
Implementing Counting Analysis in UHC

Tibor Bremer (ICA-3470679)

MSc Thesis

March 1, 2018

Center for Software Technology
Dept. of Information and Computing Sciences
Utrecht University
Utrecht, the Netherlands

Supervisors:
dr. A. Dijkstra

dr. J. Hage

2

Contents

3

4 CONTENTS

List of Figures

5

6 LIST OF FIGURES

1. Introduction

This thesis describes and implements an extension to counting analysis (defined be Verstoep in [?]).
We also describe and implement a strictness optimization based on the results of the extended counting
analysis.

Counting analysis is a analysis that combines four analyses that count how many times a certain
expression is used and demanded. These analyses are absence, sharing, strictness and uniqueness analysis.

Having a single analysis that can be used for multiple optimizations is useful in that it is easier to
maintain and it prevents cross analysis bugs. It also saves compile time as less analyses are run1.

The goal of this thesis is to extend counting analysis to the whole of UHC core2 and give an imple-
mentation of counting analysis in the Utrecht Haskell Compiler3.

Only running the analysis will not result in any faster runtimes, so a strictness optimization is also
presented that when run will transform the source code in such a way that the resulting binary runs
faster.

1.1 Example

An example will demonstrate better what this thesis will achieve. We take the following code for the
fibonacci function4.

fib :: Int→ Int
fib x | x < 1 = 0
fib 1 = 1
fib n = fib (n− 1) + fib (n− 2)

This is a very slow5 version, but we can easily make it faster by making the recursive calls strict. This
will result that not a whole chain of thunks is generated. The strict version of fibonacci looks as follows.

fib :: Int→ Int
fib x | x < 1 = 0
fib 1 = 1
fib n =

let
f1 = fib (n− 1)
f2 = fib (n− 2)

in f1 + f2

Now for us it is easy to see that we are allowed to make the recursive calls strict, because we know they
are needed to calculate the result, but for the compiler this is not so easy. That is what counting analysis
for. It will determine what parts of the code can be made strict and the strictness optimization will than
take this information and transform the code at the places it is allowed to make the code stricter.

This transformation results in a lowering of runtimes by more than 25, showing that using counting
analysis to drive optimizations is a very useful tool for a compiler to have.

1.2 Outline

Before we delve into the extended counting analysis we need some information to understand counting
analysis and the compiler (UHC) in which the analysis and accompanying strictness optimization are
implemented. This is discussed in chapter ??.

After the preliminaries the extended counting analysis is formally explained in chapter ??. After this
in chapter ?? the strictness optimization is discussed that will be used to measure the success of the
analysis.

1Although the combined analysis runs slower than the individual analyses
2UHC core is the intermediate compiler language of the Utrecht Haskell Compiler
3This will be abbreviated to UHC in the rest of the thesis
4This a not a fast implementation of fibonacci. See section ?? for the full breakdown and results for this example.
5Even ignoring that it runs in quadratic time.

7

8 CHAPTER 1. INTRODUCTION

Before we discuss the results of the strictness optimization in chapter ??, the implementation of
counting analysis is given in chapter ??.

Chapter ?? will discuss some related work and finally chapter ?? concludes and give some pointers to
future work.

2. Preliminaries

Before diving into the depth of counting analysis some prior knowledge is required. First the Utrecht
Haskell Compiler1 is introduced2. After that in section ?? is explained what counting analysis is and
what it does.

2.1 UHC

First an overview is given of what UHC is. After this high level overview a more in depth discussion is
given of how the internals of UHC work. UHC is available from https://github.com/uhc/uhc.

2.1.1 Overview

UHC is a Haskell compiler developed by Atze Dijkstra as an experimentation platform. It is part of
EHC3 which is a series of compilers where each variant is build on top of the previous variant. The last
variant of EHC is UHC. Each variant of EHC adds features. Fhe first version is the untyped lambda
calculus. Version 3 adds types and results in the simply typed lambda calculus. Version 8 adds type
inference to this. The module system is not available up to version 50. Version 99 is the most feature
complete version. UHC is version 101 and is equal to version 99 with debug features removed. EHC
is written completely in shuffle4 Shuffle is a wrapper language around any other language which allows
the source code for multiple variants to be present inside the same source file. UHC is written mainly
as attribute Grammars5. Attribute grammars are perfectly suited for syntax directed computations over
treelike structures. Counting analysis itself is a perfect example of this.

2.1.2 Internals

The compile pipeline outlined in this section is for the default grin based bytecode backend. There
exists multiple backends for UHC in various stages of feature completeness including a Javascript and
Java backend6. For full details see the UHC documentation7. Compilation happens in multiple phases
using multiple intermediate languages. A graphical representation of the compilation process is give in
figure ??. The pipeline starts with Haskell. This is translated into Essential Haskell (EH) which is just
desugared Haskell. On this language binding group analysis and type checking is performed. After this
EH is transformed into Core8. During this translation all the type information is removed. type classes
are translated to dictionaries (records) and type class constraints are translated in additional parameters.
On this language so called core transformations are executed. These include the translation to A-normal
form9, the implementation of counting analysis outlined in this thesis and the optimizations the results of
counting analysis allow. After all the core transformations are executed the code is translated from Core
to Grin. Grin is a low level language on which some more transformations are executed10. Grin s then
finally translated to bytecode.

Haskell −→
Desugaring

EH −→
Type erasure

Core −→ Grin −→ Bytecode

DD��

Type inference
Binding group analysis

DD��

Core transformations
Counting analysis

DD��

Grin transformations

Figure 2.1: UHC compile pipeline

1After this abbreviated to UHC.
2Although knowing about UHC is not required to understand counting analysis it is a critical part of this thesis.
3EHC stands for Essential Haskell Compiler.
4for more information see http://foswiki.cs.uu.nl/foswiki/Ehc/Shuffle.
5For more information see http://foswiki.cs.uu.nl/foswiki/HUT/AttributeGrammarSystem.
6These two backends skip the Grin stage and generate their final code directly from Core.
7See http://foswiki.cs.uu.nl/foswiki/UHC/WebHome.
8Not to be confused with GHCs Core language which is a typed intermediate language.
9The right hand side of an application can only be a variable or a constant.

10Conveniently named Grin transformations.

9

10 CHAPTER 2. PRELIMINARIES

2.2 Counting analysis

Counting analysis is, as the name already says, an analysis that counts. In this case the number of times
an expression is being evaluated. Counting analysis is a combination of three or four analyses. It includes
absence analysis, sharing analysis and strictness analysis. Whether or not uniqueness analysis is included
depends on the subeffecting rule11 being used. In this thesis uniqueness analysis will be excluded12 as
uniqueness analysis is not really useful if the user cannot supply type signatures13.

First a short overview of the separate analyses is given followed by a high level overview of counting
analysis. The full details of counting analysis can be found in section ??.

All analyses annotate the types of expressions with some annotations. These differ for each analysis.

2.2.1 Absence analysis

Absence analysis tries to determine which parts of expressions are never going to be evaluated and can
thus be safely replaced removed or replaced by undefined. A classic example is the constant function
const x y = x . This functions does not use its second argument. It is thus safe to replace any expression
of const e1 e2 with const e1 ⊥14.

Absence analysis has three main applications within functional languages:

Dead code removal This is particularly useful for generated code and for whole program analysis.

Unused parts of datatypes Nearly all projection functions don’t use the whole data type.

Precision Enable the other analyses to be more precise. Especially the sharing analysis. See the last
example of section ??.

Lattice

Before we can give examples of the above three applications we need to define the annotations and the
corresponding lattice. For absence analysis the annotations consist of 0A and ωA. The lattice for these
annotations is 0A @ ωA. The annotation of 0A means it is not used while an annotation of ωA means it
is potentially used.

If a function argument is annotated as absent we still want to be able to pass in a non-absent value.
E.g. we want let x = 5 in const x x to be allowed. To allow this we use the following subeffecting rule:

` e : τϕ
′
` ϕ v ϕ′

` e : τϕ

Soundness of the subeffecting rule depends upon the optimizations the annotations allow. The opti-
mization for absence analysis is to replace thunks and parameters annotated with 0A by ⊥. Subeffecting
allows that an argument annotated with 0A is bound by a value that is not replaced by ⊥. E.g. the
optimization would replace const x y by const x ⊥. This optimization is sound as long as the replaced
thunk is not used. It does not matter how the thunk (y in this case) that is replaced is used. Hence the
annotation on the replaced thunk can be anything. This is exactly what the subeffecting rule allows.

2.2.2 Dead code removal

There are two ways dead code can be removed:

1. Remove unused thunks and arguments completely

2. Replace unused thunks and arguments by ⊥

Removing unused thunks completely is easy. For example take the following code:

x =
let y = 3
in 5

After running absence analysis we get the following types:

11See the subeffecting rules for the separate analyses.
12This will be done implicitly and the type rules (figure ??) have holes for different instantiations of the subeffecting rule.
13Support for type signatures is future work.
14In practice this is seldom applicable as const is normally used partially applied instead of fully applied.

2.3. STRICTNESS ANALYSIS 11

x :: IntωA

y :: Int0A

The 0A annotation on y indicates it is not used, which is also clear from the code. The code can be
safely15 transformed into x = 5.

For arguments it is very tricky to completely remove them. To see the problem we again take the
const function as an example16:

const :: aωA
ωA→ b0A

ωA→ aωA

const x y = x

If the second argument would be removed the function would be the identity function. It can be very
hard to make the code using the transformed function type correct. For example map (const 2) is valid,
but map (id 2) is not type correct. It is completely unclear how removing the absent argument of const
would be achieved in the caller code.

Another example of why removing absent arguments might not be the right thing to do can be seen
using the following example:

fail :: a0A
ωA→ bωA

fail x = ⊥

By removing the argument from fail it would be equal to ⊥. However, without the argument removed,
fail and undefined are not equal. This can be seen by the Haskell primitive seq . The code seq fail 3 will
result in 3 while the code seq ⊥ 3 will result in ⊥. So removing the argument from fail would not be a
safe transformation.

The removing unused thunks optimization is really useful for whole program analysis to reduce total
code size, as probably most imported definitions are not used.

2.2.3 Data types

There are a lot of functions that only use parts of data structures. Examples are length, fst , snd and all
record field functions.

A clear example of why data type absence analysis is desirable is removal of unused record fields of
desugared class dictionaries. For example:

data C a = {
f :: a → a → a,
g :: a → a → a }

func :: C a → a → a → a → a
func d x y z = f ′ (f ′ x y) z

where f ′ = f d

Instead of passing in a record which holds two functions, we want to pass in a record which has ⊥
stored for g17. Especially for large class dictionaries where only a small part is used can this optimization
decrease heap storage18 needed.

2.3 Strictness analysis

Strictness analysis tries to determine if an expression is used at least once. This enables call by value
semantics, resulting in far fewer thunks being created. For example:

fac n = if n 6 1 then 1 else n ∗ fac (n− 1)

Without strictness analysis this will create a lot of thunks. Both for the n− 1 computations as well as
the recursive call. Using the fact that − and ∗ are strict in both arguments we can transform the function
in the much more efficient function19:

15In this case safe transformations mean transformations that do not alter the outcome of running the code.
16The annotations on the arrows are the annotations for the partial applications.
17We want to store ⊥ instead of actually removing the field as we then have to change the data definition, all projection

functions, etc. . . Basically the same reason why argument removal is not done, although in the case for records they can be
avoided by generating a new data type holding only the used fields and calling functions that builds a record of the new
type from the old type.

18Memory space.
19No seq is necessary for the n− 1 because it will immediately be evaluated when evaluating the recursive call.

12 CHAPTER 2. PRELIMINARIES

fac n = if n 6 1 then 1 else let f = fac (n− 1) in f ‘seq ‘ n ∗ f

This will only generate a single thunk for f which will immediately be evaluated20,21.

2.3.1 Lattice

The annotations used for strictness analysis are 1S for strict22 and ωS for possibly lazy values23. The
lattice for these annotations is 1S @ ωS . If a function argument is annotated as strict we still want to be
able to pass in a lazy value. To allow this we use the same subeffecting rule as for absence analysis.

The annotation on the value passed in does not really matter as only the annotations on the function
parameters drive the optimizations (call by value and stack based argument passing), so the subeffecting
rule is trivially sound.

2.4 Sharing analysis

Sharing analysis tries to determine whether an expression is used at most one time. This enables for
example the following two optimizations:

let floating Float let bindings closer to the use site

non-updating thunks If a thunk is only used once then the computed value for the thunk does not
need to be written back to the heap as it will never be inspected again

2.4.1 Lattice

The annotations used for this analysis are 1M for used at most once24 and ωM for possibly used multiple
times25. The lattice for these annotations is 1M @ ωM . If a function argument is annotated as used at
most once we still want to be able to pass in a value that may be used multiple times. To allow this we
use the same subeffecting rule as for absence and sharing analysis.

For the non-updating thunk optimization subeffecting means that it is allowed to pass in a thunk that
is self-updating instead of a thunk that does not update. This is sound.

For the let-floating optimization subeffecting has no meaning. Let floating happens only locally and
cannot happen through function arguments as the lambda to float the let into is not available at compile
time.

2.4.2 Examples

An example of let floating optimizations is:

let f =
let x = 1 + 2
in
λy → x + 5

in f

This code now creates two thunks. One for x and one for f . If the sharing analysis can find that f is
used at most once then it is safe26 to float the let inside the lambda like this:

let f = λy → let x = 1 + 2 in x + 5
in f

20GHC will not generate any thunks for fac as it will transform the type so that it works with unboxed integers. This will
make it use only stack and no heap

21UHC supports let! which can also be used to remove the creation of the lazy thunk for f. Although here the heap is
still used as opposed to GHCs optimized version.

22Strict in this case means that the value is guaranteed to be used during program execution
23The ωS annotation for strictness has the same semantics as the ωA annotation for absence analysis
24The 1S annotations of strictness and 1M of sharing analyses are not the same. By strictness it means used at least once,

while for sharing it means at most once
25The ωM annotation for sharing analysis is semantically equivalent to the ωA annotation of absence analysis and the ωS

annotation of strictness analysis
26Safe means it does not result in more computation happening and the result stays the same.

2.5. UNIQUENESS ANALYSIS 13

Now the thunk for x is only created when f is applied, and not also when f is evaluated to WHNF. If
f is shared27 this transformation is of course not safe28 as we lose sharing of x .

An example of the non-updating29 thunk optimization30 is the following example from [?]:

let x = 1 + 2
in

let y = (λz → z) x
in y + y

Running a sharing analysis will give the following annotations:

let
x :: Int1M

x = 1 + 2
in

let
y :: IntωM

y = (λz → z) x
in y + y

The thunk for x does not need to be updating while the thunk for y needs to be updated.
The sharing analysis becomes more precise when coupled with the absence analysis31. For example:

addLength xs = map (+(length xs)) xs

Without absence analysis the following types will be inferred:

length :: [a1M] 1M
ωM→ IntωM

addLength :: [aωM] ωM
ωM→ [aωM] ωM

With absence analysis this can be improved to the following:

length :: [a0M] 1M
ωM→ IntωM

addLength :: [a1M] ωM
ωM→ [aωM] ωM

Now we can see that addLength only uses the elements of the list only once, while previously we got
an annotation indicating it could be used multiple times32.

2.5 Uniqueness analysis

Uniqueness analysis tries to determine whether certain annotated expressions are used at most once. This
is a verifying analysis and not an optimizing analysis like the other three. This means that unlike the
other three analyses this analysis can fail33. For the verifying part to be useful type annotations need to
be given.

The main goal is to reject programs that use unique arguments multiple times. Even though the
analysis is verifying there are optimizations it can enable. The heap recycling optimization as described
in [?] is such an optimization.

2.5.1 Lattice

The annotations used for this analysis are 1U for unique values and ωU for possibly non-unique values.
The lattice for these annotations is 1U @ ωU . If a function argument is annotated as not unique we
still want to be able to pass in a value that is annotated as unique. To allow this we use the following
subeffecting rule:

` e : τϕ
′
` ϕ′ v ϕ

` e : τϕ

27I.e. used more than once.
28This results in duplicated thunks on the heap for x .
29Also called update avoiding.
30If a thunk is ever only needed once we can save time by not writing the result of evaluating the thunk back to trunk.
31The lattice is extended in the obvious way with 0M . It is used in the same way as 0A during absence analysis.
32One use from applying map and one use from applying length. With absence analysis it does not get the use from

applying length.
33I.e it rejects the programs for which the analysis fails.

14 CHAPTER 2. PRELIMINARIES

This subeffecting rule is opposite to the subeffecting rule of absence, strictness and sharing analysis.
The reason it is opposite is that the annotations of absence, strictness and sharing analysis indicate
internal properties of the annotated symbols. The annotations for uniqueness analysis on the other hand
indicate external guarantees that need to be met. In other words, absence, strictness and sharing analysis
annotate how values are used, while uniqueness analysis annotate how values should be used.

2.5.2 Example

The following function requires its second argument to be unique:

writeFile :: StringωU ωU→ File1U ωU→ File1U

For example the following should be rejected:

λf → (writeFile "1" f ,writeFile "2" f)

While this should not:

λf → writeFile "2" (writeFile "1" f)

2.6 Combining the analyses : counting analysis

By combining the analyses to a single unifying analysis (the counting analysis defined in [?]) we can
run the analysis once and use the resulting annotations to enable all the different optimizations for the
previously defined optimizations34.

2.6.1 Lattice

The annotations now consist of sets of values. We use the values 0, 1 and ∞ to represent not used, used
once and used multiple times respectively. The lattice for this is the superset relation.

Depending on whether or not uniqueness analysis is included in the combination subeffecting is enabled
or disabled35, as the subeffecting rule for uniqueness is opposite to the subeffecting rules for the other
three analyses.

We can represent all annotations from the four separate analyses as annotations for counting analysis:

Absence 0A and ωA are now represented as {0} and {0, 1,∞}.

Sharing (and uniqueness) 1M (1U) and ωM (ωU) are now represented as {0, 1} and {0, 1,∞}.

Strictness 1S and ωS are now represented as {1,∞} and {0, 1,∞}.

The new representation of using sets can express more properties (like used exactly once) than the old
separate lattices.

