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Abstract

At the end of the twentieth century plaster models of algebraic surface were
constructed by the company of Schilling. Many universities have some series
of these models but a rigorous mathematical background to the theory is most
often not given. In this thesis a mathematical background is given for the cubic
surfaces and quartic ruled surfaces on which two series of Schilling models are
based, series VII and XIII.
The background consists of the classification of all complex cubic surface through
the number and type of singularities lying on the surface. The real cubic sur-
faces are classified by which of the singularities are real and the number and
configuration of the lines lying on the cubic surface. The ruled cubic and quartic
surfaces all have a singular curve lying on them and they are classified by the
degree of this curve.
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Chapter 1

Introduction

Many universities which offer a study in mathematics have some collection of
mathematical models. These models are often on display at their department
of mathematics or in the university museum. This is the case at the university
of Utrecht as well. At Utrecht in the mathematical library there is a collection
of mathematical models on display, ranging from curves and surfaces in plaster
to thread models of ruled surfaces. At every model there is a little card with its
description but there is not much of a mathematical background. This thesis will
give some of that mathematical background for a group of models, particularly
the cubic surfaces and the quartic ruled surfaces.
The first question which arises when looking at the models of the cubic surfaces
is: why are these models chosen to illustrate cubic surfaces? Furthermore one
can ask if there are more and how many. This is one of the main questions in
this thesis and will be anwsered by classifying all cubic surfaces. The same will
be done for every ruled surface of degree three or four.

Outline

First a history of mathematical models will be given. This will run from the
start of projective and algebraic geometry until the modern collections. The
theory of projective spaces, is heavily used in the creation of the models. The
surface classification could not have been done without this. The line through
history lies from perspective geometry to algebraic geometry and eventually to
Klein, Brill and Schilling who made the collection of models.
Before a full classification of the cubic surfaces, and of the models as well, can be
made, some theory is needed. This will be done in the chapter of preliminaries.
In this chapter the mathematics needed for the classification is briefly summa-
rized. From projective space to algebraic varieties and singularities, these are
all briefly treated in that chapter.
The classification of the cubic surfaces is done in chapter 4. The smooth surfaces
are first treated with the theorem of 27 lines on a smooth cubic surfaces as a
start. The classical proof is a long calculation which underlines the techniques
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used in classical algebraic geometry. A short proof with modern mathematics is
given as well. To fully classify the different smooth cubic surfaces the 27 lines
will be split between those which are defined over the reals and those which are
not.
The classification of cubic surfaces with a singularity over an algebraically closed
field is done by tranformations. When a singularity is isolated and occurs in the
origin it has its normal form without linear terms. Every such singularity in the
origin has its own normal form and determining which normal form corresponds
to the euqation classifies the singularity. The result of this will help determine
all possibilities of cubic surfaces as real mathematical models.
The difference between cubic surfaces over the reals, and thus the different mod-
els, is a refinement of the classification over the complex field. The normal forms
of the isolated singularities will differ over the reals only in the units in frond
of the terms. Limiting the options of cubic surfaces more untill at the end of
chapter 4 there will be a complete list of all possible cubic surfaces and the
models which they correspond too.
In chapter 5 the ruled surfaces of degree three and four are treated. Although
there are not many different cubic ruled surfaces, the theory needed for the
classification is non-trivial. The ruled surfaces of order four are more diverse
and will be treated by a construction argument.
All results will be accompanied by pictures of the surfaces constructed as math-
ematical models by Schilling or surfaces created to illustrate the theory.
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Chapter 2

History of Mathematical
Models

In this chapter the history of mathematical models is treated. In the first half of
this chapter the focus lies on the history of algebraic geometry, this eventually
led to the need and creation of mathematical models. The second half of this
chapter treats mathematical models in the Netherlands, specifically at Utrecht
University. The subsection titled ”Perspective Geometry” is based on Burtons
”History of Mathematics” [2] the second part titled ”Analytic Geometry and the
birth of Algebraic Geometry” is based on parts of the ”History of Mathematics”
by Merzbach and Boyer [12].

2.1 History of Algebraic Geometry and Mathe-
matical Models

The history of surface models starts at the birth of relatively modern branch
of mathematics: algebraic geometry. The modern algebraic geometry first ap-
peared in the 19th century with its basis lying in the projective geometry of
the beginning of the 19th century. The basis of projective geometry comes from
perspective geometry.

Perspective Geometry

Arround the year 1600 the french architect en engineer Girard Desargues (1593-
1662) studied the subject of perspective. It was based on the Renaissance
painters who tried to represent the three dimensional world, as accurately as
possible, on a two-dimensional canvas. Desargues studied the geometric objects
which remain unaltered under this projection, this treatise in ”Brouillon project
d’une atteinte aux événemens des rencontres d’un cone avec un plan. The dif-
ference between Desargues and the mathematicians before was the extension
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of the Euclidean plane by infinitely distant points. In such an infinitely dis-
tant point two parallel straight lines would intersect, a direct development of
the new technique of perspective used by painters. Because there are infinitely
many parallel pairs of lines, in different directions, there will be infinitely many
points at infinity. These infinitely many points will be considered to lie on a
line, the line at infinity. The normal plane together with the line at infinity is
called the projective plane.
Much of the special cases of Euclidean geometry, dealing with parallels, would
be eliminated in projective geometry. For example with the notion of a line at
infinity, any two lines will intersect in one and only one point.
Desargues was not a professional mathematician, therefore most of his mathe-
matical papers were almost unreadable for mathematicians at the time. Through
this unfortunate barrier most of his work ideas were not picked up on by math-
ematicians in the 17th century. Some of its works would eventually find its way
into french universities but it would take arround 2 centuries before the theory
of projective geometry would be picked up again.
This was done by another Frenchman namely Jean Victor Poncelet (1788-1867).
He was captured by the russians after the retreat of Moscow in 1812. In prison
he reconstructed the analytic geometry he learned at the École Polytechnique
without books. He presented this, together with his own material, to his fellow
prisoners.
Poncelet made, in his own material, extensive use of the then controversial use
of geometric continuity. The principle of maintaining geomteric properties as
one figure is transformed, by projection or distortion, into another. Although
he got to some advanced results the principle was not well defined. As Cauchy
indicated it was ”capable of leading to manifest errors”. Through his work
Poncelet layed the groundwork for modern geometry. [2]

Analytic geometry and the birth of Algebraic Geometry

The first specialist of this modern geometry was Julius Plücker (1801-1868).
Plücker believed the way to study geometry analytically was through use of
algebraic methods. In contrast to the purely geometric way of Poncelet and
Steiner. Plückers name survives in coordinate geometry by the Plücker coordi-
nates, these coordinates give a one-to-one correspondance between the lines in
P3 and the points on a quadric in P5. As well as the coordinate system which was
named after him, Plücker rediscovered the homogeneous coordinate system, in
Analytisch-geometrische Entwicklungen. This coordinate system, discovered by
Möbius (1790-1860) and Bobillier (1798-1840), tied down the infinite elements
of Desargues and Poncelet. This made is easier to work with the geometric ob-
jects in space, every object would now be given by a homogeneous polynomial.
Plücker did not take advantage of developments in determinants and this could
be a reason why he never systematically developed analytical geometry of more
than three dimensions.
Meanwhile in 1843 Arthur Cayley (1821-1895) initiated the ordinary analytic
geometry of n-dimensional space, using determinants. In his time Cayley was in
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contact with the irish mathematician George Salmon (1819-1904). In a corre-
spondence Cayley send Salmon a letter in which he detailed that smooth cubic
surfaces have a finite number of line, on which Salmon replied that it should be
exactly 27. The theory of the 27 lines on a smooth cubic surface is today known
as the Cayley-Salmon theorem. [12]

Klein, Brill and Schilling

After the first results of Cayley and Salmon there was interest for the mod-
els of these results. Not only the cubic surfaces but for other degree surfaces
as well. Two professors at the Polytechnic School in Münich, Felix Klein and
Alexander Brill teamed up to constructed models to make the visualization of
geometric objects easier. Klein believed strongly in the use of mathematical
models to illustrate his lectures. The attention for these models was wider than
mathematical. For example, Klein took an exhibition of ”German mathematical
models” to the world fair in Chicago in 1893.[20]
Klein was a student of Plücker from whom he got his enthousiasm for line
geometry and geometric models. Plücker in turn got his from Faraday who
used models to understand the mathematics he needed for his work. Klein saw
his first model, the model of 27 lines on a smooth cubic surface, in 1868 in
Bergstrasse. This incited Klein to pursue the modelling of surfaces himself and
with the help of Brill he was proud to say at the end of his life that ”no German
university was without a proper collection of mathematical models”.[21]
In the 1870s Ludwig Brill began to research, construct and sell some mathemat-
ical models. He founded a company in 1880 in Darmstadt. In 1899 it was taken
over by Marten Schilling who renamed it and eventually moved the company to
Leipzig. By 1904 Schilling had produced over 23 series of models, in that same
year his company published a book containing some mathematical background
of the models excisting at the time.
In 1911 the catalog of Schilling [17] contained 40 series of models. These 40 series
containg about 400 different models and most mathematical models found in
exhibits today are based on the models or are the models created by Schillings
company. The catalog of Schilling does not only contain plaster models but
thread models as well offering a wide range of mathematical models with a
small bit of mathematical background.

2.2 Collections of Mathematical Models in the
Netherlands

More than half of the universities in the Netherlands have a collection of math-
ematical models. The biggest of which is the collection of the University of
Amsterdam.

Collection at the University of Amsterdam The university of Amster-
dam has about 180 models arround the year 2006. Most of which are made by
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the company of Brill and Schilling. These models are restorded and are found
in the university museum.[15]

Collection at the Rijksuniversiteit Groningen The rijksuniversiteit Gronin-
gen has about 130 different models most of Schilling and Brill. Catalogued on
the internet by Drs. Irene Polo-Blanco and Lotte van der Zalm they can be found
with a short mathematical background http://www.math.rug.nl/models/.

Collection at the University Leiden The university of Leiden has about
100 models which are mostely in good state. They can be found in the library
and a room in the Mathematical Institute. The literature, catalogue or reference
to the collection of models is lacking.[15]

Collection at Technical University of Delft The Technical University of
Delft has around 70 mathematical models as of 2016 most of which are thread
models. As of 2016 they are in the process of linking the models to the Schilling
catalogue.

Collection at Utrecht University The university of Utrecht has about 90
different models, of Schilling, restored and catalogued. Part of the collection
can be seen in the mathematical library in Utrecht. It consists of models from
22 different Schilling model series. Most are in good condition but there are
some with missing parts.

One might wonder how the Dutch universities got these models, and why
they bought them. There is no advertisment for the models, at the time, in
dutch mathematical magazines. At the end of the 19th century, there where
advertisements in the American Journal of Mathematics for the models of Klein
and Schilling. The models where advertised for the purpose of higher educa-
tion. Although it looks like most models where bought to support education on
unviversities, there are not many sources which support this. [15]

2.2.1 Some Series of Models at Utrecht University

Utrecht university has done a renewed effort to classify and restore all its models.
In 2015 most of the models at the Utrecht University lay in the vault in the
mathematical building and where on display in the University museum. In 2015
the next step was matching the models to their respective Schilling catalogue
number and restoring the models to their former form. The restauration has
been done by Anite Koster and Jan Willem Pette.
In 2017 many mathematical models of Utrecht University are on display at the
mathematical library. The collection in the library contains most of series VII of
Schilling which is the collection of cubic surfaces in plaster and the main focus
of this thesis.
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Chapter 3

Preliminaries

3.1 Projective space

As been described in the historical notes perspective is a very important tool to
describe which surfaces look different but are equivallent. It was told that this
was done by adding points at infinity. This will be formalized here.
Start with the following definition of projective n-space.

Definition 3.1. For n ∈ Z≥0 define the projective n-space, Pn, as the quotient
kn+1 − {0} by the equivalence relation ∼. Here a ∼ b if ∃λ ∈ kn+1, λ 6= 0 such
that a = λb.

Remark that the projective n-space can be seen as the set of different lines
through the origin in affine n + 1 space or as affine n-space with n − 1 space
at infinity. Every point in projective n-space can be written as (x1 : ... : xn+1)
where colons are used to denote ratios. This gives an easy embedding of An
into Pn.

φ : An → Pn (3.1)

φ(x1, ..., xn) = (x1 : ... : xn : 1) (3.2)

To find which surfaces are equivalent in projective space, the notion of projec-
tive equivalence is needed. Two objects in projective space are equivalent if
one can be changed into the other by a projective transformation. Projective
transformations will be the tool the calculate equivalent surfaces. For n ∈ Z≥0
the group of invertible n + 1 × n + 1 matrices with coefficients in a field k is
denoted by GLn+1(k). This is the automorphism group of kn+1.

Definition 3.2. A projective transformation in Pn(k) is an element of the
quotient group PGLn+1(k) := GLn+1(k)/k×.

Thus an invertible (n+ 1)× (n+ 1) matrix without scaling.
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3.2 Algebraic Surfaces

3.2.1 Algebraic Varieties

In the theory of algebraic geometry objects defined by polynomial equations are
studied. Throughout this section assume that k is an algebraically closed field,
mostly C, and k[x1, ..., xn] is the polynomial ring in the variables x1, ..., xn. To
understand the objects in this thesis the following general definition is needed.

Definition 3.3. For a subset of polynomials S ⊂ k[x1, ..., xn] the zero set or
locus, L(S) ⊂ An, is defined as

L(S) = {P = (a1, ..., an) ∈ An|f(P ) = 0 ∀f ∈ S} (3.3)

Affine Varieties

An affine algebraic variety is a subset of An which can be given as the locus of a
subset of polynomials. An affine algebraic curve or affine algebraic surface, are
an algebraic variety of dimension 1 respectively 2. In A3 this means, because
the dimension drops by 1 for every condition, that an algebraic surface is given
by the zero set of a single polynomial and an algebraic curve is usually given by
a set of 2 polynomials. In this thesis all algebaric curves can be given by a set
of 2 polynomials. An example of an algebraic surface is the cone. One way a
cone ican be defined is as the zero set of the following polynomial

f(x, y, z) = x2 + y2 − z2 (3.4)

Every irreducible surface is the zero set of an irreducible polynomial. If the
polynomial would be reducible the corresponding algebraic surface will be re-
ducible as well. For example the locus of the polynomial xz − (x+ z)y + y2 in
A3 will give two intersecting planes. In A3 an irreducible algebraic surface can
be given by a single irreducible polynomial, this polynomial will be called the
defining polynomial of the surface.

