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I 

Summary 
 
Land subsidence poses millions of people at risk in deltas. Ongoing research focuses generally on 
subsidence processes and drivers, and urban areas rather than rural areas. An overview on the 
magnitude of and differences in subsidence coupled to land use (LU) at a delta scale is lacking. 
Though, this would be a comprehensible way to create awareness among a wide audience and to 
make quick predictions of the impact of (future) LU changes. Besides, the influence of past LU on the 
current subsidence rate through time-dependent effects is still unclear. Therefore, this study aimed 
to 1) quantify and compare land-subsidence rates for different LU types and LU changes, 2) 
determine the importance of time-dependent effects related to LU history on land-subsidence rates, 
and 3) determine to which extent LU history can predict land-subsidence rates. A data-mining 
approach was applied for the Vietnamese Mekong Delta (VMD) with the InSAR-based subsidence-
rate dataset of Erban et al. (2014) for the period 2006-2010 as reference. LU maps of the same 
period and the two decades before were used for coupling with the subsidence rates.  

A consistent, digital LU map series of the VMD was not available. So, as first step, LU was 
classified for 1988, 1996, 2006 and 2009 using a single dry-season Landsat 5 image. Hereto, an 
object-based approach and the random forest algorithm were used. The maps confirm the expansion 
and intensification of agri- and aquaculture, and urbanization in the delta. The overall accuracy 
ranged between at 77% and 94% based on validation samples of all 16 classes.  

Subsequently, the mean subsidence rate was determined for all 12 relevant LU classes for areas 
where the LU did not change since 1988. Urban areas subsided fastest, followed by agricultural areas 
with non-rice crops. Wasteland/marsh areas subsided slowest, followed by fresh-water melaleuca 
forests and irrigated double or triple rice cropping fields. Urbanization and a change to orchards 
probably increased the subsidence rate, while the intensification of agriculture (rain-fed to irrigated 
rice) may have reduced subsidence rates. No conclusions could be drawn about aquaculture and 
mangrove due to inaccuracies in the InSAR-dataset. It can be concluded that time-dependent effects 
related to the LU history are important based on the comparison of the subsidence rates for areas 
with different LU histories.  

As final step, the LU changes over all combinations of LU maps were used to predict the 
subsidence rate for 2006-2010 using a random forest regression. The spatial patterns in the 
predicted rates are similar to those in the InSAR-based subsidence dataset. More than one sixth 
(>17%) of the variance in the observed rates could be explained by the predictions (root-mean-
squared deviation = 0.6 cm/yr). This percentage is relatively high considering the variation in 
subsidence rates within the LU classes. The random forest is promising, because it has no bias and is 
consistent. The unexplained variance can be related to the quality and type of input data as well as 
the type of model. Although LU history can predict a relatively large part of the subsidence signal, 
more factors should be included to predict the entire signal. If only one LU map was used for the 
predictions, less variation in the original data could be explained. This supports the conclusion that 
time-dependent effects related to the LU history are important. Hence, past LU should be taken into 
account when coupling land subsidence to LU. 
 
Key points for this case study in the Vietnamese Mekong Delta: 
1) Land subsidence can be related to land-use (LU) history at a delta scale. Past LU changes should 

be taken into account due to time-dependent processes.  
2) LU history can predict at least one sixth of the total variance in the observed land-subsidence 

rates with the random forest (RF) algorithm.  
3) Urbanization will result in higher land-subsidence rates; conversion to orchards probably too. 

Intensification of agriculture (from rain-fed to irrigated rice) may result in lower subsidence rates. 
 
Keywords: Land subsidence, land use, land-use change, Vietnamese Mekong Delta, data mining, 

machine learning, random forest, remote sensing, object-based image analysis (OBIA). 
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1. Introduction 
 
During the last decades, attention has been paid to the effects of anthropogenic climate change, 
such as absolute sea-level rise (e.g. IPCC, 2014; Vellinga & Leatherman, 1989). However, in especially 
low-lying deltas, relative sea-level rise (RSLR) is of prime interest for cases like salt-water intrusion 
and increased flooding risk from the sea. RSLR includes the contribution of land subsidence, which 
can be several orders of magnitude larger than the contribution of absolute SLR (Syvitski et al., 2009). 
Many delta areas are prone to subsidence, because their subsurface is not yet fully compacted and 
because of extraction of groundwater and hydrocarbons, drainage and loading.  

In order to mitigate the consequences of subsidence, the first step is to quantify past and current 
subsidence rates. However, subsidence rates can vary strongly over space and there is no universal 
method to easily measure subsidence at high spatial, temporal and vertical resolution. For large, 
inaccessible and/or data-poor delta areas, remote sensing (RS) is a very important data source to 
assess recent subsidence rates for larger areas. A more and more commonly used RS technique is 
Interferometric Synthetic Aperture Radar (InSAR) (e.g. Smith, 2002). Satellite InSAR availability 
improves with more satellites becoming available, but extracting accurate subsidence rates from the 
data especially for delta areas remains challenging.  

The next step is to predict future subsidence rates to determine effective measures to mitigate 
the impact on society as quickly as possible. Extrapolation of InSAR-derived subsidence rates over 
time is not directly possible. Conventional predictions require information on the complex processes 
involved, which are part of ongoing research. These processes are still difficult to be combined into a 
comprehensive, physics- or process-based model to predict subsidence rates. Even if such a model 
exists, the problem of lacking complete, accurate input datasets – for example on subsurface 
composition – remains.  

 
A complementary approach which depends less on thorough knowledge of processes of subsidence 
and subsurface data can be useful to provide policy makers more rapidly with estimates of current 
and future subsidence rates. Land use (LU) may be a suitable key for estimating subsidence rates. 
Firstly, because LU data are more widely and freely available than subsurface data: it can be derived 
from globally available remote-sensing products. Secondly, because LU is related to many land-
subsidence drivers. Differences in subsidence rates between different LU classes may be caused by 
differences in natural and anthropogenic loading (subsidence due to compression), the amount of 
groundwater extraction (subsidence due to consolidation) and the managed depth of the 
groundwater table (subsidence due to oxidation, ripening and compaction). In addition, quantifying 
land subsidence in relation to LU is a comprehensible way to create awareness among a wide 
audience and to provide a base for policy changes.  

However, research on the relation between different LU types and subsidence at delta scale is 
very limited. Most studies focus on subsidence in urban areas; studies on rural areas are strongly 
underrepresented. No study has been found that quantifies and compares land subsidence per LU 
type and looks at the impact of LU changes on subsidence at delta scale. Besides, time-dependent 
effects on land-subsidence rates related to current and past LU (hereafter LU history) are still 
unclear. These effects include 1) changes in subsidence rates over time while the LU remains the 
same, and 2) time lags between LU changes and changes in subsidence rates. If time-dependent 
effects have a significant impact on subsidence rates, past LU should be taken into account when 
coupling subsidence rates to different LU types. 

Therefore, this study aims to: 
  

1) quantify and compare land-subsidence rates for different LU types and LU changes; 
2) determine the importance of time-dependent effects related to LU history on land-subsidence 

rates; 
3) determine to which extent LU history can predict land-subsidence rates.  
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The Vietnamese Mekong Delta (VMD) is used as case study to achieve these three aims. This delta 
was chosen because it is very prone to land subsidence and associated problems, as it largely lies less 
than 1 m above mean sea level (Syvitski et al., 2009) (Figure 1). In the last 25 years, subsidence rates 
increased significantly due to the strong increase in groundwater extractions (Minderhoud et al., 
2017). This threatens all 18 million inhabitants and all people depending on the large rice production 
in the delta. In the same period, significant LU changes took place (e.g. Tran et al., 2015), which are 
probably related to the changes in subsidence rates. At last, the VMD is a good example of a data-
poor environment for which a complementary, data-mining approach appears to be useful.  
 
 

 
 
This report starts with a review on the current knowledge on land subsidence, LU in the Vietnamese 
Mekong Delta and the relation between land subsidence and LU. Subsequently, the methodology 
and data used is given, including some background on the study area. The methodology, results and 
discussion each have three main parts: the classification of LU, direct coupling of LU to the existing 
subsidence dataset and the prediction of subsidence rates based on LU. The last part of the 
discussion indicates implications of this study for society and provides suggestions for future 
research. This will be followed by the conclusions. The appendices provide additional information on 
parts of the method and results. 

  

Figure 1 Elevation of the Vietnamese Mekong Delta above mean sea level (MSL). 
After Coumou (2016). 
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2. Literature review 
 

2.1. Land subsidence 
 
For many deltas, land-subsidence rates exceed absolute sea-level rise and hence should not be 
neglected. This is also the case for the VMD (Erban et al., 2014). However, actual subsidence rates 
are often unknown – especially in rural areas (Higgins et al., 2013) – and the contribution of different 
drivers and processes to subsidence are not yet fully understood. This section will introduce some 
main definitions and discuss the current knowledge on the causes of subsidence in general and in the 
VMD and on land subsidence measuring methods. 
 
 
Total versus net subsidence rate  
 
Land subsidence is the downward movement of the land surface. A subsidence rate can represent a 
total subsidence rate as well as a net subsidence rate. The total subsidence rate exclusively 
represents the downward movement of the land surface. The net subsidence rate is the total 
subsidence rate minus the upward movement rate. Upward movements include accumulation of 
clastic and organic material and in some cases upward directed effects of redistribution of the Earth’s 
masses. Upward movements are no driver of subsidence, but they are important to include if the 
actual change in surface elevation is of interest. If no upward movement takes place, the total and 
net subsidence rate are equal. Depending on the focus of the study and the measurement technique 
used, the subsidence rate refers to (a specific part of) the total or net subsidence rate. This difference 
should be taken into account when comparing different studies. 
 
 
Causes of subsidence: drivers and processes 
 
There are two main approaches of analyzing the determinants of land subsidence: analyzing the 
drivers or the processes. The drivers can be split in natural and anthropogenic drivers (e.g. Tosi et al., 
2009). Anthropogenic drivers can result in several orders of magnitude larger subsidence rates than 
natural drivers (Erkens et al., 2015). The processes can be subdivided based on the physical depth at 
which they play a role (e.g. Higgins, 2015). Since the drivers and processes are linked, they can be 
combined into one overview: Figure 2. LU has the most direct link with the (anthropogenic) drivers. 
Therefore, the driver approach will be used below to give an overview of the main causes of land 
subsidence. 
 
The total subsidence rate 𝑆𝑡𝑜𝑡 can be expressed as the sum of the impact of all main drivers: loading 
(𝐿), fluid (and gas) extraction (𝐹), lowering of the groundwater table (𝐺𝑊) and redistribution of the 
Earth’s masses (e.g. tectonics and isostasy) (𝑀). Together with the accumulation rate, this gives the 
net subsidence rate 𝑆𝑛𝑒𝑡 :  
 
 𝑆𝑛𝑒𝑡 = 𝐿 + 𝐹 + 𝐺𝑊 + 𝑀 − 𝐴      Eq. 1 
 
                𝑆𝑡𝑜𝑡 
 
𝑀 in Eq. 1 can be both positive and negative. In the VMD, the total subsidence rate based on an 
InSAR analysis is approximately 1 to 4 cm/yr averaged over nearly the entire delta (Erban et al., 
2014). 
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The first driver – loading – includes natural loading mainly induced by water bodies and sediment 
overburden (i.e. all overlying sediment), and anthropogenic loading by infrastructure, buildings and 
other constructions. This can result in differential subsidence between urban and rural areas, as is 
observed in the InSAR-based subsidence data of Erban et al. (2014). The terminology of the processes 
behind loading differ. In this review, ‘compression’ is used as an overarching term. Compression can 
be divided into compaction and consolidation. Compaction is the reduction in pore volume due to 
the reduction in air volume and thus it occurs in the very shallow, unsaturated subsurface (Higgins, 
2015). Consolidation consists of primary and secondary consolidation. Primary consolidation is the 
reduction in pore volume related to expulsion of water from the sediment and takes place in the 
saturated layers. Water expulsion reduces the internal pore pressure. Once the pore pressure 
becomes smaller than the overburden pressure, the pores collapse (Yuill et al., 2009). Secondary 
consolidation or creep is related to the slow, gradual, steady and largely irreversible reorientation of 
sediment grains into a more tightly packed alignment (Yuill et al., 2009). Creep may continue even 
after hydraulic heads increase again (Erkens et al., 2015). The consolidation rate depends on the 
sediment grain properties (e.g. permeability), the volume of water in the sediment and the 
overburden pressure (Yuill et al., 2009). Natural peat compression due to overburden under 
saturated conditions can be much slower than oxidation as a result of lowering of the groundwater 
table (Higgins, 2015).  
 
The second driver – extraction of resources such as water, oil and gas from the subsurface – reduces 
the pore pressure and results in additional consolidation of the sediment layer and in turn 
subsidence of the land surface (Erban et al., 2014; Yuill et al., 2009). The magnitude of subsidence 
depends among others on the magnitude and rate of fluid extraction, and the depth and size of the 
reservoir (Figure 3) (Yuill et al., 2009). At larger depth, the subsidence potential is smaller, because 
the larger overburden pressure has already consolidated the sediment to a larger extent. The 
subsidence rates decline with distance to the pumping well (Figure 3) (Yuilli et al., 2009). Especially 
clays are susceptible for pumping-induced consolidation; sands are much less compressible (Erban et 

Figure 2 Schematic overview of main drivers and processes of subsidence. The shallowest aquitard is the boundary 
between the shallow (unconfined) and deep (confined) subsurface. Adopted from Minderhoud et al. (2015). 
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al., 2013). Groundwater and hydrocarbon extraction dominate the human-induced accelerated 
subsidence in many areas, especially in (large) delta cities such as Ho Chi Minh City – just northeast of 
the VMD (Figure 1) –, Bangkok, Jakarta and Tokyo (Erban et al., 2014; Erkens et al., 2015; Higgins, 
2015). The demand for groundwater is increasing in deltas due to rapid urbanization, population 
growth, industrialization and pollution of surface water. Often, this groundwater is extracted from 
intermediate to deep confined aquifers (e.g. Erkens et al. (2015) for New Orleans, Minderhoud et al. 
(2017) for the VMD).  
 

