
MSc thesis

Generating robust schedules for train
maintenance sta�

Author:
J.W. den Ouden

Supervisors:
dr. J.A. Hoogeveen

dr. ir. J.M. van den Akker
ir. B. Huisman

ICA-3927806

ABSTRACT

Train units are cleaned, inspected, and parked on shunting yards when not needed in service. One
of the components of automatically generating plans for such a train service yard is to assign all
tasks that need to be performed to personnel. These tasks are subject to release dates, deadlines,
precedence constraints, and are situated at different locations at the shunting yard. We propose an
approach using a greedy heuristic to obtain an initial solution, and a local search improvement step,
optimizing a combination of the flexibility, fairness, and walking distances. The method is able to
consistently find succesful results for realistic scenarios.

iii

ACKNOWLEDGEMENTS

There are a few people without whom I could not have written this thesis. First of all, I would like to
thank my supervisor Han Hoogeveen from the Department of Information and Computing Sciences
at Utrecht University for his excellent guidance during the writing of this thesis. His feedback and
criticism were immensely useful. Furthermore, I would also like to thank NS and especially my
supervisor Bob Huisman at NS for providing the opportunity to write my thesis at his department
of Maintenance Development, and for the useful discussions we had on the scheduling problems at
the service sites. Furthermore, I would like to thank my colleagues of Maintenance Development.
Besides Bob, Roel van den Broek deserves special thanks, for his great help, and for acting as a
sort of extra supervisor. I would also like to thank my fellow interns at InterNS for enriching my
internship with many discussions and for the fun and insightful trips to other parts of NS. Finally, I
would like to thank my family and friends for their moral support during the writing of my thesis.
— Joris den Ouden, February 2018

v

CONTENTS

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Context . 1
1.2 Automated plan generation of service sites . 3
1.3 Problem statement . 4
1.4 Related problems . 5
1.5 Robustness as objective in scheduling . 7
1.6 Structure of this thesis . 8

2 Problem description 9
2.1 Problem instances . 9
2.2 Goal . 12
2.3 Objective function . 15
2.4 Assigning completion times given lines of work 15
2.5 MIP formulation . 16
2.6 Complexity . 18

3 Modeling the problem as an STN 21
3.1 Simple Temporal Problem . 21
3.2 Modeling a problem instance and solution . 24
3.3 Flexibility . 28
3.4 Improving performance . 31

4 Heuristic approach 37
4.1 Objective functions . 37
4.2 Heuristic for initial solution . 38
4.3 Improvement using local search . 39
4.4 Incremental solutions . 43
4.5 Handling infeasible solutions . 44

vii

viii Contents

5 Column generation approach 47
5.1 Master problem . 47
5.2 Pricing problem . 49

6 Experimental setup 51
6.1 Kleine Binckhorst . 51
6.2 Test scenarios . 55

7 Results 59
7.1 Ability to find solutions . 59
7.2 Quality of the solutions . 62
7.3 Performance . 65

8 Conclusion 69
8.1 Conclusion . 69
8.2 Model enhancements . 69

Bibliography 73

A Tables 77

1INTRODUCTION

In this study, we focus on the personnel scheduling problem for service sites belonging to the
Nederlandse Spoorwegen (NS), which are the locations where trains are cleaned, inspected, and
parked during the night. There are around 35 service sites around the country. The goal is to
distribute the tasks that need to be performed in the planning period over the members of staff,
resulting in a line of work for each member of staff. Not all members of staff are identical, since we
consider cleaners, engineers, and technicians, and since we consider different shifts. The objective
is to find schedules that are resistent to delays, and have a fair balance between the workloads of
each member of staff, while minimizing traveling times between locations on the service site.

The personnel scheduling is only a small part in the automated generation of plans for the service
sites. The complete problem consists of several parts, including the assignment of parking tracks,
job-shop scheduling of the cleaning and inspection activities on tracks, and calculating the shunting
routes. The personnel scheduling is the final step in the process, as we take a solution for the other
problems, and use it as input for the personnel scheduling problem. For the other parts, algorithms
have been developed in the past. The algorithm currently in use is made by Van den Broek [5], and
uses local search to find a solution for the shunting routes and job shop scheduling problems. We
use the output of that algorithm as input for our problem.
Section 1.1 contains some information about the NS and the various types of maintenance per-

formed. Section 1.2 discusses the complete problem concerning the automated generation of plans.
Section 1.3 contains a brief problem statement, and Section 1.4 contains some information on related
problems and solutions from literature. In Section 1.5, we discuss some methods to measure the
robustness of a schedule. Finally, Section 1.6 contains the outlint of the rest of the thesis.

1.1 Context

The Nederlandse Spoorwegen (NS) is the largest railway operator in the Netherlands, transporting
over a million passengers each day. To transport the passengers, NS owns over 600 Electric Multiple
Units (EMUs). Of course, these EMUs need regular cleaning, inspections, and maintenance. NS
makes the distinction between three types of maintenance on the fleet. These types are

First-line service This type of service includes cleaning and performing inspections on the EMUs.
Small technical problems will be fixed if detected and if time allows it. The first-line service
happens every day, generally at night, at one of around 35 service sites, or “servicebedrijven”.

1

2 introduction

Technical maintenance This type of maintenance consists of more thorough inspections and large
repair jobs. Parts can be taken off the EMU to be replaced. Technical maintenance generally
happens every few months. This happens at the four “onderhoudsbedrijven”, which are
located in Amsterdam, Leidschendam, Maastricht, and Onnen.

Refurbishment EMUs are refurbished once or twice during their lifetime, which generally comes
down to around every fifteen years. This generally includes stripping the EMU back to the
chassis, refurbishing or replacing components where needed, and putting it back together.
This is generally paired with an overhaul of the interior. This process is performed to
ensure that the EMUs still meet modern standards, and to extend the lifetime of the EMU.
Refurbishments of EMUs happen in Haarlem, while components are refurbished in Tilburg.

The problem we cover in this thesis relates to the first-line service. First-line service happens
outside of passenger peak hours, i.e. between the morning and evening rush, and in the night. It
consists of several types of tasks, which may require specific types of member of staff, or require
different resources, such as specialized types of tracks. The regular types of activities are

Safety check A Set of inspections performed every twelve days. An A-check takes 8 to 27 minutes
depending on the type of the EMU. These checks can be performed at all regular tracks.

Safety check B Set of inspections, performed every two days, depending on the type of the EMU.
A B-check takes about 38 to 90 minutes to complete, depending on the type of EMU. These
checks can be performed at all regular tracks.

Internal cleaning Cleaning of the interior of the train by a cleaning team. This happens every day
and takes between 24 and 46 minutes per carriage, depending on the type of the EMU. These
need to be performed at a track with a cleaning platform.

External cleaning Cleaning of the exterior of the EMU using a washing installation, either with
soap or with oxalic. This is done once a week. Every ninth time is with oxalic, the rest is with
soap. Oxalic cleaning takes 4 minutes per carriage, and 10 minutes for each end. Cleaning
with soap takes 1 minute per carriage, and 10 minutes for each end. External cleaning is done
in the washing machine.

Furthermore, some activities are only done incidentally, if the need arises. We do not take these
into account, as they are not in the scenarios we import. These types of activities are

Small repairs Reparations of small problems that would prevent the EMU from leaving the facility.

Removing graffiti Removal of graffiti if needed.

Service requests Performing repairs requested by Materieel Bijsturing.

ATB maintenance Performing maintenance on the ATB security system (Automatische TreinBeïn-
vloeding).

1.2 automated plan generation of service sites 3

1.2 Automated plan generation of service sites

The NS tries to automate the generation of plans for service sites. This is done both to serve as
a decision support tool for human planners, and to service as a tactical aid for strategic decision
making. Since NS will be expanding its fleet in the coming years with over 250 new EMUs, the
current facilities need to be evaluated to determine whether they are sufficient to accomodate the
extra EMUs, or whether expansions need to be made. This evaluation is done by estimating the
capacity of a service site, measured as the number of EMUs the service site is able to service in one
day/night.
The process at a service site is as follows. EMUs enter the service site from the main railway

network at exact times, either individually or combined. EMUs also leave the facility at exact times,
either individually or combined. Because the combinations when entering and leaving are not
necessarily the same, and because the combined EMUs may be too long for certain tracks, the trains
need to be split and combined. Furthermore, each EMU needs internal cleaning, and some EMUs
need external cleaning or safety checks. Finally, EMUs are also simply parked on the service site.
Since tasks like cleaning require specific types of track, the EMUs are driven around the facility.
The capacity is estimated by solving six subproblems:

1 Matching EMUs to combinations: As EMUs are able to drive in combinations, EMUs may enter
the location combined and need to leave the location in different combinations. For example,
it may occur that the combination ICM III+IV+III enters, while the combinations ICM IV
and ICM III+III need to leave. A matching between the incoming and outgoing combinations
needs to be found, where each incoming EMU is matched to a component in an outgoing
combination.

2 Job-shop scheduling for non-human resources: The tasks that need to be performed on each EMU
are distributed over the non-human resources. These can include the washing installations,
tracks that allow the bottom of the train to be inspected, isolated tracks for inspections on
the ATB security system, etc.

3 Assigning stabling tracks: The service sites also serve as a parking location for (combined)
EMUs when they are not in service. For this, there is a set of stabling tracks. Each EMU needs
to be assigned to a stabling track, for when there is no task being performed on the EMU.

4 Finding shunting routes: EMUs need to be routed through the location, as the maintenance
may need to happen at specific locations. EMUs also need to be routed from the entrance/exit
to the maintenance locations and to their stabling track. This results in a set of shunting
operations, where an EMU is moved from one track to another.

5 Determining when to split and combine: In order to change the combinations of the EMUs, the
EMU combinations need to be split. Later, EMUs need to be connected in order to obtain
the desired combinations. The problem in this step is to find out when and where to do the
splitting and combining.

6 Job-shop scheduling and routing human resources: Finally, the human resources need to be
assigned to the tasks. This includes themaintenance and cleaning tasks, as well as the shunting

4 introduction

of the EMUs. The human resources are planned at a later stage than the non-human resources
since the assignment of human resources to tasks is often dependent on the location of the
EMU. There may also be additional constraints on the workloads of the human resources,
such as balance between workloads, mandated break times, walking distances, etc.

This thesiswill focus on finding a solution for Subproblem 6, given a solution for the Subproblems 1
to 5. A solution for Subproblems 1 to 5 consists of an assignment of starting and ending times to each
job that needs to be scheduled, as well as for any added jobs for splitting, moving, and combining
the EMUs. Te solution also contains the start and end locations for each job, and the set of resources
(such as tracks) required to execute the task.

1.2.1 Previous work

Several papers and theses have already been written about (parts of) this problem. Here, we will try
to give a brief summary of the work so far.
NS have created a tool internally that is known as the OPG. This tool is based on the model

by Kroon et al. [26]. The OPG is able to determine the matching for incoming and outgoing
EMU compositions, determining the track assignment for parking, and determining the shunting
movements. Note that the OPG does not take tasks into consideration in any way, i.e. it solves
Subproblems 1, 3 and 4. TheOPGworks by solving a shortest path problem usingDijkstra’s algorithm
and by solving an MIP.
Van Dommelen [11] provided a method for solving Subproblem 2, i.e. scheduling the service

tasks. To do this, a heuristic and a mixed integer programming approach were used. Here, the
cleaning activities were modeled as a hold-while-wait flow shop problem. The matching and track
assignments were done using the OPG.

Van den Broek [5] has created a model that integrates Subproblems 1 to 4 and solves the problem
as a whole using simulated annealing. The performance of this heuristic has been compared to the
OPG in both artificial and real scenarios. The heuristic is able to plan more EMUs than the OPG,
even in testcases where no service tasks have to be performed.

Other authors who have worked on this problem are Van den Heuvel [19], who uses a decomposi-
tion approach to solve Subproblems 1 to 4, andWolfhagen [38] who uses amathematical programming
approach to solve Subproblems 1, 3 and 4, with reallocation of trains during the planning period.

None of the models explicitly take into account Subproblems 5 and 6. For example, Van den Broek
[5] assumes that all splitting of EMUs will happen immediately on entry and combining will happen
just before exiting. It is also assumed that there is always a sufficient number of human resources at
every location.

1.3 Problem statement

We designate Subproblem 6 as the NS Staff Routing Problem (NSSRP). Since the input of the NSSRP
is a solution for Subproblems 1 to 5, the result of solving the NSSRP is a solution for Subproblems 1
to 6.
An instance of the NSSRP consists of a set of activities to be scheduled, with release dates,

durations, deadlines, and start and finish locations. Furthermore, an activity may require one

1.4 related problems 5

member of staff of a specific type, such as a cleaning team or an engineer. Some tasks do not require
any technician. The activities are ordered using precedence relations. The instance also contains a
set of staff members, each with their own shift and skill.

The goal is to assign the activities to members of staff, resulting in a line of work for each member
of staff. This line of work must also contain a break roughly in the middle of their shift. Note that
these lines of work only add extra precedence constraints to the activities, they do not specify exact
starting times. These starting times can be inferred using the constraints.
The objective is to find a schedule that is resilient to disruptions, contains a fair distribution

of labour over the members of staff, and minimizes walking distances. The fairness is measured
using the standard deviation of the lengths of the lines of work, where the length is the sum of the
durations of the activities contained and the walking distances in minutes between the activities.
The resilience is measured using a measure known as concurrent flexibility. For more details, see
Section 1.5 and Chapter 3.
The complete definition of the NSSRP is given in much greater detail in Chapter 2. The release

dates, deadlines, and precedence constraints are given based on a solution for Subproblems 1 to 5,
which we obtain from Van den Broek [5]. For more information, see Chapter 6.

1.4 Related problems

In this section, we discuss some problems that are related to our problem. We will use the terms
resource and staff member interchangeably.

Resource flows In the standard resource-constrainted project scheduling problems (RCPSP), indi-
vidual units of resources are generally considered as equal. However, in some cases, it might pay
off to individualize resource units. This entails finding a line of work for each unit of the resource,
which results in additional precedence constraints. One technique used to individualize resource
units at this stage is to use resource flow networks, defined by Artigues and Roubellat [3]. In a
resource flow network, the activities are represented in a graph, and the resources are represented
as flow through the graph. When resources are allocated, precedence constraints are added between
tasks performed in succession by each unit. Since the result is a set of precedence constraints, no
starting or finishing times are fixed. An example of the application of resource flow networks on
the RCPSP is given by Leus and Herroelen [28].
Finding a resource flow is similar to solving the NSSRP in that it finds a line of work for each

individual resource unit, adding precedence constraints for each line of work. Furthermore, the
starting and finishing times of activities are not fixed. However, no release dates or deadlines are
used. Furthermore, the tasks are not geographically distributed, so there are no travel times.
A heuristic for finding resource flows is provided by Policella et al. [33], who propose a method

known as Chaining in order to improve robustness. Chaining is a greedy construction heuristic
that assigns tasks to specific resource units in such a way that the number of synchronization points
is minimized. For example, assigning tasks related by precedence constraints to the same technician
improves the reliability, as domino effects are less likely.

Deblaere et al. [9] propose three heuristics based on integer programming and one constructive
procedure. One of these works by minimizing the number of extra precedence constraints, one

6 introduction

works by maximizing the amount of time by which each activity may be delayed without delaying
the start of each other activity. The third heuristic works similar to the second heuristic, but it is
more selective in the selection of pairwise floats.

Technician and task scheduling problem (TTSP) Dutot et al. [12] give a description of a challenge
problem, for which solutions were provided by several authors. An instance of the technician and
task scheduling problem (TTSP) consists of a set of tasks that need to be performed during the
planning period, and a set of technicians. The planning period is several days. Each technician is
proficient in a number of skills, with varying levels of proficiency. Tasks vary in difficulty and may
require more than one technician. In the problem, technicians are grouped into teams in order
to perform the tasks. Teams must stay together on a given day, but can be broken up on other
days. Technicians can be unavailable on specific days. Furthermore, each task also has a duration,
outsourcing cost, a set of predecessor tasks, a set of successor tasks, and a priority. The objective is
to minimize the makespan. Furthermore, a budget is available for outsourcing.

The TTSP is similar to the NSSRP, as both are variations of the RCPSP, with precedence con-
straints, multiple skills, and unavailable resources. The differences are that the TTSP does not
consider release dates, deadlines, and geographic locations. The TTSP also fixates the starting
and finishing times of tasks in a solution, whereas the NSSRP only returns an ordering on the
tasks. Furthermore, the NSSRP does not consider overlapping skills, multiple proficiency levels, or
outsourcing.

Firat and Hurkens [13] give an MIP-formulation for this problem, while Cordeau et al. [7] use an
adaptive large neighbourhood search approach, using construction heuristics to obtain an initial
solution.

Service technician routing and scheduling problem (STRSP) Kovacs et al. [25] build upon the approach
by Cordeau et al. [7]. They define a new problem, known as the service technician routing and
scheduling problem (STRSP). The STRSP is an extension of the TTSP, where besides the required
skills, duration, priority, and precedence relations, each task now also has a release date, deadline,
and geographical location.

The STRSP is very similar to the NSSRP, since both are variations of the RCPSP with precedence
constraints, multiple skills, unavailable resources, time windows, and geographic locations. Like
with the TTSP, the main difference is that the STRSP fixates the starting times and finishing times
of each task in the solution, whereas the NSSRP should only return an ordering on the tasks. The
STRSP also does not consider tasks where the starting and finishing locations are different, as can
be the case in the NSSRP.

Kovacs et al. [25] use adaptive large neighbourhood search to find solutions, both for the problem
with teams as for the problem without teams. Pillac et al. [30] also provide a solution for the STRSP,
using a regret constructive heuristic, parallel adaptive local search, and a mathematical-based
post-optimization step, based on solving a set-covering problem.

1.5 robustness as objective in scheduling 7

1.5 Robustness as objective in scheduling

We use the robustness as one of the terms in the objective function. Of course, the robustness of
a solution can be defined in several ways. We use proactive scheduling, meaning that we try to
find schedules that are resistant to disruptions. In other words, schedules that are still valid when
disruptions occur. We do not consider stochastic runtimes.
One of the robustness measures proposed is the measure of fluidity by Cesta et al. [6], which is

based on the temporal slack associated with each activity. The higher the fluidity, the less the risk
of a domino effect if a task is delayed. Another measure is the measure of flexibility by Aloulou and
Portmann [2], which counts the number of pairs of activities in the solution which are not ordered
by precedence constraints, both implicitly or explicitly. The higher this value, the lower the degree
of interaction. Policella et al. [34] also introduce the measure of disruptability, which takes into
account the impact of disruptions on the schedule.

Deblaere et al. [9] use three different robustnessmeasures. The first of these is based onminimizing
the number of precedence constraints the solution adds to the problem instance. The other two are
based on the pairwise floats, i.e. the amount of time between the finishing time of an activity, and
the starting time of an activity that starts sometime after the first activity has been completed. One
of the measures uses the minimal sum of pairwise floats on all paths from one activity to another.
The measure itself is the sum of these minimal sums for each pair of activities for which a positive
resource flow is possible.The measure itself is the minimal sum of all these pairwise floats on all
paths between. High values indicate a more stable resource allocation. The second measure using
pairwise floats is more selective in the selection of pairwise floats: a higher priority is given to
activities occuring at the end of the schedule, when compared to activities that occur early in the
schedule. This is done since the activities that occur later in the schedule have a higher probability
of being delayed.
A more general way of measuring robustness is by encoding the problem instance and added

precedence constraints as part of the solution as a simple temporal problem (STP), defined by
Dechter et al. [10]. A simple temporal problem consists of a set of variables, representing events in
time, and a set of temporal constraints between these variables. Scheduling problems are generally
represented with two variables for each activity, one representing the starting time of the activity,
and one representing the finishing time, with a constraint between them to indicate the duration,
or minimal duration. Using the graph representation, it can be determined whether the problem
instance with added precedence constraints is still feasible. It can also be determined what the
earliest and latest execution times of each variable are, by using a shortest path approach.

Using this representation, the flexibility of an STP can be determined. One such way is to simply
add the size of the allowed interval for each variable (i.e. the amount of time between its latest and
earliest execution time). The measure by Hunsberger [21] extends this approach, by also taking into
consideration the flexibility between pairs of activities, instead of just the activities on their own.
However, Wilson et al. [37] have shown that both these measures fail to capture the correlations
between the temporal variables in a satisfactory way. They introduce their own method, known as
concurrent flexibility, which finds a set of intervals for each variable, such that any value can be
chosen from these intervals without affecting the ability to choose values for other variables. The
concurrent flexibility is the set of intervals such that the total size is maximized.
Out of these robustness measures, we use the concurrent flexibility. For more details, see

8 introduction

Chapter 3.

1.6 Structure of this thesis

The structure of the rest of this thesis is as follows. Chapter 2 contains the complete specificiation
of the problem, including a MIP-formulation and NP-completeness proof. Chapter 3 contains the
method we use to model our problem, in order to be able to measure the flexibility. Chapter 4
contains the details on the method used to solve the problem. Chapter 5 contains an alternative
for the MIP-formulation, which uses column generation. Chapter 6 contains the method used to
evaluate our method, which is done by a case study for NS. The results are shown in Chapter 7.
Finally, Chapter 8 contains the conclusion and some remarks on how the model could be enhanced
in the future.

2PROBLEM DESCRIPTION

In this chapter, we will give a description of the problem at hand. Section 2.1 gives a description of
the contents of a problem instance. Section 2.2 gives the contents of the solution, and Section 2.3
gives the contents of the objective function. Section 2.4 contains a method to check the feasibility of
a solution. Section 2.5 contains a MIP formulation of the problem. We give an NP-Completeness
proof in Section 2.6.

