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Introduction

This thesis is about the pricing problem of perpetual American options with
guarantee. This is an option that can be exercised at any time and for which
a specific payoff is always guaranteed. The most common approach is to model
the underlying stock price process by geometric Brownian motion. We are
modelling the underlying stock price process by the exponential function of a
spectrally negative Lévy process. This is a more general approach. Spectrally
negative Lévy processes have the advantage that they allow negative jumps.
This is especially interesting for risk management questions since this approach
allows to model strong price decreases in a short time; for example the crash of
a stock. One requirement will be that the payoff function is non-decreasing. So
the theory can be applied for example on call options but not on put options.
The value of an American option with guarantee is given by

v(w) = sup B (777 (F(X2) V k(2)) ) (1)

TET

where 7T is the set of stopping times, r the interest rate, f the payoff function,
k(z) the guarantee, (X;); the process of the stock price and z the present value
of the stock. Throughout the whole thesis we assume that the interest rate is a
positive constant. This thesis relies heavily on the paper [1] by Albrecht Irle and
Soéren Christensen. The important result of their paper which we are interested
in is [1, Theorem 5.5]. In this thesis this is Theorem 3.3.2. The theorem gives
an analytic formula for the price of the option which relies on the so called scale
functions of the spectrally negative Lévy process. The formula is given by

v(z) = sup (k(x)Z(x —a)+ 9:(0) _szgb(@i)(b —a) W(x — a)) : (2)

a<b

where W and Z are the scale functions of the stock price process (X;); and
9=(y) = g(y) V k(z). The function Z can be derived by ordinary integration
over W. So the crucial element for using equation (2) is to find the scale function
w.

Structure and Content of the Thesis

In our first chapter we are interested in giving a rigorous introduction of E,
which means the expectation in case that the process (X;); starts at . A proper
definition of E, can be found in the context of Markov processes by defining a
family of probability measures. We are introducing the notation E, for Markov
processes and prove that Lévy processes are Markov processes. Furthermore,



we are giving the definition of spectrally negative Lévy processes and prove
some properties we will need. As we have mentioned, Theorem 3.3.2 depends
on the scale functions of spectrally negative Lévy processes. For this reason we
introduce them in Chapter 2 and derive an analytic solution of the scale function
of Brownian motion. Moving on, in Chapter 3 we review in detail the paper
[1]. The main result is Theorem 3.3.2 as mentioned above. In Chapter 4 we
test how good equation (2) can be used for computations of a call option. The
crucial point in formula (2) is the scale function W. So the problem reduces to
finding . Chapter 4 has two aims. First we want see if equation (2) gives good
computational results. In order to do that, we test it on the case that the price
process is a scaled Brownian motion with drift. We will be using the analytic
solution of the scale functions W and Z which we found in Section 2.3. Second,
even though we are modelling the stock in this chapter with the well studied
Brownian motion, the call option with guarantee is not very well studied. So
the results are interesting in themselves and we take a closer look on them. The
last thing we do is a little investigation of the case of more general process. We
give a first idea how the scale function can be approximated in this case. The
approximation are then compared with the analytic solution which we found.

Contribution of the Thesis

This thesis can be seen as literature review of [1] with some additional contri-
butions. We want to mention four of them. The results found in Chapter 1 are
well known to experts in the field but it is very hard to find actual proofs in
the literature. We choose to include all the necessary proofs, which is our first
contribution. The second contribution is Lemma 2.3.2 in which we derive an
analytic solution for the scale functions of scaled Brownian motion with drift.
Furthermore, it is not clear in [1] for which payoff functions a solution for (1)
exists. We prove in Lemma 3.2.2 and Lemma 3.2.1 that it is enough for the
payoff functions to be continuous. This is our third contribution. Our fourth
contribution is to show in Chapter 4 that the theory can be used successfully
for computations and to give a better understanding of perpetual American call
options with guarantee which are not well researched.



Chapter 1

Lévy Processes

The main topic of this thesis is optimal stopping for Lévy processes. A typical
notation in this context is E, X; and it means the expectation of a process (Xs)s
at time ¢ if the process starts at point x. In the context of Lévy processes most
authors are working with this terminology quite intuitively. Our approach is to
give a technical accurate definition of this expression and show that it is justified
to work with it in the way one would assume. An accurate definition can be
found in the context of Markov processes where a family of probability measures
P, with the property P, (Xo = x) = 1 is defined. We will first introduce Markov
processes and give a rigorous definition of the notation E,X;. In the second
section we introduce Lévy processes and show that there exists a family of
probability measures P, with the right properties. In the third section we show
that Lévy processes are Markov processes. In the fourth section we show useful
properties for Lévy processes which we will need in the following chapters. In
the last section we introduce spectrally negative Lévy processes. All proofs in
this chapter are original by the author of this thesis.

1.1 Markov Processes

In this section we introduce Markov processes in a very general way. This will
help us in the following to apply results of Markov processes to Lévy processes.
The state space of our processes we will be working on has the following form:
Let I1,...,I, € B(R) with 0 € I,...,0 € I,, E := I x ... X I, where B(R) is
the Borel o-algebra. Furthermore, we consider as o-algebra on E the Borel sets
€ := B(FE) and || - || be the Euclidean norm on E. So £ is the restriction of
the Borel o-algebra of R” on E. In the following all measure spaces (E, ) are
assumed to be of this form and whenever a norm is mentioned it is the Euclidean
norm.

To define Markov processes we first have to introduce transition kernels and
transition functions:

Definition 1.1.1 (Transition kernel). Let (E,E) be a measurable space. A
transition kernel on (E,&) is a function p: E x € — [0,1] such that

e for every x € E, the function B — p(x, B) is a probability measure on
(E,E) and



e for every B € B(R), the function x — p(z, B) is £/B([0, 1])-measurable.

Definition 1.1.2 (Transition function). Let (E,E) be a measurable space and
for x € E let §, be the Dirac measure. Furthermore, let (psy) = {pst: 0 <s <
t} be a collection of transition kernels on (E,E).

o We say that (ps:) is a transition function if and only if
pt,t(xv') :53; (IGE,tZO)

and the Chapman-Kolmogorov equation

pos(a, B) = / Pt (g B)ps(a,dy) (s <u<t)

is fulfilled.

e Furthermore, if
Dst =Pot—s forall0<s<t

is satisfied, we say that (ps,.) is a homogeneous transition function and we
can identify (ps) with (p)e = {p: : t > 0} where p, := p;o. In this case
the Chapman-Kolmogorov equation becomes

proa(z, B) = / pa(y, B)pu(z, dy). (1.1)

We introduce now Markov processes.

Definition 1.1.3 (Markov Process). Let (X;); be an (E,E)-valued stochastic
process defined on a probability space (2, F,P), (p:): be a homogeneous transi-
tion function and {P, : © € R} be a collection of probability distributions on
(Qo0({Xs : s > 0})). Furthermore let be F := o(X, : 0 < u < t). For any
random variable Y : Q — R and x € E we write E.Y for the expectation of
Y with respect to the probability space (0, F,P,) and we write E instead of Ey.
Furthermore, we define for a Borel measurable and bounded function f : E — R
and s,t > 0 the functions

Ex,f(X¢) : Q =R, ww EXS(w)f(Xt)

pif : E— R, x»—>/f(y)dpt(%dy).

Furthermore we use the notation

Eo (f (Xt45)1Xs) i= Eo (f (Xegs) o (X)) (1.2)

We say that (Xy); is an (E, £)-valued homogeneous Markov process on (2, F,P)
with transition function (pt): and distribution (Py)zer if and only if

o P.(Xo=1x)=1 for every x € E and



e for every bounded and Borel-measurable functions f : E — R and every
pair of real numbers s,t > 0 there exists a Borel-measurable function g :
FE — R such that

]Ez(f(XtJrS)‘}-S) = 9(Xs) = Eo(f(Xi16)|Xs) = pe f(Xs) = Ex, f(X4) ( ]Pz)_ a.s.
1.3

for every x € E.

Remark. The expert reader will notice that the four equations in 1.8 are just
equivalent forms of the Markov property normally found in the literature. See for
example [2], [3], [6] and [9]. By defining Markov processes in the above way we
are able to use results for Markov processes from these different references in the
following chapters. The definition above is now a rigorous introduction of the
notation E,. Especially in the context of Lévy processes there is normally only
an intuitive explanation of this notation. For example EX; is then introduced
as the expectation of X if (X¢): starts a zero. We should of course always keep
this intuition in mind when we work with the equations (1.3). For example the
intuitive understanding of the equation

pef(Xs) =Ex, f(X:) Pp—a.s.

would be: The random variable p, f(Xs) is equal to the random variable Ex_ f(X})
in the case that the process (Xi): starts at x.

The definition of transition kernels appears to be very technical, but now
that we have introduced Markov processes, we can give a good intuitive under-
standing of it. The idea is that p;(x, B) is expressing the probability that the
process hits the set B at time ¢ if it started at time zero at the point xz. The
intuitive idea of a Markov process is that every change of the process at any
time is independent of all events that occurred before in time. Combining these
two ideas means that p;(z, B) is expressing the probability that the process hits
the set B at some time ¢ + s if it had been at point x at time s. This is shown
in the following lemma.

Lemma 1.1.1. For an (E, E)-valued Markov process (Xy) with transition func-
tion (py)u, s,t > 0 and B € € we have pi(x,B) = P(X44s € B|Xs = ) if
P(Xs; =z) > 0.

Proof. We have for every x € E

(pil5)(x) = / Ls ()i (@, dy) = pu(z, B). (1.4)



It follows for x € E that
P(Xiys € B, Xs =x)
P(X, =)
E(lB<Xt+S)1{I}(Xs))
P(Xs =)
_ E(E(1s(Xi1)|X,) 1y (X0))
P(X; =x)
Markov E((ptlB)(Xs)1{$}(Xs))
- ]P)(Xs = -T)
- pt(I7B).

P(Xt.l’_s S B‘X§ = $) =

1.2 Lévy Processes

In this section we introduce Lévy processes and show that there is a very natural
choice for probability measures P, such that P, (X, =) = 1.

Definition 1.2.1. Let I1,....I,, € B(R) with0 € I,..,0€ I,, E=1 x ... x I,
and € = B(E). An (E,&)-valued Lévy process is an (E,E)-valued stochastic
process (Xy): defined on a probability space (Q, F,P) such that

o P(Xo=0)=1
e Forall0 < s<t, Xy — X, is independent of {X,, : u < s}

o Forall0<s<t, X,— Xs<X,_,
o Almost every path ist right-continuous and its left limits exist,

where the d above the equal sign means that both random variables have the same
probability distribution.

We also say in the following that a path of a stochastic process is cadlag if it is
right-continuous and has left limits.

For a given Lévy process (X;); we would like to have a family of probability
measure {P, : ¢ € E} such that P, (X, = z) = 1 and for every Borel measurable
function f

]E;Cf(Xt]a ceny th) = ]Ef(th + Ty .uny th + x)

Unfortunatettly, such a family does not always exist. But there is an easy
solution to this problem. It is possible to extend the Lévy process to a larger
domain for which such a family of probability measures exists. We prove this
in the following lemma.



Lemma 1.2.1. Let (X;); be an (E, E)-valued Lévy process defined on a probabil-
ity space (Q, F,P). Then there exists a (E,E)-valued Lévy process (X}); defined
on a probability space (¥, F',P’) and a unique collection of probability measures
{PL, .z € E} on (V,F') such that for every ti,...,t, > 0, a € E and every
Borel measurable function f : E — R which is bounded or nonnegative

Ef (X, Xp,) = B F(X],, 000 X[ (1.5)

and
B f(Xis 0 Xt,) =E f(X], +a,.., X] + ), (1.6)

where E means the expectation with respect to (Q, F,P) and E/, means the ex-
pectation with respect to (', F', ).