 
Groundwater extraction is a main driver of subsidence, not only in the mega city of Ho Chi Minh 

City (~4 cm/yr based on InSAR), but also in the VMD (Erban et al., 2014, 2013; Minderhoud et al., 
2017). Groundwater extraction in the VMD could explain between ∼50% and ∼95% of the observed, 
InSAR-based subsidence rates (Minderhoud et al., 2017). Since the early 1900s pumping wells have 
been active, but since the early 1980s the use intensified (Erban et al., 2013). Based on a survey in 
2007, at least 465,230 wells were active in the VMD which extracted in total over 1.2 million m3/day 
(Deltares et al., 2011). By 2015, the extraction rate had increased to about 2.5 million m3/day 
(Minderhoud et al., 2017). The water is used for agricultural, aquacultural, domestic as well as 
industrial purposes (Erban et al., 2013; Renaud & Kuenzer, 2012; Wagner et al., 2012). Hydraulic 
heads have been declining due to groundwater extraction over the last decades (Minderhoud et al., 
2017). In Ca Mau (southwest VMD) the hydraulic head dropped more than 15 m since the mid-90s. 
Current decline rates range from 9 to 78 cm/yr with an average of 26 cm/yr in the VMD (Erban et al., 
2014). Groundwater is extracted from a large range of depths (Nesbitt, 2005). Most water is 
extracted from the deep (≈170 - 500 m) aquifers, because of polluted surface and shallow 
groundwater (Erban et al., 2013). However, this old groundwater could not be recharged from local 
rainfall. By 2005, shallow aquifers were exhausted and some medium depth aquifers were no longer 
artesian (Nesbitt, 2005), while they were in 1991 (Minderhoud et al., 2017). 

Based on 1D compression calculations, these groundwater extractions result in subsidence rates 
of on average 1.6 cm/yr [0.28 to 3.1 cm/yr] in the VMD (Erban et al., 2014). A transient 3D aquifer 
simulation suggested subsidence rates of 1.1 to 2.4 cm/yr and a total subsidence of 27 cm since 1988 

Figure 3 Example of the relationship between fluid reservoir size and the magnitude of the land-subsidence rate due to 
reservoir compaction. The curved lines represent the predicted ratio between the subsidence rate and the reservoir height 
(S/H) as function of the ratio between the radius of the expression of the surface subsidence and the reservoir radius (r/R) 
for different measured ratios between the reservoir depth and the reservoir radius (D/R) between 0.2 and 3.0. A deeper 
reservoir results in smaller surface subsidence rates over a larger area. Adopted from Yuill et al. (2009). 
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for the central part of the VMD (western part or Tien Giang province). The high groundwater 
extraction rates in Ho Chi Minh City are not responsible for subsidence in at least that part of the 
VMD (Erban et al., 2013). Besides, InSAR-based subsidence patterns correspond with the variations in 
decline in hydraulic head due to pumping at different locations in the VMD (Erban et al., 2014). Erban 
et al. (2014) attributed the average of 1 to 4 cm/yr net subsidence in the VMD based on the InSAR 
data also mainly to groundwater extraction.  

 
The third driver of subsidence is lowering of the groundwater table by for example drainage (Erkens 
et al., 2015; Yuill et al., 2009). As long as peat and sediments which contain organic matter are below 
the water table, the decay of organic matter (OM) is very limited. Once the water level is lowered, 
organic matter (OM) is exposed to oxygen and several biological and chemical reactions accelerate 
the decay of OM (Yuill et al., 2009). These processes together are often collectively called ‘oxidation’ 
and they result in subsidence (cf Higgins, 2015). Moreover, microbial decay of organic matter is 
increased in partially or seasonally saturated conditions instead of continuous saturation (van 
Asselen et al., 2009). Besides, the ripening of clayey sediments above the water table results in 
subsidence. At last, the replacement of water by air in the pores results in a decrease in pore 
pressure. Depending on the overburden pressure, this can also result in sediment compaction 
(Erkens et al., 2015; Yuill et al., 2009). No information is available on the absolute and relative 
contribution of these processes to the total subsidence rate in the VMD, but in general, mean 
subsidence rates due to drainage of the shallow subsurface are in the order of 0.1 to 1 mm/yr (Yuill 
et al., 2009). 
 
The last drivers of subsidence are earth crust dynamics, or the redistribution of Earth’s masses. 
Deltas are generally located in subsiding basins in which accommodation space is created because of 
basin and local tectonics. At the moment, tectonics can result in subsidence at various spatial and 
temporal scales and with different magnitudes (Higgins, 2015). In addition, the crust responds to 
changes in the weight of the overlying materials such as sediment, water and ice (Erkens et al., 2015; 
Higgins, 2015; Yuill et al., 2009). This is called isostatic adjustment. The magnitude of vertical 
elevation change can be several centimeters. Glacial isostatic adjustment as a result of the melting of 
glaciers and ice sheets at the end of the last glacial period still results in vertical elevation changes 
due to upbouncing and in some areas due to forebulge collapse (Higgins, 2015; Yuill et al., 2009). The 
crust can also deform elastically at shorter, annual time scales as a consequence of annual loading 
and unloading of groundwater and surface water (Higgins, 2015). Erban et al. (2014) indicate that 
natural subsidence related to crustal loading and oxidation of organic matter (together generally < 
0.5 cm/yr) probably also plays a role in the VMD. Though, its role is minor. Little is known about the 
actual contribution of these processes on the total subsidence rate in the VMD.  
 
Next to the drivers of subsidence, accumulation completes the balance to determine the net 
subsidence rate. Accumulation rates of clastic sediment that settles during river floods and after 
large events such as storm surges are generally in the order of mm/yr or cm/yr, with large variations 
within and between deltas (Higgins, 2015). Human induced soil erosion – e.g. as a consequence of 
poor agricultural practices and deforestation – increase the sediment input to rivers and hence 
potential aggradation in a delta. However, flooding and hence sediment deposition is prevented due 
to human constructions such as dams and dikes and reductions in flow velocities upstream (Higgins, 
2015). Currently, (controlled) flooding occurs mainly in the upstream part of the VMD (Tri, 2012), 
resulting in an accumulation rate of about 6 mm/yr (Hung et al., 2014).  

Accumulation rates of organic material are related to deposition of organic detritus by vegetation 
and the expansion of the root network in for example mangrove forests. Peat can accumulate with 
several centimeters per year. In the VMD, mean accretion rates of 42.7 mm/yr, 36.8 mm/yr and 67.8 
mm/yr were measured in different mangrove areas along the coast (Lovelock et al., 2015), which 
probably is a combined effect of accumulation of organic and clastic materials.  
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At last, it should be noted that the spatial patterns and magnitude of subsidence is not only 
determined by the drivers, but also by the composition of the subsurface (Erkens et al., 2015). Sand 
and gravel are nearly incompressible and barely loose volume after deposition. The compressibility of 
silt and especially clay is larger. However, the lower hydraulic conductivity of clay results in slower 
compression than that of silt. Thus, it takes longer for clay to become denser than silt. The most 
compressible soil type is peat, which can compact very fast (Higgins, 2015). The shallow subsurface of 
the VMD mainly consists of fine grained sediments: clay and silt. Organic matter and some peat 
layers are also present in the VMD, mainly in the upstream marshy plains (Nguyen et al., 2000). 
Hence, the VMD is susceptible to many subsidence processes. 
 
So, in short, three drivers of subsidence dominate the subsidence rate in the VMD: loading, 
groundwater extraction and lowering of the groundwater table. Groundwater extraction is the most 
important of these drivers. Besides, the fourth driver – earth curst dynamics – only plays a minor 
role. Moreover, subsidence can partly be compensated by accumulation of clastic and organic matter 
especially in floodplains and swampy areas. 
 
 
Time-dependent effects on land-subsidence rates 
 
Subsidence rates do not only vary over space, but also over time. Shallow subsidence rates due to 
decomposition of organic matter decrease over time after initial dewatering because of organic 
matter depletion (Yuill et al., 2009). Subsidence rates related to primary consolidation also decrease 
over time until an equilibrium between pore pressure and overburden pressure is reached. 
Secondary consolidation continues even after primary consolidation ends until the grains can no 
longer be reorganized to a significantly tighter packing (Figure 4) (Yuill et al., 2009). The time needed 
to reach an equilibrium – the hydrodynamic period in case of primary consolidation – depends 
among others on the sediment characteristics. This period is longest for fine-grained sediments such 
as peat and clay due to their low permeability (van Asselen et al., 2009). Changes in the boundary 
conditions such as extraction of water or increased loading alter the equilibrium situation and will 
result in further consolidation (Yuill et al., 2009). At last, the subsidence potential of a sediment layer 
decreases if the sediment gets more and more compacted. This also results in a decrease in 
subsidence rates over time. This is most important for shallow subsidence which have a shorter 
subsidence history. The subsidence potential of the shallow surface in the VMD is still large and it will 
take relatively long before a decrease in subsidence potential will be noticeable in the subsidence 
rates over time.  
 

 
 

  

Figure 4 Decrease in relative subsidence (consolidation) rate over time in a case of a constant weight of the 
overburden. Adapted version of fig. 8 in Yuill et al. (2009). 
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Next to gradual changes over time, time-lag effects can also play a role. These are a consequence 
of a delayed response of the system to a change in the subsidence drivers. This is observed as a 
reaction to changes in groundwater extraction. A sandy aquifer from which water is extracted is 
recharged quickly after extraction stops. Consolidation occurs mainly in the clayey aquitards with low 
permeability. In these layers, the hydraulic head can still decrease while it already increases in the 
sandy aquifer. Hence, primary consolidation can continue for a few months to years after extraction 
stopped (Isotton et al., 2015). An example of time-lag effects due to among others secondary 
consolidation is observed in Tokyo. The city of Tokyo stopped intensive groundwater pumping in the 
early 1960s, but the strong decrease in subsidence rates is only observed several years later (Figure 
5) (Erkens et al., 2015).  
 
Thus, two time-dependent effects can influence the subsidence rates. Firstly, ‘time effects’ 
correspond to processes which result in a (gradual) change in subsidence rates over time without 
changing the boundary conditions. Secondly, ‘time-lag effects’ correspond to the delayed response of 
a system to a change in subsidence drivers. 
 
 
 

  

Figure 5 Cumulative subsidence history for six locations around the world. Absolute or eustatic sea-level rise is given as 
reference. Subsidence rates can vary significantly within a region: the values represent averages for local subsidence 
hotspots. In Tokyo, groundwater pumping stopped in the early 1960s, but the subsidence stopped only several years later.  
Adjusted from Erkens et al. (2015). 

Subsidence 
stopped 

Pumping 
stopped 
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Methods to measure land-subsidence rates 
 
No measuring technique can resolve every process at all relevant temporal and spatial scales. Each 
technique has its own advantages and disadvantages (Table 1), which will be discussed in this 
section. Techniques have to be combined to form a completer picture (Higgins, 2015).   
 

Spirit leveling, a dGPS, an extensometer and a Rod Surface Elevation Table (SET) can be used for 
point measurements (Galloway & Sneed, 2013; Higgins, 2015). Additionally, net subsidence rates can 
indirectly be derived from analyzing surface-water level trends. Based on such an analysis, the VMD 
subsided on average 6 mm/yr in the period 1987-2006 (Fujihara et al., 2016). Similarly, an average 
rate of 17.1 mm/yr for the period 1993-2013 is found for the city of Can Tho in the middle of the 
VMD (Takagi et al., 2016). Spirit leveling and a dGPS can be used to determine a subsidence rate of 
the subsurface below the anchor point of an benchmark. Benchmarks anchored at different depths 
reveal variations in subsidence over depth, which helps in identifying the causes of subsidence 
(Higgins, 2015). Depth-specific subsidence rates can also be measured with an extensometer which 
could be anchored at different depths up to several hundreds of meters deep at one location 
(Galloway & Sneed, 2013). A Rod SET is a portable mechanical leveling device that measures 
elevation changes of the shallow subsurface up to the bottom depth of the benchmark rod (generally 
max. 25m). In combination with a marker horizon (MH) it accurately gives the total shallow 
subsidence rate, especially in wetlands (Cahoon et al., 2002). In the VMD, several (Rod) SET-MH are 
in operation, though limited data has been published. Based on the available data, the total shallow 
subsidence rate is 25.3 mm/yr, 31.6 mm/yr and 41.0 mm/yr for the period 2010-2014 for different 
mangroves or similar environments in the VMD (Lovelock et al., 2015). Due to high accretion rates, 
nearly all locations showed a net elevation increase (average of 11.6 mm/yr, 36.2 mm/yr and 1.8 
mm/yr respectively). 

 
 

Table 1 Examples of measurement techniques to determine the land-subsidence rate with their characteristics and 
whether they are available in the Vietnamese Mekong Delta (VMD). dGPS = differential Global Positioning System,  Rod 
SET-MH = Rod Surface Elevation Table – Marker Horizon, other acronyms: see list of acronyms. 
 

Technique Coverage 
Subsidence 
rate type 

Advantages Disadvantages 
Available in 
the VMD? 

dGPS elevation 
measurements  

Points Net - Relatively easy3 - Often unavailable1 No 

Spirit leveling Points  Net - Accurate  - Small areas No 
Rod SET-MH Points Shallow (& 

accretion) 
- Accurate2 - Limited availability2 Yes, but 

limited data 
published 

Extensometer Point Total per 
depth 
interval 

- Vertical variation in 
subsidence1, 3, 4  

- Accurate3  

- Often unavailable 
- Expensive 

Under 
construction 

InSAR Spatial  Total or net - High resolution1  
- Large coverage1 
- Signal of permanent 

reflectors reflects 
total subsidence1 

- Required permanent 
(corner) reflectors 
scarce in deltas1, 4 

- Difficult to process 

Yes,  
2006-2010 

LiDAR Spatial  Net - Highest resolution1 
- Large coverage1 
- Performs better in 

rural and vegetated 
areas than InSAR1 

- Expensive1, 3 
- Often unavailable1 

No, maybe 
in future 

1
 (Higgins, 2015) 

2
 (Lovelock et al., 2015) 

3
 (Galloway & Sneed, 2013) 

4
 (Erkens et al., 2015) 
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Subsidence rates can vary significantly over space, for example due variations in sediment grain 
size, time since deposition and thickness of overburden (Higgins, 2015). Hence, though point 
measurements can provide accurate subsidence rates, their lack of spatial coverage is a 
disadvantage. InSAR (Interferometric Synthetic Aperture Radar) and LiDAR (Light Detection and 
Ranging) techniques overcome this disadvantage (Erkens et al., 2015; Higgins, 2015). Especially InSAR 
is often used for subsidence studies (e.g. Amelung et al., 1999; Chen et al., 2014; Higgins et al., 2013; 
Lu & Liao, 2008; Osmanoglu et al., 2011). The spatial patterns revealed by these techniques can be 
used to determine which drivers or processes are dominant.  