Projective Varieties

In the same way as the affine varieties the projective varieties can be de-
fined, only the polynomial set should be a set of homogeneous polynomials in
k[x1, ..., xn]. In P2 lines are given by the zeroset of a homogeneous polynomial
of degree 1. The general form of such a line in P2 is given by {aX + bY + cZ =
0|(x : y : z) ∈ P2}.

Theorem 3.1 (Bezout). Let f1, f2 ∈ k[x, y, z] be homogeneous polynomials
of degree d1 and d2 with k a closed field. Assume Z(f1) and Z(f2) do not
share irreducible components, then #{Z(f1)∩Z(f2)} = d1d2 when counted with
multiplicity.

This theorem is proven in most textbooks for algebraic geometry for example
in [7].
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Generally a projective variety V1 ⊂ Pn is equivalent to a projective variety
V2 ∈ Pn, with respective defining polynomials f1, f2, if there exist a projective
transformation g ∈ PGLn(k) such that f1 ◦ g = f2.

3.2.2 Singularities

In the studies of surfaces, singularities take a prominent place. A singularity
can be seen as the exception of smoothness at a point or curve on a surface. The
example of the cone in subsection 3.2.1 has a singular point at (0, 0, 0). This is
the point where the tangent plane is not defined. To fully define a singularity
first the definition of the tangent plane is needed. This is the plane which lies
tangent to the surface at a point P .

Definition 3.4. Let V be a surface in P3 given by a polynomial in F ∈ k[X :
Y : Z : T ]. The tangent plane of V at the point P is called TPV and is given by

∂F

∂X
·X +

∂F

∂Y
· Y +

∂F

∂Z
· Z +

∂F

∂T
· T = 0 (3.5)

When the tangent plane is defined the points is called smooth and when it
is not defined then the point is singular. It is easy to see that the tangent plane
will not be defined if all partial derivatives are zero. This gives the following
definition for a singular point.

Definition 3.5. Let V ⊂ P3 be a surface given by a polynomial F (X : Y : Z :
T ) = 0 then a point P ∈ V is called singular iff ∂F

∂X (P ) = ∂F
∂Y (P ) = ∂F

∂Z (P ) =
∂F
∂T (P ) = 0.

Not all singularities have the same properties. A classification of the proper-
ties has extensively been done by V.I. Arnold in the sixties and seventies [1]. The
simpelest of the singularities are related to the Lie, Coxeter and Weyl groups
Ak, Dk and Ek. The first step of Arnold was remarking that every function
with a non-degenerate critical point has a neighbourhood in which the defining
function can be represented in the Morse normal form:

f = ±x21 ± ...± x2n (3.6)

This is called ”the Morsification of the surface”. Every degenerate normal form
can, by a deformation, be made into a non-degenerate normal form. Two critical
points are equivalent if, by a local diffeomorphism, it is possible to transform
one critical point into the other. He found that every smooth function with
a critical point can be observed locally. Because two critical points, of finite
Milnor Number, are equivalent if their Taylor polynomials up to high enough
order are equivalent. Thus the classification of singularities, with finite Milnor
Number, is reduced to a sequence of algebraic problems. These problems deal
with finite actions of Lie groups. The Milnor number can be seen as the number
of non-degenerate points in which the singularity deforms by morsification and
this will be treated in subsection 3.2.4. The first observed and classified of these
singularities are called the simple or DuVal singularities and are shown in table
3.1.
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3.2.3 Simple Singularities

The least intricate of Arnold’s simple singularities is the ordinary double point.
This double point occurs at the point P = (0, 0, 1) on the quadratic cone X
given by equation 3.4. The quadratic cone is the union of generating lines all
meeting in the singular point P . When the ”blow up” of X at P is taken the
surface becomes a cylinder whose underlying set is the disjoint union of lines of
X. The point P is thus blown up to a circle on the cylinder which is called the
exceptional divisor of the blow up. This exceptional divisor is equivalent to P1.
The surface X when blown up at P is non-singular, thus the singularity at P is
resolved. Most isolated singularities will not be resolved after one blow up and
will sometimes take more steps.

Blowing up singularities

The technique of blowing up singularities is done by specifying the ratio, it
will add to every point on the surface it’s ratio. The blow up of the A1 and
D4 singularity are computed in a blog by Lewallen [11] and will be given here.
Start with the blowing up of the singularity on the double cone. The blow up
of the double cone X, given by xy = z2, is the subset

{((x1, x2, x3), (a1 : a2 : a3)) ∈ A3 × P2|(x, y, z) ∈ X,xiaj = xjai} (3.7)

When for the points in the ratio the restriction a3 = 1 is made, thus restrict-
ing the space P2 to an affine chart (a1 : a2 : 1). Combining the restrictions
given, and when a3 = 1, gives the equation of the blow up on the affine
chart z2(a1 − a22) = 0. Thus it consists of two irreducible pieces: z2 = 0
and (a1 − a22) = 0. Here z2 is a copy of P2 lying above 0, and (a1 − a22) is the
exceptional divisor, which is smooth and is a copy of P1. Similarly on the charts
a1 = 1 and a2 = 1 the exceptional divisor is smooth. The singularity is now
resolved in one step with one exceptional divisor.
It is not always the case that a singularity is resolved after one blow up, some-
times the process needs to be repeated multiple times and the exceptional di-
visors will intersect. The way the exceptional divisors intersect is one way to
classify them. This is seen in table 3.1, where the resolution graph shows the
number of exceptional divisors as circles and lines between them if they inter-
sect. This will be illustrated by the blow up of D4.
The blow up of the normal form of a D4 singularity X, given by x2+y2z+z3 = 0,
is the subset

{((x1, x2, x3), (a1 : a2 : a3)) ∈ A3 × P2|(x, y, z) ∈ X,xiaj = xjai} (3.8)

On the chart when a2 = 1 and combining the restrictions gives the equation
on the affine chart y2(a21 + a3y + a33y

3) = 0 the piece y2 = 0 is the exeptional
divisor. The other irreducible piece has exactly 3 singular points. Namely the
point (0, 0, 0), (0, 0, i) and (0, 0,−i). Observe that these three singular points
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Name: Normal form: Resolution Diagram

Ak k ≥ 1 xk+1
1 + x22 + x23

Dk k ≥ 4 xk−11 + x1x
2
2 + x23

E6 x41 + x32 + x23

E7 x31x2 + x32 + x23

E8 x51 + x32 + x23

Table 3.1: Normal Form and Dynkin Diagram of DuVal Singularities

are A1 singularities thus can be blown up by the principle above. This will give
three extra exceptional divisors intersection the first.
On the chart where a1 = 1 the affine equation is x2(1+a22a3x+a33x

3) = 0 which
has no singularities.
When a3 = 1 the surface has equation z2(a21 + a22z + z) = 0 and 2 singularities
namely (0, i, 0) and (0,−i, 0) but these correspond to the singularities (0, 0, i)
and (0, 0,−i) on the affine chart where a2 = 1. So after these four blow ups the
singularity is completely resolved and the exceptional divisors will intersect as
in the resolution diagram of 3.1.

3.2.4 Milnor Number

The Milnor number can be defined for all singularities in a n dimensional space
and may be viewed as ”the number of points infinitesimally glued to form the
singularity”. Which is the same as the number of S2 curves of the deformation
of the singularity. The following definition gives the easiest way to calculate the
Milnor number for simple singularities. This will be done here for some simple
singularities occuring in P3. For more information see Milnor [13].

Definition 3.6. Let V be a surface in C3 and let V have an isolated singularity
at P = (0, 0, 0). If f : (C3, 0) → (C, 0) the local normal form of the singularity
at P then the Milnor number µ of the singularity is

µ(V, 0) = dimC (C[[x, y, z]]/∇(f)) (3.9)

Where ∇(f) = (∂f∂x ,
∂f
∂y ,

∂f
∂z ), the ideal generated by the partial derivatives.

The ideal ∇(f) is called the Jacobi ideal. The Milnor number will now be
calculated for the simple singularities A3 and D5.
Milnor number of A3. The normal form of theA3 type singularity is f(x, y, z) =
x4+y2+z2 in C3 then∇(f) = (4x3, 2y, 2z). The quotient field C[x, y, z]/(4x3, 2y, 2z)
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is generated, as a vector space over C, by (1, x, x2). The dimension of the quo-
tient field is 3 and the Milnor number of A3, µ(A3) = 3
Milnor number of D5. The normal form of the D5 types singularity is
f(x, y, z) = x4 +x2y+z2 in C3 and in this case ∇(f) = (4x3 +y2, 2xy, 2z). The
quotient field C/∇(f) is generated as a vector space by (1, x, y, x2, y2) and the
Milnor number of D5 is 5.
All other simple singularities can be done in the same way and the first thing
which stands out is that the milnor number µ is the same as the subscript of
the singularity.
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Chapter 4

Cubic Surfaces

In this chapter the cubic surfaces in P3(C) and P3(R) are classified. A short
introduction of cubic surfaces is given, after which the classification in P3(C) will
occur. The classification starts with the smooth cubic surfaces and continues
with the cubic surfaces which have only isolated singularities. The cubic surfaces
with non isolated singularities are treated in chapter 5. The last part of this
chapter will be dedicated to cubic surfaces in R3.

4.1 Smooth Cubic Surface

A cubic surface in P3 is defined as the zeroset V of a homogeneous polynomial
F of degree three in P3.

V = {(X : Y : Z : T ) ∈ P3|F (X : Y : Z : T ) = 0} (4.1)

When a cubic surface has no singularities we call it smooth. This means there
is no point P = (X : Y : Z : T ) for which all first order partial derivatives are
zero at P . The following theorem was first proved by a collaboration of Cayley
and Salmon in 1849 [3], which determined that there are finitely many lines on
a smooth cubic surface.

Theorem 4.1. Let k be an algebraically closed field and V a smooth cubic
surface in P3(k), then V contains precisely 27 lines.

There is no modern algebraic geometry needed to prove theorem 4.1. A
sketch of the proof will be given below, for the full classical proof see Reid [16].
The next part will outline the proof given by Reid with the full calculations
omitted.

1. At most three lines of V go through a point P , and every intersection
between a plane and V will not give a multiple line. If l ⊂ V a line on
V through P then the tangent plane at P , called TPV , will contain l.
Because V is a cubic TPV ∩ V will consist of at most 3 lines. Giving a
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maximum of three lines through a point P . If the intersection of a plane
Π and V would give a double line the surface would be singular.

2. There exists at least one line l on V . Look at an arbitary point P on V
and take the intersection of V with the tangent plane at P named TPV .
This gives a curve C = TPV ∩ V with a nodal or cuspidal singularity at
P when C is irreducible, or C is reducible and contains a line lying on V .
There exist a linear change of coordinates such that P = (0 : 0 : 1 : 0)
and TPV = (T = 0). Now C := XY Z = X3 + Y 3 if P is nodal or
C := X2Z = Y 3 if P is cuspidal. Both cases are similar, but assume
we work with the cuspidal case. Now F = X2Z − Y 3 + g2(X,Y, Z, T )T
where g2 is homogeneous of degree two in the coordinates X,Y, Z, T . By
nonsingularity at P it follows that g2(0 : 0 : 1 : 0) 6= 0 thus assume
g2(0 : 0 : 1 : 0) = 1.
Every line through Pα = (1 : α : α3 : 0) on C goes through a point
Q = (0, y, z, t) on the plane X = 0. The line through Pα and Q, PαQ,
can be parametrized by writing out F (λP +µQ) = A(y, z, t) +B(y, z, t) +
C(y, z, t), where gi ∈ k(α) is homogeneous of degree i in the variables
(y, z, t). Then:

PαQ ⊂ V ⇐⇒ A(y, z, t) = B(y, z, t) = C(y, z, t) = 0 (4.2)

Claim: a resultant polynomial R27(α) exists, such that

R27(α) = 0 ⇐⇒ A,B,C have a common zero (η, ζ, τ) in P2 (4.3)

Define the polar of f as a form in two points (X,Y, Z, T ), (X ′, Y ′, Z ′, T ′)
as:

f1(X,Y, Z, T ;X ′, Y ′, Z ′, T ′) =
∂f

∂X
X ′ +

∂f

∂Y
Y ′ +

∂f

∂Z
Z ′ +

∂f

∂T
T ′ (4.4)

Then

F (λP + µQ) = λ3f(P ) + λ2µf1(P,Q) + λµ2f1(Q,P ) + µ3F (Q) (4.5)

Then A = f1(P ;Q), B = f1(Q;P ) and C = F (Q). Calculating the points
for which f(P ) = f1(P ;Q) = f1(Q;P ) = F (Q) will give a relation given
by a resultant polynomial of degree 27 in α.
Every root of this polynomial will give a line on the surface V . There are
at most 27 roots if all roots are unique. This gives a maximum of 27 lines
on a smooth cubic surface.

3. Given a line l on V , then there exist exactly five pairs of lines (li, l
′
i) such

that every pair of lines (li, l
′
i) is coplaner with l and (li ∪ l′i)∩ (lj ∪ l′j) = ∅

for all i 6= j. Given a line l on V and a plane Π such that l ⊂ Π then the
intersection Π∩V is a line and a conic. When this intersection is singular
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Π ∩ V consists of three lines. Suppose l = (Z = T = 0), thus every term
of the polynomial is divisible by Z or T , then F may be written out as:

F (X,Y, Z, T ) = AX2 +BXY + CY 2 +DX + EY + F (4.6)

Where A,B,C are linear forms in Z, T , D,E are quadric forms in Z, T
and F is a cubic form in Z, T . Considering this equation as a conic in X
and Y , this is singular when the discriminant is zero. This discriminant
is a polynomial g of degree five in (Z, T ):

∆(Z, T ) = 4ACF +BDE −AE2 −B2F − CD2 = 0 (4.7)

Proving that it has only simple roots will prove the claim. Every such root
α will give a plane Πα through l such that Πα ∩ V consists of three lines.
Five such planes exist by the simpleness of the roots of g. Thus every line
l on V intersects with exactly 10 lines.

