We parametrize this function by the IsRecEl constraint which is an
empty type-class used to distinguish recursive atoms from non-recursive one.
We need this distinction as there is no way to make a ConstrFor KInt, hence
the type family would not reduce and we would be stuck.

The same holds for the inverse function inj: it will take as arguments
the constructor, the list of arguments for that constructor and produce the
corresponding Usingl.

inj :: IsRecEl r => ConstrFor r c -> All Usingl (TypeOf c)

-> Usingl r

inj NodeProof (t1 `Ac` t2 `Ac` An)

= UIntTree (Node (UIntTree t1) (UIntTreet2))

inj LeafProof (i `Ac` An) = UIntTree (Leaf (UInt i))

In the next section we will show the implementation of the type-directed
diff. Our functions will operate on the concrete type Usingl u which we
have shown how to instantiate. It is worth noting that to achieve full-
generality we could represent Usingl as a type-class instead of a concrete
type. This would allow us to keep the implementation of the algorithm
generally extensible as to new data types other that the ones we mention
it would suffice to give their Usingl instance. Techniques for lifting the
concrete singleton data type to a type-class are well-known and they were
first showed by Eisenberg et al. [2]. Since investigating the performance
across different languages was never in the scope of this thesis, the code and
the presentation are tied to the concrete Usingl u data type.

3 Type-directed diff

The approach presented by Miraldo, Swierstra and Dagand [6] takes advan-
tage of the structure encoded in types to define a generic type-directed diff
algorithm between typed trees. The inspiration comes from the diff utility
present in Unix; it is at the heart of the current methodologies employed by
VCS to attempt to compute a patch between two different versions of the
same file. The limitations of the diff algorithm, as it currently stands, is
that it does not employ any structural information about the data on which
it is trying to calculate a patch.

The underlying idea to the approach presented in the article is to employ
the generic SOP view presented to obtain a view of any well defined program
as a structured tree of data. We then try to compute a transformation, from
one tree to the other, that respects the structural information we acquired.

11

In the process of transforming one tree into another we need to keep
track of three different things:

• Transformations between constructors – These are transformation be-
tween internal nodes of the trees.

• Transformations on the product level – When transforming an internal
node to another, we might end up in the situation where the nodes
have a different number of children. We somehow have to align the
children of the source node with the destination.

• Transformation between atoms – The atoms can be either other inter-
nal nodes, in which case we recurse down the tree, or leaves in which
case we record the pair of source and target leaf.

We will use the simple binary tree language presented in previous sections
as a working example to show the construction of a patch. The transforma-
tion we will walk through is the following: given the following AST:

t1 = Node (Leaf 1) (Node (Leaf 1) (Leaf 1))

we want to characterize the patch that transforms it to

t2 = Node (Leaf 1) (Node (Leaf 2))

The first structure we will employ is the spine, this can be thought of as
a common skeleton between the two trees which captures the parts that do
not change under the transformation.

3.1 Spine

We will define Spines only between two elements of the same family, and
defer to later the discussion on how to perform transformation between
elements of different families. Calculating a spine for two elements of the
same family loosely corresponds to calculating the longest common prefix
between two strings. Recall that the two elements x and y are viewed as
SOP, in this sense calculating the spine between x and y corresponds to
capturing the common co-product structure between them. Let x and y be
two such elements, we will have three cases to consider.

• x = y

• x and y have the same constructor on the sum level but differ in the
arguments

12

• x and y have different constructors

This gives rise to the following three different constructors for the Spine
GADT, each corresponding to one of the cases described above.

data Spine (at :: U -> *)(al :: [U] -> [U] -> *) u where

Scp :: Spine at al u

Scns :: ConstrFor u s -> All at (TypeOf s) -> Spine at al u

Schg :: ConstrFor u s -> ConstrFor u r

-> al (TypeOf s) (TypeOf r)

-> Spine at al u

Let’s not worry about the al and at parameters for the time being, these
will later be used to close the recursive knot and generate the full patch by
interleaving the construction showed here and in the following sections.

If the two elements are the same, the spine is a copy. If the top level
constructors match, the spine consists of this information and a function
to transform the constructor fields pairwise. Lastly, if two constructors
don’t match, the spine must record this and also contain a description of a
transformation the list of source fields into the list of destination fields.

The Scp constructor corresponds to the first case, in which we need to
record no additional information other than the fact that the two elements
are equal. Before looking at the other two constructors, let us focus our
attention for a moment to the three arguments that a spine takes: the third
parameter of the spine (the U) represents the underlying type for which we
are trying to compute a patch, the sum-type to which x and y both belong.
The other two, al and at are respectively a description of a transformation
between products – that describes what to do with the different construc-
tor fields – and a transformation between atoms, which describes what to
do with the paired fields in case we have the same constructor. These pa-
rameters are needed for the remaining constructors: the Scns constructor
corresponds to the case where the constructor is left untouched but some of
the arguments have changed. For this reason its second argument consists
of the predicate at applied to the list of arguments which describes how to
transform them.

Finally, Schg represents a change of constructor on the sum level: the
first two arguments record the source and destination constructors, the third
argument is the al function applied to the constructor fields of the source
and destination constructor respectively.

For now we can simply observe that if we were to calculate a spine be-
tween the two programs introduced above we would proceed by constructing

13

their view as presented in 2.1 obtaining the following

v1 = Tag NodeProof (UIntTree (Leaf 1) `Ac` UIntTree (Node

(Leaf 1) (Leaf 1)))↪→

v2 = Tag NodeProof (UIntTree (Leaf 1) `Ac` UIntTree (Leaf 2))

These views are not completely equal, but the choice of constructor is,
this makes sense as we are transforming a Node into another one. The spine
produced by these two views will then start with an Scns recording the fact
that the outer constructor has stayed the same but there are some changes
in its arguments.

spine = Scns NodeProof _

We ignored the second argument up to this point (representing it as an
underscore); let’s turn our attention to that now: since we know that the
constructor is unchanged in the transformation, we also know that both
for the source and destination tree, the number and types of its arguments
will be the same. For this reason we can simply pair up the corresponding
arguments and calculate the diff between every pair. The second argument
to Scns can be read as: the function at applied to a list of pairs of elements
of the same type. The type of each pair is specified by TypeOf s, which
in our working example is equal to [KIntTree, KIntTree]. Essentially we
have a list of UIntTree pairs and are left with the problem of calculating
patches between the elements contained in each pair. We can easily see
that the first pair of our example will give rise to an Scp, the two sub-trees
are in fact the same and we can simply copy the information along the
transformation. The second pair is more interesting though: this is the case
where we have a change on the constructor level and the spine we produce
will be the following

Schg NodeProof LeafProof _

However the remaining argument to fill is not as simple as the Scns

case since Node and Leaf expect completely different arguments. In the
case where the constructor had remained the same, we could pair up the
arguments and proceed from there; however, when the external constructor
has changed, there is no obvious way of pairing up the arguments. Indeed
they might be completely in different numbers and types, which motivates
the following definition of alignments.

14

3.2 Alignment

The spine takes care of matching the constructors of two trees, alignments
handle the products packed within the constructors. Recall that this align-
ment has to work between two heterogeneous lists corresponding to the fields
associated with two distinct constructors. The approach presented below is
inspired by the existing algorithms based on the edit distance between two
strings. The problem of finding an alignment of two lists of constructor
fields can be viewed as the problem of finding an edit script between them.
An edit script is simply a sequence of operations which describes how to
change the source list into the destination. In the case of diff the source and
destination lists are the lists of lines in the source and destination files; in
our context the source and destination lists are the products of fields of the
source and destination constructors respectively. To compute an edit script
we simply traverse the lists, from left to right, considering one element from
each list. At each step we are presented with three choices:

• We can match the two elements (Amod) of the list and continue recur-
sively aligning the rest

• We can insert the destination element before the current element in
the source list (Ains) and recursively compute an alignment between
whatever we have in the source list and the tail of the destination.

• We can delete the element from the source list (Adel) and recursively
compute the alignment between the rest of the source and the desti-
nation.

The following GADT models the sequence of operations that represent
an alignment.

data Al (at :: U -> *) :: [U] -> [U] -> * where

A0 :: Al at '[] '[]

Ains :: Usingl u -> Al at xs ys -> Al at xs (u : ys)

Adel :: Usingl u -> Al at xs ys -> Al at (u : xs) ys

Amod :: at u -> Al at xs ys -> Al at (u : xs) (u : ys)

For alignments, the at parameter plays the same role as in the spine.
A0 represents the empty alignment, Ains and Adel take as first argument
a singleton representing the element being inserted or deleted. These two,
together with an alignment for the rest of the list, give us the alignment
with an insertion (resp. deletion) as explained in the section above. In the

15

Amod case the first argument is the predicate on the underlying atom that
describes how to transform it and the second one, as for the case of insertions
and deletions, represents an alignment between the rest of the lists.

One key difference to keep in mind, between the edit scripts produced by
diff and the alignments is the atomicity of the elements being aligned (lines
and sub-trees respectively). In the case of strings we can assume deletions
and insertions to be somewhat equivalent in cost thus we can safely try to
minimize one of the two. However, in our case, the elements we are inserting
or deleting are sub-trees of arbitrary size, therefore it is not obvious if we
should try and prune insertions or deletions.

This poses the problem that when enumerating alignments we have no
guiding heuristic to cut the number of solutions, for the time being we will
simply ignore the problem and resort to enumerate all possible alignments, to
not skew the algorithm into preferring insertions over deletions or viceversa.