An example showing that this lattice is more precise is the following:

f :: Bool→ (a → a)→ a → a
f b g x = if b then x else g (g x)

This gets the very precise type36:

f :: Boolβ1
β1→ (aβ2

>→ aβ2)
{0,∞} >→ aβ2

>→ aβ2

The function parameter is either not used or used multiple times. None of the separate analyses can
infer with this level of precision.

34A more complete and formal definition is given in section ??
35Enabled in this sense means using the subeffecting rule for sharing, strictness and absence analysis. Disabled means

using equality as the subeffecting operator
36The > annotation is equal to {0, 1,∞}.

2.7. DEMAND DRIVEN ANALYSIS 15

2.6.2 Optimization problems

If care is not taken when implementing optimizations to keep the annotations sound, runtime problems
can arise. For example assume we have the following:

let
x =1,1 e
f :: a1,1 → b
f x =

in f x

If we transform this using the strictness optimization of call-by-value we get:

let · · ·
in x ‘seq ‘ f x

If we also now do the non-updating thunk (sharing) optimization we make x a non-updating thunk which
results in x being evaluated twice: once in seq and once wherever f uses it.

This means that first strictness optimizations and then sharing optimizations have to be performed.
And the annotations have to be updated to reflect the inserted seq ’s, either by adding a demand whenever
a seq is introduced or by rerunning the analysis after the strictness optimizations.

2.7 Demand driven analysis

Verstoep [?] not only gives a single combined analysis, it also extends the analysis to do demand driven
analysis.

This demand is necessary to be precise for the Haskell seq primitive37 as seq only demands (evaluates)
it’s first argument but does not use it. Sergey [?] also introduced demand in the sharing analysis. Demand
is there only present for functions and not for all types as in [?]. Demand in this case has to do with
needing the value in WHNF. And only for functions is there a difference between using the value and
evaluating it to WHNF. A function demanded but not used does not use its arguments. If demand would
not be present at the annotation level any evaluation of the function to WHNF would contribute to the
use annotation of its arguments as well.

37seq can also be represented by strict application or let!

16 CHAPTER 2. PRELIMINARIES

3. Counting Analysis

3.1 Introduction

The analysis described here is based upon work by Verstoep [?] and extended to work for UHC Core.
Also the algorithm is changed to allow a modular analysis. The changes made for UHC Core can be seen
in section ?? and figures ??, where there are additional constructs present to deal with constants and
FFI , and the seq primitive is replaced by let!1, and in figure ??, where there is type application present
to deal with type variables that have kind ∗ → ∗2. The changes made to allow modular analysis can be
found in section ?? and figure ??, where there are additional environments present to deal with imported
and exported symbols3.

3.2 Definitions

Before the analysis can be explained there are first some definitions needed. The definitions and notation
given here is copied from [?] where possible and extended with new constructs where necessary.

The expressions in the subset4 of UHC Core used here consist of variables x , constants c (integers
and characters), abstraction and application, mutually recursive lets and single binding let! and fully
applied datatype constructors5 and case expressions. Also an FFI binding is allowed. Both abstraction
and application is only allowed in A-normal form6. The same holds for let bindings. Binding to a pattern
is not allowed7. The syntax for expressions is given in figure ??.

e ::= v | λx → e | e v
| let xi = ei in e | let ! x = e1 in e2

| K vi | (v1, v2, . . , vn) | case x of pi → ei | FFI n τCore

v ::= x | c
p ::= K xi | (x1, x2, . . , xn) | c

Figure 3.1: Expressions

The lattice of annotations8 ϕ is P ({0, 1,∞}), with set union being the join for the lattice. This
means that the smaller the set the more precise the annotation is. The values represent how many times
something is used: 0 means not used, 1 means used once and∞ means used more than once. The meaning
of the annotations is the same as the combination of the values inside the sets. For example {1} means
it is used exactly once, and {1,∞} means it is used at least once. For the basic annotations that consist
of the singleton sets and the annotation that holds no information (the set of all annotation primitives)
have a synonym defined for easy reading. These synonyms are given in figure ??.

The syntax for annotations ϕ is given in figure ??. An annotation is either an annotation variable β
or an annotation value $. An annotation value is a set of annotation primitives π. For usage annotations
the symbol ν is used while for demand annotations the symbol δ is used. Even though ν and δ are both

1This is the strict version of the let. It will not create a lazy thunk. Instead it will evaluate the thunk and store the
result on the heap. The let! construct is more powerful than seq as every seq e1 e2 can be rewritten into an equivalent
let ! x = e1 in e2. The expression e1 will be evaluated to WHNF (weak head normal form) before it is bound to x and
before evaluation of e2 happens. A let! can only be rewritten as a seq if the bound variable x is not used inside the body
e2. If the bound variable is used in the body the let! can be rewritten to a let and a seq (let x = e1 in seq x e2) but this
has a slightly different runtime semantics as it allocates a lazy thunk for x which will then immediately be forced. The let!
does not allocate the lazy thunk.

2For example Monad Transformers all have a parameter for the inner Monad that has kind ∗ → ∗.
3The Var and App rules have multiple variation dealing with imported and local symbols. The Let rule has an antecedent

to change some annotations on the bindings of exported symbols.
4Although not everything of UHC Core is supported all the constructs that are used in the standard libraries is supported.
5It is possible to use partially applied data constructors in Haskell. Inside the compiler a wrapper lambda is created

and all constructor calls use this lambda instead of directly using the constructor. This makes sure that in UHC Core the
constructors are always fully applied.

6 This last restriction is not enforced by UHC Core itself, but the analysis described here needs it. There exists a core
transformation that brings UHC Core into A-normal form.

7At the surface language it is allowed but not a Core level. It is completely gone after desugaring.
8See also section ??

17

18 CHAPTER 3. COUNTING ANALYSIS

synonyms for ϕ the meaning inside the type system is different. The ν annotation is for how often an
expression is used, while the δ annotation is for how often the expression is demanded to be in WHNF9.
For constants, FFI and constructors the use and demand annotations coincide10 and have the same
meaning11. For abstractions usage and demand mean different things. Usage annotations talk about how
often the body of the function is used, while demand annotations talk about how often the function is
demanded to be in WHNF. So demand talks about how often the function is evaluated to function form
while usage talks about how often the function is applied. The difference between usage and demand is
only observable using the primitive let!12,13. Without let! there would have been no need to differentiate
between usage and demand annotations as they would always coincide. This is because without let! the
only way to demand an expression is by using it.

π ::= 0 | 1 | ∞
$::= ∅ | {π} | $1 ∪$2

ϕ ::= β | $

Figure 3.2: Annotations

⊥ ::= ∅
0 ::= {0}
1 ::= {1}
ω ::= {∞}
> ::= {0, 1,∞}

P ($) ::= powerset of $
ν ::= ϕ
δ ::= ϕ

Figure 3.3: Annotation synonyms

Types can be type variables α, datatypes, type application14, a function or a n-tuple of types. The
n-tuple of types is used as the type for n-tuples15. Annotated datatypes are explained in more detail
in section ??. Function arguments always have both usage and demand annotations as the argument
is available to the body as a variable. The value produced by a function only has an usage annotation
attached16. This usage can mean two things depending on whether the produced value is a function or
not. If the produced value is a function the usage annotation is for the usage of the partial application.
If it is not a function it is for the use of the result. In neither situations is there a need for a demand
annotation to be attached. The left hand side of a type application can only be a variable or another type
application. In all other cases the application can be simplified directly and the result inlined.

Type schemes are used for polymorphic and polyvariant types17. They quantify over both type vari-
ables and annotation variables. The types are given in figure ??. In the figure there are also type scheme
variables γ. These variables are used during type inference for unknown type schemes and are completely
removed from the types for expressions during constraint solving. Most of the time it is not allowed to
freely instantiate all the annotation variables inside a type scheme. For example, it would be wrong to
instantiate the usage of the elements of the list by ω and the spine by 0 as the spine is used as least as
often as the elements of the list. This type of dependency is captured by constraints and stored inside

9Weak head normal form.
10Theoretically speaking this is the case. In the implementation however we don’t do this and the usage of everything

except for functions and variables are set to 0. This is because we only add usage when we apply a function. In all other
cases no use is added and we end up with a 0 annotation in the end. Any optimizations are only interested in the usage of
functions. For all other types they only look at the demand.

11This is because using a constant or constructor evaluates to WHNF and nothing more. FFI is already in WHNF.
12let! evaluates its binding to WHNF before evaluating the body of the let.
13Or equivalently the seq primitive. In UHC core this primitive is defined using let!.
14This is necessary for partial type application. Without partial type application, type application is never present.
15This is equivalent with the data type version of tuples (Tupn [ν1, · · · , νn, δ1, · · · δn] [τ1, · · · τn]). Having a separate

representation simplifies the type rule in the case of tuples.
16The reason that no demand annotation is attached is that it is not useful for a demand other than 1 to be present there.

A demand of 0 would mean we can attach 0 to the argument as they will never be used in that case. Demanding a result
multiple times can never result in more demand on the argument. Multiple usage of the result can of course lead to more
demand on the argument so the usage annotation is present.

17A type scheme can be both polymorphic and polyvariant at the same time.

3.2. DEFINITIONS 19

the type scheme. Constraints will be explained later in this section. Usage and demand annotations can
be attached to types as well as type schemes.

τ ::= α | T ϕl τk | τ1 τ2 | τ1ν1,δ1 → τ2
ν2 | (τ1

ν1,δ1 , τ2
ν2,δ2 , · · · , τnνn,δn)

σ ::= γ | ∀α β . C ⇒ τ
µν ::= Attach an usage annotation ν to µ (where µ ∈ {τ , σ})
µν,δ ::= Attach both an usage annotation ν and a demand annotation δ to µ (where µ ∈ {τ , σ})

Figure 3.4: Types

An environment is simply a mapping of type variables to usage and demand annotated type schemes.
The definition is given in figure ??. With keys (Γ) the variables are extracted from the environment.

Γ ::= ε | Γ, x : σν,δ

keys (ε) ::= ∅
keys (Γ, x : σν,δ) ::= keys (Γ) ∪ {x}

Figure 3.5: Environments

To support polyvariance in a precise way, constraints on the instantiation of the annotation variables
are needed. For example, assume we have a polyvariant list that has one annotation for the elements and
one annotation for the spine18. If both annotations would be polyvariant annotation variables, without
constraints a possible instantiation would be that the elements will be used multiple times and the spine
will not be used. This is, like we said before, of course not a valid instantiation19. So without constraints
we would be forced to give the spine a > annotation, which is not very precise. Another example is that
without constraints the demand annotations belonging to quantified usage annotations20 would need to
be set to >. This is because it is invalid if the demand is ever instantiated to less use than the usage
annotation. For all these dependencies between annotation variables it is necessary for constraints to be
present that define valid instantiations. Also the counting analysis algorithm is a two stage algorithm
that first collects constraints and then solves them. In figure ?? the language of constraints are given.
For annotations there are five different constraints: equality (≡), sum (⊕), union (t), product (·) and
conditional21 (.). Sum constraints express multiple usages of the same variable. Union constraints
express the usage combination of multiple independent branches. Times constraints express the use of
free variables inside function bodies. The usage of these free variables depends upon how many times
the function is used. Conditional constraints express the fact that some let bindings are only used inside
other let bindings and not inside the body of the let. So the usage of those bindings depends upon the
usage of the bindings that use them. For types and type schemes only equality constraints are needed22.
Besides these constraints we also have instantiation and generalization constraints to support let bound
polymorphic and polyvariant types.

C ::= ϕ ≡ ϕ1 ⊕ ϕ2 | ϕ ≡ ϕ1 t ϕ2 | ϕ ≡ ϕ1 · ϕ2 | ϕ ≡ ϕ1 . ϕ2 | ϕ1 ≡ ϕ2

| τ1 ≡ τ2 | σ1 ≡ σ2 | inst (σ) ≡ τ | gen (τν1,δ1 , C,Γ) ≡ σν2,δ2
| C1 ∪ C2 | ∅

Figure 3.6: Constraints

18For simplicity assume the usage and demand annotations are the same, so we can deal with only two annotation variables
instead of 4.

19No actual constraint for this is generated. It is however implicitly captured by the generated constraints as it is impossible
to access the elements without first pattern matching on the spine. So constraints for the demand on the spine will always
be generated when the elements are accessed. It is of course possible that the spine is demanded once while the elements
are demanded multiple times. However it will not be possible for the spine to be demanded zero times while the elements
are accessed.

20Usage and demand annotations are always paired. A demand annotation cannot occur without an usage annotation.
An usage annotation can appear without a demand annotation, for example in the result type of a function.

21This is explained in more detail in section ??.
22This is explained in more detail in section ??.

20 CHAPTER 3. COUNTING ANALYSIS

µ1 v µ2 ::= µ1 t µ2 ≡ µ2

Figure 3.7: Subeffecting

For subeffecting a constraint synonym v is used for readability. The definition is given in figure ??.
To illustrate the type schemes, constraints and annotations an example23 is given in figure ??. The

function is given in both idiomatic Haskell and the desugared A-normal form required for the analysis.
As we do not know anything about how g is used24 the result pessimistically gets an usage annotation
of > to indicate this. The second argument gets an annotation of 125 to indicate that it is used exactly
once in the body of the function. The annotations on the first argument and the first partial application
are variables. We cannot give a concrete annotation to the partial application as again it is unknown26

how often it is used, and as we want to have a precise a type as is possible we do not want it to be set
to >27. The usage of the first argument is determined by how many times the first partial application is
used. That is why the usage of the result of the first partial application is equal to the usage and demand
of the first argument.

g , g ′ :: ∀ ∅ {ν1} . ·· Int ν1, ν1 → (Int1,1 → Int>)
ν1

g x y = x + y − 1

g ′ = λx → λy →
let z = (+) x y
in (−) z 1

Figure 3.8: Example

3.3 Counting analysis

Now that most formal definitions are out the way, counting analysis can finally be defined. We still need
one final part of the puzzle: the annotation operators, and the variants of those that result in constraints.
These operators will be used throughout this section for both the constraint generation as well as the
constraint solving. These operators can be found in section ?? and match the different constraints in
figure ??.

The analysis is performed in two stages:

1. Constraint generation. This can be found in section ??

2. Constraint solving. This can be found in section ??

During constraint generation no annotated types are actually computed. Only constraints that these
types should satisfy are generated. These constraints are then fed into the constraint solver to produce
the annotated types for all the expressions.

3.3.1 Annotation operations

There are four different kind of operators used in the constraints:

⊕ This operator is used to combine the usage annotations of multiple usages of a variable. E.g. in x + x .
Here the usage of the first use of x needs to be added to the usage of the second use of x resulting
in the fact that x is used multiple times.

t This operator is used to combine usages of multiple branches. E.g. in if b then x else x + x . Here the
resulting usage of x is that it is either used once or used multiple times.

23The example is taken from [?].
24E.g. This is the case if g is exported.
25As neither argument is a function, the usage and demand annotation coincide.
26The code using this function does know for each partial application how often it is used, but the definition site is not

allowed to assume anything.
27As the code using the partial application knows the usage we would lose information by forcing it to >.

3.3. COUNTING ANALYSIS 21

· This operator is used for function application. The usage of the free variables inside a lambda are
dependent upon how many times the lambda is applied. The usage of the free variables is multiplied
by the usage of the lambda.

. This operator is used for let bindings where certain let bindings are only used inside other bindings.
The usage of that binding then depends upon whether the other let binding is used.

The computational definition of these operators is given in figure ??. The operator + is just the
normal plus for integers with the fact that any number larger than one is mapped to ∞28.

The given definition for (·) may not be very intuitive. The computational meaning29 is: for every
element m in $1, for all combinations of m elements30 from $2, take the sum of the m elements.
Example: suppose a function (which is applied twice) uses a value at most once31, then that value is used:
{∞} · {0, 1} = {0 + 0, 0 + 1, 1 + 0, 1 + 1} = {0, 1,∞} times. This aligns with the declarative definition
that each repeated use of a function may use the free variables in a different way. When the first argument
is 0 then the result will always be 0 independently of what the second argument is32.

The operator (.) can do three things depending upon whether the first argument is 0, contains 0 or
does not contain 0. If it is 0 the result is always 0, if it contains 0 then it result is the union of 0 and the
second argument. If it does not contain 0 then the result is equal to the second argument. This aligns
with the intuition that when a binding which uses another binding is not demanded then this does not
lead to an additional demand on the other binding. This means that the usages of bindings inside other
bindings is only taken into account when those other bindings are actually used. This means that unused
bindings do not influence the demand on other bindings.

$1 ⊕$2 ::= {m + n | m ∈ $1, n ∈ $2}
$1 t$2 ::= $1 ∪$2

$1 ·$2 ::= {
∑min (m,2)

i=1 ni | m ∈ $1, ∀ i . ni ∈ $2}
$1 . $2 ::=

⋃
m∈$1

(m ≡ 0 ? 0 :$2)

Figure 3.9: Annotation value operators

The fact that these operators are only well defined for annotation values and not for annotation
variables means that the constraint generator cannot use these computational form of the operators, as
most annotations will be variables and not values, and will only generate the constraints for it. The
constraint solver will actually use these definitions to solve the appropriate constraints.

Constraint generation makes use of abstract versions of these operators that generate the appropriate
constraint for that operator33. These abstract versions are given in figure ?? for the base cases and figure
?? for the lifted versions34. For the types (type schemes) with annotations attached the lifted version
just breaks down the components and uses the operations for types (type schemes) and annotations. For
environments the operations are just point wise lifted. Only the rules for (⊕) and (·) are given. The rules
for(t) are similar to the rules for (⊕). The same holds for (.) and (·).

The cases for types and type schemes in figure ?? might look a bit weird. The reason only equality
constraints are generated has to do with the fact that the counting analysis described here only uses
subeffecting and not subtyping. In other words only the top level annotations, which are handled in the
lifted versions of the operators, are allowed to be different and the rest of the type and annotations need
to be exactly the same. Poisoning might occur here35.

Constraint generation makes use of the following syntax A B meaning that B is generated by A.
Most of the time that what is generated will be constraints. For example in figures ?? and ?? the left
hand side is an abstract operator while at the right hand side the generated constraints are given.