Synthetic Aperture Radar (SAR) instruments are active microwave systems which can also be 
used at night and with clouds (Lillesand et al., 2008). They send out a radar (radio detection and 
ranging) pulse and measure the amplitude and phase of the returned signal (Smith, 2002). This 
returned signal is strongly influenced by the surface roughness of the objects and wetness. A 
specular reflector such as a flat, flooded surface returns no signal. A corner reflector such as the base 
of a building can return the entire signal. Diffuse reflectors return a part of the signal (Lillesand et al., 
2008). For InSAR, generally the L-band (wavelength = 23 cm) is used as emitted pulse, because this 
long wavelength penetrates through vegetation and returns a signal from the surface. An 
interferogram is an image of the difference in phase between two images taken at approximately the 
same location at different times (repeat-pass method) or at the same time at different locations 
(single-pass method) (Lillesand et al., 2008; Smith, 2002). The phase difference over time can be 
converted to elevation change. This method only works accurately for objects which reflect a clear 
signal to the sensor (ideally a corner reflector) at both times (Erkens et al., 2015). Preferably, the 
reflectors remain exactly the same. However, the reflector will change in case of erosion and 
aggradation or it will remain at the same elevation. Hence, erosion and aggradation cannot be 
resolved (Higgins, 2015). Thus, the elevation change will reflect more likely the total than the net 
subsidence rate. 

The LiDAR technique uses an airborne and sometimes ground-based sensor to measure the 
surface elevation of an area with a very high resolution and 15-30 cm accuracy. Just like InSAR, lidar 
sensors are active systems, but in this case laser light pulses are used instead of microwave energy 
(Lillesand et al., 2008). These laser pulses also penetrate through vegetation. The time each pulse 
needs to return to the sensor can be converted to an elevation. To obtain subsidence rates, the 
measurements have to be repeated to compare the elevations. Since LiDAR has not the limitation of 
requiring permanent reflectors, it also works for rural and vegetated areas. Besides, the elevation 
change includes the effect of aggradation and erosion. Hence, this technique always gives the net 
subsidence rate (Higgins, 2015). 
 
Overall, several techniques exists with large differences in the temporal and spatial coverage, vertical 
accuracy, depth(s) for which they measure subsidence rates and whether net or total subsidence is 
measured. For areas such as the VMD, the amount of measurements is limited (Table 1). Our study is 
at a delta scale, hence, the InSAR dataset is most suited to be used. However, other measurements 
would be useful as validation and to complement information which cannot be resolved with InSAR.  

  



2. Literature review – Land use in the Vietnamese Mekong Delta over the past decades 

11 

2.2. Land use in the Vietnamese Mekong Delta over the past decades 
 
The current LU situation in the VMD is characterized by aquaculture areas behind small mangrove 
strips along the coast, extensive agricultural areas with mainly rice and orchards close to the main 
rivers. However, LU changed rapidly and at large scale over the last few decades in Southeast Asia, 
with the Mekong standing out as a change hotspot (Giri et al., 2003). The VMD follows the general 
trends in riverine and coastal environments: deforestation occurred and simultaneously the area of 
urban areas and aquaculture increased (Tran et al., 2015). Moreover, rice cropping intensified 
strongly over the past decades (Figure 6).  
 
Below, the current situation followed by the main past changes will be described per LU type.  

 
 

 

Agriculture 
 
Cultivated land covered and covers the largest part of the VMD and is dominated by rice. Currently, 
the number and timing of the rice-cropping cycles varies over the VMD. Besides, sometimes rice is 
alternated with other crops or even aquaculture within the same year (e.g. Nguyen-Thanh et al., 
2014; Sakamoto et al., 2006; Sakamoto et al., 2009a). The upper part of the VMD is mainly 
dominated by irrigated double rice cropping during the dry season. During the wet season large 
water depths related to yearly floods inhibit rice cropping in this area. The coastal area is generally 
characterized by rain-fed double rice cropping during the wet season. This is because during the dry 
season, the higher salinity of the irrigation water inhibits rice cropping. The area in between is 
dominated by triple rice cropping at the moment, as it is limited to a lesser extent by flooding and 
salinization and has enough irrigation water available due to the proximity of the rivers. Some 

Figure 6 Yearly land-use maps of the VMD for 2000 up to 2007 focused on aquaculture and rice cropping system, based 
on MODIS time-series analysis. The masked area is based on the Sub-NIAPP land use map of 2002 in Sakamoto et al. 
(2006) and includes orchards, unused land and forests. Adopted from Sakamoto et al. (2009a). 
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scattered areas in especially the coastal region suffer from poor soils and are characterized by single-
cropped rain-fed rice in the rainy season. Next to rice, some areas are used for other crops: upland or 
perennial crops, such as onions, watercress, ladyfingers, chili and shallots. If rice and crops are 
alternated, sweet potato, onions and spinach can be found (Binh et al., 2005). Their extent is limited 
to the higher, more fertile, well-drained soil types during the wet season or are fully irrigated during 
the dry season (Nesbitt, 2005). This agricultural pattern has gradually developed over time.  

Trends in LU change differ over the delta (Sakamoto et al. 2009b). Large inland areas of the 
Mekong delta were covered with natural wetlands or wasteland around the end of the Vietnam war 
in 1975 (old LU maps (Appendix 1); Nguyen & Viet, 2013; Tanaka, 1995). The doi moi policy initiated 
in 1986 in combination with a new Land Law in 1993, which designated wetlands – defined as 
‘unused land’ – to be converted to economically more valuable LU such as agriculture, aquaculture 
and forest plantations, led to the strong reduction in wetland, despite wetland protection initiatives 
(Funkenberg et al., 2014). The total area of upland crops showed a slight increase in area between 
1990 and 2004 (Nhan et al., 2007). The total area of rice showed an increase of 1255 km2 (> 3% of the 
delta area) between 2001 and 2012 (Nguyen-Thanh et al., 2014). Locally, the area of rice cropping 
increased from less than 50% of the area before the eighties to about 90% in 2005 (Nguyen & Viet, 
2013). In the coastal areas, agricultural fields are converted to aquaculture and urban areas (e.g. Binh 
et al., 2005; Karila et al. , 2014; Tran et al., 2015).  

Next to the extent of agriculture, the number, kind and timing of (rice) harvests over the year 
changed (Giri et al., 2003). The temperature in the VMD allows year-round production of rice, but 
water availability and quality is a limiting factor which cannot be overcome in all regions (Sakamoto 
et al., 2009b). Originally, one traditional rice crop with a long growing period (180-210 days) was 
grown from May to December or January (Binh et al., 2005). Since about the 1990’s, a vegetable crop 
(e.g. onions, sweet potato or spinach) was grown after the rice harvest from February to April (Binh 
et al., 2005). Besides, the popularity of growing two rice crops per year increased with two short-
duration, high-yield crops, or a long and short rice crop (Binh et al., 2005). However, the double 
cropped rain-fed rice in the coastal area partly decreased due to conversion to single cropped rain-
fed rice or combined shrimp-rice farming between 2001 and 2008 (Nguyen-Thanh et al., 2014). 

After double rice cropping became standard, triple rice cropping increased in popularity in the 
VMD over the last few decades (Nguyen-Thanh et al., 2014). One of the required boundary 
conditions for this change was the improvement of the dike system after a severe flood in 2000, 
which ensured better control of water levels in the paddies (Bouvet & Le Toan, 2011). The expansion 
of triple rice cropping was at the expense of especially the double cropped irrigated rice more 
upstream (Nguyen-Thanh et al., 2014), although double rice cropping remained dominant in the 
upper part of the VMD over the period 2000-2007 (Figure 6) (Sakamoto et al., 2009a). In 2001, using 
an additional rice crop in the dry season was already common in the Hau Giang province and the 
northern part of the Soc Trang province (for the locations of all provinces in the VMD, see Figure 8) 
(Sakamoto et al., 2009b). This conversion even occurred slowly in the coastal area after 2001 
(Sakamoto et al., 2009a). The increase in triple rice was rapid up to 2005, but subsequently dropped 
due to environmental concerns and disappointing yields (Nguyen-Thanh et al., 2014; Sakamoto et al., 
2009a). This resulted in an increase in double-rice cropping again.  

 
 

Aquaculture 
 
Currently, aquaculture covers relatively large areas bordering the coast in the VMD. In addition, 
some aquaculture is found more inland. Shrimp farming is the main type of aquaculture (Wilder & 
Phuong, 2002). However, this situation has only recently developed. Roughly a century ago, the first 
Vietnamese extensive shrimp farms were created (Binh et al., 2005). The income per ha for shrimps 
is about 160 times larger than for rice (Binh et al., 2005). Up to the seventies, aquaculture was very 
limited, but as soon as the government allowed aquaculture expansion in the eighties, the extent and 
intensity of aquaculture quickly expanded (Binh et al., 2005; Sakamoto et al., 2009b; Tran et al., 
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2015). In the first decade of the 21st century, aquaculture was performed in most coastal provinces 
(Figure 6) (Karila et al., 2014; Sakamoto et al., 2009a). The main increase in area of shrimp farms was 
between 1995 and 2004/2005 (Sakamoto et al., 2009b; Tran et al., 2015) with the sharpest increase 
between 1999 and 2000 (Binh et al., 2005) or 2001 to 2003 (Sakamoto et al., 2009b). This was a 
consequence of several new policy resolutions and institutions stimulating aquaculture. Between 
2000 and 2001, the area of shrimp farming increased by 42.6% in Vietnam (Binh et al., 2005). This 
happened at the expense of forest and rice fields (Binh et al., 2005; Sakamoto et al., 2009b; Tran et 
al., 2015).  

Many shrimp ponds are only used temporarily and are then abandoned, at least between 1995 
and 2001. New ponds are created at the expense of mangroves elsewhere (Thu & Populus, 2007). 
Abandoned ponds are generally too polluted and salinized to be used for e.g. agriculture (Tho et al., 
2008). Meanwhile, there is a continuous competition for the ‘correct’ salinity of the irrigation canals 
between shrimp farms – which require brackish water – and rice fields – which require fresh water – 
(Nhan et al., 2007). Sluices are used to supply rice fields with fresh water, impeding aquaculture 
(Sakamoto et al., 2009b; Tuong et al., 2003). Vice versa, a rice field enclosed by aquacultural ponds 
may get too saline for rice crops, forcing the farmer to shift to aquaculture too (Binh et al., 2005). 
This results in sharp transitions between larger regions of aquaculture and rice, with the borders 
existing of mainly canals and rivers (Sakamoto et al., 2009b).  
 
 
Urban areas 
 
Currently, the VMD is relatively densely populated with over 17 million inhabitants. However, before 
the Vietnam war, most parts of the swampy backlands of the main rivers in the VMD were not 
inhabited or cultivated. After the war, many migrants were sent to these areas to reclaim the land 
(Tanaka, 1995). The urban area increased significantly over the last decades, because the population 
density increased and the infrastructure improved (Binh et al., 2005; Giri et al., 2003; Tran et al., 
2015). The main increase in urban area in a part of the province Ca Mau is observed between 1995 
and 2004 (Tran et al., 2015). The settlements expanded along the canals, rivers and main roads since 
the end of the sixties (Binh et al., 2005). Some of these settlements had formed small villages by the 
start of the 21th century, as observed in old LU maps (Appendix 1).  
 
 
Forests and orchards  
 
Forest areas are not widely spread in the VMD nowadays. Only small strips of mangrove (salt-water 
forest) are present along the coast, and some fresh water, melaleuca forests more inland in low-
elevated parts. This situation changed considerably over the last decades. Before the Vietnam War 
(1961-1971), extensive mangrove forest bordered the coast and large inland areas were covered with 
fresh-water forests and other vegetation (Tanaka, 1995). During the Vietnam War, large areas of 
salty, brackish and fresh water forest in the VMD were deliberately destroyed by herbicides (Giri et 
al., 2003; Nguyen et al., 2011; Thu, 2006). Until about 1979, parts of these bare areas recovered 
(Nguyen et al., 2011).  

In the meanwhile, from at least the 1960’s or 1970’s to the end of the 2000’s, the conversion of 
mangrove and melaleuca forest increased. At first, these lands were converted to cultivated (rice) 
lands (Tanaka, 1995) and in coastal areas later on to aquaculture (Binh et al., 2005; Nguyen et al., 
2011; Thu, 2006; Tran et al., 2015). In the period 2001-2005, 65% of the forested area of an upstream 
part of the VMD was lost and mainly converted to irrigated rice fields, followed by conversion to 
shrimp farms (Son & Tu, 2008). In the south of the VMD, a decrease of 75% in forested area and a 
strong reduction in the diversity of the forest types were observed in the period 1968-1992 (Binh et 
al., 2005). Some rice fields in the inland areas were converted back to melaleuca forest due to 
problems in cropping rice (Tanaka, 1995). In 1991 and 1998 laws were implemented to prevent 
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further deforestation. Although still a net reduction occurred, some reforestation took place (Thu, 
2006), and some protected parks were created. Between 2004/2005 and 2009/2010, a slight increase 
in melaleuca forest is observed in several provinces in the VMD. This is generally related to a 
conversion from grassland to melaleuca plantations (Space Technology Institute, 2011). 

Next to forests, orchards are nowadays also important in the VMD. Orchards are located along 
the rivers in the VMD in areas where many people live. Between 1968 and 1992, the area of 
settlements with fruit gardens increased considerably in a part of the province Ca Mau, but 
decreased slowly afterwards (Binh et al., 2005). In recent years, there has been a sharp increase in 
fruit trees in the coastal province Ben Tre (Karila et al., 2014). The area of fruit trees in the VMD has 
expanded from 175,000 ha in 1995 to almost 300,000 ha in 2002. A further increase to over 500,000 
ha after 2005 is expected (Nesbitt, 2005). 
 
 
Taking all LU developments in the VMD together, it can be concluded that LU changed significantly 
over the last decades. Along the coast, mangroves were converted to aquaculture. More inland, 
wasteland was reclaimed to create agricultural areas mainly for rice cropping. Besides, rice cropping 
intensified by growing more crops a year. Moreover, urbanization took place. This resulted in the 
growth of settlements and an extensive network of roads, dikes and canals along which people live. 
 