2.1 Problem instances

Our problem consists of assigning activities that are to be performed on trains to members of staff.
These activities include cleaning, inspections, and shunting. Cleaning can only be done by cleaners,
inspections can only be done by mechanics, and shunting can only be done by engineers. In doing
this, we need to take the constraints placed on the ordering of these activities into account. These
constraints originate from the solution found by the algorithm by Van den Broek [5], and consist of
an ordering of the activities concerning each individual EMU, and an ordering on the activities
concerning each non-human resource, such as tracks. Furthermore, since the EMUs enter and
exit the location at predetermined times, we also need to take the release dates and deadlines of
activities into account. Like the constraints, these members of staff also have a specific time interval
in which they are available to work. Finally, since the service sites we will be looking at can be quite
large, and the activities are located at different parts of the service site, we also need to take the
walking distances of the members of staff into account.

The main goal now consists of finding a line of work for each member of staff, where a line of
work consists of the activities that the member of staff will perform. These lines of work should be
chosen such that each activity is performed, each member of staff has a line of work containing
only activities of the correct type, and the scheduling problem instance implied by the lines of work
should still be feasible with respect to the precedence constraints, release dates and deadlines, and
walking distances.

In our case, the release dates, deadlines, precedence constraints, etc. originate from a solution for
Subproblems 1 to 5. For more information on the way these values are obtained, see Chapter 6.

2.1.1 Definitions

Definition 2.1. Let L = { 0, 1, . . . , l, . . . , |L| − 1 } be a set of geographic locations. The traveling
times between locations in L is given by the function dist : L × L → R. The distance from i ∈ L

9

10 problem description

to j ∈ L is given by dist(i, j). Location 0 ∈ L is the location of the depot.

Definition 2.2. Let S = { 1, . . . , s, . . . , |S| } be a set of skillsmembers of staff can possess. These
skills are disjoint.

Definition 2.3. LetA = { 1, . . . , i, . . . , n } be a set of activities. An activity i ∈ A has the following
properties:

• Processing time pi ≥ 0: completing i takes at least pi time.

• Release date ri ≥ 0: i can only be started at or after ri.

• Deadline di ≥ 0: i must be finished on di.

• Starting location and finishing location locsi ∈ L and loc fi ∈ L.

• Required skill rqi ∈ S. If no member of staff is required, we have rqi = 0.*

Definition 2.4. A schedule σ : A → R+ consists of an assignment of starting and finishing times
for each activity. The starting time of an activity i ∈ A in schedule σ is denoted as si ≥ 0. The
finishing time of activity i ∈ A in schedule σ is ci ≥ 0. Because of the processing times, we require
that ci ≥ si + pi.

Definition 2.5. σ orig is the original schedule containing the original starting times sorig
i and finishing

times corig
i for each activity i ∈ A, as given by the solution for subproblems 1–5.

Definition 2.6. Let i ≺ j be a precedence constraint, with i, j ∈ A, indicating that j may not be
started until i is finished. In other words, in any feasible schedule ci ≤ sj must hold. The set of
precedence constraints is P .

Assumption 2.1. The precedence constraints in P do not form cycles. In other words, the constraint
graph associated with P is a directed acyclic graph, with a topological ordering.

Assumption 2.2. The set of precedence constraints P does not contain any redundant constraints:

i ≺ j ∈ P ∧ j ≺ k ∈ P =⇒ i ≺ k < P

Definition 2.7. The set of predecessors and the set of successors of activity i ∈ A are the sets of
activities that have a direct precedence constraint with activity i as the later activity or as the earlier
activity respectively, defined as:

prei = { j ∈ A | j ≺ i ∈ P }

suci = { j ∈ A | i ≺ j ∈ P }

* We still consider these activities since they do use other resources, such as tracks. To ensure that we can shift the activities
freely, without risk of using more resources than allowed, we have added precedence constraints for these activities. If
we would not consider them in the planning, we can no longer make these statements.

2.1 problem instances 11

The set of all predecessors and the set of all successors of activity i ∈ A are the sets of activities
that must be finished before i can be started and the set of activities that cannot be started until i is
finished respectively. These are defined recursively as:

aprei = prei ∪
⋃
j∈prei

prej

asuci = suci ∪
⋃
j∈suci

sucj

Definition 2.8. The set of unrelated activities to i ∈ A is defined as follows:

unrli = A \ (aprei ∪ asuci ∪ { i })

Definition 2.9. Let R = { 1, . . . , k, . . . , |R | } be the set ofmembers of staff. A member of staff k ∈ R
has the following properties:

• Start and end of the shift 0 ≤ rsk < rf k.

• A skill rskk ∈ S indicating which activities the member of staff can execute.

Each member of staff has three dummy activities:

• stk < A, representing the start of the shift, with rstk = dstk = rsk, and pstk = 0.

• fik < A, representing the end of the shift, with rfik = dfik = rf k, and pfik = 0.

• brk < A, representing the break. The release date and deadline can be used to control when
the break may take place. These are given in the problem instance.

All of these tasks require the skill rskk and have location 0 ∈ L as start and end location. None
of these activities have any precedence constraints in P . The activities stk and fik are always the
first and last activities to be scheduled for k ∈ R , see Definition 2.13.

Assumption 2.3.We assume that the number of staff members is significantly less than the number
of activities: |R | � |A|.

Definition 2.10. The subset of members of staff that possess skill s ∈ S is Rs = { k ∈ R | rskk = s }.
These sets are disjoint. The subset of activities requiring a skill s ∈ S is the setAs =

{
i ∈ A

�� rqi = s
}
.

These sets are also disjoint. The set of activities requiring any skill s ∈ S is the setAS =
⋃

s∈SAs.

Definition 2.11.We use the following notation to indicate the supersets of A with the dummy
activities added:

Ast = A ∪ { stk | k ∈ R }

Afi = A ∪
{

fik
�� k ∈ R }

12 problem description

Abr = A ∪ { brk | k ∈ R }

Ast,br = Ast ∪ Abr

Abr,fi = Abr ∪ Afi

A∗ = Ast ∪ Afi ∪ Abr

Definition 2.12. A problem instance for the NS Staff Routing Problem (NSSRP) consists of the tuple
〈A,L,P,R,S, dist〉.

2.1.2 Handling other resources

Besides the members of staff, an activity may require other resources, such as (specific types of)
tracks, washing installations, machines, etc. In order to keep the problem contained to the staff
scheduling phase, we assume the following:

Assumption 2.4. The earliest starttime schedule for an instance of this problem is always resource
feasible, w.r.t. to the non-human resources: when each activity is started at the earliest point in time
at which it is allowed, i.e. all predecessors have been completed, then the demand does not exceed
the capacity.

This assumption holds if the non-human resource requirements have been encoded into the
precedence constraints. Making this assumption allows us to disregard all non-human resource
requirements, simplifying the problem. We canmake this assumption because our problem instances
are taken from the solutions produced by the algorithm by Van den Broek [5]. The resources are
assigned in Subproblem 2.

2.2 Goal

The goal is to find a schedule that is feasible from both the time perspective as from the resource
perspective. We say that a schedule is time feasible if there exists an assignment of starting times such
that all constraints, except resource constraints are met. A schedule is resource feasible if there exists
an assignment of resources to all tasks such that there are no conflicts. We use a technique known as
constraint posting to achieve this, see Policella et al. [32]. With a regular schedule, resource conflicts
are avoided by assigning fixed starting times to each activity. When using constraint posting, the
conflicts are avoided by adding extra precedence constraints, ensuring that every schedule that is
time feasible is automatically resource feasible.
As such, our goal is to find a line of work of activities for each member of staff, such that all

activities have sufficient members of staff, and that all constraints are satisfied. These lines of work
imply a set of extra precedence constraints on the activities. Using this representation allows us to
make statements about the flexibility of the found solutions. We define a line of work as follows:

Definition 2.13. A line of work for member of staff k ∈ R consists of a sequence of activities that
are performed by member of staff k in the order in which they are given in the line of work. Lines
of work start with activity stk, followed by brk and zero or more activities fromA in any order,
followed by activity fik. This gives the line of work for member of staff k the following layout:

2.2 goal 13

ωk = [stk = i0, i1, . . . , brk, . . . , im, im+1 = fik]

We denote the i’th activity of ωk as (ωk)i. We denote that an activity i ∈ A∗ is in a line of work
ωk as i ∈ ωk.

In a solution to the problem, an activity can only be on one line of work, as each activity requires
at most one member of staff. This allows us to give the following definitions:

Definition 2.14. The line of work predecessor rprei ∈ A
st,br of activity i ∈ Abr,fi is the activity that

immediately preceedes i in the line of work ωk that contains i. If i = stk, rprei = 0. The line of work
successor rsuci ∈ Abr,fi of activity i ∈ Ast,br is the activity that immediately succeeds i in the line of
work ωk that contains i. If i = fik, rsuci = 0.

Definition 2.15. Let ω be a line of work. The total amount of time used for walking in the line of
work is

wdω =
∑
i∈ω

i<Ast\A

dist(loc frprei, locsi)

The total workload, including the walking distances is

wlω =
∑
i∈ω

pi + wdω

Definition 2.16. The precedence constraints in P and the lines of work result in a constraint graph
G = (V, A), which is defined as follows:

V = A∗

A = { (i, j) | i ≺ j ∈ P } ∪
{
(rprei, i)

��� i ∈ Abr,fi }
Example. Given the example line of work ωk = [stk, 1, 2, brk, 3, 4, fik], we get the following preced-
ence constraints, in addition to the constraints in P .

s1 ≥ cstk + dist(loc fstk, locs1) s3 ≥ cbrk + dist(loc fbrk
, locs3)

s2 ≥ c1 + dist(loc f1, locs2) s4 ≥ c3 + dist(loc f3, locs4)

sbrk ≥ c2 + dist(loc f2, locsbrk) sfik ≥ c4 + dist(loc f4, locsfik)

Remark. In the worst case, we have |A| = O(|V |2). In some cases however, we have |A| = O(|V |).
In that case, the constraint graph is sparse. In the runtime analyses, we give the runtimes for both
cases.

14 problem description

Remark. The constraints in P , and the constraints implied by the selected lines of work, together
with the release dates, durations, and deadlines form a scheduling problem. This problem is
characterized using the following variables:

si = the start time of activity i ∈ A∗

ci = the finishing time of activity i ∈ A∗

The feasibility problem, can them be formulated using the constraints

c j ≤ si ∀i ∈ A, j ∈ prei (2.1)

si − c j ≥ dist(loc fj , locsi) ∀i ∈ Abr,fi, j = rprei (2.2)

ci ≥ si + pi ∀i ∈ A∗ (2.3)
si ≥ ri ∀i ∈ A∗ (2.4)
ci ≤ di ∀i ∈ A∗ (2.5)
si ≥ 0 ∀i ∈ A∗ (2.6)

Constraints 2.1 ensure that the precedence constraints in P are satisfied, and Constraints 2.2
ensure that the precedence constraints implied by the lines of work are satisfied, and that the travel
times are respected. Note that this constraint uses rprei, as given in Definition 2.14. Constraints 2.3
ensure that the tasks take at least their processing times to finish. Constraints 2.4 and 2.5 ensure that
each activity is started after the release date of its project, and finished before the deadline of its
project respectively. Constraints 2.6 control the domain of the decision variables.

Note that ensuring that all activities are executed within the shift of the assigned member of staff
is done through the dummy activities stk and fik and through Constraints 2.2. Therefore, we do not
need any constraints using the values rsk or rf k.

Definition 2.17. A solution Ω for an instance of the NSSRP consists of a line of work ωk for each
member of staff k ∈ R:

Ω = { ωk | k ∈ R }

A solution Ω is feasible if

1. Every activity i ∈ A with rqi , 0 is placed in exactly one line of work ωk ∈ Ω, where
rskk = rqi. Activities where rqi = 0must not be placed in any line of work.

2. Each line of work has the structure as given in Definition 2.13.

3. The scheduling problem specified through Constraints 2.1 to 2.6, given Ω, has a feasible
solution.

2.3 objective function 15

2.3 Objective function

The quality of a solution to a problem instance can be characterized by the following features:

• The plan should be flexible, meaning that it should still be usable if there are small changes in
the problem instance, such as delays in executing a task. This will be covered in more detail
in Chapter 3.

• Fairness between lines of work: it is preferable that the workload is balanced over the work-
force, where wlk is the total workload (including walking) of k ∈ R.

• We want to minimize the walking distance, as it is prefereable that the members of staff do
not have too much overhead.

2.4 Assigning completion times given lines of work

A key part of the NSSRP is that we do not fixate the starting and finishing times of activities.
Instead, we only return a set of lines of work, which add extra precedence constraints. This means
that checking whether a solution is feasible consists of solving the problem specified through
Constraints 2.1 to 2.6. Given that this model is a constraint satisfaction problem on the starting
times, checking the existence of a feasible schedule for a problem instance can also be done by
modeling the instance as a simple temporal network. This is covered in detail in Chapter 3. However,
because the durations are only lower bounds on the durations, and not exact durations, and since
the precedence constraints only specify a lower bound and not an upper bound, we can also use a
simpler method, which simply assigns the earliest possible starting times.
This method consists of two steps. The first step is to check whether the constraints implied

by the lines of work combined with the constraints given in the problem instance do not form
any cycles in the constraint graph. If a cycle is formed, assuming the durations of tasks are larger
than 0, no solution is possible. If no cycle is found, the second step is to find an actual solution. A
solution can be found by choosing the earliest starting times possible for each activity, based on
the precedence constraints, its release date, and the constraints implied by the lines of work. If
there is any activity that cannot be started in time for it to be finished before the deadline, there
is no possible solution. The outline of this algorithm is shown in Algorithm 2.1. The activities are
processed in a topological ordering to ensure that all necessary completion times are known when
determining the starting time of the activity.
We can combine detecting a cycle in a graph G = (V, A) and finding a topological ordering by

using the algorithm by Kahn [23], which runs in O(|V | + |A|) time. The main loop at Line 6 in the
algorithm runs |V | times. At Line 7, a total of O(|A| + |V |) values are compared, as each precedence
constraint is only looked at once, and each activity is checked again. At line Line 9, another O(|V |)
values are compared. This makes the total runtime of this algorithm O(|A| + |V |) = O(|A|). If the
constraint graph is dense, this is a runtime of O(|V |2) = O(|A∗ |2). If the constraint graph is sparse,
we get a runtime of O(|V |) = O(|A∗ |).

16 problem description

Algorithm 2.1: Earliest starting times
Input: Constraint graph G = (V, A) based on 〈A,L,P,R,S, dist〉 and Ω, see Definition 2.16
Output: A solution for the problem given by Constraints 2.1 to 2.6 if one exists

1 τ ← GetTopologicalSort(G) . Using the algorithm by Kahn [23]
2 if τ = nil: . G contains a cycle
3 return no solution possible
4 for i ∈ A∗:
5 si ←∞, ci ←∞
6 for i ∈ τ:
7 si ← max

{
c j

�� j ∈ prei
}
∪

{
crprei + dist(loc frprei, locsi)

}
∪ { ri }

8 ci ← si + pi
9 if si + pi > di:
10 return no solution possible . i cannot be started in time for it to be finished before its deadline

11 return solution

2.5 MIP formulation

In this section, we give an MIP formulation of the problem. This formulation will be used to check
whether instances are easily solvable using a solver, or if solving the instances in an exact way is
infeasible. In the MIP formulation, we use the following variables:

xkij =

1 if activity i ∈ A∗ is the predecessor of activity j ∈ A∗ in the line of work for

member of staff k ∈ R
0 otherwise

yki =

{
1 if activity i ∈ A∗ is executed by member of staff k ∈ R
0 otherwise

ci = completion time of activity i ∈ A∗

We also use some parameters. Ri is the subset of R containing the members of staff that are
allowed to perform activity i ∈ A∗.

Ri =

Rrqi if i ∈ A
{ k } if i ∈

{
stk, brk, fik

}
� otherwise

Since we are only interested in finding a solution, we do not use the complete objective. To steer
the MIP solver in the right direction, we use the walking distances as objective. The problem can
then be formulated as follows:

min
∑
k∈R

∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)x
k
ij (2.7)

2.5 mip formulation 17

subject to

∑
k∈R

yki = 1 ∀i ∈ {
i ∈ A∗

�� rqi , 0
}

(2.8)∑
k∈R

yki = 0 ∀i ∈ {
i ∈ A∗

�� rqi = 0
}

(2.9)∑
k∈R\Ri

yki = 0 ∀i ∈ A∗ (2.10)∑
i∈Abr,fi

xkstk i = 1 ∀k ∈ R (2.11)∑
i∈Ast,br

xkifik = 1 ∀k ∈ R (2.12)∑
j∈Ast,fi

xkji = yki ∀i ∈ Abr,fi, k ∈ R (2.13)∑
j∈Ast,fi

xkjstk = 0 ∀k ∈ R (2.14)∑
j∈Abr,fi

xkij = yki ∀i ∈ Ast,br, k ∈ R (2.15)∑
j∈Abr,fi

xkfik j = 0 ∀k ∈ R (2.16)

ci ≥ ri + pi ∀i ∈ A∗ (2.17)
ci ≤ di ∀i ∈ A∗ (2.18)
c j − ci ≥ pj ∀i ≺ j ∈ P (2.19)

(c j − ci) + M(1 − xkij) ≥ pj + dist(loc fi , locsj) ∀i, j ∈ A∗, k ∈ R (2.20)

xkij ∈ { 0, 1 } ∀i, j ∈ A∗, k ∈ R (2.21)

yki ∈ { 0, 1 } ∀i ∈ A∗, k ∈ R (2.22)
ci ≥ 0 ∀ ∈ A∗ (2.23)

Constraints 2.8 ensure that all activities requiring a member of staff are assigned to exactly one
member of staff. Constraints 2.9 ensure that activities that do not require staff are not scheduled.
Constraints 2.10 ensures that activities are not assigned to members of staff that cannot perform the
activity. Constraints 2.10 ensure that each activity is only assigned to members of staff allowed to
execute that activity. Constraints 2.11 and 2.12 ensure that each line of work starts with the dummy
start activity and ends with the dummy finish activity. Constraints 2.13 and 2.15 ensure that each
activity that is assigned to a member of staff is entered and exited exactly once in the corresponding
line of work. Constraints 2.14 and 2.16 handle the edge cases with the beginning and end of the
line of work. Constraints 2.17 ensure that activities cannot be started prior to the release date.
Constraints 2.18 ensure that activities are finished before the deadline. Constraints 2.19 ensure that
activities related by a precedence constraint are executed in the correct order. Constraints 2.20

18 problem description

enforces the walking distances. Constraints 2.21 to 2.23 specify the domain of the variables.

2.6 Complexity

In this section, we aim to show that the decision variant of the NSSRP, using only the total walking
distance as the objective, is in the complexity class of NP-Complete problems. This variant is defined
as follows:

Definition 2.18. The dNSSRP problem is the decision variant of the NSSRP. Given an instance
P = 〈A,L,P,R,S, dist〉 and a target cost C, does there exist a solution Ω for P such that the total
walking distance is no more than C?

To proof that the dNSSRP is in the complexity class NP-Complete, we first show that it is in the
complexity class NP.

Lemma 2.1. The dNSSRP is in the complexity class NP.

Proof. A solution Ω = { ωk | k ∈ R } for the dNSSRP can be verified as follows:

• Constraint 1 can be verified by checking whether each activity is contained in exactly one line
of work of the corresponding skill. This can be done in O(|A∗ |) time by going through the
lines of work, marking the activities within. The constraint can then be verified by checking
if each activity that needs to be scheduled has been marked by a line of work of the correct
skill.

• Constraint 2 can be verified in O(|A∗ |) time, by checking whether all lines of work conform
to the definition.

• Constraint 3 can be verified by checking whether the selected lines of work still allow for
a feasibible schedule, which requires solving the feasibility problem Constraints 2.1 to 2.6.
This can be done in O(|A∗ | + |P |) time by assigning the earliest possible starting times, see
Algorithm 2.1.

• Checking the total walking distance can be done in O(|A∗ |) by enumerating the lines of
work and adding up the walking distances.

Furthermore, a solution can be represented using the following decision variables:

xkij =

{
1 if the line of work ωk for k ∈ R goes from i ∈ Ast,br to j ∈ Abr,fi

0 otherwise

Since a solution for an instance of the dNSSRP can be verified in polynomial time, and since a
solution can be represented using a polynomial number of decision variables, the dNSSRP is in
NP.

To prove that dNSSRP is NP-Hard, we show that the Hamiltonian path problem, which is
known to be NP-Hard, see Garey and Johnson [17], is polynomial-time reducible to dNSSRP. The
Hamiltonian path problem is defined as follows:

2.6 complexity 19

Definition 2.19. Given an undirected, unweighted graph G = (V, E), does there exist a path π such
that every vertex is visited exactly once?

Lemma 2.2. An instance of the Hamiltonian path problem can be converted in polynomial time to an
instance of dNSSRP.

Proof. We can convert a problem instance P ′ = G = (V, E) for the Hamiltonian problem to a
problem instance P = 〈A,L,P,R,S, dist〉 for the dNSSRP as follows:

• S = { s }.

• R = { k }, with rskk = s, rsk = 0 and rf k = ∞.

• P = �.

• For each vertex i ∈ V , add a location li to L.

• For each vertex i ∈ V , add an activity i to A with pi = 0, ri = 0, di = ∞, rqi = s, and
locsi = loc fi = li.

• For each pair of vertices i, j ∈ V with (i, j) ∈ E, set the distance dist(li, l j) = 0. For all pairs of
vertices i, j ∈ V with (i, j) < E, set dist(li, l j) = 1.

• Add a starting location 0 to L, with dist(0, l) = dist(l, 0) = 0 ∀l ∈ L.
• Set C to 0.

This conversion can be done in O(|V |2) time, which is polynomial.