4. There are at least five disjoint pairs of lines (li, l
′
i) which intersect with l,

and any other line n ⊂ V will meet exactly one of li and l′i for i = 1, ..., 5.
In P3 the line n will intersect the plane Πi, where Πi ∩ V = l ∪ li ∪ l′i,
thus n will intersect one of the lines. It cannot intersect l, because all
lines which intersect l are found,hence n must intersect li or l′i. It cannot
intersect both because then it will lie on the plane Πi and the intesection
of Πi and V will give four lines.

5. If there are four disjoint lines l1, ..., l4 in P3 then they lie on a quadric and
have an infinite number of lines intersecting all lines, or they do not lie
on a quadric and have one or two. Through three disjoint lines l1, ..., l3
there always passes a smooth quadric Q. This quadric has 2 sets of lines
S1, S2. Because l1, ..., l3 are disjoint they belong to one set of lines, say
S1, and every lines which intersects al three lies on Q and belongs to S2.
Thus if l4 is disjoint and lies on Q then it belongs to S1 and the infinite
family of lines S2 will all intersect the four lines. If l4 does not lie on Q
then it intersects Q in one or two points and the lines from S2 passing
through these points intersect all four lines.
To end the proof, take two disjoint lines l,m on V . Then for every pair
(li, l

′
i) for i = 1, ..., 5 which intersect l, one of them intersects m as well.

Assume the li intersect both l and m. Then m intersects with the pairs
(li, l

′′
i ) for i = 1, .., 5. This gives 17 lines on V . Namely l,m the five lines

intersecting both, five which intersect only l and five which intersect only
m of the pair.

6. Any line n ⊂ V which is not one of the 17 above will intersect 3 of the
lines l1, ..., l5. No four of the lines will lie on a quadric because then V
would be reducible. The line n cannot meet more than three of the li
because then it would be l or m by point 5. If it would intersect with less
than three of the li it will intersect with three or more of the l′i. So it
meets lets say either l′2, l

′
3, l
′
4, l
′
5 or l1, l

′
3, l
′
4, l
′
5. But than l and l′′1 intersect
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these four, and by the same argument as in point 5, n cannot intersect all
four as well. Thus n intersects three of the li.

7. All combinations of three of the li will give a line which is not contained
in the 17 found lines. By part 5 there are 10 lines intersecting l1. Only
four, l, l′1, l

′′
1 ,m, are found, so there must be 6 more. Every one of them

by point 6 will be intersect 2 of l2, l3, l4, l5. There are only 6 possibilities
hence they all occur.

8. Counting all the found lines gives the 2 lines l,m the 15 lines li, l
′
i, l
′′
i

for i = 1, ..., 5 and the

(
5
3

)
= 10 of the intersecting li, lj , lk lines with

i 6= j 6= k and i, j, k = 1, ..., 5. This will give 27 lines of a maximum of 27
thus all are found.

This is a very classical proof which gives the configuration as well. It uses a lot
of linear algebra instead of the modern algebraic geometry. There is a modern
proof as well. Therefore we need the following:

Theorem 4.2. Every smooth cubic surface V ⊂ P3 is the blow-up of the pro-
jective plane at six points P1, P2, P3, P4, P5, P6 in general position, thus no 3 on
a line or 6 on a conic.

Proof. Looking at the proof above, 2 skew lines exist on the cubic surface
n,m. Trough a point x on V there is a unique line l which will intersect both
n and m in unique points (x1 : x2) on n and (y1 : y2) on m. This leads to a
birational map φ from V 99K P1 × P1.

x 99K ((x1 : x2), (y1 : y2)) (4.8)

The 5 lines which intersect both n andm will be blown down to 5 points z1, ..., z5.
Looking at the space generated by x1y1, x1y2, x2y1, x2y2 which has dimension
4. The subspace of all forms which vanish at z1 is of dimension 3. Thus there
is a base consisting of f1, f2, f3 and there is a map

Φ : P1 × P1 → P2 (4.9)

p→ (f1(p) : f2(p) : f3(p)) (4.10)

Then Φ ◦ φ should be a map which blows down 6 lines and is an isomorphism
at every other point. The five lines which intersect both n and m will be blown
down. But if we look at the morphism from P2 tot P1 × P1 then P1 × P1 =
(A1×∞)× (A1×∞) and P2 = A2×P1. So an axis of P1×P1 needs to be blown
up from P2 which is the sixth point.
The 27 lines now rise easily and are found as:The six exeptional divisors, the
six conics trough 5 of the six points and the forms of the 15 lines trough each
pair of the points.
In figure 4.1 the model of a smooth cubic surface is shown. This surface has
exactly 27 real lines which are scratched into the surface.
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Figure 4.1: Clebsch Smooth Cubic Surface, Schilling VII-01

4.2 Cubic Surface with an Isolated Singularity

This section will give the classification the singularities lying on cubic surfaces
over algebraically closed fields. The cubic surfaces will be distinguished by the
types of singularity occuring on the cubic surface. From now on assume that the
cubic surface V is given by F (X : Y : Z : T ) = 0 has a singularity. By a linear
change of coordinates this singularity may be assumed to be at P = (0 : 0 : 0 : 1).
Which means δF

∂X (P ) = ∂F
∂Y (P ) = ∂F

∂Z (P ) = ∂F
∂T (P ) = 0. Thus no terms will be

divisible by T 2.
To define these singularities by type, it is only needed to look locally around the
singularity. Therefore we may assume that we work on the affine piece UT of P3,
which is given by T = 1. Call the singular point on the affine part PT = (0, 0, 0)
hence the singularity lies at the origin on this affine space. On the affine piece
UT , the equation defining the cubic surface may be written as:

F (X : Y : Z : 1) = f2(x, y, z) + f3(x, y, z) (4.11)

Here fi is a homogeneous polynomial of degree i in (x, y, z). Not all possible
singularities will occur on the cubic surface V and not all configurations are
possible. The following results limit the configuration of singularities on cubic
surfaces, as there will be no more than four singularities on V and no three
singularities will lie on a line.

Theorem 4.3. Let V be a cubic surface defined by a homogeneous polynomial
F (X : Y : Z : T ), with three singular points P1, P2, P3 lying on a line l ⊂ V .
Then l is a singular line, meaning that every point on l is a singular point.

Proof: Assume the line l = (Z = 0, T = 0) and the singular points are
as follows P1 = (1 : 0 : 0 : 0), P2 = (0 : 1 : 0 : 0), P3 = (1 : 1 : 0 : 0).
For F (X : Y : Z : T ) to be singular at Pi we have FX(Pi) = 0, FY (Pi) =
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Figure 4.2: Cubic Surface with four isolated singularities

0, FZ(Pi) = 0, FT (Pi) = 0. These give linear constraints on the coefficients of F
and we get:

F = Z2 ·f1(X : Y : Z : T )+ZT ·f2(X : Y : Z : T )+T 2 ·f3(X : Y : Z : T ) (4.12)

With fi homogeneous of degree 1. For every pointQ on the line l = (Z = T = 0),
Q is a singular point and the line l is a singular line.

Theorem 4.4. A cubic surface with only isolated singularities has at most 4
isolated singularities.

Proof By a change of coordinates the singular points are (0 : 0 : 0 : 1), (0 :
0 : 1 : 0), (0 : 1 : 0 : 0) and (1 : 0 : 0 : 0). Then by simple calculation the
function defining a cubic surface is of the form:

F (X : Y : Z : T ) = a1XY Z + a2XY T + a3XZT + a4Y ZT (4.13)

By a scale change of the coordinates assume a1 = ... = a4 = 1. Then the
only singular points are the four above. This may be done for every such cubic
surface with four isolated singularities, thus every such surface is projectively
equivalent to the zero set of equation 4.13. Every such surface has, just like the
surface given by the equation in 4.13, 4 singular points.

Such a cubic surface with 4 singular points is given in figure 4.2. The surface
given by equation 4.13 has not all its singularities on the affine piece (X : Y :
Z : 1) but by a translation T = X + Y + Z + T this gives a surface with all
isolated singularities easily seen.

To classify the cubic surfaces by their isolated singularities on them the local
normal form of the simple singularities is needed. Recall that the simple singu-
larities have the following local normal forms arround (0, 0, 0) when working in
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a 3 dimensional affine space.

An xn+1 + y2 + z2, (n ≥ 1) (4.14)

Dn xn−1 + xy2 + z2, (n ≥ 4) (4.15)

E6 x2 + y4 + z3 (4.16)

E7 x2 + y3 + yz3 (4.17)

E8 x2 + y3 + z5 (4.18)

To classify the cubic surfaces the first step is to look at the rank of f2(X : Y : Z),
the homogeneous part of degree 2 in equation 4.11. The rank of f2(X : Y : Z)
can only be 3, 2, 1, 0. The second step is defining of which type the singularity
at P = (0 : 0 : 0 : 1) will be. This classification, of cubic surfaces with
isolated singularities, is based on the work of Bruce and Wall [9]. Because the
singularities are defined by their normal forms locally, analytical transformation
may be used without changing the type of singularity.

4.2.1 A Conic Node

When the homogeneous part f2(x, y, z) is of rank 3, then the singular points P
is called an conic node and f2(x, y, z) may be written as:

f2(x, y, z) = x2 + y2 + z2 (4.19)

All terms of f3 are of degree 3 so locally at P we have f = f2(x, y, z) =
x2 + y2 + z2 and the point P is an A1 type singularity.

4.2.2 A Binode

When f2(x, y, z) has rank 2 then P is called a binode. The part f2 is reducible
into two linear factors. By a change of coordinates the homogeneous part can
be written as f2 = x2−y2 = (x−y)(x+y). The singularity at P = (0 : 0 : 0 : 1)
is determined by the intersection of f3(x : y : z) = 0 with f2(x : y : z) = 0 in the
point (0 : 0 : 1) ∈ P2. For every situation the 6 points, counted with multiplicity,
of intersection f2 = f3 = 0 may be changed by a analytic coordinate change to
put f3 in a normal form in P2.

Type A2 When f3(0 : 0 : 1) 6= 0, thus f3 does not intersect f2 at (0 : 0 : 1),
then the coefficient of z3 in f3 is nonzero. By an analytic change of coordinates
f3 = z3. Then f(x, y, z), the affine representation of F around P , is of the form:

f(x, y, z) = x2 − y2 + z3 (4.20)

This gives, P is of the form A2.
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Figure 4.3: Cubic Surface with an A3 singularity, Schilling VII-13

Type A3 When f3(0 : 0 : 1) = 0 then the point (0 : 0 : 1) lies on both f2 = 0
and f3 = 0. Look at the multiplicity of the intersection of f3(x : y : z) with the
lines (x − y) and (x + y) at (0 : 0 : 1). When the multiplicity of f3 = 0, with
both (x− y) = 0 and (x+ y) = 0, is 1 at (0 : 0 : 1), then by an analytic change
of coordinates f3 = 2z2x. The normal form of f3 is

f(x, y, z) = x2 − y2 + 2z2x (4.21)

By a translation x̃ = (x+ z2), thus completing the squares, this is equivalent to

f(x̃, y, z) = x̃2 − y2 − z4 (4.22)

Then P is of the form A3. A cubic surface with an A3 singularity is seen in
figure 4.3.

Type A4 Suppose the multiplicity of f3(x : y : z) = 0 at the point (0 : 0 : 1)
with one of the lines is 2, assume the multiplicity with (x+ y) = 0 is two, and
the multiplicity with the line (x − y) = 0 is one. By an analytic change of
coordinates the function f3 is of the form f3(x : y : z) = z2(x+ y) + zy2. Then:

f(x, y, z) = x2 − y2 + z2(x+ y) + zy2 (4.23)

By the first translation x̃ = (x+ z2) we get

f(x̃, y, z) = x̃2 − y2 + z2y + zy2 − 1

4
z4 (4.24)

To find the translation to get rid of the linear part of y by a translation A the
following equation needs to be 0:

2(z − 1)A+ z2 = 0 (4.25)
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Thus by the following translation ỹ = y + −z2
2(z−1) the linear part of y will not

occur.

f(x̃, ỹ, z) = x̃2 − ỹ2 + zỹ2 − 1

4
z4 − z4

2(z − 1)
(4.26)

Calculating the power series of z4

2(z−1) we get:

z4

2(z − 1)
= −z

4

4
− z5

4
+O(z6) (4.27)

Thus:

f(x̃, ỹ, z) = x̃2 − ỹ2 + zỹ2 − z5

4
+O(z6) (4.28)

Locally around PT = (0, 0, 0) this is equivalent to x2 − y2 − 1
5z

5 thus f has an
isolated singularity of type A4.