28The same holds for the definition of
∑

in (·).
29∞ is mapped to 2.
30An element from $2 may be selected multiple times.
31E.g. λx → if x ≡ 0 then y else x . The y is a free variable in scope for which the usage is calculated using (·).
32Instead of ∅.
33Each operator has an accompanying constraint for annotations. Without these constraints the constraint generator

would become stuck if it encountered a variable instead of concrete values.
34Lifted to environments and types and type schemes with annotations attached.
35It is future work to determine how much poisoning is actually happening as for polyvariant type schemes equality only

means that the quantified variables in both type schemes have the same name. This case does not yield poisoning. For
instantiated type schemes this equality is only used when they are actually the same instantiation. In this case they should
be equal. For type equalities the likely place for poisoning to be introduced is when using datatypes and then the poisoning
is more likely to come from annotation approximations in the annotated datatypes.

22 CHAPTER 3. COUNTING ANALYSIS

ϕ1 ⊕ ϕ2 = ϕ3 {ϕ3 ≡ ϕ1 ⊕ ϕ2}
ϕ-add

ϕ1 · ϕ2 = ϕ3 {ϕ3 ≡ ϕ1 · ϕ2}
ϕ-mul

τ1 ⊕ τ2 = τ {τ ≡ τ1, τ ≡ τ2}
τ -add

ϕ1 · τ2 = τ {τ ≡ τ2}
τ -mul

σ1 ⊕ σ2 = σ {σ ≡ σ1, σ ≡ σ2}
σ-add

ϕ1 · σ2 = σ {σ ≡ σ2}
σ-mul

Figure 3.10: Base abstract constraint operators

µ1 ⊕ µ2 = µ C1 ν1 ⊕ ν2 = ν C2

µ1
ν1 ⊕ µ2

ν2 = µν C1 ∪ C2

µν-add

ϕ1 · µ2 = µ C1 ϕ1 · ν2 = ν C2

ϕ1 · µ2
ν2 = µν C1 ∪ C2

µν-mul

µ1 ⊕ µ2 = µ C1 ν1 ⊕ ν2 = ν C2 δ1 ⊕ δ2 = δ C3

µ1
ν1,δ1 ⊕ µ2

ν2,δ2 = µν,δ C1 ∪ C2 ∪ C3

µν,δ-add

ϕ1 · µ2 = µ C1 ϕ1 · ν2 = ν C2 ϕ1 · δ2 = δ C3

ϕ1 · µ2
ν2,δ2 = µν,δ C1 ∪ C2 ∪ C3

µν,δ-mul

x ∈ keys (Γ1) ∪ keys (Γ2) ∪ keys (Γ) Γ1 (x)⊕ Γ2 (x) = Γ (x) Cx C =
⋃

x Cx

Γ1 ⊕ Γ2 = Γ C
Γ-add

x ∈ keys (Γ2) ∪ keys (Γ) ϕ1 · Γ2 (x) = Γ (x) Cx C =
⋃

x Cx

ϕ1 · Γ2 = Γ C
Γ-mul

Γ (x) =

{
σν,δ if x : σν,δ ∈ Γ
freshσ

0,0 otherwise

Figure 3.11: Lifted abstract constraint operators

Most of the time the declarative versions36 of the operators are not suitable as the right hand side
is unknown. This can of course be solved by creating a fresh variable and using that as the right hand
side. This works, but for types and type schemes this is actually unnecessary as only equality constraints
are generated and these can immediately be solved. The computational rules are given in figure ??. The
difference between the declarative versions in figures ?? and ?? and the computational versions in ?? is
basically that the result is moved from the left hand side of the to the right hand side indicating that
the result is being generated by the rule. For types (type schemes) one of the input types (type schemes)
is returned together with a constraint making all the types (type schemes) equal.

With these computational versions in place we can now define folds over collections using these opera-
tors that we denote

⊕
and

⊔
. The definition of

⊕
is given in figure ??37. The definition of

⊔
is similar.

These folds are only well defined over non empty collections.

36The versions in figures ?? and ?? are declarative in the sense that both the operants and the result need to be given
before a constraint can be generated.

37For simplicity this is given as a function over lists.

3.3. COUNTING ANALYSIS 23

ϕ = freshϕ

ϕ1 ⊕ ϕ2 (ϕ, {ϕ ≡ ϕ1 ⊕ ϕ2})
comp-ann-add

ϕ = freshϕ

ϕ1 ⊕ ϕ2 (ϕ, {ϕ ≡ ϕ1 · ϕ2})
comp-ann-mul

τ1 ⊕ τ2 (τ1, {τ1 ≡ τ2})
comp-τ -add

σ1 ⊕ σ2 (σ1, {σ1 ≡ σ2})
comp-σ-add

ϕ1 · γ (γ, ∅)
comp-σ-mul

x ∈ (keys (Γ1) ∪ keys (Γ2)) Γ1 (x)⊕ Γ2 (x) = (Γ (x), Cx) C =
⋃

x Cx

Γ1 ⊕ Γ2 (Γ, C)
comp-Γ-add

x ∈ keys (Γ2) ϕ1 · Γ2 (x) (Γ (x), Cx) C =
⋃

x Cx

ϕ1 · Γ2 (Γ, C)
comp-Γ-mul

Γ (x) =

{
σν,δ if x : σν,δ ∈ Γ
freshσ

0,0 otherwise

Figure 3.12: Computational operators

⊕
[y] ::= (y , ∅)⊕

(y : ys) ::= let (y1, C1) =
⊕

ys; (y2, C2) = y ⊕ y1 in (y2, C1 ∪ C2)

Figure 3.13: Fold operator: y is some type for which ⊕ is defined

3.3.2 Constraint generation

Using the previously defined operators we can now define how the constraint generator works. The static
semantics38 are given in figure ??.

The following environments are present in the type rules:

Υ is the import environment. This contains the annotated types for imported symbols.

Γ is the local or module environment39. It is defined bottom up.

∆ is the list of symbols the local module exports. This is used to determine if the annotations for these
symbols are > (meaning the usage of these symbols is unknown) or are defined only by the uses of
that symbol by the local module.

Π is the annotated data environment used for looking up the types for data constructors.

The environments Υ,∆,Π are global variables which are constant throughout the constraint generation
and constraint solving.

The Var-1 and Var-2 rules differ depending on whether or not it is a locally defined symbol or an
imported symbol40.

If it is a locally defined symbol (Var-1) then the type scheme σ, type τ and usage ν are freshly
generated. Note the demand of 1 that is present in the environment. This demand is ignored in the
App rules41, but it is used in the right hand side of bindings. This demand is also implicitly used in all
places where an expression is allowed. Finally a constraint is generated that specifies the type must be
an instantiation of the type scheme.

38A large part of this is the same here as it is in [?]. The differences deal with modular vs whole program analysis and
the added constructs of FFI, constants and Let!.

39Also named just environment if it is clear that is not one of the other environments.
40Note that we don’t have to deal with shadowing as all names in UHC core are already resolved to fully qualified unique

names.
41In the App rules the demand depends upon how the function uses the applied value and not on the occurrence of the

variable. E.g. in e x the use of x only depends upon how e uses its argument and not on the fact that the variable is present
inside the expression.

24 CHAPTER 3. COUNTING ANALYSIS

Basics Γ ` e : τν C

x /∈ Υ

x : σν,1 ` x : τν {inst (σ) ≡ τ}
Var-1

x ∈ Υ Υ (x) = σ

ε ` x : τ> {inst (σ) ≡ τ}
Var-2

c has type τ

ε ` c : τν ∅
Const

Γ1, x : (∀ ∅ ∅ . ∅ ⇒ τ)ν,δ ` e : τ1
ν1 C1 ν2 · Γ1 = Γ2 C2

Γ2 ` λx → e : (τν,δ → τ1
ν1)

ν2 C1 ∪ C2

Abs

x /∈ Υ Γ1 `v e : (τ2
ν2,δ2 → τ3

ν3)
1
 C1 x : τ4

ν41 `� x : τ2
ν2 C2 Γ1 ⊕ x : τ4

ν4δ2 = Γ2 C3

Γ2 ` e x : τ3
ν3 C1 ∪ C2 ∪ C3

App-1

x ∈ Υ Γ `v e : (τ2
ν2,δ2 → τ3

ν3)
1
 C1 ε `� x : τ2

ν2 C2

Γ ` e x : τ3
ν3 C1 ∪ C2

App-2

Γ `v e : (τ2
ν2,δ2 → τ3

ν3)
1
 C1 ε `� c : τ2

ν2 C2

Γ ` e c : τ3
ν3 C1 ∪ C2

App-3

Γ0, xi : σiνi,δi ` e : τν C0 Γi, xj : (∀ ∅ ∅ . ∅ ⇒ τij)
νij ,δij ` ei : τi

νi C1i

Γ0 ⊕ (
⊕

i (δi . Γi)) = Γ C2 δi ⊕ (
⊕

j (δj . δij)) = δi C3i

νi ⊕ (
⊕

j (δj . νij)) = νi C4i

⊕
j (δj . τij) = τi C5i C1 =

⋃
i C1i

C3 =
⋃

i C3i C4 =
⋃

i C4i C5 =
⋃

i C5i C6 =
⋃

i {gen (τi
νi,δi , C1 ∪ C3 ∪ C4 ∪ C5,Γ) ≡ σi}

if xi ∈ ∆ then C7i = {νi ≡ >, δi ≡ >} else C7i = ∅ C7 =
⋃

i C7i

Γ ` let xi = ei in e : τν C0 ∪ C2 ∪ C6 ∪ C7

Let

Sequential evaluation Γ ` e : τν C

Γ0, x : σ0
ν,δ ` e2 : τ2

ν2 C0

Γ1, x : (∀ ∅ ∅ . ∅ ⇒ τ)ν1,δ1 `v e1 : τ0 C1 Γ0 ⊕ Γ1 = Γ C2 1⊕ δ = δ0 C3

δ0 ⊕ δ1 = δ0 C4 ν ⊕ ν1 = ν C5 C6 = {gen (τν,δ0 , C1 ∪ C3 ∪ C4 ∪ C5,Γ) ≡ σ0}
Γ ` let ! x = e1 in e2 : τ2

ν2 C0 ∪ C2 ∪ C6

Let!

Datatypes Γ ` e : τν C

data T ul αk = Ki τijνij ,δij ∈ Π τνj ,δj = τij
νij ,δij [ϕl/ul ,

τk/αk] Γj ` vj : τνj C1j

C1 =
⋃

j C1j

⊕
j Γj = Γ C2 if vj ∈ Γj then δj is the demand on vj in Γj

a

Γ ` Ki vj : (T ϕl τk)ν C1 ∪ C2

Con

Γi ` vi : τi
νi C1i

C1 =
⋃

i C1i

⊕
i Γi = Γ C2 if vi ∈ Γi then δi is the demand on vi in Γi

b

Γ ` (v1, v2, . . , vn) : (τ1
ν1,δ1 , τ2

ν2,δ2 , . . , τn
νn,δn)

ν
 C1 ∪ C2

Tup

data T ul αk = Ki τ ′ij
ν′ij ,δ

′
ij ∈ Π τij

νij ,δij = τ ′ij
ν′ij ,δ

′
ij [ϕl/ul ,

τk/αk]

Γ0 `v x : (T ϕl τk)0 C1 Γi, xij : (∀ ∅ ∅ . ∅ ⇒ τij)
νij ,δij ` ei : τν C2

⊔
i Γi = Γ C3

Γ ` case x of Ki xij → ei : τν C1 ∪ C2 ∪ C3

Case-1

Γ0 `v x : (τ1
ν1,δ1 , τ2

ν2,δ2 , . . , τn
νn,δn)

0
 C1 Γ, xi : (∀ ∅ ∅ . ∅ ⇒ τi)

νi,δi ` e1 : τν C2

Γ ` case x of (x1, x2, . . , xn)→ e1 : τν C1 ∪ C2 ∪ C3

Case-2

c has type τ Γ0 `v x : τ0 C1 Γi ` ei : τ2
ν2 C2i C2 =

⋃
i C2i

⊔
i Γi = Γ C3

Γ ` case x of c→ ei : τ2
ν2 C1 ∪ C2 ∪ C3

Case-3

Figure 3.14: Static semantics

aIn that case Γj looks like vj : σj
νj ,δj .

bIn that case Γi looks like vi : σi
νi,δi .

3.3. COUNTING ANALYSIS 25

Foreign function call Γ ` e : τν C

annotate τCore = σν

ε ` FFI n τCore : τν {inst (σ) ≡ τ}
FFI

Subeffecting Γ `v e : τν C

Γ ` e : τν2 C

Γ `v e : τν1 C ∪ {ν1 v ν2}
Sub(v)

Figure 3.14: Static semantics

If it is an imported symbol (Var-2) the type scheme is looked up in the import environment Υ. A fresh
type variable is created and an instantiation constraint is generated. The local environment is empty as
the use of an imported symbol can never contribute to the type (or annotations) of the imported symbol.
Imported symbols always have > as their usage annotation. This is because the usage annotation is part
of the usage annotation for the declaration site (see the Let rule) and for exported symbols42 the usage
annotation is always >.

The Const rule is trivial. A fresh usage annotation variable is created for the usage annotation and
no constraints are generated.

The Abs rule only allows monomorphic arguments. This restriction keeps the types of function at
rank 1 and avoids the loss of principal typing for higher-rank types43. The usage of all free variables in
the body are multiplied by the usage of the abstraction itself.

The App-1, App-2 and App-3 rules differ depending on whether it is application to a locally defined
symbol, an imported symbol or a constant. In all three rules the function is used exactly once44. When it
is a locally defined symbol (App-1) the demand of 1 on the variable is ignored and changed to the demand
δ2 of the function argument. This is also the only place where the analysis dependent subeffecting rule is
present. When it is an application to an imported symbol (App-2) or to a constant (App-3) the typing
rules are simplified by the fact that the variable has an empty environment. In the rule for constant
application the constraints for the constant can only contain a single subeffecting constraint as a normal
constant derivation does not generate any constraints.

The Let rule is by far the largest. Fortunately most antecedents are trivial. The first antecedent types
the body of the let. The types for the bindings are allowed to be polymorphic type schemes. The second
antecedent types each binding, but here the types for the bindings can only be monomorphic types45. The
next four antecedents are the definition for the environment, demand, usage and type respectively46. Then
we have four antecedents which just collects the constraints from each binding. Next are the generalization
constraints for each binding. The generated constraints that are collected per binding are put inside the
generalization constraint and do not appear in the constraints generated for the let expression as a whole.
The next to last antecedent sets the demand and usage of each exported binding to >. This is crucial as
we are not allowed to assume any use and demand for exported symbols. For example it would not be
sound to derive a demand of 0 as that would imply the symbol is never used, even in modules that import
the current module. The last antecedent again just collects the constraints for the exported bindings.

The Let! rule is a cross between the Let rule and the Seq rule defined in [?]. The rule is basically a
simplified version47 of the Let rule, with two differences. The binding is typed with subeffecting setting
the usage to 0, and 1 is added to δ to tell the system that the binding is demanded at least once48. The
0 comes from the fact that although the binding is evaluated (this is where the 1 comes from) to WHNF
it does not imply a use. Subeffecting is used to ensure that it is still possible to use the binding inside the
body of the let. As δ0 cannot contain a 0 all the δi . can be removed from the rules for Let simplifying
the rules even more.

The Con rule is for fully applied data types. First a completely fresh copy of the data type is generated
and then each constructor field type is matched to the corresponding given argument type. Some care

42To be able to import the symbol it needs to be exported by another module.
43Counting analysis also does type inference at the same time as calculating the annotations on the type. Even when the

types are already present we do not want polyvariant arguments for the same reason we do not want polymorphic arguments
during type inference. This restriction to monomorphic arguments makes sense as nearly all polymorphic functions are also
polyvariant.

44This uses subeffecting so it can potentially be used multiple times, but the application uses the function exactly once.
45This is the same reason as why function arguments needs to be monomorphic. It prevents loss of principal typing.
46The definitions for the usage and demand annotations are fixpoints. The ones for environment and types are folds.
47A Let ! can only have a single binding.
48In [?] this is achieved by the 1 present inside the var rule.

26 CHAPTER 3. COUNTING ANALYSIS

needs to be taken here to ensure that the demand in the environment for each argument matches the
demand of the fresh data type.

The Tup rule is basically the same as the Con rule but without the need to create a fresh instance
and without the complication of matching types and annotations correctly. This is because a tuple is fully
polymorphic in each field.

The Case rule is different based upon whether pattern matching is on a data type, tuple or constant.
The pattern match must be complete49. The variable being pattern matched on is neither used nor
demanded by the case expression. Subeffecting is enable here so that if it is used in other places that is
allowed by the generated constraints50. In all cases the Γ0 for the case variable is ignored. This is valid
as it contains a fresh type scheme variable with both a usage and demand annotation of lzero. So adding
this environment to Γ would not do anything51 The rule for data types first creates a fresh copy of the
data type. Each constructor field is assigned the type of the corresponding field in the data type. This
rule mostly boils down to carefully matching the generated correct types and annotations. The rule for
tuples is slightly simpler as there is only one alternative and no fresh copy needs to be generated52. The
rule for constants is basically the same as for data types with the exception that now no fresh copy needs
to be generated. It is also simpler as there are no fields present.

The FFI rule is nearly identical to the rule for imported symbols. The only difference is that the type
comes from annotating the τcore53. The function annotate will pessimistically54 annotate the given type.

The Sub(v) rule is the only not syntax directed rule. It is however only applied in specified places55

and cannot apply in others.

3.3.3 Constraint solving

After the gathering of constraints the constraints need to be solved56. The declarative solving rules are
given in figure ??. An annotation constraint can only be solved when the operants are annotation values.
In that case the definitions in figure ?? can be applied to solve the constraint.

The notation A B means that constraint A generates the constraints B to also be solved before A
is considered to be solved. Only instantiation constraints generate new constraints to be solved.