Lemma 2.3. Let P ′ = G = (V, E) be an instance for the Hamiltonian path problem, and let problem
instance P = 〈A,L,P,R,S, dist〉 the corresponding reduced instance for dNSSRP. The following holds:

P ′ is a Yes-instance for the Hamiltonian path problem ⇐⇒ P is a Yes-instance for dNSSRP

Proof. This proof consists of two parts:

⇒ A Hamiltonian path π can be converted to a solution Ω = { ωk }. The line of work ωk consists
of all activities inA, in the same ordering as the corresponding vertices in the path π . The dummy
activities stk and fik are placed at the start and at the end to model the depot. brk can be placed at an
arbitrary location in the line of work. Since there is only one member of staff and all tasks are in ωk,
Constraint 1 hold. Because of the dummy activities Constraint 2 also hold. The feasibility problem
can then be solved by setting si and ci for all i ∈ A as follows:

si = crprei + dist(loc frprei, locsi)

ci = si + pi

20 problem description

Because there are no precedence constraints, and the release dates and deadlines are all 0 and∞
respectively, the constraints Constraints 2.1, 2.4 and 2.5 hold automatically. Because of the way si
and ci are set, Constraints 2.2 and 2.3 hold respectively. Since all distances to and from 0 are 0, the
implied constraints by the dummy activities stk, fik, and brk also hold.
Since ωk follows the same ordering as the path π , which of course consists of edges in E, and

since we defined dist(li, l j) to have a distance of 0 if (li, l j) ∈ E, we have that each walking distance
in ωk is 0. Furthermore, all walking distances to and from 0 are also defined as 0. Since ωk is the
only line of work, and all walking distances in ωk are 0, the total walking distance in Ω is 0.

⇐ The solution Ω containing only the line of work ωk with total walking distance 0 can be
converted into a sequence of vertices π by removing the dummy activities and adding the vertices
corresponding to the activities in ωk to π in the same ordering.
Since the total walking distance is 0, and since the walking distances can only be positive, we

know that for all i ∈ ωk, the walking distance dist(loc frprei, locsi) is 0. This means that there is an edge
containing the corresponding vertices in E. This means that π is a path, and since ωk contained all
activities inA, π contains all vertices in V , meaning that π is a Hamiltonian path.

Lemma 2.4. The dNSSRP is in the complexity class of NP-Hard problems.

Proof. See Lemma 2.2 and Lemma 2.3.

Theorem 2.1. The dNSSRP is in the complexity class of NP-Complete problems.

Proof. As the dNSSRP is both in NP (see Lemma 2.1) and in NP-Hard (see Lemma 2.4), it is in
NP-Complete.

3MODELING THE PROBLEM AS AN STN

In this chapter, we will give our method for modeling a problem instance and a solution as a simple
temporal problem. This allows us to make statements about the flexibility and see how much we
can change the starting times of activities. We give some definitions on simple temporal problems
in Section 3.1. Section 3.2 contains the way we model the problem instance. In Section 3.3, we will
give information on the meaning of flexibility and on methods to calculate the flexibility. Section 3.4
contains some ways to change the model or implementation in order to improve performance.

3.1 Simple Temporal Problem

Dechter et al. [10] define the simple temporal problem (STP) as follows:

Definition 3.1. Let S = (T,C) be a simple temporal network (STN). Here, T is a set of temporal
variables, i.e. each variable ti ∈ T represents a specific time point. It also contains a special variable
t0, which is always assigned timepoint 0, providing a fixed start. C is a set of constraints on these
timepoints. These constraints are of the form t j − ti ≤ lij, where ti, t j ∈ T .

We will use some other notations for constraints, which can be rewritten as follows:

• ti ≤ t j, which can be rewritten as ti − t j ≤ 0.

• ti − t j ≥ lij, which can be rewritten as t j − ti ≤ −lij.

• t j − ti = lij, which can be rewritten as t j − ti ≤ lij and ti − t j ≤ −lij.

Note that a variable can be any type of event. In the context of scheduling, we use a variable to
represent the starting time of an activity and another variable to represent the completion time of
an activity.

Definition 3.2. A solution σ : T → R for an STN S = (T,C) consists of an assignment of values to
all variables ti ∈ T , such that all constraints in C are satisfied. If such a solution exists, the STN is
consistent. If no such solution exists, the STN is inconsistent. The value of variable ti ∈ T in σ is
denoted as σ (ti).

21

22 modeling the problem as an stn

t0 t2

t1

t3

5

5

5

0

0

0

5

5

5

5

5

5

(a) S1

t0 t2

t1

t3

5

5

5

0

0

0

5

5

0

5

0

0

(b) S2

Figure 3.1: Example STNs S1 and S2, specifying a concurrent and sequential execution of the events
respectively.

Definition 3.3. An STN S = (T,C) can be modelled as a directed arc-weighted graphG = (V, A, w),
known as the distance graph, with

V = T
A =

{
(ti, t j)

�� t j − ti ≤ lij ∈ C }
w((ti, t j)) = lij ⇐⇒ t j − ti ≤ lij ∈ C

Example. Let S1 and S2 be two STNs, containing three events, t1, t2, and t3. S1, shown in Figure 3.1a,
allows for a concurrent execution of the events, meaning that all three events can be performed at
the same time. S1 contains the following constraints:

0 ≤ t1 − t0 ≤ 5 −5 ≤ t2 − t1 ≤ 5
0 ≤ t2 − t0 ≤ 5 −5 ≤ t3 − t1 ≤ 5
0 ≤ t3 − t0 ≤ 5 −5 ≤ t3 − t2 ≤ 5

S2, shown in Figure 3.1b, requires that the events are executed sequentially in order. Specifically,
it contains the precedence constraints t1 ≺ t2 and t2 ≺ t3. These are encoded in the STN as the
constraints:

0 ≤ t1 − t0 ≤ 5 0 ≤ t2 − t1 ≤ 5
0 ≤ t2 − t0 ≤ 5 0 ≤ t3 − t1 ≤ 5
0 ≤ t3 − t0 ≤ 5 0 ≤ t3 − t2 ≤ 5

3.1 simple temporal problem 23

In both S1 and S2, the interval of possible time values for each individual variable is [0, 5]. We
can independently select any value in the interval [0, 5] for each of the three events in S1, where in
S2 we have that σ (t1) ≤ σ (t2) ≤ σ (t3), in any feasible solution σ .

The consistency of an STN can be checked using the following property:

Property 3.1. A given STN S is consistent if and only if the corresponding distance graph G contains no
negative weight cycles.

A negative weight cycle can be detected by applying the algorithm by Bellman [4] and Ford and
Fulkerson [15], which has a worst-case runtime of O(|V | |A|). Faster algorithms have been developed
as well, which operate on the STN instead of on the distance graph. An example is the fully dynamic
algorithm by Ramalingam et al. [35], which handles the addition or deletion of a single constraint
to the STN in O(|C | + |T | log |T |) time. For more information on algorithms for checking the
consistency of an STN, we refer to the work by Planken [31].
Note that if there are only contains constraints of the form ti − t j ≥ lij for t j , t0, and only

constraints of the form ti − t0 ≤ li0, the consistency can be checked by computing the earliest
starting times for each variable. If the earliest starting time for any variable is later than its deadline,
then the STN is inconsistent. Furthermore, if there are any cycles in the constraints (disregarding
the constraints involving t0), then the STN is also inconsistent. Using this method, the consistency
can be checked in O(|T | + |C |) time. A version of this method is shown in Section 2.4.
In the graph representation, a path from ti to t j in the graph, consisting of i0 = ti, i1, . . . , ik = t j,

induces the constraint

t j − ti ≤
k∑
j=1

li j−1 i j

This gives rise to another representation for the STN, known as the d-graph. This is a complete
directed graph, where each arc (ti, t j) is weighted by the length of the shortest path from ti to t j inG.
This graph can be constructed by using an all-pairs shortest paths algorithm, returning a distance
matrix DS , with DS[ti, t j] the length of the shortest path between ti and t j. Using the d-graph, we
can obtain the strongest constraints implied by C for any pair of variables.

Property 3.2. In a given STN S, with the corresponding distance graph G, the strongest constraints
implied by C with respect to the temporal difference between variables ti, t j ∈ T are

ti − t j ≤ DS[t j, ti]
t j − ti ≤ DS[ti, t j]

where DS[ti, t j] is the length of the shortest path between ti and t j in G.

Using the strongest constraints property, the d-graph representation provides the same domains
for the variables as the original set of constraints does. This gives us the following property:

24 modeling the problem as an stn

Property 3.3. In a given STN S, the set of feasible values for each variable ti ∈ T is given by the interval
[et(ti), lt(ti)], where

et(ti) = −DS[ti, 0]
lt(ti) = DS[0, ti]

3.2 Modeling a problem instance and solution

3.2.1 Modeling the problem instance

In this section, we will describe our method for generating an STN for an instance of the scheduling
problem. The STN consists of the following temporal variables:

• Each temporal variable tsi represents the starting time of activity i ∈ A∗, and each temporal
variable t fi represents the finishing time of an activity i ∈ A∗.

• Temporal variable t0 representing the start of the planning period.

Furthermore, we use the following constraints:

• To model the activity processing time of an activity i ∈ A∗, we add the constraint t fi − t
s
i ≥ pi

(Equation 2.3). We also add the constraint tsi − t0 ≥ ri to model the release dates (Equation 2.4),
and the constraint t fi − t0 ≤ di to model the deadlines (Equation 2.5). Note that these are also
added for the dummy activities stk, brk, and fik. Because of this, we do not need to model the
staff member shifts explicitly in the STN.

• For each precedence constraint i ≺ j ∈ P , we add the constraint t fi ≤ tsj to C. This
corresponds to Equation 2.1.

Example. The STN shown in Figure 3.2 represents an instance with four activities 1, 2, 3, 4, with 1
and 3 having a release date, 2 and 4 having a deadline, and precedence constraints between 1 and 2
and between 3 and 4. There is one staff member k, with shift [rsk, rf k]. We now have the following:

• Suppose that d2 ≥ r1+ p1+ p2 and d4 ≥ r3+ p3+ p4. The graph does not contain any negative
weight cycles, so, according to Property 3.1, the instance is feasible.

• Now suppose that d2 < r1+ p1+ p2 and d4 ≥ r3+ p3+ p4. The graph now contains a negative
weight cycle, [t0, t

f
2, t

s
2, t

f
1, t

s
1, t0], with total weight d2 − p2 − p1 − r1 < 0. This means that,

according to Property 3.1, the instance is infeasible.

• Using Property 3.3, we find that

et(ts1) = r1 lt(ts1) = d2 − p1 − p2

et(t f1) = r1 + p1 lt(t f1) = d2 − p2
et(ts2) = r1 + p1 lt(ts2) = d2 − p2

et(t f2) = r1 + p1 + p2 lt(t f2) = d2

3.2 modeling a problem instance and solution 25

t0

tsstk t fstk ts1 t f1 ts2 t f2

ts3 t f3 ts4 t f4 tsfik t ffik

−r1
−r3

−p1 −p2

−p3 −p4

0

0

d2

d4

−rsk

rsk

−rf k

rf k

0

0

Figure 3.2: Example of an instance of the problem modelled as a simple temporal network. This
instance has four activities, and one staff member.

26 modeling the problem as an stn

3.2.2 Adding lines of work

When a line of work ωk = [stk = i0, i1, . . . , brk, . . . , im, im+1 = fik] is chosen for member of staff
k ∈ R , we add the constraints to C. For each pair of successive activities in the line of work i j, i j+1,
we add the constraint tsi j+1 − t

f
i j
≥ dist(loc fi j, locsi j+1), corresponding to Equation 2.2.

Example. Continuing the example from Figure 3.2, an updated network is shown in Figure 3.3,
where we have added the line of work 1, 4 for member of staff k. The break is not included in
this example, however, it functions the same as any other activity. The constraints added, and the
corresponding edges in the graph representation are

tsi − t
f
stk ≥ dist(0, locs1) (ts1, t

f
stk)

ts4 − t
f
1 ≥ dist(loc f1, locs4) (ts4, t

f
1)

tsfik − t
f
4 ≥ dist(loc f4, 0) (tsfi, t

f
4)

With the updated network, the earliest and latest starting time of activity 1 now become the
following:

et(ts1) = max
{
r1, rsk + dist(0, locs1)

}
lt(ts1) = min

{
(d2 − p1 − p2),

(d4 − p4 − dist(loc f1, locs4) − p1),

(rf k − dist(loc f4, 0) − p4 − dist(loc f1, locs4) − p1)
}

3.2.3 Complexity

The complete STN for a problem instance 〈A,L,P,R,S, dist〉 and a solution Ω is S = (T,C),
where

T =
{
tsi

�� i ∈ A∗ } ∪ {
t fi

��� i ∈ A∗ } ∪ { t0 }
C =

{
t fi − t

s
i ≥ pi

��� i ∈ A∗ } ∪ {
tsi − t0 ≥ ri

�� i ∈ A∗ }
∪

{
t fi − t0 ≤ di

��� i ∈ A∗ } ∪ {
tsj − t

f
i ≥ 0

��� i ≺ j ∈ P
}

∪

{
tsi − t

f
rprei ≥ dist(loc frprei, locsi)

��� i ∈ Abr,fi
}

SinceA∗ consists of the activities inA and three dummy activities for each member of staff in
R , the number of temporal variables is |T | = 2 |A| + 3 |R | + 1. Because we assume that the number
of staff members is much smaller than the number of activities (Assumption 2.3), the number of
temporal variables is |T | = O(|A|).

3.2 modeling a problem instance and solution 27

t0

tsstk t fstk ts1 t f1 ts2 t f2

ts3 t f3 ts4 t f4 tsfik t ffik

−dist(0, locs1)

−dist(loc f1, locs4)

−dist(loc f4, 0)

Figure 3.3: The same example as in Figure 3.2. Line of work ωk = [stk, 1, 4, fik] selected for member
of staff k. New arcs are in shown in red.

28 modeling the problem as an stn

The set of constraints C consists of constraints for the precedence constraints in P , resulting in
|P | constraints. C also contains constraints representing the release dates, deadlines, and durations,
resulting in at most 3 |A∗ | constraints. Furthermore, C contains the line of work constraints
indicating the predecessors of each activity, resulting inA∗ − R constraints, since each activity,
except for the stk activities has a predecessor. In total this is |C | = |P | + |A∗ | − |R| + 3 |A∗ |. Once
again, we assume that the number of staff members is much smaller than the number of activities
(Assumption 2.3). In the worst case, we have a quadratic number of precedence constraints, giving
|C | = O(|A|2) constraints in the STN. In the case of a sparse graph, we have O(|A|) constraints.
Note that our model is almost a directed acyclic graph. In the figures, all arcs are directed towards

t0, except for the edges that model deadlines. This enables us to simply calculate the earliest starting
times for each variable, using an algorithm similar to the algorithm discussed in Section 2.4, instead
of having to use an algorithm designed for more complex STNs. A formulation of the STN as a
directed acyclic graph is given in Section 3.4.1.

3.3 Flexibility

The flexibility of an STN is a measure indicating the amount of freedom present in assigning time
values to the variables in T , while keeping the constraints in C satisfied. This section is based on
and paraphrased from the paper by Wilson et al. [37]. The examples used are the STNs S1 and S2
from Figures 3.1a and 3.1b.

3.3.1 Naive flexibility

A simple measure is to use the sizes of the intervals [et(ti), lt(ti)]:

flexN (S) =
∑
ti∈T

(lt(ti) − et(ti))

While this measure is exact in the flexibility of each individual variable t ∈ T , simply using the
sum does not give meaningful results, as it misses dependencies that might exist between the times
of events. Because of this, it often overstates the flexibility of STNs. The authors give an example
using the STNs S1 and S2:

Example. Using flexN , the flexibility of S1 (see Figure 3.1a) is

flexN (S1) = lt(t1) − et(t1) + lt(t2) − et(t2) + lt(t3) − et(t3)
= 5 − 0 + 5 − 0 + 5 − 0 = 15

Likewise, the flexibility of S2 (see Figure 3.1b) is also 15. However, intuitively, the flexibility of S2
should be lower than the flexibility of S1, as in S2 the choice in values for the events may influence
the choice in value for the other events. More precisely, in S2 we have

0 ≤ lt(t1) ≤ lt(t2) ≤ lt(t3) ≤ 5

As such, intuitively, the flexibility of S2 should be 5.

3.3 flexibility 29

3.3.2 Hunsberger’s measure of flexibility

To better deal with dependencies between variables, Hunsberger [21] defined a flexibility measure
using not only the individual flexibility lt(ti) − et(ti) of each ti ∈ T , but the flexibility between each
distinct pair of variables ti, t j ∈ T as well. The flexibility between a pair of variables ti and t j is given
by

flexH(ti, t j) = DS[ti, t j] + DS[t j, ti]

The values in D indicate the strongest constraints implied by the constraint set C with respect
to the temporal difference between each pair of variables, as shown in Property 3.2. The flexibility
of the entire STN is then defined as the naive flexibility summed with the flexibility between each
distinct pair of variables. In the notation, τ is any ordering over the variables.

flexH(S) = flexN (S) +
∑
ti∈T

∑
t j∈T

τ(t j)>τ(ti)

flexH(ti, t j)

While flexH is an improvement over flexN , it still has shortcomings, as it is still not able to capture
the dependencies between the flexibilities of variables in a satisfactory way.

Example. Using flexH , the flexibility of S1 (see Figure 3.1a) is

flexH(S1) = flexN (S1) + DS1[t1, t2] + DS1[t2, t1] + DS1[t1, t3]
+ DS1[t3, t1] + DS1[t2, t3] + DS1[t3, t2]
= 15 + 5 + 5 + 5 + 5 + 5 + 5 = 45

Likewise, the flexibility of S2 (see Figure 3.1b) is 30.

3.3.3 Concurrent flexibility

Wilson et al. [37] propose a measure that does capture the dependencies between events known
as concurrent flexibility. The method is based on a concept they call interval schedules. Where a
regular schedule simply assigns a time value to each variable, an interval schedule assigns an interval
of time values to each variable. A schedule can then be obtained by selecting any value from the
corresponding interval for each variable.

Definition 3.4. Let S = (T,C) be an STN. An interval schedule ι : T → R × R is an assignment
of intervals to all variables ti ∈ T , such that any selection of values from these intervals yields a
feasible schedule σ for S. The interval in ι for variable ti is denoted as ι(ti) = [lti, uti].

The difference between using an interval schedule and using the earliest and latest starting times
from Property 3.3 is that the intervals in the interval schedule cannot change because of dependencies.
When forming a schedule σ from the earliest and latest starting times, selecting a value σ (ti) can
change the intervals of the other variables. When forming a schedule σ based on an interval schedule
ι, this cannot happen.

30 modeling the problem as an stn

Example. In the STN S2 from Figure 3.1b, the intervals obtained when using Property 3.3 are [0, 5]
for t1, t2, and t3. If we form a schedule where σ (t1) = 5, the intervals for the variables t2 and t3
change to [5, 5]. As such, it is not possible to arbitrarily pick any value from each of the three
intervals to obtain a schedule. An example of an interval schedule for S2 would be ι(t1) = [0, 2],
ι(t2) = [2, 3], and ι(t3) = [3, 5].

The concurrent flexibility is similar to the naive flexibility, however, instead of using the sizes of
the intervals [et, lt], it uses the sizes of an interval schedule ι, which is selected in such a way that the
sum of the sizes is maximal:

flex(S) =
∑
ti∈T

| ι(ti)|

Example. Using flex, the flexibility of S1 (see Figure 3.1a) is 15, with the following interval schedule:

ι(t1) = [0, 5] ι(t2) = [0, 5] ι(t3) = [0, 5]

The flexibility of the sequential STN S2 (see Figure 3.1b) is now 5, with the following interval
schedule, among other options:

ι(t1) = [0, 5] ι(t2) = [5, 5] ι(t3) = [5, 5]

Obtaining a maximal interval schedule using an LP

To find an interval schedule for STN S = (T,C), Wilson et al. [37] use a special STN S′ = (T ′,C′),
which is derived from S. This is called the double STN. Here, each variable ti ∈ T is split into two
variables, t−i and t

+
i , representing the earliest and latest times at which ti can be executed respectively,

with t+i ≥ t
−
i . Each constraint t j − ti ≤ lij ∈ C is converted to ensure that the earliest execution time

of ti is at most lij time units away from the latest execution time of t j. Like any other STN, S′ also
contains a dummy variable t′0.

Definition 3.5. The double STN S′ = (T ′,C′) for the STN S = (T,C) is derived as follows:

T ′ =
{
t+i , t

−
i

�� ti ∈ T }
∪

{
t′0

}
C′ =

{
t+j − t

−
i ≤ lij

��� t j − ti ≤ lij ∈ C }
∪

{
t−i − t

+
i ≤ 0

�� ti ∈ T }
∪

{
t′0 − t

−
0 ≤ 0, t+0 − t

′
0 ≤ 0

}
A solution σ ′ : T ′→ R corresponds to an interval schedule ι for S, where the interval for variable

ι(ti) is [σ ′(t−i), σ
′(t+i)]. As said before, the sizes need to be maximized. This can be done by solving

the following linear program:

max flex(S) =
∑
ti∈T

(t+i − t
−
i)

3.4 improving performance 31

subject to

t−i ≤ t
+
i ∀ti ∈ T

t+j − t
−
i ≤ lij ∀(t j − ti ≤ lij) ∈ C

t+0 = 0
t−0 = 0

Obtaining a maximal interval schedule using a matching algorithm

The concurrent flexibility of an STN can be computed by finding a perfect minimum weight
matching on a bipartite graph, as shown by Mountakis et al. [29]. The matching algorithm works by
computing a matching on a complete bipartite graph specified by the augmented distance matrix
D∗S . This is defined as follows:

Definition 3.6. Let Gm
S = (T

+ ∪ T−, E, w) be the matching graph for STN S = (T,C). Gm
S has

T+ =
{
t+i

�� ti ∈ T }
T− =

{
t−i

�� ti ∈ T }
E =

{
(t+i , t

−
j)

��� ti, t j ∈ T }
w((t+i , t

−
j)) = D∗S[t j, ti]

where D∗S is the augmented distance matrix, defined as

D∗S[ti, t j] =

{
DS[t0, ti] + DS[ti, t0] if ti = t j
DS[ti, t j] otherwise

The cost of a minimumweight perfect matching in graphGm
S now corresponds to the concurrent

flexibility of S. The computation cost of this algorithm is O(|T |3), since we first need to compute
the distance matrix, which takes O(|T |3) time, for example by using the algorithm by Floyd [14]
and Warshall [36]. We then need to calculate the matching, which takes O(|T |3) time, by using the
algorithm by Kuhn [27].