Type A5 The last situation with an isolated singularity is when f3 = 0 in-
tersects one line, say (x − y) = 0, with multiplicity 3 and (x + y) = 0 with
multiplicity 1. By an analytic change of coordinates f3 = z2(x + y) + x3. The

transformation ỹ = y+ z2

2 gives f(x, ỹ, z) = x2− ỹ2 + z2x+ z4

2 +x3. To find the
transformation A such that f has no linear term in x, the following equation
has to be solved:

2A+ z2 + 3A2 = 0 =⇒ A =

√
1− 3z2 − 1

3
(4.29)

The Maclauren series of the square root is:√
1− 3z2 = 1− 3z2

2
− 9z4

8
− 27z6

16
+O(z7) (4.30)

Then x̃ = x+A gives f is equivalent to:

f = x̃3 + x̃2
√

1− 3z2− z2

3
+

2

9

√
1− 3z2− 2

27

√
1− 3z2 +

2

27
− ỹ2− z2

4
(4.31)

Using the Maclauren series for
√

1− 3z2 and calculating per power in z we get

f(x̃, ỹ, z) = x̃2 + x̃3 + ỹ2 +
z6

8
+ x̃2 ·O(z2) +O(z7) (4.32)

Which locally arround PT = (0, 0, 0) is equivallent to x2 − y2 + 1
8z

6, thus f has
an A5 isolated singularity at P .
These are the possible ways for f3 = 0 to intersect f2 = 0 in (0, 0, 1) with P
still be an isolated singularity. If f3 would intersect x− y and x+ y both with
multiplicity greater or equal than 2 then f3 has a singular point at (0 : 0 : 1)
this means has the function f has the following form:

f(x, y, z) = x2 · a(y, z) + y2 · b(x, z) (4.33)

where a and b are linear forms. This means that cubic surface defined by the
function f has a singular line on x = y = 0. Thus these are the only configura-
tions for which P is isolated and f2 is of rank 2.
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4.2.3 A Unode

When f2(x : y : z) is of rank 1 then we call P a unode. Which corresponds with
a double linear factor in f2. By a linear change of coordinates we may write the
linear factor as x, then f2(x : y : z) = x2. When looked at the multiplicity of
the three intersections of f3(x : y : z) = 0 with the line x = 0 in P2, this is split
up into three different cases:

• Three intersections of f3 = 0 with x = 0 with multiplicity 1.

• Two intersections, one with multiplicity 1 and one with multiplicity 2, of
f3 = 0 with x = 0.

• One intersection with multiplicity 3 of f3 = 0 with x = 0.

Three intersections When x = 0 and f3(x : y : z) = 0 have three distinct
intersections, then f(x : y : z) = x2 + zy2 + yz2 for some analytic change of
coordinates. The transformation z̃ = z − 1

2y gives:

f(x, y, z̃) = x2 + yz2 − 1

4
y3 (4.34)

This gives a singularity of type D4 at P .

Two intersections Here f(x : y : z) = x2 + xz2 + zy2 the term xz2 is
needed or else there would be a line of singularities x = y = 0. Then by the
transformation x̃ = x− 1

2z
2 this becomes:

f(x̃, y, z) = x2 − 1

4
z4 + zy2 (4.35)

This gives a singularity of type D5 at P .

One intersection When there is one intersection the function f(x, y, z) can
be written as f(x, y, z) = x2 +xz2 + y3 which by the transformation x̃ = x+ 1

2z
is

f(x̃, y, z) = x2 − 1

4
z4 + y3 (4.36)

This givs a singularity of type E6 at P .
Every cubic surface with an isolated singularity at P = (0 : 0 : 0 : 1) and which
rank of f2(x : y : z) is one is equivalent to one of the surfaces given above. All of
these surfaces given above only have one isolated singularity. Thus they cannot
have multiple singularities when the singularity at P is of the form D4, D5 or
E6. A algebaric model of the D5 model can be seen in figure 4.4.
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Figure 4.4: Cubic Surface with D5 singularity, Schilling VII-18

4.2.4 P a triple point

When the rank of f2(x : y : z) is zero then the defining function is F (X : Y : Z :
T ) = f3(x : y : z). When the surface V defined by F has an isolated singularity
at P = (0 : 0 : 0 : 1) then f3(x : y : z) = 0 defines a non singular curve. The
surface is a cone over a non singular cubic curve and the singularity at P is
called an Ê6 singularity. This is a ruled surface and will be treated in chapter
5.

4.2.5 Ruled Cubic Surfaces

When the cubic surface V is irreducible and has non isolated singularities. A
generic plane section of such a surface is irreducible, thus only has a singular
point. This means that the singular set of V is a line. When V has a singular
line it is a ruled surface. This means every point X on V lies on a line l ⊂ V .
The proof of this and other characteristics of cubic ruled surfaces will be treated
in chapter 5.

4.2.6 Reducible cubic surfaces

When we have a reducible cubic surface we have a non-degenerate quadric and
a plane, or three planes. When we have three planes this is certainly a ruled
surface. If we look at the non-degenerate quadric over a algebraically closed
field we have a ruled surface as well. When we look at the real representation
this may not be the case. The classification of quadrics in P3(C) falls not under
the scope of this thesis.
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4.3 Classification of Multiple Isolated Singular-
ities

In this section the cubic surface V has a singularity at P = (0 : 0 : 0 : 1) thus de
defining polynomial of V is written as F (x : y : z : 1) = f2(x : y : z) + f3(x : y :
z). The type of this singularity can be determined by section 4.2. It is possible
for V to have isolated singularities away from P . In this section the different
combinations will be treated. This will only be done for cubic surfaces with
only isolated singularities.

4.3.1 Possible other singularities when f2 is of rank 3.

The singular point is now found to be an A1 singularity. To do this it is
easier to write f2(x, y, z) in a different but equivalent way. Through a lin-
ear change of coordinates the homogeneous part of degree 2 can be written as
f2(x : y : z) = y2 − xz. This is of rank 3 as well, so P is still an A1 singularity.
Common roots of f2 = f3 = 0 correspond to a line trough P on V , and
conversely. When f2(x, y, z) = y2 − xz every root of f2 is of the form x =
θ2, y = φθ, z = φ2. Thus a line trough P on V corresponds to a root (φ, θ) of
f3(θ2, φθ, φ2). Here f3(θ2, φθ, φ2) is homogeneous polynomial of degree 6 in the
variables (θ, φ).
The defining polynomial of V in P3 can be changed to a polynomial F (x : y :
z : t) = t · f2(x, y, z) + f3(x, y, z) where f3 has no terms divisible by x2z, xz2

or xyz. This can be done by linear coordinate changes, assume f3(x, y, z) has a
term c1xz

2 with c1 a constant. Rewrite c1xz
2 = c1z(xz − y2) + c1zy

2, and use
the linear coordinate change on t′ = t− c1z then the term c1xz

2 will not occur
in the function. This can be done for x2z and xyz as well. These coordinate
changes will put f3 in the following normal form.

f3(x, y, z) = a0x
3 + a1x

2y + a2xy
2 + a3y

3 + a4y
2z + a5yz

2 + a6z
3 (4.37)

The following lemma will explain when two cubic surfaces with an A1 singularity
at P are equivalent and find which other isolated singularities may occur on a
cubic surface with an A1 singularity at P .

Lemma 4.5. Let:

F = T (Y 2 −XZ) + f3(X,Y, Z), G = T (Y 2 −XZ) + g3(X,Y, Z) (4.38)

a) F = 0 and G = 0 give projectively equivalent cubic surfaces, the equivalence
fixing P , iff f3(θ2, θφ, φ2) and g3(θ2, θφ, φ2) are equivalent binary sextics.
b) For each singularity Q 6= P the line QP lies on V with defining polynomial
F = 0. The line will be given by a common root of f2 = f3 = 0, which is equiv-
alent to a root of f3(θ2, θφ, φ2) = 0. This root of f3(θ2, θφ, φ2) with multiplicity
greater than 1.
c) Each root of f3(θ2, θφ, φ2) = 0 determines a line l trough P on V . If the root
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Figure 4.5: Cubic Surface with an A1 and A5 singularity, Schilling VII-15

has multiplicity greater than 1 there is precisely one other singular point on l.
d) A k-tuple root of f3(θ2, θφ, φ2) = 0 corresponds to an Ak−1 singularity.

Proof. a) If F = 0 and G = 0 are projectively equivalent then the change
of coordinates (x, y, z)→ (x′, y′, z′) will take the lines on F through P to those
on G trough P preserving multiplicities, which means that the change of co-
ordinates will map the roots of f3 into the roots of g3. This linear change of
coordinates x, y, z will induce a change of the coordinates (θ, φ) → (θ′, φ′) for
which g3(θ′2, θ′φ′, φ′2) = f3(θ2, θφ, φ2) because both sextics have the same six
roots.
When the binary sextics, f3(θ2, θφ, φ2), g3(θ2, θφ, φ2) are equivalent, then the
change of coordinates (θ, φ)→ (θ′, φ′) induces a coordinate change of (x, y, z)→
(x′, y′, z′) which will be an automorphism of y2 − xz, by definition. The re-
sulting cubic g′3 has the same intersections with this conic as f3. Thus f3
and g3 are equivalent modulo this conic. By Hilberts theorem this means that
f3 − λg′3 ∈

√
y2 − xz where

√
y2 − xz is the radical of the ideal generated by

(y2 − xz). Thus
f3 = λg′3 + (y2 − xz)l (4.39)

Where λ is a non zero scalar and l is a linear form. The linear coordinate change
(X,Y, Z, T ) = (X,Y, Z, T − l) and a scale change will prove that f3 and g3 are
projectively equivalent.
b) By an analytic change of coordinates the singularity lies at Q = (0 : 0 : 1 : 0).
Because Q is singular this means that the terms xz2, yz2, z3 are zero in f3. Then
θ2 divides the binary sextic f3(θ2, θφ, φ2), thus the multiplicity of the root is
greater or equal than 2. This root of f3(θ2, θφ, φ2) will correspond to a line on
V .
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c) Suppose that (θ : φ) = (0 : 1) is a multiple root of f3(θ2, θφ, φ2) = 0. Then
f3(θ2, θφ, φ2) = 0 thus this determines a line l trough P = (0 : 0 : 0 : 1) on
V , namely the line l := (z = t = 0). If f3 has the form as in equation 4.37,
the coefficients of the terms yz2, z3 are zero. A short calculation shows that
(0 : 0 : 1 : 0) is a singular point. The partial derivative to x is

∂F

∂x
= −zt+

∂f3
∂x

(4.40)

which only vanishes at P = (0 : 0 : 0 : 1) and Q = (0 : 0 : 1 : 0) on l thus Q and
P are the only singular points on the line l.
d) Again suppose the root of f3(θ2, θφ, φ2) =

∑6
0 aiθ

6−iφi = 0 is at (θ, φ) =
(0 : 1) and has multiplicity k. Then there is a k-tuple root if and only if
a6 = ... = a7−k = 0 and a6−k 6= 0, and the singularity is at (0 : 0 : 1 : 0).
The normal form of the function f3 is given in equationEQNF3. This is used to
define the function locally around the point Q = (0 : 0 : 1 : 0). Then

F (x : y : 1 : t) = ty2 − tx+ a0x
3 + a1x

2y + a2xy
2 + a3y

3 + a4y
2 (4.41)

By a coordinate change:

t = t′ + a0(x2 + xy2 + y4) + a1(xy + y3) + a2y
2, x = x′ + y2 (4.42)

this gives
−x′t′ + a0y

6 + a1y
5 + a2y

4 + a3y
3 + a4y

2 (4.43)

The first term −x′t′ is locally projectively equivalent to x2 + y2. Then for
a6 = ... = a7−k = 0 and a6−k 6= 0 the point Q is an Ak−1 singularity.

This gives an easy way to describe the singularities occurring when P =
(0 : 0 : 0 : 1) is an A1 singularity. There are at most 6 points where f2 and
f3 intersect, counted with multiplicity. These six points can be partitioned by
multiplicity in 11 different ways. Table 4.1 gives the different types of isolated
singularities on V when P is a singularity of type A1. In table 4.1 the number
stands for the multiplicity of the intersetion, and the subscript the number of
points with this multiplicity. Thus the notation 1222 stands for a partition of
2 intersections with multiplicity 1 and 2 intersections with multiplicity 2 giving
the total of 6 intersections counted with multiplicities.
An example of a surface model with an A1 and A5 singularity is given in 4.5.

4.3.2 Possible other singularities when f2 is of rank 2.

The different types of isolated singularities at other points then P , when f2(x, y, z)
is of rank 2, are found. This means that the singularity is of type Ak for k ≥ 2
as described in subsection 4.2.2. The different types of other singularities will
be treated in this section. For this f2 = xy instead of f2 = x2 − y2 to simplify
the calculations. This is a linear change of coordinates in P3 and the rank of f2
still is 2. The lines in P2 of which f2 = 0 consists are x = 0 and y = 0. The
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Partition intersections f2, f3: 16 142 133 124 1222 15

Singularities occuring on V : A1 2A1 A1A2 A1A3 3A1 A1A4

Partition intersections f2, f3: 123 23 42 32 6

Singularities occuring on V : 2A1A2 4A1 2A1A3 A12A2 A1A5

Table 4.1: Partition of the six intersections of f2 and f3 on a cubic surface with
an A1 singularity.

type of singularity at P can now be found by the classification above. But there
may still lie other singularities on V . Which types of singularities this may be,
is treated next.
The defining function of the surface V is of the form F (X : Y : Z : T ) =
TXY + f3(X,Y, Z). By a linear change of coordinates on T we can put F in
a normal form where no term in f3(X,Y, Z) is divisible by XY . Take a term
divisible by XY for example cXY Z where c a non zero constant. The linear
change of coordinats (X : Y : Z : T ) → (X : Y : Z : T − cZ) will give an
equivalent surface without the term cXY Z. Thus every such surface can be
changed to a surface defined by normal form given in 4.44.

F = TXY +X(a0X
2+a1XZ+a2Z

2)+Y (a3Y
2+a4Y Z+a5Z

2)+a6Z
3 (4.44)

This normal form is used in the following lemma which will explain which other
types of singularities may occur on a cubic surface with a singularity at P = (0 :
0 : 0 : 1) and for which the defining polynomial has a homogeneous quadratic
part of degree 2 in X,Y, Z.

Lemma 4.6. For a cubic surface V have defining polynomial:

F (X : Y : Z : T ) = TXY + f3(X,Y, Z) (4.45)

the following holds: a) Isolated singularities of V away from P = (0 : 0 : 0 : 1)
correspond to multiple intersections of xy = 0 with f3(X,Y, Z) = 0 away from
(0 : 0 : 1) in P2.
b) A k-tuple intersection away from (0 : 0 : 1) corresponds to an Ak−1 singular-
ity.