Let us walk through calculating the alignment for our running example:
we have to produce an alignment between [KSExpr, KSExpr] and [Kint]

(recall that these are the shapes of the Node and Leaf constructors). Because
of the way we define the Amod constructor, more precisely because of the
at function that describes how to transform an atom into the other, we
restrict ourselves to only attempt an Amod between two singletons of the
same underlying type.

This means that in a case like this one, we will only be able to transform
one list into the other by repeated applications of Ains or Adel. It is worth
noticing that this restriction is not mandatory and we could in principle
allow these transformations as well, the choice here is purely pragmatical
and the underlying reason is, this will be a recurring theme, to reduce the
sheer amount of combinations that must be checked. What we are left with
are the three possible alignments that can be formed by inserting the Uint

and deleting the two UIntTrees, we will generate all of them.

3.3 Atoms

Having figured out all the alignments between two lists of constructor fields,
we still have to decide what to do in the case where we match two elements.
We need to make a distinction between the possibly recursive fields and
the constant ones. In the case of constant fields like Ints or Strings, a
transformation between two values of this type consists of a pair recording
the source value and the destination value. In the case of a recursive data
type we are essentially left with the problem we started from: transforming
a value of a data type into another. To do so, we simply start all over again,

16

recursively computing a spine and an alignment between constructor fields.
To represent pairs of constant atoms we introduce a helper Diagonal

data type which lifts f over a pair of xs.

newtype Diagonal (f :: k -> *) (x :: k)

= Diagonal { unDiag :: (f x , f x) }

To distinguish between recursive and non recursive elements of the lan-
guage we define a typeclass with no additional methods, and add instances
of this typeclass only for the recursive atoms.

Once again, borrowing the language definition from the previous section,
we will have the following class and instances defined

class IsRecEl (u :: U) where

instance IsRecEl KIntTree where

With this we can define the following data type to represent diffs between
atoms of our language.

data At (recP :: U -> *) :: U -> * where

Ai :: (IsRecEl u) => recP u -> At recP u

As :: Diagonal Usingl u -> At recP u

Here the At data type is parametrised by a predicate that describes how
to transform the recursive atoms. The first constructor, Ai, which represents
the recursive case is parametrised by this predicate, the constraint is added
to ensure by construction that when we build an Ai we can only do so for
the elements of the language that actually are recursive. The other case is
covered by the As constructor, recall that in this case Diagonal simply lifts
Usingl to a pair of elements of type u, so the first parameter can be read
as: a pair of Usingl u where the first element is the source and the other
is the destination.

In our example we have already seen the case for Ai, the atoms paired
by the first spine were all Kexprs which we recursively calculated spines on.
The As will be produced when we match two Leafs that contain different
integers, in that case we produce a pair of Usingl Kint that record the
transformation from one Int to the other.

3.4 Recursive alignments

Starting by computing the spine is not necessarily the optimal choice, this
can be seen from the following simple example between lists:

17

[1, 2, 3, 4] -> [2, 3, 4]

Intuitively the optimal patch will proceed to delete the first element and then
copy over any remaining one. Our definition, however, does not allow for
such deletions. Deletions (resp. insertions) are only handled by alignments
at the product level. To handle such cases we can extend our spines and
alignments with the data type Almu that allows insertions or deletions to
happen on the sum level.

A match of constructors will be represented as a spine while insertions
and deletions will record the constructor being inserted (resp. deleted) and
a Ctx which records which fields are associated to that constructor. Ctxs are
inspeired by Huet zippers [10]: they can be thought as a representation of
a type with a hole somewhere; the hole represents the place where we plug
in the rest of the tree to continue the computation.

data Ctx (r :: U -> *) :: [U] -> * where

Here :: (IsRecEl u) => r u -> All Usingl l -> Ctx r (u : l)

There :: Usingl u -> Ctx r l -> Ctx r (u : l)

The Here constructor represents the hole, or the recursive position in
which we want to carry on the computation. With this definition of contexts,
we can finally define Almu u v, the data type that represents structured
patches between u and v

data Almu :: U -> U -> * where

Alspn :: Spine (At AlmuH) (Al (At AlmuH)) u -> Almu u u

Alins :: ConstrFor v s -> Ctx (AtmuPos u) (TypeOf s)

-> Almu u v

Aldel :: ConstrFor u s -> Ctx (AtmuNeg v) (TypeOf s)

-> Almu u v

The AlmuH, AtmuPos and AtmuNeg are wrappers around Almu s to make
source and destination types line up correctly. This gives rise to another
occasion for non-determinism, as Almu has the same shortcomings of Al

meaning that we have no obvious choice of what operation should be max-
imized over the others. As for alignments, we decide to proceed non-
deterministically and compute every possibly choice.

3.5 Putting everything together

Now that we have defined all the types we need to represent our patches
we are ready to define a function that given two Usingl u and Usingl v

18

produces an Almu u v – a patch that describes how to transform an u into a
v. We can write this function from the “bottom up”, starting from the atoms
and working our way up through spines and recursive alignments. Notice
how all these functions return a list of results, as non-determinism comes
into play at every step. The signatures have been slightly simplified from
the actual implementation where, for example, the result is parametrised by
a monad, making it more general.

For some functions, we will only present the signatures of the functions
in this section, as it allows us to simplify some details of the implementation.
The bodies of each function will be replaced by a short description which,
given the types introduced up to this point and the supplied signature, will
hopefully make it easy to fill in the gaps. The full implementation, which
fills in the details for the missing functions, can be found at [?]. The diff
function for atoms should have the following signature

diffAt :: (forall r . IsRecEl r => Usingl r -> Usingl r

-> [rec r]) -> Usingl a -> Usingl a -> [At rec a]

This function is parametrised by a function that describes the treatment
for recursive atoms. By inspecting the first singleton we learn whether the
atom is recursive or not; if that is the case, the function that deals with
the recursive elements can be used to build the corresponding At. In the
other case, when the element is non recursive, we can simply pair up the
two constant atoms with a Diagonal and build the non-recursive At.

We need to define a function that given a pair of singletons produces
all the spines between those two singletons. Remember that spines are
parametrised by the alignment that handles the product structure, for this
reason we will end up with as many spines as the number of valid alignments.
Recall that in a Spine al at u, al and at are respectively two functions
that respectively describe how to handle the paired atoms in case the ex-
ternal constructor has not changed (Scns), and how to handle the products
in the case where the external constructor has changed (Schg). These pa-
rameters are of kind at :: U -> * and al :: [U] -> [U] -> *. In the
most simple case we can imagine that the treatment of atoms and products
consists of simply pairing them up. We can define “trivial” alignments for
atoms and products which simply consist of this pairing up. For atoms we
can reuse the Diagonal type we introduced earlier, for products we need to
define a custom Pair type.

type TrivialA = Diagonal Usingl

data TrivialP :: [U] -> [U] -> * where

19

Pair :: All Usingl l -> All Usingl r -> TrivialP l r

We compute the diff in two steps: first we produce the spine with the
trivial alignments as parameters, then we will map over this spine with our
diffAt, and another function to generate all the alignments to obtain all
possible choices. We can start by defining the function that computes the
trivial spine.

spine :: IsRecEl r => Usingl r -> Usingl r

-> Spine TrivialA TrivialP r

spine x y | x == y = Scp

spine x y | otherwise = case (view x, view y) of

((Tag c1 l1), (Tag c2 l2)) -> case testEquality c1 c2 of

Just Refl -> Scns c1 (zipP l1 l2)

Nothing -> Schg c1 c2 (Pair l1 l2)

Here zipP is a function that simply zips the two lists together by con-
structing a Diagonal for each pair. In the Scns branch, we use the Pair

constructor to record the two lists of arguments. Recall an Al at s d is
also parametrised by a function that describes how to handle the atoms.
We can start by defining the trivial alignment that uses TrivialA to simply
pair up elements with Diagonal, as for the spine, we will then map over this
trivial alignment with a function that takes the pair of recorded elements
and produces all patches between them, thus closing our recursive loop.

align :: All Usingl p1 -> All Usingl p2

-> [Al TrivialA p1 p2]

align An An = pure A0

align An (a `Ac` p) = Ains a <$> align An p

align (a `Ac` p) An = Adel a <$> align p An

align (a1 `Ac` p1) (a2 `Ac` p2) = case testEquality a1 a2 of

Just Refl -> Amod (Diagonal (a1, a2)) <$> align p1 p2

<|> Adel a1 <$> align p1 (a2 `Ac` p2)

<|> Ains a2 <$> align (a1 `Ac` p1) p2

Nothing -> Adel a1 <$> align p1 (a2 `Ac` p2)

<|> Ains a2 <$> align (a1 `Ac` p1) p2

The implementation is straight forward as we non-deterministically ex-
plore all the possible choices, the only exception being that we choose to
pair-up two elements only if the testEquality test succeeds, which indi-
cates the elements belong to the same member of the family of data types.

20

Finally we can define diffS. The definitions of mapAlM and mapSpineM are
omitted, these combinators are used to map the recursive functions over
their trivial counterparts.

diffS :: IsRecEl a => (forall r . IsRecEl r => Usingl r

-> Usingl r -> [rec r])

-> Usingl a -> Usingl a

-> [Spine (At rec) (Al (At rec)) a]

diffS diffR s1 s2 =

mapSpineM (uncurry diffAt . unDiagonal)

(uncurryPair $ alignP diffR)

(spine s1 s2)

where

alignP :: (forall r . IsRecEl r => Usingl r -> Usingl r

-> [rec r]) -> All Usingl s -> All Usingl d

-> [Al (At rec) s d]

alignP diffR p1 p2 = do

al <- align p1 p2

(mapAlM (uncurry diffAt . unDiagonal) al)

We finally have to define a function that computes the diff in terms of
Almus. This will call diffS in case of two matching constructors from which
we can compute the spine wrapping that with the corresponding Alspn

constructor. In the other cases it will attempt the insertion (resp. deletion)
at the constructor level by recording the constructor being inserted (deleted)
and producing a Ctx which describes where the original tree is attached in
respect to the added (deleted) constructor.