3.4 Improving performance

3.4.1 Finding the distance matrix

If the STN S = (T,C) only contains constraints of the form ti − t j ≥ lij for t j , t0, and only
constraints of the form ti − t0 ≤ li0, then the process of finding the distance matrix can be sped up.
This is the case when modeling activities with release dates, deadlines, precedence constraints with a
lower bound, and processing times given as lower bounds. In this situation, then the corresponding
distance graph GS = (V, A) contains only edges (ti, t j) with either w((ti, t j)) ≤ 0 and ti , t0, or
with w((ti, t j)) ≥ 0 and ti = t0. This means that we can convert G into a directed acyclic graph by

32 modeling the problem as an stn

t0

tsstk t fstk ts1 t f1 ts2 t f2

ts3 t f3 ts4 t f4 tsfik t ffik

t′0−r1

−r3

d2

d4

−rsk

rsk

−rf k

rf k

Figure 3.4: Directed acyclic graph resulting from converting the distance graph shown in Figure 3.3.
Not all edge weights are shown, the missing edge weights remain equal to their value in
Figure 3.3.

changing each edge (t0, ti) to have a new dummy source t′0. This gives us the following directed
acyclic graph G′S = (V

′, A′), with

V ′ =V ∪
{
t′0

}
A′ =

{
(ti, t j)

�� (ti, t j) ∈ A ∧ ti , t0 }
∪

{
(t′0, ti)

�� (t0, ti) ∈ A }
Example. The directed acyclic graphs resulting from the conversion of the distance graph shown in
Figure 3.3 is shown in Figure 3.4.

The length of the shortest path between two vertices ti and t j inGS is now given by the minimum
of the length of shortest path between ti and t j in G′S and the length of the shortest path between ti
and t0 together with the length of the shortest path between t′0 and t j. This means we can compute
the distance matrix DS as follows:

DS[ti, t j] = min
{
D′S[ti, t j],D

′
S[ti, t0] + D

′
S[t
′
0, t j]

}
We can find the lengths of the shortest paths between a vertex v ∈ V ′ and each other vertex in V ′

in a directed acyclic graph inO(|V ′ |+ |A′ |) time, see Cormen et al. [8]. If we execute the single-source
algorithm for each vertex, we get the complete distance matrix. This takes O(|V ′ |2 + |V ′ | |A′ |)
time. If the network is dense, this is in O(|V |3), however, if the network is sparse, the runtime is in
O(|V |2). In the case of a sparse graph, this algorithm is an improvement on using the algorithm

3.4 improving performance 33

by Floyd [14] and Warshall [36], which runs in O(|V |3), and an improvement on the algorithm by
Johnson [22], which runs in O(|V |2 log |V | + |V | |A|) time.

Note that since this optimization only affects the graph representation of the STN, but not the
contents of the STN, the flexibilities are not affected in any way. Only the runtime of finding the
shortest path matrix is affected.

3.4.2 Reducing the number of variables

In our model, we model the starting and finishing times of activities as two separate variables.
However, this is not completely necessary, as we do not use exact processing times. Instead of saying
that the processing time of an activity i is the lower and upper bound on the time that can be spent
on an activity, we simply say that it is only a lower bound. Furthermore, the only relation between
the starting time and finishing time variable of a particular activity is the constraint representing
the processing time. This means that we can contract these two variables into one variable. Each
variable ti, except t0, now represents the completion time of activity i ∈ A∗. The processing times
aremodeled using constraints in which ti is the later activity. For example, the precedence constraint
i ≺ j, which normally would result in tsj − t

f
i ≥ 0 now results in t j − ti ≥ pj. Using this approach

gives us the STN S f = (T f,C f), where

T f = { ti | i ∈ A∗ } ∪ { t0 }

C f = { ti − t0 ≥ ri + pi | i ∈ A∗ }
∪ { ti − t0 ≤ di } ∪

{
t j − ti ≥ pi

�� i ≺ j ∈ P
}

∪

{
ti − t

f
rprei ≥ dist(loc frprei, locsi) + pi

��� i ∈ Abr,fi
}

Note that this change does not affect the asymptotic runtimes of any algorithms, as the number
of variables is still O(|A|), and the number of constraints is still O(|A|2) or O(|A|) in a dense
or sparse network respectively, which is the same as in the model given in Section 3.2. Of course,
halving the number of variables still leads to a two times improvement in linear-time algorithms,
four times in quadratic-time algorithms and eight times in cubic-time algorithms.

Example. The smaller STN resulting from the removal of starting time variables of the STN shown
in Figure 3.3 is shown in Figure 3.5.

Reducing the number of variables does affect the flexibility measures: since the naive flexibility,
and the method by Hunsberger [21] work by summing up the flexibilities per variable or per pair of
variables, reducing the number of variables in the STN also reduces the flexibility value found. The
flexibility measure by Wilson et al. [37] is not impacted by the reduction in the number of variables.
Since this method uses interval schedules, the intervals found for the starting and completion time
variables tsi and t

f
i in S can be combined to form the interval of the single variable ti in S f . As such,

the sum of the sizes of the intervals does not change.

34 modeling the problem as an stn

t0

tstk t1 t2

t4t3 tfik

−(r1 + p1)

−(r3 + p3)

−p2

−p4

d2

d4

−rsk

rsk

−rf k

rf k

−(dist(0, locs1) + p1)

−(dist(loc f1, locs4) + p4)

−dist(loc f4, 0)

Figure 3.5: Smaller STN resulting from converting the distance graph shown in Figure 3.3.

3.4 improving performance 35

t0 tsj t fj−rj −pj

d j

(a) Sa

t0 t j
−(rj + pj)

d j

(b) Sb

Figure 3.6: Two example STNs to illustrate the effect of removing variables on the flexibility.

Example. In Figure 3.6a, an STN with one activity j is shown. We have rj , 0, pj , 0, and d j , 0.
We denote this STN Sa. In Figure 3.6b, the same STN is shown, but converted to only contain
completion time variables. This STN is Sb. The naive flexibilities of Sa and Sb are

flexN (Sa) = lt(tsj) − et(tsj) + lt(t fj) − et(t fj) = (d j − pj) − rj + d j − (rj − pj) = 2d j − 2pj − 2rj

flexN (Sb) = lt(t j) − et(t j) = d j − rj − pj

As can be seen, in this case, the difference between the converted STN and the original STN is
that the flexibility is halved. The flexibilities when measured using the method by Hunsberger [21]
of Sa and Sb are

flexH(Sa) = flexN (Sa) + DSa[t
s
j, t

f
j] + DSa[t

f
j , t

s
j] = (2d j − 2pj − 2rj) + (−rj) + (d j − pj)

= 3d j − 3pj − 3rj
flexH(Sb) = flexN (Sb) = d j − rj − pj

Like with the naive flexibility, there is a difference between the flexibilities. In this case, the
difference is even greater than with the naive flexibility. The concurrent flexibility, which is
calculated using interval schedules, is the same in both cases. In Sa, a maximal interval schedule
is ι(tsj) = [rj, rj +

1
2 pj] and ι(t

f
j) = [rj +

1
2 pj, d j]. In Sb, there is only one variable, so the interval

schedule has ι(t j) = [rj + pj, d j]. In both cases, the concurrent flexibility is equal to d − rj − pj.

4HEURISTIC APPROACH

In this chapter, we will give our method for finding solutions for the problem described in Chapter 2.
First, we will show the objective functions used in Section 4.1. Our method to find a solution
consists of two steps. First, we generate an initial solution using a greedy heuristic. This is shown in
Section 4.2. If this heuristic is unable to find a feasible solution, we try to give the time window that
contains too many activities for the given members of staff. This is shown in Section 4.5. Then, we
use local search to improve this solution, which we show in Section 4.3. We make use of incremental
solutions in both the greedy heuristic and the local search improvement step. This is detailed in
Section 4.4.

4.1 Objective functions

We use several objectives to measure the quality of a solution. The different objective values are
added together using weights to obtain one objective value. The weights will be determined using
experimentation. This sum will be maximized.

Flexibility We have incorporated flexibility in the objective by using the concurrent flexibility
metric, see Section 3.3.3. As we want to maximize flexibility, we want the weight wflexibility to be
positive.

Fairness Fairness is incorporated in the objective function as the average standard deviation of
the workloads of each skill. Let σs be the standard deviation of workloads in skill s ∈ S:

σs =
√

1
|Rs |

∑
k∈Rs

(wlωk − wlavg,s)2

where wlavg,s =
1
|Rs |

∑
k∈Rs wlωk . We then try to minimize the maximum of the standard devi-

ations:

minmax
s∈S

σs

As we try to minimize the standard deviation, we want the weight wfairness to be negative, resulting
in a penalty that becomes smaller the closer the standard deviation is to zero.

37

38 heuristic approach

Walking distances We try to minimize the walking distances for the members of staff:

min
∑
k∈R

wdωk

Since we are minimizing the walking distances, we want the weight wwalking to be negative.

Number of unscheduled activities During our search, we allow activities to be unscheduled. Of
course, this should be penalized in the objective function, to prevent an empty solution from
becoming the best solution. In other words, we want to minimize the following:

min
��{ i ∈ AS �� �k ∈ R : i ∈ ωk

}��
Given that a solution with an unscheduled objective is not feasible, we want the weight wunscheduled

to be negative, and to be sufficiently negative to ensure that all activities are scheduled.

4.2 Heuristic for initial solution

To obtain an initial feasible solution, we use a greedy approach. We add all activities in a topological
ordering, to ensure that no activity is scheduled before its predecessors. For each activity, we
examine all possible insertion points, meaning that we check across all lines of work of the correct
skill, and all possible indices in each line of work. The activity is then inserted at the position such
that the value of the combined objective function is highest and the resulting STN is still consistent.
If there is no position at which the activity can be inserted without making the STN inconsistent,
we leave the activity unscheduled. This algorithm uses two parameters, B and R.

For each activity i ∈ AS that is inserted, we keep track of a value Δi which represents the impact
that inserting i at the best possible position had on the objective value of the solution. If i could
not be inserted at any position, we have Δi = −∞. This is checked by using Algorithm 2.1. It can be
expected that adding a new activity into the schedule will reduce the flexibility of the resulting STN
and increase the walking distances. Since we are maximizing, and since we are using the flexibility
as main objective and walking distances as penalty, we can expect that adding an activity will result
in a value Δi ≤ 0.
If, when all activities are examined, none are left unscheduled, the solution is returned as the

initial feasible solution. If any activities are left unscheduled, we take a ruin-and-recreate approach.
During each round, we keep a queue Q′, which contains the activities that could not be scheduled,
and will be scheduled in the next round. If an activity could not be scheduled, it is added to Q′

at Line 19. Then, we add the B − |Q′ | activities that have had the highest impact on the solution
(i.e. the activities with the lowest Δi values) and remove them from the schedule, unless removing
them would make the STN inconsistent*. In that case, we leave the activity in the schedule. These
activities are also added to Q′. The activities in Q′ are then readded to the solution in the next
round. Note that all unscheduled activities are added to Q′, so it may occur that |Q′ | > B. In that
case, no activities are added that have been scheduled.

* This is possible if the removed activity i has dist(loc frprei, locsi) + pi + dist(loc fi , locsrsuci) < dist(loc frprei, locsrsuci). This is most
likely to happen if i is an activity involving movement of a train unit, since these have differing start and end locations,
and since the processing time is likely to be less than the walking distances.

4.3 improvement using local search 39

This process is repeated until we reach a point where all activities are scheduled, or until a certain
number of rounds have passed. We denote the maximum number of rounds in this algorithm R.
If no solution can be found, we use the local search algorithm with the neighbourhood operators
shown in Sections 4.3.2 and 4.3.3 to find a feasible insertion point for the remaining activities.
The pseudocode for this routine is shown in Algorithm 4.1. The functions Insert and Remove

are sets of changes to be applied to a solution Ω. These can be applied and reverted to obtain the
new candidate solution and to reject the new candidate solution respectively. This is done to avoid
copying the entire solution, and to avoid large computational costs in calculating the objective
function. This is detailed further in Section 4.4.

4.2.1 Complexity

The number of positions (and corresponding solutions) that we need to examine differs per activity.
Suppose that each activity belongs to the same skill. In the case of the first activity i1 to be scheduled,
each line of work contains only the three dummy activities, so each line of work has only two
possible insertion points, either before the break or after the break. This means that we need to
examine 2|R | positions. Then for the second activity, one line of work may have an activity in it,
meaning that it has three positions to check. The total number of positions to check is then 2|R |+ 1.
Generalizing this means that when inserting the kth activity we need to check 2|R |+ k−1 solutions.
Thus, the total number of insertion points that we need to check for the first round is

n∑
k=1

(2m + k − 1) = 2nm + 1 + 2 + · · · + n − n = 2nm + Tn−1 = 2nm +
n(n − 1)

2

where n = |AS |, m = |R |, and Tn is the nth triangular number. In subsequent rounds, we do not
have to check each activity, we only need to examine the B ≤ n activities that have had the most
impact. This means that the number of solutions we need to check in each round is Bm + TB. Since
we only allow R rounds, and each insertion point results in a partial solution, this gives us the total
number of solutions to check of

nm + Tn−1 + R(nm + TB)

which is in O(n2 + nm), since both R and TB are constant factors, and since Tn−1 =
n(n−1)

2 . If the
constraint graph is sparse, we have to check O(n2) solutions.

4.3 Improvement using local search

4.3.1 Algorithm

In our improvement step, we make use of the simulated annealing algorithm, introduced by Kirk-
patrick et al. [24]. The main outline of this algorithm is shown in Algorithm 4.2. The consistency of
candidate solutions is checked using Algorithm 2.1. The initial solution is Ωinit.
Unlike standard hill climbers, which only accept new solutions if they are an improvement on

the current solution, simulated annealing also allows a decrease in objective value. This is done
by keeping a temparature, which determines the probability that a solution that is worse than the
current solution is accepted. This is shown in Line 11. At the start of the process, this probability

40 heuristic approach

Algorithm 4.1: Outline of the greedy and ruin-and-recreate algorithm to generate a feasible
solution.
Input: Problem instance 〈A,L,P,R,S, dist〉, B, R
Output: Solution Ω if one was found, else nil

1 Q ← AS ordered in topological ordering
2 round← 1
3 Ω← empty solution
4 Q′← � . Q′ contains the activities that will be retried in the next round
5 while Q = �:
6 i← Dequeue(Q) . Scheduling activity i
7 δbest ← nil . Best solution found with i added
8 δbest.objective← −∞
9 for k ∈ Shuffle(Rrqi):
10 for 1 ≤ index < |ωk | − 1: . Indices are chosen such that i is not placed before stk or after fik
11 δ ← Insert(i, ωk, index)
12 Ω← δ applied to Ω
13 if Ω is consistent and Ω.objective ≥ δbest.objective:
14 δbest ← δ
15 Ω← δ rolled back from Ω
16 if δbest , nil: . A feasible insertion point for i has been found
17 Δi ← δbest.objective − Ω.objective
18 Ω← δ applied to Ω
19 else:
20 Enqueue(Q′, i)
21 if Q′ = �: . Feasible solution found
22 return Ω
23 if round ≤ R:
24 for |Q′ | − B times: . Removing the activities with the highest effect
25 i← argminj∈A′ Δi
26 ωk ← the line of work containing i
27 δ ← Remove(i, ωk)
28 Ω← δapplied to Ω
29 if Ω is consistent:
30 Δi ←∞
31 Enqueue(Q, i)
32 else: . Removing i makes the STN inconsistent
33 Ω← δ rolled back from Ω
34 Q ← Q′

35 round← round + 1
36 go to Line 5 . Retry adding the removed activities

37 return nil . No feasible solution was found

4.3 improvement using local search 41

should be relatively high, and it should decrease gradually as the algorithm runs. If there are activities
that remain unscheduled in the initial solution Ωinit, we increase the temperature with the amount
of unscheduled activities multiplied by a factor Tunscheduled, to improve diversification. The base
value for the initial temperature Tinit. We use a cooling scheme where the temperature is multiplied
by a factor βc < 1 every tc iterations. This happens at Line 19. We use a stopping condition where
the algorithm stops if the best solution found has not been updated in itmax iterations

Algorithm 4.2: The simulated annealing algorithm by Kirkpatrick et al. [24]
Input: Parameters Tunscheduled,Tinit, tc, βc, itmax,Ωinit
Output: Solution Ω

1 Ωbest ← Ωinit
2 Ω← Ωinit
3 T ← Tinit + Tunscheduled ·

��{ i ∈ AS �� �ω ∈ Ωinit : i ∈ ω
}��

4 it← 0
5 while stop condition not met:
6 δ ← changes to get successor of Ω obtained from neighbourhood
7 objectiveΩ ← Ω.objective . Storing old objective for comparisons
8 Ω← δ applied to Ω
9 if Ω.objective ≥ objectiveΩ:
10 pass . Accept the changes from δ

11 else if exp
(
Ω.objective−objectiveΩ

T

)
> rand:

12 pass . Accept the changes from δ

13 else:
14 Ω← δ rolled back from Ω . Reject
15 if Ω.objective > Ωbest.objective:
16 Ωbest ← Ω . New best solution found
17 it← it + 1
18 if it mod tc = 0:
19 T ← T · βc . Cooling down

20 return Ωbest

4.3.2 Neighbourhood operators for feasible solutions

We use the following neighbourhood operators in the local search improvement step to improve
feasible solutions. The operators can only place activities in lines of work belonging to a member of
staff with the correct skill, to ensure that an engineer does not get assigned a cleaning activity for
example. The operators also take care to not move the dummy activities inA∗ \ A between lines
of works. The operators return a set of changes that need to be made to the current solution. The
details of these changes are given in Section 4.4.

Bring related together This method aims to improve flexibility by placing activities that are related
to each other by way of the precedence constraints in the same line of work. This is done

42 heuristic approach

by selecting a random line of work ωk ∈ Ω, and picking a random activity i ∈ ωk ∩ A. We
then select a related activity j ∈ aprei ∪ asuci with rqi = rqj. The line of work in which this
activity is currently scheduled is ωm. We then pick an unrelated activity j′ ∈ unrli ∩ ωk ∩ A
to replace with j in ωk. The related activity j is then swapped with the unrelated activity j′.
When this is done, both i and j are in ωk. This operator returns Swap(ωk, j′, ωm, j).

Place immediate predecessor This operator is a stronger version of the Bring related together operator.
It aims to reduce the number of constraints added by the lines of work compared to the
existing precedence constraints by placing the activities of an existing precedence constraint
directly following in the same line of work. The rationale behind this is that the extra con-
straints reduce the flexibility of the schedule. We first select a random precedence constraint
i ≺ j ∈ P , with rqi = rqj and loc fi = locsj . The line of work containing i is denoted as ωk and
the line of work containing j is denoted as ωm. We then place i directly in front of j in ωm.
Now, ωm contains the subsequence [. . . , i, j, . . .]. The operator returnsMove(ωk, i, ωm, j).

Relieve largest line of work This operator removes a random activity from the line of work with the
largest workload and places it at a random position in the line of work with the smallest
workload. This is done to improve the fairness of the schedule. We first select a random skill
s ∈ S. We then pick the largest line of work ωk = argmaxk∈Rs wlωk and the smallest line of
work ωm = argminm∈Rs wlωm . We then select random activities i ∈ ωk ∩ A and j ∈ ωm ∩ A.
We then place i directly in front of j in ωm. The operator returnsMove(ωk, i, ωm, j).

Swap within line of work This operator is included for some diversification. It selects a random
line of work ωk ∈ Ω and selects two activities i, j ∈ ωk ∩ Abr. These are then swapped
in position. We also allow the break activity to be swapped in this operator. The operator
returns Swap(ωk, i, ωk, j).

4.3.3 Neighbourhood operators for infeasible solutions

We also use the local search algorithm to find a feasible solution, if the greedy heuristic shown in
Section 4.2 is not able to do so. In addition to the neighbourhood operators from Section 4.3.2,
we now use the following neighbourhood operators. These are all able to deal with unscheduled
activities. These operators are also used for diversification in the case of a feasible solution.

Insert random This operator takes a random unscheduled activity i ∈ A and inserts it in the line of
work of a member of staff k of the correct type (rqi = rskk), at the position currently occupied
by j ∈ ωk \ { stk }. j and any subsequent activities shift to a later point in time. Returns
Insert(ωk, i, j). This operator is only selected if there is at least one unscheduled activity.

Delete random This operator takes a random line of work ωk ∈ Ω and removes a random activity
i ∈ A ∩ ωk from the line of work. Returns Remove(ωk, i).

Replace random This operator is a combination of the previous two operators: it takes a random
line of work ωk ∈ Ω and removes a random activity i ∈ A ∩ ωk from the line of work. Then,
an unscheduled activity j ∈ Arqi is picked randomly. j is then inserted in ωk at the position
previously occupied by i. Returns Replace(ωk, i, j). This operator is only selected if there is
at least one unscheduled activity.