µ ≡ µ ∅
Solve-µ-eq

$1 �$2 = ϕ

ϕ ≡ $1 �$2 ∅
Solve-ϕ

C2 = simplify C1

Vα = ((ftv C2) ∪ (ftv τ))− (ftv Γ) Vβ = ((fav C2) ∪ (fav τ))− ((fav Γ) ∪ {ν, δ})
gen (τν,δ, C1,Γ) ≡ ∀Vα Vβ . C2 ⇒ τ ∅

Solve-Gen

φ = [alpha
′
/α,

beta′
/β]

inst (∀α β . C ⇒ τ) ≡ τ [φ] C [φ]
Solve-Inst

Figure 3.15: Solving rules

The Solve-µ-EQ rule just specifies that an equality constraint is solved if both sides are equal.
The Solve-ϕ rule specifies that an annotation constraint is solved when both operants are annotation

values $ and the result of applying the operator to the operants is equal to the annotation stored inside
the constraint57.

The Solve-Gen rule specifies that a generalization constraint is solved when the generalization of
τν,δ under constraints C1 and environment Γ is equal to ∀Vα Vβ . C2. It generalizes over the free type

49Every constructor must match. Also there must be at least one constructor for a data type. Things like data Void
without any constructors are not supported.

50Without subeffecting here the expression would not be allowed to be used anywhere.
51The type schemes would be made equal and for the annotation we would sum a 0 which would not change anything as

0 is the identity for (⊕)
52It can be done but as this than boils down to making all the types and annotations in the tuple fresh variables which

then needs to be equal to other things it is just simpler to omit this and not generate a bunch of equality constraints.
53τcore is basically the same as τEH . The only difference is that the subset of τcore allowed in an FFI is monomorphic.
54In other words all annotations will be >.
55Only in the App, Case and Let! rules.
56As the constraint definitions match the constraint definitions in [?] the following section contains the same as in [?],

although presented differently.
57The ϕ present in the type rule.

3.3. COUNTING ANALYSIS 27

variables Vα and the free annotation variables Vβ . The constraint set C2 only contains constraints that
cannot be solved. This is what simplify does58. The only type of constraints that can not be solved are
annotation constraints that have annotation variables as one or more of the operants. These constraints
define the limitations quantified annotation variables should obey. An example of these kind of constraints
are constraints that specify that the usage is always less than or equal to the demand.

The Solve-Inst rule specifies that an instantiation constraint is solved when there exists a substitution
φ such that the substitution applied to the the type inside the type scheme is equal to the instantiated
type. The substitution applied to the constraints in the type scheme is the set of new constraints that
still needs to be solved.

In section ?? an algorithm is given that will solve the constraints if they are not yet solved according
to the specifications given here.

58In a declarative system simplify is equal to id . The reason it is still present in the type rule is that it makes it explicit
that the constraint set C2 only contains annotation variable constraints. In the algorithm in section ?? simplify is equal to
Sfix, the function that solves the constraints as much as possible.

28 CHAPTER 3. COUNTING ANALYSIS

4. Annotation driven optimizations

4.1 Introduction

Now that the annotations are in place we can define source code transformations using these annotations.
There are two ways these annotation can be used to optimize code. The first is source code to source
code transformations. The second way is for source code to executable code. Examples of the first kind
are strictness optimizations ([?]) and lambda/let floating ([?]). An example of the second kind is the non-
updating thunk optimization ([?]). Here a strictness transformation will be given1. Other optimizations
will be for future work.

4.2 Stricter code

The transformation described here will introduce let! to enable call by value evaluation for strict appli-
cations and transform normal Let in let! whenever there is only a single binding which is guaranteed to
be used at least once. In figure ?? the declarative rules for the transformation are given. Only the rules
for actual transformations are given, the identity rules for all other expressions are not presented. A let!
is only introduced when the expression being made strict is not already guaranteed to be in normal form.
This is the case when the expression is already in normal form (see figure ??) or when there is already an
let! introduced for that expression. The variables which are already in a let! in scope are stored in the
environment Ω. A final part is when pattern matching on a strict field of a data constructor. This field
is by definition in normal form. A tuple has by definition lazy fields so no check needs to be performed
there.

The crucial part in all the rules is the δ ⊆ {1,∞} antecedent. This is met when delta is 1, ω or {1,∞}.
This tells the rule the expression is demanded at least once and so it is safe to introduce a let! for the
expression. As soon as we introduced a let! the variable now made strict is added to the set of variables
in normal form in the body of the let!. This ensures that we never introduce another let! for the same
variable in the same scope. It can still happen that a variable is forced multiple times. This is the case
if the let! for a variable is introduced inside multiple let bindings. Also let! introduced inside a binding
does not mean it is forced inside the body of the let.

ζ ::= c | λx → e | K vi | (v1, v2, . . , vn)

Figure 4.1: Normal forms

The declarative rules are sound when the annotations are sound. By transforming the expressions only
demands on variables that were already guaranteed to be demanded are added. The declarative rules do
not change the annotations but if another transformation would transform the strictness transformed code
with the old annotations then problems2 occur. The fix is simple: whenever a let! is introduced change
the demand on the variable that is forced to ω3.

1Based on [?]
2In this case this means unsound transformations
3Now it is demanded at least twice

29

30 CHAPTER 4. ANNOTATION DRIVEN OPTIMIZATIONS

Strictness transformation Ω ` e e

fresh x ′ e : (η1
δ → η2)

ν2
δ ⊆ {1,∞} x 6≡ ζ ∧ x /∈ Ω Ω, x ` e e′

Ω ` e x let ! x ′ = x in e′ x
App

x : ηδ δ ⊆ {1,∞} e1 /∈ Ω Ω ` e1 e′1 Ω, x ` e 7→ e′

Ω ` let x = e1 in e let ! x = e′1 in e′
Let

Ω ` e1 e′1 Ω, x ` e 7→ e′

Ω ` let ! x = e1 in e let ! x = e′1 in e′
Let!

fresh x′k xk ⊆ vi ∀k . xk 6≡ ζ ∨ xk /∈ Ω ∀k . xk : etakδk ∀k . δk ⊆ {1,∞}
Ω ` K vi let ! x′1 = v1 in · · · let ! x′n = vn in K vi

Con

fresh x′i xi ⊆ vi ∀ i . xi 6≡ ζ ∨ xi /∈ Ω ∀ i . xi : etaiδi ∀ i . δi ⊆ {1,∞}
Ω ` (v1, v2, · · · , vn) let ! x′1 = v1 in · · · let ! x′n = vn in (v1, v2, · · · , vn)

Tup

Case alternatives Ω ` p → e p → e

fresh yj ′ yi ⊆ xi ∀ j . yj /∈ Ω ∀ j . yj : τj
νj ,δi ∀ j . δj ⊆ {1,∞}

∀ j . field j of K is ¬ strict elzs ⊆ xi ∀ s . field s of K is strict Ω, yj , zs ` e 7→ e′

Ω ` K xi → e K xi → let ! y1 ′ = y1 in · · · let ! yn ′ = yn in e′
Pat-Con

fresh y′i yi ⊆ xi ∀ i . yi 6≡ ζ ∀ i . yi : etaiδi ∀ i . δi ⊆ {1,∞} Ω, yi ` e 7→ e′

Ω ` (x1, x2, · · · , xn)→ e (x1, x2, · · · , xn)→ let ! y1 ′ = y1 in · · · let ! yn ′ = yn in e′
Pat-Tup

Figure 4.2: Strictness transformation

5. Implementation

The type rules in chapter ?? do not readily match an implementation. In this chapter the type rules are
refined into algorithms that generate and solve constraints (chapter ??) . All the algorithms described in
this section are fully implemented inside a branch1 of UHC.

5.1 Datatype annotation algorithm

5.1.1 Introduction

Nearly all Haskell code uses datatypes in some form, so it is imperative for any analysis that it is precise for
datatypes. As it is allowed for programmers to define new datatypes it is necessary to have an algorithm
that automatically annotates any data declaration. The datatype annotation algorithm described here is
based upon work by Wansbrough [?]. The algorithm has full support for both data and type declarations,
and all forms of recursive declarations2. Newtype declaration are also supported and are treated the same
way as data declarations3. In the rest of this section newtype declarations will therefore be omitted from
the text and code fragments.

The algorithm takes EH4 data and type declarations and transforms them into annotated declarations.
First the some formal definitions are given, then the algorithm is presented and finally some examples are
given to illustrate how the annotation algorithm performs.

5.1.2 Definitions

The relevant EH syntax5 is given in figure ??. Although not enforced by the syntax6 the input AST to
the algorithm is structured such that every let binding group is mutually recursive.

Fields of a datatype have an optional strictness annotation on the types, notated as !τEH . Type dec-
laration do not have fields and so can never have any strictness annotations. The types in the declaration
are the same types as in figure ?? but with the annotations removed.

eEH ::= let DEH in eEH | ε
DEH ::= data T α = K :: πEH | type T α = τEH

πEH ::= τEH | ! τEH

τEH ::= α | T τkEH | α τEH | τ1EH → τ2
EH | (τ1

EH , τ2
EH , · · · , τnEH)

Figure 5.1: EH

The annotation algorithm both consumes and produces a data environment Π which holds the anno-
tated data and type declarations. The definition is given in figure ??. The strictness annotation from the
EH types are carried over into the data environment.

Π ::= ε | Π, T α β = Ki πijνij ,δij | Π, T α β = τ

π ::= τν,δ | ! τν,δ

Figure 5.2: Data environment

1https://github.com/UU-ComputerScience/uhc/tree/TiborCountingAnalysis
2This includes direct and indirect recursive datatypes, mutual recursive datatypes and data declarations mutual recursive

with type declarations. Recursive types are not allowed as that would lead to infinite types during type expansion.
3During runtime there is a difference between data and newtype declaration, however during type inference they are the

same.
4The intermediate language of UHC on which type inference is performed
5Only the subset needed during the annotation algorithm is shown. ε stands for any expression that is irrelevant here
6A dependently typed language is needed for this to be even possible

31

32 CHAPTER 5. IMPLEMENTATION

5.1.3 Annotation algorithm

The annotation algorithm takes the data environment from imported modules, possibly already extended
with local declarations and an EH expression. It produces a data environment which hold both the
imported and the local definitions. The algorithm is presented in figures ?? up to and including ??. The
idea is to transform every EH type into an annotated type. Fresh annotation variables are generated
wherever an annotation needs to be present. This fresh variable introduction happens up to a fixed depth
ι inside the type. By setting ι to zero no annotation variables will be introduced. By setting it to one
only for each field will there be fresh annotation variables be generated, no variables are generated inside
the types. If ι is very high than there will be annotation variables generated all over the types. For
large datatypes with a large type depth, e.g. ASTs, this will be a lot. The parameter ι is a performance
trade-off. On the one hand having a high ι will make the analysis very precise, but it will come with a
performance penalty as a lot more constraints are generated.

To deal with (mutual) recursive definitions, no annotations are generated whenever a datatype is
found that is part of the current binding group. All (data)types in the binding group will have the same
annotations. This ensures that an annotation variable traced through the recursion will end up pointing
to the same place as is defined locally7.

The algorithm is heavily circular in that the collected annotations for each declaration are used to
annotate the declaration itself. In lazy languages this is not a problem as the annotations can be collected
independently of annotating the declaration8

In figure ?? the algorithm for expressions is given. This is the top level function that is used. When
there are no declarations left (ε) then the data environment is just returned. If there are declarations
present it runs the algorithm separately for each declaration in the binding group. This is also the place
where the circularity of the algorithm is shown: the collected annotations of each declaration is passed to
each declaration. After collecting the annotated declarations of each declaration these are merged with
the input data environment to produce the data environment for the body of the let.

eEH D (Π, eEH) Π

D (Π, ε) = Π

D (Π, let DEH
i in eEH) =

let (Πi, βij) = [D′ (Π,
⋃

i βi, D
EH
i) | DEH

i ← DEH
i]

in D (Π ∪ (
⋃

i Πi), e
EH)

Figure 5.3: Datatype annotation algorithm (expression)

In figure ?? the algorithm for a single declaration is given. It has as input the current data environment,
the annotations for the declaration and the declaration itself. It produces the singleton data environment
containing the annotated version of the declaration and a list of annotation variables generated while
annotating the current declaration. It runs the algorithm for each data type field declared inside the
declaration.

DEH D′ (Π, β,DEH) (Π, β)

D′ (Π, β,data T α = Ki :: πijEH) =

let (πijνij ,δij , βijk) = [[T ′ (Π, β, πij
EH) | πijEH ← πijEH] | πijEH ← πijEH]

in (T α β = Ki πijνij ,δij ,
⋃

i(
⋃

j (
⋃

k βijk)))

D′ (Π, β, type T α = τEH) =

let (τ , βi) = T (Π, β, τEH , 1)

in (T α β = τ , βi)

Figure 5.4: Datatype annotation algorithm (declaration)

In figure ?? the algorithm possibly strictness annotated fields is done. It just runs the algorithm on

7The recursive examples at the end of this section might clarify this
8In strict languages this two phases needs to be separated in different functions.

5.1. DATATYPE ANNOTATION ALGORITHM 33

the underlying type (using the version for datatype fields) and re-adds the strictness annotation when
needed.

πEH T ′ (Π, β, πEH) (πν,δ, β)

T ′ (Π, β, τEH) =

let (τν,δ, βi) = Tfield (Π, β, τEH)

in (τν,δ, βi)

T ′ (Π, β, !τEH) =

let (τν,δ, βi) = Tfield (Π, β, τEH)

in (!τν,δ, βi)

Figure 5.5: Datatype annotation algorithm (strict data field)

In figure ?? the algorithm for data fields is given. It just runs the algorithm on the underlying type
and add usage and demand annotation to the return type. Whether these annotations are variables or >
depends on whether or not ι admits generating annotation variables.

τEH Tfield (Π, β, τEH) (τν,δ, β)

Tfield (Π, β, τEH) =

let (τ , βi) = T (Π, β, τEH , 1)
in

if (0< ι) then
let
ν = freshν
δ = freshδ

in (τν,δ, [ν, δ] ∪ βi)
else

(τ>,>, [])

Figure 5.6: Datatype annotation algorithm (data field)

In figure ?? the algorithm for types is given. This is where the most work is done. For variables nothing
is to be done and the variable is just returned. This is the only case where the annotated type and the EH
type are exactly the same. The case for (data)types is the most complex. For every type applied to the
type constructor T the algorithm is run at one deeper level. Then we check whether the type constructor
is defined in the current binding group or not. If it is in the data environment then it is not in the current
binding group. If it is not in the current binding group we lookup the number of annotation variables for
the type and generate the same amount of fresh annotation variables, or >s if the current level does not
allow the generation of variables anymore. If it is in the current binding group the input annotation list
is used. It is converted to a list of >s if the current level demands it. For type application the algorithm
is applied recursively on the right side of the application with the level increased by one to signal that we
get deeper into the type. For function types only the right component is annotated at one deeper level,
the left component is annotated at the current level. This is to ensure that all the argument types of a
function with multiple arguments are annotated at the same level. Annotation variables are generated
when appropriate. For tuples each field is annotated at one deeper level and, when appropriate, a fresh
usage and demand annotation is generated for each field.

5.1.4 Type expansion

Even though the annotation algorithm computes annotated data declarations this is not yet suitable for
the analysis as there are still type synonyms present. These need to be expanded. Expansion is simply
taking the annotated type declaration and substituting the annotations and type variables in the type
for the applied annotations and types in the data declaration. This is done until no references to a type
synonym are present in the data declarations. The type declarations however need to be preserved as

34 CHAPTER 5. IMPLEMENTATION

τEH T (Π, β, τEH , Int) (τ , β)

T (Π, β, α, level) = (α, [])

T (Π, β, T τiEH , level) =
let

(τi, βij) = [T (Π, β, τi
EH , level + 1) | τiEH ← τiEH]

in
if (T ∈ Π) then

let
n = number of annotation variables for T in Π

βi = replicate n (if level < ι then freshϕ else >)

in (T τi βi, (βi ∪ (
⋃

i(
⋃

j βij)))− {>})
else

let βi = [if level < ι then β else > | β ← β]

in (T τi βi,
⋃

i(
⋃

j βij))

T (Π, β, α τEH , level) =

let (τ , βi) = T (Π, β, τEH , level + 1)

in (α τ, βi)

T (Π, β, τ1
EH → τ2

EH , level) =
let

(τ1, β1i) = T (Π, β, τ1
EH , level + 1)

(τ2, β2i) = T (Π, β, τ2
EH , level)

in
if (level < ι) then

let
ν1 = freshν
δ = freshδ
ν2 = freshν

in (τ1
ν1,δ → τ2

ν2 , [ν1, δ, ν2] ∪ β1i ∪ β2i)
else

(τ1
>,> → τ2

>, [])

T (Π, β, (τ1
EH , τ2

EH , · · · , τnEH), level) =
let

(τi, βij) = [T (Π, β, τi
EH , level + 1) | τiEH ← τiEH]

in
if (level < ι) then

let
νi = [freshν | ← τi]

δi = [freshδ | ← τi]

in ((τ1
ν1,δ1 , τ2

ν2,δ2 , · · · , τnνn,δn), [ν1, · · · νn, δ1, · · · , δn] ∪ (
⋃

i

⋃
j βij))

else

((τ1
>,>, τ2

>,>, · · · , τn>,>), [])

Figure 5.7: Datatype annotation algorithm (type)

5.1. DATATYPE ANNOTATION ALGORITHM 35

other modules may use the type synonym there9.

5.1.5 Examples

The examples here are divided in four different groups based on level of recursion. The examples in the
first two groups are taken from [?]. All examples are annotated with a ι of two.

The first group in figure ?? has no recursion or only direct recursion and no function fields or nested
types.

The second group in figure ?? has nested recursion, nested types and function fields.

The third group in figure ?? has mutual recursion, both direct and nested.