This function will have the following signature

diffAlmu :: (IsRecEl u, IsRecEl v)

=> Usingl u -> Usingl v -> [Almu u v]

As is the case for the alignment between products, here we will simply
proceed by enumerating all possible recursive alignments, attempting at each
level the alignment of spines, insertions and deletions. One shortcoming of
this approach lies in the great combinatorial explosion of possibilities that
arises in computing the alignments for constructors and products. We will
see in the next sections what we will employ different techniques to keep
this in check.

21

3.6 Applying Patches

Now that we have constructed these type-safe patches we can define how to
apply them to an expression to produce a transformed expression.

Application will be defined between a patch of type Almu u v and a
singleton Usingl u. Again, we will proceed defining our functions from
the atoms all the way up to recursive alignments. As before, our functions
will be parametrised by one or more functions to deal with the recursive
elements.

applyAt :: (IsRecEl a => rec a -> Usingl a -> Maybe (Usingl a))

-> At rec a -> Usingl a -> Maybe (Usingl a)

applyAt appRec (Ai r) x = appRec r x

applyAt appRec (As c) x = if old == new then pure x

else if old == x then pure new

else Nothing

where (old, new) = unDiag c

If we are dealing with a recursive element we can apply the supplied
function and proceed the recursive application with that. If the element
is non-recursive, we check if it is a copy, in which we can return whatever
argument we got. If it is a change instead, we will check if the argument
matches the source and return the target.

Alignments will be applied to heterogeneous list of Usingl u. The func-
tion is parametrised by the previous function we defined over atoms.

applyAl :: (forall a . at a -> Usingl a -> Maybe (Usingl a))

-> Al at p1 p2 -> All Usingl p1

-> Maybe (All Usingl p2)

applyAl appAt A0 An

= pure An

applyAl appAt (Amod p a) (Ac x xs)

= Ac <$> appAt p x <*> applyAl appAt a xs

applyAl appAt (Ains k a) xs

= Ac <$> pure k <*> applyAl appAt a xs

applyAl appAt (Adel k a) (Ac x xs) = do

Refl <- testEquality x k

applyAl appAt a xs

Applying an alignment is straightforward, the types guarantee that we
can only apply lists of Usingls and alignments which are compatible. This

22

is reflected by the fact that the supplied alignment has type Al at p1 p2

which matches the type in All Usingl p1 and the result produced by ap-
plyAl has type All Usingl p2. We step through the alignment applying
each Al to the head of the list until we are done.

applyS :: IsRecEl r =>

(forall a . at a -> Usingl a -> Maybe (Usingl a))

-> (forall p1 p2 . al p1 p2 -> All Usingl p1

-> Maybe (All Usingl p2))

-> Spine at al r

-> Usingl r

-> Maybe (Usingl r)

applyS appAt appAl Scp x = pure x

applyS appAt appAl (Schg i j p) x = case view x of

Tag c d -> do

Refl <- testEquality c i

inj j <$> appAl p d

applyS appAt appAl (Scns i p) x = case view x of

Tag c d -> do

Refl <- testEquality c i

inj i <$> sAll appAt p d

Application for spine is parametrised by a function to apply atoms and
one to apply alignments. We inspect the spine and proceed accordingly. If
it is an Scp we return the argument, if it is an Schg we need to inspect the
argument and convert it to the SOP view. If the constructor on the sum
level matches the source constructor of the Schg then we can construct the
element with the target constructor and the result of the application on the
alignment. Finally, if the constructor is an Scns, we start by peeling the
argument and turning it into its SOP view. If the constructors match, then
we can construct the element with the old constructor plus the result of
applying appAt to every pair of atoms found by pairing the product in the
Scns and the view of x.

Finally, for the case of recursive elements, we can give the following
implementation.

applyAlmu :: (IsRecEl u, IsRecEl v) => Almu u v -> Usingl u

-> Maybe (Usingl v)

applyAlmu (Alspn s) x

= applyS (applyAt applyAlmu)

23

(applyAl (applyAt applyAlmu))

s x

applyAlmu (Alins constr ctx) x = inj constr <$> ctxIns ctx x

applyAlmu (Aldel constr ctx) x = case view x of

(Tag c1 p1) -> do

Refl <- testEquality constr c1

ctxDel ctx p1

The case of Alspn amounts to simply calling the function we have defined
to apply spines with the correct arguments. In case of an Alins, we still
have to construct an element, it will be obtained by an injection of the
inserted constructor and the context. ctxIns walks through the context
collecting all the singletons and calling the application recursively when it
finds the hole. In case of a deletion, we don’t have to build anything. We
check if the element matches the constructor we intend to delete and simply
carry on if it does. ctxDel walks through the context, throwing away every
singleton it finds and only calling the recursive application once it finds the
corresponding hole.

3.7 Disjointedness

The idea that we want to capture with disjointedness is that two disjoint
patches should always commute; this means that we can apply them in any
order to the source and always get the same result. We want to define this
notion only for pair of patches that share the same source, as patches from
completely different sources are incomparable to each other. This property
is crucial in reconciling patches coming from two different branches. When
trying to compute a three way merge, if we can determine that the two
patches are disjoint, then we know we can pick an arbitrary order to apply
them, and will not end up with a conflict. In the case of diff3 , two patches
are not disjoint when they modify the same line in two different ways. If
that is the case, then the two patches must not commute, as whatever patch
is applied last, will overwrite the conflicting line with it’s own version.

We saw an example of a pair of disjoint patches in the introduction;
suppose we have the following Clojure function

(defn head [l]

(first l))

If two users modify this function in two independent ways

24

(defn fst [l]

(first l))

(defn head [l, d]

(if (nil? l)

(d)

(first l)))

then the resulting pair of patches should be disjoint. We have seen that
these patches give a conflict under diff3 because they both happen to modify
the same line, albeit being independent.

We can start by attempting to define what disjointedness is on the re-
cursive level. Disjointedness should model the fact that two patches are
acting on different parts of the source. This suggests we want to impose the
condition that any patch different from the trivial one, is disjoint from itself.

Following this line of though we can start by defining

disjointAlmu _ _ (Alins _ _) (Alins _ _)

= False

disjointAlmu _ _ (Aldel _ _) (Aldel _ _)

= False

When matching an Alins with anything else, we extract the focus from
the context, and recursively call the disjointedness predicate on the focus
and whatever the other argument is. In other words, insertions are always
allowed.

disjointAlmu (Alins constr ctx) almu

= disjointFromCtxPos ctx almu

disjointAlmu almu (Alins constr ctx)

= disjointFromCtxPos ctx almu

When we match an Aldel with an Alspn, we will inspect the spine
contained in the Alspn. If it is an Scp then the two are trivially disjoint.

disjointAlmu _ _ (Aldel c ctx) (Alspn Scp)

= True

disjointAlmu _ _ (Alspn Scp) (Aldel c ctx)

= True

If it is an Scns then they are disjoint if the recursive changes within
the Scns do not change the deleted context and the focus of the context is
disjoint from the corresponding changes in the Scns product.

25

disjointAlmu (Aldel c ctx) (Alspn (Scns c' ats))

= case testEquality c c' of

Just Refl -> disjointFromCtxNeg ctx ats

Nothing -> False

disjointAlmu (Alspn (Scns c' ats)) (Aldel c ctx)

= case testEquality c c' of

Just Refl -> disjointFromCtxNeg ctx ats

Nothing -> False

If the spine is an Schg then they are not disjoint: as one patch is deleting
a constructor, where the other one is trying to change it to something else.

The only case left is when we have two Alspn. In this case we have to
look into the pair of spines to decide whether they are disjoint. As before,
we can walk through all the cases. Scp is disjoint from any other node.

disjointS Scp s'

= True

disjointS s' Scp

= True

A pair of Scns is disjoint if the constructor they fix is the same, and if
their fields are pairwise disjoint.

disjointS (Scns c p) (Scns c' p')

= case testEquality c c' of

Just Refl -> disjAts p p'

Nothing -> False

A pair of Schg is never disjoint, as the two patches are trying to modify
the same constructor in two different ways. Finally, when we have an Scns

and a Schg: they are disjoint if the constructor fixed by Scns is the source
constructor for the Schg and if the fields of the Scns are disjoint from the
alignment in Schg.

disjointS disjointAt (Scns c p) (Schg i j p')

= case testEquality c i of

Just Refl -> disjAtAl p p'

Nothing -> False

disjointS disjointAt (Schg i j p') (Scns c p)

= case testEquality c i of

26

Just Refl -> disjAtAl p p'

Nothing -> False

Since we learned that the constructor of the Scns and the source con-
structor of Schg are the same, we know that p and p' are acting on the
same product of arguments. The predicate disjAtAl follows the same pat-
tern outlined up to this point, we step through the elements of the alignment
and the list of paired atoms, considering them in pairs. Insertions are always
fine as long as the rest of the patches are disjoint. If we find an Adel we
have to check that the patch on the field being deleted is the identity patch.
Lastly, when the alignment contains an Amod we can check if the argument
of the Amod is disjoint from the field.