4.4 incremental solutions 43

4.4 Incremental solutions

To improve on the speed of the local search algorithm, we make use of sets of changes that we can
apply to and revert from solutions. This means that each neighbourhood operator does not return
a complete new candidate solution Ω′, but instead a list of changes δ that need to be applied to the
current solution to get the new solution Ω + δ . These are then applied to the current solution to
check the feasibility and objective of the resulting solution. If accepted, the changes are kept (Line 8),
if rejected the changes are rolled back (Line 14). This improves performance since we do not need
to copy the entire candidate solution and associated data structures each iteration. Instead, we only
need to change the relevant part of the candidate solution. As such, we can use the same object and
data structures during the entire local search process.
The contents of a changeset are dependent on the type of change: for example, in the case of a

swap, it simply tracks the indices and lines of work that need to be swapped. However, all types of
changesets keep track of the edges that need to be deleted from the STN and the edges that need to
be added to the STN to keep the STN representation consistent with the contents of the candidate
solution.
Using incremental solutions is especially helpful in our case, if we use an LP-solver to find the

value of the flexibility objective. Normally, we would have to solve the entire LP from scratch in
each iteration, but using incremental solutions allows us to reuse the solution of the LP for the
current solution Ω to calculate the flexibility of the solution with the changes applied Ω + δ . With
the walking distance objective, we can obtain the objective for Ω + δ by subtracting the walking
distances associated with the edges that are removed from the STN and adding the walking distances
associated with the added edges. The fairness objective is calculated in full each time.
The neighbourhood operators can return two different types of changes. The greedy algorithm

uses two different types of changes. Here, we will give the notation we use in Sections 4.2 and 4.3.2
on neighbourhood operators. Edges added have weights corresponding to the walking distances.
For example, if edge (tsi, t

f
j) is added, its weight will be −dist(loc fj , locsi).

Insert The operation Insert(ωk, i, j) inserts the activity i in line of work ωk at the index currently
occupied by j. Applying this operation removes one constraint from the STN and adds two.
The exact changes are shown in Table 4.1.

Remove The operation Remove(ωk, i) removes the activity i from line of work ωk. Applying this
operation removes two constraints and adds one constraint to the STN. The exact changes
are shown in Table 4.1.

Replace The operation Replace(ωk, i, j) removes the activity i from line of work ωk and then places
activity j in ωk at the position previously occupied by i. This operation is equivalent to
executing Insert(ωk, j, i) and Remove(ωk, i) in order. Applying this operation always adds
and removes two constraints from the STN. The exact changes are shown in Table 4.1.

Move The operationMove(ωk, i, ωm, j) removes activity i from line of work ωk and places it directly
in front of activity j in line of work ωm. This operation is equal to executing Remove(ωk, i) and
Insert(ωm, i, j) in order. Applying this operation always adds and removes three constraints
from the STN. The exact changes are shown in Table 4.1.

44 heuristic approach

Insert(ωk, i, j) Remove(ωk, i) Replace(ωk, i, j) Move(ωk, i, ωm, j)
Delete Add Delete Add Delete Add Delete Add

(tsj, t
f
rprej) (tsrsuci, t

f
rprei) (tsj, t

f
rprej) (t

s
rsuci, t

f
rprei)

(tsi, t
f
rprej) (t

s
i, t

f
rprei) (tsi, t

f
rprei) (tsj, t

f
rprei) (tsi, t

f
rprei) (tsi, t

f
rprej)

(tsj, t
f
i) (tsrsuci, t

f
i) (tsrsuci, t

f
i) (t

s
rsuci, t

f
j) (t

s
rsuci, t

f
i) (tsj, t

f
i)

Table 4.1: The arcs added and removed from the STN when Insert(ωk, i, j), Remove(ωk, i),
Replace(ωk, i, j) orMove(ωk, i, ωm, j) is executed.

Swap(ωk, i, ωm, j) Swap(ωk, i, ωm, j) Swap(ωk, i, ωm, j)
k = m ∧ i = j + 1 k = m ∧ j = i + 1 Other
Delete Add Delete Add Delete Add

(tsi, t
f
rprei) (tsj, t

f
rprei) (tsi, t

f
rprei) (tsj, t

f
rprei)

(tsj, t
f
rprej) (t

s
i, t

f
rprej) (tsj, t

f
rprej) (tsi, t

f
rprej)

(tsi, t
f
j) (tsj, t

f
i) (tsj, t

f
i) (tsi, t

f
j)

(tsrsuci, t
f
i) (t

s
rsuci, t

f
j) (tsrsuci, t

f
i) (t

s
rsuci, t

f
j)

(tsrsucj, t
f
j) (t

s
rsucj, t

f
i) (t

s
rsucj, t

f
j) (t

s
rsucj, t

f
i)

Table 4.2: The arcs added and removed from the STN when Swap(ωk, i, ωm, j) is executed.

Swap The operation Swap(ωk, i, ωm, j) swaps the activity i in line of work ωk with the activity j in
line of work ωm. If k = m and i = j + 1 or j = i + 1, this operation adds and removes three
constraints from the STN. Otherwise, this operation adds and removes four constraints from
the STN. The exact changes are shown in Table 4.2.

4.5 Handling infeasible solutions

If the algorithm does not find a feasible solution, we will aim to provide some information on
the bottleneck using the original schedule σ orig, obtained by converting the solutions from the
algorithm by Van den Broek [5]. This gives us a starting and completion time sorig

i and corig
i for each

activity i ∈ A. We do this by solving an assignment problem, where we assign a predecessor to
every activity, while minimizing the walking distances. If we are unable to find an assignment, the
bottleneck might lie in that specific interval. This is done per distinct skill and shift period. For
example, if we have two staff members with intervals [rs1, rf1] and [rs2, rf2], with rs2 < rf1, we
solve the assignment problem for the intervals [rs1, rs2], [rs2, rf1], and [rf1, rf2].

The assignment problem corresponds to finding a minimum weight perfect matching in a com-
plete bipartite graph. This can be done by using the algorithm by Kuhn [27]. The formulation
given here is loosely based on the assignment formulations for the single-depot vehicle-scheduling
problem by Freling et al. [16]. The complete weighted bipartite graph G = (X ∪ Y, E, w) for skill

4.5 handling infeasible solutions 45

s ∈ S and interval [rs, rf] contains two vertices i ∈ X and i′ ∈ Y for each activity i ∈ As for which
the original execution overlaps with the interval. This subset of activities will be denoted asA ′.
X and Y also contain the dummy activities stk and fik for all k ∈

{
k ∈ Rs

�� rf k ≥ rs ∧ rsk ≤ rf
}

respectively.
An edge is added between each pair of activities that can be done subsequently. Edges are also

added between each stk and each i′ ∈ Y and between each i ∈ X and each fik. All edges are weighed
using the walking distances. To ensure that the graph is complete, dummy edges are added between
all pairs of vertices without an edge. The dummy edges have a sufficiently large weight N . More
formally:

A ′ =
{
i
��� i ∈ A ∧ rqi = s ∧ c

orig
i > rs ∧ sorig

i < rf
}

X = { i | i ∈ A ′ } ∪ { stk | k ∈ Rs }
Y = { i′ | i ∈ A ′ } ∪

{
fik

�� k ∈ Rs }
E = { (x, y) | x ∈ X, y ∈ Y }

w((i, j′)) =

0 if i = stk ∨ j′ = fik
distloc fi ,locsj

if ci + distloc fi ,locsj
≤ sj ∧ i < asucj

N otherwise

A matching M ⊂ E now gives an assignment of all activities to a predecessor. If we have an edge
(i, j′) in the matching, that means that activity j is performed directly after activity i. Using these
assignments, a set of lines of work is obtained.

Example. In Figure 4.1, an example of the assignment graph is shown. In this example, A ′ =
{ 1, 2, 3, 4, 5, 6 }, and Rs = { 1, 2 }. The activities have the following original start and finish times:

sorig
1 = 15 corig

1 = 18 sorig
3 = 10 corig

3 = 16 sorig
5 = 25 corig

5 = 32

sorig
2 = 35 corig

2 = 42 sorig
4 = 30 corig

4 = 34 sorig
6 = 20 corig

6 = 22

An example assignment is shown in Figure 4.1 in red. This assignment gives the lines of work
ω1 = [st1, 1, 4, 2, fi1] and ω2 = [st2, 3, 6, 5, fi2].

If the matching contains an edge with weight N , i.e. there is at least one activity that could not be
assigned a predecessor using the non-dummy edges, then the bottleneck might lie in this interval.
The imported instances only contain one movement at a time, meaning that it should be possible to
execute all activities using only one member of staff of each skill. This is not possible because of
the walking distances. The imported instances can contain activities where ssj − c

f
i ≤ dist(loc fi , locsj),

meaning that the activities i and j cannot be executed in order because of the walking distances.
This means that we need more members of staff.

Note that this method is a simplification of the NSSRP. We only consider the walking distance
objective, and we disregard the flexibility and fairness objectives. Furthermore, tasks that fall in
two different intervals are not necessarily assigned to the same member of staff in both intervals. It

46 heuristic approach

fi1fi2

34 2 156

1′2′3′4′5′6′

st1st2

X

Y

Y

X

Figure 4.1: Example of the bipartite graph used for the assignment problem. An example assignment
is shown in red.

also does not take breaks, and walking distances to and from the depot into account. Finally, in the
NSSRP, the starting times and finishing times are not fixed, while they are in the assignment problem.
If the original plan contains an unfortunate choice in starting times, then a feasible assignment
might not be possible, even though executing the activities in series might very well be feasible. For
example, suppose that there are two tasks i and j, with rqi = rqj, c

orig
i = sorig

j and dist(locci, locsj) , 0,
meaning that these two activities cannot be performed in order by a single member of staff. If there
is only one member of staff with rskk = rqi, then the matching algorithm will always report that the
problem lies in the interval and skill containing i and j, even though the reason the greedy heuristic
or the local search method were unable to find a solution is with another interval or skill.

5COLUMN GENERATION APPROACH

In this chapter, we give an alternative formulation for the problem of minimizing the walking
distances subject to Constraints 2.8 to 2.23, which enables us to use column generation to find a
solution. Like in the other MIP formulation, we do not use the flexibility as the objective function.
Instead, we use the walking distances, since these are more suited to a column generation approach.
The formulation used is themethod to solve parallelmachine schedulingwith release dates, deadlines,
and precedence constraints by Van den Akker et al. [1], with the walking distances as the objective
function, instead of the number of selected columns. They use a local search approach to generate
new columns. In this chapter, Section 5.1 contains the formulation of the master problem, and
Section 5.2 the formulation of the pricing problem.

5.1 Master problem

The master problem consists of minimizing the walking distances by selecting a line of work for
each member of staff, such that every activity that needs to be scheduled is in exactly one line of
work of the correct type, and such that precedence constraints are respected. The formulation used
is based on Let Ω∗ be the set containing the candidate lines of work. Each line of work ω ∈ Ω∗

represents a day of work for a specific member of staff. Lines of work are specified through the
following parameters:

aωi =

{
1 if the line of work ω contains activity i ∈ A∗

0 otherwise

bωk =

{
1 if the line of work ω is meant for member of staff k ∈ R
0 otherwise

dωij =

{
1 if the line of work ω goes from activity i ∈ A∗ to activity j ∈ A∗

0 otherwise

cωi = the completion time of activity i ∈ A∗ in line of work ω

5.1.1 Mixed integer programming formulation

The master problem consists of making a selection of lines of work out of the set of candidate lines
of work Ω∗. This is done while minimizing the walking distances resulting from the choice of lines

47

48 column generation approach

of work. To do this, we use the following decision variables:

xω =

{
1 if the line of work ω is selected
0 otherwise

We use the objective of minimizing the walking distances, leading to the following integer linear
programming formulation:

min
∑
ω∈Ω∗

wdωxω =
∑
ω∈Ω∗

∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)d
ω
ijxω (5.1)

subject to

∑
ω∈Ω∗

aωi xω = 1 ∀i ∈ {
j ∈ A∗

�� rqk , 0
}

(5.2)∑
ω∈Ω∗

aωi xω = 0 ∀i ∈ {
j ∈ A∗

�� rqk = 0
}

(5.3)∑
ω∈Ω∗

bωkxω = 1 ∀k ∈ R (5.4)∑
ω∈Ω∗

(
cωj xω − c

ω
i xω

)
≥ pj ∀i ≺ j ∈ P (5.5)

xω ∈ { 0, 1 } ∀ω ∈ Ω∗ (5.6)

Here, Constraints 5.2 ensures that each activity that needs a member of staff is assigned to exactly
one member of staff. Constraints 5.3 ensures that activities that do not need staff members are
not assigned. Constraints 5.4 ensures that members of staff are given at most one line of work.
Constraints 5.5 ensures that tasks with a precedence relation are executed in the correct order, and
that processing times are respected. Constraints 5.6 specifies the domain of the variables.

5.1.2 LP relaxation and dummy variables

We start the process without any meaningful lines of work inΩ∗, only adding the trivial line of work
[stk, brk, fik] for all members of staff k ∈ R. In order to ensure that we can always find a feasible
solution for the master problem, we add a dummy variable for each activity: these variables can
then all be set to one to ensure a feasible solution. Setting these variables to a non-zero value is
penalized in the objective function. These variables are

Ui =

{
1 if activity i ∈ A∗ is not assigned
0 otherwise

Furthermore, since we use a column generation approach, we need the LP-relaxation of the
master problem. The objective of the LP-relaxation with the dummy variables is to

5.2 pricing problem 49

min
∑
ω∈Ω∗

∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)d
ω
ijxω +

∑
i∈A∗

LUi (5.7)

subject to

∑
ω∈Ω∗

aωi xω +Ui = 1 ∀i ∈ {
j ∈ A∗

�� rqk , 0
}

(5.8)∑
ω∈Ω∗

aωi xω +Ui = 0 ∀i ∈ {
j ∈ A∗

�� rqk = 0
}

(5.9)∑
ω∈Ω∗

bωkxω = 1 ∀k ∈ R (5.10)∑
ω∈Ω∗

(
cωj xω − c

ω
i xω

)
+ LU j ≥ pj ∀i ≺ j ∈ P (5.11)

xω ≥ 0 ∀ω ∈ Ω∗ (5.12)

Terms for the dummy variables are added to the objective, where selecting a dummy variable
results in a penalty. Here, L is a sufficiently large number.

5.2 Pricing problem

The pricing problem is solved every iteration of the column generation method to obtain new
columns. Only columns that have a possibility to yield an improvement are selected. Whether a
new column will yield an improvement is determined by calculating the reduced cost of the new
column.

5.2.1 Reduced cost

Adding a new column ω with variable value xω = ϵ results in the following changes in the objective
function:

ϵ

∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)d
ω
ij

The effect on the constraints is as follows, with πi the shadow price for the constraint in Con-

straints 5.8 and Constraints 5.9 for activity i, and λk the shadow price for the constraint in Con-
straints 5.10 for member of staff k.

Constraints 5.8 and 5.9: − ϵ

[∑
i∈A∗

aωi πi

]
Constraints 5.10: − ϵ

[∑
k∈R

bωk λk

]

50 column generation approach

Constraints 5.11: − ϵ

∑
i≺ j∈P

δij
(
cωj − c

ω
i

) = −ϵ

∑
i∈A∗

∑
j∈prei

δijcωi −
∑
j∈suci

δ jicωi

= − ϵ

∑
i∈A∗

cωi

∑
j∈prei

δij −
∑
j∈suci

δ ji

Together, this gives the following reduced cost per unit:

∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)d
ω
ij −

∑
i∈A∗

aωi πi −
∑
k∈R

bωk λk −
∑
i∈A∗

cωi

∑
j∈prei

δij −
∑
j∈suci

δ ji

 (5.13)

5.2.2 Complete formulation

Since a line of work is meant for exactly one member of staff, say k ∈ R, we have bk = 1 and
bk′ = 0 for all k′ , k. This means that the term

∑
k∈R bωk λk is constant, and can be removed from

the summation. Let k ∈ R be the member of staff for which the column ω is meant, i.e. bωk = 1. The
objective of the pricing problem is to

min
∑
i∈A∗

∑
j∈A∗

dist(loc fi , locsj)d
ω
ij − a

ω
i πi

 (5.14)

subject to the constraints

1. Activity i ∈ ω is started after the release date and finished before the deadline: ri+pi ≤ cωi ≤ di.

2. ω has the structure [stk = i0, i1, . . . , brk, . . . , im, im+1 = fik] as given in Definition 2.13.

3. ω contains only activities i where rqi = rskk.

4. The precedence constraints are satisfied: if i ≺ j ∈ P , and i, j ∈ ω, then we require that
cωj ≥ c

ω
i + pj.

5. If dωji, then c
ω
i ≥ c

ω
j + dist(loc fj , locsi) + pi.

6. The completion times are positive: cωi ≥ 0, for all i ∈ A∗.

6EXPERIMENTAL SETUP

In this chapter, we give information on the case study we performed for NS. In Section 6.1, we
give information on the case and the location. We show the scenarios used for testing, and the
preprocessing steps in Section 6.2.

6.1 Kleine Binckhorst

We have examined the performance of the algorithm using instances for the facility Kleine Binck-
horst, near The Hague Central Station. In this section, we will give some details on the location and
on the tasks that are performed there.

6.1.1 Location

A schematic map of the location is shown in Figure 6.2. This map is a simplified view. The black
thin lines are the tracks. The H indicates the location of the depot, where the members of staff start
and end their shifts and where the breaks happen, i.e. location 0 ∈ L.

This location has eight tracks that can be used for inspections and repairs, and for parking. These
are the tracks 52–59. Track 64 has extra facilities for special types of repairs. The tracks 61 and 62
have a special platform to facilitate cleaning the inside of the train. Track 63 contains the installation
for exterior cleaning. Track 60 can only be used for parking.
The positions of the track numbers in the map are the coordinates used when computing the

walking distances. If the track number is in a hexagon, this means that the track can be used by a
member of staff from both sides. If the number is in a trapezium, the track can only be used from
the slanted side, i.e. track 53 can be used from both sides, while track 62 can only be used from the
south side. This is because tracks 61 and 62 require the member of staff to enter from the special
platform, which is located inbetween these two tracks.
Track 906a is a special track, as it is the location where trains arrive and leave the facility from

the national railway network. In the context of staffing, the national railway network is part of the
Centraal Bediend Gebied (CBG), while the facility is part of Niet Centraal Bediend Gebied (NCBG).
For Kleine Binckhorst, this means that tracks 51–64 are part of the NCBG and track 906a is part of
the CBG. The boundary between CBG and NCBG has consequences for the types of staff that are
able to make specific trips. This boundary is shown in Figure 6.1.

Because of safety regulations, members of staff are only permitted to cross the tracks at designated
paths. This means that a walk between two parallel tracks may take much longer than expected.

51

52 experimental setup

CBG NCBG
NS

NTR

NTRNTR

Figure 6.1: Diagram to illustrate the difference between Centraal Bediend Gebied and Niet Centraal
Bediend Gebied. The arrows indicate trips between the two areas. NS and NTR indicate
which type of engineer needed for each trip, see Section 6.1.2.

These paths are shown as the thicker red lines.
The numbers in the rectangles indicate the distance along the track. Note that this is a simplified

diagram and that the distances are only valid for the track number indicators (i.e. the coordinates of
the tracks) and for the paths. Furthermore, we assume that all paths are straight*. The distances
between the tracks vary per track, though they are all in the range of 4m to 6m. In our model, we
assume that the distances between each track are exactly 5m. We also assume that the distances
between parallel paths follows the same pattern, e.g. that the distance between the path between
track 58 and 59 and the path between track 57 and 58 is also exactly 5m. The complete distance
matrix used in our model is shown in Table A.1. While the facility is used throughout the day, we
only consider the planning period from 17 h 30min to 7 h 40min the following day. This is because
of the high availability of testing scenarios for this time interval, as this time interval has been used
in experimentation by NS in the past. Furthermore, this time interval is the busiest of the day, since
almost no EMUs are in service during the night.

6.1.2 Staff

In our model, we model three disjoint types of staff:

Engineers Engineers are responsible for driving the EMUs across the facility. Note that there are
two types of engineers: NS engineers and NTR engineers. NTR engineers are responsible for
driving trips that start and end within the NCBG, while NS engineers are responsible for
driving trips that have at least one end in the CBG, as shown in Figure 6.1. The only tasks
that travel from CBG to NCBG are the tasks where EMUs arrive or depart. In our model, we
do not consider the NS engineers, since the engineers generally leave the facility once the
arrive task is complete, and enter the facility when the depart task will take place.

Technicians A maintenance technician is responsible for performing the inspections, as well as
small repair jobs. In our model, we assume that all technicians can perform all tasks on all
types of EMUs.

* The path from track 59 to track 906a is not used in our model.

6.1 kleine binckhorst 53

24
.4
0

23
.9
0

23
.75

23
.70

23
.6
5

23
.55

23
.4
5

23
.0
5

N

51
90
6a

5253545556
62

575859

6061

64

63

H

Fi
gu

re
6.
2:
Si
m
pl
ifi
ed

sc
he
m
at
ic
di
ag
ra
m

of
K
le
in
e
Bi
nc
kh

or
st
us
ed

in
ou

rm
od

el
.B

la
ck

lin
es

ar
e
tr
ac
ks
,r
ed

lin
es

ar
e
w
al
ki
ng

pa
th
s.
Th

e
va
lu
es

in
th
e
he
xa
go
ns

an
d
tr
ap
ez
ia
ar
e
th
e
tr
ac
k
nu

m
be
rs
,t
he

nu
m
be
rs
in

th
e
re
ct
an
gl
es

ar
e
th
e
po

si
tio

n
in

km
al
on

g
th
e
tr
ac
k.

Th
e
di
ag
ra
m

is
no

td
ra
w
n
to

sc
al
e.

54 experimental setup

Name Cleaners Engineers Technicians
Early Middle Late Early Middle Late Early Middle Late

2|2|2 1 0 1 1 0 1 1 0 1
2|3|2 1 0 1 1 1 1 1 0 1
2|4m|2 1 0 1 1 2 1 1 0 1
2|4el|2 1 0 1 2 0 2 1 0 1
3|3|3 1 1 1 1 1 1 1 1 1
3|4m|3 1 1 1 1 2 1 1 1 1
3|4el|3 1 1 1 2 0 2 1 1 1

Table 6.1:Number of staff used of each skill and shift per configuration.