 
Land-use maps of the Vietnamese Mekong Delta 
 
The trends in LU described in the previous sections are based on written sources and LU maps. LU 
maps for the end of the 19th century are scarce, while a wide variety of maps exists for the 20th 
century. This is a direct consequence of the large amount of available remote sensing products. 
Remote sensing is an effective tool for land-use/cover mapping, because a large area can be analyzed 
at once for different moments in time in a cost-effective way. In fact, remote sensing is used to 
reveal the land cover, which can be converted to LU using the context. E.g. an area with rice can be 
interpreted as agriculture, and patchy water ponds as aquaculture. However, different LU classes can 
correspond to the same land cover class and vice versa, which complicates the conversion. 

An overview of LU maps covering at maximum the entire VMD together with their characteristics 
is given in Appendix 1. These maps are generally difficult to be compared, because of differences in: 
 

1) The focus of the study 
Many studies focus on especially rice cropping systems over time (e.g. Bouvet & Le Toan, 2011; 
Karila et al., 2014; Kono, 2001), followed by studies focusing on the expansion of shrimp farms 
and the related reduction in forested area (e.g. Giang & Hoa, 2013; Tong et al., 2004; Vo et al., 
2013). 
 

2) The extent of the maps  
The extent of the land-use/cover maps varies from local studies on district level to LU 
studies/maps for several countries or even the entire world. Examples at regional/provincial 
scale are published by Chen et al. (2012) and Sakamoto et al. (2009b). Examples for the entire 
VMD or even a larger area are published by Chen et al. (2011), Sakamoto et al. (2006 and 
2009a), Son et al. (2014) and Xiao et al. (2006). The larger the extent, the lower the resolution 
of the map generally is. 
 

3) The land-use/cover classes and their definitions 
The classes and corresponding criteria used for LU/cover maps differ per study in order to have 
a representative, classifiable set of classes for the specific study area which is sufficient to 
answer the research questions (Kuenzer et al., 2011). Hence, similar class names in different 
studies can have different definitions. 
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4) The data source (spatial, temporal and spectral resolution)  
Many satellite products with different characteristics – such as timing of imaging, temporal 
resolution, data availability, covered area, ground resolution, price, spectral characteristics  – 
exist. For a review on products which can be used for LU mapping, see Kuenzer et al. (2011) 
and Kuenzer & Knauer (2013). For mapping the number and type of crops one or more years, 
low-resolution, multi-temporal MODIS (EVI (Enhanced Vegetation Index)) images are mostly 
used which cover relatively large areas (Kuenzer & Knauer, 2013), but also the NDVI 
(Normalized Difference Vegetation Index) of multi-temporal SPOT Vegetation images have 
been used (e.g. Nguyen et al., 2012). A single image cannot easily reveal different cropping 
systems (e.g. Karila et al., 2014; Leinenkugel et al., 2013; Liew et al., 1998). 

Especially if low-resolution images are used, problems with mixels (pixels which represent 
multiple land cover/uses) occur and small rice fields and shrimp farms are easily misclassified 
(Kuenzer & Knauer, 2013). Hence, for LU studies considering more than rice only, higher-
resolution images are preferred, such as Landsat images (e.g. Funkenberg et al., 2014; Son & 
Tu, 2008), or for smaller areas high resolution SPOT images (e.g. Giang & Hoa, 2013; Karila et 
al., 2014; Thu, 2006; Vo et al., 2013) or Rapid Eye (e.g. Huth et al., 2012). Landsat images are 
available for a long time span. 
 

5) The method used to classify the images 
A wide range of classification methods exists. For a review of methods with their advantages 
and disadvantages for mangrove and rice mapping, see respectively Kuenzer et al. (2011) and 
Kuenzer & Knauer (2013). These reviews are representative for LU mapping in the VMD in 
general. Classification methods of remote sensing products used for the LU maps of the VMD 
include both pixel-based and object-based classifications, unsupervised and supervised 
classifications, decision tree classifications and hybrid classifications such as TWOPAC (Huth et 
al., 2012), as indicated in the appendix. Band ratios or indices such as the NDVI, EVI and Land 
Surface and Water Index (LSWI) are often used to aid the classification (e.g. Xiao et al., 2006). 

Object-based image analysis (OBIA) means that the images are firstly segmented: pixels are 
grouped according to for example some specified criteria about e.g. shape and spectral 
resemblance (multi-resolution segmentation). Subsequently, these segments or objects are 
classified using the characteristics of the segments, including information about neighboring 
objects, shape and texture (Kuenzer et al., 2011). Generally, OBIA performs better than pixel-
based approaches especially with high-resolution imagery (Vo et al., 2013). Though, the 
number of land-use/cover classifications in the VMD which use OBIA is very limited.  
 

6) The accuracy of the maps  
If the accuracy of the maps is given, they are generally above 75%. However, due to the large 
variety in quantity and quality of the ground truth data and differences in the method of the 
accuracy assessment, accuracies in different studies cannot always directly be compared or 
even trusted. In some cases the accuracy is not given at all. 

 
As a consequence of all these differences, no single study or combination of studies was found which 
mapped LU changes at a useful resolution over the last few decades with a regular time interval, 
covering the largest part of the VMD and using similar LU classes. The LU maps produced by the 
Vietnamese government each five years (Dijk et al., 2013; Phuong & Catacutan, 2014) satisfy most 
conditions, but are not accessible and no further metadata on the precise data and methods used 
and the accuracy have been found. However, such a time series of maps is needed to be able to 
couple land-subsidence rates to LU. 
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2.3. The connection between land use and land subsidence 
 
No studies were found which directly couple multiple LU types with differential land subsidence. 
However, combining the knowledge on the drivers of subsidence and LU in the VMD gives insight in 
this relation. In general, LU can be coupled to the drivers loading, fluid extraction and lowering of the 
groundwater table. Below, the most important drivers will be discussed for the main LU types in the 
VMD, followed by the expected relative differences in subsidence rates between the LU types and 
time-dependent effects on subsidence. 
 
 
Agriculture 
 
Agricultural areas are especially vulnerable to subsidence, but remain largely out of scope in previous 
studies (Higgins, 2015). In these areas, subsidence is dominated by groundwater table control 
measures and groundwater extraction. Accumulation during floods partly compensates subsidence. 

During the periods that the groundwater table is below the surface, oxidation, compaction and 
especially ripening of the mostly clayey soil can take place. This is the case for most crops year-round. 
For soils with a high organic matter content in the Sacramento-San Joaquin delta (Northern 
California), different crops could not be related to differences in subsidence rates (Rojstaczer & 
Deverel, 1995). These different crops all have groundwater levels below the surface. However, rice is 
grown under inundated conditions (Bouman, 2009), inhibiting oxidation, ripening and compaction. 
Therefore, rice might have lower subsidence rates than other crops. The rice cropping phenology 
(the timing and number of crops a year) and related periods of inundation and dry land determine 
the period during which oxidation and ripening take place.  

The subsidence rate of (especially irrigated) crops is expected to be dominated by groundwater 
extraction. The strong impact of groundwater extraction for irrigation on subsidence rates is for 
example observed in the Quetta Valley in western Pakistan. Here, amplification of groundwater 
extraction related to the expansion of agriculture resulted in a strong increase in subsidence rates 
(Khan et al., 2013). However, environmental conditions in this area are very different from the VMD 
and the crops grown do not contain rice or other crops which require inundation. In the VMD, 
especially areas with dry-season rice crops require irrigation (Nhan et al., 2007). Rice requires most 
irrigation water (0.8 l/s/ha), followed by upland crops (0.6 l/s/ha) and perennial crops (0.4 l/s/ha) 
(Nesbitt, 2005). Irrigation water can be derived from rivers and/or groundwater. The water 
availability, quality and timing of water supplied via the canal network generally deteriorate 
downstream (Nhan et al., 2007). During the dry season, river water shortages may occur (Nesbitt, 
2005), which could result in more groundwater extraction. Besides, more irrigation water is needed 
in upstream provinces as consequence of deep groundwater-table levels (Nhan et al., 2007). This 
irrigation water for rice is mainly supplied by pumping (Nhan et al., 2007). Hence, it is expected that 
subsidence due to groundwater extraction for irrigation increases with the distance to the rivers, and 
is large in the upstream provinces as well as in coastal areas with surface water salinization 
problems. This is in contrast to the statement of Nesbitt (2005) that only the areas between and 
along the Bassac and Mekong rivers in the VMD use groundwater for agricultural production. 
Another effect which plays a role is that during the wet season, the river flood water recharges part 
of the shallow aquifers. This can partly prevent subsidence related to groundwater extraction (Liu et 
al., 2010; Wen, 1995).  

In sum, many aspects play a role in the proportion of the subsidence rate which is related to 
groundwater extraction for irrigation. Assuming that the amount of irrigation water needed is the 
best indication of the subsidence rate for agricultural areas, rice cropping systems with a dry-season 
crop are expected to have largest subsidence rates. This is followed by other rice cropping systems 
and non-rice crops.  
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Aquaculture  
 
In aquaculture areas, oxidation, ripening and compaction can only occur when aquaculture ponds are 
drained to be cleaned. Local subsidence due to groundwater extraction will be dominant, as fresh 
pumping water can be used to dilute the salty sea water to grow brackish water species such as 
shrimps (Higgins et al., 2013). Strong local subsidence up to 25 cm/yr is observed for aquaculture 
ponds in the Yellow River delta (China) with similar subsurface composition (Higgins et al., 2013). 
These subsidence rates are equally high as in cities (Higgins et al., 2013). 
 
 
Urban areas  
 
Urban areas often experience high subsidence rates. A main driver is the heavy anthropogenic 
loading by all buildings and infrastructural constructions. In the Beijing plain (Chen et al., 2014) and in 
Shanghai (Yan et al., 2002), a positive correlation between construction density and land subsidence 
is found, which probably also applies to the VMD. Besides, groundwater extraction in or bordering 
urban areas is an important driver (Minderhoud et al., 2017). Groundwater is extracted in the urban 
areas of the VMD for drinking water (Buschmann et al., 2008), industry and in rural or open urban 
areas for washing, bathing and watering vegetables (Tran et al., 2010).  
 
 
Forests and orchards  
 
The subsidence rate for forests and orchards probably differs per subclass. At first, a natural 
mangrove forest is not expected to subside, but rather to rise with the sea level due to net 
accumulation of clastic sediment and organic material. This is in agreement with the net 
accumulation rates of 4 to 7 cm/yr in the VMD (Lovelock et al., 2015). 

Freshwater forests with mainly melaleuca trees and forestry areas are expected to show only 
slight subsidence rates. The ground water level is expected to be mainly below the surface without 
human intervention, creating potential for oxidation, ripening and compaction. These processes may 
be compensated by accumulation of organic matter.   

Orchards are mainly found close to the river branches in the VMD, which is probably related to 
the slightly higher elevation and coarser sediment at and close to the levees. Orchard areas also 
seem to have a relatively dense but scattered human population. For this type of LU, it is difficult to 
say which driver of subsidence will dominate. Anthropogenic as well as natural loading probably 
differ strongly over space and the contribution of oxidation and ripening depends on the presence of 
clay and organic matter in the subsurface. The groundwater usage will depend on the irrigation 
needs of the specific trees and the type of irrigation. Some fruit trees are occasionally irrigated using 
a permanently flooded ditch and dyke system, but also irrigation by canal and ditches, by pump and 
hose or via trickle irrigation techniques can be applied (Nesbitt, 2005). Deep-rooted trees can lower 
the water table and extract water from the shallow aquifer. This increases the need for irrigation –
potentially using deeper groundwater – for surrounding shallow-rooted crops (Nesbitt, 2005). 
 
 
Wasteland/marshes  
 
Wasteland and/or marshes which were omnipresent in the past are expected to have relatively low 
or even negative subsidence rates. Groundwater extraction, antropogenic loading and manually 
lowering of the groundwater level do not play an important role. Some peat consolidation could 
result in subsidence, while peat oxidation is expected to be limited because of the wet conditions. 
Accumulation of peat and clastic river sediment supplied during the yearly floods might compensate 
or even exceed the subsidence rate.   
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Relative differences in subsidence rate per land-use class 
 
The previous five paragraphs showed how different LU types can be coupled to subsidence. The main 
drivers of subsidence and the resulting subsidence rate vary between the LU types. Taking all these 
relations together, it is expected that urban areas will subside most rapidly due to strong loading in 
combination with groundwater extraction. This LU type is probably followed by other types which 
extract much groundwater: areas with an irrigated/dry-season rice crop and aquaculture. The other 
agricultural classes may have slightly lower subsidence rates as they require less irrigation water. 
Orchards probably require even less pumping water and subside even slower. Forests with fresh 
water trees such as melaleuca and natural wasteland/marsh are expected to experience very limited 
subsidence or slight accumulation. At last, mangrove is expected to aggrade. 
 
 
Time-dependent effects in subsidence rates in relation to land use  
 
As explained in section 2.2., subsidence rates can change over time in two ways: they can gradually 
change over time (‘time effect’), and they can experience time-lag effects. This should be taken into 
account when relating subsidence rates to LU, assuming that different types of LU indeed result in 
different subsidence rates related to different drivers and processes.  

Considering the time effects, the subsidence rate may decrease over time for a certain LU type 
which is already present for a long time, if 1) the system could slowly reach a hydrodynamic 
equilibrium, 2) organic matter is being depleted, or 3) the subsidence potential decreases as the 
sediment gets more and more compacted. On the other hand, the subsidence rate related to 
continued and especially intensified groundwater extraction can increase over time while the same 
LU class is present. This is, because the system gets more and more out of equilibrium. These time 
effects differ between LU classes due to differences in drivers and processes underlying the relation 
between LU and land subsidence. Besides, the speed of the change in subsidence rate will differ 
between LU changes. For example, the change in subsidence rates is expected to be quick if the 
subsidence rate of a certain LU class is dominated by oxidation as consequence of groundwater table 
lowering, or consolidation and compaction due to loading. As a consequence of all these time effects, 
the time span during which a specific present and previous LU type has already been present can 
influence the land-subsidence rate.  

Considering the time-lag effects, especially the relation of the LU classes with groundwater 
extraction should be taken into account. In case of groundwater extraction, the hydrological system 
needs time to change the situation in the clayey aquitards. Such delayed effects imply that the past 
LU should be coupled with the subsidence rates rather than the contemporary LU.  
 