To do so we need to introduce a function that tells us when two atoms
are disjoint, the recursive case can be dealt with a function which will be
taken as the first argument to close the recursive loop. Finally, two non-
recursive atoms are disjoint if either one of them is the identity (represented
by a pair containing the same element).

disjointAt :: (IsRecEl a => rec1 a -> rec2 a -> Bool)

-> At rec1 a -> At rec2 a -> Bool

disjointAt disjointR (Ai r) (Ai r') = disjointR r r'

disjointAt disjointR (As p) (As p')

= old == new || old' == new'

where

(old, new) = unDiag p

(old', new') = unDiag p'

3.8 Clojure

Having developed a general framework to compute patches between typed
trees, we know want explore its performance in the context of a real pro-
gramming language. To test this, we developed a parser for Clojure; the
implementation of this parser can be somewhat different to one designed to
interpret and run Clojure code, this is because in this context we are more
concerned with capturing the syntactical structure rather than the seman-
tical one. One further consideration is that the parser should try to capture
as much syntactical information as possible, in order to produce code that
strives to respect any syntactical convention embraced by the authors.

The AST will be composed by a family of data types, with the Expr type
representing the “entry point” for each parse.

27

data Expr = Special FormTy Expr

| Dispatch Expr

| Collection CollType SepExprList

| Term Term

| Comment String

| Seq Expr Expr

| Empty

data SepExprList = Nil

| Cons Expr Sep SepExprList

data Term = TaggedString Tag String

data Sep = Space | Comma | NewLine | SEmpty

data FormTy = Quote | SQuote | UnQuote | DeRef

data CollType = Vec | Set | Parens

data Tag = String | Metadata | Var

This is enough to parse all Clojure code obtained from the test data that
we collected; it can actually parse even more than legal Clojure as it does not
consider the semantical correctness of the parsed code, only its syntactical
coherence. The definition of SepExprList can represent lists of expressions
separated by either newlines, commas or spaces, which are all legal legal and
interchangeable separators in Clojure, we also have an SEmpty separator for
the Nil case.

We can apply the same procedure outlined before to generate the re-
quired singletons and type families. The only difference from before is that
in this case is that our language is represented by a family of mutually re-
cursive data types. If you recall from section 2 we introduced ConstrFor to
relate our singleton constructors to the type they were constructing. In case
of a single data type representing the whole AST there was no real necessity
for this type, and we could have resorted so simply passing Constr around.
In the case of the Clojure AST we need this additional information, and the
ConsrFor type becomes (slightly) more interesting.

data ConstrFor :: U -> Constr -> * where

NilProof :: ConstrFor KSepExprList Nil

ConsProof :: ConstrFor KSepExprList Cons

SpecialProof :: ConstrFor KExpr Special

28

DispatchProof :: ConstrFor KExpr Dispatch

CollectionProof :: ConstrFor KExpr Collection

TermProof :: ConstrFor KExpr Term

CommentProof :: ConstrFor KExpr Comment

SeqProof :: ConstrFor KExpr Seq

EmptyProof :: ConstrFor KExpr Empty

[...]

As the constructor name suggests, we can think of these as proofs that
that a certain Constr maps to a specific U. These are straightforward to
generate manually, but can also be generically derived.

Finally we will have to add IsRecEl instances for the recursive elements
of the family, we can define these instances for Expr, SepExprList and Term

only, and treat all the other types as atomic.

4 Heuristics

When moving from our toy language to a more complex one like Clojure,
we soon run into the limitations of our non-deterministic approach. Non-
determinism explodes when we have to compute an alignment, either on the
recursive or on the atomic level.

It is easy to see that in some cases, prioritizing deletions can be more
profitable and in other it may be better to do the opposite; this uncertainty
stems from the fact that at the time we are calculating the alignment we
have no information about the size of the sub-trees we are considering.

Since we don’t know a priori which alignment is more efficient, in the
original specification we simply decide to enumerate all possible ones. This
number can grow very quickly and, to make things worse, we are dealing with
alignments of arbitrarily large subtrees, which prevents us from optimising
towards insertions or deletions.

In this section we will define some heuristics we can use to guide this
process of enumeration in order to trim down the amount of computations
that need to be carried on. These heuristics fall under two categories.

• One is to explore the possibility of using the standard unix diff3

algorithm as an oracle to prune the alignment trees that are being
generated. The idea is that instead of enumerating all possible align-
ments between two trees, we can check and see how diff 3 treats the
sequence of lines in which that tree resides in the source. This can

29

allow us to prune the search space based on the information we can
derive from diff 3 and may be able to speed up the computation to
handle larger inputs. This idea can be taken a step further. We can
generalise the approach to add an Oracle which, based on some inter-
nal state, generates the next branches that should be explored.

We can define different Oracles and explore different strategies to re-
duce the combinatorial explosion. One of the upsides of this approach
is that it will allow us to test different kinds of optimisations in a clean
and flexible way; we could even imagine an oracle that interacts with
the user, occasionally asking her for guidance into which branches to
pursue. Furthermore, we could define a notion of composition between
oracles that will give us the chance to combine different optimisations
into one.

• Another approach that we could take in the attempt to speed up the
algorithm is to define an heuristic to score patches which will allow us
to greedily prune the search space. With this approach, the question
that arises is: what are the properties of patches for which we can
compare and score them? The answer is not clear yet. Informally we
want to prefer patches that make minimal modifications and encourage
copying as much as possible. This is because if a patch consists of a
copy on a certain sub-tree, we can be sure that we can safely merge
this with any patch that modifies that same sub-tree. In other words,
want to define an heuristic that picks the patch that maximises the
chances of it being disjoint from any other patch from the same source.

4.1 Basic Oracles

The goal for Oracles is to be able to have a uniform interface to imple-
ment different kinds of optimisations, heuristic and possibly even human
interaction in the process of generating all the possible patches.

The key idea, is to extend the algorithm to perform a monadic action
at each non-deterministic “junction”. The result of this action will be a list
that encodes which branches should be explored and which should be cut
from the enumeration of patches.

We can start by observing that in both places where we have a non-
deterministic choice, we always have to pick between three possible paths:
namely to insert or delete something or to match source and destination in
a pair. We can model this with a very simple data type

data Path = I | M | D

30

Where the three constructors respectively stand for: Insert, Modify and
Delete. We want to give our oracles the possibility to inspect the history of
issued paths on each branch, this can be modeled with a reader monad.

type HistoryM = ReaderT [Path]

We can now define our Oracle class

class Oracle o m where

callP :: o -> All Usingl p1 -> All Usingl p2

-> HistoryM m [Path]

callF :: (IsRecEl u, IsRecEl v)

=> o -> Usingl u -> Usingl v -> HistoryM m [Path]

The Oracle class has two functions, one for the choice on the constructor
level (callF) (we call this the Fixpoint too, hence the ‘F‘ in the suffix) and
one for the choice on the product level (callP). At each choice, the oracle
has access to the history of paths issued on the branch, and has also access to
it’s internal state (the o type). It is important to keep in mind the difference
in role between the two lists of paths. The one that is threaded through by
the history monad keeps track of the path taken on the current branch. The
output of the oracles, on the other hand, is still a list of paths, but this
represents possible paths we can take at each non-deterministic choice. As
such, it is actually treated as a set, with each different element appearing at
most once, and the empty list representing the fact that the oracle can not
make a choice at that step.

Notice that the signatures differ in the arguments they take, callP is
meant to handle alignments on the product level, as such it takes the two
heterogeneous lists that are being aligned. The function callF on the other
hand, is meant to handle the recursive alignments on the constructor level
and takes two singletons as input.

4.1.1 NoOracle

To warm up we can start by defining the ”unit” oracle.

data NoOracle = NoOracle

instance (Monad m) => Oracle NoOracle m where

callP _ An An = return []

callP _ An (_ `Ac` _) = return [I]

callP _ (_ `Ac` _) An = return [D]

31

callP _ _ _ = return [I , M , D]

callF _ _ _ = return [I , M , D]

This oracle will not contain any global information and will ignore the
history of issued paths. It will simply output all possible choices in any
non-trivial case.

4.1.2 NoDupBranches

The first optimisation we want to encode is to limit the duplicate branches
being explored. It is based on the observation that the order of sequential
insertions and deletions does not matter: we can avoid performing an in-
sertion if the last step was a deletion and vice-versa, It is easy to see that
an insertion followed by a deletion is equivalent to a deletion followed by an
insertion, furthermore – if we can match two elements – then the match will
never be worst than an insertion followed by a deletion.

We can define the following function that looks at the history of issued
paths to avoid performing an insertion if the last step was a deletion and
vice-versa. The last step is attached in front of the list as it is more efficient
that traversing the list every time to add it at the end.

nextPaths :: [Path] -> [Path]

nextPaths (I:_) = [I, M]

nextPaths (D:_) = [D, M]

nextPaths (M:_) = [I, M, D]

Given this function we can implement the NoDupBranches oracle

data NoDupBranches = NoDupBranches

instance (Monad m) => Oracle NoDupBranches m where

callP _ An An = return []

callP _ An (_ `Ac` _) = return [I]

callP _ (_ `Ac` _) An = return [D]

callP _ (s `Ac` _) (d `Ac` _) = ask >>= return . nextPaths

callF _ s d = ask >>= return . nextPaths

32

4.2 Oracle composition

With the oracles we gain the possibility to tweak the run-time behaviour of
the algorithm without having to change any parts of the actual implemen-
tation. An advantage of this is that we can define a notion of composition
between oracles; this way we can layer different processes, each of which is
independent of the other in terms of implementation.

The composition we define wants to model a stack of oracles, the oracles
are consulted in the order in which they appear on the stack. When an
oracle is called, only if the answer is an empty list we will go down the stack
and ask the oracle underneath.