Proof. The uniqueness of the probability measures P, follows simply from the
fact that the sets {X{ € Ay,..., X{ € A,} form a m-system of (X, : u > 0).
Now let us consider the induced canonical process

Q= ER
and for n € N, #q,...,t, > 0, Ay, ..., A, € £ we define the set
Pass(ty,..otn, A1, ..., Ap) = {w' € Q' 1 W' (t1) € A1,..., ' (t,) € Ay}

of all functions in Q' which are passing A; at time ¢; for i = 1,...,n.
We define now the o-algebra 7' on Q' by

F = U({Pass(tl, vty A1y Ap) in €Nty oty >0, A1, ., Ay € 5})

We see that for n,m € N, s1,...8,,t1,...,t,, > 0 and Aq,...,A,,B1,..B,, € £
we have

Pass(s1,...Sn, A1, ..., Ap) N Pass(t1, ..., tm, B1, ..., Bm)
= Pass($1,...8n,t1, ey iy, A1y ooy Any B1, ...Bi) (1.7)

and that these sets form a generating m-system of F'.
We consider now the function

X:Q-9Q, we (Xi(w):t>0),

where we write (X¢(w) : t > 0) for the function which maps t to X;(w).
We have

XY Pass(ty,.ytn, A1,y Ap)) = {w € Q1 X(w) € Pass(ty, .., tn, A1, ..., An)}
={weQ: (t— Xi(w)) € Pass(ty, ..., tn, A1, ..., Ap)}
={weQ: X, (w) € 4y,...,X;, (w) € Ay}

— ﬁ{Xti €A} eF. (1.8)

i=1
So X is F/F'-measurable. Furthermore, we define for every ¢ > 0

X, :Q - E, W —d(t).

10



Since, for every A € €
(X)) HA) ={ e : X|() e A}
={w e W (t) e A}
= Pass(t,A) € F, (1.9)
it follows that X/ is F'/E-measurable. Now let us define for every z € E the

shift operator
5.0 = Q, Je (ted )+ ).

We have for tq,...,t, > 0and Aq,..., A, €&

sy (Pass(ty, ... tn, A1, .., Ap)) = {w' € Q' 1 5,(w') € Pass(ty, ..., tn, A1, ..., Ap)}
={w € (s:(w))(t1) € Ay, ..., (52(w)) (tn) € An}

—_— —_————
=w’(t1)+x =w/(tn)+x

={w' e (1) € Ay —x,..,u (t,) € A, — x}
= Pass(t1,....,tn, A1 — 2, ..., Ay — ). (1.10)

So s, is F'/F'-measurable and s, o X is F/F’-measurable.

Now let P be the law of s, o X, i.e., P/, is a probability measure on (', F").
We have for tq,...,t, > 0 and A,,...,A, € &

n
(X[, € Ar,.., X{ €A} = [{X], € Ai}

=1

(L) ﬂ Pass(t;, A;)
i=1

(L0 Pass(t1, ..., tn, A1,y ..., Ap). (1.11)

We have then

Py(X, € Ay,... X € An) "2V By (Pass(ty, ... tn, Ay, ..., Ay))
=P(X Y(Pass(ty,....tn, A1, ..., An)))

Wp(x, €A, ... X, €A,) (1.12)

and equation (1.5) follows by the standard machinery which we explain in the
remark after the proof.
Furthermore, we have

PL(X € Ay, X, € A,) Y2V B (Pass(t, oo ty, A,y Ay))

=P((sy 0 X) ' (Pass(ty,....tn, A1, ..., Ap)))
—_———
X-1(sz 1)

(léO) P(X_I(Pass(tla ...7tn7 AI -z, 7An o x)))

Wp(x, €A —u,... X, € A, — )

(122) Pé(thl S A1 -, ...,X{n & An — ;[;)
=Py(X;, +2 €Ay, .., X, +a€A,).

11



and equation (1.6) follows by the standard machinery.

That (X]) is an (E,&)-valued Lévy process defined on the probability space

(v, F', ") follows by equation (1.5) and the fact that (X;); is a Lévy process.
O

So from now on we assume that for every Lévy process there exists a collec-
tion of probability measures {P, : € E'} such that

]Ezf(th, ...,th) = ]Ef(th + Z, ...7th + 1')

We have used in the last proof the standard machinery which we explain in the
following remark.

Remark (Standard machinery). With standard machinery we mean a standard
procedure in probability theory which can be used for many proofs. The procedure
works along the following steps. First a statement is proved for indicator func-
tions, then one extends the result by linearity arguments to nonnegative simple
functions. Then the Monotone Convergence Theorem is used to extend the re-
sult to nonnegative measurable functions. In the last step the claim is proved
for measurable functions by splitting them into their positive and negative part.
Both parts are then monnegative measurable functions and the result from the
step before can be applied.

1.3 Lévy Processes are Markov Processes

We have seen in the last section that we can assume that for every Lévy process
(X1:); there exists a collection of probability measures {P, : € E} such that

Emf(Xt“...,th) = ]Ef(Xfl +I, ...,th + 117)

for every Borel measurable function f which is nonnegative or bounded. We
will introduce now also a transition function and show that a Lévy process is
a Markov process with respect to this transition function and the probability
measures P,.

Definition 1.3.1. Let (X;): be an (E, £)-valued Lévy process defined on a prob-
ability space (Q, F,P) and 0 < s < t.
We define the function

Pt ExESR, (2,B) > P(X,— X, +z€DB).

For a measurable function f : E — R with E|f(X: — Xs + z)| < co we define
the function
gL, E—-R, o Ef(X,— X, +u).

By [7, Theorem 8.12 (iv)] g({’t is Borel measurable and for x € F and B € £
we have

psi(z,B) =P(X; — Xs + 2z € B)
= Elp(X, — X, + 1)

= 9.5 (x) (1.13)

12



Lemma 1.3.1. For an (E,&)-valued Lévy process (X;); defined on a probability
space (2, F,P) and s <t the function ps, is a transition kernel

Proof. By definition ps¢(x,-) is the probability distribution of X; — X, + =
and this is a probability distribution on (R,B(R)). The second property of
a transition kernel holds by equation (1.13) and the fact that g;’f is Borel-
measurable. O

Lemma 1.3.2. For an (E,&)-valued Lévy process (Xy): defined on a probabil-
ity space (0, F,P) the collection of transition kernels (ps.) is a homogeneous
transition function.

Proof. Because (X;); is a Lévy process we know that X; — X 4 X;_, for
0<s<t Wehaveforx € Eand Becé&

psi(z,B) =P(X; — X, € B—z)=P(X;,_s — Xo € B— 1) =pi_s,0(x, B).

So we can define
Pt ‘= Pto-

Now we show the Chapman-Kolmogorov equation (1.1) is fulfilled. In order
to do so, let us fix some 0 < s <t, x € F and define

Vi€ —=10,1], A~ ps(z, A)=1(A4)

and
v E[01], A / pe(y, A)pe(x, dy) = v(A).

We see that the Chapman-Kolmogorov equation is equivalent to v’ = v. So
we finish the proof now by showing that v and v/ are probability measures on
(E, €) which are identical on a generating m-system which implies that they are
identical on the whole of £.

That v/ is a probability measure follows from Lemma 1.3.1. That v(0) = 0 and
v(Q) = 1is easy to see. To see the g-additivity of v we take some A =,y An
with (A4,,), C & being a sequence of disjoint sets. We have

v(4) = [ polo Al = | <2p8<y7A7L>>pt<x,dy>

neN

Mon._Conv. 5 ( / ps(y,An)pt<x7dy>> =2 vl(4n).

neN neN

So v is a probability measure as well.

By definition of Lévy processes there exists an n € N and I, ..., I,, € B(R) with
E =1 x---x1I,. We assume without loss of generality that Iy =--- =1, = R.
We know that the collection of sets

{(—OO,bl] X - X (—OO,bn] tb1y ., by € R}

is a generating w-system of the Borel o-algebra & = B(R™). Let us fix now some
b= (b1,....,b,) € E and set B := (—00,b1] X ... X (—00,b,]. We have to show
that v(B) = v/'(B).

13



Let Fy be the distribution function of X, p; the distribution of X; + x and
Fz the distribution function of (X; + z) + X5. We have then the well known
distribution formula for sums

Fo(0) = [ B0 = y)ualay) (1.14)
Furthermore, we have
p(A) =P(Xy +x € A) = pi(z, A),

i.e. we have

[ twmtin) = [ swmte.d) (1.15)
for every measurable function f : F — R. Furthermore we have
Fy(b—y) =P(Xs <b—y) =P(X; € B—y) =ps(y, B). (1.16)
Since (X¢); is a Lévy process we have
Xivs+r=Xp0s — X+ Xs+x (1.17)
4 X+ X+ .

We can calculate now

V(B) = pras(t, B) = P(Xss + 2 € B) "2V P((X; + 2) + X, € B) = Fy(b)

“é‘”/ Fi(b—y) p(dy) "= /ps(y,B)pt(%dy) =v(B).

(1.16)
="ps(y,B)

and this finishes the proof.

So equation (1.13) reads then

pi(z, B) = ;" (x)

and it can be shown in a straightforward manner by using the standard machin-
ery that for every Borel measurable function f : F — R which is bounded or
non-negative

(pef)(@) = gl sye(2) (1.18)

for every z € E and arbitrary 0 < s < ¢.

Lemma 1.3.3. Let (X;); be an (E, £)-valued Lévy process defined on a probabil-
ity space (0, F,P). Then (X;): is a homogeneous Markov process with transition
function (pt): and distribution (Py)zer

Proof. We have to prove that

Em(f(Xt+s)|]:s) = g(Xs) = Ez(f(XtJrs)'Xs) = ptf(Xs) = ]EXsf(Xt)~ P, —a.s.

14



First let ustake A, B € £,0 <u < s <t, hi(z,y) := la(z—y) and ha(z,y, 2) :=
la(z —y)lp(2z). We have
PX;—X;€A)=P(Xs+z)— (Xs+x) € A)
=Eh (X¢ + 2, Xs+x)
= Ewhl(Xth)
=P, (X; — Xs € A) (1.19)
and it follows
P. (X —Xs € A, X, € B) =E ho( Xy, X5, Xu)
=Eho(X: + 2, Xs + 2, Xy + 7)
=P(X;—Xs€ A, X, +x € B)
=P(X; - X; € A)P(X, +z € B)

U9 p (x, - X, € A)P,(X, € B).

This means that X; — X is independent of F; = (X, : 0 < u < s) with respect
to P,.

So Xsy¢+ — X is independent of F, with respect to P, and X is of course F;-
measurable. Thus, we have by [7, Theorem 8.12 (iv)] for a Borel-measurable
function f : F — R for P,-almost every w € Q)

Eo(F(Xeps — X+ X)IF)W) = Bo(f(Xers — Xo+ X,(@)).  (1.20)
It follows
Eo(f (X4 |Fs)) (@) = Eo (f(Xegs — Xs + Xo)|F)(w)
U2V B (f(Xirs — X + X ()
=E(f(Xe4s — Xs + Xs(w)))
= g£,5+t(XS(w))
= (9£,s+t(Xs))(w)-

We get
9! 1i(Xo) = Eo(f(Xe4)|Xo)  Preas.

completely analogously.
Furthermore, the equation

pef(Xs) = 95,s+t(XS)

follows simply by equation (1.18).
The last equation can be seen by

(Ex, [(X1))(w) = Ex, ) [(Xt)
= Ef(Xt + XS(W))

= 9§ (X))

29 () (X (w))
— ((pef)(X4)) (@)

15



1.4 Properties of Lévy Processes

Lemma 1.4.1. If (X}): is an (E, E)-valued Lévy process on a probability space
(Q, F,P), then (Yi): given by Yi(w) = (¢, Xt(w)) is an (Ry x E,B(Ry) x &)-
valued Lévy process on the probability space (Q, F,P).

Proof. e The first property we see by
B(Yp = 0) = P((0, Xo) = (0,0)) = P(Xy = 0) = 1.

We consider now for every ¢ > 0 the inclusion
e E— R xE, xw(tx).
This is a measurable function and we have for 0 < s <t and A € Rg x E
[Yi—Yi€ A} = {(t— s, X, — X,) € 4}
={e—s(X; — X,) € A}
= {X; — X, € e, (A)}
and by choosing s = 0 we also have
Vi€ A} = {X; € ; (A},
With these two equations the other Lévy properties for (Y;); follow simply
from the Lévy properties of (X;);:
e For 0 <u<s<tand A, B €RJ x & we have
P(Y; - Y, € A,Y, € B) =P(X; — X, € ¢, ',(A), X, € e;'(B))
=P(X; — X, € ¢, (A)P(X, € ¢, (B))
=P, - Y, € AP(Y, € B)
and this proves that Y; — Y, and Y,, are independent.
e Furthermore we have
P(Y; =Y, € A) = P(X; — X, € ¢;,(A))
P(X—s € ;' (A))
=P(Y;_s € A).

e Let o > 0, (s)n a non-decreasing sequence converging to o, (¢, ), a non-
increasing sequence converging to tgp and w € € such that ¢t — X;(w) is
cadlag. Then we have

Yi, (@) = (tn, Xe, () “=> (to, Xey (w))

n

and we also have

lim Y., () = 1 (s, Xa, (@) = (to, lim X, ()

n—oo n—oo

and that means that the left limit of ¢t — Y;(w) exists at g and so (Y3); is
almost sure cadlag. So (Y:); is a Lévy process.
O
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The following lemma will be used in Chapter 4 to prove a convergence.