 
 
Altogether, the relation between land subsidence and LU is complex. At first, the link between LU 
and land subsidence via the dominant drivers is not yet completely understood. Nevertheless, the 
current knowledge gives a first indication of the relative differences in subsidence rates between 
different LU types. Secondly, ascribing a certain subsidence rate over a period to the respective LU 
(change) class in the same period is only justified if time-dependent effects have a minor impact on 
the subsidence rate. Otherwise, the subsidence rates should be coupled to LU history. These time-
dependent effects can also differ between LU types, because they depend on the dominant 
subsidence drivers and processes.  
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3. Methodology and data 
 

3.1. Overview 
 
This chapter is divided in six parts. First, a background on the study area is given. This is followed by 
an overview of all data used in this study. Subsequently, the random forest algorithm is introduced, 
which will be used in the methods to fulfill the main aims (Figure 7). These methods are elaborated in 
the last three parts.  

In order to couple the subsidence rates to LU and LU change, a continuous, consistent LU map 
series for the VMD over the last decades was needed. As indicated in the literature review, no single 
study or combination of studies exists which provides such a series. Therefore, the first step was to 
create a new LU maps set using optical remote sensing products (Figure 7). The LU in the VMD has 
been classified based on an optical remote sensing image of 1988, 1996, 2006 and 2009. The images 
were classified using an object-based approach and the machine-learning algorithm ‘random forest’.  

The second step considered the relation between subsidence rates and LU. The land subsidence 
per LU type was quantified by calculating standard statistics based on the InSAR-based subsidence-
rates dataset for each LU class that did not change from 1988 up until 2009. The impact of past LU 
changes on the subsidence rates has been studied by comparing the subsidence rates of areas with a 
constant LU over time with the subsidence rate of areas where a certain LU change took place. 

The third and last step was to predict the subsidence rates for the period 2006-2010 based on LU 
and LU history from 1988 up to 2009 (Figure 7). Hereto, a random forest regression has been used. 
The quality of all predictions was tested by a validation subset of the InSAR-based subsidence rates. 
The results of using all LU change maps together to predict the subsidence rates has been compared 
with the results of a prediction based on each LU change map separately. This was used to determine 
which period predicts the subsidence rates best and whether using multiple LU periods improves the 
prediction. 
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3.2. Study area  
 
The Vietnamese Mekong Delta is located in the south of Vietnam, Southeast Asia (Figure 8). The VMD 
had 17.5 million inhabitants in 2014 and covers about 40 000 km2, both comparable to the 
Netherlands. The delta largely lies below 1 m above mean sea level (Coumou, 2016). The Mekong 
River splits in multiple branches in the VMD (Tri, 2012). The largest city of Vietnam – Ho Chi Minh 
City – is located just northeast of the VMD. Can Tho is the largest city in the delta. 
 

 
The climate is moist tropical with a short dry season from January to March and a rainy season from 
April-May to November-December (Tong et al., 2004). Especially the Plain of Reeds (including Dong 
Thap, Tien Giang and Long An) and the Long Xuyen Quadrangle (An Giang and the northern part of 
Kien Giang) are flooded during the wet season for about 6 months (Tri, 2012).  

The VMD is called the ‘rice bowl’, because its large rice cropping area makes a major contribution 
to the global rice production (Renaud & Kuenzer, 2012; Tri, 2012). In order to increase the yields, 
many canals have been dredged and dikes and sluices have been built in the delta (Renaud & 
Kuenzer, 2012). Currently, over 10,000 km of irrigation canals support the water distribution and 
transportation in the VMD (Son et al., 2014). Next to agriculture, aquaculture is of increasing 
importance along the coast of the VMD (Binh et al., 2005). Furthermore, the production of fruits and 
vegetables is an important source of income (Renaud & Kuenzer, 2012; Warner et al., 2009).   

Figure 8 Overview map of the Vietnamese Mekong Delta (VMD). The red line indicates the extent of the land use maps 
which were classified, the blue dashed line indicates the extent of the ‘Tra Vinh InSAR-tile’. The 13 black names are 
province names.  
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3.3. Data 
 
Satellite imagery for land-use classification 
 
Images of the Landsat Thematic Mapper (TM) sensor aboard the satellite Landsat 5 were used for LU 
classification, because 1) one tile covers a large part of the VMD, 2) the images of the same sensor 
are available with a high 16-days repeat interval over a long period (1984-2013), 3) the images have a 
wide range of available spectral bands (Table 3), 4) the ground resolution of the images is sufficiently 
high to classify LU (Table 3) and 5) the images are freely available. Images from other satellites are 
not used to limit differences between the LU maps due to differences in extent, ground resolution 
and available spectral bands.  

Four Landsat 5 TM images have been selected (Table 2). The selection is based on the acquisition 
date and limited cloud cover. The cloud conditions are best during the dry season. Besides, the LU 
during this period is expected to be most relevant for subsidence. This is because in this period it is 
visible which agriculture areas apply dry-season irrigation, and this generally means that more crops 
are grown per year. Hence, each LU map is based on a single satellite image taken during the dry 
season. Images from about February were preferred, because the various dry-season rice varieties 
have their growth peak in about this month based on the rice cropping schemes (e.g. Figure 21 in 
Appendix 4). Since the reference InSAR subsidence rates correspond to the period 2006 up to 2010, 
one LU map has been created for the beginning of this period, and one for the end. Additionally, two 
maps have been created to reflect the main trends in LU change over the last decades. This is also 
corresponds to the period with a strong increase in subsidence rates (Minderhoud et al., 2017). 
Therefore, the images in Table 2 were selected.  

 
 
Table 2 Landsat 5 TM surface reflectance images used (WRS path 134, row 053). The images were selected via the online 
LandsatLook Viewer (USGS, 2016b) and the Earth Explorer application (USGS, 2016c) and downloaded with a bulk order 
(USGS, 2010). 
 

Date (yyyy-mm-dd) Julian day Landsat scene identifier 

1988-01-30 030 LT51250531988030 
1996-02-21 052 LT51250531996052 
2006-03-04 063 LT51250532006063 
2009-02-08 039 LT51250532009039 

 
 

Each image includes the surface reflectance of seven spectral bands (Table 3) in digital numbers and 
three spectral indices based on the surface reflectance bands: the Normalized Difference Vegetation 
Index (NDVI), the Enhanced Vegetation Index (EVI) and the Normalized Difference Moisture Index 
(NDMI) (USGS, 2017). The preprocessed surface reflectance bands were generated from the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) (USGS, 2012).  
 
 
Table 3 Spectral band designations Landsat 5 TM (USGS, 2016a). 
 

Spectral band Wavelength (μm) Resolution (m) 

1 - Blue 0.45-0.52 30 
2 - Green 0.52-0.60 30 
3 - Red 0.63-0.69 30 
4 - Near Infrared (NIR) 0.76-0.90 30 
5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 
6 - Thermal Infrared (TIR) 10.40-12.50 120, resampled to 30 
7 - Shortwave Infrared (SWIR) 2 2.08-2.35 30 
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Supporting data for land-use classification 
 
LU maps as well as statistics were used as reference for and validation of the new LU maps. The 
existing wide variety of LU maps of (parts of) the VMD are summarized in Appendix 1. Provincial LU 
statistics of the VMD provided by the general statistics office of Vietnam are freely available at 
gso.gov.vn. These statistics are aggregations of largely sampled data at the district, commune or even 
lower level. This induces a certain error which limits the accuracy at provincial level (Bouvet & Le 
Toan, 2011). The following statistics are used: 
 

- ‘Area of water surface for the aquaculture by province’  Year: 1996, 2006, 2009 
- ‘Planted area of spring paddy by province’   Year: 1996, 2006, 2009  
- ‘Area of forest as of 31 December by province’   Year: 2009 

 
Besides, shapefiles of the ocean (‘Ocean area around the Mekong Delta’) and of the main river 
branches (‘Main Mekong River Course Lower Mekong Basin’) have been used in the LU classification 
(WISDOM, 2014).  
 
 
InSAR subsidence data 
 
InSAR (Interferometric Synthetic Aperture Radar) based subsidence rates of the VMD for the period 
2006-2010 have been used in this study (Figure 9) (provided by Erban et al., 2014). This extensive 
raster dataset with a ground resolution of approximately 57x57 m contains the firstly available 
measured subsidence rates in the VMD (Erban et al., 2013). The subsidence rates are given up to a 
tenth mm/yr, while the estimated error is 0.5 to 1.0 cm/yr (Erban et al., 2014). Details on this dataset 
are given in Erban et al. (2014, 2013) and the supplementary materials of these papers.  

 

 

Figure 9 Left: Annual averaged InSAR-based land-subsidence rates for the period 2006-2010 (adopted from Erban et al. 
(2014)). Right: Error estimates for InSAR stacks superimposed on land subsidence map (adopted from supporting 
information of Erban et al. (2013)). The label values are the standard deviation of the stacked interferometric phase in 400-
pixel windows. 
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Erban et al. (2014, 2013) used 121 scenes from 2007 to 2010 of the PALSAR instrument aboard 
the ALOS-1. Herewith, they created 5 to 12 one-year interferograms for the nine tiles covering the 
VMD. Correction for topology and orbital ramps was applied. Atmospheric errors were reduced by 
averaging the interferograms over the entire period (stacking) and by spatial averaging (multi-
looking). These corrected images were converted to subsidence rates, assuming that the land-
subsidence rates did not vary within the period 2007-2010. The rates are relative to a coherent 
reference area with limited groundwater extraction near the Cambodian border. Next, all pixels with 
an average correlation ≤ 0.15 within a 25-pixels window were discarded.  

The spatio-temporal variability in surface scattering properties can result in errors in the range 0.5 
– 1.0 cm/yr (Erban et al., 2014). Highly urbanized areas have the smallest errors (Figure 9). Flooding 
and the presence of wet rice paddies impede reliable InSAR results. However, the associated 
extensive network of levees and irrigation canals provided stable surfaces for relatively reliable InSAR 
subsidence rates. Due to the generally higher elevation of this network, the subsidence rates will not 
be affected by accumulation (Erban et al., 2014). Besides, human modifications may locally affect the 
subsidence rate, but at regional scale this effect will be insignificant. A source of inaccuracy which is 
not mentioned by Erban et al. (2014) are the relatively large errors in the SRTM digital elevation 
model (DEM) (Coumou, 2016), while this  DEM is used for topographic correction of the images.  

We received the nine subsidence rate tiles and corresponding radar amplitude tiles. We 
georectified the subsidence rate images using the amplitude tiles as spatial reference. Subsequently, 
the images were mosaicked. Overlapping tile parts show differences in subsidence rates of several 
millimeters up to a few centimeters in extreme cases. Most offsets are within the error range. 
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3.4. The random forest algorithm 
 
In this study, the random forest (RF) algorithm has been used to classify the LU as well as to predict 
the subsidence rates based on LU changes. A RF is a data-mining or machine-learning technique that 
uses an ensemble of decision trees to predict Y using multiple X-variables (Breiman & Cutler, 2003; 
Breiman, 2001). Random forests can be used to perform a classification (thematic output), or a 
regression (continuous output). The algorithm is called ‘forest’, because it is an ensemble of decision 
trees (Figure 10). Decision trees are relatively robust, insensitive to noisy input data, and make no 
assumptions about the frequency distribution of training samples (Funkenberg et al., 2014). A major 
advantage of using a RF is the correction for the potential overfitting of a single decision tree 
(Breiman, 2001). For LU classification, the RF algorithm is not often used, even though it can give high 
classification accuracies (Gislason et al., 2006; Rodriguez-Galiano et al., 2012). The application to 
land-subsidence prediction is new.  
 
 
 

 
 
Using the RF algorithm requires two steps. At first, the RF has to be created using  a training dataset 
which contains values for the x-variables and the corresponding y-values. Each decision tree is 
automatically built using a random subset of the training data (hence, random forest). The training 
data which is not used for a decision tree are called the out-of-bag (OOB) samples. The decision tree 
is built by repeatedly splitting the training data based on the best threshold of one of the X-variables. 
The best splitting rule at each decision tree node is determined by the algorithm using a random 
sample of the X-variables (Breiman & Cutler, 2003; Liaw & Wiener, 2002). In case of a classification, 
the best split is based on the largest decrease in the Gini impurity criterion; in case of regression, by 
minimizing the sum of the squared error of the y-values in both branches. The splitting continues 
until the variation of the Y-values at a node is small enough: the (average of the) Y-value is assigned 
to this final node.  

The second step is to apply the RF. All non-training data points for which the X-values are known 
are put into all trees (Breiman & Cutler, 2003). They follow a path determined by their X-values and 
the rules. Each final node they end up in gives a y-value. The y-value which is assigned to each point 
is the modus (in case of classification) or the average (in case of regression) of all the outcomes of 
the trees. 

 
 
 

= e.g. LU change classes for multiple periods 

Take the modus (classification) or 
average (regression) of all outcomes 

Node with rule 
(yes-no question) 

Final nodes which give a  
Y-value corresponding  

to the X-values 

Decision tree 

Figure 10  Simplified example of a random forest. Modified after kgpdag.wordpress.com. 

= e.g. Subsidence rates 
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The RF algorithm gives an indication of its error using the out-of-bag (OOB) samples (Breiman & 
Cutler, 2003). These samples are put into all trees. Each outcome is compared with the known Y-
value, giving an error rate (classification) or mean squared error (MSE) (regression) per tree. The 
average error rate is an estimate of the overall error rate. Besides, in case of classification, the OOB 
samples are used to determine the classification accuracy per class and create a corresponding 
confusion matrix. 

The OOB samples are also used to determine the importance of the X-variables (Breiman & 
Cutler, 2003; Liaw & Wiener, 2002). The values of one X-variable in the OOB samples is randomly 
permuted. Then, the OOB samples are put into the tree again. Subsequently, the importance of a X-
variable is determined in two ways. In the first case, the increase in the prediction error of all OOB-
samples averaged over all trees is used: the decrease in accuracy for classification and the decrease 
in MSE for regression. Secondly, the total decrease in node impurities from splitting on the variable, 
averaged over all trees, is used. The node impurity is measured by the Gini index for classification 
and by the residual sum of squares for regression. 