This means that we can build other optimisations on top of NoDupBranches,
these optimisations can also be partial or based on heuristics, as long as we
have a “safe” oracle at the bottom of the stack we can always fallback to the
ones below in the cases when it is not clear which choice should be done.

data ComposeOracle a b = ComposeOracle a b

-- Give it a nice constructor

(<◦>) :: a -> b -> ComposeOracle a b

a <◦> b = ComposeOracle a b

instance (Monad m, Oracle a m, Oracle b m)

=> Oracle (ComposeOracle a b) m where

callF (ComposeOracle a b) s d = do

o1 <- callF a s d

case o1 of

[] -> callF b s d

o1 -> return o1

callP (ComposeOracle a b) s d = do

o1 <- callP a s d

case o1 of

[] -> callP b s d

o1 -> return o1

4.3 DiffOracle

A considerable speedup can be obtained by using diff to prune the search
space. We can define a data type, which mirrors the definition of a path and

33

identifies which lines are copied, which are deleted and which are inserted
according to diff.

We will call this data type DiffAction and it will have the following
definition.

data DiffAction =

OMod LineRange LineRange

| OIns LineRange

| ODel LineRange

Where LineRange is a pair of Int which represent the first and last line
of the corresponding region. We can think of DiffAction as some sort of
Edit Script, with the difference that in addition to copies, insertions and
deletions we introduce modifications. We will produce an OMod every time
we have two contiguous regions of insertions or deletions between the source
and destination file. The regions tagged by an OMod are the ones where we
attempt to produce a more accurate patch than diff.

Note that regions that are not covered by any DiffAction are implicitly
considered copies. For example, given this pair of source and destination

1 (defn function

2 [a b]

3 return a)

1 ;; A comment

2 (defn function

3 [a b]

4 doSomethingElse

5 return b)

The pre-processing will produce [OIns (1,1), OMod (3,3) (4,5)]. The
first line can be definitely ruled as an insertion, as it is adjacent to a copy
on both the source and destination. Diff records line 3 of the source as
a deletion and lines 4 and 5 of the destination as insertions. This gives
us two contiguous regions of insertions and deletions between source and
destination and are accordingly recorded as a modification.

Since traversing the whole list of DiffAction every time we want to call
the oracle is not very efficient we can encode the same information in a pair of
maps from Int to Path (one for the source and one for the destination files).
Given this pair of maps, the oracle will extract the LineRange contained
in each Usingl u and lookup the line that corresponds to the beginning
of the LineRange in the corresponding map. We want to only look at the
beginning of the LineRange as we want to locally exploit the global solution
provided by diff. An alternative approach might be to look at the whole
LineRange and observe how diff behaves on the corresponding set of lines.

34

This however, introduces too much noise at the top-level, not giving us
enough chances to prune the tree early on which is where we gain the most
from the heuristic. We can define the following helper predicate

isMod :: LineRange -> M.IntMap Path -> Bool

isMod lr m = case M.lookup (takeStart lr) m of

Just M -> True

_ -> False

with the corresponding isIns and isDel, we can finally define the
giveAdvice function.

giveAdvice :: DelInsMap -> Usingl u -> Usingl v -> [Path]

giveAdvice (srcMap, dstMap) src dst =

if (isMod srcRange srcMap && isMod dstRange dstMap)

then [] -- Fall back to underlying oracle

else if (isDel srcRange srcMap || isMod srcRange srcMap)

then [D]

else if (isIns dstRange dstMap || isMod dstRange dstMap)

then [I]

else [M]

where

srcRange = fromJust $ extractRange src

dstRange = fromJust $ extractRange dst

In case in which the ranges do not match with anything in our maps, we
simply want to emit an M, as these expressions lie in lines that diff identified
as copies (we will later see how this may give rise to some problems, as
diff can copy in a way that our algorithm does not support). When changes
in the source and destination overlap, we are essentially in a range where
we know that diff can not reconcile the changes between them; it will simply
delete everything in the source and insert everything in the destination. This
is the case where we can attempt to generate a more efficient patch, so we
return an empty list to fall back to any underlying oracle that will compute
a more precise solution in that range.

Alternatively, if the source is marked as a deletion, or the destination
is marked as an insertions, we will emit the corresponding instruction. In
the else cases we also check if either the source or the destination is marked
as modification (but the other one isn’t as the first condition was already
showed to be false at this point). We have to handle the case that when
transforming a source into the destination, we end up on a branch that has

35

inserted (resp. deleted) everything it had to, and it simply needs to delete
(rep. insert) the remaining range.

Finally, the full oracle can be defined as follows:

instance (Monad m) => Oracle DiffOracle m where

callF o s d = return (askOracle o s d)

callP _ An An = return []

callP _ An (_ `Ac` _) = return [I]

callP _ (_ `Ac` _) An = return [D]

callP o (s `Ac` _) (d `Ac` _) = return (askOracle o s d)

askOracle :: DiffOracle -> Usingl u -> Usingl v -> [Path]

askOracle (DiffOracle da) src dst

= case (extractRange src, extractRange dst) of

(Nothing, Nothing) -> [M]

(Just sRange, Nothing) -> [D]

(Nothing, Just dRange) -> [I]

(Just sRange, Just dRange) -> giveAdvice da src dst

With this definition, we exploit the fact that the LineRange is only
defined for the recursive elements of the family, which means that in the
case we can not extract it, we can short-circuit the computation since we
never pair up non-recursive elements with recursive ones.

4.3.1 Edge cases

One of the issues with this optimisation is that not every modification be-
tween source and destination file is correctly identified by this procedure.
Since the changes detected by diff on the lines do not always map directly
to changes on the AST there are some corner cases we have to account for.

Suppose that we didn’t include empty expressions in our AST and mod-
eled the top-level parse as either a single expression or a sequence of multiple
ones. What happens when try to compute the patch between the following
files?

1 (keep

2 old keep)

1 (keep

2 new keep)

3 (new new)

The pre-processing will produce [OMod (2,2) (2,3)]. However, to per-
form the optimal patch between these two programs we clearly want to

36

insert a Seq on the first line and proceed calculating the diff from there,
but our DiffAction does not contain any insertion there. By following the
diff instead, we realize we had to change the external node when it is too
late, we are now looking at line 2 and have already decided to copy over the
first line. At its core, the problem lies in the fact that the external change
is invisible to diff, since it only deals with lines, and the addition of lines at
the end does not influence in any way the lines at the beginning of the file.
In our case, we have the whole expression tree, and adding a line at the end
of the file does not necessarily only trigger changes on the leaves of the tree,
but changes may bubble up to the root, as in the example shown.

The problem presented in the previous snippet arises from the fact that
– when transforming a top level expression from a single Expr to a Seq – we
only realize that this change has to be made when we get to the second Expr.
Whenever we change a single expression to a sequence of two by adding one
at the end, we will inevitably mark the first expression as a copy, and the
second as an insertion. This means it will be “too late” when we get to the
inserted line: we already decided to copy a node which leaves us no space
to insert the new expression.

A possible solution is to design the AST in a way that prevents this
problem from ever coming up. If we modeled the top-level of a program
so that the top level is always a Seq, and we add an Empty constructor to
Expr an example like the previous one, would not be problematic anymore.
Indeed, when we get to the second line, we don’t have to change the previ-
ous constructor anymore, as the source will conveniently contain an Empty

expression slot in which we can insert our new expression. This solution has
the problem of being very ad-hoc. We have to modify the parser and add
support for the new constructors throughout the implementation. Empty
expressions turned out to be useful in any case, as we need them to model
the patch that inserts into an empty file, but the solution is clearly not
satisfactory as it requires us to model our AST in a very ad-hoc way.

A better solution would be to design oracles that can deal with the
problematic cases. Sticking to the example presented earlier, we could define
a simple oracle which ignores everything, except the case when it gets as
input a single expression from the source and a sequence of multiple ones
in the destination. In that case we know that – no matter what the other
oracles say – we must insert a Seq node on the top-level; in that situation
we can directly return I and skip the other oracles.

This approach is better than the previous one, as it is less invasive. It is
still troublesome however that the correctness of the oracle depends on other
oracles being present. Also, if we want to add support for other languages

37

in the future we will have to carefully re-implement the ad-hoc oracles for
the new languages. To solve these last lingering issues, we can adopt a
different strategy. Ultimately the problem lies in the fact that there are two
distinct actors at play: on one hand we have the AST, on the other the lines
of code, which can be thought of as a pretty-printed representation of the
AST. We are using the line based solution over the pretty-printed AST to
derive a solution on the original AST. Our problems arise from the fact that
changes to the pretty-printed AST don’t always map one-to-one to changes
in the AST. If we could somehow run the line based diff on the AST directly
there would be no discrepancies. We can obtain a printable representation
of the AST that does not collapse the representation of changes like the
pretty-printed version does. Since every element of the AST is annotated
with the line range which tells us on what line it appears, we can simply
traverse the tree and print every constructor on the line the corresponding
syntactical element originally appeared. We can now run diff to pre-process
the ASTs printed in this way. Each change that was detected by running
on the original files will also be detected by looking at the ASTs, as they
are representations of the content of those files. Below we show the results
of printing the ASTs from the two previous examples with this strategy.

1 (Collection Parens (Cons (Term (TaggedString "keep" ... NewLine

2 (Cons (Term (TaggedString Var "old")) ...)

1 (Seq (Collection Parens (Cons (Term (TaggedString "keep" ... NewLine

2 (Cons (Term (TaggedString Var "new")) ...)

3 (Collection Parens (Cons (Term (TaggedString "new" ...)