Proof: a) Assume y = 0 has a multiple intersection with f3 = 0. By a
change of coordinates assume the intersection occurs at Q = (1 : 0 : 0). When
F is put in the normal form described in equation 4.44:

F = TXY +X(a0X
2+a1XZ+a2Z

2)+Y (a3Y
2+a4Y Z+a5Z

2)+a6Z
3 (4.46)

Then the multiple intersection corresponds to a0 = a1 = 0. Thus F has no
terms divisible by X2 which means it has a singularity at Q′ = (1 : 0 : 0 : 0).
For the reverse if there is another singularity then at P = (0 : 0 : 0 : 1) say at

30



Partition: 13.13 13.21 13.3 21.21 21.3 3.3 12.12

Singularities: A2 A2, A1 2A2 2A1, A2 A1, 2A2 3A2 A3

Partition: 12.2 2.2 12.1 2, 1 12.0 2.0

Singularities: A1, A3 2A1, A3 A4 A1, A4 A5 A1, A5

Table 4.2: Partition of the six intersections of a cubic with Ak singularity.

Q′ = (1 : 0 : 0 : 0) then F has no terms divisible by X2 and a0 = a1 = 0. Thus
Y = 0 has a multiple intersection with f3 = 0 at Q = (1 : 0 : 0).
b) Assume the multiple singularity occurs at Q = (1 : 0 : 0 : 0). To check which
type of isolated singularity Q is, switch the role of X and T thus working on the
affine part UX . The surface on this affine part is given by F (1 : Y : Z : T ) = 0
the defining function writin in the normal form as in equation (4.44):

F (1, y, z, t) = ty + a2z
2 + a3y

3 + a4y
2z + a5yz

2 + a6z
3 (4.47)

The quadratic part of F is t · y+ a2z
2. If a2 is non zero the quadratic part is of

rank 3 and by subsection 4.2.1 the singular point Q is of type A1.
When a2 = 0 then a6 is certainly not zero otherwise the equation is reducible
and the corresponding cubic surface is reducible too. In this case f2(t, y, z) = ty
and f3(t, y, z) = a6z

3 +O(y). To find which singularity this is we have to look
trough the criteria in the subsection 4.2.2. The critical point for determining
the type of singularity at Q is the intersection of f3(t, y, z) at (0 : 0 : 1). Because
a6 is non zero, no such intersection occurs. Thus looking at the classification in
subsection 4.2.2 the point Q is a singularity of type A2 and there are no more
possibilities for the singularities to occur.

To summarize: when f2(x : y : z) consists of two different linear forms
l1(x : y : z), l2(x : y : z) the singularity at P = (0 : 0 : 0 : 1) is of type Ak for
k ≥ 2. Here k depends on the intersection of f3(x : y : z) = 0 with f2 = 0. Let
Q be the point l1 = l2 = 0 in P2. If f3 = 0 does not contain Q then k = 2.
When f3 = 0 intersects l1 = 0 in Q with multiplicity a1 and intersects l2 = 0 in
Q with multiplicity a2 then a1 or a2 is 1 and k = 1 + a1 + a2.
If there are other singularities on V , then there is an Ak singularity. When
f3 = 0 intersects l1 or l2, at some points other than Q, with multiplicity k + 1.
All different ways this can occur is found in table 4.2. Where the number stand
for the intersections of f3 away from Q = (l1 = l2 = 0). For example 12.2
stands for two intersections f3 = l1 = 0 with multiplicity 1 away from Q, hence
an intersection f3 = l1 = 0 at Q of multiplicity 1 as well. And one intersection
f3 = l2 = 0 of multiplicity 2 away from Q, hence one intersection f3 = l2 = 0 of
multiplicity 1. Thus in total one A3 at P = (0 : 0 : 0 : 1) and an A1 at another
point.
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4.3.3 Possible other singularities when f2 is of rank 1.

If the rank of f2 is 1, then the singularity type of P is D4, D5 or E6 as described
in subsection 4.2.3. For these types of singularities there can be no more than
one isolated singularity when they lie on a cubic surface. This is seen by looking
at the normal forms giving in subsection 4.2.3, because for all three cases there
is just one normal form which does not have any other singularities there will
be no more.

4.4 Complete classes of cubic surfaces in P3

4.4.1 Lines on a cubic surface

As seen in subsection 4.1 the smooth cubic surface has exactly 27 lines. This
will not be the case for the cubic surface V with an isolated singularity on
it. Some of the lines on V will be double or even triple on V . Bruce and Wall
calculated for different types of cubic surfaces the number of lines on the surface
[9]. They found a formula to calculate the number of lines on the cubic surface
with isolated singularities V . If the number of singularities is k, and the sum of
their Milnor number is c then the number of distinct lines on V is

1

2
(8− c)(7− c) + k − 1 (4.48)

Bruce and Wall see the Milnor number as the linear restrictions put on the cubic
surface. Here an A1 type singularity is just one restriction on the surface, in
general for every Ak singularity the number of restrictions is k.
In subsection 3.2.4 it is shown that the Milnor number by the simple singularities
is the same as the subscript. Knörrer and Miller proved this equation for cubic
surfaces [10] by using blow ups and the orbits of the singularities where Bruce
and Wall calculated every case separately. The number of lines on a cubic
surface will be used to classify cubic surfaces over the real numbers. This is
done by looking at which of those lines are real and which are complex.

4.4.2 Total Classes

This will give the classifications of the cubic surfaces with at most isolated
singularities over algebraically closed surface and the number of lines lying on
them. There are 22 projectively different complex cubic surfaces summed up in
table 4.3.

4.4.3 Modern view

There is a more intuitive view to come to the same classification. This has to
do with the so called passages of the smooth cubic model [6]. A smooth cubic
surface has 7 passages which are linked. This can be seen in the surface left
in figure 4.7. Where the seven passages are the three holes in the surface, the
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Types: Nonsing. A1 2A1 A1, A2 A1, A3

Lines: 27 21 16 11 7

Types: A1, A4 A1, A5 3A1 2A1, A2 2A1, A3

Lines: 4 2 12 8 5

Types: A1, 2A2 4A1 A2 2A2 3A2

Lines: 5 9 15 7 3

Types: A3 A4 A5 D4 D5

Lines: 10 6 3 6 3

Types: E6 Ê6

Lines: 1 ∞

Table 4.3: Possible configuration of singularities on a cubic surface in P3

Figure 4.6: Coxeter diagrams collapsed passages.

three entrances to the middle from the left, right and back, the last is the entry
to the middle from below. The entry from below is linked to the three holes
which are individually links to one of the passages to the middle. This is given
schematically to the right of the image of the surface.
The right diagram in figure 4.7 is the non collapsed Coxeter diagram of the
Ê6 singularity, which is cone over a non-singular cubic surface. Every time a
passage is collapsed, a singularity emerges. A collapsed passage is denoted by
colouring the corresponding circle black. In chapter 3 the coxeter diagrams of
the simple singularities are given. The structure of the collapsed passages will
give a diagram with non connected Coxeter diagrams of simple singularities.
An example of this is shown in figure 4.6. The left diagram consists of four
disconnected collapsed passages. Every collapsed passage corresponds to an
A1 Coxeter diagram, and the corresponding surface is a surface with four A1

singularities. The right diagram consists of four coloured nodes, which is the
same as the Coxeter diagram of the D4 singularity. Hence the right diagram
corresponds to a cubic surface with a D4 singularity.
By collapsing the passages and looking at the corresponding diagrams the 21
different configurations of singularities on a cubic surface can be found. The
position of the collapsed passage does not matter, the only thing to look at is
the structure of the singularities in the diagram. Hence the 7 diagrams with
one collapsed passage, or one coloured node, all correspond to a surface with an
A1 singularity and are projectively equivalent. These are counted as one class
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Figure 4.7: Smooth cubic surface with seven passages with its Coxeter diagram.

in our classification.

4.5 Real Models of Cubic Surfaces

The theorems and the classification of the cubic surfaces in the last section is
done in an algebraically closed field. The models of the cubic surfaces however
are in R. This means for cubic surfaces which projectively fall in the same
category over the complex numbers, may have distinct different models over
the reals. For the next part the real part of the cubic surface V is denoted as
VR. It is shown already that every smooth cubic surface V can be constructed
by blowing up six points P1, ..., P6 in general position in P2. From now on
we will call these six points Σ. Then define r(V ) as the number of real pairs
of complex points in Σ, or −1 if it is not the blow up of 6 points in general
position. This is called the reality index. For a singular cubic surface X take
r(V ) = r(Ṽ ) where Ṽ is the desingularization of V , thus taking the reality index
of the desingularised surface V . If a function F (X : Y : Z : T ) defines a real
cubic surface then all coefficients of the terms F (X : Y : Z : T ) are real.

4.5.1 Real Smooth Cubic Surfaces

The classification of the real smooth cubic surfaces is done by looking at which
of the lines on the surface are real. In the beginning of this chapter in theorem
4.1 it has been proven that on every smooth cubic surface on a algebraically
closed field there lie exactly 27 lines. But nothing has been said about the con-
figuration of these lines. This will be done now.
When the intersection of a plane and the cubic surface contains three lines we
speak of a tritangent plane. This naturally happens when we look at the plane
on which two known intersecting lines lie, call these two lines a1 and b2. This
gives rise to a third line c12 which intersects both a1 and b2. In the notation of
Schläfli [18] this tritangent plane is denoted by (12). Similarly the tritangent
plane (21) contains the line a2, b1, c12.
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In the sketch of the proof of theorem 4.1, the third step was proving that when
there is one line l on a smooth cubic surface V , then l lies in five planes U1, ..., U5

which intersected with V gave a full reduction into three lines of the correspond-
ing curve. Hence Ui ∩ V = l ∪ l1 ∪ l′1 for l, l1, l

′
1 three lines. Which means that

every line l on V intersects with exactly 10 other lines. These five planes give 2
intersecting lines per plane. The configuration of all 27 lines can be stated by
the notion of a Schläffli double six.

α =

(
a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

)
(4.49)

In the proof of theorem 4.1 the different lines which intersect are already stud-
ied, the double six will give this some structure.
This notation starts with two skew lines namely a1 and b1. Two skew lines
will have 5 intersecting lines in common. Then a1 will intersect with exactly
5 lines which do not intersect b1, call these lines b2, ..., b6. In the same way b1
will intersect with exactly 5 lines which do not intersect with a1 call these lines
a2, ..., a6. These lines will imply there are the c1i for i = 2, ..., 6, which give
the five lines intersecting both a1 and b1. This gives the 17 first lines. where
a2, ..., a6 are l′′1 , ..., l

′′
5 and b2, ..., b6 are l′1, ..., l

′
5.

Thus ai does not intersect aj for all other j but does intersect with bj for all
j 6= i. The cij completely determine the other 15 lines of the surface. The lines
cij need to intersect six other ckl as well, because they only intersect four of the
ai, bj . These are exactly the ckl for which i 6= k and j 6= l. Every line lies in
exactly 5 planes with 3 other lines thus we have 27 · 58 · 13 = 45 such planes.
Now we have the complete configuration of such lines projectively.

Types of real smooth cubic surfaces by Schläfli

The different types of real smooth cubic surfaces Schläfli did by looking at
the amount of tritangent planes and lines on the cubic surface which are real.
Schläfli found the following different types [18] which all occur:
Type 1: All 27 lines and all 45 planes are real.
Type 2: There lie 15 real lines and 15 real tritangent planes on the surface. The
remaining 12 complex lines form a double six where all the complex lines are
completely imaginary and the conjugate pairs do not intersect.
Type 3: On the surface there are 7 real lines and 5 real tritangent planes. Trough
every real line ther pass 5 real planes but only three contain a real triangles.
On the other two, two imaginary lines meet in a real point.
Type 4: There are 3 real lines and 13 real planes. There is 1 real triangle and
trough each side ther pass 4 more real planes.
Type 5: There are 3 real lines and 7 real planes. In this case there again is 1
real triangle and trough each side there pass 2 real planes.
A plaster model of a smooth cubic surface with 27 real lines is shown in figure
4.8.
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Figure 4.8: Smooth Cubic Surface with 27 real lines, Schilling VII-01

Proof by Segre

In the article Schläfli did not explain how he came to these different types. Later
Segre proved the same result in a different way [19]. He does this by degenerating
a smooth cubic surface to a surface of three planes. In this deformation the
smooth cubic surface will tend to one with a single isolated A1 singularity.
Start with the following definition:

Definition 4.1. A complex line l with a real point, hence l ∩ l 6= ∅, is called of
the 1st kind. A complex line l which is skew to its conjugate, hence l ∩ l = ∅ is
called of the 2nd kind.