 
For further explanation on the random forest algorithm, see Breiman (2001), Breiman and Cutler 
(2003), Liaw and Wiener (2002) and the help function in the R randomForest package. 
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3.5. Land-use classification and change detection 
 
A new, consistent LU map time series has been created by classifying the satellite images of 1988, 
1996, 2006 and 2009. The main steps for the pre-processing, classification and post-processing are 
shown in Figure 11 and will be elaborated in the next subsections.  
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(create objects) 
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labelling of training and 

validation samples 

5. Train & apply random 
forest classification to 

create LU map 

Post-processing 7. Validation of  
LU map 

6. Improvement  
of LU map 

8. LU change 
detection  

Figure 11  Overview of all steps to create a land use (LU) map from a Landsat 5 satellite image, including pre- and post-
processing steps. Step 1: the satellite image was reduced to the extent of the study area (Figure 8). Step 2: the clouds and their 
shadows were classified and removed from the image. Step 3: the pixels were grouped into objects based on similarity in 
spectral characteristics; the yellow lines represent object borders. These objects were subsequently classified: an object-based 
classification was performed. Step 4: a largely random selection of the objects was manually labelled/classified to be used as 
training and validation samples; the colored lines represent the samples of different LU classes. Step 5: the random forest (RF) 
classification algorithm was trained with the training samples: the object spectral and spatial characteristics were used as input 
variables. The  RF is applied to all objects to get a LU map. Step 6: the LU map is improved based on the other classified LU maps 
and by merging some classes. Step 7: the LU map was validated with the validation samples, and by comparison of provincial 
statistics with statistics of the general statistics office of Vietnam. Step 8: LU changes were detected and mapped by comparing 
the LU map with the other classified LU maps. RGB = NIR-Red-Green in all satellite images (false color). 

Object 
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Object-based image classification 
 
An object-based image-analysis (OBIA) approach has been used to classify LU. At first, neighboring 
pixels in an image were grouped together into objects or segments. In this study, this segmentation 
was based on similar spectral characteristics of the pixels (see Appendix 2 for more information on 
segmentation). Areas with little spectral variation result in larger segments. Subsequently, the 
objects were classified based on the characteristics of the objects. The large advantage of this 
method over pixel-based classification is that not only spectral, but also spatial characteristics can be 
used for the classification. For example, characteristics related to the shape of the objects, the object 
size, the orientation of the object and the difference in a spectral feature with neighboring objects 
can be used. For the distinction of LU rather than land cover only, this information is expected to be 
essential for the classification success. For example, aquaculture and a river both have the spectral 
characteristics of water, but the shape of the objects related to these classes makes distinction 
possible. Besides, the object-based classification results are generally less speckled than pixel-based 
classification results. At last, an object-based approach is expected to result in a LU map which 
represents the dominant LU class in an area, which is desired for the coupling with land subsidence.  
A minor disadvantage of an object-based approach is that it is almost inevitable that some segments 
include multiple LU classes, herewith reducing the accuracy. Moreover, the boundary of segments is 
generally slightly different for different years, which can result in undesired sliver change classes. 
 
Step 1 & 2. Clip and mask clouds and their shadows 
 
The Landsat 5 TM surface reflectance images were ready to use, except for their slightly different 
extent. Besides, they still include clouds and their shadows. The images were clipped to the same 
study area extent (Figure 8). Subsequently, the clouds and their shadows have been removed from 
each image before LU classification, because especially the cloud shadows were easily confused with 
LU classes of interest, herewith lowering the classification accuracy.  

The clouds were classified using object-based image analysis (see Appendix 2 for segmentation 
settings). A manually built decision tree has been used for classification instead of a random forest 
classification, because this makes it possible to 1) have more direct control on the classification, 2) 
classify at different segmentation levels at the same time, and 3) use features based on the spatial 
relation to already classified segments (e.g. relative border to the class ‘cloud’). The rules 
corresponding to each node in the manually built decision tree are based on 1) the high reflection of 
clouds in (especially) the optical bands compared to the land surface, 2) the shape and size of the 
clouds, and 3) the low cloud temperature. After classification, a 60 m buffer around the clouds was 
applied. The buffered clouds were manually shifted to the cloud shadows. Some clouds and 
respective shadows which were missed were manually added; misclassified clouds were removed 
from the mask. The final shapefile of the clouds and cloud shadows together has been used to set 
these areas to no data in each corresponding image. 
 
 
Step 3. Segmentation: create objects 
 
Next, a segmentation is applied to each image separately: objects are created. The optimal 
segmentation settings for the LU classes (see Appendix 2) were determined by trial and error such 
that each object represented a continuous area of a single land-use class which is as large as possible. 
For example, an object comprises an individual field or group of fields with the same crop or a (large 
part of a) road, river or channel. The final segments were exported with the values for 55 selected 
spectral and spatial features (specified in Appendix 5) as shapefile and text file. Examples of features 
are the mean of red band, roundness, length divided by width and distance to ocean. The selection of 
useful features is based on experience with object-based classification. 
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Step 4. Select land-use classes and create a training and validation dataset 
 
After segmentation, a segment dataset was created to train and validate the random forest. Hereto, 
at first the LU classes were chosen for the classification. These LU classes should: 
 

1) be all-embracing and representative for the entire delta at all time steps under consideration; 
2) be able to be recognized in the Landsat 5 TM images; 
3) have an assumed link to land subsidence.  

 
A selection of the wide variety of LU classes used in existing LU maps (Appendix 1) was used as a first 
set of classes. This set was subsequently tested and improved by iteratively classifying the image with 
a set, analyzing the accuracy and confusions between LU classes and adjusting the set. The final LU 
classes which were used for all classifications are shown in Table 4.  
 
 
Table 4 Land-use (LU) classes used for the classification.  See main text and Appendix 4 for reasoning behind the classes, 
and Appendix 3 for LU type codes used in the digital version of the LU maps. 
 

LU group LU type/subclass Acronym 

Aquaculture Aquaculture Aqua 

Agriculture 4 

Dry-season crop – mainly rice Dry-S Rice  
Partly dry-season crop – mainly rice 1 P Dry-S Rice 
Harvested dry-season crop – mainly rice 2  H Dry-S Rice 
Bare field in dry season  Bare Field 
Mixed crops – non-rice 3 Mix No Rice 

Forest 
Mangrove Mangr 
Melaleuca forest 5 Mel For 
Orchard  Orch 

Urban area 
Urban dense Urb D 
Urban open Urb O 
Urban linear features (dikes, roads with buildings and gardens) Urb Line 

Water 6 
Water body (river/sea) Water 
Water: small channels Water Ch 

Other 
Wasteland/marsh Waste 
Cloud remnants 7 Cloud remn 

1
 The classification aims at classifying LU at delta scale and therefore, relatively small scale inter-field alternations between 

the ‘dry-season crop’ and ‘bare field in dry season’ class are taken together as one class: ‘partly dry-season crop – mainly 
rice’. 
2
 ‘Harvested dry-season crop – mainly rice’ is only used during the classification: it is taken together with ‘Dry-season crop – 

mainly rice’ in the final LU maps and LU-change maps and analyses. The dry-season crop accuracy is improved by separately 
classifying these classes due to their different spectral characteristics. 
3
 Mixed crops – non-rice’ is roughly similar to ‘upland crops’ in other LU studies. 

4
 Existing LU maps subdivide agriculture generally based on the type and number of crops per year. In this case, the number 

of crops cannot directly be determined as the classification was based on a single, dry-season image per year. Though, 
combining the classifications with rice crop phenology patterns (e.g. Figure 21 in Appendix 4) gives indirect information: 
‘dry-season crop – mainly rice’ probably has 2 or 3 rice crops a year and ‘bare field in dry season’ probably 1 or 2 in the rainy 
season only. The number of crops for non-rice fields in the dry season (‘mixed crops – non-rice’) is more difficult to deduce. 
5
 Based on other LU maps, ‘Melaleuca forest’ is dominated by melaleuca trees, but other tree species may be present. 

6
 The water subclasses are only used during the classification: they are taken together in the final LU maps and LU-change 

maps and analyses. The water class accuracy is improved by separately classifying the subclasses due to their different 
spatial characteristics. 
7 

Some small clouds can be missed by the cloud mask in step 2. These cloud remnants are classified in the LU classification 
and are subsequently used for a second cloud mask. Hence, they are not shown in the LU and LU-change maps. 
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Each LU class has its own combination of spectral and spatial characteristics which were used to 
discriminate between the classes. A quick overview of spectral characteristics of all classes for the 
2009 Landsat 5 TM image is shown in Figure 12. The variations within a class are large and some 
classes cannot easily be separated based on pixel spectral profiles only. Hence, characteristic spatial 
information on e.g. location and shape of patches of a class was also important to discriminate 
between the classes. In Appendix 4, both types of characteristics used for classification are 
elaborated per class.  
 

 
 
After the LU classes to be classified were chosen, the training and validation set could be created. 
Due to differences in reflection for the same classes between the different years, a dataset – and 
subsequent random forest – was prepared for each year separately. A random selection of 1100 
samples – about 4.5% of the total number of segments – was taken from all segments in each image. 
Some segments contain only one or a few pixels if they were enclosed by no-data areas due to 
clouds. Their shape is determined by the clouds and the spectral characteristics were often still 
strongly influenced by the moist air. These unrepresentative segments with an area of 2.25 ha (25 
pixels) or less were removed from the selection. The remaining training segments were manually 
labelled or classified using the existing LU maps in Appendix 1, Google Earth and expert knowledge. A 
part of the randomly selected segments could not be labelled (Table 5), because the segment did not 
contain a single dominant LU (segmentation inaccuracy), or the reference data and expert knowledge 
were insufficient to determine the LU class.  

The area of each LU class varies strongly. Therefore, some classes were underrepresented in the 
random selection of training segments. Hence, segments were added manually to the random 
selection (Table 5). The resulting final training segments of each year were exported together with 
their values of the 55 spectral and spatial characteristics as text file.  
 

 

 

Figure 12  Examples of spectral profiles of all land-use classes used for classification (except for harvested dry-season 
crop) based on the Landsat 5 TM image of 2009. Profiles are based on single pixels and on the reflectance for the mean 
wavelength per spectral band.  
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Table 5 Overview number of sample segments for the random forest land-use (LU) classification per LU class and year. 
Numbers in parentheses represent the random selection only; outside parentheses include manually added samples. % 
unknown samples = percentage of samples labelled as unknown out of all random sampled samples, % sample = 
percentage of total number of samples out of the total number of segments. 
 

LU acronym 
Number of sample segments 

1988 1996 2006 2009 

Aqua 67(35) 76 (49) 108 (64) 103 (71) 
Ir Rice 145 (122) 272 (267) 194 (176) 332 (330) 
P Ir Rice 139 (122) 101 (94) 112 (105) 88 (48) 
H Ir Rice 22 (22) 27 (9) 170 (150) 28 (15) 
Non Ir Rice 318 (317) 178 (168) 193 (183) 169 (120) 
Non Rice 53 (29)  66 (18) 62 (20)  55 (29) 
Mangr 70 (26) 76 (37) 42 (14) 40 (14) 
Mel For 51 (7) 55 (31) 46 (23) 68 (27) 
Orch 148 (140) 183 (172) 95 (65) 81 (54) 
Urb D 24 (5) 24 (3) 35 (17) 54 (27) 
Urb O 23 (4) 32 (13) 21 (15) 58 (19) 
Urb Line 44 (25) 59 (28) 79 (61) 78 (47) 
Water 25 (9) 39 (20) 20 (15) 43 (25) 
Water Ch 79 (27) 76 (29) 52 (20) 85 (24) 
Waste 107 (84) 80 (44) 13 (-) 9 (2)  
Cloud remn 31 (3) 34 (2) 75 (22) 192 (34) 
Unknown 111 80 56 64 

Nr. of random samples 1088 1064 1011 950 
% unknown samples 10.2% 7.5% 5.5% 6.7% 
Total nr. of samples * 1346 1378 1317 1484 
Total nr. of segments 23019 26705 28424 24016 
% sample *  5.9% 5.2% 4.6% 6.2% 

* excl. unknown samples 
 
 
 
Step 5. Train and apply random forest classification  
 
For LU classification, the randomForest package v. 4.6-12 in R v 3.3.2 has been used on a Windows 7 
64 bit platform. The training dataset was used to train a random forest for each year with the 
spectral and spatial feature values as input X-variables and the LU classes as output Y-value. For LU 
classification, the number of trees for each forest was set to 10,000. The number of X-variables used 
to find the best rule at each tree node was set to the default: the square of the number of variables. 
A larger (or smaller) number of trees or variables did not result in an increase of the accuracy. Within 
the random forest algorithm, the training sample size for each tree was set to 2/3 of the samples per 
LU class without replacement to ensure that each class is represented in each tree and to ensure a 
proper randomness of the trees. The out-of-bag (OOB) samples can be used for internal accuracy 
assessment, but a fully independent accuracy assessment is preferred. Therefore, 1/3 of all created 
samples has been used for this assessment and the other 2/3 has been used for creating the random 
forest.  

Once the random forest had been trained using the training dataset, all segments in the image 
were classified based on their spectral and spatial characteristics. The output text file with the class 
codes for each segment has been joined with the shapefile of all segments in order to get a LU map.  
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Step 6. Improve the land-use maps 
 
After the classification, the number of classes has been reduced to 13: two water classes were 
merged to one water class, the ‘harvested dry-season crop – mainly rice’ class was merged with ‘dry-
season crop – mainly rice’ and the cloud remnants were set to no data. Besides, some adjustments 
were performed on the LU maps based on expert knowledge in order to limit LU changes which were 
likely to be a result of classification inaccuracies. At first, an area which is used for aquaculture will 
generally not be used for fresh water crops such as rice later on. Hence, pixels classified as 
aquaculture in 1988 or 1996 which were covered by a rice class or ‘bare field in the wet season’ in 
2006 or 2009 have been reclassified as ‘bare field in the wet season’. Secondly, areas which were 
classified as water in 1996, but have an identical non-water class in 1988 and 2006, have been 
classified as that non-water class in 1996. A similar reclassification has been performed for 2006 
based on 1996 and 2009. 
 
 
Step 7. Validate the land-use maps 
 
The accuracy of each LU map has been assessed in three ways: based on the success of the labelling 
of the training and validation segments, based on the classification of the validation objects and 
based on the comparison of the classifications with provincial LU statistics of the GSO of Vietnam. 
The first two validation methods were performed on the classified objects directly after the 
classification and before the relatively small improvements made in step 6. The third method is 
applied to the final LU maps, after step 6. Actual ground truth data is very limited and could not be 
used. The existing LU maps in Appendix 1 could not be used in an independent validation. This is 
because 1) they were used as reference for the classification or 2) their extent, timing and/or classes 
used were too different from this study. 

The first validation method used the percentage of the randomly selected training and validation 
samples of which the LU class could successfully be determined. This gives an indication of the 
highest possible overall accuracy that the classification could reach.  