The problematic case we showed earlier will now be correctly recognized.
Indeed, by printing the ASTs of the two files showed earlier, we will imme-
diately detect that on line 1 the constructor has changed from Collection

to Seq. Running the pre-processing on this representation of the AST nets
us the desired [OMod (1,2) (1,3)]

Another problem, perhaps even more troubling, is that diff can mark
some parts as copies even though these copies are illegal for our algorithm.
Imagine a case where we have this pair of source and destination files

1 ((keep1

2 del

3 keep2))

1 ((keep1

2 ins)(

3 keep2))

In this case, according to diff3 we are supposed to copy lines 1 and 3 and
modify line 2. The problem is that – in the source file – we have a Cons node
that contains all of the copied lines in one of its children. In the destination

38

however, some of these lines are copied to the left child and others to the
right. In the example above this can be seen with the keep appearing on
line 1 and 3 in the source. Despite belonging to the same expression in
the source, they will end up in two different ones in the destination. What
happens is that diff 3 can copy nodes across adjacent sub-trees, but our
algorithm does not: we have to pick one of the two sub-trees and attempt
the copies only into that.

For example, when we are transforming a Cons a Nil into a Cons c d the
only option we have is to insert d in the place of Nil. However, according to
diff, lines in the sub-tree a may get copied both to c and d. In practice this
means that when we are at the step in which we have to calculate the patch
between a and c, we are left with inconsistent information, in particular we
marked some nodes as copies into d when we actually want to delete them.

The problem may occur when matching any two expressions that have
multiple children, these expressions will be referred to as sub-trees in this
section. In the most simple case we can consider only binary sub-trees, but
the same approach can be generalized for arbitrary sub-trees.

To solve this problem we must find a way of detecting when a situation
like the one described above arises. Suppose we are computing a patch
between two nodes as they appear in the picture above, with a, b, c and d
being arbitrary children of these nodes. We will write i ∈ a to denote the
fact that line i is contained in the sub-tree a. Let CopyLines(P, P ′) be the
set of pairs of lines (s, t) that are marked as copies by diff when calculating a
patch between P and P ′. If we can find a pair of lines s ∈ a and t ∈ c, where
(s, t) ∈ CopyLines(P, P ′) together with another pair s′ ∈ a and t′ ∈ d, where
(s′, t′) ∈ CopyLines(P, P ′) then we know we are in a conflicting situation.
This condition deals with the case where we had to insert a sub-tree which
contains at least one expression marked as copy, to deal with the deletion
as well, we must also check that the converse condition does not hold going
from c to a and b.

Once we detected the conflicting copy across sub-trees, we can simply
remove pairs from the set CopyLines(P, P ′) until the previous condition is
satisfied. In other words, after we detect that a node contains copies over
sub-trees, we pick one of the sub-trees and remove all the copies contained
in it. The only step that is still missing is about which criteria can be
used to pair up the sub-trees we must check. One way to formulate the
problem is the following: we run into this issue whenever we have a pair
of candidate nodes that are marked as copy on their outer level, but would
then later attempt to copy across sub-trees. The crucial observation is that
the candidate nodes to check will always start on a line that diff will have

39

marked as copies (this is exactly the issue, diff can issue a copy there and
move across sub-trees later, our algorithm can not).

A possible solution, could be to try and solve the problem with some
pre-processing. This criteria identified to match nodes suggests an enu-
meration strategy that we could use to break any eventual conflicts in the
[DiffAction]. The idea is to identify which lines diff marked as copies and
collect all the expressions that start on lines (from the source and destina-
tion respectively) so that we can carry out the check on them. The final
observation we need is that, when collecting expressions starting on a pair of
lines (s, t) – where s is a copied line from the source file that ends up on line t
in the destination – then we will collect the same number of sub-trees from s
and t. This happens because, since the line is unchanged between source and
destination, it must contain the same number of expressions starting from
it, regardless of what happens in subsequent lines. For example, we can
see that, in the example presented above, the source file has two sub-trees
starting on the first line: the whole expression and the inner one contained
in parenthesis. The destination has two sub-expressions as well, with the
first one being the same, but the other one stopping on line 2.

Moreover, we observe that by following the DiffOracle we will never pair
these expressions with any other expression coming from a different line;
meaning that we can zip up the two lists of collected sub-trees and simply
check each pair. Given, a function CollectST(P,s) that takes as input a
program P and collects all sub-trees starting on line s in P. For each pair
(s, t) ∈ CopyLines(P, P ′) we can perform the following steps:

let src = CollectST(P,s)

let dst = CollectST(P',t)

map check (zip src dst)

Where check is the predicate we defined earlier to check if two expres-
sions are conflicting. At this point, if check fails, we have a pair (s,t) of
lines which diff identified as copies but our algorithm can not. Once identi-
fied the critical pairs of lines we can remove pairs from CopySet(P, P ′) until
the predicate is true.

For example, the set of copied lines in the example showed above is
simply {(1, 1), (3, 3)}, meaning that line 1 in the source will get copied to
line 1 in the destination, the same holds for line 3. By zipping the expres-
sions obtained by CollectST(source,1) and CollectST(dest,1) we will
eventually consider the following pair.

40

We can easily see that this pair of sub-trees will fail the check as the left
child in the source contains lines 1 and 3, and these lines end up to the left
and right respectively in the destination.

4.4 Cost

Up to this point we have seen how the algorithm generates a list of patches,
we have explored some techniques to reduce the size of this output list
but we still have never considered the problem of which patch choosing
from the output. Given the notion of application defined in 3.6, we can
consider patches as partial functions. That is: a patch Almu u v is a partial
function where the domain is the set of values of type Usingl u and the
codomain is Maybe (Usingl v), where the function is obtained through
patch application. A partial function is more accurate than another, if it
succeeds in producing a result to more input data – if one domain is a subset
of the other. We can formally define this as

p1 ≤ p2 ⇐⇒ ∀x. p1x ≤ p2x

Where the point-wise comparisons follows the canonical partial order on
Maybe. This definition – while capturing our intuition faithfully – is too
extensional to be practical. The approach we will take is to assign a natural
number to every patch, representing its cost. In this way we can compute
this value by just traversing the patch, ideally this ordering should respect
the extensional definition. Intuitively the best patch between x and y is the
one that fixes as little elements as possible in the domain and range of its
application.

We will count the elements that are fixed by performing insertions, dele-
tions or replacement of non-recursive atoms. With this in mind we can start
defining the cost function for trivial patches.

41

costK :: TrivialA u -> Int

costK c = if old == new then 0 else 2

where (old, new) = unDiag c

If the patch is a copy then no element is fixed, if it contains a replacement
instead we fix one item in the domain and one in the range giving a cost of
2.

In the general case of atoms, we just need to distinguish between recur-
sive and non-recursive elements and call the appropriate function.

costAt :: (IsRecEl a => rec a -> Int)

-> At rec a -> Int

costAt costR (As pair) = costK pair

costAt costR (Ai spmu) = costR spmu

With this function we can now define the cost for alignments.

costAl :: (forall a . at a -> Int)

-> Al at p1 p2 -> Int

costAl costAt A0 = 0

costAl costAt (Adel a al) = costUsingl a + costAl costAt al

costAl costAt (Ains a al) = costUsingl a + costAl costAt al

costAl costAt (Amod at al) = costAt at + costAl costAt al

Here we need a cost function over Usingl s, intuitively we want to assign
a higher cost to a patch that deletes (resp. inserts) bigger elements. We can
assign a cost to each Usingl and to each type in the family that constitute
our target language by counting the number of choices that are fixed by each
element. In the case of BinaryTrees – which have been our running example
– this translates to

costUsingl :: Usingl u -> Int

costUsingl (UInt u) = 2

costUsingl (UIntTree t) = 1 + costIntTree t

costIntTree :: IntTree -> Int

costIntTree (Node t1 t2) = costIntTree t1 + costIntTree t2

costIntTree (Leaf i) = 1

We can now define cost for spines.

42

costS :: (forall a . at a -> Int)

-> (forall p1 p2 . al p1 p2 -> Int)

-> Spine at al u -> Int

costS costAt costAl Scp = 0

costS costAt costAl (Scns c p) = sumAll costAt p

costS costAt costAl (Schg i j p) = costAl p

The definition for the function sumAll is omitted: it simply computes
costAt over each pair of elements and sums all these together.

Finally, we are only left with the recursive alignments to handle. The
case of Alspn has been handled already, if we match on an Alins or an
Aldel, then we want to add 1, which represents fixing the choice of the
external constructor being inserted or deleted, and the cost of the context.

costAlmu :: Almu v u -> Int

costAlmu (Alspn sp)

= costS (costAt costAlmuH) (costAl (costAt costAlmuH)) sp

costAlmu (Alins c ctx) = 1 + costCtxPos ctx

costAlmu (Aldel c ctx) = 1 + costCtxNeg ctx

The cost of the context, as in the case for alignments, sums the cost of all
the Usingls in the context with the result of recursively calling costAlmu

when we reach the hole.

4.5 Bounded Search

The last optimisation we are going to present is very simple but will allow
us to gain just enough benefit to be able to handle the majority of our test
data. Bounded search is a widespread technique employed when we have an
exponential number of solutions to a problem and a quality function which
assigns a value to any (possibly partial) solution. We can start the search
process by establishing an upper bound to the quality of solutions we want
to consider.