The last group in figure ?? has a mutual recursion with a type declaration. Type expansion is also
shown here.

data Bool [] = True | False

data [a] [ν1, ν2, δ1, δ2] = [] | aν1,δ1 : ([a] [ν1, ν2, δ1, δ2])ν2,δ2

type String [ν1, ν2, δ1, δ2] = [Char] [ν1, ν2, δ1, δ2]
data Tree a [ν1, ν2, ν3, δ1, δ2, δ3] = Leaf

| Node (Tree a [ν1, ν2, ν3, δ1, δ2, δ3])ν1,δ1 aν2,δ2 (Tree a [ν1, ν2, ν3, δ1, δ2, δ3])ν3,δ3

data Term a [ν1, · · · , ν5, δ1, · · · , δ5] = Var aν1,δ1

| App (Term a [ν1, · · · , ν5, δ1, · · · , δ5])ν2,δ2 (Term a [ν1, · · · , ν5, δ1, · · · , δ5])ν3,δ3

| Lam aν4,δ4 (Term a [ν1, · · · , ν5, δ1, · · · , δ5])ν5,δ5

data Skew [] = SLeft | SNone | SRight
data AVLTree a [ν1, · · · , ν4, δ1, · · · , δ4] = ALeaf

| ANode (AVLTree a [ν1, · · · , ν4, δ1, · · · , δ4])ν1,δ1 aν2,δ2 Skewν3,δ3 (AVLTree a [ν1, · · · , ν4, δ1, · · · , δ4])ν4,δ4

Figure 5.8: Simple datatypes

data Customer [ν1, · · · , ν11, δ1, · · · , δ11] =

MkCustomer (Int [])ν1,δ1 (String [ν6, ν7, δ6, δ7])ν2,δ2 (String [ν8, ν9, δ8, δ9])ν3,δ3

([(String [>,>,>,>])] [ν10, ν11, δ10, δ11])ν4,δ4 Boolν5,δ5

data Rose a [ν1, · · · , ν4, δ1, · · · , δ4] = RLeaf aν1,δ1 | RNode ([Rose a [>,>,>,>,>,>,>,>]] [ν3, ν4, δ3, δ4])ν2,δ2

data R a b [ν1, · · · , ν4, δ1, · · · , δ3] = R1 aν1,δ1 | R2 ((Int [])ν3,δ3 → bν4)
ν2,δ2

Figure 5.9: Complex non mutual recursive datatypes

data Test [ν1, · · · , ν16, δ1, · · · , δ16] = Test (M1 [ν3, · · · , ν9, δ3, · · · , δ9])ν1,δ1 (M2 [ν10, · · · , ν16, δ10, · · · , δ16])ν2,δ2

dataM1 [ν1, · · · , ν7, δ1, · · · , δ7] = M11 (M2 [ν1, · · · , ν7, δ1, · · · , δ7])ν1,δ1 (Int [])ν2,δ2

dataM2 [ν1, · · · , ν7, δ1, · · · , δ7] = M22 ([(M3 (replicate 14 >))] [ν4, ν5, δ4, δ5])ν3,δ3

dataM3 [ν1, · · · , ν7, δ1, · · · , δ7] = M33 (M1 [ν1, · · · , ν7, δ1, · · · , δ7])ν6,δ5 (Bool [])ν7,δ7

Figure 5.10: Mutual recursive datatypes

type MT1 [ν1, · · · , ν6, δ1, · · · , δ6] = [(MD1 (replicate 12 >))] [ν1, ν2, δ1, δ2]

data MD1 [ν1, · · · , ν6, δ1, · · · , δ6] = MD1 (MT1 [ν1, · · · , ν6, δ1, · · · , δ6])ν3,δ3 (String [ν5, ν6, δ5, δ6])ν4,δ4

Figure 5.11: Mutual recursive datatype and type

9Meaning we keep the annotated type declarations inside the data environment even though no annotated data declaration
references any of these anymore

36 CHAPTER 5. IMPLEMENTATION

5.2 Counting analysis

5.2.1 Constraint generation

The algorithm is presented in figure ?? and is based on the typing rules of figure ??. This is in no way
a practical implementation and the real implementation in UHC is a heavily optimized worklist variant
of the algorithm presented here. The algorithm has as input an expression and the import and export
environments. It produces an usage annotated type and the local environment. It also produces an
environment Ψ that holds the type of all the defined symbols. This environment will be used with the
result of constraint solving to produce the final result. Even though it is an algorithm it leaves certain
details unspecified. This includes the way fresh variables are generated and how certain information is
obtained from child nodes.

The environment lookup function returns the type if it is in the environment otherwise a complete
fresh usage and demand annotated type scheme is returned. This is different from the lookup used inside
the definition of the constraint operators (section ??). The definition is given in figure ??. This function
is in the algorithm never explicitly called but it is needed to implement the environment pattern matches
made in the result of recursively calling G. A desugared version of this pattern matching is presented in
figure ??. The first line calls G. The second line removes the variable form the environment. The final line
does the lookup using the version defined in figure ?? and returns everything. This is how the algorithm
works. In G the more readable version is used (Γ, x : σν,δ, ητ , C) = G (e,Υ,∆) is used instead of the three
lines defined here.

The Var-1 and Var-2 rules differ depending on whether or not it is a locally defined symbol or an
imported symbol10. If it is a locally defined symbol (Var-1) then fresh variables for the annotation, type
and type scheme are created and an instantiation constraint is generated. Note the demand of 1 put in
the environment. This demand is ignored in the App rules but it is used in the right hand side of bindings.
This is crucial in the Let! rule if e2 is a variable. If it is an imported symbol the type is looked up from
the import environment. A fresh type variables is created and an instantiation constraint is generated.
Nothing is put in the local environment as the use of the use of the symbol can never contribute to the
type (or annotations) of the imported symbol. Imported symbols have always > as the usage annotation.

The Const rule is trivial. A fresh usage annotation variable is created for the usage annotation and
no constraints are generated.

The Abs rule only allows monomorphic arguments. The usage of all free variables in the body are
multiplied by the usage of the abstraction itself.

The App rule is different depending on whether it is application to a locally defined symbol, an
imported symbol or a constant. When it is a locally defined symbol the function is used exactly once11.
The demand of 1 on the variable is ignored and changed to the demand of the function argument. This is
also the only place where the analysis dependent subeffecting rule is present. When it is an application to
an imported symbol or to a constant the typing rules are simplified by the fact that the variable has an
empty environment. In the rule for constant application the constraints for the constant can only contain
a single subeffecting constraint as a normal constant derivation does not generate any constraints.

The Let rule is by far the most complex. However most antecedents are trivial. The first antecedent
types the body of the let. The types for the bindings are allowed to be polymorphic type schemes. The
second antecedent types each binding, but here the types for the bindings can only be monomorphic types.
The next four antecedents are the definition for the environment, demand, usage and type respectively12.
Then we have four antecedents which just unions the constraints from each binding. Next are the gener-
alization constraints for each binding. The generated constraints that are the unions of the constraints
generated per binding are put inside the generalization constraint and do not appear in the constraints
generated for the let expression as a whole. And finally there is the antecedent that sets the demand and
usage of each exported binding to >.

The Let! rule is a cross over between the Let rule and the Seq rule defined in [?]. The rule is basically
a simplified version13 of the Let rule, with two differences. The binding is typed with subeffecting setting
the usage to 0 and 1 is added to δ to tell the system that the binding is demanded at least once14. The
0 comes from the fact that although the binding is evaluated (this is where the 1 comes from) to normal
form it is not used. Subeffecting is used to ensure that it is still possible to use the binding inside the

10Note that we don’t have to deal with shadowing as all names in UHC core are already resolved to fully qualified unique
names.

11This uses subeffecting so it can potentially be used multiple times, but the application uses the function exactly once.
12The definitions for the usage and demand annotations are fixpoints. The ones for environment and types are folds.
13A Let ! can only have a single binding.
14In [?] this is achieved by the 1 present inside the var rule.

5.2. COUNTING ANALYSIS 37

body of the let. As δ0 cannot contain a 0 all the δi . can be removed from the rules for Let simplifying
the rules even more.

The Con rule is for fully applied data types. First a completely fresh copy of the data type is generated
and then each constructor field type is matched to the corresponding given argument type. Some care
needs to be taken here to ensure that the demand in the environment for each argument matches the
demand of the fresh data type.

The Tup rule is basically the same as the Con rule but without the need to create a fresh instance
and without the complication of matching types and annotations correctly. This is because a tuple is fully
polymorphic in each field.

The Case rule is different based upon whether pattern matching is on a data type, tuple or constant.
The pattern match must be complete15. The expression being pattern matched on is not used by the
case expression. That is why the Γ0 are not used in the rest of the code. Subeffecting is enable here so
that if it is used in other places that is allowed by the generated constraints16. The rule for data types
first creates a fresh copy of the data type. Each constructor field is assigned the type of the corresponding
field in the data type. This rule mostly boils down to carefully matching the generated correct types and
annotations. The rule for tuples is slightly simpler as there is only one alternative and no fresh copy needs
to be generated17. The rule for constants is basically the same as for data types with the exception that
now no fresh copy needs to be generated. It is also simpler as there are no fields present.

The FFI rule is nearly identical to the rule for imported symbols. The only difference is that the
type comes from annotating the τcore18. The function annotate will pessimistically19 annotate the given
type20.

Environment lookup Γ (x) : σν,δ

Γ (x) =

{
σν,δ if x : σν,δ ∈ Γ

freshσ
freshν ,freshδ otherwise

Figure 5.12: Environment lookup

Environment pattern matching (Γ, x : σν,δ, τν
′
, C) = G (e,Υ,∆)

(Γ1, τ
′ν′ , C′,Ψ′) = G (e,Υ,∆)

Γ2 = {x ′ : σν,δ | (x ′ : σν,δ) ∈ Γ1, x
′ 6≡ x}

(Γ, σν,δ, τν1 , C,Ψ) = (Γ2,Γ1 (x), τ ′
ν′
, C′,Ψ)

Figure 5.13: Environment pattern matching

5.2.2 Constraint solving

An algorithm to solve the constraints is presented in figure ??. The algorithm has as input the constraint
to solve21, the solution22 φ that is computed up to this point and a partial solution ψ constraining the
solution for annotation variables23. It returns an updated solution and partial solution and the constraints
to be solved later.

A common pattern is that most rules do not update the solution at all. Instead they generate equality
constraints and let the rule for equality figure out how to put it in the solution.

Except for the equality rules no variable in the constraint is bound by the solution. This is enforced
in the rules for C1 ∪ C2 and Sfix.

15Every constructor must match. Also there must be at least one constructor for a data type. Things like data Void
without any constructors are not supported

16Without subeffecting here the expression would not be allowed to be used anywhere.
17It can be done but as this than boils down to making all the types and annotations in the tuple fresh variables which

then needs to be equal to other things it is just simpler to omit this and not generate a bunch of equality constraints
18τcore is basically the same as τ EH . The only difference is that the subset of τcore allowed in an FFI is monomorphic.
19In other words all annotations will be >
20This basically is equal to T (figure ??) with an ι of zero
21This can be a compound constraint or a single constraint
22A solution is a mapping from variables to types, annotations and schemes
23This is a mapping from annotation variables to sets of annotation values.

38 CHAPTER 5. IMPLEMENTATION

Algorithm G (e,Υ,∆) (Γ, ητ , C,Ψ)

(a) Variables and constants

G (x ,Υ,∆) | x /∈ Υ =
let
τ = freshτ
σ = freshσ
ν = freshν

in (x : σν,1, τν , {inst (σ) ≡ τ}, ε)
G (x ,Υ,∆) | x ∈ Υ =

let
τ = freshτ
σ = Υ (x)

in (ε, τ>, {inst (σ) ≡ τ}, ε)
G (c,Υ,∆) =

let
τ = lookupType c
ν = freshν

in (ε, τν , ∅, ε)

(b) Abstraction and application

G (λx → e,Υ,∆) =
let

(Γ1, x : σν,δ, η, C1,Ψ
′) = G (e,Υ,∆)

ν2 = freshν
τ = freshτ
(Γ2, C2) = ν2 · Γ1

Ψ = Ψ′ ∪ {x : σν,δ}
in (Γ2, (τ

ν,δ → η)
ν2 , C1 ∪ C2 ∪ {σ ≡ (∀ ∅ ∅ . ∅ ⇒ τ)},Ψ)

G (e x ,Υ,∆) | x /∈ Υ =
let
δ2 = freshδ
(x : eta4 1, eta2 ′, C2,) = G (x ,Υ,∆)
η3 = freshητ
(η2, C

′
2) = sub� eta2 ′

(Γ1, eta ′, C1,Ψ) = G (e,Υ,∆)
(τ1

ν1 , C′1) = subv eta ′

(Γ2, C3) = Γ1 ⊕ x : eta4 δ2

in (Γ2, η3, C1 ∪ C′1 ∪ C2 ∪ C′2 ∪ C3 ∪ {τ1 ≡ (η2
δ2 → η3), ν1 ≡ 1},Ψ)

G (e x ,Υ,∆) | x ∈ Υ =
let
δ2 = freshδ
(ε, eta2 ′, C2,) = G (x ,Υ,∆)
η3 = freshητ
(η2, C

′
2) = sub� eta2 ′

(Γ, eta ′, C1,Ψ) = G (e,Υ,∆)
(τ1

ν1 , C′1) = subv eta ′

in (Γ, η3, C1 ∪ C′1 ∪ C2 ∪ C′2 ∪ {τ1 ≡ (η2
δ2 → η3), ν1 ≡ 1},Ψ)

G (e c,Υ,∆) | x ∈ Υ =
let
δ2 = freshδ
(ε, eta2 ′, ∅,) = G (c,Υ,∆)
η3 = freshητ
(η2, C2) = sub� eta2 ′

(Γ, eta ′, C1,Ψ) = G (e,Υ,∆)
(τ1

ν1 , C′1) = subv eta ′

in (Γ, η3, C1 ∪ C′1 ∪ C2 ∪ {τ1 ≡ (η2
δ2 → η3), ν1 ≡ 1},Ψ)

Figure 5.14: Constraint generation

5.2. COUNTING ANALYSIS 39

Algorithm G (e,Υ,∆) (Γ, ητ , C,Ψ)

(c) Let and Let!

G (let xi = ei in e,Υ,∆) =
let

(Γ0, xi : σiνi,δi , η, C0,Ψ0) = G (e,Υ,∆)
τij = [[freshτ | ← xj] | ← ei]

σij = [[∀ ∅ ∅ . ∅ ⇒ τ ′ij | τ ′ij ← τ ′ij] | τ ′ij ← τij]

(Γi, xj : σ′ij
νij ,δij , τiνxi , C1i,Ψi) = [G (x ,Υ,∆) | x ← ei]

C′0 = {νi ≡ νxi}

C′1 = {σij ≡ σ′ij}
C1 = C′1 ∪ (

⋃
i C1i)

(Γ′i, C2i) = [di . Γx | (Γx, di)← (Γi, δi)]
(Γ′, C2) =

⊕
i Γ′i

(Γ, C′2) = Γ0 ⊕ Γ′

(δ′ij , C3ij) = [[di . δ | (δ, di)← (δ, di)] | (δ, di)← (δij , δi)]

(δ′i, C3i) = [
⊕

j δij | δij ← δ′ij]

(δ0i, C′3i) = [di ⊕ δ | (δ, di)← (δ′i, δi)]

C′3 = δ0i ≡ δi
C3 = C′3 ∪ (

⋃
i(
⋃

j C3ij)) ∪ (
⋃

i C3i) ∪ (
⋃

i C
′
3i)

(ν′ij , C4ij) = [[di . ν | (ν, di)← ν] | (ν, di)← (νij , δi)]

(ν′i, C4i) = [
⊕

j νij | νij ← ν′ij]

(ν0i, C′4i) = [ni ⊕ ν | (ν, ni)← (ν′i, νi)]
C′4 = ν0i ≡ νi
C4 = C′4 ∪ (

⋃
i(j ∪ C4ij)) ∪ (

⋃
i C4i) ∪ (

⋃
i C
′
4i)

(τ ′ij , C5ij) = [[di . τ | (τ , di)← τ] | (τ , di)← (τij , δi)]

(τ ′i , C5i) = [
⊕

j τij | τij ← τ ′ij]

C′5 = τ ′i ≡ τi
C5 = C′5 ∪ (

⋃
i(j ∪ C5ij)) ∪ (

⋃
i C5i)

C6 =
⋃

i {gen (τi
νi,δi , C1 ∪ C3 ∪ C4 ∪ C5,Γ) ≡ σi}

C7i = [if x ∈ ∆ then {ν ≡ >, δ ≡ >} else ∅ | (x , ν, δ)← (xi, νi, δi)]

Ψ = Ψ0 ∪ (
⋃

i Ψi) ∪ (
⋃

i {xi : σi
νi,δi})

in (Γ, η, C0 ∪ C′0 ∪ C2 ∪ C′2 ∪ (
⋃

i C2i) ∪ C6 ∪ (
⋃

i C7i),Ψ)

G (let ! x = e1 in e2,Υ,∆) =
let

(Γ0, x : σ0
ν,δ, η, C0,Ψ1) = G (e2,Υ,∆)

(Γ1, x : σ′
ν1,δ1 , τν2 , C1,Ψ2) = G (e1,Υ,∆)

C′1 = {σ′ ≡ ∀∅ ∅ . ∅ ⇒ τ ,0 v ν2}
(Γ, C2) = Γ0 ⊕ Γ1

(δ0, C3) = 1⊕ δ
(δ′, C4) = δ0 ⊕ δ1
C′4 = {δ0 ≡ δ′}
(ν′, C5) = ν ⊕ ν1

C′5 = {ν ≡ ν′}
C6 = {gen (τν,δ0 , C1 ∪ C′1 ∪ C3 ∪ C4 ∪ C′4 ∪ C5 ∪ C′5,Γ) ≡ σ0}
Ψ = Ψ1 ∪Ψ2 ∪ {x : σ0

ν,δ}
in (Γ, η, C0 ∪ C2 ∪ C6,Ψ)

Figure 5.14: Constraint generation

The solving rules are repeated until no change in either one of the solution or in the constraint are
happening. This is presented in figure ??. It can be the case that the constraint and the partial solution
are not empty after running the fixpoint iteration. In that case some defaulting needs to happen to solve
the final constrains. This is discussed in section ??. This defaulting cannot be built into Sfix as defaulting
should not happen when this is called during the solving of generalization constraints.