Cleaning team A cleaning team is responsible for cleaning interiors, and consists of several cleaners.
As the time it takes the team to clean a single EMU is dependent on the number of team
members, we assume that all cleaning teams contain the same number of team members.

We assume that all members of staff have a constant walking speed of 4 km/h, which is the norm
used by NS.
The members of staff work in shifts of six or eight hours. We only consider the eight hour

shifts. Specifically, we use the shifts Early from 17 h 30min to 1 h 30min,Middle from 20 h 35min
to 4 h 35min, and Late from 23 h 40min to 7 h 40min. We chose these times because they spread
evenly over the planning period.

Breaks take 30 minutes. The window of time in which a break for member of staff k can occur is
set at [(rsk+rf k)/2−45; (rsk+rf k)/2+45]. With the shifts given before, the windows are 20 h 45min
to 22 h 15min, 23 h 50min to 1 h 20min, and 2 h 55min to 4 h 25min respectively.

We use several configurations in our testing. The numbers of staff available of skill and shift per
configurations are shown in Table 6.1.

6.1.3 Types of tasks

The tasks performed at Kleine Binckhorst can be divided into several categories:

Arrive and Exit These tasks represent the arrival or departure of one or more EMUs at the facility.
Arrive tasks always have track 906a as the finishing location. Exit tasks always have track
906a as the starting location. We assume that this is done by an NS engineer, and that it does
not require any of the staff modeled. We also assume that the subsequent Move operation,
which moves the EMU from/to track 906a from/to a location on the facility is done by the
NS engineer. These actions must be performed at exact times, as such, the activities have a
release date that is equal to the deadline, ensuring that there is no possibility of executing
these tasks at a different time. All other tasks types in this list do not need release dates and
deadlines, since they are implied through the precedence constraints.

Move These tasks represent the shunting of one or more EMUs within the facility. These require
an engineer.

6.2 test scenarios 55

Wait These tasks represent the periods during which the EMU is parked on a track in the facility.
These require no staff.

Split and Combine These tasks represent the splitting or combining of train pairs. These require an
engineer.

Inspections These tasks represent the inspections that are performed regularly on the EMUs. A
maintenance technician is required for this task.

Interior cleaning These tasks represent the daily cleaning that is performed on the inside of the
EMU. This task requires a cleaning team.

Exterior cleaning These tasks represent the cleaning of the exterior of the EMU by driving through
a washing machine. This task requires an engineer.

6.2 Test scenarios

To obtain test scenarios, we will use the plans generated by the algorithm for routing the trains and
scheduling the tasks by Van den Broek [5]. These plans are based on scenarios that are computer
generated, with the use of real world parameters. Each scenario has been generated to schedule a
different number of EMUs in the planning period.
A solution contains a set of tasks T . For each task t ∈ T , we know

• The starting and finishing time of the task in the plan, stt and fit respectively;

• The starting and finishing location of the task;

• The resources (such as tracks, signals, switches) required by the task. This is important in the
case of a “Move” activity, as these need exclusivity on the entire route.

We transform a plan into a precedence graph, such that we can use it as an instance for our
problem. This is done as follows. In this description, λ is five minutes.

• Add all the tasks as activities to the problem instance. Each task t ∈ T is converted into
an activity i and gets a minimum duration according to the duration it has in the plan, i.e.
pi = fit − stt , except for the Wait activities, which get a minimum duration of pi = 0. This
is done because the waiting is simply a consequence of the scheduling of the other tasks,
i.e. trains do not have to use the complete waiting time. We also set the original starting
and finishing times, i.e. sorig

i = stt and c
orig
i = fit . The start and end locations are also set

accordingly.

• The Arrive and Exit tasks get their starting time as release date and finishing time as deadline.
Since these tasks are partly external, it is important that they are executed at the specified
time. These are the only tasks with release dates and deadlines, besides the dummy activities
representing the start and end of member of staff shifts. Other tasks do not require release
dates and deadlines, since they are implied through the precedence constraints and the release
dates and deadlines on the Arrive and Exit tasks.

56 experimental setup

• For each train, select all the tasks that concern this train, either by itself or as part of a larger
shunting unit. Order these by start time and add precedence constraints between each task.
These are then added to P .

• For each resource (tracks, switches, etc.), select all the tasks that use the resource. Order these
by start time. Since some resources, such as tracks, may have a capacity greater than one, we
partition the tasks into subsets, such that each subset represents a schedule for that particular
“unit” of the resource. For each subset, ordered by start time, we add a precedence constraint
to P . This satisfies Assumption 2.4.

Note that Assumption 2.1 is now satisfied, as the precedence constraints are obtained from a
solution that is known to be feasible.

The database we used to obtain instances contained over 20000 solutions. Out of these solutions,
we picked twenty. The IDs of the selected solutions are shown in Table A.2, together with the
number of EMUs contained in the solved scenarios, and the number of tasks and movements. This
does not include parking tasks. The number of EMUs ranges from 11 to 21. The total number of
tasks and movements per scenario ranges from 91 to 176. Furthermore, Table A.2 shows the number
of activities and precedence constraints after importing each scenario. We also give the average
flexibility per activity in the scenario without any lines of work, which we define as the concurrent
flexibility divided by the number of activities. The statistics after preprocessing, as well as the
number of EMUs that enter and leave the facility in each scenario are shown in Table A.5. The
number of activities per skill after preprocessing in each scenario is shown in Table 6.2.

6.2.1 Preprocessing

Removing wait activities As we have said in Section 6.1.3, the Wait tasks do not need any member
of staff to be executed. As such, we do not actually need to plan them. Furthermore, in the plans we
import, the Wait tasks always have one incoming and one outgoing precedence constraint. These
are Move tasks, to bring the train to the parking location. Because we do not need to schedule these
tasks, we can remove them from the scenario.
This means that we remove each Wait task i, and the Move activities given by the precedence

constraints j ≺ i and i ≺ j′. We then add a precedence constraint j ≺ j′, since the Move activities
still need to be performed in the given order. The result of this operation is a reduction of around
33 % in the number of activities, and around 23 % in the number of precedence constraints. Detailed
results are shown in Table A.3.

Removing Arrive/exit activities As said in Section 6.1.3, an Arrive task i places the train at track 906a.
However, the train is always moved to a location in the facility by the same NS engineer performing
the Arrive task. The plan contains this as a Move task j with i ≺ j.

Since i and j are performed by an outside engineer, we do not need to schedule any of these two
tasks. As such, we remove them from the plan, and combine them into a new Arrive task j′, with
rj′ = ri, d j′ = di + pj,pj′ = pj, and rqj′ = 0. In order to keep existing precedence constraints intact,
we say prej′ = prei ∪ prej and sucj′ = suci ∪ sucj.

6.2 test scenarios 57

Id # EMUs |A| |Acleaners |
��Aengineers

�� |Atechnicians | |A0 | P

93240 11 84 11 51 8 14 107
93127 14 79 14 36 12 17 105
94882 14 88 14 46 11 17 121
93366 13 91 13 52 9 17 129
95171 14 98 14 57 10 17 130
112085 14 100 14 58 11 17 140
112487 15 107 15 60 12 20 147
113639 14 108 14 67 10 17 145
102809 15 117 15 70 12 20 163
102861 15 120 15 73 12 20 179
102816 15 128 15 83 10 20 181
90321 16 131 16 79 15 21 182
110562 15 129 15 81 13 20 173
102058 15 139 15 93 11 20 189
93384 15 144 15 97 12 20 204
93960 15 152 15 105 12 20 213
100322 15 151 15 105 11 20 206
111658 20 155 20 91 18 26 216
101062 15 162 15 116 11 20 224
93215 21 164 21 102 14 27 237

Table 6.2: Statistics on each scenario after the Wait, Arrive, and Exit tasks are removed, and the
transitive reduction algorithm has been applied, with the activity counts split per skill.

Applying this operation results in a decrease in the number of activities of around 14 % when
compared to just removing the Wait activities. The reduction in the number of precedence con-
straints is around 8 %. The detailed results of this operation combined with removing the Wait
activities is shown in Table A.4.

Removing redundant constraints In the process, the precedence graph may contain many redundant
precedence constraints. In order to satisfy Assumption 2.2, we compute the transitive reduction of
the precedence graph.

Definition 6.1. Let G′ = (V, A′) be the transitive reduction of a weighted graph G = (V, A). G′

satisfies the following properties:

1. There exists a path from u to v in G ⇐⇒ there exists a path from u to v in G′, ∀u, v ∈ V .
2. A′ is a minimal subset of A such that the previous property holds.

To find the transitive reduction, we use the algorithm by Hsu [20], outlined in Algorithm 6.1. This
algorithm starts by finding all the pairs of nodes between which a path in G exists. This is done
using the algorithm by Floyd [14] and Warshall [36], which runs in O(n3) time. If the Floyd-Warshall
algorithm does not find a path between two vertices, the length is set to∞. The path matrix will
then be used as the initial adjacency matrix for G′. The algorithm then iterates over the nodes,

58 experimental setup

continuously removing arcs (i, k) from G′ if there are still arcs (i, j) and (j, k) in G′. This algorithm
also runs in O(n3) time.

Algorithm 6.1: Algorithm by Hsu [20] for finding a transitive reduction of a graph
Input: Graph G = (V, A)
Output: Graph G′ = (V,A′), a transitive reduction of G, where A′ is the adjacency matrix.

1 D← output from Floyd-Warshall(Gw = (V, A, 0.0)) . Floyd [14] and Warshall [36]
2 A′← adjacency matrix for G′

3 for i ∈ V :
4 for j ∈ V :
5 if D[i, j] , ∞:
6 A′[i, j] ← true
7 for i ∈ V :
8 for j ∈ V :
9 if A′[i, j] = true:
10 for k ∈ V :
11 if A′[j, k] = true:
12 A′[i, k] ← false
13 return G′← (V, A′)

Applying this operation does not reduce the activity count. The number of precedence constraint
is reduced by around 45 % when compared to the scenarios with the Wait, Arrive, and Exit tasks
removed. The detailed results of this operation on the testing scenarios combined with the removal
of the Wait, Arrive, and Exit activities is shown in Table A.5.

6.2.2 Complexity

In the testing scenarios, there are two types of precedence constraints in P: constraints that
arise from the ordering of activities from the shunting unit perspective, and constraints that
arise from the ordering of activities from the resource perspective. Most activities have only
one predecessor through the shunting unit constraints, except for the Combine activities, which
have two predecessors. Furthermore, each activity only has one predecessor from the resource
perspective, seeing as we have ordered all activities per resource with precedence constraints. This
means that the number of precedence constraints is linear in the number of activities, and as such,
the constraint graph is sparse.

7RESULTS

We have tested the algorithm in several configurations: using just the greedy heuristic from Sec-
tion 4.2, and using the greedy heuristic and the local search improvement algorithm from Section 4.3.
We have also tested the algorithm using each component of the objective function shown in Sec-
tion 4.1. individually. The parameters used are shown in Table 7.1. We have tested each scenario in
Table 6.2 with each staff combination in Table 6.1, resulting in a set of 140 problem instances. Each
problem instance and configuration combination has been tested eight times, with upto four runs
executing concurrently, resulting in a total of 1120 runs per configuration. In Section 7.1, the ability
of the algorithm to find solutions is evaluated. Section 7.2 contains information on the quality of the
solutions found. Finally, Section 7.3 contains the results of other tests, to indicate the performance
of the algorithm.

7.1 Ability to find solutions

In this section, we try to measure the ability of the algorithm to find solutions. This is done by
checking the performance of the greedy heuristic by itself, and the performance of the greedy
heuristic followed by the local search improvement algorithm. Both are checked using several
objective functions. Furthermore, we have put each instance through a MIP solver, to be able to
make statements about the existence of feasible solutions. Table A.6 shows the results found by the
MIP solver for each instance. We have set a time limit of 10min. The MIP solver used is Gurobi by
Gurobi Optimization, Inc. [18]. Note that if the MIP solver was unable to find a feasible solution
within the time limit, it does not mean that such a solution does not exist.

7.1.1 Only greedy heuristic

In Figure 7.1, the number of solutions found is shown per staff combination. For each staff com-
bination, the total number of solutions found is shown, across all scenarios. This means that the
maximum is 160. The plots contain bars for each version of the objective function tested: one with
only the flexibility component, one with only the walking distance component, one with only the
fairness component, and one with the components combined using the weights shown in Table 7.1.
The unscheduled activities component of the objective function is only used in the local search
algorithm, and is used in all versions tested, using the weight shown in Table 7.1. It is not used in the
greedy heuristic.
In Figure 7.1a, the results found when only using the greedy heuristic are shown. The detailed

59

60 results

Notation Description Section Value

wflexibility Weight of the flexibility in the combined objective 4.1 1
wfairness Weight of the fairness in the combined objective 4.1 −5
wwalking Weight of the walking distances in the combined objective 4.1 −0.5
wunscheduled Weight of the unscheduled activities in the combined objective 4.1 −1000

B Number of activities removed each round in greedy algorithm 4.2 25
R Number of rounds in greedy algorithm 4.2 5

Tunscheduled Weight of unscheduled activities in the temperature 4.3 1
Tinit Initial temperature in simulated annealing algorithm 4.3 50
tc Temperature update interval in simulated annealing algorithm 4.3 1000
βc Temperature update factor in simulated annealing algorithm 4.3 0.98
itmax Maximum allowed number of iterations without improvement 4.3 25 000

Table 7.1: Parameter values used in the experimentation.

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3
0

20

40

60

80

100

120

140

160
flexibility
fairness
walking distances
combined objective

(a) Only greedy heuristic.

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3
0

20

40

60

80

100

120

140

160
flexibility
fairness
walking distances
combined objective

(b) Greedy heuristic and local search improvement.

Figure 7.1:Number of solutions found (out of a possible 160), using different objective functions.

7.1 ability to find solutions 61

0 20 40 60 80
0

1,000

2,000

iteration

ob
je
ct
iv
e
va
lu
e

(a) Concurrent flexibility (higher is better)

0 20 40 60
0

20

40

60

iteration

ob
je
ct
iv
e
va
lu
e

(b) Fairness (lower is better)

Figure 7.2: Progession of the objective function during the greedy heuristic step, using different
objective functions. Only one round is shown.

results, giving the numbers per scenario are shown in Tables A.7 to A.10. From these results, it
becomes apparent that simply using the flexibility as the objective gives the best results. The
combined objective shows a slightly weaker performance. Using just the fairness component of
using just the walking distance component both give results that are much worse. We expect that
this is due to the mostly decreasing nature of the flexibility: adding an activity to a line of work
almost always results in a decrease of the flexibility. An example of this is shown in Figure 7.2a. The
walking distance objective does not necessarily increase when adding an activity to a line of work,
it can also decrease, e.g. when adding a Move activity. This problem is even more pronounced with
the fairness component: adding an activity may increase or decrease the fairness, depending on the
contents of the lines of work. Furthermore, since we use the maximum of the standard deviations
per skill, the objective may often not change at all. An example is shown in Figure 7.2b. Because of
this, the greedy method is often unable to find a solution when using the fairness objective.
When compared to the results found by the MIP solver, see Table A.6, the greedy heuristic

optimizing the flexibility or the combined objective performs better with larger instances. Starting
from scenario 112487, the MIP solver is unable to find solutions for several staff configurations, while
the heuristics do not have that problem. However, the greedy heuristics do not perform as well on
scenario 93366, where the MIP solver found optimal solutions for each staff configuration except
2|2|2, while the greedy heuristics are unable to find a solution every time.

7.1.2 Greedy heuristic combined with local search improvement

In Figure 7.1b, the results are shown that were found when using the greedy heuristic to obtain
an initial solution, together with the local search improvement. The detailed results are shown in
Tables A.11 to A.14. Like with the previous results, using only the flexibility component yields the
most solutions, followed by using the combined objective. Like before, the walking distance and
fairness components do not perform as well. This is likely due to the same reasons shown earlier. Of
course, the local search method combined with the greedy heuristic is able to find more solutions

62 results

than the method using only the greedy heuristic. Like the greedy heuristic, it performs much better
than the MIP solver on large instances.
The difference in ability to find feasible solutions between the objective functions may be due

to a lack of soft constraints in our model. In the local search improvement step, we have a single
soft constraints, seeing as solutions are also accepted if there are activities that are unscheduled,
however, this is not the case with the greedy heuristic. Furthermore, we do not allow any deadline
violations, or any situation that would result in an inconsistent STN. If we would have incorporated
more soft constraints, both methods might have been able to better explore the search space.
In Figures 7.1a and 7.1b, we can see that the algorithm finds the most solutions for the staff

combinations 3|4m|3 and 3|4el|3. Of course, this makes sense, since these combinations contain the
largest number of members of staff, meaning that it is easier to divide the tasks over the members
of staff. Furthermore, the combination 3|4m|3 outperforms the combination 3|4el|3. This is likely
because the number of jobs during the Middle shift is larger than the number of jobs during the
Early or Late shifts. The Early shifts generally contain the Arrive tasks, and as such, not all EMUs
are on the facility during the Early shift, resulting in a smaller number of jobs for the members
of staff. The same holds for the Late shifts, which contain the Exit tasks. As such, having more
engineers during the Middle shifts gives better results, when compared to having more engineers
during the Early and Late shifts.

Tables A.7 to A.14 show that the greedy method was able to find solutions for all scenarios using
the staff combinations from Table 6.1, except for 113639 and 93960. The greedy method combined
with the local search improvement step is able to find solutions for all scenarios except for 113639.
Both methods were unable to reliably find solutions for scenario 101062, except when using the
flexibility objective.

We have used the output of the matching algorithm (see Section 4.5) to find a staff configuration
for which the algorithm was able to solve scenario 113639. Starting from staff configuration 2|2|2, and
adding new staff based on the output of thematching algorithm, we obtained a staff set 2|5m|3e, which
contains two cleaners, (one early, and one late), five engineers, (one early, three middle, one late), and
three technicians, (two early, onemiddle). Using this staff configuration, the algorithm is consistently
able to find solutions. The main issue with the staff combinations used in our experimentation is
the placement of the technicians: we only consider configurations with one technician in the early
shift, one in the late shift, and in some configurations one in the middle shift. As it turns out, in
scenario 113639, almost all of the technician activities are scheduled early in the planning period. As
such, no technician is needed in the late shift.

7.2 Quality of the solutions

In this section, we measure the quality of the solutions found by the algorithm. Only runs where a
feasible solution was found have been used in the calculations in this section.

7.2.1 Components of the objective function

Figure 7.3a shows the average flexibility of the solutions found per staff configuration, for each
version of the objective function. It is apparent that using only the flexibility component as the
objective function yields the most flexible solutions. The combined objective gives slightly worse

7.2 quality of the solutions 63

results, however, the flexibilities are still relatively high. Much worse results are obtained when
optimizing the walking distance component or the fairness component. The average flexibilities
found per scenario and technician set are shown in Table A.15. The values shown are the flexibilities
divided by the number of activities in the instance, i.e. flex/(|A| + 3 |R |).

In Figure 7.3b, the fairness of the solutions is shown, which is measured as the maximum of the
standard deviation of the workloads per skill. Of course, in most cases optimizing using only the
fairness gives the best result, with the combined objective closely following. However, in the case
of 2|4m|2, optimizing the combined objective yields solutions with a better fairness than simply
optimizing the fairness. This is likely due to the fact that optimizing the combined objective gave
more solutions than optimizing the fairness, see Figure 7.1b. With more solutions, the chances of
finding solutions with a better fairness are also higher, thus lowering the average. Optimizing the
flexibility provides worse results, and optimizing the walking distances provides the worst results.
The walking distances in the solutions found are shown in Figure 7.3c. The solutions with the

least walking were found by optimizing only the walking distances, as expected. Optimizing the
combined objective finds solutions with larger walking distances. Even larger walking distances are
found when using the flexibility. The largest walking distances were found when optimizing the
fairness. The walking distances are still far away from the optimum. For example, the average total
walking distances across all solutions found for scenario 93127 by the greedy heuristic with local
search improvement, optimizing the walking distances is 254.7, where the average of the optimal
solutions is 160.5.

7.2.2 Extending activity durations

We have also measured the robustness of solutions by checking whether a solution is still feasible
if the runtimes are extended. For example, runtimes can be extended because of disruptions, or
because of slowness. For each solution, we calculate the maximum factor with which the runtimes
can be multiplied while still keeping the STN consistent. A low factor, such as 1.01 indicates that
the processing times can only be extended by 1 %, indicating a tight schedule.
This is done using a method similar to binary search: from an initial lower and upper bound

of 1.0 and 2.0 respectively, we continually take the average of the bounds, and check if the STN
obtained by applying this average to the durations is still consistent. If it is, the lower bound is set to
the average. If the STN is inconsistent, the upper bound is set to the average. The process is stopped
after ten iterations.

For example, if we have the lower and upper bounds of 1.0 and 2.0 respectively, we get an average
of 1.5. Suppose the STN corresponding to the problem instance with each pi multiplied by 1.5 is
consistent. We then set the lower bound to 1.5 to get a new average of 1.75. This is then repeated
ten times.

The maximum percentages for the solutions found when using the greedy heuristic and the local
search improvement with the combined objective are shown in Table A.16. The values shown are
averages over the maximum percentages of each solution found, see Table A.14. The percentages
found range from 0.2 % to 21.9 %, with a complete average of 5 %. We can see that the percentages are
highest for the technician set 3|4m|3, which is expected, as that is the set with the highest number of
technicians. 3|4m|3 also performs better than 3|4el|3, which is also expected, as there are generally
more activities during the middle shift.

64 results

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000
flexibility
fairness
walking distances
combined objective

(a) Concurrent flexibility (higher is better)

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3
0

20

40

60

80

100

120

140
flexibility
fairness
walking distances
combined objective

(b) Fairness (lower is better)

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3
0

100

200

300

400

500

600

700

800
flexibility
fairness
walking distances
combined objective

(c)Walking distances (lower is better)

Figure 7.3: Average values of each component of the objective function over all solutions found
when using each version of the objective function.