As we move through the solution space we want to keep track of the
current quality of the solution, and prune every branch that exceeds the
imposed bound. This process is not guaranteed to generate a solution, the
upper bound to the solution quality might be too low. For this reason,
bounded search implementations usually have some strategy to restart the
search in such cases, increasing the bound by a suitable amount. On the
other hand, if the bounded search terminates, we know that the optimal

43

solution (where optimal means minimal according to the quality function)
must be in the produced results.

A perfect candidate for the quality function is the notion of cost defined
above. However we want to adapt it so that it can work on partial solutions,
furthermore we want to be sure to apply the pruning as soon as possible and
reduce the number of steps performed in a branch that will be pruned. We
can extend our History monad to store an Int which will represent the cost
of each branch. Now we just have to change the algorithm to update this
local cost at every step and check if the bound hasn’t been exceeded at each
step. We can omit the details of how this cost is assigned, as it mirrors
exactly the definition of the cost function over patches presented in 4.4. We
will thread the current cost across the computation at each alignment step
(recursive and non-recursive); we will add the cost of performing that step
to the total and, if we exceed the supplied upper bound, prune the branch
immediately.

4.6 Visualization

Patch objects produced by the algorithm are isomorphic to trees. For this
reason, inspecting them by hand is often slow and error-prone. To make
the inspection of these objects easier we wrote a simple interactive visual-
izer. The visualization relies on treantJS [11], a library for the creation and
manipulation of tree structures. To take advantage of the library we only
have to define ToJSON instances for our patch type and – depending on how
we want to represent insertions and deletions in the tree – possibly for each
type in the family that constitutes our language.

Deletion and insertion nodes (both recursive and in alignments) are
color-coded to be respectively red and green – and this coloration is in-
herited by child nodes and edges. Patches on non-recursive elements are
represented as a single element if the patch was a copy, or by the pair of ele-
ments in the other case. Finally, nodes are collapsible, and the visualization
defaults to collapse every node that only contains copies among its children.
This allows us to keep the size of the visualized tree restrained, and allows
us to read off the important information contained in a patch with ease.

This tool has proven to be very useful in the development process, allow-
ing quick analysis and comparison of the produced patches. Deriving ToJSON

instances can also be automated, making the visualization easily extensible
to the treatment of other target languages. Figure 1 shows a representation
of the transformation between the following pair of expressions

44

Node (Leaf 1) (Node (Leaf 1) (Leaf 1))

Node (Leaf 1) (Node (Leaf 2))

Figure 1: A patch between Binary Trees

The produced patch correctly shows a copy on the left sub-tree and an
Schg on the right one: from a Node containing two leaves, to a single Leaf

containing a 2. The alignment produced must change the pair of 1s supplied
to the source Node to the single 2 that is the argument to Leaf. It does so
by inserting the 2 and deleting the 1s.

5 Experimentation

5.1 Domain specific conflict resolution

Before presenting the results we want to introduce a relaxation of the def-
inition of disjointedness. Many of the conflicts appearing in the collected
test data share a common pattern. These are conflicts that arise from mod-
ifications to configuration files, which in Clojure are often expressed in the
language itself via the defproject macro.

45

For example:

(defproject project-name "1.2.3"

:dependencies [[dependency-1 "0.1.1"]

[dependency-2 "1.1.0"]])

It is very common for these files to give rise to conflicts due to modifica-
tions in the required version of the different dependencies by commits which
are either merged into, or rebased on top of the development branch.

Suppose this code gets changed in two different ways

(defproject project-name "1.2.4"

:dependencies [[dependency-1 "0.1.1"]

[dependency-2 "1.1.0"]])

(defproject project-name "1.3.0"

:dependencies [[dependency-1 "1.0.1"]

[dependency-2 "1.3.0"]])

We can define two patches to be structurally-disjoint if they only differ
on non-recursive atoms. Given a pair of structurally disjoint patches we
can employ some domain specific merging strategies which may automate
or drastically reduce the user effort required to perform the merge. In a case
like the one described above, most of the conflicts are resolved by picking the
highest version number every time there is a conflict consisting of a choice
between two strings encoding version numbers. Nowadays, most projects
adhere to SEMVER [12] which defines a standard total-ordering for strings
representing versions which partially encode the semantics of the change.

This suggests that conflicts arising from structurally-disjoint patches can
often be automatically resolved via some user-defined partial ordering be-
tween the atoms of the language. For the case of SEMVER specifically, we
could imagine encoding different specific resolution strategies; e.g. we could
decide to automatically resolve conflicts between PATCH or MINOR ver-
sion changes and still notify the user when there is a conflict on a MAJOR
version change.

This idea can be pushed even further. By exploiting domain specific
knowledge, and the extra information we now have encoded inside a patch,
we can come up with custom merging strategies. We can detect certain pat-
ters of changes and treat them accordingly in a merge. For instance, suppose
that the expression (map (fn [x] (+ x 10)) l) was changed into:

46

(map (fn [y] (+ y 10))

l)

(map (fn [idx] (+ idx 10))

l)

Knowing that the conflict happened on an identifier, it is conceivable
to think of programmable strategies to solve those cases. For instance, the
tool could arbitrarily opt for choosing the longer identifier name. Whenever
there is a conflict on an identifier named x becoming y and idx, as long as
the tool performs this choice consistently, we can solve that conflict.

5.2 Results

In order to test the framework in a real world context we need to find
some suitable data. To acquire this we explored all the Clojure repositories
on Github and extracted the ones with the best combination of stars and
collaborators. A high number of collaborators will possibly imply a higher
chance for conflicts in the source tree, the high number of stars is a good
indicator of the quality of the Clojure code and hopefully provides a selection
of repositories from different domains.

We have collected data from twenty popular Clojure repositories. For
each repository, we counted the number of merge points. A merge point
indicates that files have been changed in two different ways, requiring a
merge to reconcile the changes. Merge commits are identified by the simple
fact of being commits that have more than one parent, we will restrict
our attention to the case of two parents. This is the most common and
sensible case for our scenario, as most teams will develop features on different
branches and eventually merge each branch into master. This process will
generate a merge commit with exactly two parents: one of which is the
master branch and the other is the feature branch.

1. For each of these commits we reproduced the process of performing
the merge within branches and extracted any Clojure files that were
marked as conflicts from this merge.

2. For each of these files we want to extract three different versions of it.
The original version O.clj represents the snapshot of the file at the
moment the branches initially diverged. It is the last version the two
branches agreed on. We also want to extract the versions A.clj and
B.clj, which capture the current state of the file on each of the two
branches.

From this process we obtained 652 folders – each containing the three
different snapshots of the conflicting file. These files have been shrunk with

47

a pre-processing that relies on diff3 to remove all top level expressions that
are are not involved in a conflict in any way. Each test consists in generat-
ing the pair of patches (OA,OB) and checking if they are disjoint, all the
tests are run with a one minute time-out. The patch OA is the best patch
generated between O.clj and A.clj according to the cost function, and OB
is generated in the same way but with B.clj as destination.

Out of the 616 conflicts, 164 time-out while constructing the OA or the
OB patch. By excluding these ones we are left with 452 valid conflicts
that are reported in the following table, showing results of running the tests
for disjointedness and compatibility, both in the full and the structurally-
respecting variations.

Table 1 shows the results of our experiment. The first columns describe
the number of contributors (Contributors), lines of Clojure code (LOC),
the total number of commits (Commits), the number of conflicts that diff 3
has encountered (Conflicts). Note that for some repositories, only counting
the Clojure code present leads to skewed statistics. For example, the cir-
cleci/frontend repository contains only a fraction of Clojure code, compared
to the other languages used.

We classified each result in one of three ways: (A) structural merging
gives no conflicts, as the patches are disjoint. As a result, diff 3 signaled a
false conflict ; (B) the patches are structurally disjoint, as such they can be
automatically resolved by using domain specific knowledge to automate the
conflict resolution process, we call these resolved conflicts; or (C) even merg-
ing syntax trees would require human intervention to resolve the conflict.
This last category are what we classify as true conflicts.

6 Conclusion

From these numbers, we can see that the despite the large number of com-
mits, conflicts are still fairly rare. Of the tens of thousands of commits
we considered, only slightly more than 600 resulted in a conflict. Despite
these numbers, it is clear that structure-aware diff and merge algorithms
manipulating syntax trees gave rise to significantly fewer conflicts than line-
based diff algorithms. This provides evidence that employing and developing
structure-aware algorithms is a worthwhile pursuit.

There are a few caveats associated with these numbers. Firstly, the
structure-aware diff and merge algorithms are significantly slower than their
diff and diff 3 counterparts. The finer granularity of change that the structure-
aware algorithms may observe results in a significantly larger search space

48

Name Contributors LOC Commits Conflicts A B C

marick/Midje 35 14,693 2,416 18 8 2 8
ztellman/aleph 62 4,557 1,064 17 6 5 6
boot-clj/boot 66 9,370 1,271 8 2 2 4
nathanmarz/cascalog 43 8,028 1,366 46 17 14 15
dakrone/clj-http 109 5,193 1,111 5 1 0 4
metosin/compojure-api 36 6,604 1,818 12 1 4 7
wit-ai/duckling-old 65 28,790 586 12 3 2 7
cemerick/friend 33 803 227 1 1 0 0
circleci/frontend 92 894 18,857 27 5 2 20
incanter/incanter 82 16,478 1,282 40 9 22 9
jonase/kibit 47 1,099 401 4 2 0 2
bhauman/lein-figwheel 86 6,515 1,464 6 4 0 2
technomacy/leiningen 315 10,669 4,484 28 12 4 12
clojure-liberator/liberator 42 2,965 347 8 6 1 1
onyx-platform/onyx 46 23,778 6,641 90 46 11 33
overtone/overtone 55 27,935 2,996 50 21 6 23
pedestal/pedestal 59 1,1206 1,403 24 13 5 6
quil/quil 34 1,341 960 10 1 8 3
riemann/riemann 114 16,586 1,654 6 3 0 3
ring-clojure/ring 99 4,909 958 40 4 31 5

Total 452 165 117 170

Table 1: The results collected

of patches between trees. In some cases, the algorithms failed to find or
merge patches within the one minute time-out we provided. There is a clear
need for further work to optimize these algorithms before they are truly
competitive with existing technology.