Lemma 1.4.2. Let (X;); be a real-valued Lévy process defined on a probability
space (Q, F,P), K >0 be a constant and k : R — R be a continuous function.
Furthermore, T be the set of finite stopping times with respect to the filtration
generated by (X;):. We have then for v € R

sup <Ex((exf ~K)"v k@:))) — sup (Em<(exf - K)+)) ‘ < k(z).

TET TET

Proof. For every w € Q and 7 € T we have
(X~ K) 4 k(@) > (X~ K) T v h(a)
> (X - K)+ >0
and it follows
b)) = (X~ K) k() - (¢ K)|
> | (X - K)+ Vi) — (X - K)+’

So taking expectation and supremum of both sides we get

sup ExO((eX’ - K)+ \Y k(a:)) - (eXT - K)JFD < k(x). (1.21)

TET

Next we want to use that for any two collections of real numbers {a; : i € I}
and {b; : ¢ € I} with I an index set we have

sup{a; :i € I} —sup{b; : i € [} <sup{a; — b; : i € T} (1.22)
To see this we fix an ig € I and see that
@iy = (aiy — biy) + biy < sup{a; —b;:i € I} +sup{b; : i € I}.

So sup{a; — b; : i € I'} + sup{b; : ¢ € I} is an upper bound of {a; : i € I'} and
we have
sup{a; :i € I'} <sup{a; —b; :i € I} +sup{b; :i € I}

and subtraction of sup{b; : ¢ € I'} on both sides gives inequality (1.22).
We can get now our inequality

o (5((02 ) vi00) ) g (5 - 10)) )
g (5 (04 =) vi00) ) = (B = 10)
(1.22)

< sup (B2 (4 - K) Vi) B (- 1))
_ fggEz(y((exT —K) V@) - (¥ - K)+D

(1.21)
<
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1.5 Spectrally negative Lévy Processes

The big difference between Lévy processes and Brownian motion is that the
paths of Lévy processes do not have to be continuous and can contain jumps.
The theory we will develop in the next chapter is not working if we allow positive
jumps for our process. This is why we introduce now Lévy processes with only
negative jumps. Such processes are called in the literature spectrally negative
Lévy processes. See for example [2].

Definition 1.5.1 (Positive jump). We say that a function f : R — R does not
have a positive jump at xo € R if and only if limyry, f(x) > limg 4, f(2).

Definition 1.5.2 (Spectrally negative Lévy process). A spectrally negative Lévy
process is a real valued Lévy process where each path does mot have positive
Jjumps. We say that a process (X¢): is a spectrally positive Lévy process if and
only if (—X4): is a negative Lévy process.

18



Chapter 2

The Scale Functions W and
Z

In this chapter we introduce the scale functions W and Z. They can be a useful
tool in the context of spectrally negative Lévy processes. The reason we are
introducing them is Theorem 3.3.2 of the following chapter. The theorem gives
an analytic solution for a perpetual American call option which depends on
the scale functions. The definition of the scale function consists of the inverse
Laplace transform of a function and the Laplace exponent of a Lévy process.
For this reason we intoduce this terminology first in this chapter.

In the first section we define the inverse Laplace transform and show that
it is well defined. We also derive an inverse Laplace transform for a specific
function which we will use in the third section. In the second section we define
the Laplace exponent of a Lévy process and derive the Laplace exponents of a
scaled Brownian motion with drift and of a compound Poisson process. In the
third section we introduce the scale functions W and Z for a spectrally negative
Lévy process and derive an analytic solution for them in case that the underlying
process is a scaled Brownian motion with drift. Theorem 2.1.1 is inspired by
[10]. The proof of Lemma 2.2.1 uses [2, page 4]. Lemma 2.2.2 and Lemma 2.2.3
are standard results and their proofs are straightforward calculations. Many
similiar proofs can be found in the literature. All other proofs are original by
the author of this thesis.

2.1 The Laplace Transform

In this section we define the inverse Laplace transform and give an example
which we will need in the next section. But first we have to define the Laplace
transform.
We recall that for a measurable function £ : @ — C its integral (if it exists) is
defined by

/ﬁ(x)d:c: /?)‘E(ﬁ(x))dx-l—i/%(f(x))dx.

Now we define the Laplace operator.
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Definition 2.1.1 (Laplace transform). Let f : [0,00) — R be a Borel measur-
able function. Then we define the constant

¢y :=inf{s e R: / le™ st F(t)|dt < oo}
0
and the set -
Dy :={seC: / le 5 f(t)|dt < oo}
0

We call the function

L(f): Dy = C, s /OO et F(t)dt
0

the Laplace transform of f.

Let f :[0,00) — R be a Borel measurable function. Now let s € Dy and
s € C with R(sp) < R(s). Then we have

/ e £ (1)t = / RO f(8)] |90 dt
—_———

0 0
=1

< [l )

0
= [Tle el ar
0

_ /Oo =0 £ (1) < oo,
0

So we have s € Dy.
In the following we indentify R? with C and work with the space which is
respectively convenient. We have

Dy={seR: /Oo le=5t f(t)|dt < oo} x R.
0

So the domain of £(f) can only have the form (cf,00) X R or [cf,00) X R.
Furthermore we see that £ is linear in the sense that for given f,g:[0,00) — R
continuous and a,b € R we have for every s € Dy N D,

Claf +b9)(s) = [ 7 (af() + by(o))

0
— a/oo e S f(t)dt + b/oo e "g(t))dt
0 0
= aL(f)(s) +bL(g)(s). (2.1)

The next lemma shows that the inverse Laplace transform is well defined. It is
known as Lerchs theorem and our proof is inspired by [10].

Lemma 2.1.1 (Lerchs Theorem). Let f,g: [0,00) — R be continuous functions
with ¢y, cqy < 00 and assume there exists a ¢ > max{cy,cq, 1} such that for every

nonnegative x € R
L(f)(x) = L(g)(x).
Then we have f =g, i.e., f(t) = g(t) for every t > 0.
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Proof. Let h = f — g. So we have to prove h = 0. First we see that for every
x> c

/O |e_t””h(t)\dt§/o |e_“”f(t)|dt+/0 le " g(t)|dt < oo (2.2)
and
L) (@) = /O et

:/0 e‘“’f(t)dt—/o e g(t)dt
= L(f)(x) = L(g)(z) = 0. (2.3)

Now let us define
H:(0,1] >R, ¢+ t°h(—log(t))

We have then
H=0< Foreveryte (0,1]: H(t) =0
3% For every t € (0,1] : h(—1log(t)) =0
< For every t € [0,00) : h(t) =0
< h=0.

So we only have to prove that H = 0.
We see that H € L' by

1 1
| et = [ en-tog(eplar

O i / [t°h(— log(1))|dt

Int. by:Subst. lim / |(67t)ch(t)€7t|dt
a/ ' J

~ lim / et et
a0 Jo

oo 2.2
MOIL:CJOIIV. / ‘e,t(c+1)h(t>|dt (<) 0.
0

So we have for every n € N

-0

1 1 e
/ ¢ H (H)de o™ Cm HEE i / " H () dt
0 a—0o0 J,—a

a
Int. by:Subst‘ lim / (e_t)n H(e_t) e_tdt
a—oo [ ——
=e—tch(t)
a
= lim [ e *etHTUn(t)dt
a—oo [

Dom. C:onv. 2.2/ eit(chnJrl)h(t)dt
0

=L(h)(c+n+1)Z0.
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From the above, it follows that for every polynomial

N
p:[0,1] > R, t+— Zant" (a1,...,an € R)
n=1

we have
1 N 1
/ H(t)p(t) = an / t"H(t)dt = 0. (2.4)
0 1 0
By the Weierstrass Approximation Theorem there exists a sequence of polyno-

mials (py,)n defined on [0, 1] with

n— oo

|H — pplloc —— 0.

So we get

/ H2(t)dt = / H(E)(H(t) = pa(t) + pa(t))
0 0

- / H()(H(t) — palt))dt + / pa(t)H (1)t
0 0

CRON

1
< ||1L1f—pn||oo/0 Ht)dt "= 0

So we have fol H?2(t)dt = 0 and since H is continuous it follows that H = 0 and
we are done.
O

Definition 2.1.2 (Inverse Laplace transform). Let D C C contains a strip of
the real line, i.e., there exists a € R such that [a,00) € D and let F : D — C
be a continuous function. If there exists a continuous function f : [0,00) = R
with L(f)(z) = F(z) for every z > a, then we write f = L™Y(F) and call f the
inverse Laplace transform of F.

The inverse Laplace operator is linear in the following sense:
Consider
F: Df cCc—-cC

and
G:D;,CcC—=C

where L71(F) := f and L7(G) := g exist and they are both continuous and
let a,b € R be arbitrary. We have then for every = > max{cs,c,}

L(aL™YF) +bL7YG)) () 2 (aF +bG)(2)

So by Lemma 2.1.1 follows
L7 YaF +bG) = alL Y (F) + bL7HG).

The following example will be useful in the next section.
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Example 1. For a € R\ {0}, b,c € R with b*> — 4ac # 0 we define

o [ o) X R, if B — dac < 0
T (e o0) X R, if b% — dac > 0
and 1
F:D—>C, sr—5—0u.
as? +bs+c

Since we know that =ty —dac W is the root of as®>+bs+c with the largest real part,
we see that F is well defined. We want to find the inverse Laplace transform of
F. For this we do the following partial fraction decomposition of F':

1 B 4a
as? +bs+c  4a2s? + 4abs + 4ac
_ 4a
 4a2s? + 4abs + b2 — (VB2 — dac)?
_ 4a
 (2as + b)? — (Vb2 — 4ac)?

4a
((2@5 +0b) + \/m> ((2(15 +b) — M)

2a 2v/b? — dac
\/m. (2as+b+\/mx2as+bf\/m
B 2a (2as + b+ Vb2 — dac) — (2as + b — Vb2 — 4ac)
T V2 —dac (2as+ b+ Vb2 — dac)(2as + b — Vb2 — dac

2a 1 1
Vb2 — 4dac . (2as+b— Vb2 — 4dac a 2as + b+ /b2 —4ac)

1 1 1
- Vb2 — 4ac ’ (S + b—\/gza—élac a s+ b+vgz—4ac>

1 1 1
_m.<8_—b-‘r\/2@_s_—b—\/2w> (2.5)

Since the inverse Laplace transform is linear our problem reduces to finding the
inverse Laplace transform of

1

: R
G : (d,0) x R, s —

for some d € R. If we define now

g:[0,00) 5 R, ts et
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Then we get for every s € (d,00) x R

L(g)(s) = /000 e steldqt

= / eld=9)tqy
0

a
Dom.:C’om/ lim B(dis)tdt

a—r o0 0
— 7 (d—s)a _ ,(d—s)-0
S g e
R(d—s)<0 1

d—s’
So we have g = L71(G). So by putting this together with (2.5) and using the
linearity of L~ we get for everyt >0

1 (—b+\/b2—4a(:)t (—b—\/b2—4a(:)t
b% — 4dac (e . o " )

L)) =

2.2 The Laplace Exponent

The reason that we are introducing now the Laplace exponent of a Lévy process
is Lemma 2.3.1 of the next section. We will see that we need the Laplace
exponent to find a nice solution for the value function of the stopping problem.
Since we will be interested in the next chapters in processes (X;); consisting
of Brownian motion and Poisson process we derive in this section the Laplace
exponents for these cases.

Before we define the Laplace exponent we present the following lemma which
motivates the definition.

Lemma 2.2.1. Let (Y;); be a Lévy process. Then we have for every t > 0

log (Eey‘> =tlog (]Eeyl>.

Proof. Let t > 0 be a real number and n be a natural number. We can write Y;
as

n—1
Y, =Y: + Z (Y(k+1)t — Yﬁ) (2.6)
k=1 "
By using the second and third property of Lévy processes we get

]E(exp(Y})) (26 ]E(exp (Y%> 7’1:[1 <eXp (Y@ — Y;:)))

o) o)
(e (02)) T (3w 1)
_ <]E<exp (Y;L)))n-
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Taking the logarithm on both sides gives

log (EeYt) =nlog (]E(exp (Xt))) (2.7)

Now let m be a natural number. If we substitute ¢ by m in equation (2.7) we

get
log (]Eey’”) =nlog (E(exp (Xv;))) (2.8)

If we substitute ¢ by m and also n by m in equation (2.7) we get

log (Eer> = mlog (E(exp (Xl))) (2.9)

Now we put together equation (2.8) and (2.9) and devide by n on both sides.