On a surface which has exactly one isolated A1 singularity, there will be 6
lines through this singularity. If the singularity is assumed to be at P = (0 : 0 :
0 : 1) then F (X : Y : Z : T ) = Tf2(X : Y : Z) + f3(X : Y : Z) and the six
lines l1, ..., l6 are the lines for which f2(X : Y : Z) = f3(X : Y : Z) = 0. Taking
two lines, li, lj , they will lie on a plane T and T ∩ V will give a third line. All

these combinations occur and will give the 6 +

(
6
2

)
= 21 lines in P3(C). These

lines can be real or complex. When one of the lines through the singularity is
complex its conjugate will be one of the lines through the singularity as well. As
they must both be zeroes of f2(X : Y : Z) which is defined by real coefficients.
To further define the reality of the lines on the rest of the surface the different
tritangent planes are needed. If a tritangent plane has two real lines on it the
third is a real lines as well. If the tritangent plane contains one real and one
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Number of lines trough singularity: Number of remaining lines:
Type: Real 1st kind Real 1st kind 2nd kind

Ω1 6 0 15 0 0
Ω2 4 2 7 0 8
Ω3 2 4 3 4 8
Ω4 0 6 3 12 0

Table 4.4: The different types of lines on a singular cubic surface.

complex line through the singularity, then the third line on the tritangent plane
is complex. Thus when every pair of 2 lines can be complex or real, then the
four types of singular cubic surfaces with a real A1 singularity in table 4.4 will
be the only ones with real lines.
Segre says when a non-singular cubic surface tends to a singular cubic surface

then 12 of the lines, constituting of a double six, tend to the 6 lines trough the
singularity. This happens in such a way that two corresponding non intersecting
lines of the double six tend to coincide in one line trough the singularity. This
is because the intersection relations of the 15 lines not through the singularity
will still hold. All lines cij which intersect the ai in the double six will intersect
with bi as well. Thus naturally these will coincide when the double six collapses.
The six lines through the singularity are self conjugate, thus this should be true
for the double six as well. The two sextuplets β, γ of the double six are either
self conjugate or mutually conjugate. If there is a complex line l1 in the double
six its complex conjugate l1 should be in the double six as well. If l1, l1 in the
same six γ and another complex pair of lines l2, l2 is spread over the two sixes
γ, β. Assume l2 is in β, then l2 will intersect l1 or l1, assume l1 in a point P .
The complex conjugate of P , P = Q, will lie on l1 and on l2. Thus l1 and l2
will intersect but they lie in the same six γ and by definition do not intersect.
Thus this situation cannot happen and the whole six is self conjugate, or both
sixes are mutualy conjugate.
Hence the six lines a1, ..., a6 are either such that they consist of real lines and
conjugate pairs, or the six lines a1, ..., a6 consist of real lines and complex lines
li, ..., l6 such that their conjugates lie in het lines b1, ..., b6. Every line through
the singularity is the limit of two corresponding and thus skew lines. This gives
that a real line can only be the limit of two real lines or a pair of conjugate
complex lines. Which gives that the following are the only two cases which
occur:
1) A real line through the singularity is the limit of two real lines and a complex
line is the limit of two complex lines of the 2nd kind. This happens when the
sixes are both self conjugate.
2) A real line through the singularity is the limit of complex conjugate lines of
the 2nd kind and a complex line is the limit of two complex lines of the 1st kind.
In the case that the sixes are mutually conjugate.
Looking at the cubic surfaces which limit are the types of table 4.4. Every type

37



Number of lines:
Type: Real: Complex 1st: Complex 2nd: Tritangent planes Reality Index:
F1 27 0 0 45 3
F2 15 0 12 15 2
F3 7 4 16 5 1
F4 3 12 12 7 0
F5 3 24 0 13 -1

Table 4.5: The different types of smooth cubic surfaces.

in table 4.4 can have its six lines made into a double six, where there are two
possibilities. The double six are self conjugate or they are mutualy conjugate.
Thus for every type in table 4.4 there are two types of smooth cubic surfaces
in table 4.5. Some of the types will overlap, and in total there will be 5 types
found in this way. These types of real non-singular cubic surfaces are described
in table 4.5. Every type Ωi in table 4.4 will correspond to type Fi or Fi+1 in
table 4.5. From the number of real lines and the construction of the double xis
it is possible to calculate the number of real tritangent planes. When the real
tritangent planes are counter per type, the types will correspond to the types
given by Schläfli.

Finding the reality index by looking at the blow up.

The reality index can be found by looking at the blow up of six points in standard
position. Name these points X1, ..., X6, define ai the exceptional divisor trough
Xi and bi the line given by the blow up of the conic not going trough Xi. The
line cij is the blow up of the line passing trough Xi and Xj . Certainly ai and bj
do not intersect if i = j and intersect otherwise, ai and aj will not intersect if
i 6= j and bi and bj will not intersect if i 6= j. Thus the following is constructed
as a double six. (

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

)
(4.50)

If Xi is a real point then ai and bj are real lines, if Xi is complex and Xj = Xi

then ai, bi, aj , bj are complex but cij is real. This gives the reality index given
by the different types. From a process of elimination which gives the first four
types it is found that F5 cannot be the blow up of 6 points in standard position
and thus has reality index −1. The six points of which F5 is the blow up then
must have a special configuration in P2(C).

4.5.2 Real cubic surfaces with isolated singularities

Assume for the next section that V is a cubic surface. Define VR as the real
part of V . For the classification of the real part of the cubic surface we do not
care about complex isolated singularities, these will not occur on the real part.
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Type: Equation: µR ν

A−2k x2k+1 + y2 − z2 2k 0

A+
2k x2k+1 + y2 + z2 0 k − 1

A−2k−1 x2k + y2 − z2 2k − 1 0

A+
2k−1 x2k − y2 − z2 1 k − 1

A•2k−1 x2k + y2 + z2 1 k − 1

D−4 x2y − y3 − z2 4 0

D+
4 x2y + y3 + z2 2 1

D−5 x2y + y4 − z2 5 0

D+
5 x2y + y4 + z2 3 1

E−6 x3 + y4 − z2 6 0

E+
6 x3 + y4 + z2 2 2

Table 4.6: Table of occuring singularities on the real part of a cubic surfaces.

Thus assume that V only has real isolated singularities.
In the classification above over algebraically closed fields it is proven that only
A1, A2, A3, A4, A5, D4, D5, E6 occur as singularities on cubic surfaces. Looking
at the normal forms of these singularities these are defined over the reals. The
only difference may be the units before some of the terms. These difference in
units only occurs in even powered terms. This means that only the types of
real singularities with their respective normal forms described in table 4.6 will
occur. [10]
Where µR of a certain singularity comes from the resolution of the singularity

by blowing up. Every iteration of the resolving of a singularity a point is blown
up to an exceptional divisor. In chapter 3 the Coxeter diagrams of such blow
up procedure are seen. In the case of the singularities in chapter 3 nothing
was said about the complexity of these exceptional divisors. Then µR says
something about the number of exceptional divisors, given in the resolution
of the singularity, which are real. The types of singularities in table 4.6 will
all have their unique resolution of which µR is the number of real exceptional
divisors and ν is the number of pairs of complex exceptional divisors. For more
information see Durfee [4], [5].
The class of cubic surface with an A•1 singularity is a special case. There will
be no other real singularities on this surface. This is proven in the following
lemma.

Lemma 4.7. If P is a singularity on a cubic surface VR of the form A•1 then it
is the only singularity on VR.

Proof Assume there is another singular point Q 6= P on VR. Then the line
through P and Q will lie completely on VR and by extension in R3. But in a
small ball around P it has the normal form x2 +y2 +z2 = 0 which is an isolated
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point of the surface. Thus the line trough P and Q cannot lie in R3 hence P is
the only singularity.
A couple other singularities will not occur as well on the cubic surface but they
are harder dealt with.

Lemma 4.8. The following will not occur on the real part of a cubic surface:
(1) A•3, (2)A•5 or A+

k for k ≥ 4, (3) D+
5 and E+

6 .

Proof: When the cubic surface is real then all coefficients in F (X : Y : Z : T )
and f2 are real. When P = (0 : 0 : 0 : 1) is a singularity of type Ak with k ≥ 2
or a D4, D5 or E6 singularity, then the homogeneous part of degree 2 in the vari-
ables X,Y, Z, f2(X,Y, Z), factors into two linear factors. Because f2(X : Y : Z)
has only real coefficients these linear factors are both real or are both complex
and each others conjugate. Call these linear equations l1, l2. In subsection 4.2.2
and 4.2.3 the intersections of f2(X : Y : Z) and f3(X : Y : Z), the homogeneous
part of degree three in X,Y, Z, are of importance for the classification of the
intersections.
(1) For an A3 singularity f2 consists of two linear parts, the normal form of
A•3 is x2 + y2 + z4 around the point (0, 0, 0). By a linear change of coordi-
nates the linear parts are x − iy and x + iy. By another analytic change of
coordinates f3(X : Y : Z) can be written as 2xz2. Then the defining poly-
nomital on UT = (T = 1) is f(x, y, z) = x2 + y2 + 2xz2. By the coordi-
nate change x̃ = x − z2 the cubic surface is given by the defining polynomial
F (X : Y : Z : T ) = T (X2 + Y 2) − z4. Thus a cubic surface VR with an A3

singularity only has A−3 or A+
3 type singularity. Hence an A•3 type singularity

is impossible.
(2) If the singularity at P = (0 : 0 : 0 : 1) is of the form Ak for k = {4, 5},
then f2(x : y : z) is of rank 2. This means that f2 = 0 will consist of 2 lines in
P2(C). The product of these two linear parts l1, l2 gives a real polynomial thus
these linear parts can both be defined over the reals, or both be complex and
each others complex conjugate. By a coordinate change defined over the reals
these lines are (x + y) = 0, (x − y) = 0 respectively (x − iy) = 0, (x + iy) = 0.
If f3 = 0 intersects l1 = 0 in a complex point P then f3 = 0 will intersect l2 in
the complex conjugate point P which means that f3 = 0 will intersect l1 and
l2 in the same amount of complex points. In the case of a A4, A5 singularity
f3(0 : 0 : 1) = 0 thus intersect both lines in the point (0 : 0 : 1) and will inter-
sect one line with multiplicity greater than 1. If f2 = 0 splits into two complex
linear parts then f3 = 0 will intersect one line in 2 complex points and one in
at most 1 complex point. This cannot happen which means the linear parts
should be real. Thus f2(X : Y : Z) = X2 − Y 2 which always will give an A−k
type singularity.
(3) When the cubic surface has a D5 or E6 singularity f2 is the square of a real
linear equation. The square of a linear part is only real when the part itself is
real. Thus the coordinate change to put f2(X : Y : Z) = X2 is defined over the
real numbers. From now on assume thus that f2 = x2, then f3(x : y : z) = 0 will
have exactly 3 intersections, counted with multplicities, with x = 0 in P2(C).
These three intersections may all be real or are a real point and a complex

40



Figure 4.9: Plaster model with D−4 sin-
gularity, Schilling VII-16.

Figure 4.10: Plaster model with D+
4 sin-

gularity, Schilling VII-17.

conjugate pair of points. When there are less than three intersections the latter
cannot occur or else counted with multplicities there would be more than 3 in-
tersections. This is not possible by Bezouts theorem and the intersection points
are real. This is exactly the case when there is a D5 or E6 singularity. Because
in both cases f3 is fully defined over the reals this means putting them in the
normal forms xz2 + y2z for D5 and xz2 + y3 for E6 can be done by a coordinate
change over the reals. Because all other coordinate changes in subsection 4.2.3
are defined over the reals this means that D5 and E6 only have local normal
forms x2 + xy2 − z4 respectively x2 + y3 − z4 in P3. This gives only a D−5 and
E−6 singularity on the real part of a cubic surface.

Remark that the surfaces of D−4 and D+
4 can occur on a cubic surfaces which

is shown in figure 4.10 and 4.9. This reduces the number of singularities we have
to look at when making the real cubic models. Some of the singularities which
are left can exist on the real cubic surfaces but not combined with any other
singularities. Which is given by the following lemma.

Lemma 4.9. Let V be a cubic surface defined over the reals. If there are
multiple isolated singularities on VR then they are all of the type A−k .

Proof. First start with the A1 singularity. Observe that for the normal forms
it holds A−1 = −A+

1 , this means A−1 and A+
1 are projectively equivalent. Then

every A1 singuarity, except A•1, can be seen as an A−1 singularity.
For Ak for k ≥ 2 look at the linear parts of f2 = l1 · l2. When both l1 and l2
are complex and they are each others conjugate, then the only real point l1 = 0
or l2 = 0 is the point where l2 = l1 = 0. An extra singularity is a multiple
intersection of f2 = 0 with f3 = 0 at Q away from l2 = l3 = 0. Which means
that the point Q is a complex point. This will give a complex singularity at Q
but Q 6∈ XR. Hence when multiple singularities lie on VR the lines l1, l2 are real
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and the quadratic part of the normal form can be made by a coordinate change
to x2 − y2, and all singularities are of the form A−k .
This is the case when one of the singularities is of the form Ak. When a singu-
larity on the cubic surface V is of the form D4, D5 or E6 then there lie no other
singularities on the cubic surface V . This is proven in subsection 4.3.3.
Thus if there lie multiple isolated singularities on a cubic surface V then all of
them are of the type A−k .

By the classification of the cubic surfaces with isolated singularities over the
complex number and the lemmas 4.7, 4.8 and 4.9, all tools for the classification
over the reals are there. In this next section all real cubic surface with isolated
singularities will be done.

Classification of real cubic surface with isolated singularities

Using the same reasoning as the classification of cubic surfaces over the complex
numbers. We can set the singularity p at (0 : 0 : 0 : 1) and get the defining
equation of the cubic surface

F = T · f2(X : Y : Z) + f3(X : Y : Z) (4.51)

It is already proven that if f2 is irreducible then P is of the type A1. Also it
is proven that every intersection f2 = f3 = 0 gives a line on the surface. In
all cases their are six such points counted with multiplicity over the complex
numbers. Let Q be a real point such that Q 6= P and f2(Q) = f3(Q) = 0, then
the whole line PQ is real. In the same way if it is complex then the line will be
complex. For the classification all singularities are real thus an intersection of
multiplicity greater then 1 of f2 = f3 = 0 is always a real point. This gives a
way to classify the surfaces with rational singularities on them. The following
cases occur:
Type 1: The curve C = f2(X : Y : Z) = 0 is irreducible and has real points.
This means P is a singularity of type A1 and C is a conic which can be writen
as x2 + y2 − z2. Every intersection Q of C with f3(X : Y : Z) = 0 can be real
or complex. If Q is a complex point then f2(Q) = f3(Q) = 0 for the complex
conjugate Q. Furthermore the intersection of f3 = 0 with f2 = 0 at the complex
point Q has the same multiplicity as f3 = 0 with f2 = 0 at the point Q. Thus
the 6 intersection points can consist of 0, 1, 2 or 3 pairs of complex conjugate
points and the rest real points. In figure 4.11 this is graphically denote. Every
real intersection of f2 = 0 and f3 = 0 is denoted by a point on the circle, and
every complex pair of intersections is denoted by a point inside the circle.
In the first row of figure 4.11 non of the intersections of f2 = f3 = 0 is of mul-
tiplicity greater than 1, this means that they all denote an cubic surface with
an A1 singularity. But they all are different over the reals. The first has 6 real
lines through the singularity lying on the cubic surface, the second has 4 lines,
the third 2 and the last has no lines lying on the real cubic surface through the
singularity.
The second row denotes all cubic surfaces for which f2 = f3 = 0 has exactly 1
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Figure 4.11: List 1