40 CHAPTER 5. IMPLEMENTATION

Algorithm G (e,Υ,∆) (Γ, ητ , C,Ψ)

(d) Data types

G (Ki vj ,Υ,∆) =
let
T ul αk = lookupData Ki

rhoj = lookupDataCon Ki

ϕl = [freshϕ | ← ul]
τk = [freshτ | ← αk]

rhoj ′ = rhoj [ϕl/ul ,
τk/αk]

(Γ, rho′, C1,Ψ) = H (vi,Υ,∆)

C2 = rhoj ′ ≡ rho′

ν = freshν
in (Γ, (T ϕl τk)ν , C1 ∪ C2,Ψ)

G ((v1, v2, · · · , vn),Υ,∆) = H (vi,Υ,∆)

G (case e of Ki xij → ei)
let
T ul αk = lookupData K1

rhoij τ = lookupDataCons Ki

rhoij ′τ = rhoij τ [ϕl/ul ,
τk/αk]

rhoij σ = [[(∀ ∅ ∅ . ∅ ⇒ τij)
νij ,δij | τijνij ,δij ← rhoij] | rhoij ← rhoij ′τ]

ϕl = [freshϕ | ← ul]
τk = [freshτ | ← αk]
(Γ0, τ0

ν0 , C1,Ψ
′) = G (e,Υ,∆)

C′1 = {τ0 ≡ T ϕl τk, 1 v ν0}
(Γi, xij : rhoij ′, etai , C2i,Ψi) = [G (x ,Υ,∆) | x ← ei]
C2 = allEqual etai

C′2 = rhoij σ ≡ rhoij ′

(Γ, C3) =
⊔

i Γi
Ψ = Ψ′ ∪ (

⋃
i Ψi) ∪ (

⋃
i(
⋃

j {xij : rhoij ′}))
in (Γ, η1, C1 ∪ C′1 ∪ C2 ∪ C′2 ∪ (

⋃
i C2i) ∪ C3 ∪ C′3,Ψ)

G (case e of (x1, x2, · · · , xn),Υ,∆) =
let

rhoiτ = replicate n (freshτ
freshν ,freshδ)

rhoiσ = [(∀ ∅ ∅ . ∅ ⇒ τi)
νi,δi | τiνi,δi ← rhoiτ]

(Γ0, τ0
ν0 , C1,Ψ1) = G (e,Υ,∆)

C′1 = {τ0 ≡ rhoi , 1 v ν0}
(Γ, xi : rhoi ′, η, C2,Ψ2) = G (e1,Υ,∆)

C′2 = rhoiσ ≡ rhoi ′

Ψ = Ψ1 ∪Ψ2 ∪ (
⋃

i {xi : rhoi ′})
in (Γ, η, C1 ∪ C′1 ∪ C2 ∪ C′2 ∪ C3,Ψ)

G (case e of c→ ei,Υ,∆) =
let
τ = lookupType c1
(Γ0, τ0

ν0 , C1,Ψ
′) = G (e,Υ,∆)

C′1 = {τ0 ≡ τ ,1 v ν0}
(Γi, etai , C2i,Ψi) = [G (x ,Υ,∆) | x ← ei]
C2 = allEqual etai
(Γ, C3) =

⊔
i Γi

in (Γ, η1, C1 ∪ C′1 ∪ C2 ∪ (
⋃

i C2i) ∪ C3 ∪ C′3,Ψ′ ∪ (
⋃

i Ψi))

Figure 5.14: Constraint generation

In figure ?? the rules for the compound constraint are given. The rules for the empty constraint is
trivial. When solving the union of two constraints, the first constraint is solved and the resulting solution
is applied to the second constraint before it is solved. The resulting solutions are returned and the left
over constraints are combined24.

24It can be the case that one of these is the empty constraint. For the correctness this does not matter. For efficiency this
does matter so in any real implementation you would filter these out.

5.2. COUNTING ANALYSIS 41

Algorithm G (e,Υ,∆) (Γ, ητ , C,Ψ)

(e) Foreign function call

G (FFI n τ core ,Υ,∆) =
let
τ = freshτ
σ = annotate τ core

in (ε, τ>, {inst (σ) ≡ τ}, ε)

(f) Algorithm helpers

Lists H (vi,Υ,∆) (Γ, rhoτ , C,Ψ)

H (vi,Υ,∆) =
let

(Γi, etai , Ci,Ψi) = [G (v ,Υ,∆) | v ← vi]
(Γ, C′) =

⊕
i Γi

C =
⋃

i Ci

rhoi = [η(getDemand Γ′) | (η,Γ′)← (etai ,Γi)]

in (Γ, rhoi , C ∪ C′,
⋃

i Ψi)

getDemand Γ δ

getDemand (x : ηδ) = δ
getDemand (Γ) = freshδ

allEqual x C

allEqual (x : xs@(y :)) = let C = allEqual xs in C ∪ {x ≡ y}
allEqual = ∅

replicate (n, x) x

replicate n x
| n > 0 = let xs = replicate (n− 1) x in x : xs
| otherwise = []

sub� η (η, C)

sub� (τν) =
let ν′ = freshν

in (τν
′
, {ν′ � ν})

Figure 5.14: Constraint generation

The rules for equality are presented in figure ??. This the only place where the solution is updated
except for the annotation solving rules. The rules for when the two things are the same are trivial25.
When they are not the same and the constraint contains variables a check is made to see if these variables
are already present in the environment. If that is the case solving continues with the found value. If no
variable is already present in the solution then it is added to the solution.

The rules for annotation constraints26 are given in figure ??. When the right hand side contains only
annotation values the constraint can be solved by computing using the definition. In these rules � stands
for any of the four operators27. If there is a variable in the right hand side then solving proceeds as
follows:

1. For each variable retrieve the possible values it can have from ψ

2. Instantiate the constraint in all possible ways with the values retrieved

25There are two versions, one for when both are variables and one for when both are non variables
26No code is given here as it does not help to understand the function. A complex version is given in appendix ??
27These are ⊕, t, · and .

42 CHAPTER 5. IMPLEMENTATION

3. Remove all the invalid constraints

4. Limit the values of each variable to the values it has in the valid constraints and put these into ψ
as the new partial solution for these variables

5. Move any variable that now only has a single solution into φ and remove it from ψ

6. See if there are two or more variables always equal by testing whether the annotation values are
always the same in the valid constraints. If there are, generate equality constraints between them.

7. Return the new φ, ψ and the union of the generated equality constraints of the previous step and
the annotation constraint28.

Normally the constraint is returned as is except in the following case:

• When there is only a single variable present and the possible solutions after solving is equal to all
possible annotation values except ⊥ then the constraint did not constrain the variable at all and
the constraint is not returned for additional solving.

The rules for generalization and instantiation are given in figure ??. Generalization starts by solving
the constraints inside the generalization constraint. This uses the fixpoint solving to ensure the constraints
are solved as much as possible. It then applies the new solution to the remaining parts of the constraint29.
It determines the variables over which to generalize and returns the new solutions together with an equality
constraint between the scheme in the constraint and the computed scheme. Instantiation simply replaces
every quantified variable with a fresh variable and returns the constraints inside the scheme (with the fresh
variables). If the scheme is still a variable no solving can happen and the constraint is simply returned
to be dealt with later.

5.2.3 Defaulting

When after solving the partial solution is not empty a value needs to be chosen for these remaining
unsolved variables. Defaulting takes care of selecting a single variable and value. This variable is then
removed from ψ and added to φ with the selected value and solving continues on. So defaulting takes
care of forcing the solving to finish with a full solution. Defaulting selects the variable which has the best
value as possible value, where best is defined in the following order:

1. 0: This represents this is not used at all and symbols with a demand of 0 can be removed.

2. 1: Choosing this enables both strictness and sharing optimizations

3. {1,∞}: Arbitrarily chosen that knowing something is strict is better than knowing that something
is not shared

4. ω: Also strict

5. {0, 1}: Not shared

6. {0,∞}: Basically as useless as > but it is more precise

7. >: Will never be chosen as in that case there was only a single value possible and that would not
be present in ψ to begin with

Valuing enabling strictness optimizations over enabling sharing optimizations is purely arbitrarily and
depends upon the actual optimizations happening. It is for future work to see which ordering is better.

The defaulting algorithm is made more precise in figure ??. It uses the ordering defined above.

5.2.4 Combining generation, solving and defaulting

Now that constraint generation, constraint solving and defaulting are defined we can give a final algorithm
that computes the types of all defined symbols in the expression. It is presented in figure ??. It gets
as input the expression and the import and export environments. It starts by running the constraint
generation algorithm, followed by the solving with defaulting algorithm. It then applies the solution to
the Ψ from the generation and returns the result.

The solving with defaulting is defined in a lazy way. In a strict version the F call needs to be inlined
inside the then branch. It also uses the fact that whenever ψ is empty the returned constraint is also
empty.

28The order here is important for efficiency reasons. Solving first the equality constraint and then resolve the annotation
constraint prevents unnecessary work and duplicate constraints generated

29The returned constraint already has the solution applied to it

5.2. COUNTING ANALYSIS 43

Solving S (C, φ, ψ) (φ, ψ,C)

(a) Basics

S (∅, φ, ψ) = (φ, ψ, ∅)
S (C1 ∪ C2, φ, ψ) =

let
(φ1, ψ1, C

′
1) = S (C1, φ, ψ)

C′2 = C2 [φ1]
(φ2, ψ2, C3) = S (C′2, φ1, ψ1)

in (φ2, ψ2, C
′
1 ∪ C3)

(b) Equality

S (x1 ≡ x2, φ, ψ) =
if (x1 ≡ x2) then

(φ, ψ, ∅)
else if ((x1 : mu ′) ∈ φ) then
S (x2 ≡ mu ′, φ, ψ)

else if ((x2 : mu ′) ∈ φ) then
S (x1 ≡ mu ′, φ, ψ)

else
(φ;x1 : x2, ψ, ∅)

S (x ≡ µ, φ, ψ) | !isvar µ =
if ((x : mu ′) ∈ φ) then
S (µ ≡ mu ′, φ, ψ)

else
(φ; x : µ, ψ, ∅)

S (µ ≡ x , φ, ψ) | !isvar µ = S (x ≡ µ, φ, ψ)

S (µ1 ≡ µ2, φ, ψ) | !isvar µ1 ∧ !isvar µ2 =
if (µ1 6≡ µ2) then

error "Unsatisfiable constraint"

else
(φ, ψ, ∅)

(c) Annotation

S (ϕ ≡ $1 �$2, φ, ψ) =
let
$ = $1 �$2

in S (ϕ ≡ $)

S (ϕ3 ≡ ϕ1 � ϕ2, φ, ψ) | isvar ϕ1 ∨ isvar ϕ2 =
"(code is not provided)"

Figure 5.15: Constraint solving

44 CHAPTER 5. IMPLEMENTATION

Solving S (C, φ, ψ) (φ, ψ,C)

(d) Generalization and instantiation

S (gen (τν,δ, C1,Γ) ≡ σ, φ, ψ) =
let

(φ1, ψ1, C2) = Sfix (C1, φ, ψ)
τ ′ = τ [φ1]
Γ′ = Γ [φ1]
ν′ = ν [φ1]
δ′ = δ [φ1]
Vα = ((ftv C2) ∪ (ftv τ ′))− (ftv Γ′)
Vβ = ((fav C2) ∪ (fav τ ′))− ((fav Γ′) ∪ (fav ν′) ∪ (fav δ′))

in (φ1, ψ1, σ ≡ (∀Vα Vβ . C2 τ
′))

S (inst (∀α1 β1 . C ⇒ τ1) ≡ τ2, φ, ψ) =
let
α2 = [freshτ | ← α1]

β2 = [freshϕ | ← β1]

C′ = C [α2/α1 ,
β2/β1]

τ ′ = τ [α2/α1 ,
β2/β1]

in (φ, ψ,C′ ∪ {τ ′ ≡ τ2})
S (inst (σ) ≡ τ), φ, ψ) = (φ, ψ, inst (σ) ≡ τ)

(e) Fixpoint

Solving Sfix (C, φ, ψ) (φ, ψ,C)

Sfix (C, φ, ψ) =
let
C′ = C [φ]
(φ1, ψ1, C1) = S (C′, φ, ψ)
changed = C1 6≡ C′ ∨ φ1 6≡ φ ∨ ψ1 6≡ ψ

in if changed then Sfix (C1, φ1, ψ1) else (φ1, ψ1, C1)

Figure 5.15: Constraint solving

Defaulting F (ψ) (β,$)

F ((β :$i) : ψ) = F (ψ, β,max $i)

Defaulting F (ψ, β,$) (β,$)

F (ε, β,$) = (y , $)
F ((β1 :$i) : ψ, β2, $2) =

let $1 = max $i

in if ($2 <$1) then
F (ψ, β1, $1)

else
F (ψ, β2, $)

Figure 5.16: Defaulting

5.2. COUNTING ANALYSIS 45

Annotation algorithm A (e,Υ,∆) Ψ

A (e,Υ,∆) =
let

(, , C,Ψ) = G (e,Υ,∆)
φ = Sdef (C, ε, ε)

in (Ψ [φ])

Solving with defaulting Sdef (C, φ, ψ) φ

Sdef (C, φ, ψ) =
let
C′ = C [φ]
(φ1, ψ1, C1) = Sfix (C′, φ, ψ)
(β,$) = F (ψ1)

in if ψ1 6≡ ε then Sdef ({β ≡ $} ∪ C1, φ1, ψ1) else φ1

Figure 5.17: Annotation algorithm

46 CHAPTER 5. IMPLEMENTATION

6. Results

6.1 Introduction

Now that all the theory is out of the way we can start applying it to some test programs. This section is
divided in three parts. We start by doing some small tests to see if the annotations gathered are indeed
what we want them to be. The second part tests some recursive functions. For these also some speed
improvement tests are run. The last part consists of some tests using a binary tree. These tests have a
lot of potential to gain speed improvements by the analysis and strictness optimizations.

6.2 Annotation tests

The first test is to check whether the analysis can correctly determine whether the elements of a list are
going to be used or not. We use the test code presented in figure ??.

g :: [a]→ Int
g xs = length (id xs)
h :: [Int]→ Int
h xs = sum (id xs)

Figure 6.1: Annotation list tests code

The main part of interest here are the types of the input lists of g and h. We use id here to show that
information can flow through functions using polyvariance.

This results in the annotations presented in figure ??.

g = (λxs →
(let

u = (id :: (([a(ν1,δ1)] (ν2,1))
(0,1) → ([a(ν1,δ1)] (ν2,1))

0
)

1
xs) :: ([a(ν1,δ1)] (ν2,1))

0

in (length :: (([a(ν1,δ1)] (ν2,1))
(0,1) → Int0)

>
u) :: Int0

) :: Int0

) :: (([a(ν1,δ1)] (ν2,1))
(ν3,1) → Int0)

>

h = (λxs →
(let

u = (id :: ((([Int(ν1,1)] (ν2,1))
(0,1) → ([Int(ν1,1)] (ν2,1))

0
))

1
xs) :: ([Int(ν1,1)] (ν2,1))

0

in ((sum :: ((Num β Int)
(0,>) → (([Int(ν1,1)] (ν2,1))

(0,1) → Int0)
>

)
>

NumInt) u) :: Int0

) :: Int0

) :: (([Int(ν1,1)] (ν2,1))
(ν3,1) → Int0)

>

Figure 6.2: Annotation list tests

This might be a little bit hard to parse. Each sub-expression gets annotated with an usage annotated
type and the code is in A-Normal form. So lets break down the code:

• Because the code is in A-Normal form the binding for u is introduced to hold the application id xs.

• Class constraints are transformed into dictionaries and functions that have a class constraint receive
an additional parameter of this type. For example the sum function expects a Num Int as its first
argument. The concrete dictionary NumInt is passed as the first argument. For each instance a
concrete dictionary is created and used whenever a function requires such an instance1.

1In later tests also the instances for Enum and Show are used.

47

48 CHAPTER 6. RESULTS

• In u only id and id xs are annotated with a type. These types are the locally instantiated types
and not the global type for the expression2

• The types presented on the last two lines3 are the types of the let expressions and of the function
respectively.

• It is in the types for the function that we find the typing difference we actually were interested in
from the start. We see that g only demands the spine and not the elements inside of it4. In h
however both the spine and the elements are demanded. As in all cases only a 1 is present we even
see that the spine (and the elements in h) is only demanded once.

Some notes to keep in mind when reading these annotations are:

• As only functions can be used anything that is not a function will have a usage of 0 attached.

• As these functions are analysed without a main function context the usage of these functions is
unknown and they get annotated with a > to signify this.

6.3 Recursive function tests

We test four recursive functions: map, fold , fac and fib. map is chosen as it is the most commonly used
higher order function. foldl is chosen to represent higher order functions as normally you never want
to use it, normally you should prefer foldl ′ except when the supplied function is not strict in its first
argument. In an ideal world you would want the compiler to optimize foldl to foldl ′ if it is only used
with a strict function. The results for these two functions can be generalized to arbitrary higher order
functions. fac and fib are two function that should profit greatly from a strictness optimization.

Because we are also interested in runtime speeds the function will be accompanied by a main function.
Contrary to the tests in section ?? this means that the functions will only be demanded if the main
function does so5.

All tests are compiled both with and without optimizations and the programs are each run 10 times
and the timings are collected. In the results the average time and the minimum time and maximum time
are presented.

6.3.1 Map

Map is a basic higher order function. The code we use to test is presented in figure ??.

map :: (a → b)→ [a]→ [b]
map [] = []
map f (x : xs) = f x : map f xs

main = print (sum (map succ [1 . . 1000000 :: Int]))

Figure 6.3: Map

We can clearly see in figure ?? which bindings can be optimized6. The optimized code is shown in
figure ??. Of the bindings that are optimized two are useless (u3 and uhcMain) as the strict binding will
only be evaluated when the binding is demanded from the in part. Of the remaining bindings none are
inside the map function. The reason this is the case is that whether or not the bindings u2 and u3 can be
made strict is depending on external usages. For u2 this depends whether or not the spine is used of the
resulting list. For u3 this depends on whether or not the elements of the resulting list are used. This is
generally the case for functions that return data structures. Most of the time the function can internally
not be optimized because it is not allowed to assume usage of the result7.

2I.e. they are annotated types and not annotated type schemes.
3The lines that start with a) followed by a type
4Remember that the first two annotations of a list are for the elements and the last two for the spine. See the example

in figure ?? in section ??.
5Of course we will define a main function that actually does, but it will result in actual useful demands on the functions

as opposed to the default >
6These are u3 , u4 , u6 , u7 , main and uhcMain
7Internally the only thing assumed about the result is that it is demanded. For data structures this only means the outer

constructor is forced but no such conclusions can be for the internal fields.