We get
™ log <E(exp (X1)>> = log (E(exp (ng))). (2.10)

Now let tg > 0 be a real number and (g,), be a nonincreasing sequence of
rational numbers which is converging to t)o. Because Lévy processes are almost
sure right-continuous we have

_
an & Oo> Xi

a.s.. (2.11)

0

We get now by the Dominated Convergence Theorem (DCT)

log (Eeyto) PET im log (Equn)

n— oo

(2.10) lim ¢, log (Eeyl)
n— oo

=ty log (EeY1>
O

So if we know log (Eeyl), we know log (EeYt) for every t > 0. This moti-
vates the following definition.

Definition 2.2.1 (Laplace exponent). Let Y : Q@ — R be a random wvariable.
Then we define the Laplace exponent 1 of Y to be the function

Y :]0,00) > R, 0 log (Ee‘gy).

For a Lévy process (Yi): we call the Laplace exponent of Yy the Laplace exponent
of (Yt)e-

We define now the (compound) Poisson process and derive its Laplace ex-
ponent.

Definition 2.2.2 (Poisson process). A Poisson process (N); with parameter A
is a Lévy process on a probability space (2, F,P) which is a counting process,
i.€.,

o for everyt > 0 Ny takes only values in Ny
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o for every w € Q t — Ny(w) is nondecreasing
o for every w € Q lim, |y Ny(w) < limgye No(w)
and for every 0 < s <t N(t) — N(s) ~ Pois(\(t — s)), i.e., for every k € Ny

P(N; — N, =k) = ()‘(tk;'s))kefA(tfs).

We call a stochastic process (X;): on (2, F,P) a compound Poisson process with
parameter X > 0 if there exists a Poisson process (Ny); with parameter A and
a sequence of i.i.d. random variables (&;);cn independent of (N;); so that for

every w € Q Xi(w) = Zﬁvt’(w) &i(w).

Lemma 2.2.2 (Laplace exponent of a Poisson process). Let (X;): be a com-

pound Poisson process, i.e., X; = Zﬁvz(f) & for (&:)ien a sequence of independent

and identical distributed random variables with distribution F and (Ny): a Pois-
son process independent of &;. Then (X;); has the Laplace exponent

Y(0) = log(Ee’X1) = )\(/ " F(dx) — 1).

R
Proof. We first consider that
El{n,=ny = P(N1 =n) = —e (2.12)
and

E(exp(0)_ &) = E(] ] exp(0€))

(&:):_ind. H E(exp(6¢;))
=1

(€L B (B exp(0E0))" (213)
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So we can calculate
exp(1(0)) = E(exp(6X1))

[eS)
n. Conv.
Mo = (ZE(QXp(GXl)l{len})
n=0

o0

Z exp 92& 1{N1 n})

Nllnd of¢; ZE exp 925% 1{N1:”})
2.2,2.13 Z E(ef%1)n -
*AZ A]Ee%

— 0&1
e AeAEe
081y
_ AEE)-1)

— MU 9% F(dz)—1)

and taking the logarithm gives the desired result. O
We define now Brownian motion and derive its Laplace exponent.

Definition 2.2.3 (Brownian motion). We call a Lévy process (By): on (Q, F,P)
Brownian motion if

o for almost every w € Q t — By(w) is continuous and
e fort >s>0 By — By ~ N(0,t — s).

Lemma 2.2.3 (Laplace exponent of a Brownian motion). Let (X;): be a scaled
Brownian motion with linear drift, i.e.,

X; =8B+t fors,v € R and (By): Brownian motion.

Then (Xt): has the Laplace exponent

1
¥(0) = log(EefX1) = 53292 + 6.

Proof. Let us fix some 6 and write z := f#s. Furthermore we consider the
X

function g(z) = o % and we see that ¢'(z) = %, lim,_, o g(z) = —o0 and
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lim, 00 g() = co. We then have

e " exp(1p(0)) = e TR B1HY)

1
— e2
If we multiply now both sides with ¢’ and take the logarithm we get
(0) = log(e"e#*)
1
=0y + 522

1
=0y + 59282.
O

Corollary 2.2.1. Let (Y;): be a stochastic process which consists of a compound
Poisson process component, a scaled Brownian motion component and some
drift, i.e., there is a compound Poisson process (Xi); with parameter X > 0
and jump distribution F, a Brownian motion (B:); independent of (X:): and
parameters s,y € R such that for everyt >0

Then the Laplace exponent ¢ of (Yy); is given by
. 1
V(0) = )\(/ " F(dz) — 1) + 53202 + ~6.
R

Proof. Let 1; be the Laplace exponent of (X;); and let 1) be the Laplace
exponent of (sB; + 7t);. We have then

¥(6) = log (]Eeey) = log (Eeextee(SBtJrvt))

Xt,By_indep. log (]E (eex,,) (Eeﬁ(sBﬂr’yt)))

_log (E (eex,, ) ) +1og ( (Ee9(s3t+wt)) )

= 11(0) + ¥2(0)
min /N L. 1
Le a2:22’223)\(/691F(d17)*1)+§5292+'}/0-
R
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2.3 The Scale Functions for a Lévy Process W
and 7

We need the following Lemma to define the scale functions.

Lemma 2.3.1. Let (X;); be a spectrally negative Lévy process with Laplace
exponent 1 and r > 0. Furthermore, we define the constant

¢(r) == sup{A > 0: yp(\) = r}.

Then, there exists a unique continuous function W) : R — R with W(z)=0
for every negative x € R such that

L (W(r) ’[O,oo)> (t) = ﬁ

for every t > ¢(r).
Proof. |2, Theorem 8.1] O

Definition 2.3.1 (Scale functions). Let (X:); be a spectrally negative Lévy
process and v > 0. Now let W = W) be the function defined in Lemma
2.3.1. Furthermore let us define the function

Z" =7 :R >R, x}—>1+7"/ W (y)dy.
0

We call then W and Z the scale functions of (Xy);.

Remark. The reader might wonder why we give the same name for W and Z.
We do this to be consistent with the literature. See for example [1] and [2]. In
this thesis we use exclusively the notation W and Z. So this way there should
be no confusion which function is meant.

We can use now the results from the last two sections for scaled Brownian
motion with drift to derive its scale functions W and Z.

Lemma 2.3.2. Let the process (Xi); be given by Xy = sW; + vt with v,s
being real constant, (Wy); being a Brownian motion and s # 0. Then the scale
functions W and Z for (X;): are given by

0, t<0

W(t) = {(li(eclt 3 ecQt) >0 (2.14)

and
1 t<0

Z(t) = cit cot
() {1+;(e 71761271) tzo

Cc1

for di= VAT F s, e1 1= =5 and ¢ 1= %0,

Proof. We first derive W. That W = 0 on (—o0, 0] follows by definition of the
scale function.
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2 b=+ and c:= —r. By Lemma 2.2.3 we know that

Now let us define a := =5
(X4)¢ is given by

1
2
the Laplace exponent of

1
P(0) = 55292 + 0 = ah* + bh. (2.15)
We have then
b2 —dac=~242rs>>0
>0

and

So, we can define the subset of C

— b2 —
D = <b_|—2b4ac’oo) XR,
a

the function )
F:D—C, s+ —
as?2 +bs+c

and the function

1 — Vb2 —4ac —bo— 2 —4ac
f:[0,00) =2 R, t— (e b=t —e PN )

Vb2 — 4dac

We have then

Vb2 —dac =/ +2rs2 =d

and it follows

(e‘lz”f—e‘sz‘d't) (2.16)
cit _ _cat
e e (2.17)

Let us consider the constant

—b+ Vb?2 — dac

Br) = sup{A 2 01 p(N) = 1} = 2

By Example 1 we know that for every t > ¢(r)

and by Lemma 2.3.1 We have

Wio,00) = f-

Now we derive Z. Since r > 0 and s # 0 we see that d # 0. Now let us check
that ¢; and c¢o are unequal zero as well. For the case v > 0 we have

d—v

2rs? >0+ 22 > = d =12 +2rs2 >y = = >0

52
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and

—y—d
s’ >0=>d=v/12+2rs2>0= —d<0=cy = 12 < 0.

For the case v < 0 we have

d—
y<O0< /Y2 +2rs2 =d = = 827>0

and
2rs? > 0=+ 215> > 92 = d=/2+2rs2 > /12 = —y
—y—d
52

= Cy = < 0.

So we can calculate now for t > 0

t
— 1 + i iecls _ 16028‘|
d C1 Co
0
r(eclt—l ec2t—1>
d C1 Co

and for ¢ < 0 we have

Zt)=14+r [ W(s)ds=1.
0~~~

O

In case that our process contains additionally a compound Poisson process
we have derived an analytic form of its Laplace exponent 1 in section two. But
unfortunately we cannot find the inverse Laplace transform of W So in this
case we have to approximate the scale functions W and Z numerically.
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Chapter 3

Perpetual American
Options with Guarantee
and Optimal Stopping

A perpetual American call option is a contract which gives the buyer (the owner
or holder of the option) the right, but not the obligation, to buy a specific asset
for a specified (strike) price at any time in the future. Let X, be the value of
the asset at time t > 0 and K be strike price of the option. If at some time
t > 0 the value of the asset is larger than the strike price we could exercise the
option. That means we could buy the asset for K and sell it for X;. We would
make a profit of X; — K. We call this amount of profit the payoff. So in case of
call option we have the payoff f(X;) with f(z):= (z — K)™ and we call f the
payoff function. Furthermore we make in our model the assumptoin that there
exist also a risk-free investment possibility. That means we assume that if we
are able to invest the amount x > 0 at time 0 and receive the amount xe™ "t at
time ¢ without risk, with r > 0 the interest rate being a constant.
There are different approaches to find the value of American options. One is the
approach of the risk-neutral measure [9, Chapter 5.2] and optimal stopping. As
can be seen for example by [9, Chapter 8.5.2], the value of the option is given
by

sup E, (6‘”Ex(f(X7)))

TET
where T is the set of stopping times. The most common approach to model the
asset is by using geometric Brownian motion. One drawback of this approach
is that Brownian motion is a continuous process and does not allow jumps. To
avoid this restriction we will work with a broader class of processes, namely
Lévy processes. Furthermore, we will not only consider the case of the call
option where the payoff is defined by f(z) := (z — K)* but assume just that f
is continuous and non-decreasing. Another generalisation we will make is that
we allow the option to have a guaranteed amount of money that will be paid in
any case when the option is exercised.
In the following section we consider the stopping problem for the general case
that (X;); is given by a Markov process and present an existence theorem. In
section two we use this theorem to show that we have a solution of the stopping
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problem in the case of a Lévy process. In section three we show that we can find
a nice solution to the stopping problem if we restrict ourselves to to spectrally
negative Lévy processes. In the fourth section we derive a system of differential
equations which could be used for computations.

This chapter is highly motivated by the paper [1]. Lemma 3.2.1, Theorem 3.3.1
and Theorem 3.3.2 can be found in [1][page 249-252]. The proofs in our thesis of
these three theorem are just more detailed and are different in some parts. All
other theorems in this chapter are original by the author of this thesis. The idea
of chapter 4 is also from [1]|[page 249-252] but the calculations are not shown in
the paper.

3.1 Optimal Stopping for Markov Processes

Let (X¢): be an (E, £)-valued homogeneous Markov process with transition func-
tion (p¢): and distribution (P, ),cr defined on a measure space (2, F). Further-
more assume that the filtration (F;)¢>0 generated by (X;); satisfies the usual
conditions. This means that any P-null set of F is contained in Fy and that
the filtration (F3);>0 is right-continuous, i.e. F; = [, Fs for every t > 0. Let
X : 2 — E be arandom variable and T be the set of finite stopping times with
respect to (£2, (Fi):). We assume that all paths of (X;); are right-continuous
with left limits (i.e. they are cadlag). Furthermore, let there be a measurable
function G : E — R, the gain function, that satisfies G(X) = 0 and

E.( sup |G(Xy)]) < oo (3.1)

0<t<o0o

for every z € R. So for every 7 € T

E,|(G(X.))] < oo, (3.2)
We call then the function
V:E—=R, xw~ supE;(G(X;)) (3.3)
TET

the value function. The stopping problem is now the task to find an analytic
form of V' and a stopping time 7y such that

V(.L“) = -,S—lelg’Ex(G(XT)) = Ew(G(XTo)) (34)

for every = € R.
We call
C={zeE:V(z)>G(x)}

the continuation set and
D={zxeE:V(z)=G(x)}

the stopping set. The intuition behind these sets is the following. If (X;); starts
at ©o € E and we have V(zg) = G(x0), then the trivial stopping time which
stops at zero is optimal. Now let us assume that (X;); starts at yo < o instead
but still V(zg) = G(x¢) and that (X;); hits zo at some time to > 0. Since the
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process is Markov it has no relevance what happened between the times zero
and tg. So there is actually no difference to our first scenario and it is optimal
to stop at to. This intuitive reasoning leads to the idea that

7p(w) :=inf{t > 0: X;(w) € D}

might be an optimal stopping time. That this under some conditions is indeed
the case we will see in the following.