Figure 4.12: Type One Figure 4.13: Type two Figure 4.14: Type Three

intersection of mutliplicity 2. This is a cubic surface with 2, A1 type singulari-
ties. Again they are different models which can be seen by the number of lines
through the A1 singularity at (0 : 0 : 0 : 1). The first has 5 lines on the real
part of the surface through (0 : 0 : 0 : 1), the second 3 and the last just 1 line.
This explains every different surface with an A1 singularity except for the cubic
surfaces with exactly 3 type A1 singularities. The difference is seen in figures
4.12, 4.13. These models to the first and third diagrams on the third line of fig-
ure 4.11. They contain exactly the same amount of line on their real parts and
the same number of singularities but, as can bee seen, they are not equivalent.
Type 2: f2(X,Y, Z) is irreducible and has no real points. Then P is an A+

1

singularity. By lemma 4.9 this has only one type and by symmetry this is the
same as the A−1 singularity.
Type 3: f2(X,Y, Z) reduce to two linear forms which both are real. Then P
is a singularity of the form A−k with k ≥ 2. In the same way as by type 1 the
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Figure 4.15: List 2

topological different types of cubic surfaces can be found by looking at the six
intersections of f2 = 0 and f3 = 0. In figure 4.15 the upper and lower circle
stand for the two lines and dots inside the circle correspond to pairs of complex
conjugate points intersecting f2 and f3.
Type 4: f2(X,Y, Z) reduce to two complex conjugate lines. Then f2(X,Y, Z)
can be writen as X2 + Y 2 and the singularity is of the form A+

2 or A+
3 . By 4.8

it cannot be A+
4 or A+

5 . Both singularities give unique real surfaces.
Type 5: f2(X,Y, Z04) reduce to the quadratic of a linear form. By the complex
classification P is a D4 a D5 or a E6 singularity. When P is a D4 singularity
there are two situations. The first is when f2 = 0 and f3 = 0 intersect in 3 real
points and the second is when the intersection points consist of a real points
and two complex conjugate points. In the first case by a real linear change of
coordinates the points are (1 : 0 : 0), (1, 1, 0), (1,−1, 0) and the function is localy
x2y− y3 + z2. In the second case a real coordinate transformation can give the
points (1 : 0 : 0), (1 : i : 0), (1 : −i : 0) and the normal form is x2y + y3 − z2.
This gives the D+

4 and D−4 singularity.
In lemma 4.8 it is proven that D+

5 and E+
6 do not occur on the real cubic sur-

faces. Thus there is just one real model of the D5 and E+
6 singularities. This

gives 45 types of real cubic surfaces and they are given in figure 4.16 at the end
of the chapter. The 45 are divided into the 5 smooth cubic surfaces, 20 with an
A−1 singularity, the A•1, 13 with an A−k but not A−1 , 2 with an A+

k with k ≥ 2,
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and the four surfaces with D−4 , D
+
4 , D

−
5 , E

−
6 .

Number of real lines on cubic surfaces.

In the classification over an algebraically closed field the number of lines lying
on the cubic surfaces are shown in subsection 4.4.1. Knörrer and Miller proved
the case for the real cubic surfaces as well. This is a variation on equation 4.48.
Knörrer and Miller proved that for a cubic surface V , with reality index r(V ),
number of singularities k, sum of the Milnor numbers over the reals µR given
in table 4.6 and sum of ν(V ) of the singularities, then the number of real lines
lying on the cubic surface is calculated by equation 4.52.

(2 + 2r(V )− µR(V ))(1 + r(V )− µR(V )

2
− (r(V )− 2) + k − ν(V ) (4.52)
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Schilling Number: Singularities: Real lines: Reality Index:
VII-1 ∅ 27 3

∅ 15 2
∅ 7 1
∅ 3 0
∅ 3 -1

A−1 21 3

A−1 11 2

A−1 5 1

A−1 3 0
A•1 3 0

2A−1 16 3

2A−1 8 2

2A−1 4 1

VII-8, VII-7 3A−1 12 3

3A−1 12 3

3A−1 6 2

VII-2,...,VII-6 4A−1 9 3

A−1 A
−
2 11 3

A−1 A
−
2 5 2

2A−1 A
−
2 8 3

A−1 2A−2 5 3

A−1 A
−
3 7 3

A−1 A
−
3 3 2

VII-12, 2A−1 A
−
3 5 3

VII-14 A−1 A
−
4 4 3

VII-15 A−1 A
−
5 2 3

VII-10 A−2 15 3

A−2 7 2

A−2 3 1

VII-11 A+
2 3 0

2A−2 7 3

2A−2 3 2

VII-9 3A−2 3 3

A−3 10 3

A−3 4 2

VII-13 A−3 2 1

A+
3 4 1

A−4 6 3

A−4 2 2

A−5 3 3

A−5 1 2

VII-16 D−4 6 3

VII-17 D+
4 2 1

VII-18 D−5 3 3

VII-19 E−6 1 3

Figure 4.16: Different Topological Real Cubic Surfaces
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Chapter 5

Ruled Surfaces

In this chapter the models of ruled cubic and quartic surface are treated. Start-
ing with the ruled cubic surfaces and Schillings models of the different types.
Then there will be a short mathematical background of the quartic ruled sur-
faces taken from [14]. To begin some background of ruled surfaces is needed.
This background is based on the work of Edge [22].
First the definition of a ruled surface is needed.

Definition 5.1. A surface V is called a ruled surface iff for every point x ∈ V
there exist a line l through x such that l ⊂ V .

A ruled surface thus is a surface consisting of the union of all straight lines
on the surface. Any line can be defined by two points lying on it. Thus a ruled
surface can be defined by two curves and the lines between two points on the
curves. Take two curves in P3, C1 and C2 and take a correspondence between
them. Two corresponding points can be joined by a line, giving a ruled surface.
The degree of this ruled surface is formalized in the following theorem.

Theorem 5.1. The order of a ruled surface given by two curves C1, C2 in P3 of
degree n1, n2, with a correspondence of degree (α1, α2). Then the degree of the
ruled surface is, when the curves do not intersect, n1α2 + n2α1. Hence a 1-to-1
correspondence gives in a general a ruled surface of degree n1 +n2. Every ruled
surface which is not a cone over a curve can be constructed in this way.

Theorem 5.1 is not true when the two curves intersect at a point P , and the
point P on curve C1 corresponds to the same point P on C2. Such a point is
called a united point. Then the amount of united points and multiplicity of such
a united point i is counted. This will need to be subtracted from the degree of
the surface. Thus the degree of the surface then becomes n1α2 + n2α1 − i. For
the proof see [22].
When working in P3 the tangent plane TPV of a point P of the ruled surface
V of degree n contains the line l which passes through P . Looking at TPV ∩ V
it consists of the line l and a curve C of order n − 1. If P is chosen generally
the curve C is irreducible and does not intersect l. Then l will meet C in n− 1
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Figure 5.1: The plaster model of Cayleys ruled surface, Schilling VII-22

distinct points. Through each point of C corresponds a line on V , and every
line on V other than l will meet C in one point. Thus there is one point on C
of which l is the corresponding line going through it. On the other n− 2 points
there will pass other generators. Thus the line l on V is met by n − 2 other
generating lines on a ruled surface of degree n. Concluding on a ruled surface V
of order n, every general line l will meet n− 2 other generating lines of V . This
gives rise to a singular or double curve C ′ on V such that C ′ will meet every
general line of V in n− 2 points. A ruled surface in P3 can thus be classified by
its double curve.

5.1 Ruled Cubic Surfaces

There are two types of ruled cubic surfaces in P3(R), the reducible and irre-
ducible cubic surfaces. The reducible cubic surfaces consist of a plane and a
quadric or three planes. The more intereseting type is the irreducible ruled
cubic surface. In subsection 4.2.5 it is already stated that most of these ruled
surfaces start as irreducible cubic surfaces with a singular line on them. Start
again with an irreducible cubic surface V with non isolated singularities. Every
generic plane intersecting V is irreducible. Looking at the tangent plane TPV
of a generic point P then the whole line l on which P lies lies on TPV making
the whole line a double line in TPV ∩ V . Thus every line on V will intersect
exactly one other line. The generic plane intersected with the surface V has
only one singular point. Then the subset of all singular points on V is a line.
By a linear change of coordinates this is the line l : (x = y = 0). Requiring
every point on l to be singular gives the requirement that every term of the
polynomial F (X : Y : Z : T ) is divisible by X2, Y 2 or XY . Putting the defining
equation F (X : Y : Z : T ) of V in the following general form:

F (X : Y : Z : T ) = f3(X,Y ) + Zf2(X,Y ) + Tg2(X,Y ) (5.1)
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Figure 5.2: Cone over a
cuspidal cubic. Case (1)

Figure 5.3: Cone over a
nodal cubic. Case (2)

Figure 5.4: Cone over
a non singular cubic.
Case (3)

Linear transformation can be used to put f2 and g2 in one of the following
normal forms in C3:

(f2(X,Y ), g2(X,Y )) = (x2, y2), (x2, xy), (xy, 0), (x2, 0), (0, 0) (5.2)

In the first case the variables Z, T can be adjusted by a linear combination
of X and Y to reduce f3 to zero. Giving the normal form F (X : Y : Z :
T ) = X2Z + Y 2T . In the second case f3 can be reduced to a multiple of
y3, or x will be a factor and V reducible. The normal form in this case is
F (X : Y : Z : T ) = X2Z + XY Z + Y 3. In the last three cases the variable
T does not occur in the equation of F . In these cases we have a cone over a
cuspidal or nodal cubic curve.
In the first two cases when (f2, g2) = (x2, y2), (x2, xy) the ruled cubic surface is
not a conic over a curve thus is constructed by a correspondance between two
curves. By theorem 5.1 these curves are a conic and a line in a 1-to-1 correspon-
dance. The conic is called the director conic and the line is called the director
line or directrix.
The special case where the director conic and the director line meet is called
Cayleys ruled surface. Cayleys ruled surface is not given by a 1− 1 correspon-
dence between a conic and a line but by a (2− 1) correspondence. Every point
on the line will correspond to two points on the conic. This would normally
give a ruled surface of degree 4. By theorem 5.1, when the line and the conic
meet in a united point, the degree of the surface will drop. The united point
on Cayleys ruled surface is counted once, dropping the degree by 1 and giving
a cubic ruled surface. This is most easily seen on the model in image 5.1 where
the double line is the director line and the directerix conic is the circle etched
in the middle.
When the ruled surface is a cone over a cubic curve there are three different
cases: (1) the cubic is singular and cuspidal, (2) the cubic is singular and nodal
or (3) the cubic is non singular. Where the cone over a non singular cubic curve
corresponds with an Ê6 singularity. These different cases are all shown in figures
5.2, 5.3 and 5.4.
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Figure 5.5: (f2, g2) =
(x2, y2)

Figure 5.6: (f2, g2) =
(x2, xy)

Figure 5.7: (f2, g2) =
(x2, x2 − y2)

5.1.1 Real Ruled Cubic Surfaces

In R3 the classification is different than in C3. The base form is the same as in
equation 5.2. The following theorem will give the different types.

Theorem 5.2. If V a cubic ruled surface in R3 with defining equation in the
normal form, as in equation 5.2. Then the pair (f2, g2) is projectively equivalent,
over R, to one of the following:

(f2(x, y), g2(x, y)) = (x2, y2), (x2, xy), (xy, x2 − y2), (xy, 0), (x2, 0), (0, 0) (5.3)

Proof: For the first part assume f2
g2

is not constant.
Start with the case when not both f2 and g2 are indefinite. Then one of
f2, g2 is definite, assume f2 is definite. Then by a linear change over the re-
als f2 = x2 + y2. There exists an orthogonal transformation M such that f2
stays fixed over M and g2 will be g2 = ax2 + by2. Assumed was f2

g2
not a con-

stant thus a 6= b. By linear transformations over Z and T it is possible to get
(f2, g2) = (x2, y2).
If both f2 and g2 are indifinite then by a tranformation f2 = xy, and g2 can
be written by another orthogonal transformation as ax2 − by2 with a, b ≥ 0.
(f2, g2) = (xy, x2 − y2). If a or b is 0 then (f2, g2) = (xy, x2).
If f2

g2
is a constant then by a linear transformation on z, g2 = 0. The surface is

given by a cone over a cubic curve or is a plane. If on the surface cubic lies a
line of singularities then the different curves are a nodal or cuspidal. This gives
the possibilities (f2, g2) = (x2, 0), (xy, 0).

Most ruled cubic surfaces form the same category in C3 as in R3, the only
different category is (f2, g2) = (xy, x2 − y2). By linear transformation over z
and t all terms in f3 can be eliminated and the normal form is f(x, y, z) =
zxy+ x2 − y2+3. The different types of ruled cubic surfaces which aren’t cones
over curves are given in figures 5.5, 5.6 and 5.7.

5.2 Quartic Ruled Surfaces

In this section the quartic ruled surfaces are treated. These are the ruled surface
which can be given as the zeroset of a homogeneous polynomial of degree 4 in
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P3(R). Every line in can be parametrized by two points and the ruled surface
can be given by the correspondance between two curves. In the beginning of the
chapter the ruled surfaces are categorized by a correspondance between points
on a curve and a line. The quartic surfaces have more variety and therefore
are harder to classify. This will be done by looking at the double curve of the
quartic ruled surface, which was the curve of the surface on which lines intersect
and can be found by finding the singular points. Most quartic surfaces can be
constructed by a (2, 2) correspondence between the double curves lying on it.
The following theorem will give all possibilities of double curves on quartic
surfaces.

Theorem 5.3. Let V be a ruled surface, not a cone over a curve, given as the
zeroset of a homogeneous polynomial of degree 4 in P3(C). Let C ⊂ V be the
singular locus of V then C is one of the following

• C consists of two skew double line.

• C consists of a double line and a double conic.

• C consists of a double space curve of degree three.

• C consists of a triple line.

For the proof see [22]. All of the different types will be treated next. In the
proof by Edge he starts in the same way as the cubic surfaces by taking the
tangent plane at a general point. This he intersects with the ruled surface V to
get a line and an irreducible curve of degree three. If the surface V is a cone
over a quartic the intersection would constist of 4 lines,

5.2.1 Two skew double lines.

First a definition is needed.