We have restricted our study to a single programming language, Clo-
jure. It is still unclear if similar studies targeting other languages would
produce similar results. We believe that structure-aware diff algorithms
have the biggest potential in functional languages, such as Clojure, Haskell,
or OCaml [?], where code consists of expressions that may be split into
lines in very different ways. In imperative languages, on the other hand,
the most common unit of code is a statement; programmers typically have
a single statement per line of code. To repeat this study for other languages
would require some work, such as writing a parser together with diff and

49

merge algorithms on the syntax trees – yet doing so would provide further
insight into how code in different languages is organized.

Finally, we observe that – given this specific set of conflicts – we per-
form approximately 35% better than diff3 in producing patches that can
be safely and automatically merged. We can also see that these numbers
drastically increase if we are willing to relax the notion of disjointedness we
are investigating. This points to the fact that another strong advantage of
this approach – alongside improving the number of patches which can be
automatically merged – is in the quality of the conflicts that can be pro-
duced. Given more accurate information about what is changing between
two files enables us to employ stronger conflict resolution rules, which would
have been cumbersome, or almost impossible, to express given the ”opaque”
representation of conflicts from diff

6.1 Related Work

In this thesis we focus on converting the theoretical approach presented in
[6] into a practical implementation that can be tested against real-world
data. Previous attempts to tackle this problems with similar approaches
had, nonetheless, some key differences. The Untyped approach has been
extensively studied: with authors focusing both on the linear [16, 17] and
the tree [15, 18, 19, 20, 21, 22] variation.

In recent years other authors explored the typed approach [24, 23] in a
generic setting. However they restricted their attention to the linear varia-
tion, by considering a flattening of the tree consisting in a pre-order traver-
sal. The downside is that this flattening makes it harder to guarantee that
the transformation encoded in a patch is structurally preserving and thus
correct.

Several pieces of related work exist in the literature: from VCS systems
built on strong theoretical foundations like Darcs and Pijul, respectively
based on work by Roundy [13] and Mimram [25]. In our experimentation
we have used Git to extract the information required for a merge (e.g. pick-
ing the common ancestor between two files). It is interesting to note how
O’Connor [26] and other authors point out how the strategy adopted by
Git in identifying and picking merge points, is inherently inconsistent and
can lead to some surprising outcomes compared to other Version Control
Systems.

Remarkably there is a formalization of the theory of patches through
the lens of Homotopy Type Theory. This has been explored by Licata et al.
[14] with the key idea of modeling patches as paths in a suitable topological

50

space.
Finally, Swierstra et al. [5] showed Hoare calculus augmented with sep-

aration logic can be used to reason about patches, in particular in terms
of characterizing the relationship between patches and defining safe ways in
which they can be combined.

6.2 Future Work

The goal of this work was to explore the performance of the typed, tree-
structured diff between data types. The result we managed to obtain are
surely encouraging, but are still too sparse and specific when confronted
with one of the venerable Unix tools as diff.

Strategies for automatic or semi-automatic conflict resolution where just
hinted to in this thesis, exploring them in full generality is probably one of
the most important and substantial next steps that can be taken. The defi-
nition of application should be modified to convey more information, namely
the reason why a certain application failed. As mentioned in the section 5.2,
we could imagine that some classes of conflicts could be automatically re-
solved with a custom set of directives specified by end users. Identifying the
key use-cases, designing and integrating a framework which allows these cus-
tom user-supplied rules is definitely a non-trivial, but possibly very fruitful
task.

Finally one of the remaining pieces to fill the puzzle is to explore the level
of generality that can be achieved with this approach; while the algorithm
is presented generically, the implementation is concretely tied to a specific
language: both for convenience of presentation and efficiency. Regardless,
for each language, we still need a custom parser to obtain the abstract repre-
sentation we operate on, which hinders our claim to generality. Of course we
can always use a generic strategy to parse a language for which we don’t have
a more specific parser; in particular one of these generic parsers could be the
parser that consumes all characters until a newline. We can imagine that,
presented in this context, the original diff can be collocated at the left end of
a scale; by moving to the right we add structural information, which enables
us to characterize transformations, and produce more accurate patches. The
cost we pay for this is some loss of generality and the added computational
complexity. Thus, the final question is ultimately about investigating this
balance, the trade-off between adding information and complexity and the
(possibly several) ”sweet spots” that can be identified in this spectrum.

51

References

[1] Lindley, Sam, and Conor McBride. ”Hasochism: the pleasure and pain
of dependently typed Haskell programming.” ACM SIGPLAN Notices
48.12 (2014): 81-92.

[2] Eisenberg, Richard A., and Stephanie Weirich. ”Dependently typed
programming with singletons.” ACM SIGPLAN Notices 47.12 (2013):
117-130.

[3] Yorgey, Brent A., et al. ”Giving Haskell a promotion.” Proceedings of
the 8th ACM SIGPLAN workshop on Types in language design and
implementation. ACM, 2012.

[4] Miraldo, Victor Cacciari, and Wouter Swierstra. ”Structure-aware ver-
sion control: A generic approach using Agda.” (2017).

[5] Swierstra, Wouter, and Andres Loh. ”The semantics of version control.”
Proceedings of the 2014 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. ACM,
2014.

[6] Miraldo, Victor Cacciari, Pierre-Évariste Dagand, and Wouter Swier-
stra. ”Type-directed diffing of structured data.” Proceedings of the 2nd
ACM SIGPLAN International Workshop on Type-Driven Development.
ACM, 2017.

[7] de Vries, Edsko, and Andres Löh. ”True sums of products.” Proceedings
of the 10th ACM SIGPLAN workshop on Generic programming. ACM,
2014.

[8] Hickey, Rich. ”The clojure programming language.” Proceedings of the
2008 symposium on Dynamic languages. ACM, 2008.

[9] Eisenberg, Richard A. ”Dependent types in Haskell: Theory and prac-
tice.” arXiv preprint arXiv:1610.07978 (2016). APA

[10] Huet, Gérard. ”The zipper.” Journal of functional programming 7.5
(1997): 549-554.

[11] ”Treant.js.” http://fperucic.github.io/treant-js/

[12] ”Semantic Versioning 2.0.0.” https://semver.org/

52

[13] Roundy, David. ”Darcs: distributed version management in haskell.”
Proceedings of the 2005 ACM SIGPLAN workshop on Haskell. ACM,
2005.

[14] Angiuli, Carlo, et al. ”Homotopical patch theory.” ACM SIGPLAN
Notices. Vol. 49. No. 9. ACM, 2014.

[15] Akutsu, Tatsuya, Daiji Fukagawa, and Atsuhiro Takasu. ”Approximat-
ing tree edit distance through string edit distance.” Algorithmica 57.2
(2010): 325-348.

[16] Hunt, James Wayne, and M. D. MacIlroy. An algorithm for differential
file comparison. Murray Hill: Bell Laboratories, 1976.

[17] Bergroth, Lasse, Harri Hakonen, and Timo Raita. ”A survey of longest
common subsequence algorithms.” String Processing and Information
Retrieval, 2000. SPIRE 2000. Proceedings. Seventh International Sym-
posium on. IEEE, 2000.

[18] Klein, Philip N. ”Computing the edit-distance between unrooted or-
dered trees.” ESA. Vol. 98. 1998.

[19] Demaine, Erik D., et al. ”An optimal decomposition algorithm for tree
edit distance.” ACM Transactions on Algorithms (TALG) 6.1 (2009):
2.

[20] Bille, Philip. ”A survey on tree edit distance and related problems.”
Theoretical computer science 337.1 (2005): 217-239.

[21] Autexier, Serge. ”Similarity-Based Diff, Three-Way Diff and Merge.”
International Journal of Software and Informatics 9.2 (2015).

[22] Chawathe, Sudarshan S., and Hector Garcia-Molina. ”Meaningful
change detection in structured data.” ACM SIGMOD Record. Vol. 26.
No. 2. ACM, 1997.

[23] Lempsink, Eelco, Sean Leather, and Andres Löh. ”Type-safe diff for
families of datatypes.” Proceedings of the 2009 ACM SIGPLAN work-
shop on Generic programming. ACM, 2009.

[24] Vassena, Marco. ”Generic Diff3 for algebraic datatypes.” Proceedings
of the 1st International Workshop on Type-Driven Development. ACM,
2016.

53

[25] Mimram, Samuel, and Cinzia Di Giusto. ”A categorical theory of
patches.” Electronic notes in theoretical computer science 298 (2013):
283-307.

[26] ”Git is Inconsistent.” http://r6.ca/blog/20110416T204742Z.html

54

	Introduction
	Overview

	Background
	Sum of Products
	Building our Universe

	Type-directed diff
	Spine
	Alignment
	Atoms
	Recursive alignments
	Putting everything together
	Applying Patches
	Disjointedness
	Clojure

	Heuristics
	Basic Oracles
	NoOracle
	NoDupBranches

	Oracle composition
	DiffOracle
	Edge cases

	Cost
	Bounded Search
	Visualization

	Experimentation
	Domain specific conflict resolution
	Results

	Conclusion
	Related Work
	Future Work