The second validation method used the validation segments to calculate the overall accuracy, 
Kappa statistic, reliability per LU class (user’s accuracy), accuracy per LU class (producer’s accuracy) 
and a confusion matrix, which shows which classes are confused with each other. The Kappa statistic 
is an index which corrects the accuracy for the chance that a class is correctly classified: a value of 0 
indicates that a random classification is as good as the performed classification, while a value of 1 
indicates that the classification is perfect (Lillesand et al., 2008). These calculations were performed 
internally in the training of the random forest algorithm using the OOB samples, and more 
importantly, after the training phase using the independent validation segments. In both cases, the 
calculations were based on the number of (in)correctly classified samples. Additionally, the same 
calculations were performed using the area of the independent validation segments. This gives a 
more representative accuracy estimate for the individual pixels in the LU maps. Hence, the latter 
method was used for the results section; the results of the other methods are given in an appendix. 
Note that all these accuracies did not take the unknown samples into account and hence give an 
optimistic estimate of the accuracy. 

In the third validation method, the area of three LU classes – aquaculture, forest and dry-season 
rice – has been compared to provincial LU statistics of the general statistics office (GSO) of Vietnam 
for all years for which GSO statistics are available. The definition of aquaculture is similar in both 
cases (Socialist Republic of Vietnam General Statistics Office, 2015). The definition of forest of the 
GSO is less clear and is assumed to correspond to the sum of melaleuca forest and mangrove in this 
study. The GSO uses another categorization for agriculture, so their class ‘spring paddy (Lúa đông 
xuân)’ was compared to the sum of ‘dry-season crop – mainly rice’, ‘partly dry-season crop – mainly 
rice’ and ‘harvested dry-season crop– mainly rice’. The accuracy of the GSO statistics and the method 
used to derive the statistics could not been found in English. Besides, the GSO statistics are 
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representative for each entire province, while the new LU maps contain no data areas due to clouds 
and do not cover all provinces entirely. This resulted in smaller areas for the new maps compared to 
the GSO statistics. Altogether, this comparison only gave an indication of the accuracy of our 
classification. No hard conclusions could be drawn.  
 

 
Step 8. Land-use change detection 
 
LU change maps were created using post-classification change detection. A change map has been 
created for all six combinations of two LU maps. Each pixel in a change map contains a class code in 
which the first two digits represent the class in the oldest map and the second two digits the 
youngest map.  
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3.6. Relation land subsidence and land use  
 
The land subsidence per LU type has been quantified by calculating the average, standard deviation 
(in case of an approximately normal distribution), median and quartiles (visualized in boxplots) of the 
land-subsidence rate based on the InSAR-dataset for all areas of each LU class that did not change 
from 1988 up until 2009. A constant LU ensures that potential delayed responses to past LU changes 
do not influence the land-subsidence rates. Gradual changes in subsidence rates over time could not 
be incorporated and hence extrapolation of the rates over time and space should be done with 
caution. The relative differences in subsidence rates between different LU classes give an indication 
of the potential change in subsidence rate in case of a certain LU change. 

Secondly, the impact of past LU changes on the subsidence rates has been studied by comparing 
the subsidence rates of areas with a constant LU over time with the subsidence rate of areas where a 
certain LU change took place. For example, the rate for no change in aquaculture was compared to 1) 
the rate for areas with mangrove in 1988 and aquaculture in 1996 and 2006/2009 and 2) the rate for 
areas with mangrove in 1988 and 1996 and aquaculture in 2006/2009. If direct responses of 
subsidence rates to LU are dominant, those rates are expected to be similar: only the LU in 
2006/2009 matters for the subsidence rate. If delayed responses are dominant, the rates will be 
different. The magnitude of the difference is expected to be related to the difference in the 
subsidence rate between the two respective LU classes in case of constant LU. The impact of only a 
selection of all possible LU changes has been studied (Table 6). This selection is based on their 
relevance and/or occurrence based on the literature review, the accuracy of the LU (change) classes 
and the magnitude of the difference between the average constant LU subsidence rate of the LU 
classes under consideration. 

 
 

Table 6 Land-use changes for which the impact on the subsidence rate was assessed 
 

LU change 
Category From … To …  

Change to aquaculture Mangrove Aquaculture 

Urbanization 

Dry-season crop - mainly rice Urban dense 

Bare field in dry season Urban dense 

Orchard Urban dense 

Wasteland/marsh Urban linear features 

Change to and intensification  
of agriculture 

Bare field in dry season Dry-season crop - mainly rice 

Wasteland/marsh Dry-season crop - mainly rice 

Wasteland/marsh Bare field in dry season 

Change to orchards 
Dry-season crop - mainly rice Orchard 
Wasteland/marsh Orchard 

 
 
All analyses between LU and land subsidence were performed for two extents. At first, the mosaic of 
all tiles of the InSAR-based subsidence rate dataset have been used, because this dataset represents 
almost the entire VMD. However, the offsets between the tiles could influence the outcome. In order 
to determine the impact of these offsets on especially relative differences in subsidence rates 
between LU classes, the same analyses were performed for a single tile too: the tile covering the Tra 
Vinh province and surroundings (‘Tra Vinh tile’ hereafter) (Figure 8). This tile does not cover the 
upstream area which is frequently flooded: accumulation of river sediment is negligible. Besides, the 
Tra Vinh tile shows clear patterns in land-subsidence rates and covers a part of the study area in 
which the different LU classes are best represented. However, the tile cannot replace the mosaic, 
because several LU (change) classes are not present or underrepresented. Moreover, the tile has a 
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smaller variation in subsidence rates  than the mosaic: a standard deviation of 0.61 cm/yr compared 
to respectively 0.68 cm/yr. The average subsidence rate of the Tra Vinh tile is higher than that of the 
mosaic: respectively 1.1 cm/yr and 1.4 cm/yr.  

In order to perform the calculations, the subsidence raster dataset was converted to a points 
dataset with a point at the center of each raster cell. The LU class in each year at each point and the 
respective LU changes were added to the points. Only points for which a LU class is available for each 
year were used for analysis: the clouds for all years together were masked.  

 
For the analyses, the LU map for 2006 was used as representative for the period 2006-2009. This is at 
first because the cloud cover in 2009 is very extensive, which resulted in a strong reduction in the 
number of points which could be used for the analyses. Besides, the areas without cloud cover are 
still strongly influenced by the high air water content, resulting in a less reliable classification and 
herewith analyses. Moreover, the LU changes in this period are limited. 
 
For the analysis of the subsidence rate per LU class, and the effect of past LU changes on subsidence 
rates, the significance of potential differences has been tested in two ways. At first, the boxplot 
notches were used to test the null hypothesis that two medians truly differ at the 0.05 level. The 
notches around the median represent the 95% confidence interval of the median. If they do not 
overlap, the null hypothesis can be rejected and the medians differ significantly (Chambers et al., 
1983). The advantage of this method is that boxplots do not require the assumption of a certain 
statistical distribution.  

Secondly, if the probability density of the land-subsidence rate for each LU class were 
approximately normally distributed, a one-way analysis of variance (ANOVA) has been applied to the 
dataset to statistically determine whether one or more mean values of the LU classes differ 
significantly from the others at the 95% confidence level. If there was a significant difference, 
multiple comparison using the Tukey-Kramer method (Toothaker, 1993) has been applied to 
determine which combinations of LU classes are significantly different. 

Note that if a difference in subsidence rate between two LU classes is significant, this does not 
directly mean that the difference is relevant, for example if the difference is a fraction of a mm/yr.  
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3.7. Prediction of land subsidence based on land use and land-use changes 
 
At last, it has been tested to which extent the LU and LU changes can predict the land-subsidence 
rate for the period 2006-2010 using a random forest regression. The random forest used different LU 
change periods as input variables to predict the land-subsidence rates. It was decided to use the LU 
change map of the periods ’88-’96, ’88-’06, ’96-’06 and ‘06-’09. Using these separate LU change 
periods made it possible to get insight in which periods are most important for the subsidence signal. 
Besides, more different LU histories over the entire period can be analyzed than present in the 
training dataset. The explicit links between the different periods is lost, but if certain combinations of 
LU types in different periods are important, this data-mining technique is expected to use this 
indirectly while looking for the best way to split the data. 

Again, the LU map of 2006 has been used as representative for the period 2006-2009. Remember 
that LU change classes include no-change classes too. Only areas for which the LU was known for all 
LU maps under consideration were used: all pixels which are clouded in any image were excluded. 
Moreover, no reliable radar signals return from water surfaces. So, all pixels in areas which were 
classified as water in 2006 have been excluded: this year is used for the calculation of the InSAR-
based land-subsidence rates.  

In order determine whether time-dependent effects are important, the results of using all LU 
change maps together to predict the subsidence rates have been compared with the results of a 
prediction based on each LU map separately. To determine whether the predictions for all tiles 
together do not suffer from the differences between the mosaicked tiles, the results have been 
compared with the results for the same cases based on the Tra Vinh tile only. 
  
In contrast to the LU classification, the input variables are thematic (LU changes) and the output 
values are continuous (subsidence rates). Hence, a regression rather than a classification is 
performed by the random forest (for explanation on differences: see Appendix 6). The randomForest 
package 4.6-12 in R v. 3.2.2. has been used on a 64 bit Linux platform with 128Gb RAM to provide the 
required computational power. The random forest has been trained using a random selection of the 
point dataset with InSAR-based subsidence rates. These points also contain the corresponding LU 
change classes for the four periods, which were also used to study the relation between land 
subsidence and LU. Preferably, the ratio between points used for training the random forest versus 
validation points is 2

3⁄  : 1
3⁄ , but due to limitations in computational power and the randomForest 

package in R, the proportion of training points was smaller: 45,396 points. This corresponds to 21% 
of the points of the Tra Vinh tile after classes have been selected (selection explained below). The 
random forest contains 1000 trees and the ratio training samples to out-of-bag (OOB) samples within 
the algorithm has been set to 2 3⁄  : 1 3⁄ . The default number of X-variables has been used to determine 

the best node split; the number of samples divided by three. The internal and external validation 
samples were selected randomly. The creation of the random forests has been repeated a few times 
with different random samples (seed of 10, 100, 1000 or 10000) to determine its sensitivity to this 
selection. The training of a random forest requires multiple X-variables. In case of using a single LU 
change map for the random forest, each LU change class has been transformed to a separate one-hot 
encoded X-variable (1 if the sample corresponds to the class, 0 if not).  

It is preferred to use all LU classes to create the random forest. Only then the subsidence rate can 
be predicted for all other points of which the LU changes are known. The random forest algorithm in 
R is limited to a maximum of 53 classes per X-variable, while a LU change map can contain up to 169 
classes. Hence only a selection could be used, which has been based on the LU classification 
accuracy, the relevance for land subsidence and the relative area covered by the LU change class. For 
each LU change map, the 53 classes were selected following these steps: 
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1) Merge the LU change classes ‘urban open to urban dense’, ‘urban dense to urban open’, ‘no 
change urban open’ and ‘no change urban dense’ to one LU change class ‘no change urban’ and 
include this class; 

2) Exclude the LU change class if one or two of the respective LU classes has a reliability below 
50%; 

3) Exclude the LU change class if the area of confusion between the respective LU classes is larger 
than 5% of the total area of one (or both) of the respective classes; 

4) Exclude the LU change class if one or two of the respective LU classes is/are water; 
5) Exclude the LU change class if one of the respective LU classes is urban dense or urban open; 
6) Include all no-change classes if they are not yet excluded; 
7) Add LU change classes with the highest frequencies until the selection contains 53 LU change 

classes. 
 
After the training phase of the random forest, the subsidence rate has been predicted for the large 
amount of independent validation points (170,773 for Tra Vinh tile; 1,672,460 points for all tiles). The 
observed subsidence rates – directly from the InSAR-based dataset – have been compared with the 
predicted rates according to the goodness-of-fit evaluation recommended by Piñeiro et al. (2008). A 
linear regression was applied to the observed versus predicted values. The regression equation was 
compared to the 1:1 line to determine whether there is a bias (intercept ≠ 0) and whether the 
predictions are consistent (slope = 1). The relative contribution of different ‘errors’ has been 
quantitatively determined by decomposing the variation of the observed values (obs) which is not 
explained with the predictions (pre) (the squared sum of the prediction error) using Thiel’s partial 
inequality coefficients (Paruelo et al., 1998):  
 

𝑈𝑏𝑖𝑎𝑠 + 𝑈𝑠𝑙𝑜𝑝𝑒 + 𝑈𝑒𝑟𝑟𝑜𝑟 = 1 

 
in which 𝑈𝑏𝑖𝑎𝑠 is the proportion associated with mean differences between observed and predicted 
values, a bias: 

𝑈𝑏𝑖𝑎𝑠 =
𝑛 ∗ (𝑜𝑏𝑠̅̅ ̅̅ ̅ − 𝑝𝑟𝑒̅̅ ̅̅ ̅)

2

∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑖)2
𝑛

 

 

in which 𝑜𝑏𝑠̅̅ ̅̅ ̅ and 𝑝𝑟𝑒̅̅ ̅̅ ̅ are respectively the average of the observed and predicted values.  
 
𝑈𝑠𝑙𝑜𝑝𝑒  is the proportion associated with the deviation of the slope (𝛽) of the fitted model from the 

1:1 line – the degree consistency – with n is the number of samples: 
 

𝑈𝑠𝑙𝑜𝑝𝑒 =  
(𝛽 − 1)2 ∗ ∑ (𝑝𝑟𝑒𝑖 − 𝑝𝑟𝑒̅̅ ̅̅ ̅)2

𝑛

∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑖)2
𝑛

 

 
𝑈𝑒𝑟𝑟𝑜𝑟  is the proportion associated with the unexplained variance – the degree of scatter – for which 
est are the values estimated from the fitted linear regression line: 
 

𝑈𝑒𝑟𝑟𝑜𝑟 =
∑ (𝑒𝑠𝑡𝑖 − 𝑜𝑏𝑠𝑖)2

𝑛

∑ (𝑜𝑏𝑠𝑖 − 𝑝𝑟𝑒𝑖)2
𝑛

 

 
Additionally, the root mean squared deviation (RMSD) has been calculated: the mean deviation of 
predicted values with respect to the observed ones (in cm/yr). At last, the coefficient of 
determination (𝑟2) has been used as a measure of the proportion of variance in observed values 
explained by the predicted values. 𝑟2 is not only calculated for the independent validation dataset, 
but also for the internal random forest OOB validation samples to compare the internal and external 
validation. 
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In the cases that all LU change maps were used, the two random forest importance measures (see 
section 3.4) have been used to determine whether one of the LU change maps is structurally more 
important to create the random forest than the others. This could indicate that the LU changes of the 
respective period have the strongest relation to the subsidence rates. In turn, this gives information 
on the importance of time effects and time-lag effects. 
 