Definition 5.2. A bi-homogeneous form F ⊂ P 3(C) of type (i, j) is a polyno-
mial in variables x1, x2, y1, y2 such that:

F (λx1, λx2, µy1, µy2) = λiµjF (x1, x2, y1, y2) (5.4)

for all λ, µ ∈ C.

Now a construction of a quartic ruled surface is possible from the two skew
double lines.

Theorem 5.4. Let Ω be the rational map

Ω : P3 99K P1 × P1 (5.5)

(x1 : x2 : y1 : y2)→ ((x1 : x2), (y1 : y2)) (5.6)

Then the closure Ω−1(C) of the curve C : P1 × P1 is a ruled surface V . If
C is given by a bi-homogeneous polynomial F then V is the zeroset of a bi-
homogeneous polynomail F too.
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Proof The map Ω−1(C) is not defined on the lines l1 = (a1 : a2 : 0 : 0) and
l2 = (0 : 0 : b1 : b2). Let V be the closure of Ω−1(C). Then for every point
P = (x1 : x2 : y1 : y2) ∈ V \ (l1 ∪ l2), Ω(P ) = ((x1 : x2), (y1 : y2)) ∈ C. Thus
F ((x1 : x2), (y1 : y2)) = 0 and the closure of

Ω−1((x1 : x2), (y1 : y2)) = {(λx1 : λx2 : µy1 : µy2)| (λ, µ) ∈ P1(C)}

Thus the closure connects the points (x1 : x2 : 0 : 0) on l1 with (0 : 0 : y1 : y2)
on l2 by a line. Because this is true for every point the surface, V is a ruled
surface.

This theorem only gives a construction of ruled surfaces from two curves. The-
orem 5.5 will show that every quartic surface with two different double lines is
a ruled surface.

Theorem 5.5. Let V ⊂ P3(C) be a surface given by a homogeneous polynomial
F of degree 4. Suppose the lines l1 = (a1 : a2 : 0 : 0) and l2 = (0 : 0 : b1 : b2) are
double lines on V . Then F is bi-homogeneous of degree (2, 2) and V is a ruled
surface.

Proof. The homogeneous polynomial F can be written as

F (x1 : x2 : y1 : y2) = F(4,0) + F(3,1) + F(2,2) + F(1,3) + F(0,4) (5.7)

Where F(i,j) is bi-homogeneous of degree (i, j). Since F = 0 on the lines l1 and
l2 this means that F(4,0) = F(0,4) = 0. Furthermore the lines are double lines.
Thus F(3,1)(x1 : x2 : y1 : y2) = 0 for all (x1, x2) 6= 0, hence F(3,1) = 0. By
the same reasoning F(1,3) = 0 and can conclude F = F(2,2). Thus every ruled
surface with the two double lines l1 and l2 are bi-homgeneous of degree (2, 2).
Now it will be proven that every point will lie on a line on the surface. Take a
point on V then it either lies on one of the lines l1, l2 or is a point (a1 : a2 : b1 : b2)
where (a1 : a2) 6= (0, 0) and (b1, b2) 6= (0, 0). The defining polynomial of V is
bi-homogeneous of degree (2, 2) thus F (λa1 : λ2 : µb1 : µb2) = λ2µ2F (a1 : a2 :
b1 : b2) = 0 for every (λ : µ) ∈ P1(C). This is a line on the surface thus the
point (a1 : a2 : b1 : b2) lies on a line on the surface. Thus every point lies on a
line on the surface.

By a linear transformation in C every such pair of double lines can be put
in the normal form of l1 and l2 above. Thus theorem 5.5 tells every surface
of degree 4 with two skew double lines is a ruled surface and is of this form.
The quartic ruled surfaces are modeled by Schillings company with wireframes.
The quartic ruled surface with two non intersecting double lines are the models
XIII-01 through XIII-05 [17]. Model XIII-04 of the schilling catalogue is shown
in image 5.8, and has two conjugated complex double lines.

5.2.2 A double conic and a double line.

When the double curve, of the quartic ruled surface V , consist of a double
conic C and a double line l with C ∩ l is a point P and the conic and the line
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Figure 5.8: Quartic ruled surface with two conjugated imaginary double lines,
Schilling XIII-04

lie not in the same plane. In the space P3(C) = (x1 : x2 : y1 : y2) fix the line
l := (y1 = y2 = 0) and the conic C := (x1 = y22−x2y1 = 0). Then the line can be
parametrized as {(λ : 1 : 0 : 0)|λ ∈ C} and the conic as {(0 : 1 : µ2 : µ)|µ ∈ C}.
Every line on the ruled surface is the connection of a point on the line and the
conic by a straight line these lines can be parametrized as {(0 : 1 : µ2 : µ)+ρ(λ :
1 : 0 : 0)}. This gives points (ρλ : ρ + 1 : µ2 : µ) = (x1 : x2 : y1 : y2). The
variables λ and µ now can be expressed in the following way

λ =
y1
y2

µ =
x1y1

x2y1 − y22
(5.8)

Which points are connected is given by a symmetric bi-homogeneous curve
F : P1 × P1 ∼= l × C of bidegree (2, 2). This can be used to find a general form
for the defining curve of the ruled surface. The ruled surface V has the following
equation

y22(x2y1 − y22)2

y21
F

(
y1
y2
,

x1y1
x2y2 − y22

)
= 0 (5.9)

Here the equation is divided by y21 because the conic and line intersect. The
equation has the following form

aijy
i+j−2
1 xj1y

2−i
2 (x2y2 − y22)2−j = 0 (5.10)

In [14] it has been proven that the only occuring pairs in the bi-homogeneous
curve F are (2, 2), (1, 1), (2, 0) + (0, 2), (0, 0). The curve is singular at (0, 0) thus
(i, j) = (0, 0) does not occur. Thus the ruled surface of degree four with a
double conic and a double line have defining equations:

a22x
2
1y

2
1 + a2(x21y

2
2 ± (x2y1 − y22)2) + a11x1x2(x2y1 − y22) = 0 (5.11)

53



Figure 5.9: Quartic Ruled Surface with Double Line and Double Conic

If there was not an intersection between the conic and the lines theorem 5.1
will tell the constructed surface has order 6. This is seen in the construction, if
the conic and line did not intersect the term y2 could not be divided out of the
polynomial and the polynomial would have had order 6.
Schilling made only one model of the quartic ruled surface with a double line
and double conic. This is model XIII-08. In figure 5.9 a ruled surface with
a double conic and double line is shown. The double conic can be seen but
the double line does not lie on the affine part shown. The double line is the
projective line z = t = 0 which is not part of the affine space.

5.2.3 A double cubic space curve.

The construction of a quartic ruled surface V with a double cubic space curve
is the same as the one with two double lines and the ruled surface with a double
conic and double line. The surface is made by connecting two points on the sin-
gular part of the surface. This is done by a bi-homogeneous curve on P1 × P1.
This will be done here as well.
First observe that any non singular cubic space curveN ⊂ P3 can be parametrized
as

P1 → P3

(x1 : x2)→ (x21 : x21x2 : x1x
2
2 : x32)

(5.12)

Every point on the surface V will lie on the connection of two points on the
same curve by a straight line and can be expressed as (1 : λ : λ2 : λ3) + ρ(1 : µ :
µ2, µ3) = (x1 : x2 : y1 : y2). The following relations are found:

x2y2 − y21 = ρλµ(µ− λ)2

x1y1 − x22 = ρ(λ− µ)2

x1y2 − y1x2 = ρ(λ+ µ)(µ− λ)2
(5.13)
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Figure 5.10: Quartic ruled surface with
cubic double curve, Schilling XIII-09

Figure 5.11: Quartic ruled surface with
cubic double curve, Schilling XIII-10

This gives the following relations for λµ and λ+ µ

λµ =
x2y2 − y21
x1y1 − x22

(λ+ µ) =
x1y2 − y1x2
x1y1 − x22

(5.14)

Find a function F ⊂ P× P ∼= N ×N , non-singular and bi-homogeneous of type
(2, 2). The quartic ruled surface of degree 4 will have defining function

(x1y1 − x22)4F (λ, µ) = (x1y1 − x22)4 · (a((λµ)2 ± 1) + b(λ+ µ)2 + cλµ) (5.15)

This will give the ruled surface with defining equation

a(X2 ± Z2) + bY 2 + cXZ = 0 (5.16)

Where X = (x1y1 − x22), Y = (x1y2 − x2y1) and Z = (x2y2 − y21).
The wireframe models of the quartic surfaces with a double cubic space curve
are models 09 and 10 of series XIII by Schilling. Utrecht University has both
such models which are shown in figures 5.10 and 5.11

5.2.4 A triple line.

Theorem 5.6. Let V ⊂ P3(C) be an irreducible surface given by F = 0 with F
a homogeneous polynomial of degree 4. Suppose the line l = (x1 : x2 : 0 : 0) is a
triple line, then F has the form:

x1F3(y1 : y2) + x2G3(y1 : y2) + F4(y1 : y2) (5.17)

with F3, G3 homogeneous of degree 3 in y1, y2 and F4 homogeneous of degree 4
in y1, y2 and V is a ruled surface.

Proof Wirte F in the following form

F (x1 : x2 : y1 : y2) = F(4,0) + F(3,1) + F(2,2) + F(1,3) + F(0,4) (5.18)
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Figure 5.12: Quartic Ruled Surface with a Triple Line

Where F(i,j) is bi-homogeneous of degree (i, j). Since the line l lies on the
surface V then F(4,0) = 0. Looking on the affine card where x2 = 1 then every
point is writen as (u : 1 : v : w) are the coordinates with u = x1

x2
, v = y1

x2
, w = y2

x2
.

Then F can be rewritten as

F = A4(v, w) + (uA3(v, w) +B3(v, w)) + (u2A2(v, w) + uB2(v, w) + C2(v, w))+

(u3A1(v, w) + u2B1(v, w) + uC1(v, w) +D1(v, w))

(5.19)

Here Ai, Bi, Ci, Di are homogeneous of degree i. The intersection of the surface
V with a plane y1 = αy2 is a curve which contains l as a triple line. This means
that the function F (u : 1 : v : αv) has a factor v3. Thus

F (u : 1 : v : αv) = A4(v : αv) + uA3(v : αv) +B3(v : αv) (5.20)

Which gives the form in equation 5.17.
The surface V is irreducible thus gcd(F3, G3, F2) = 1. Take a point P = (a1 :
a2 : b1 : b2) on V , if P not on the line l then (b1, b2) 6= (0, 0). For this point
if F3(b1 : b2) = G3(b1 : b2) = 0 then F2(b1 : b2) = 0 and gcd(F3, G3, F2) 6= 1.
Thus there exist (c1, c2) 6= (0, 0) such that c1F3(b1 : b2) + c2G3(b1 : b2) = 0 and
the line through (a1 : a2 : b1 : b2) and (c1 : c2 : 0 : 0) lies on V .

A ruled surface of degree 4 with a triple line is given in figure 5.12. Unfortu-
natly not the whole of the line is seen as singular because part of the surface is
imaginary. The corresponding models of this type in the catalogue of Schilling
are XIII-6 and XIII-7
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Conclusion

The mathematical background of Schillings models is an extensive one with this
thesis just containing the irreducible cubic surfaces and the ruled quartic sur-
faces. These surfaces correspond to series V II and XIII of Schilling catalogue.
All cubic surfaces are classified in chapter 4 with the complex cubic surfaces
only differing in the type and number of isolated singularities. The real cubic
surfaces could further be catagorized by the number of lines lying on the real
part of the cubic.
The cubic ruled surfaces are classified through the use of projective transforma-
tions to find all possible normal forms for real cubic ruled surfaces. All these
projective transformations do not transform the singular line which always lies
on a ruled cubic surface, limiting the options.
Quartic ruled surfaces need to be catagorized differently because there are mul-
tiple types of singular curve lying on a quartic ruled surface. Thus these are
classified by the curve which is singular on the surface.
This thesis just gives the mathematical background to two of the series of mod-
els Schilling gave and does not deal with the real quartic ruled surfaces. This
thesis has to small a scope to deal with the mathematical background for all
the 39 different sets of models given in Schillings catalogue. This would be a
direction a next project could go towards.
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Appendix A

Figures

Almost all photographs of the models are credited to the catalogue of the Uni-
versity of Utrecht. There is one exception namely figure 4.9 which is from the
online catalogue of the Rijksuniversiteit of Groningen.
All constructed figures in this thesis are constructed by the use of Surfer. The
equations in the table below are the equation used. The figures with an asterix
are surfaces for which the affine equations are created by Stephan Holzer and
Oliver Labs in [8].

Figure Polynomial

Figure 4.2 x2 + y2 + z2 + 2xyz − 1 = 0

Figure 4.7* 4(x3 + 3x2 − 3xy2 + 3y2 + 1/2) + 3(x2 + y2)(z − 6)+

3/2(x2 + y2 − z3) = 0

Figure 4.12* x3 + 3x2 − 3xy2 + 3y2 + z3 + z2(x+ 1/2)− 4 = 0

Figure 4.13* x3 + 3x2 − 3xy2 + 3y2 + z3 + 2z2 − 4 = 0

Figure 4.14* 4(x3 + 3x2 − 3xy2 + 3y2 + 1/2) + 3(x2 + y2)(z − 6)−
z(3 + 4z + 7z2)− z2 = 0

Figure 5.2 zx2 − y3 = 0

Figure 5.3 zx2 + x3 − y3 = 0

Figure 5.4 xyz + 3y2z + z3 + x2 = 0

Figure 5.5 zx2 + y2 = 0

Figure 5.6 zx2 + xy − y3 = 0

Figure 5.7 zxy + x2 + y2 + x3 − y3 + x2y = 0

Figure 5.9 100x2z2 + 50(x2 − (yz − 1)2) + 36xy(yz − 1) = 0

Figure 5.12 (y3 − y2z + z2y − z3) + x(y3 − z3) + (y2z2 + y3z + yz3) = 0
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