Definition 3.1.1. A function f : E — R is upper semi-continuous (usc) at a
point xo € E if and only if for every e > 0 exists 6 > 0 such that ||z — || < ¢
implies f(x) < f(xo) + €.

A function f : E — R is lower semi-continuous (Isc) at a point xo € E if and
only if for every e > 0 exists 6 > 0 such that ||x — xo|| < 0 implies f(xg) <

f(@) +e.
We say that f is usc (Isc) if and only if f is usc (Isc) at every point.

Lemma 3.1.1. For V lower semi-continuous and G upper semi-continuous, D
s closed and consequently Tp is a stopping time.

Proof. Let (z,), C D be a converging sequence with limit zy € E. Since V is
Isc, for every m € N exists a 47/ > 0 such that

1
|z — o] < 07 implies V(zg) < V(z) + p— (3.5)

and because G is usc, there exist for every m € N a 6% > 0 such that

1
| — x| < 0 implies G(x) < G(zg) + — (3.6)

Now we define 6™ := min{d{, % }. Since (x,), converges to x¢ there exists a
subsequence (2, )m of (z), with

|y, — xo| < ™ for every m € N.
So we have for every m € N

(3.5) 1 (zn).CD 1 (3.6) 2
< —_ = — < —_
V(o) € Viwn,) + = P Gl )+ - S Gl + 2

Letting m go to infinity and considering that V' > G by definition of V' (just
stopping at time zero) we get V(zo) = G(xo). So xg € D and this means that
D is closed.

Now let us define for every n € N the compact sets D,, :== D N [—n,n| and
the random variables

7:Q =R, we—nf{t>0:X,(w)e D,}.
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We have then for every w € Q

we{mp <tlempWw) <t (3.7)
< inf{s >0: X;(w) e D} <t
< There exists 0 < so < ¢ such that X, (w) € D
< There exists n € N and 0 < sg < ¢ such that X, (w) € D,
< There exists n € N such that inf{s >0: X (w) € D,,} <t
&< There exists n € N such that 7p, (w) <t
< There exists n € N such that w € {rp, <t}

swe | J{m, <t}
neN

and it follows

{rp <t} = |J{m. <t} (3.8)

neN

Because all paths of (X;); are cadlag, D, is closed and (F;); satisfies the usual
conditions it follows by [6, Lemma I1.75.1] that all 7p_ are stopping times. So
we have for every n € Nand t > 0

{TD,L < t} e F;

and since sigma algebras are closed under countable union follow for ever ¢t > 0

{TD St} (3:8) U{TDn < t} e Fy
neN

and this proves that 7p is a stopping time.
O

Lemma 3.1.2. IfV is Isc, G usc and P(tp < 00) =1 for every x € R, then
V(z) = E.G(X7p)
for every x € E.

Proof. A proof is given in [3, Chapter 1, Lemma 2.9]. O

3.2 Optimal Stopping for Lévy Processes

In the last section we have discussed the general case that our process (X;): is a
Markov process. In this chapter we consider now the more special case that the
process (X;); is a real-valued Lévy process. We are interested in the stopping
problem where a fraction k(z) of our starting value x is guaranteed, i.e., our
payoff is at least k(x). So the stopping problem we are interested in has the
form

v(z) = ilelg)_Ex (e_” (9(X7) v k;(x))) (3.9)

where z € R, T is the set of finite stopping times (with respect to the natural
filtration of (X:):), g,k : R — R are continuous non-decreasing function and
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r > 0. To ensure that v is well defined, i.e., that for every z € R v(z) € R we
make the assumption

E,(supe "g(Xy)|) < oo (3.10)

>0

for every x € R. If we compare this stopping problem (3.9) with the stopping
problem (3.4) from last section we spot two structural differences. First we see
that the payoff in (3.9) depends not only on the value of the process when it
stops at X, but also on the starting value x of the process at time zero and
second we see that the payoff has the extra term e~"". We deal with the second
difference in the next two lemmas by extending the process to (¢, X;):. To deal
with the first difference we consider instead of the stopping problem (3.9) a
whole family of stopping problems depending on =z € R

vz (y) = flelgEy(e‘”(g(XT) Vk(z)))

= sup Ey(e”""g:(X;)) (3.11)
TET

with g, (y) :== g(y) V k().

So our approach is that for every starting value « € R we consider the stopping
problem (3.11), find a solution for it and consequently find a solution for (3.9)
at x since v, (x) = v(x) as we can see.

For every x € R we define the stopping set

S = {y € R va(y) = g:(v)}. (3.12)
The following lemmas gives us a candidate to solve the stopping problem, namely
Ts, (w) :=1inf{t > 0: X¢(w) € S;}

In the following we will always assume that
P,(rs, <o0)=1 forevery y,z € R.

To make some proofs more readable we will work with the assumption that
Ts, (w) < oo, for every w € Q. It should always be clear that this simplification
does not change the proof.

We will see in the following two lemmas that g being continuous is a sufficient
condition for 7g, being an optimal stopping time.

Lemma 3.2.1. Let Y; = (t, X;) be the process with values in (E,E) with E =
Ry xR and & = B(R; x R) the Borel sets of E, §: E — R defined by §(t,x) :=
e—rtg(l.)’
w:E =R, (t,x)— sup Eyg(Yr)
TET
and

Sw={(t,z) € E:§(t,z) =w(t )}

Furthermore, we assume that g is continuous. Then we have w(t,r) = E(; +9(Yrs, )
for every (t,z) € E.

Proof. First we recall that (Y;); is a Lévy process by Lemma 1.4.1.
We define for every 7 € T the function

f‘r B R7 (t7l‘) = E(t,m)g(YT)
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To see that the f, are continuous let us fix some 7 € 7 and consider a sequence
(tn, Zn)n C E converging to some (tg,x¢) € E. Since (), is converging, it is
bounded and hence there exist ¢,d € R with ¢ < z,, < d for every n € N. Now
let us define the random variables

Hy(w) = g(Yr(w) + (tn, zn)),
H(w) := g(Yr(w) + (to, o))

and
Z(w) »=max{e "7 |g(Xr(w) + )], e [g(Xr(w) + d)[}.

Because § is continuous we have for every w € (2
H,(w) == H(w).

To see that the sequence of random variables (H,, ), is dominated by the random
variable Z let us fix some n € N and w € Q. We first consider the case g(X,(w)+
Zpn) > 0.
We have then
|Hy ()| = [§(Y7 (w) + (tn, 20))]
S (X, () + )
< e T g(X o (W) + an)
< e T Wg(X, (w) +d)
< |Z(w)]-

=€

Now we consider the case g(X,(w) + x,) < 0.
Because g is nondecreasing we have then

0= g(Xr(w) +2n) = 9(Xr(w) +¢).
This gives

|9( X (W) +2n)| =
<

9( X7 (W) + z)
9(Xr(w) +¢)

lg(X - (w) + )] (3.13)

and it follows

[ H(w)] = e T |g(X () + )]

< e g(Xr (w) + @)

(3.13)
< e W (X (w) + o)

<|Z(w)]-

So Z indeed dominates (H,),. That Z is integrable we see by
E|Z| <E(e|g(Xr +o)l) + E(e™""|g(Xr + d)])
= EC(e_TT|9(XT)D +Eq (e_TT|9(XT)D
(3.10)

< E.(supe "|g(Xs)]) + Eq(supe "g(Xy)]) < oo
t>0 t>0
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So we get by the Dominated Convergence Theorem

fr(tn,2n) = Bt 2,)9(Y7)

=Eg(Yr + (tn,zn))

=EH, "> EH (Dominant Convergence)

=Eg(Yr + (to, 70))

= E(to,mo)g(Y’r)

= fr(to, o).
So f, is continuous.
We show now that w is lower semi-continuous. First we see that for every
(t,x) e E

w(t,xz) = sup fr (¢, ).
TET

Now let us fix some (tg,x9) € E and ¢ > 0. By the definition of supremum
exists 79 € T with

€
w(to, xo) < fry(to, o) + >
Because f;, is continuous there exists § > 0 so that
€
f-ro (t07 xO) < f‘ro (t7 .’L') + 5

for every (t,z) € E with ||(¢,2) — (to,z0)|| <.
So we have then for every (¢,z) € E with ||(¢,2) — (o, z0)|| < 0

€
w(to, xo) < fro(to, zo) + 3 < frotz)+e<w(t,z) +e

So w is Isc and the result follows by Lemma 3.1.2.

Lemma 3.2.2. Let g be continuous. Then we have for every x,y € R,

Vg (y) = Eye—TTsm 9z (X‘rsx )7

i.e. for every x € R g, is an optimal stopping time for the stopping problem
(8.11).

Proof. Let us fix some z € R and simply write S = S5, ¢ = g, and 75 = 7g,.
We define as in Lemma 3.2.1 Y; := (¢, X;)

“g(y) (t>0,y €R),

g(t,y)=e
w(t,y) := sup Ky, g(Y-)
TET

and
Sw={(t,y) e Ry xR:w(t,y) =gt y)}
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We have then for (¢,y) € Ry x R
w(t, y) = Sup Et,yg(YT)
TET

= sup Eg(Yr + (t,y))
TET

=supEg(r +¢,X; +y)
TET

= sup EeiT(T“)g(XT +y)
TET

=e "t su%)’IEefrTg(XT +y)
TE

=e "supE e g(X,)
TET

—rt

=e "v(y). (3.14)
With this we see that

(3<‘:1>4) 677’t

(t,y) € Suw & w(t,y) = §(t,y) v(y) =e "g(y)

co(y) =gy) cyes.
So we have S,, = R, x § and that gives
{Y; € S} ={(t, X:) e Ry x S} ={X; €S}
and finally

75, =nf{t >0:Y; € S,}
=inf{t >0: X; € S}
:’TS

We know by Lemma 3.2.1 that

w(t7y) = ]Et,yg(YTsw)' (315)

So we get now for arbitrary ¢ > 0

u(y) = eMw(t,y)
(3.15) e”Etvyg(stw)
= e"E§(Yrs + (t,9))
— ¢"Ee TS (X, + )
=Ee " g(Xr +y)
=Ey e g(X7).

O

So we have proved that a solution of the stopping problem exists if g is
continuous.
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In the following we assume that v, is continuous. Since 7g, is an optimal
stopping time for our problem, we want now to understand the structure of S,
better. For this we define

ay :=sup{a € Sy :a <z}

and
by :=inf{a € S; : a > x}.

The following lemma gives us very useful information about the structure of .S,.

Lemma 3.2.3. (a) We have S, N(—00,z] = (—00, a,] with possibly a, = —o0
and (—oo, —o0] := 0.

(b) We have b, € S, N [z,00), implying that b, < co.

Proof. (a) In case that S, N (—oo,z] = 0 we just have a, = sup () = —co.
Now let us consider the case S, N (—oo, z] # 0:

Suppose first that y is an element of S, N (—oo,z|. Then y < sup (Sm N
(—00,2]) = ay, i€,y € (—00,a,).

Let us now show the other direction. Because S,N(—00, x] is an non-empty
set of real numbers with an upper bound, a, = sup(S, N (—o0,z]) € R
exists. Since ¢ is continuous, g, is continuous as well and because v, is
also continuous the set

Se={y eR:v.(y) = gu(y)} = (v — gw)_l(\oj;)

closed

is closed. So
{a€ Sy :a<a}=5,N(—00,7]

is closed as well and contains its supremum a; (which exists because the
set has an upper bound), i.e., a, € S; N (—o0,z]. Now take y < a,. Then
for every 7 € T we have

g nondecr.