6.3. RECURSIVE FUNCTION TESTS 49

let

map =(1,1) (λf →
(λls →

let ! ls′ =(1,ω) ls :: ([a(0,0)] (0,{0,1}))
ν4

in

(case ls′ :: ([a(0,0)] (0,{0,1}))
1
of

: x xs →
let

u1 =(0,δ4) map :: ((a(0,δ3) → bν1)
(>,>) → (([a(0,0)] (0,{0,1}))

(0,1) → ([b(ν2,δ1)] (ν3,δ2))
0
)
{0,1}

)
>

f xs
in

let u2 =(ν1,0) (f :: (a(0,δ3) → bν1)
1
x) :: bν1

in
let

u3 =(>,1) (: :: (b(0,0) → (([b(0,0)] (0,δ4))
(0,δ4) → ([b(0,0)] (0,δ4))

>
)

1
)
>

u2 u1) :: ([b(0,0)] (0,δ4))
>

in

u3 :: ([b(0,0)] (0,δ4))
>

[] → [] :: ([b(0,0)] (0,δ4))
>

) :: ([b(0,0)] (0,δ4))
>

) :: (([a(0,0)] (0,{0,1}))
(ν4,1) → ([b(0,0)] (0,δ4))

>
)
ν6

) :: ((a(0,δ3) → bν1)
(ν5,δ5) → (([a(0,0)] (0,{0,1}))

(ν4,1) → ([b(0,0)] (0,δ4))
>
)
ν6

)
1

in
let

u4 =(0,1) enumFromTo :: ((Enum β Int)
(0,1) → (Int(0,0) → (Int(0,{0,1}) → ([Int> >] > >)

0
)

1
)

1
)
>

EnumInt 1 1000000
in

let

u5 =(>,>) (succ :: ((Enum β Int)
(0,1) → (Int(0,δ6) → Int>)

>
)
>

EnumInt) :: (Int(0,δ6) → Int>)
>

in
let

u6 =(>,1) map :: ((Int(0,0) → Int>)
(>,>) → (([Int(0,0)] (0,{0,1}))

(0,1) → ([Int(0,0)] (0,δ7))
>
)

1
)

1
u5 u4

in
let

u7 =(0,1) (sum :: ((Num β Int)
(0,>) → (([Int(ν7,1)] (0,1))

(0,1) → Int0)
>
)
>

NumInt u6) :: Int0

in
let

main =(1,1) (print :: ((Show β Int)
(1,1) → (Int(0,1) → (IO ())1)

1
)
>

ShowInt u7) :: (IO ())1

in
let

u8 =(0,0) () :: ()0

in
let

uhcMain =(1,1) (ehcRunMain :: ((IO ())(1,1) → (()(0,0) → (IO ())1)
1
)
>

main u8) :: (IO ())1

in
uhcMain :: (IO ())1

Figure 6.4: Map annotated

50 CHAPTER 6. RESULTS

let
map = λf →

λls →
let ! ls ′ = ls
in case ls ′ of

: x xs →
let u1 = map f xs
in

let u2 = f x
in

let ! u3 = :u2 u1
in u3

[] → []
in let ! u4 = enumFromTo EnumInt 1 1000000

in
let u5 = succ EnumInt
in

let ! u6 = map u5 u4
in

let ! u7 = sum NumInt u6
in

let ! main = print ShowInt u7
in

let u8 = ()
in

let ! uhcMain = ehcRunMain main u8
in uhcMain

Figure 6.5: Map optimized

When we analyze the results in the table ?? we see that we still get a reasonable speed gain even
though the function we wanted to optimize (map) did not get any meaningful optimizations8. The reason
is that the let introduced for the main function have enough impact to be noticeable. In general for all
further tests the resulting speed gain should be lowered with around 2% to gain the speed gain of the
function under consideration9.

Average Minimum Maximum
Normal 4.012 3.789 4.266
Optimized 3.784 3.710 3.875
Speed gain 5.7% 2.1% 9.2%

Table 6.1: Results map

6.3.2 Fold

foldl is another basic recursive function. It has one more argument than map and when given a strict
function can be heavily optimized. The code is given in figure ??

There are unfortunately only a few optimizations happening in figure ??. The most important binding
(binding for z ′) is not made strict. Even though we can clearly convince ourselves that it should be strict,
as (+) is strict in its first argument. However the compiler has no way to use this information as only
the usage and demand on the binding are determined by the rest of the code. For the internal code the
only assumption is that the result will be demanded and the annotations are calculated accordingly. This
means that we analyze lgo, and generate a type scheme for it, before we analyze the body of foldTest10.
This results in the most general type for a binding. The side effect of this is thus that we get annotation
variables on the places of which the body of the binding does not specify anything. Even when we later

8In fact, the let! should make it slightly slower
9The timings for map tend to fluctuate a lot. For the foldl they are much more stable and the 2% can be more easily

seen
10The main reason for this is that we need the generalized types of the bindings to correctly type the body of a let.

6.3. RECURSIVE FUNCTION TESTS 51

foldTest :: Int→ Int
foldTest x = foldl (+) 0 [1 . . x]

foldl :: (a → b → a)→ a → [b]→ a
foldl = λf z0 xs0 → let

lgo = λz ys → case ys of
[]→ z
(x : xs)→ let z ′ = f z x in lgo z ′ xs

in lgo z0 xs0

main = print (sum (replicate 100 (foldTest 1000000)))

Figure 6.6: Foldl

lgo = λf →
λz →
λys →

let ! ys ′ = ys
in case ys ′ of

: x xs →
let ! xs ′ = xs
in

let z ′ = f z x
in lgo f z ′ xs

[] → z

foldl :: ((a(0,0) → (b(0,ν2) → aν1)
ν4

)
(>,>) → (a(0,{0,1}) → (([b(0,δ1)] (ν3,1))

(ν5,1) → a0)
1
)

1

)
(0,0)

foldl = λf →
λz →
λxs →

lgo f z xs

foldTest :: (∀ ν1, ν2 . Int(ν2,0) → Intν1)
(0,0)

foldTest = λx →
let ! u1 = enumFromTo EnumInt 1 x
in
let u2 = +NumInt
in foldl u2 0 u1

u3 :: (∀ . Int)(0,0)

u3 = foldTest 1000000

u4 :: (∀ ν1, δ1 . [Int(0,0)] (ν1,δ1))
(>,1)

)
! u4 = replicate 100 u3

u5 :: (∀ . Int)(0,1)

! u5 = sum NumInt u4

main :: (∀ . IO ())(1,1)

! main = print ShowInt u5

u6 :: (∀ . ())(0,0)

u6 = ()

uhcMain :: (∀ . IO ())(1,1)

! uhcMain = ehcRunMain main u6

Figure 6.7: Foldl optimized

52 CHAPTER 6. RESULTS

at the use site of a function we pass in strict annotations the function itself can only be optimized by
the annotations locally present which are variables. This gives us the general result that bindings that
depend on annotations of a supplied function11 or argument12 cannot assume anything of annotations the
supplied function has13. So any binding that depend on an annotation of a function argument cannot be
optimized14.

As we can see in the results in table ??, the speed gains from optimizing the fold program are very
low.

Average Minimum Maximum
Normal 2.272 2.250 2.334
Optimized 2.325 2.290 2.375
Speed gain 2.3% 1.7% 1.7%

Table 6.2: Results foldl

6.3.3 Factorial

Factorial is a simple strict recursive function that in all cases should be optimized to avoid creating a
chain of un-evaluated chunks. The code is given in figure ??.

fac :: Int→ Int
fac n = if n 6 1 then 1 else n ∗ fac (n− 1)

main = print (sum (replicate 10000000 (fac 12)))

Figure 6.8: Factorial

Running the analysis results in the annotations given in figure ??.

fac =
(λn→

let

b =(>,1) (6 ::((Ord β Int)
(0,1) → (Int(0,1) → (Int(0,1) → Bool>)

1
)

1
)
>

OrdInt n 1) :: Bool>

in

let ! b′ =(1,ω) b :: Bool>

in
(case b′ :: Bool1 of

False→

let u3 =(>,{1,∞}) (− :: ((Num β Int)
(0,1) → (Int(0,1) → (Int(0,1) → Int>)

1
)

1
)
>

NumInt n 1) :: Int>

in

let u2 =(>,1) (fac :: (Int(0,{1,∞}) → Int>)
1

u3) :: Int>

in

let u1 =(>,1) (∗ :: ((Num β Int)
(0,1) → (Int(0,1) → (Int(0,1) → Int>)

1
)

1
)
>

NumInt n u2) :: Int>

in u1 :: Int>

True→ 1 :: Int>

) :: Int>

) :: (Int(0,{1,∞}) → Int>)
0

Figure 6.9: Factorial annotated

So what is happening here:

11This basically applies to all higher order functions
12Datatypes are an example of this. If the internal usages of certain bindings depend upon the usage of the result then it

can not be optimized at those places.
13The annotations on the function argument are either a variable over which the higher order function quantifies or it

needs to be >. This is because the caller can give a function with any kind of annotations.
14This for example applies to the foldl function, which cannot be automatically optimized to foldl ′

6.3. RECURSIVE FUNCTION TESTS 53

• Just as in the previous section most usage annotations of non-function types are 0. Except this
time there are a few >’s present. This has to do with the fact that this time we are using imported
functions which have always > for both usage and demand annotations. These >’s are in two
places: they are present as the usage of the imported functions and as the usage of the final result of
the imported functions. This directly demonstrates that exporting (and using imported) functions
has relevance for the precision of the types. However polyvariance does result in the fact that the
arguments are correctly annotated to be demanded once and that the partial functions are all used
exactly once.

• We clearly can see that fac usage its argument one or multiple times. It is used exactly one times
when the argument is smaller than 1. If the argument is larger than 1 then the argument is used
exactly thrice. One time for the comparison, one time when subtracting one and one time when
multiplying.

• Every let binding is annotated with its usage and demand. And we can clearly see that all bindings
are in fact strict. This enables us to optimize these single let bindings into let! bindings. The result
is presented in figure ??. There are no normal let bindings left. Every binding is optimized to a
strict let! binding.

λn→
let ! b =6 OrdInt n 1
in

let ! b′ = b
in

case b′ of
False→

let ! u3 = −NumInt n 1
in

let ! u2 = fac u3
in

let ! u1 = ∗NumInt n u2
in u1

True→ 1

Figure 6.10: Factorial optimized

Now that we have optimizations lets see what the actual speed gains are. The results are given in
table ??.

Average Minimum Maximum
Normal 8.778 8.749 8.895
Optimized 8.654 8.626 8.760
Speed gain 1.4% 1.4% 1.5%

Table 6.3: Results factorial

The speed gains are underwhelming. This probably has to with the additional overheads of let! that
are not really necessary. For example this is the case for binding u3 . This is first evaluated in a let!
and then passed as the recursive argument. For the comparison it is needed so it is evaluated basically
immediately after it was evaluated by the let!. The same holds for the bindings b and u1 .

6.3.4 Fibonacci

Fibonacci is a function that should get a nice boost from a strictness optimization. The version presented
in figure ?? is the simple inefficient version15.

This code results in the optimized code presented in figure ??.

15The algorithm presented here is O(n2). There exists algorithms that are O(n).

54 CHAPTER 6. RESULTS

fib :: Int→ Int
fib x | x < 1 = 0
fib 1 = 1
fib n = fib (n− 1) + fib (n− 2)

main = print (fib 30)

Figure 6.11: Fibonacci

f = λx →
let u3 = −NumInt x 2
in

let u2 = fib u3
in

let u1 = −NumInt x 1
in

let u5 = fib u1
in

let u4 = +NumInt u5 u2
in

let ! u6 =≡ EqInt 1 x
in case u6 of

False→ u4
True→ 1

fib = λx →
let y = f x
in

let ! z = <OrdInt x 1
in

let ! z ′ = z
in case z ′ of

False→ y
True→ 0

Figure 6.12: Fibonacci optimized

6.3. RECURSIVE FUNCTION TESTS 55

There are surprisingly few16 optimizations happening here. In fact the only let! introduced is for the
z binding. The problem is that the bindings for u1 to u5 are before the u6 binding. At that point there
is indeed no guarantee that those bindings are indeed needed17.

If however we would have specified fib differently such that the recursive bindings are positioned in
such a way that we can guarantee their use. The code18 in figure ?? is a rewritten version where the
relevant let bindings are moved to the False branches.

fib2 x =
let u1 = x < 1
in case u1 of

True→ 0
False→

let u2 = x ≡ 1
in case u2 of

True→ 1
False→

let
u3 = x − 1
u4 = x − 2

in
let

f1 = fib2 u3
f2 = fib2 u4

in f1 + f2

Figure 6.13: Fibonacci better code

The code form figure ?? results in the optimized code presented in ??.

fib2 = λx →
let ! u1 = <OrdInt x 1
in

let ! u1 ′ = u1
in case u1 ′ of

False→
let ! u2 =≡ Eq @DCT @u81 24 0 x 1
in

let ! u2 ′ = u2
in case u2 ′ of

False→
let ! u3 = −NumInt x 1
in

let ! u4 = fib2 u3
in

let ! u5 = −NumInt x 2
in

let ! u6 = fib2 u5
in + NumInt u4 u6

True → 1
True→ 0

Figure 6.14: Fibonacci better optimized

Because this time the recursive bindings are indeed inside the branch where they are guaranteed to
be used, they are optimized to let! bindings.

Table ?? shows the results for both versions of the fibonacci function.

16Before studying the code and seeing that in fact there are no more optimization allowed
17As indeed they are not when x is 1
18This code is already written in A-normal form to ensure that the desugaring does not create the previous inefficient

version. It should be possible to write a more concise function that still result in the same optimized code.

56 CHAPTER 6. RESULTS

Average Minimum Maximum
Normal fib 2.104 1.884 2.529
Optimized fib 1.950 1.738 2.528
Speed gain fib 7.3% 7.7% 0.0%
Normal fib2 1.453 1.373 1.791
Optimized fib2 1.047 1.001 1.160
Speed gain fib2 27.9% 27.1% 35.2%
Speed gain fib vs. fib2 normal 30.9% 27.1% 29.2%
Speed gain fib vs. fib2 optimized 46.2% 42.4% 54.1%

Table 6.4: Results fibonacci

This results show the unfortunate fact that it can really matter how some functions are written in the
surface language.

6.4 Binary tree

6.4.1 Introduction

Here we test some bigger programs concerning binary trees which consists of multiple functions. We use
some shared code for all the tests. The shared code consists of a function to generate a balanced tree,
a mirror function and a single instance map function. It is single instance because we saw earlier that
higher order functions cannot be optimized.

After a short discussion of the shared functions we test two separate functions. We count the number
of nodes in the tree and we sum the leafs together. The first function does not use the values inside the
tree so it cannot be optimized to evaluate the internal values early. The second function however does
use the internal values and it can be optimized19 to compute the internal values eagerly.

The counting of the nodes happens in two ways: directly, and by calculating the length of a flattened
tree. Finally we test the combination of all functions and see what optimization gains we achieve there.
For completeness we also compare this with a version that uses a higher order map function.

6.4.2 Shared code

We will use the code presented in figure ?? in all the following tests. The annotated types for these
functions are given in figure ??.

data BinTree a = Leaf a | BinTree (BinTree a) a (BinTree a)

mapTreeUnitToFac :: BinTree ()→ BinTree Int
mapTreeUnitToFac (Leaf) = Leaf (fac 12)
mapTreeUnitToFac (BinTree l r) = BinTree l ′ (fac 12) r ′

where
l ′ = mapTreeUnitToFac l
r ′ = mapTreeUnitToFac r

genBalancedBinTree :: Int→ BinTree ()
genBalancedBinTree n | n < 1 = Leaf ()
genBalancedBinTree n = BinTree s () s

where s = genBalancedBinTree (n− 1)

mirror :: BinTree a → BinTree a
mirror (BinTree l a r) = BinTree r a l
mirror x = x

testTree :: BinTree Int
testTree = mirror (mapTreeUnitToFac (genBalancedBinTree 20))

Figure 6.15: Shared BinTree code

19Even though this does not happen as the function does not know how the internal values are being used due to
polyvariance.

6.4. BINARY TREE 57

Data BinTree [ν1, δ1 . . ν4, δ4] a

= Leaf a(ν1,δ1)

| BinTree (BinTree [ν1, δ1 . . ν4, δ4] a)(ν2,δ2) a(ν3,δ3) (BinTree [ν1, δ1 . . ν4, δ4] a)(ν4,δ4)

mapTreeUnitToFac ::

∀ ν3, δ3, ν4, δ2, ν5, δ1, ν1, ν2, a . (BinTree (ν1 δ1 0 0 ν2 δ2 0 0) a)(0,1) → (BinTree (ν3 δ3 0 0 0 0 ν4 0) Int)ν5

genBalancedBinTree :: ∀ δ . Int(0,{1,∞}) → (BinTree (0 δ 0 0 0 0 0 1) (()))0

mirror :: ∀ ν1, δ1, ν2, δ2, a . (BinTree (ν1 δ1 0 0 0 δ2 0 0) a)(>,{1,∞}) → (BinTree (ν1 δ1 0 0 0 δ2 0 0) a)ν2

⇒ 0 U ν2 ≡ >
testTree :: ∀ δ2, ν4, δ1, ν3, δ3, ν1, ν2 . BinTree (ν1 δ1 ν2 δ2 ν3 δ3 ν4 δ2) Int

Figure 6.16: Shared BinTree types

6.4.3 CountNodes

Here we count the number of nodes inside the tree. The code is presented in figure ??.

countNodes :: BinTree a → Int
countNodes (Leaf) = 1
countNodes (BinTree l r) = countNodes l + 1 + countNodes r

testBinTreeNoInternals :: Int
testBinTreeNoInternals = countNodes testTree

main = print testBinTreeNoInternals

Figure 6.17: Count nodes

This code results in the following optimized code presented in figure ??. We can see that the sub-trees,
the recursive calls and the additions are made strict.

countNodes = λx →
let ! x ′ = x
in case x ′ of

BinTree l r →
let ! u1 = l
in

let ! u2 = r
in

let ! u3 = countNodes r
in

let ! u4 = countNodes l
in

let ! u5 = +NumInt u4 1
in

let ! u6 = +NumInt u5 u3
in u6

Leaf → 1

Figure 6.18: Count nodes optimized

The results are presented in table ??.