7.3 performance 65

The values found when only extending the processing times of activities requiring a specific skill
are higher: when only extending the cleaning tasks, we get an average percentage of 16.3 %, with a
maximum of 64.7 %. With the engineer activities, the average is 13.5 %, and the maximum is 69.9 %.
With the technician activities, the average is 19.9 %, and the maximum is 75.3 %.

While a low factor indicates a tight schedule, very high factors are not expected. The measure
used is very pessimistic, as in reality, it is unlikely that all activities are taking longer than planned.
It is more likely that some individual activities are delayed.

There seems to be a slight relation between the flexibility of a solution and the maximum increase
in duration. Comparing Table A.15 and Table A.16 shows that sometimes a higher flexibility also
means a higher percentage, see for example the column for technician set 3|4m|3. However, in some
cases, such as with scenario 93240, the flexibility is rather high, and the percentages are low.

7.3 Performance

In this section, we give some indicators for the performance of the algorithm. We do this by looking
at the runtime, memory usage, and the acceptance rate of the neighbourhood operators. The runtime
tests were performed on a computer containing an Intel Core i5-4440 quad-core CPU. The method
used to check the feasibility of a solution is the algorithm shown in Section 2.4. The flexibility is
computed using the algorithm byMountakis et al. [29] shown in Section 3.3.3, with the optimizations
from Sections 3.4.1 and 3.4.2 applied. At most four runs were performed in parallel, to ensure that
the performance was not hindered by a lack of threads on the processor. The application has been
written in C#, using the .NET Framework, and using Entity Framework for communications with
the database. Database connections are only made before and after the call to the algorithm.

7.3.1 Runtime

Table A.17 shows the performance of the algorithm, measured as the number of iterations per
second in the local search algorithm. The runs used are the runs from Table A.14. Depending on
the scenario, the algorithm is able to process between 350 and 2 000 iterations per second. The
number of iterations per second decreases when scenarios with more activities are examined, and
when problem instances with more members of staff are examined. Of course, this is as expected.
The main bottleneck for the runtime performance is calculating the flexibility. To calculate the
flexibility, we first solve an all-pairs shortest path problem on the simple temporal network, and we
then find a matching in a complete bipartite graph with two vertices for each variable in the simple
temporal network. This amounts to about 70 % of the runtime of the application.
In Table A.18, the average number of iterations needed before termination is shown for each

scenario and staff configuration. The runs used are the runs from Table A.14. Across all runs, the
algorithm terminated in 75 038 iterations on average. When only considering runs that resulted in
a feasible solution, the algorithm needed an average of 57 244 iterations. When only considering
infeasible runs, 99 555 iterations were needed. Furthermore, if we only consider runs where a
feasible solution was found using the greedy heuristic, only 45 959 iterations were needed. Runs
that found a feasible solution through the local search improvement step, where no solution was
found using the greedy heuristic, needed 114 414 iterations on average.

66 results

80 90 100 110 120 130 140 150 160
0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

number of activities

nu
m
be
ro

fi
te
ra
tio

ns
pe
rs
ec
on

d

2|2|2
2|3|2
2|4el|2
2|4m|2
3|3|3
3|4el|3
3|4m|3

Figure 7.4:Number of iterations per second for each staff configuration by number of activities.
Each data point is an average over eight runs.

From this we conclude that the algorithm terminates not long after discovering a feasible solution.
The local search method is stopped when no improvement has been made in 25 000 iterations.
From this, we can conclude that the local search algorithm is still able to improve at the start of the
algorithm, though the ability to improve quickly diminishes, causing the stop condition to be met.

7.3.2 Memory usage

As is expected from a local search algorithm, the memory usage of the algorithm is constant during
the algorithm. A chart detailing the memory usage during a single run of the algorithm is shown in
Figure 7.5. We can see that the memory usage during the algorithm is around 55MiB when solving
scenario 93217 with staff configuration 2|3|2, and around 60MiB when solving scenario 93215 with
staff configuration 3|4m|3.

As can be seen, the memory usage does not change much when solving more difficult instances,
with more activities and more members of staff. As such, we believe that the bulk of the memory
usage is overhead due to our usage of the .NET Framework. The peaks at the beginning and end
are likely caused by database communications using Entity Framework and converting database
objects to the objects used in the algorithm.

7.3.3 Operator acceptance rate

To measure the acceptance rate of the neighbourhood operators in the local search algorithm, we
use the following two measures. The first, shown in Equation 7.1 shows the average acceptance

7.3 performance 67

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

time in s

m
em

or
y
us
ag
e
in

M
iB

93127 with 2|3|2
93215 with 3|4m|3

Figure 7.5:Memory usage in MiB during two runs of the algorithm. Both the greedy heuristic and
local search improvement have been executed, using the combined objective.

rate of the operator across the set of results. The second, shown in Equation 7.2 shows the total
acceptance rate across the set of results. The results used are the results that were previously used
for the values in Tables A.11 to A.14.

acceptanceaverage =
1

results

∑ [
accepted

accepted + # rejected

]
(7.1)

acceptanceconsolidated =

∑
accepted∑

accepted + # rejected
(7.2)

The results are shown in Table A.19. We can see that the Place immmediate predecessor, Swap within
line of work, and Replace random operators are the most accepted across both measures, with the
Place immediate predecessor being the most accepted when considering the first measure, and the
Swap within line of work being the most accepted when considering the second measure. The other
operators have very low acceptance rates, most notably the Delete random operator. We believe that
this occured because of the large penalty incurred when removing an activity from the schedule:
we have set the weight wunscheduled to −1000. The temperature settings used do not seem to allow a
solution with such a large decrease in objective function to be accepted.

The Place immediate predecessor operator was accepted exceptionally well in two scenarios: 93127
and 112487. In these two scenarios, the acceptance rate of the operator is around 55%. The operator
has an acceptance rate of around 28% with scenario 112085, and an acceptance rate between 1% and
15% with the other scenarios.

8CONCLUSION

We give some final remarks in this chapter. Section 8.1 contains the conclusion, and Section 8.2
contains some ways to improve the model.

8.1 Conclusion

In this thesis, we have presented an efficient metaheuristic for solving the problem of finding lines
of work for members of staff, given a set of activities with release dates, deadlines, and precedence
constraints, while keeping walking distances, flexibility, and fairness into account. The method,
which is based on starting with an initial solution obtained from a greedy heuristic, and enhancing
the solution using simulated annealing, is able to find solutions consistently for at least one of the
considered staff configurations for nineteen out of the twenty scenarios considered.
Furthermore, since we model an instance and solution as a simple temporal network, we are

able to disregard the fixed starting and completion times. Using the STN allows us to easily check
whether executing an activity earlier or later than originally planned is allowed. While this is also
possible by using the earliest starting times, using the STN allows for model enhancements, such as
maximum time lags between activities, i.e. constraints specifying that an activity must be executed
within a certain amount of time compared to another activity. It also allows us to use existing
measures for estimating the flexibility of a solution, such as the concurrent flexibility.
Our objective consists of three components: the walking distances, the flexibility, and the max-

imum of the standard deviation per type of staff. The best results for each component individually
were found when optimizing that specific component, however, optimizing over a weighted sum of
the three components gave the second best results for each component.

The algorithm is able to find solutions efficiently, with upto 2 000 iterations per second on easier
scenarios, and around 350 iterations per second on the most difficult scenario considered. In
comparison, the MIP solver was unable to find solutions within the time limit for around half of the
scenarios considered. The main bottleneck is the flexibility algorithm used, seeing as calculating
the flexibility amounts to about 70 % of the runtime of the application.

8.2 Model enhancements

Other flexibility measure The measures for the flexibility of an STN mentioned in Section 3.3 only
deal with the degree of freedom in moving individual activities in time. It might also be interesting
to look at the degree of freedom in moving a set of related activities in time, e.g. all activities

69

70 conclusion

concerning a single EMU, or all activities concerning a single member of staff. To do this, we can
make use of the paths in the STN. We can calculate the degree of freedom in choosing the placement
of the entire path by comparing the earliest execution time of the earliest activity in the path, and
the latest execution time of the latest activity in the path. However, some tasks are fixed in time,
such as the Arrive/Exit tasks, and the dummy tasks for the start and end of the shifts. Furthermore,
the dummy activities for the breaks are also restricted by release dates and deadlines. Because of
these restrictions, we only consider paths where each activity is completely free to move around
in time. Note that this method is only suited for STNs that can be converted to a directed acyclic
graph, as shown in Section 3.4.1. The following description assumes the model from Section 3.2
using the optimizations in Sections 3.4.1 and 3.4.2, i.e. the STN containing only a variable for the
completion time of each variable, and two dummy variables t0 and t′0.

Let S = (T,C) be an STN, and G′S = (V, A) be the associated distance graph, as a directed acyclic
graph. LetΠS be the set containing all paths inG′S , where a path consists of activities [π0, π1, . . . , πm],
where π0 is the final activity in time, and πm the first. Let the set Π′S ⊆ ΠS be the set of paths in S
where every activity is free to move in time, i.e. Π′S = { π ∈ Π | ∀i ∈ Π : ri = 0 ∧ di = ∞ }. We then
define the flexibility as the minimum of the slack over all paths:

flex = min
π ∈Π′S

lt(π0) − et(πm)

where et(ti) = −DS[ti, 0] and lt(ti) = DS[0, ti], and DS is the distance matrix of the graph G′S , see
Property 3.3. In our model, the set Π′S contains paths corresponding to

• The “line of work” corresponding to each EMU, without the corresponding Arrive and Exit
activities.

• The “line of work” corresponding to each non-human resource, such as tracks without any
Arrive and Exit activities.

• The partial line of work for each member of staff starting with the first non-dummy activity
in the shift and ending with the last activity before the break.

• The partial line of work for each member of staff starting with the first activity past the break,
and ending with the last non-dummy activity in the shift.

Plan stability A real-life scenario is subject to disruptions, such as tasks taking longer than planned,
or starting later. We have tried to keep disruptions into account, by optimizing the flexibility of the
solution, measured as the concurrent flexibility of the corresponding simple temporal network. If
there are any disruptions, the solution should be able to handle these. However, if the disruptions
become too big, the solution may not be able to absord them. In that case, a new solution must be
generated.

Since we are dealing with personnel, and not with machines, it is desired that there is a form of
plan stability: the new plan should be similar to the old plan, with small modifications to ensure
feasibility under the changed circumstances. This is because the members of staff prefer some form
of certainty when handed their roster for the day: it is not appreciated when the roster changes
completely during their shift.

8.2 model enhancements 71

Plan stability could be handled in the algorithm by restricting the choice of neighbourhood, for
example by disallowing the Delete random and Swap within line of work operators. However, since
all operators move activities around, this is likely to be insufficient.
Another method to handle plan stability would be to use a different objective function, which

represents the difference between the previous, now infeasible plan, and the newly generated plan.
An example of such an objective function would be the number of activities that have a different
predecessor in the new solution when compared to the old solution.

Integrating the staff scheduling with the rest of the problem The staff scheduling problem presented
in this thesis is a part of a larger planning problem, which also contains planning the activities
themselves, and finding shunting routes, among other things. The contents of the larger problem are
explained in more detail in Section 1.2. Because of this, an instance of our algorithm is created from
a solution to the other subproblems. However, since the method used to solve the staff scheduling
problem is similar to the method used by Van den Broek [5], and since our method consists of adding
extra constraints to a solution found by the algorithm by Van den Broek [5], it should also be possible
to integrate our method for finding lines of work in the algorithm by Van den Broek [5], resulting in
an algorithm which solves the complete planning problem.

BIBLIOGRAPHY

[1] J. M. van den Akker, J. A. Hoogeveen and J. W. van Kempen. Using column generation to
solve parallel machine scheduling problems with minmax objective functions. In: Journal of
Scheduling 15:6 (2012), 801–810. doi: 10.1007/s10951-010-0191-z (cit. on p. 47).

[2] M. A. Aloulou andM.-C. Portmann. An Efficient Proactive Reactive Scheduling Approach
to Hedge against Shop Floor Disturbances. In: In Proceedings of the 1 st Multidisciplinary
International Conference on Scheduling: Theory and Applications, MISTA 2003. 337–362 (cit. on
p. 7).

[3] C. Artigues and F. Roubellat. A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. In: European Journal of Operational
Research 127:2 (2000), 297–316. doi: 10.1016/S0377-2217(99)00496-8 (cit. on p. 5).

[4] R. Bellman. On a routing problem. In: Quarterly of applied mathematics 16:1 (1958), 87–90.
doi: 10.1090/qam/102435 (cit. on p. 23).

[5] R.W. van den Broek. Train Shunting and Service Scheduling: an integrated local search approach.
MSc thesis. Universiteit Utrecht, 2016. url: https://dspace.library.uu.nl/handle/1874/
338269 (cit. on pp. 1, 4, 5, 9, 12, 44, 55, 71).

[6] A. Cesta, A. Oddi and S. F. Smith. Profile-Based Algorithms to Solve Multiple Capacitated
Metric Scheduling Problems. In: Proceedings of the Fourth International Conference on Artificial
Intelligence Planning Systems, Pittsburgh, Pennsylvania, USA, 1998. Ed. by R. G. Simmons,M. M.
Veloso and S. F. Smith. AAAI, 1998, 214–223. isbn: 1-57735-052-9. url: http://www.aaai.org/
Library/AIPS/1998/aips98-026.php (cit. on p. 7).

[7] J. Cordeau, G. Laporte, F. Pasin and S. Ropke. Scheduling technicians and tasks in a
telecommunications company. In: Journal of Scheduling 13:4 (2010), 393–409. doi: 10.1007/
s10951-010-0188-7 (cit. on p. 6).

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction to Algorithms, 3rd
Edition. MIT Press, 2009. isbn: 978-0-262-03384-8 (cit. on p. 32).

[9] F. Deblaere, E. Demeulemeester,W. Herroelen and S. van de Vonder. Robust Resource
Allocation Decisions in Resource-Constrained Projects. In: Decision Sciences 38:1 (2007), 5–37.
doi: 10.1111/j.1540-5915.2007.00147.x (cit. on pp. 5, 7).

[10] R. Dechter, I. Meiri and J. Pearl. Temporal Constraint Networks. In: Artificial Intelligence
49:1-3 (1991), 61–95. doi: 10.1016/0004-3702(91)90006-6 (cit. on pp. 7, 21).

73

https://doi.org/10.1007/s10951-010-0191-z
https://doi.org/10.1016/S0377-2217(99)00496-8
https://doi.org/10.1090/qam/102435
https://dspace.library.uu.nl/handle/1874/338269
https://dspace.library.uu.nl/handle/1874/338269
http://www.aaai.org/Library/AIPS/1998/aips98-026.php
http://www.aaai.org/Library/AIPS/1998/aips98-026.php
https://doi.org/10.1007/s10951-010-0188-7
https://doi.org/10.1007/s10951-010-0188-7
https://doi.org/10.1111/j.1540-5915.2007.00147.x
https://doi.org/10.1016/0004-3702(91)90006-6

74 bibliography

[11] M. van Dommelen. Scheduling train service activities to determine capacity. BSc thesis. Vrije
Universiteit Amsterdam, 2015. url: www.ubvu.vu.nl/pub/index_oclc.cfm?SearchObjectId=
8&objectid=109&ordering=1&openitem=177349 (cit. on p. 4).

[12] P.-F. Dutot, A. Laugier and A.-M. Bustos. Technicians and interventions scheduling for
telecommunications. In: France Telecom R&D (2006). url: http://challenge.roadef.org/
2007/files/sujet2.en.pdf (cit. on p. 6).

[13] M. Firat and C. A. J. Hurkens. An improved MIP-based approach for a multi-skill workforce
scheduling problem. In: Journal of Scheduling 15:3 (2012), 363–380. doi: 10.1007/s10951-011-
0245-x (cit. on p. 6).

[14] R. W. Floyd. Algorithm 97: Shortest path. In: Communications of the ACM 5:6 (1962), 345. doi:
10.1145/367766.368168 (cit. on pp. 31, 33, 57, 58).

[15] L. Ford and D. Fulkerson. Flows in networks. Princeton U. Press, Princeton, NJ, 1962 (cit. on
p. 23).

[16] R. Freling, A. P. M.Wagelmans and J. M. P. Paixão. Models and Algorithms for Single-Depot
Vehicle Scheduling. In: Transportation Science 35:2 (2001), 165–180. doi: 10.1287/trsc.35.2.
165.10135 (cit. on p. 44).

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979. isbn: 0-7167-1044-7 (cit. on p. 18).

[18] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual. 2016. url: http://www.
gurobi.com (cit. on p. 59).

[19] D. van den Heuvel. Decomposing and Interactively Solving a High Dimensional Problem:
Scheduling Trains on Shunting Yards. MSc thesis. TU Delft, 2017. url: http://resolver.
tudelft.nl/uuid:3a4b2767-6172-4eeb-a6b4-1ddae7b531c5 (cit. on p. 4).

[20] H. T. Hsu. An Algorithm for Finding a Minimal Equivalent Graph of a Digraph. In: Journal of
the ACM 22:1 (1975), 11–16. doi: 10.1145/321864.321866 (cit. on pp. 57, 58).

[21] L. Hunsberger. Algorithms for a Temporal Decoupling Problem in Multi-Agent Planning.
In: Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artificial Intelligence, July 28 - August 1, 2002, Edmonton,
Alberta, Canada. Ed. by R. Dechter and R. S. Sutton. AAAI Press / The MIT Press, 2002,
468–475. url: http://www.aaai.org/Library/AAAI/2002/aaai02-071.php (cit. on pp. 7, 29,
33, 35).

[22] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. In: Journal of the
ACM 24:1 (Jan. 1977), 1–13. doi: 10.1145/321992.321993 (cit. on p. 33).

[23] A. B. Kahn. Topological sorting of large networks. In: Commununications of the ACM 5:11
(1962), 558–562. doi: 10.1145/368996.369025 (cit. on pp. 15, 16).

[24] S. Kirkpatrick, C. D. Gelatt andM. P. Vecchi. Optimization by Simulated Annealing. In:
Science 220:4598 (1983), 671–680. doi: 10.1126/science.220.4598.671 (cit. on pp. 39, 41).

[25] A. A. Kovacs, S. N. Parragh, K. F. Doerner and R. F. Hartl. Adaptive large neighborhood
search for service technician routing and scheduling problems. In: Journal of Scheduling 15:5
(2012), 579–600. doi: 10.1007/s10951-011-0246-9 (cit. on p. 6).

www.ubvu.vu.nl/pub/index_oclc.cfm?SearchObjectId=8&objectid=109&ordering=1&openitem=177349
www.ubvu.vu.nl/pub/index_oclc.cfm?SearchObjectId=8&objectid=109&ordering=1&openitem=177349
http://challenge.roadef.org/2007/files/sujet2.en.pdf
http://challenge.roadef.org/2007/files/sujet2.en.pdf
https://doi.org/10.1007/s10951-011-0245-x
https://doi.org/10.1007/s10951-011-0245-x
https://doi.org/10.1145/367766.368168
https://doi.org/10.1287/trsc.35.2.165.10135
https://doi.org/10.1287/trsc.35.2.165.10135
http://www.gurobi.com
http://www.gurobi.com
http://resolver.tudelft.nl/uuid:3a4b2767-6172-4eeb-a6b4-1ddae7b531c5
http://resolver.tudelft.nl/uuid:3a4b2767-6172-4eeb-a6b4-1ddae7b531c5
https://doi.org/10.1145/321864.321866
http://www.aaai.org/Library/AAAI/2002/aaai02-071.php
https://doi.org/10.1145/321992.321993
https://doi.org/10.1145/368996.369025
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s10951-011-0246-9

bibliography 75

[26] L. G. Kroon, R. M. Lentink and A. Schrijver. Shunting of Passenger Train Units: An
Integrated Approach. In: Transportation Science 42:4 (2008), 436–449. doi: 10.1287/trsc.1080.
0243 (cit. on p. 4).

[27] H. W. Kuhn. The Hungarian method for the assignment problem. In:Naval Research Logistics
Quarterly 2:1-2 (1955), 83–97. doi: 10.1002/nav.3800020109 (cit. on pp. 31, 44).

[28] R. Leus andW. Herroelen. Stability and resource allocation in project planning. In: IIE
Transactions 36:7 (2004), 667–682. doi: 10.1080/07408170490447348 (cit. on p. 5).

[29] S. Mountakis, T. Klos and C. Witteveen. Temporal Flexibility Revisited: Maximizing
Flexibility by Computing Bipartite Matchings. In: Proceedings of the Twenty-Fifth International
Conference on Automated Planning and Scheduling, ICAPS 2015, Jerusalem, Israel, June 7-11, 2015.
Ed. by R. I. Brafman, C. Domshlak, P. Haslum and S. Zilberstein. AAAI Press, 2015, 174–178.
isbn: 978-1-57735-731-5. url: http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/
view/10610 (cit. on pp. 31, 65).

[30] V. Pillac, C. Guéret and A. L. Medaglia. A parallel matheuristic for the technician routing
and scheduling problem. In: Optimization Letters 7:7 (2013), 1525–1535. doi: 10.1007/s11590-
012-0567-4 (cit. on p. 6).

[31] L. R. Planken. Algorithms for Simple Temporal Reasoning. PhD thesis. TU Delft, 2013. doi:
10.4233/uuid:2e41be6a-5220-421c-bef8-bbb8f91c128f (cit. on p. 23).

[32] N. Policella, A. Cesta, A. Oddi and S. F. Smith. From precedence constraint posting to
partial order schedules: A CSP approach to Robust Scheduling. In: AI Communications 20:3
(2007), 163–180. url: http://content.iospress.com/articles/ai-communications/aic403
(cit. on p. 12).