Eye g, (X:) =Ee g (X +y) < Ee "gu(X;+am)
—rT 2€Sx
=K, e " g.(X7) < vp(az) e 9z(az) = glaz) vV g()

g nondecr.

g(x) < g(z) vV g(y) = g=(v)-

Taking supremum over all stopping times 7 € 7 on both sides (right side
is independent of the stopping time) gives then

v2(y) < 92(y)-

Since trivially ¢, (y) < v, (y) by definition of v, follows y € S,. So because
y < a, < we have y € S, N (—o0, z] and (a) is proved.

(b) We first prove S, N [x,00) # () by contradiction. So let us assume that
Sy N [z,00) = (. That means that all elements of S, are smaller than z.
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So since for every w € Q X, (w) € S, we have X, < z everywhere. So
we have for every w € Q2

(90 (X7 ) (@) = g0 (X, (@) = 9(2) V 9(Xrg, (@) T "2 g(). (3.16)

Since by definition P, (Xo = z) = 1 and © ¢ S,, we have P, (X, € S;) = 0.
So we have 75, > 0 P,-a.s. and consequently e™""S= < 1 P,-a.s. and it

follows
Eye "= < 1. (3.17)
Putting this together we get
(3.17)
Uw(x) =Eze™ "5 g, (XTSI) = g(x)Eie_rTsm < g(a:) < gz(m) (3.18)
——

3.16)
C29 ()

and this is a contradiction because obviously vg(x) > g, (z) (We just have
to consider stopping at zero). So S N [x,00) is a non-empty set of real
numbers which is bounded from below by z. So b, = inf(S, N[z, 0)) € R.
We have seen in (a) that S, is a closed set and so S, N[z, 00) is closed as
well and contains its infimum, i.e., b, € S, N[z, 00).

O

Lemma 3.2.3(a) shows that the part of S, which lies on the left hand side of
x is an interval. So we have a very nice structure there. But unfortunately the
part of S, which lies on the right hand side of = could have a very complicated
structure without any helpfull properties. We only know by Lemma 3.2.3(b) that
this part of S, is not empty and that b, is its smallest element. To understand
better what this means for our optimal stopping time 7g,, let us consider the
example x = 1 and S, = (—00,0.5] U [2.5,3.5]. We have then a, = 0.5 and
b, = 2.5. Let us first consider the case that (X;); has continuous paths (for
example Brownian Motion). If (X;); hits first [2.5,3.5] (Figure 3.1(a)) we have
Ts, = inf{t > 0: Xy = b, }. If (X;); hits first (—o0,0.5] (Figure 3.1(b)) we have
7s, = inf{t > 0: X; < ay}. So for a continuous process we get the nice form
for the stopping time

Ts, = inf{t > 0: Xy <a, or X; =b,}.

But we want to consider Lévy processes which do not have continuous paths.
So instead of just crossing continuously a, or b, it is possible for (X;); to jump
into S, without crossing a, or b,. In case (X;); jumps first below a, (Figure
3.1(c)), we know that it hits S, by Lemma 3.2.3(a). So in this case we also have
as in the continuous case above that 7¢, = inf{t > 0 : X; < a,}. But we do
not know any such properties for S, N [b,,c0). So if the process makes a jump
above b, it could happen that it is not hitting S, (Figure 3.1(d)) and we have
T, # inf{t > 0: X; > b, }. So together we have

T, #inf{t >0: X; <a, or X; >b,}.

So for general Lévy processes we do not have a nice form for 7 . Because of this
we will in the following only consider processes (X;); that do not have positive
jumps, i.e., we consider only spectrally negative Lévy processes. We will see in
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Figure 3.1: First hitting times. In (a) and (b) we see a continuous process
hitting a, and b,. In (c) the process hits S, by a jump down. In (d) the process
jumps above b, without hitting S,.
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the next section that with this restriction we have as in the continuous case the
nice form for our optimal stopping time

TSy = lnf{t >0: Xy <agor Xy = bm} (319)

3.3 Optimal Stopping for Spectrally negative Lévy
Processes

Let (X:); be a real valued spectrally negative Lévy process defined on a prob-
bility space (2, F,P). Everything else is as in the last section.

Let us consider some starting point x € R of the process and some a < z < b.
We define the two-sided stopping time

Tap :=inf{t >0: X; <aor X; =0b}
and its corresponding value
Vap (1) i= Eg(e™ " 9o (X7, ,))-
For any a € R we define also the one-sided stopping times
Te(w) == 1inf{t > 0: X;(w) = a},

7 (w) = inf{t > 0: X;(w) > a}

a

and
(w) :==inf{t > 0: X;(w) < a}.

Ta

We need the following simple lemma.

Lemma 3.3.1. Let f : [0,00) — R be a right-continuous function and let A be
a non-empty subset of R which is closed. Then

min{t > 0: f(¢) € A}
exists.

Proof. Let us define
Z:={t>0:f(t) € A}.

Because Z # () is bounded from below its infimum exists. By definition of
infimum exists a sequence (t,), C Z with ¢, | inf Z for n — oo. So because f
is right-continuous we have then

f(tn) === f(inf Z)
and because Z is closed we have inf Z € Z. So min Z exists. O
With this we can prove now the following lemma.

Lemma 3.3.2. Let (X;); be a real valued spectrally negative Lévy process defined
on a probbility space (Q, F,P). For a, = —oo we have 7s, = 7, and for
a; > —oo we have Tg, = T4, b

x
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Proof. By Lemma 3.2.3 we know that
Sy = (—00,a,]U{b,} UB (3.20)

for some B C R with b > b, for every b € B.
Let us fix now an w € 2. We define

C:={t>0:X;(w) e S,}

We know that
7g, (W) < o0

So we have C # (). By Lemma 3.3.1 we have
7, (W) =inf C =minC € C

and so
XTSI (w) = XTS;,; (w)(w) S S,;.

Now assume that X, (w) € B.
Then exists b € B with X, (w) = b. Let us define now

D:={t>0: X;(w) > by}
Again by Lemma 3.3.1 exists ¢ := min D. So we have

i < b,. .
lin Xi(w) < by (3.21)

Since X;¢ (w) = b > b,, we have 75, (w) € D and so g < 75, (w). If tg < 75, (w),
we have Xy, (w) € S, and for ¢ty = 75, (w) we have

Xto (w) = XTsl. (w) =b# b;.

So in both cases we have X; (w) # b,. Because t¢ = minD € D, we have
Xy, (w) > b, and because ¢t — X;(w) is right-continuous it follows

lim X (w) = Xy, (w) > by (3.22)

tlto

So (3.21) and (3.22) together gives

lim X (w) < by < lim Xy (w).
t1to tlto

That means that ¢ — X;(w) has a positive jump at ¢ and this is a contradiction
to our assumptions. So X, (w) ¢ B and it follows X, (w) € (=00, a,] U {b,}
and it follows

inf{t > 0: X;(w) € S;}
inf{t >0: X;(w) € (—00,az] U {bs}}

_ {sz (w), for a, = —o0

TS, (w)

Taz,be (w)7 for a, > —oo0.
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So we know now that the optimal stopping time is a one-sided or two-sided
stopping time. In the the next theorem we prove that in case of a positive
guarantee the optimal stopping time is a two-sided stopping time and is given
by equation (3.19).

Theorem 3.3.1. Let (X;): be a real valued spectrally negative Lévy process
defined on a probbility space (Q,F,P). For x € R and k(z) > 0 we have
az; > —oo and the optimal stopping time is Ts, = T,, b, . Furthermore, the value
function is then given by v(x) = v, b, (2).

Proof. We only have to prove that a, > —oo. In this case, 75, = 7,4,
Lemma 3.3.2, and we get for every z € R

’U(x) = Ug (JJ) bemma 8.2.2 E. (e_TTSI 9z (‘X'rsﬂc ))
=E, (e—rmm,bz gz (X‘ram,bm )) = Vagy,by (33)

We prove now a, > —oo by contradiction. So let us assume that a, = —ooc.
Then by Theorem 3.3.2 we have

by

T

TS, = Tp, - (3.23)

Now let e, : € — R be an exponential distributed random variable with pa-
rameter r which is "completely independent" of (X;); and its starting value,
meaning that

Py(e, >a)=e""" forevery y,a € R (3.24)

and
Py(e, € A,79 € B) =Py(e, € A)Py(19 € B) (3.25)

for every y € R and A, B € B(R).
Since our distributions depend on the starting value of (X;); we consider for
every random variable Y : Q@ — R the distribution P} on (R, B(R)) defined by

P} (A) :=P,(Y € A) for A€ B(R).
We have for z € R
(3.24) er
= ]P)ysz (er > Z) = Eysz (1{er>z}) = /]-{w>z}]P)y—bT, (dw) (326)

We have then for y € R

e—TZ

Ey (e—m—sm ) (3i3) Ey (e—rTbm )
= ]Ey_bx (efr'ro)

_ / TR, (dz)

(3.26) € 70
B /(/1{w>z}Pybw(dw)>Pybz(dz)
N——

>0

Fubini e, -
bi / sy P, X P70, (d(w, 2)

(3.25) er\T
= /1{w>z}P;,b:)(d(w,z))

=Ey s, (1{€r>70})
= ]P)yfbx (e,« > 7'0) (327)
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We define now the maximum process of (X;); by
Xi(w) :==sup{Xs(w) : 0 < 5 < t}.
We have for w € 2

we{e, > 1} < er(w) >inf{t >0: Xy(w) =0}
< 30 <ty <er(w): Xey(w)=0
= X, (w) =sup{X;(w) : 0 <t <ep(w)} > Xyg(w) =0
= we{X, >0}
and it follows B
{e; > 71} C{X., >0} (3.28)
So together we get then

oy 3.27
E, (e Sﬂr) (3:27) Py, (er > 70)

R, (X, 2 0)
=Po(Xe, > by —y) L5 Py (D) = 0. (3.29)
Furthermore we have
k(z) <E,(e " (g(y) V k(z))) (correlates to stopping at zero)

< EtelgEy (7 (9(X7) V k(x)))

= Ua:(y)
Lemm:a 3.2.2 Ey (e—rTSgc (g( X"’ST, ) \Y k(.’ﬂ)))
NS~~~

(3.23)

Thp =ba
= 9o (bs )Ey (e7775).

By (3.29) the right hand side converges to zero for y — —oo and so we get our
contradiction

0<k(z) <O.
O

So we have for every starting point x € R
v(xz) = sup vgp(x) (3.30)

a<z<b
In the next two proposition we show that there is a nice expression of v, ; if we
use the scale functions W and Z.

Proposition 3.3.1. Let (X;); be a real-valued spectrally negative Levy process,
r>0,a<xz<band W,Z be the scale functions for (X;);. Then we have

o+ W(x —a)

Ez(e_ b 1{7_;r<7_;}) = m (331)

and
(3.32)



Proof. |2, Theorem 8.1] O

Theorem 3.3.2. Let (X;); be a real-valued spectrally negative Levy process,
r>0,a<xz<band W,Z be the scale functions for (Xy);. For k(z) > g(z) we

have
9o (b) — g2(a)Z(b — a)

vap(z) = k(z)Z(x — a) + Wb a W(z — a).
Proof. We have for every y < x
k(z) > g(x) = g(y)
and so follows
9= (y) = 9(y) V k() (3.33)

We calculate

Ua,b(x) = Ex(eirTa’bg:C(XTa,b))
(333) —rT. —rrt
=" Ea(e " ga(a)ly, - <Tb+}) +Eg (e gx(b)l{T;%Ta—})

—rTr 7T‘T+
= k(@)Ea (™ Lirr criy) + 92 (O)Ea(e™™ Line 0y)

(3:31),(3.32) k(z) (Z(x —a)— Wz — a){f}éi%) + gz(b)m

92(b) = gx(a)Z(b — a)
W(b—a)

=k(z)Z(x —a)+ W(z — a).

3.4 The Optimal Stopping Boundaries as Solu-
tion to an ODE

We derive now a system of ordinary differential equations for which
f:R—=R? x> (ag,by)
is a solution. Let us define
F:R® =R, (2,a,b)— vap().

Let 2y € R and suppose 74,5, is an optimal stopping time if the process starts
at xg. So (ag,bp) is a maximum point of

(a,b) — F(x,a,b)

So OF Ia
%(xo,ambo) = %(Jﬂoyao,bo) =0.