6.4.4 Length . flatten

Instead of directly counting the nodes we first convert the the tree into a list and then count the number
of elements inside the list. The code is presented in figure ??.

The optimized code is presented in figure ??. Due to bugs in the types for the imported symbols (:)
and (++) the recursive calls cannot be made strict.

58 CHAPTER 6. RESULTS

Average Minimum Maximum
Normal 1.221 1.192 1.262
Optimized 0.957 0.949 0.964
Speed gain 21.6% 20.4% 23.6%

Table 6.5: Results count nodes

flatten :: BinTree a → [a]
flatten (BinTree l a r) = flatten l ++ a : flatten r
flatten (Leaf a) = [a]

testBinTreeNoInternalsViaList :: Int
testBinTreeNoInternalsViaList = length (flatten testTree)

main = print testBinTreeNoInternalsViaList

Figure 6.19: Length . flatten

flatten = λx →
let ! x ′ = x
in case x ′ of

BinTree l a r →
let u1 = flatten r
in

let u2 = (:) a u1
in

let u3 = flatten l
in

let ! u4 = (++) u3 u2
in u4

Leaf a →
let ! u5 = (:) a []
in u5

Figure 6.20: Length . flatten optimized

6.4. BINARY TREE 59

The results are presented in table ??. Due to the previously described bugs the results are not very
good. However we still get a sizable speed gain nonetheless.

Average Minimum Maximum
Normal 6.021 5.909 6.140
Optimized 5.569 5.458 5.690
Speed gain 7.5% 7.6% 7.3%

Table 6.6: Results length . flatten

We see a large increase in time and a lower speed gain. This mainly has to do with the fact that a
very inefficient flatten function is used20. As this cannot be prevented by making the recursive calls strict
this is present in both versions. If we remove the extra time and re-compare the timings then the speed
gains are about the same as the version that counts the nodes directly.

If we write the flatten function using a difference list it is still slower than the direct version but a lot
faster than the simple flatten version. As we can see in the code in figure ?? and results in table ??.

flatten :: BinTree a → [a]
flatten t = flattenDiff t []

flattenDiff :: BinTree a → [a]→ [a]
flattenDiff (BinTree l a r) xs = flattenDiff l (a : flattenDiff r xs)
flattenDiff (Leaf a) xs = [a] ++ xs

Figure 6.21: Flatten difference list

Average Minimum Maximum
Normal 2.051 2.020 2.082
Optimized 2.291 2.266 2.366
Speed gain 10.5% 10.9% 12.0%

Table 6.7: Results flatten difference list

6.4.5 Sum

Here we sum the internal values of the tree. This should be the case that can be optimized the most. The
code is presented in figure ??.

sumTree :: BinTree Int→ Int
sumTree (Leaf x) = x
sumTree (BinTree l x r) = sumTree l + x + sumTree r

testBinTreeInternals :: Int
testBinTreeInternals = sumTree testTree

main = print testBinTreeInternals

Figure 6.22: Sum tree

This results in the optimized code presented in figure ??. The analysis correctly determined that all
fields of the BinTree are indeed strict and both recursive calls are also made strict.

This results in the very good speed gains presented in table ??.

6.4.6 Combined

We now run the three previous tests as a single program. This allows us to analyse the combination of
multiple functions and looks more like real code. The code is presented in figure ??.

20The flatten presented here is quadratic.

60 CHAPTER 6. RESULTS

sumTree = λx →
let ! x ′ = x
in case x ′ of

BinTree l y r →
let ! u1 = l
in

let ! u2 = y
in

let ! u3 = r
in

let ! u4 = sumTree r
in

let ! u5 = sumTree l
in

let ! u6 = (+) NumInt u5 y
in

let ! u7 = (+) NumInt u6 u4
in u7

Leaf y →
let ! u8 = y
in y

Figure 6.23: Sum tree optimized

Average Minimum Maximum
Normal 15.100 13.796 15.618
Optimized 7.980 7.763 8.124
Speed gain 47.2% 43.7% 48.0%

Table 6.8: Results sum tree

testBinTreeInlinedMap :: Int
testBinTreeInlinedMap = countNodes testTree + length (flatten testTree) + sumTree testTree

main = print testBinTreeInlinedMap

Figure 6.24: Combined

6.4. BINARY TREE 61

When we analyse the results in table ?? we see that the timings are comparable to the sum of timings
from the three tests above and the speed gain is the weighed average of the speed gains of the stand
alone tests. We conclude from this that the optimizations are locally and are not really impacted by the
surrounding code.

Average Minimum Maximum
Normal 20.755 19.510 22.230
Optimized 13.497 12.858 14.398
Speed gain 35.0% 34.1% 35.2%

Table 6.9: Results

6.4.7 Combined with higher order map

We finally test the combined version again, but this time with a higher order map function. The code
is given in figure ??. We expect to see less speed gains than using the inlined map used in the previous
tests.

mapTree :: (a → b)→ BinTree a → BinTree b
mapTree f (Leaf a) = Leaf (f a)
mapTree f (BinTree l a r) = BinTree (mapTree f l) (f a) (mapTree f r)

testTreeHigherOrderMap :: BinTree Int
testTreeHigherOrderMap = mirror (mapTree (const (fac 12)) (genBalancedBinTree 20))

testBinTreeHigherOrderMap :: Int
testBinTreeHigherOrderMap = countNodes testTreeHigherOrderMap + length (flatten testTreeHigherOrderMap) + sumTree testTreeHigherOrderMap

main = print testBinTreeHigherOrderMap

Figure 6.25: Combined with higher order map

When we analyse the results in table ?? we see that indeed we get a lower speed gain. However the
total time is drastically lower. I have no idea why this is the case.

Average Minimum Maximum
Normal 7.167 6.966 7.412
Optimized 6.345 6.091 6.574
Speed gain 11.5% 12.6% 11.3%

Table 6.10: Results

62 CHAPTER 6. RESULTS

7. Related work

The main related work is of course [?] by Hidde Verstoep as this whole thesis is based upon it. In
[?] counting analysis is presented formally for a simpler language than what is presented in this thesis.
Verstoep presented the theory and a heap recycling optimization. In this thesis the focus was on making
counting analysis a practical analysis and extending it to work for UHC core. Without the theoretical
work of Verstoep this thesis would never have been started. Even though both theses describe counting
analysis the focus was completely different. In this thesis the focus was on making runtimes lower by
using counting analysis combined with a strictness optimization.

Although counting analysis is defined in [?], the idea for it is sketched inside [?]. Wansbrough describes
a fully functional polymorphic usage analysis, complete with a datatype annotation algorithm. The
datatype annotation algorithm in this thesis is derived from [?] and extended to work for the annotations
used by counting analysis.

[?] introduces a backwards analysis to do a more precise sharing analysis, especially for one-shot
lambda’s. This is done by not only keeping track of the usage of functions but also of their demand1.
The reason for separate demands is the fact that seq does evaluate its first argument but does not use it.
This is a simple analysis that performs well on first order functions. As [?] targets GHC core and GHC’s
inliner removes a lot of higher order functions, the analysis in [?] does well for GHC2.

[?] introduces a monomorphic, monovariant strictness analysis with subeffecting. The language con-
tains a strict application as a construct to force evaluation3. Normal strictness analysis only track the
demand of values. To improve the analysis here another property is tracked in the analysis. They call
this applicativeness, or whether or not a function will be applied to a value. This basically is the inverse
of what [?] does. There usage is tracked and for functions demand is tracked separately, here demand
is tracked and for functions usage is tracked separately. The strictness optimization described in [?] is
implemented in this thesis. It is mostly identical except for the necessary extensions to make it work for
UHC core.

A polyvariant strictness analysis is given in [?]. Here the idea is that polyvariant functions get addi-
tional formal parameters for the annotation variables. These are then later compiled away to specialized
monovariant versions of the function. As a result we can make specialized functions for given annotations.
This is one way to solve the problem that functions cannot be optimized if the annotations are unknown.

The idea for a single unifying analysis is first sketched in [?] and fully worked out for a prototype
language in [?]. The latter also extended the analysis to include uniqueness analysis. [?] gives a polymor-
phic, polyvariant generic analysis that can be instantiated with or without subeffecting. This includes or
excludes uniqueness analysis from the resulting combined analysis.

1Using a function means applying it to an argument, demanding a function requires it to be in whnf. So demanding a
function does evaluate the function, but does not use the function.

2There are some limitations exposed in the form version of the paper.
3Equivalent to seq

63

64 CHAPTER 7. RELATED WORK

8. Conclusion and further work

This has been a long and bugful experience. Although in the end we really did achieve some good speed
ups from the strictness optimization, there are still some problems left over. The problems fall in three
catagories:

Theoretical These are problems with the type theory. For example the theory of dealing with imports
exports might or might not be correct.

Implementation These are problems with mapping the type theory to the implementation inside UHC.
For example there are still some bugs with multi argument functions and datatypes resulting in
incorrect absence annotations.

UHC These are problems within the UHC compiler which are exposed by the implementation. For
example the core generated by type classes and instances is not correctly ordered.

8.1 Theoretical

As the theoretical work of Verstoep [?] only dealt with a simplified language instead of the full fledged core
of UHC there needed be some extensions to the type system made. Most extensions were straightforward
additions to the type system1. However there are a few extensions that were not straightforward. These
are the modular analysis mode 2 and strict fields of datatypes.

The modular part gives errors3 during the analysis when imprecise information is retrieved from an
imported symbol, while the analysis can deduce locally more precise annotations. This happens mostly
with class function as they tend to end up with > in most places4.

The theory for strict datatypes quickly became a mess and took too much time away from the main
parts of the thesis, so in the end they were removed from the theory. The only part where it is still
present is in the datatype annotation algorithm5. This is because it is used inside the standard libraries
of UHC and they needed to be supported, although that support only means that it does not crash the
analysis. The information for strict fields is just ignored. This means that we end up with a too low count
of demands on these fields. For the strictness optimization this means that we err on the safe side6. This
does however block the analysis results from being useful for a sharing optimization.

There are some UHC core structures which are just ignored in the type system and it is hoped that
they do not break the algorithm when encountered. These are existential types and higher ranked types.
Luckily these are not commonly used and any type errors are ignored when encountered during solving.
As UHC has already done type checking, the analysis just assumes the types are correct and ignores the
errors. As there is also no way to give type signatures7 to the analysis, all types are inferred during
constraint solving, higher ranked types cannot work at all. Also without user supplied type signatures
the uniqueness typing analysis part of counting analysis is not really useful.

8.2 Implementation

Although the constraint generation implementation was a straightforward mapping from the type rules
to Haskell AG code, the constraint solver implementation was a lot less straightforward. Not because the
algorithm outlined in section ?? was not straightforward to map, but because the presented algorithm is
way to inefficient to be used as an actual implementation8.

Due to the severe rewrite of the constraint solver there are still some bugs in the analysis. All known
bugs result in a lower count9 so the wrong annotations are still safe for the strictness optimization. This

1This includes the transforming of seq to let!, FFI and constants
2E.g. dealing with imports and exports
3It generates a message that > is not equal to some more precise annotation value. It does not seem to generate wrong

type annotations in other parts of the code.
4This is because they are translated into datatype definitions. The algorithm to give annotations to datatypes does not

descend very deep into the types. This is to have reasonable types without hurting performance much.
5See section ??.
6As with a lower count we might not be able to optimize. Not optimizing is always safe.
7Neither with nor without annotations are possible in the current system.
8For comparison, the algorithm in section ?? took around six hours to solve 45 thousand constraints, while the worklist

algorithm used in the final implementation takes around six minutes for 75 thousand constraints.
9Actually it results in 0 annotations.

65

66 CHAPTER 8. CONCLUSION AND FURTHER WORK

also means that in the current form the analysis is not ready to work for sharing, uniqueness or absence
optimizations.

There are two known specific bugs and some known unspecific bugs. The specific bugs are both
illustrated in chapter ??. The first one is present in section ??. There is a bug present that the argument
of the function argument of lgo gets annotated with 0 instead of with > or an annotation variable. It does
not happen for all higher order functions. It seems to happen on the first argument of a two argument
function, but it does not happen on all those functions. The second one is presented in section ??. It
is most clearly visible in the type for mirror . The annotations on it somehow specify the sub-trees are
not demanded at all. As it is clearly not the case this is a bug. I believe these two bugs are related but
cannot find what exactly goes wrong10.

There are also some unspecific bugs in the analysis. Some functions crash during the analysis when
defined inside one module, but when moved to another module they work just fine. Certain definitions of
functions which involve guards result in a crash during the analysis. Rewriting those functions using an
if then else expression or a case expression avoids the crash.

8.3 UHC

UHC is not the most stable compiler and there are bugs in it. The most glaring of those is that when
using classes and instances the instance record is bound by a let before the base class record is bound by
a let. During the analysis this results in an out of scope error11.

Some programs just crash when compiled with UHC. For example the program main = foldl (+) 0 [1 . . 10000000]
results in a crash12. The end result is not outside of the range of Int nor does the program run out of
memory.

As the UHC.Base module was too big for the analysis to analyse in a reasonable amount of time,
the module was split into multiple modules. The first attempt named these modules UHC.Base# where
was a single digit. Turns out digits inside module names is not supported by UHC. It compiles the
package fine, but any package with a module that has a name which contains a digit is hidden from other
packages. This made the UHC.Base modules unusable for every module not inside the UHCBase package,
including the Base package that includes the Prelude module.

8.4 Further work

Although the analysis and implementation as they are currently achieve significant speedups in most
situations. It needs some further work to make it fully useable:

• Formalize the theory about imports and exports.

• Formalize the theory about strict data types.

• Formalize the theory about user supplied type signatures. Both with and without usage and demand
annotations.

• Formalize the theory about existential types in data type declarations.

• Fix the bugs with annotations incorrectly becoming 0, so other optimizations can safely be imple-
mented.

When the above points are done this enables more further work:

• Uniqueness typing. Although this disables subeffecting it might not be that bad13 in most cases
due to polyvariance.

• With uniqueness typing a heap recycling optimization can safely be implemented.

• More optimizations based on the annotations of counting analysis. This include dead code removal,
lambda/let floating, unboxed types and non-updating thunks.

10It is hard to see where in over 2000 constraints it goes wrong.
11In the implementation there is now code present that fixes these out of scope errors.
12The program main = foldl (+) 0 [1 . . 1000000] does not results in a crash.
13Resulting in useless > annotations.

8.4. FURTHER WORK 67

• Compilation of polyvariant functions using code duplication for different strictness annotations14.
For example foldl where we can generate two versions. One where the supplied function is strict in
its first argument and one the most general annotated version. Then at call site point to the correct
version of foldl .

14See chapter 5 of [?]

68 CHAPTER 8. CONCLUSION AND FURTHER WORK

A. Annotation constrain solving

Here is presented the algorithmic style version (figure ??) of the complex annotation constraint solving
rule. The helper functions are mostly presented using Haskell style. Definition of Haskell prelude functions
are omitted.

S (ϕ3 ≡ ϕ1 � ϕ2, φ, ψ) | isvar ϕ1 ∨ isvar ϕ2 =
let

favs = fav (ϕ3 ≡ ϕ1 � ϕ2)

(ϕ,$) = [ψ (x) | x ← favs]

(ϕ′, $′) = [[(a, av) | av ← av] | (a, av)← (ϕ,$)]

(ϕ4, $4) = sequence (ϕ′, $′)

(ϕ5, $5) = [(ϕ4, $4) | ((ϕ4, $4), φ1) ((ϕ4, $4),$4/ϕ4), ϕ3 [φ1] ≡ ϕ1 [φ1] � ϕ2 [φ1]]

if ((ϕ5, $5)) ≡ [] then error "Unsatisfiable constraint"

(ϕ6, $6) = combine (concat ((ϕ5, $5)))
ψ2 = [x/y | x/y ∈ ψ, y /∈ ϕ6]

(φ2, ψ3) = partition (λ(x/y)→ size x ≡ 1) ψ2

ψ4 = [$6/ϕ6] ++ ψ3

useless = size favs ≡ 1 ∧ ψ4 (favs) ≡ P (>)− ∅
C3 = if useless then ∅ else ϕ3 ≡ ϕ1 � ϕ2

φ3 = equalvars ((ϕ5, $5))
φ5 = [x/y | x/y ∈ φ3, /y /∈ φ2]
φ5 = φ++ φ2 ++ φ5

ψ5 = [x/y | x/y ∈ ψ4, /y /∈ φ5]

in (φ6, ψ5, C3)

ψ (x)
| x :$ ∈ ψ = $
| ohterwise = P (>)− ∅

combine :: [[(a, b)]]→ [(a, [b])]
combine [] = []
combine ((a, b) : xs) = let ys = combine xs in insert a b ys

insert :: a → b → [(a, [b])]→ [(a, [b])]
insert a b [] = (a, [b])
insert a b ((x , y) : xs) = if (x ≡ a) then (x , b : y) : xs else (x , y) : insert a b xs

size :: [a]→ Int
size [] = 0
size (: xs) = 1 + size xs

partition :: (a → Bool)→ [a]→ ([a], [a])
partition [] = ([], [])
partition f (x : xs) = let (ys, zs) = partition f xs in if f x then (x : ys, zs) else (ys, x : zs)

equalVars :: [[(Var,AnnVal)]]→ Map Var (Set Var)
equalVars [] = Data.Map.∅
equalVars (xs : xss) = Data.Map.unionWith Data.Set.intersection toM $ equalVars xss

where
toM = toM2 $ map snd $ Data.Map.toList $ revMap $ Data.Map.fromList xs
toM2 [] = Data.Map.∅
toM2 (y : ys) = Data.Map.union (toM2 ys) $ Data.Map.fromList $ map (λv → (v , y)) $ Data.Set.toList y

revMap :: (Ord a,Ord b)⇒ Map a b → Map b (Set a)
revMap = revMap′ ◦Data.Map.toList

where revMap′ [] = Data.Map.∅
revMap′ ((k, v) : xs) = Data.Map.insertWith (Data.Set.union) v (Data.Set.singleton k) $ revMap′ xs

Figure A.1: Annotation constraint solving

69