[33] N. Policella, A. Oddi, S. F. Smith and A. Cesta. Generating Robust Partial Order Schedules.
In: Principles and Practice of Constraint Programming - CP 2004, 10th International Conference,
CP 2004, Toronto, Canada, September 27 - October 1, 2004, Proceedings. Ed. by M. Wallace.
Vol. 3258. Lecture Notes in Computer Science. Springer, 2004, 496–511. isbn: 3-540-23241-9.
doi: 10.1007/978-3-540-30201-8_37 (cit. on p. 5).

[34] N. Policella, S. F. Smith, A. Cesta and A. Oddi. Generating Robust Schedules through
Temporal Flexibility. In: Proceedings of the Fourteenth International Conference on Automated
Planning and Scheduling (ICAPS 2004), June 3-7 2004, Whistler, British Columbia, Canada. Ed. by
S. Zilberstein, J. Koehler and S. Koenig. AAAI, 2004, 209–218. isbn: 1-57735-200-9. url:
http://www.aaai.org/Library/ICAPS/2004/icaps04-026.php (cit. on p. 7).

[35] G. Ramalingam, J. Song, L. Joskowicz and R. E. Miller. Solving Systems of Difference
Constraints Incrementally. In: Algorithmica 23:3 (1999), 261–275. doi: 10.1007/PL00009261
(cit. on p. 23).

[36] S. Warshall. A Theorem on Boolean Matrices. In: Journal of the ACM 9:1 (1962), 11–12. doi:
10.1145/321105.321107 (cit. on pp. 31, 33, 57, 58).

[37] M. Wilson, T. Klos, C. Witteveen and B. Huisman. Flexibility and decoupling in Simple
Temporal Networks. In: Artificial Intelligence 214: (2014), 26–44. doi: 10.1016/j.artint.2014.
05.003 (cit. on pp. 7, 28–30, 33).

https://doi.org/10.1287/trsc.1080.0243
https://doi.org/10.1287/trsc.1080.0243
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1080/07408170490447348
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10610
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS15/paper/view/10610
https://doi.org/10.1007/s11590-012-0567-4
https://doi.org/10.1007/s11590-012-0567-4
https://doi.org/10.4233/uuid:2e41be6a-5220-421c-bef8-bbb8f91c128f
http://content.iospress.com/articles/ai-communications/aic403
https://doi.org/10.1007/978-3-540-30201-8_37
http://www.aaai.org/Library/ICAPS/2004/icaps04-026.php
https://doi.org/10.1007/PL00009261
https://doi.org/10.1145/321105.321107
https://doi.org/10.1016/j.artint.2014.05.003
https://doi.org/10.1016/j.artint.2014.05.003

76 bibliography

[38] F. E. Wolfhagen. The Train Unit Shunting Problem with Reallocation. MSc thesis. Erasmus
Universiteit Rotterdam, 2017. url: http://hdl.handle.net/2105/37696 (cit. on p. 4).

http://hdl.handle.net/2105/37696

ATABLES

H 52 53 54 55 56 57 58 59 60 61 62 63 64

H 0
52 290 0
53 285 5 0
54 280 405 5 0
55 175 410 405 5 0
56 170 415 410 405 5 0
57 165 420 415 410 405 5 0
58 160 425 420 415 410 305 5 0
59 155 430 425 420 415 310 305 5 0
60 1130 1420 1415 1410 1405 1300 1295 1290 1285 0
61 525 815 810 805 800 695 690 685 680 1015 0
62 320 815 810 805 800 695 690 685 680 1015 5 0
63 725 1015 1010 1005 1000 895 890 885 880 405 610 610 0
64 100 390 385 380 375 270 265 260 255 1030 425 220 625 0

Table A.1: Distance matrix for Kleine Binckhorst. Distances are in m.

77

78 tables

Id # EMUs # Movements # Tasks # Movements + # Tasks |A| |P| flex/|A|

93240 11 71 20 91 140 270 25.3
93127 14 65 26 91 130 253 25.3
94882 14 73 27 100 148 292 29.89
93366 13 75 25 100 156 308 15.19
95171 14 82 28 110 164 334 23.47
112085 14 84 26 110 176 350 17.38
112487 15 93 27 120 190 372 25.89
113639 14 91 29 120 185 363 19.97
102809 15 97 30 127 204 398 23.85
102861 15 100 30 130 212 419 21.18
102816 15 106 30 136 223 460 20.44
90321 16 110 31 141 233 468 22.67
110562 15 110 30 140 226 471 21.1
102058 15 124 28 152 252 533 18.97
93384 15 122 30 152 260 548 20.15
93960 15 130 32 162 274 556 19.8
100322 15 133 28 161 277 562 18.68
111658 20 131 40 171 278 552 21.51
101062 15 142 30 172 296 627 20.8
93215 21 136 40 176 290 596 24.13

Table A.2: The selected scenarios and the amount of tasks in the original solution, and the statistics
without preprocessing.

tables 79

Id |A| % |P | % flex/|A|

93240 98 −30.00% 212 −21.48% 25.77
93127 96 −26.15% 208 −17.79% 26.06
94882 105 −29.05% 234 −19.86% 26
93366 108 −30.77% 246 −20.13% 14.99
95171 115 −29.88% 265 −20.66% 17.72
112085 117 −33.52% 267 −23.71% 19.76
112487 127 −33.16% 284 −23.66% 29.23
113639 125 −32.43% 280 −22.87% 14.5
102809 137 −32.84% 308 −22.61% 31.78
102861 140 −33.96% 325 −22.43% 22.66
102816 148 −33.63% 360 −21.74% 17.32
90321 152 −34.76% 352 −24.79% 24.32
110562 149 −34.07% 361 −23.35% 17.41
102058 159 −36.90% 396 −25.70% 20
93384 164 −36.92% 415 −24.27% 25.32
93960 172 −37.23% 416 −25.18% 18.25
100322 171 −38.27% 412 −26.69% 17.98
111658 181 −34.89% 419 −24.09% 19.69
101062 182 −38.51% 462 −26.32% 19.08
93215 191 −34.14% 466 −21.81% 25.16
Average −33.56% −22.96%

Table A.3: Statistics on each scenario after the Wait tasks are removed.

80 tables

Id |A| % |P | % flex/|A|

93240 84 −14.29% 195 −8.02% 28.67
93127 79 −17.71% 181 −12.98% 31.59
94882 88 −16.19% 203 −13.25% 28.55
93366 91 −15.74% 224 −8.94% 16.93
95171 98 −14.78% 231 −12.83% 18.52
112085 100 −14.53% 240 −10.11% 22.62
112487 107 −15.75% 250 −11.97% 34.04
113639 108 −13.60% 247 −11.79% 14.02
102809 117 −14.60% 282 −8.44% 37.01
102861 120 −14.29% 301 −7.38% 26.15
102816 128 −13.51% 328 −8.89% 18.62
90321 131 −13.82% 319 −9.38% 27.67
110562 129 −13.42% 340 −5.82% 19.59
102058 139 −12.58% 360 −9.09% 21.94
93384 144 −12.20% 396 −4.58% 28.13
93960 152 −11.63% 405 −2.64% 19.38
100322 151 −11.70% 384 −6.80% 19.84
111658 155 −14.36% 397 −5.25% 22.67
101062 162 −10.99% 432 −6.49% 19.79
93215 164 −14.14% 436 −6.44% 28.73
Average −13.99% −8.55%

Table A.4: Statistics on each scenario after the Wait, Arrive, and Exit tasks are removed.

tables 81

Id |A| % |P | % flex/|A|

93240 84 0% 107 −45.13% 28.67
93127 79 0% 105 −41.99% 31.59
94882 88 0% 121 −40.39% 28.55
93366 91 0% 129 −42.41% 16.93
95171 98 0% 130 −43.72% 18.52
112085 100 0% 140 −41.67% 22.62
112487 107 0% 147 −41.20% 34.04
113639 108 0% 145 −41.30% 14.02
102809 117 0% 163 −42.20% 37.01
102861 120 0% 179 −40.53% 26.15
102816 128 0% 181 −44.82% 18.62
90321 131 0% 182 −42.95% 27.67
110562 129 0% 173 −49.12% 19.59
102058 139 0% 189 −47.50% 21.94
93384 144 0% 204 −48.48% 28.13
93960 152 0% 213 −47.41% 19.38
100322 151 0% 206 −46.35% 19.84
111658 155 0% 216 −45.59% 22.67
101062 162 0% 224 −48.15% 19.79
93215 164 0% 237 −45.64% 28.73
Average 0% −44.33%

Table A.5: Statistics on each scenario after the Wait, Arrive, and Exit tasks are removed, and the
transitive reduction algorithm has been applied.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 N O O N N N N N N N N N N N N N N N N N
2|3|2 T O O O O T N N N N N N N N N N N N N N
2|4el|2 T O O O O T T N N N T N T N N N N N N N
2|4m|2 T O T O O T T N T T T N T N N N N N N N
3|3|3 T O O O O T N N N N T N N N N N N N N N
3|4el|3 T O O O O T N N N N N N N N N N N N N N
3|4m|3 O O T O O T T N N N T N N N N N N N N N

Table A.6: Status of the MIP solver for each scenario. O indicates that the problem has been solved
to optimality, T indicates that a solution has been found, but that optimality could not
be proven within the time limit, N indicates that no solution was found within the time
limit.

82 tables

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|3|2 7 8 8 4 7 8 7 0 8 0 8 0 3 0 1 0 5 0 0 0
2|4el|2 8 8 8 3 8 8 8 0 8 0 8 8 8 0 6 0 8 0 6 0
2|4m|2 5 8 8 8 8 8 8 0 8 2 8 0 8 0 8 0 8 0 1 1
3|3|3 8 8 8 4 8 8 8 0 8 5 8 8 3 0 8 0 6 4 0 0
3|4el|3 8 8 8 0 8 8 8 0 8 8 8 8 8 7 2 0 7 6 8 0
3|4m|3 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8 0 8 8 8 8

Table A.7:Number of solutions found (out of 8) per scenario and staff combination, using only the
greedy heuristic with the flexibility objective.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0
2|3|2 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|4el|2 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2|4m|2 2 0 1 7 0 8 0 0 2 0 0 0 1 0 0 0 0 0 0 0
3|3|3 1 8 2 0 0 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0
3|4el|3 0 7 0 0 5 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0
3|4m|3 4 8 7 7 1 8 5 0 4 0 7 0 5 1 0 0 0 0 0 0

Table A.8:Number of solutions found (out of 8) per scenario and staff combination, using only the
greedy heuristic with the fairness objective.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0
2|3|2 6 8 0 2 0 5 1 0 0 0 0 0 6 0 0 0 0 0 0 0
2|4el|2 5 7 1 0 6 3 1 0 0 0 0 6 5 0 0 0 0 0 0 0
2|4m|2 7 8 7 6 3 8 2 0 0 0 0 1 6 0 1 0 0 0 0 0
3|3|3 7 8 2 3 2 3 4 0 0 1 5 2 1 0 0 0 0 0 0 0
3|4el|3 6 8 2 0 7 2 1 0 0 2 1 7 3 0 0 0 0 3 0 0
3|4m|3 8 8 8 6 8 8 7 0 6 3 8 7 8 7 3 0 1 2 0 0

Table A.9: Number of solutions found (out of 8) per scenario and staff combination, using only the
greedy heuristic with the walking distance objective.

tables 83

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0
2|3|2 8 8 8 5 1 8 0 0 8 0 8 2 3 0 0 0 0 0 0 0
2|4el|2 8 8 8 0 8 8 0 0 8 0 8 8 8 0 0 0 0 0 3 0
2|4m|2 8 8 8 8 8 8 1 0 8 0 8 8 0 0 8 0 8 0 0 0
3|3|3 8 8 8 7 1 8 8 0 8 8 8 8 0 0 0 0 0 0 0 0
3|4el|3 8 8 8 6 8 8 5 0 8 8 8 8 6 0 0 0 5 2 1 0
3|4m|3 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8 0 8 8 0 8

Table A.10: Number of solutions found (out of 8) per scenario and staff combination, using only the
greedy heuristic with the combined objective.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|3|2 8 8 8 5 5 8 8 0 8 0 8 6 8 0 6 0 6 0 0 0
2|4el|2 8 8 8 5 8 8 8 0 8 0 8 8 8 0 8 0 8 0 6 0
2|4m|2 8 8 8 8 8 8 8 0 8 3 8 8 8 0 8 8 8 0 2 3
3|3|3 8 8 8 6 8 8 8 0 8 7 8 8 7 6 8 0 6 8 0 0
3|4el|3 8 8 8 1 8 8 8 0 8 8 8 8 8 8 7 0 7 8 8 0
3|4m|3 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8 8 8 8 8 8

Table A.11:Number of solutions found (out of 8) per scenario and staff combination, using the
greedy heuristic and local search improvement with the flexibility objective.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|3|2 5 7 5 3 0 8 5 0 8 0 3 6 6 0 0 0 0 0 0 0
2|4el|2 7 8 7 0 6 7 1 0 8 0 4 7 7 0 1 0 0 0 0 0
2|4m|2 7 8 8 8 1 8 7 0 8 0 7 5 8 0 2 0 0 0 0 0
3|3|3 3 8 8 2 1 8 8 0 7 0 6 4 6 0 1 0 0 0 0 0
3|4el|3 6 8 6 0 8 4 7 0 5 1 7 7 7 3 0 0 0 7 0 0
3|4m|3 7 8 8 8 4 8 8 0 8 7 8 6 8 8 3 0 5 6 0 3

Table A.12:Number of solutions found (out of 8) per scenario and staff combination, using the
greedy heuristic and local search improvement with the fairness objective.

84 tables

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|3|2 7 8 5 6 3 8 3 0 8 0 5 4 6 0 1 0 0 0 0 0
2|4el|2 8 8 3 3 8 7 6 0 8 0 1 8 7 0 1 0 0 0 0 0
2|4m|2 8 8 8 8 6 8 6 0 8 0 8 7 8 0 4 0 5 0 0 0
3|3|3 8 8 8 6 4 7 8 0 7 3 7 5 8 1 0 0 0 3 0 0
3|4el|3 8 8 5 5 8 5 5 0 8 2 5 8 7 1 0 0 0 7 0 0
3|4m|3 8 8 8 8 8 8 8 0 7 6 8 8 8 8 7 1 6 6 0 7

Table A.13:Number of solutions found (out of 8) per scenario and staff combination, using the
greedy heuristic and local search improvement with the walking distance objective.

93
24
0

93
12
7

94
88
2

93
36
6

95
17
1

112
08
5

112
48
7

113
63
9

10
28
09

10
28
61

10
28
16

90
32
1

110
56
2

10
20
58

93
38
4

93
96
0

10
03
22

111
65
8

10
10
62

93
21
5

2|2|2 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2|3|2 8 8 7 8 6 8 6 0 8 0 8 8 8 0 1 0 0 0 0 0
2|4el|2 8 8 8 0 8 8 6 0 8 0 8 8 8 0 6 0 0 0 2 0
2|4m|2 8 8 8 8 8 8 6 0 8 0 8 8 7 0 8 8 8 0 0 5
3|3|3 8 8 8 8 3 8 8 0 8 8 8 8 7 2 0 0 0 4 0 0
3|4el|3 8 8 8 8 8 8 8 0 8 8 8 8 7 3 8 0 7 4 1 0
3|4m|3 8 8 8 8 8 8 8 0 8 8 8 8 8 8 8 8 8 8 0 8

Table A.14:Number of solutions found (out of 8) per scenario and staff combination, using the
greedy heuristic and local search improvement with the combined objective.

tables 85

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3

93240 - 9.98 11.66 11.56 12.32 13.69 11.84
93127 7.31 10.46 11.32 12.41 15.61 16.68 17.52
94882 - 10.15 9.99 12.48 11.48 12.61 14.12
93366 - 7.23 - 8.40 10.28 10.38 11.90
95171 - 7.82 8.40 9.16 10.36 11.80 12.89
112085 - 7.83 8.12 10.11 11.91 12.17 14.01
112487 - 8.02 8.56 9.85 12.04 12.34 13.23
113639 - - - - - - -
102809 - 5.84 6.18 7.63 9.41 9.38 10.89
102861 - - - - 7.78 7.73 10.31
102816 - 4.95 5.83 7.79 7.01 7.40 8.49
90321 - 6.55 7.20 8.23 8.69 11.17 10.35
110562 - 4.99 5.88 6.30 7.35 8.28 8.79
102058 - - - - 7.71 6.70 9.17
93384 - 4.76 5.42 7.11 - 7.66 10.51
93960 - - - 5.57 - - 7.86
100322 - - - 6.91 - 7.08 8.57
111658 - - - - 7.27 8.20 8.90
101062 - - 4.19 - - 6.44 -
93215 - - - 4.48 - - 6.65

Table A.15: The average of the concurrent flexibility per activity of the found solutions when using
the greedy heuristic with the local search improvement step and the combined objective
(see Table A.14). A hyphen indicates that no solutions were found.

86 tables

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3

93240 - 4.4% 4.1% 1.1% 3.0% 2.1% 1.0%
93127 9.4% 2.1% 2.3% 3.4% 13.8% 10.7% 12.6%
94882 - 4.5% 8.3% 8.5% 10.1% 11.0% 17.7%
93366 - 2.6% - 5.5% 5.9% 0.9% 6.4%
95171 - 2.4% 11.5% 1.8% 2.2% 16.8% 16.4%
112085 - 10.5% 12.3% 10.0% 21.9% 16.0% 13.4%
112487 - 2.6% 4.6% 3.6% 1.6% 3.6% 3.5%
113639 - - - - - - -
102809 - 6.2% 2.5% 2.6% 9.3% 6.1% 8.7%
102861 - - - - 6.2% 6.5% 1.7%
102816 - 2.8% 6.4% 11.0% 3.1% 1.1% 11.2%
90321 - 0.5% 2.0% 0.2% 5.1% 6.5% 4.9%
110562 - 2.2% 2.9% 3.5% 3.1% 2.3% 2.0%
102058 - - - - 1.9% 0.6% 5.2%
93384 - 6.9% 4.2% 11.8% - 3.3% 13.0%
93960 - - - 2.3% - - 3.3%
100322 - - - 2.5% - 0.8% 5.1%
111658 - - - - 3.7% 1.9% 1.5%
101062 - - 1.0% - - 1.5% -
93215 - - - 1.1% - - 1.0%

Table A.16: The maximum percentage with which all activity durations can increase, while keeping
the solutions found consistent. The numbers shown are averages over the solutions
found in Table A.14. A hyphen indicates that no solutions were found.

tables 87

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3

93240 1648 1340 1349 1245 1295 1203 1205
93127 1930 1702 1335 1248 1152 1075 1100
94882 1507 1259 1186 1151 1120 965 1048
93366 1411 1220 1230 1068 1034 993 926
95171 1239 1090 1004 985 954 841 785
112085 1207 1094 970 945 860 777 815
112487 1062 1046 919 971 768 737 696
113639 1253 1146 1040 997 969 923 873
102809 1066 857 799 737 683 665 637
102861 976 915 858 859 676 687 624
102816 958 773 721 691 653 617 595
90321 863 713 705 696 613 578 564
110562 955 818 758 725 691 575 593
102058 806 751 728 705 665 675 537
93384 739 708 634 546 511 518 418
93960 712 640 631 572 559 493 462
100322 729 717 664 534 598 512 474
111658 691 623 587 514 513 483 400
101062 683 661 593 613 544 459 474
93215 576 555 563 518 433 425 368

Table A.17: Performance of the local search method measured as the number of iterations per
second.

88 tables

2|2|2 2|3|2 2|4el|2 2|4m|2 3|3|3 3|4el|3 3|4m|3

93240 60941 41829 40677 41152 43646 41702 43221
93127 63204 45245 43510 41487 54578 46371 47740
94882 46266 42596 42899 42949 45668 43801 47140
93366 83008 79943 48907 42563 48833 52022 43974
95171 98983 118026 66392 43709 66822 63562 45684
112085 154427 43775 45055 43313 45526 47997 46329
112487 69162 136283 134428 99314 59718 85334 47825
113639 101323 101153 108052 48225 65093 62865 47590
102809 84385 45533 38086 39294 42160 38350 40684
102861 153861 178026 69029 126403 36719 51102 39400
102816 123497 62882 42118 43186 44850 41456 43897
90321 103346 38803 54764 65716 45449 42166 41453
110562 110389 61372 73490 66731 141579 73022 44577
102058 119465 117010 60991 60560 86830 89126 41073
93384 171019 88259 127203 36623 70052 103442 39477
93960 169111 124702 98493 59330 139531 39757 52854
100322 179883 87972 78469 38959 110164 55083 40569
111658 104967 111244 144927 41665 145399 64686 41108
101062 122066 134964 52384 154260 110296 79847 87076
93215 206959 182147 82448 90028 134414 74393 44451

Table A.18: Performance of the local search method measured as the total number of iterations
before termination.

Operator acceptanceaverage acceptanceconsolidated

Bring related together 1.127% 0.806%
Place immediate predecessor 13.143% 2.724%
Relieve largest line of work 0.595% 0.463%
Swap within line of work 4.274% 3.922%
Insert random 0.335% 0.089%
Delete random 0.017% 0.009%
Replace random 2.093% 1.602%

Table A.19: Acceptance percentages.

	Abstract
	Acknowledgements
	Introduction
	Context
	Automated plan generation of service sites
	Problem statement
	Related problems
	Robustness as objective in scheduling
	Structure of this thesis

	Problem description
	Problem instances
	Goal
	Objective function
	Assigning completion times given lines of work
	MIP formulation
	Complexity

	Modeling the problem as an STN
	Simple Temporal Problem
	Modeling a problem instance and solution
	Flexibility
	Improving performance

	Heuristic approach
	Objective functions
	Heuristic for initial solution
	Improvement using local search
	Incremental solutions
	Handling infeasible solutions

	Column generation approach
	Master problem
	Pricing problem

	Experimental setup
	Kleine Binckhorst
	Test scenarios

	Results
	Ability to find solutions
	Quality of the solutions
	Performance

	Conclusion
	Conclusion
	Model enhancements

	Bibliography
	Tables