If we define oF
“(z,a,b
Glz,0,b) = {g%( ‘ )]
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we have G(z, ag,bp) = 0. Now suppose that the matrix

2 2
951 (20, ap, bo) 8;21 (Qfoyao,bo)] _ [%5@0,&0,50) %(3307@0750)
8&’2 2
B

D,

22 (20, a0, bo) 53 (w0, ao, bo) o (x0,a0,b0) D% (0, a0, bo)

is invertible. Then, by the Implicit Function Theorem, there exists a neighbour-
hood Vj of (ag, bg) and a unique continuously differentiable function f : Uy — V;
with f(zg) = (ag, bg) and we have for all = € Uy, (a,b) € V;

G(z,(a,b)) =0« f(x) = (a,b).

Total differentiation gives now

oG, 9G,  0G,
_ b
DG—[&% 8, 5%4

8*F 8°F 9*F

— | 9zpa 9z  Bq0b

= |9F ¢ OF
Ox da ob

Oxdb  0adb b2

and
1

€ of1
D = |52
ol = |
ox
By using this and the chain rule we get

D(G(z, f(x))) = (DG)(x, f(x)) o (D(z, f(z))

~—

o)
= |3 e %%%b} (z, f(x)) o ﬁ

[82F 92F  9%F

O0xdb  0adb ob?

ox
&F o’F  O°F U ()
= |98 | (o, f@)) + | o O <f’f<$>>°[3ﬁ<x>}
Db daob b2 ow
So at point z = xy we get

2r rr 2r 7@

0= |%e | (x0, f(x0)) + | Bop o <$0’f<x0))o[5ﬁ<w>}
200 9adb O =

and this is equivalent to the system of ordinary differential equations

2r  2r]" ol 9h ()
|8 8] oo | s = [B00])
0adb b2 0x0b Oz

This system of differential equations is a nice result and could be used for com-
putations; for example for improved performance of the option price calculation.
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Chapter 4

Results for Analytic Inverse
Laplace Transform

In this chapter we do some numerical investigation of our theory on the example
of Brownian motion with drift. There are two motivations for this chapter.
First, we check if we get correct results for the analytic solution of the scale
function. We need this to check if the approximations of the scale function in
the next chapter give correct results. This is done in Section 2 and 4. Second,
even though perpetual American call options modelled by geometric Brownian
motion are well studied, this is not the case for perpetual American call options
with guarantee. So this is also interesting in geometric Brownian motion case.
We do a little investigation of this in Section 3.
We consider the same setting as in chapter 3, only that we assume now that
the process (X3):, which is defined on a probability space (2, F,P), is a scaled
Brownian motion with drift and that we have the payoff of a call option. So by
using the same notation as in the last chapter the stock price process (X;); is
given by

Xt = O'Bt + ’)/t

where (B;); is a Brownian motion and o, v are real constants with o > 0. Since
we are considering a call option the payoff function has the form

g(z) = (¢ = K)"

for some constant (the strike price) K > 0. We are having again a risk-free
investment possibility with constant interest rate » > 0. Now we have to say a
few words about the so called risk-neutral measure Q, which is a very important
tool in financial mathematics. We assume the measure P above to be the real
world measure. That means that for every ¢ > 0, the probability distribution of
X; under P is the one we would estimate by real world data. The probability
measure Q on the other hand is an artificial probability measure on (2, 7). The
reason we are interested in it is that under the risk-neutral measure the process
(X¢); has the form

1
Xt = O'Bt —+ (7' — 50'2)t.
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where (By); is a new Brownian motion (with respect to Q) and that the value
of the option is given by

jggﬂﬂg (e’” (9(X7) Vv k(ﬂf))) (4.1)

where Q at the expectation means that we have the expectation with respect
to Q. See for example [9, Chapter 5.2]. We see that equation (4.1) is exactly
the same as equation (3.9) of chapter 3. We could say that we were in chapter
3 actually the whole time working under the risk-neutral measure. Having that
said, we will continue now working under the risk neutral measure, i.e. we
assume our process to be given by X; = 0B, + (r — £0?)t. Furthermore, we will
nevertheless just write write P and E to be consistent with the notation of the
previous chapters.
We know by Theorem 3.3.2 and equation (3.3.2) that the value of the option is
given by

v(xz) = sup vgp(x) (4.2)

a<z<b

where v, () is given by

92(b) — 92 (a) Z(b — a)

Vap(z) = k(2)Z(x —a) + W —a)

W(z — a).

Furthermore, we have by Lemma 2.3.2 an analytic solutions for the scale func-
tions W and Z of (X¢);. (The case that no analytic solution for the scale
functions exists will be discussed in the next chapter). So to calculate the value
of the option the only approximation we have to do is the approximation of
the supremum. We do this by the Matlab function fmincon. To make more
clear that we only have approximations of v, ;(x) we will also use the notation
F(z,a,b). So F(x,a,b) means the computational approximation of v, p(x).

In the first section we check if condition (3.10) of Section 3.1 is satisfied. In the
second section we make our first computations of the value of the option. The
value of the option is well known for the case of no guarantee. So we test our
calculations by letting the guarantee go to zero. We do this to test if our code
is working properly. In the third section we have a closer look on the optimal
boundaries for the optimal stopping time. For this we produce a 3D plot with
Mathematica and give an interpretation. This is interesting because in practice
not only the value of the option is important but also the optimal time to exer-
cise it. This is especially interesting since perpetual American call options with
guarantee are not well researched. As we have mentioned, we approximate the
supremum in our calculations by the Matlab function fmincon. This functions
needs a starting value from where it starts searching for a maximum. In Section
4 we take a closer look on this and check if a wrong choice of the starting value
can lead to wrong results.

The two proofs of Lemma 4.1.1 and 4.1.2 are original by the author of this the-
sis. Nevertheless, Lemma 4.1.1 is a standard result and there should exist a lot
of literature with proofs of it. For figure 4.2 Mathematica has been used. All
other plots and calculations are done by Matlab.
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4.1 Conditions

In this section we check when condition (3.10) of Section 3.1 is fulfilled. To do so
we first need the following lemma that allows us to exchange the supremum and
the exponential function. Since it can be difficult to find sometimes references
for simple results as the following we just present our own proof.

Lemma 4.1.1. Let f : R — R be a continuous, monotone increasing function
and let {as : t > 0} be a collection of real numbers. Then we have

sup{f(as) :t >0} = f(sup{a: : t > 0}). (4.3)

Proof. By definition of the supremum sup{a; : ¢ > 0} — % is not an upper bound
of {a; : t > 0} for every n € N. So for every n € N there exists a ¢, > 0 such
that

1
sup{a; : t > 0} — — < ay, <sup{a::t>0}.
n

So a;, “—> sup{a; : t > 0} and we get

f(sup{a; : t > 0}) = f( lim ay,) Feont im flag,).

n—oo n— oo

So we only have to prove that

lim f(a,) = sup{f(a:) : t > O}.

n—oo

First we see that for every n € N we have f(a:,) < sup{f(at) : ¢ > 0} and it
follows lim,, o f(at,) < sup{f(a:) : t > 0}.
We show the other inequality by contradiction. So let us suppose that

nh_)rréo flas,) <sup{f(at):t > 0}.

Then lim,,_, o f(at, ) is not an upper bound of {f(a;) : t > 0} and so there exists
a to > 0 with lim,, o f(ar,) < f(ay,). Consequently there exists a constant
¢ > 0 and some N; € N such that for every n > N;

flaw,) +c < flat,)- (4.4)

Since a;, —— sup{a; : t > 0} and f is continuous there exists an Ny € N
such that for every n > Ny

flas,) +c> f(sup{a: : t > 0}). (4.5)
So for N := max{Ni, N2} we have

f mon. (4.5) (4.4)
flay,) < f(sup{ar :t>0}) < flay) +c < flay)

and this is a contradiction.
O

We can prove now the following lemma which is original by the author of
this thesis.
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Lemma 4.1.2. Let (X;); be a scaled Brownian motion with drift defined on a
probability space (Q, F,P), i.e.

X, =0B;+ (r — %02)15
with the constants o > 0 and r > 0. Furthermore, we define the function
g:R—=>R, z+— (e"’”fK)+
with K > 0. Then condition (3.10)

E.(supe™"g(X1)]) < oo
t>0

is satisfied if o > 1.

Proof. Let us define the random variable
1
Y(w) := sup{oB;(w) — §G2t it >0}
Then we have by [4, Proposition 6.8.1] for > 0

PY > z) = B(L > &) 081 —ow,

c o
Since
Y>Xg=0 P-as.
we have
e ifz>0
P(Y > z) = ’ - 4.6
( ) {1, ifx <0 (4.6)
So Y is exponential distributed with parameter o. By fixing some = € R and
considering the monotone increasing function f(y) := e¥7% we can calculate
now
t t B 1o?)t *
E, | supe"[g(X})| ) =E;( supe™" (eg s _K>
t>0 t>0
< E(sup e"B‘_é"%*‘”)
>0
L,
=E supf(oBt — -0 t)
>0 2
111 A 1
Lemma 4.1.1 E<f<sup (O'Bt — 0%)))
>0 2
=E(f(Y))
(6 [~ o
=0 / fly)e™Vdy
0
zo/ evtITe= Y dy
0
— O_eox/ e(l—a)ydy
0
and we see that the last term is finite if o > 1. O
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Unfortunately, in reality we have quite often o < 1. We will nevertheless
apply our theory (also for the case o < 1).

4.2 A Convergence Test

For the case that our option does not have a guarantee, the value of the option
is e”. This is proved for example in [5, Proposition 11.11]. So we have

sup EQE((e_TT(eXT — K)"‘)) =e”.
TET

Now let {k, : n € N} be a sequence of guarantee functions that converges
pointwise to zero. By equation (4.2) and Lemma 1.4.2 we have

Vi(z) :=sup E, (e*TT((eXT - K)Tv kn(x))) 172 e,
TET

To test our theory numerically we consider the guarantee functions

kn(y) == 9(y) _ (e¥ — K)JF

and fix as interest rate » = 0.01, as volatility of the stock ¢ = 0.2 and as
strike price K = 10. We test the theory now for the four cases z = log(20),
x = log(30), z = log(40) and = = log(50). The result can be seen in Figure 4.1.
On the x-axis we see n going from 102 to 10° with a step size of 30 and on the
y-axis we see the respective values of V,,(z) and as predicted by our theory the
values converge to 20, 30,40 and 50 respectively. So this is a very good sign that
our implementation of the theory is working. We also see the little spikes in the
plots. We keep in mind that Matlab has to find for each n-value the x-axis the
supremum sup, ., Va,5(). So we conclude that Matlab function fmincon does
not find the actual maximum at these points. We see that all spikes are pointed
downwards. If we would be searching for minima the spikes would show in the
other direction at the points where the correct maximum would not be found.
So we see that we have to be careful with the approximations of fmincon. We
will have a closer look on this in Section 4. Except for these values, we have the
convergence we were expecting. So our implementation seems to work.

4.3 The Stopping Boundaries

So far we were only talking about the value of the option. But when one
possesses an American option the question arises when to exercise it. We know
by Theorem 3.3.1 that the optimal stopping time is of two-sided form, i.e. it is
of the form

Tap =1nf{t > 0: X; <aor X; = b}.

and so the value of the option is given by the supremum over all possible two-
sided stopping times, i.e.

v(@) = sup B, (e B (g(Xy, ) V E())). (4.7)

a<z<b
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Figure 4.1: Guarantee converging to zero. In all four plots we have on the z-axis
incresing natural numbers n and on the y-axis we see the corresponding values
V,.(x) with respect to the guarantee k, (x). In (a) we have the case 2 = log(20),
in (b)  =log(30), in (c¢) = log(40) and in (d) = = log(50).
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Consequently, the exercise strategy consist of two constants a < b such that the
option gets exercised if the stock value goes below a or above b. For every such
strategy we have the expected outcome

va () = Ba (¢ TTEL (g(X7) V K(2))) (4.8)

and the optimal choices for @ and b are the ones who maximise v, (). For a
normal perpetual call option with Brownian motion it is well known that it is
optimal never to exercise. See for example [9, Section 8.5.1]. So the boundaries
are then a = —oo and b = co. Our case with guarantee is not really researched.
So it is interesting to see what the optimal boundaries in this case are. We use
Mathematica to produce a 3D plot of v, ,(x). We fix as interest rate r = 0.01,
as volatility o = 0.15, as strike price K = 10 and as starting value of the process
2 = log(50). The result is Figure 4.2. This is a 3D plot with the two variables
a, b on the horizontal x-axis and y-axis. On the perpendicular z-axis we see the
outcome vg p(x). All three pictures (a), (b) and (c) show the same plot just
from three different angles. Let us first consider the upper bound b. We see
that the expected outcome v, () is increasing in b, i.e. the higher the chosen
upper boundary is, the higher the expected outcome becomes. We know by
Lemma 3.2.3 that the optimal boundary b is finite. But in Figure 4.2 it appears
to be quite large. The explanation is the following. Let us say our stock has a
high value at some time ¢3. Then it is very unlikely that it will drop to a value
where the guarantee is needed. So our option is in that case very similar to a
perpetual American call option without guarantee. As we have explained above
it is optimal to never exercise a perpetual American call option. That explains
that the optimal upper boundary b is very large. Let us now consider the lower
bound a. We see that v,,(x) has a clear maximum in a around 2.9 and the
values decrease on the left and on the right of it. So there is a clear lower bound
and when it is crossed by the stock the guarantee should be exercised. We can
explain this by the following. If we exercise the option at some time ¢ we receive
the payoff (eX* — K) V k(x). Now we have in our model positive interest rate.
So a specific amount of payoff becomes less valuable with time. This is reflected
in the e~ "*-term in equation (3.9) and (4.1). So the real value we are receiving
at time ¢ is
efrt((exf' — K) V k(z))

Let us consider the case that the value of the stock is close to zero at a time
to > 0. Since we assume the increase of (X;); normal distributed with the
variance dependent on time, it is likely that it will take a long time until X; — K
becomes larger than the guarantee. So the real value e "(eX* — K) we get
then by exercising will likely be smaller than e ""k(z). So in this scenario
the option should be exercised at time ¢y for the guaranteed payoff k(z). This
explains why there is a clear optimal lower bound a for which the guarantee
should be exercised once the stock price crosses it.

4.4 Starting Values for Fmincon
We are working in Matlab with the function fmincon. For fmincon we have

to choose a starting value (ag,bg) from which on fmincon starts searching for
a couple (@maz,bmaz) such that v, b, (x) is a maximum of the function
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Figure 4.2: The optimal stopping boundaries a and b. We see the same plot
from three different angles. On the z-axis we see a, on the y-axis we have b and

on the z-axis we see v, ().
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(a,b) — vq p(x) for some fixed . (Actually fmincon searches for minima: so we
multiply the function by —1 in the Matlab code). We have seen by the spikes
in Figure 4.1 that fmincon does not always find the right maximum. Since the
right outcome of fmincon depends on the chosen ay and by we are interested
how stable fmincon works in regards to these starting values. To see this we
fix the parameters K = 10, n = 2, » = 0.01, 0 = 0.2 and = = log(60). The
guarantee is as in the last section given by

(e = K)*
n n '

In Figure 4.3 we fix by = 27 as starting value for fmincon. We have as variable
in all three plots on the x-axis ag. In plot (a) we see on the y-axis the optimal
Gmaz values fmincon finds. We see a strong fluctuation for starting values ag
between -20 and -10. Between -10 and 5 the result are completely constant at
the value a4, = 2.1203. We keep in mind that we are considering here always
the logarithm of the stock value. So -10 stands for a very small value of the
stock. That means that we are actually talking about the values between e~2°
and e !0, So for very small starting values ap we can get bad results. But for
reasonable starting values fmincon finds the correct result a,,q, = 2.1203. This
is also consistent with our results of Figure 4.2. There we saw that there is a
clear maximum of the lower bound a4, which fmincon can find. In plot (c)
we see on the y-axis the values F(z,maz, bmaz)- We see as in plot (b) that
the corresponding values for F(z, Gmaz, bmaz) are also very unstable and wrong
between -20 and -10. But if we choose ay between -10 and 5 we get the correct
result. In plot (b) we see on the y-axis the optimal b,,,, values fmincon finds.
We see as in in (a) and (c) a strong fluctuation between -20 and -10. But now
the result are not becoming stable between -10 and 5. To understand this we
have to look back to Figure 4.2. We saw there that there is not a clear maximal
boundary b,,4,- For the optimal values it only seems to be important that the
upper bound is high. This is what we are seeing here. The optimal values for
bmaz which fmincon is finding between -10 and 5 lies between 20 and 30. So as
long we are working with a reasonable choice for ag the algorithm works.

Now we plot the same three plots just this time with by as variable and
ag being fixed. We fix ap = 2. This is very close to to the actual maximum
Gmaz = 2.1203 which we found in Figure 4.3. All other parameters are the same
as in Figure 4.3. The result we can see in Figure 4.4. On the x-axis we have in
all three plots the variable bg.

In plot (a) we see on the y-axis the optimal a4, values fmincon finds. We
see a very small fluctuation around the correct value a4, = 2.1203. So we get
good results along the whole interval between between 5 and 30. In plot (c) we
see on the y-axis the values F(z,amaz, bmaz ). We see as in plot (b) that the
corresponding values for F(x, Gmaz, bmas) are also all very close to the correct
result. In plot (b) we see on the y-axis the optimal b,,,, values fmincon finds.
Different to (a) and (c) we have here a strong fluctuation between b4, = 20
and by,q, = 30. So again we see that the values for b,,,, only have to be big
but that the exact value does not influence the result.

In conclusion we can say that we have to be a little careful with the choice of
ao and for by we should choose a large number between 10 and 30.
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Figure 4.3: Fmincon for fixed by = 27. In all three plots we have as variable on
the z-axis the starting value ag for fmincon. In (a) we see on the y-axis which
Gmaz fmincon finds. In (b) we see on the y-axis which b4, fmincon finds. In
(c) we see on the y-axis the correscponding values F(z, Gmaz, bmaz)-
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Figure 4.4: Fmincon for fixed ag = 2. In all three plots we have as variable on
the z-axis the starting value by for fmincon. In (a) we see on the y-axis which
Gmaz fmincon finds. In (b) we see on the y-axis which b4, fmincon finds. In
(c) we see on the y-axis the correscponding values F(z, ¢maz, bmaz)-
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4.5 Approximated Inverse Laplace Transform

In the last section we used the analytic solution for the scale function which we
found by Lemma 2.3.1. For more general processes there does not have to exist
an analytic solution. For most processes it is easy to find their Laplace exponent
1. The difficulty lies in finding the inverse Laplace transform of ﬁ In this
section we want to do a little investigation if this can be done in principle. For
this we try to approximate the inverse Laplace transform of ﬁ where 1) is the
Laplace exponent of the scaled Brownian motion with drift. We compare then
the results with the analytic solution of the scale function W to measure the
€error.

We first try the Euler algorithm. It is based on the paper [11] which uses
the Gaver-Stehfest algorithm, a version of the Fourier-series method with Euler
summation, and a version of the Talbot algorithm, which is based on deforming
the contour in the Bromwich inversion integral. The used Matlab code can be
found at [12]. We plot the error of W when we approximate it by the Euler
algorithm, ¢.e., we compare it with the analytic values we know. The result we
see in Figure 4.5. In (a) we have r = 0.01,0 = 0.2, in (b) we have r = 0.05,0 =
0.1, in (c¢) we have r = 0.1,0 = 0.2 and in (d) we have » = 0.1,0 = 0.6. We
can see two things: If we have a close look we see that all the graphs are not
starting at zero but some value smaller than 1. The reason for that is that the
Euler algorithm produces errors for these x values. The second thing we spot
is that the error stays in all three plots reasonably small until around = = 18.
But this is actually good enough since «x is the logarithm of the actual value of
the stock and stock values of e'® do not occur in reality. Furthermore, we have
seen in Section 4.3 that an upper bound of 18 is more than enough.

Now we try out an algorithm invented by Hollenbeck, K. J. which can be found
in [13]. We make four plots with exactly the same constant for r and o as in
Figure 4.5. The result we see in Figure 4.6. We see that the error is rapidly
increasing for increasing x, but that we are getting good results for = close to
zero. Unfortunately, for = smaller 0.15 we also get errors for the Hollenbeck
algorithm. But this is a step forward. We can combine now the Hollenbeck and
Euler algorithm. From 0.15 to 1 we calculate W by the Hollenbeck algorithm
and from 1 till 14 we use the Euler algorithm.

In Figure 4.7 we have a look at the shape of W. In red colour we see the
exact graph of W produced by the analytic formula. In turquoise colour we
see the approximation of W by Hollenbeck algorithm. Under close inspection,
the graph of W looks smooth. So it might be an idea to get the last missing
part of W by spline interpolation. In Figure 4.8 we have again in red colour the
exact graph of W produced by the analytic formula. In turquoise colour we see
this time the approximation of W by the Hollenbeck algorithm with a spline
interpolation on the interval [0,0.15]. We see that this works very good and
that the approximation fits very nicely to the exact graph. This is only a first
investigation and additional work and adjustment is required to test it on jump
processes. But it is a good sign that the approximation works for Brownian
motion. So this section can be seen as an outlook for future work. So because
we get the value of the option by the formula

gw(b) — gw(a’)Z(b — Cl)
W(b—a)

vap(x) = k(z)Z(x —a) + W(x — a),
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we have found a method to approximate the option value for processes which
can contain jumps.

In Figure 4.7 we have a look at the shape of W. In red colour we see the
exact graph of W produced by the analytic formula. In turquoise colour we see
the approximation of W by Hollenbeck algorithm. Under close inspection, the
graph of W looks smooth.
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Figure 4.5: Error of W approximated by Euler algorithm. In all four plots we
have on the z-axis the real numbers z in the interval [0,20] and on the y-axis

the error of the approximation of the scale function W(z).

In (a) we have

the case r = 0.01,0 = 0.2, in (b) we have r = 0.05,0 = 0.1, in (c) we have
r=0.1,0 = 0.2 and in (d) we have r = 0.1,0 = 0.6.
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Figure 4.6: Error of W approximated by Euler and Hollenbeck algorithm. In all
four plots we have on the z-axis the real numbers z in the interval [0, 10] and
on the y-axis the error of the approximation of the scale function W(z). In (a)
we have the case r = 0.01,0 = 0.2, in (b) we have r = 0.05,0 = 0.1, in (c) we
have r =0.1,0 = 0.2 and in (d) we have r = 0.1,0 = 0.6.
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Figure 4.7: W approximated by Hollenbeck algorithm. In all four plots we have
on the z-axis the real numbers z in the interval [0,1] and on the y-axis we see
in red color W(z) computed by the the analytic formula and in turquois color
the the values W (z) approximated by the Hollenbeck algorithm. In (a) we have
the case r = 0.01,0 = 0.2, in (b) we have r = 0.05,0 = 0.1, in (c) we have
r=0.1,0 =0.2 and in (d) we have r = 0.1,6 = 0.6.
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Figure 4.8: W approximated by spline and Hollenbeck algorithm. In all four
plots we have on the z-axis the real numbers = in the interval [0,1] and on
the y-axis we see in red color W(z) computed by the the analytic formula. In
in turquois color we see the the values W (z) approximated by the Hollenbeck
algorithm and spline interpolation. In (a) we have the case r = 0.01,0 = 0.2,
in (b) we have » = 0.05,0 = 0.1, in (¢) we have r = 0.1,0 = 0.2 and in (d) we
have r = 0.1,0 = 0.6.
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Conclusions

In this thesis we had a detailed analysis of the evaluation of perpetual American
options with non-decreasing payoff function and guarantee. We saw in Chapter
1 how the notation for optimal stopping problems is rigorously introduced and
that a Lévy process is a Markov process in a very general way. Furthermore, we
have identified how its transition function has to be chosen and we showed that
we can assume without loss of generality the existence of a family of probability
measures {P, : € R} under which the Lévy process starts with different values
x € R. We used this to give a rigorous derivation of Theorem 3.3.2 in Chapter
3. This theorem tells us that the value of the option is given by

v(@) = sup ves(a),
a<x<b
with
9z (b) — gz(a)Z (b — a)
W(b—a)

Since the scale function Z can easily be derived by integration over W, the
crucial part to use the formula is to find the scale function W. We have derived
in Chapter 2 an analytic solution for W in the case that the process (X;); is
modelled by a scaled Brownian motion with drift. In chapter 4 we received good
computational results for this case. So we found a formula for the value of an
perpetual American call option with guarantee when the stock price is modelled
by scaled Brownian motion with drift. For the case that the process (X;); is
modelled by a Brownian motion with jumps we could not derive an analytic
solution for the scale function. In this case we have to find W by approximating
the inverse Laplace transform of

Vap(2) = k(z)Z(x —a) + W(z — a).

1
b

where 1 is the Laplace exponent of (X;);. We did already a first approach for
this in Section 4.5, where we tested an approximation method in the Brownian
motion case. An interesting question for further research would be to investigate
how good this can actually be applied to jump processes.
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