4. Results – Land use and land-use changes 

38 

4. Results 
 

4.1. Land use and land-use changes 
 
Land-use changes over the period 1988-2009 
 
The classified LU maps for 1988, 1996, 2006 and 2009 are shown in Figure 14 (all together) and 
Appendix 6 (large format). Statistics about the area of each LU class for each year are shown in a 
graph (Figure 13) and in a table (Appendix 7). Appendix 9 shows how the LU changed between the 
different moments for which the LU has been mapped. This includes no-changes.  

For all years, about half of the area of the delta is used for agriculture. Within this main class, 
there is a clear shift between subclasses. Especially between 1988 and 1996, the area of ‘dry-season 
crop – mainly rice’ (hereafter: dry-season rice) expanded significantly at the expense of partly dry-
season rice and bare field in the dry season. The decrease in bare fields in the dry season continued 
until 2009. Also the wasteland/marsh area in the north is converted to dry-season rice. These 
changes denote an intensification of the agriculture sector: assuming that all agricultural classes at 
least include a wet season crop, the number of crops per year increases. The area of mixed, non-rice 
crops is minor and shows only a slight increase.  
  

Figure 13  Stacked bar plot of the area of each land use (LU) class for each classified image, including the area of clouds 
and cloud shadows. Values in the bars are the area per LU class in km

2
. Note that the clouds and cloud shadows cover 

different areas of each LU class in each year. 
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Figure 14  Land-use maps for 1988, 1996, 2006 and 2009. 
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The area of aquaculture along the coast increases strongly over all years. This area also expanded 
further away from the coast in the southwestern corner of the study area. Aquaculture mainly 
expanded at the cost of mangroves. The most significant increase in aquaculture occurred between 
1996 and 2006. In this period, more than 320 km2 of the about 540 km2 of mangrove in the study 
area was converted to aquaculture (Table 30 in Appendix 9). Only very small strips of mangrove were 
left along the coast in 2006 and 2009. 

The total area of the main class ‘forest’ fluctuated around 20-25%. The fluctuation is related to 
actual changes in the subclasses, but also to the cloud cover. The orchard subclass rapidly expanded 
between 1988 and 1996 along the main river branches and in the southwestern corner of the study 
area. Afterwards, it decreased again mainly in the southwestern corner. The conversion of 
agricultural fields to orchards along the main river branches did not reverse. The melaleuca forest 
expanded significantly between 1996 and 2006 at the expense of almost the entire area of 
wasteland/marsh which was left. It seems that natural succession took place, and/or these areas 
were converted to forestry areas.  

The original delta wasteland/marsh area was clearly reclaimed between 1988 and 2006. Its area 
decreased from 13% of the delta area to almost 0%. In first instance, this area was converted to rice 
cropping areas, and later on to melaleuca forest. Besides, urban linear features appeared: roads and 
dikes were built. Urban linear features also appeared more and more elsewhere in the delta. This is 
in direct relation to the population growth and urbanization in the delta: the urban dense (and open) 
area increases too.  

Overall, the LU changed considerably between 1988 and 2009. In 2006, only 30% of the area had 
the same LU as in 1988. The largest area changed between 1988 and 1996: in 1996, 38% of the area 
had the same LU as in 1988, while in 2006, 50% of the area had the same LU as in 1996. Between 
2006 and 2009 – a much shorter period – the changes were smaller: in 2009, 57% of the area was 
used in the same way as in 2006. 
 

Validation of the land-use maps  
 
Manual labelling of the training and validation samples  
During the manual labelling of the training and validation samples, a class could successfully be 
assigned to 90%, 92%, 94% and 93% of the randomly selected samples for respectively 1988, 1996, 
2006 and 2009 (Table 5). This gives an indication of the highest possible overall accuracy of the LU 
maps.  

Generally, the assignment of a class to the training and validation data was more difficult for 
earlier years. This was due to a lack of reference data for earlier years in combination with smaller 
differences in spectral object characteristics and less pure objects. The latter was related to the 
larger local variation in LU. This is reflected by the larger number of unknown samples. Besides, 
especially for 1988 and 1996, the training data itself may be less certain. In these years, aquaculture 
was difficult to distinguish from wasteland, bare and harvested fields or flooded areas as 
consequence of limited difference in spectral and spatial characteristics. Other potential confusions 
in the samples of especially 1988 are between 1) ‘dry-season crop – mainly rice’ and ‘orchards’ due 
to smaller differences in the NDVI and related features compared to other years, 2) ‘urban linear 
features’ and ‘orchards’, because they are often intertwined in elongated objects, and 3) ‘mangrove’, 
‘mixed crops – non-rice’ and ‘orchards’ close to the coast due to limited spectral difference and 
limited decisive spatial context. For all years, the distinction between the urban classes was difficult 
because no hard lines can be drawn between these classes. The distinction between ‘mixed crops – 
non-rice’ and other vegetated classes was difficult due to similar spectral characteristics and limited 
decisive spatial characteristics. In most cases, the spatial and temporal context was used for final 
distinction to be able to label enough objects for each LU class.  
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Classification accuracy of the validation samples 
The overall accuracies based on the area of the validation segments are high. They vary between 77% 
and 93% and the respective 𝜅 coefficient between 0.74 and 0.93 (Table 7). These accuracies are 
probably slightly too high, because they are not corrected for the number of random samples which 
could not be labelled and hence were excluded from the validation dataset. Even though the most 
reference data was available for 2006 and 2009, 1996 shows a slightly higher overall accuracy and 𝜅-
coefficient. The slightly lower accuracy for 2009 is most probably related to the widely spread small 
clouds and related atmospheric disturbance. The overall accuracy and 𝜅-coefficient is lowest for 
1988, which can be explained by the lack of reference data for this period.  

The reliability and accuracy varies strongly between and within the LU classes. Nevertheless, 
generally the reliability and accuracy is very high: 100% is no exception (Table 7). Some classes have a 
low reliability and accuracy for multiple years: ‘urban open’, ‘harvested dry-season crop – mainly 
rice’ and ‘partly dry-season crop – mainly rice’. These classes generally also cover a relatively small 
area.  
 

Table 7 Validation statistics for all four land-use maps. Based on the independent validation segments and corrected for 
the area of each segment. All percentages below 50% are colored red, percentages of 95% or higher are colored green. 
 

LU class 
1988 1996 2006 2009 

Reliability Accuracy Reliability Accuracy Reliability Accuracy Reliability Accuracy 

Aqua 90% 100% 93% 96% 99% 100% 99% 100% 
Dry-s rice 76% 66% 99% 100% 93% 64% 92% 97% 
P dry-s rich 94% 88% 44% 17% 54% 72% 72% 80% 
H dry-s rice 0% 0% 52% 44% 91% 98% 82% 49% 
Bare field 83% 84% 95% 95% 91% 95% 80% 79% 
Mix no rice 74% 86% 97% 89% 99% 79% 82% 81% 
Mangr 98% 96% 92% 74% 100% 100% 100% 72% 
Mel for 74% 94% 94% 98% 97% 97% 86% 92% 
Orch 69% 88% 86% 98% 56% 83% 85% 65% 
Urb D 95% 49% 88% 89% 91% 95% 66% 66% 
Urb O 60% 69% 77% 38% - 0% 46% 37% 
Urb Line 72% 44% 99% 99% 93% 94% 90% 97% 
Water 100% 50% 93% 100% 100% 100% 96% 100% 
Water ch 8% 88% 100% 94% 100% 95% 100% 100% 
Waste 99% 98% 98% 96% 100% 88% 100% 100% 
Cloud remn 100% 33% 67% 87% 82% 85% 93% 91% 

Overall 
accuracy 

77% 94% 92% 89% 

𝜿-coefficient 0.74 0.93 0.90 0.88 
 

 
Inaccuracies can be related to confusions between classes with similar spectral and/or spatial 
characteristics (see confusion matrices in Appendix 8). Examples of confusions related to similar 
spectral characteristics are between 1) classes within the same main LU group, 2) urban classes and 
agricultural classes with low vegetation cover (bare field in dry season, harvested and partly dry-
season crop – mainly rice), and 3) orchard and agricultural classes with high vegetation cover (dry-
season crop – mainly rice, mixed crops – non-rice). Examples of confusions related to similar spatial 
characteristics such as the object shape are between orchard and urban linear features, and small 
channels and urban linear features. Moreover, uncertainties can be caused by the presence of some 
cloud shadows which passed through the mask and influence the spectral characteristics of the 
objects.   
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Comparison of provincial statistics 
The area of aquaculture is higher in the coastal provinces and lower in the inland provinces 
compared to the provincial statistics of the General Statistics Office (GSO) of Vietnam (Table 8). This 
is in contrast to its very high reliability and accuracy in Table 7. The higher values may be related to 
the fact that the classification does not take into account whether ponds are active, while this is 
potentially distinguished in the survey-based GSO statistics. Besides, unused flooded areas in the 
coastal areas are easily confused with aquaculture in the creation of the training and validation 
samples as well as the classification itself. The lower inland values may be related to more scattered 
aquaculture ponds which are too small to be separately classified: the ponds are included in the 
‘water’ or the ‘(harvested) dry-season crop – mainly rice’ class. So, in the new LU maps, the 
aquaculture class mainly corresponds to brackish-water aquaculture rather than including fresh-
water aquaculture. This is an advantage for coupling to land subsidence, as brackish-water ponds 
probably need more groundwater to dilute the ponds than upstream fresh-water ponds do. 

 The difference between the statistics for the forest area in 2009 is not very large (Table 8). The 
area of dry-season rice is smaller in most provinces in especially 1996 compared to the GSO statistics. 
The difference in dry-season rice area in 2006 and 2009 varies between the provinces. Hereto, only 
provinces which were not affected by clouds and which are completely covered in the study area 
were analyzed. Especially the provinces with a relatively large area of ‘bare field in dry season’ in this 
study (e.g. Soc Trang) have a lower dry-season rice area than in the GSO statistics. It seems that the 
dry-season rice class definition of the GSO also includes part of the ‘bare field in dry season’ class of 
our study.  

In all cases the deviations between the provincial statistics are relatively small. As expected, the 
surface area of most classes is lower than the GSO statistics in the case that the province in this study 
did not represent the entire province. The latter could be due to clouds and/or if a part of the 
province was located outside the study area.  
 
 
Table 8 Comparison of the area (km

2
) of aquaculture, forest and dry-season rice per province in the random forest 

classification of this study (RF) and the statistics of the General Statistics Office (GSO) of Vietnam. Only provinces which 
are covered for more than 50% by our study area are included. Forest area based on the RF classification = area ‘mangrove’ 
+ area ‘melaleuca forest’. Dry-season rice (incl. harvested and partly dry-season rice class) is compared with the GSO 
category ‘spring paddy (lúa đông xuân)’. In 1996, Hau Giang is still part of Can Tho. Grey values may be too low due to 
clouds which cover relatively large areas in the respective province and year. * GSO statistics represent the entire province, 
but RF does not as part of the province falls outside the study area.  
 

  Aquaculture Forest Dry-season rice 

  
1996 2006 2009 2009 1996 2006 2009 

  
RF GSO RF GSO RF GSO RF GSO RF GSO RF GSO RF GSO 

C
o

as
ta

l 
p

ro
vi

n
ce

s Ben Tre 341 247 467 410 480 420 40 38 221 218 359 207 331 211 

Tra Vinh 251 250 456 413 397 340 18 72 346 391 468 528 359 561 

Soc Trang*  152 241 293 643 541 692 82 105 385 614 737 1397 1031 1386 

Long An* 107 25 140 116 165 90 352 465 1325 1816 1511 2345 998 2490 

In
la

n
d

  
p

ro
vi

n
ce

s 

Hau Giang -  - 0 74 1 62 29 25 -   - 783 842 852 823 

Tien Giang 30 92 59 124 75 126 144 88 798 877 872 839 829 827 

Vinh Long 2 11 4 23 7 25 3  - 709 738 481 697 720 676 

Can Tho* 0 105 5 136 3 131 4  - 1429 1636 769 930 606 901 

Dong Thap* 1 12 5 45 14 50 36 84 1788 1893 1723 2056 1331 2072 
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4.2. Relation land subsidence and land use 
 
Land-subsidence rate per land-use class 
 
At first, the subsidence rate per LU class was determined. Hereto, all InSAR-based land-subsidence 
rates for areas with a constant LU over the period 1988-2006/2009 were used (Figure 15, Figure 16 
and Appendix 10 (Table 32)). All LU classes subside on average: on average net accumulation 
occurred for none of the classes. Though, almost all LU classes have a part of their lower whisker in 
the net accumulation zone (Figure 16). Most LU classes have a rate of about 1.3 or 1.4 cm/yr. ‘Urban 
dense’ has the highest mean subsidence rate: about 2.0 cm/yr. This class is followed by ‘mixed crops 
– non-rice’ and ‘urban open’ with about 1.8 cm/yr. The lowest mean subsidence rates are observed 
for wasteland/marsh (0.6 cm/yr), melaleuca forest (0.7 cm/yr) and dry-season crop – mainly rice (0.8 
cm/yr). 

If only the Tra Vinh tile is used for the same analysis, the patterns in relative subsidence rates 
between LU classes are similar (Figure 15, Appendix 10). The main differences are: 1) higher absolute 
subsidence rates for all LU classes except mangrove, 2) a higher relative subsidence rate for urban 
linear features (similar to bare field in dry season), and 3) the absence of melaleuca forest and 
wasteland/marsh.  

 

  

Figure 15  Mean InSAR-based land-subsidence rates for the period 2006-2010 per land-use (LU) class for all pixels where 
the LU was constant between 1988 and 2009. Arrows represent the land-subsidence rates for the entire area (all tiles, with 
value), while the crosses represent the rates for the Tra Vinh tile only. For the Tra Vinh tile, melaleuca forest and 
wasteland/marsh are absent. n = number of points used for calculating the mean.  

Aquaculture       Agriculture                  Forest              Urban           Other 
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The ranges of land-subsidence rates per LU class overlap, irrespective of the tile(s) used for the 
analysis (Figure 16, Appendix 10). The variation within each class is large: the coefficient of variation 
varies between 0.2 and 0.7 and the standard deviation is on average about 0.6 cm/yr. The median 
and mean subsidence rate of all LU classes are compared to all other classes: the 66 class 
combinations in the entire area are tested on their significance. The same is performed for the 45 
combinations in the Tra Vinh tile. A class combination is for example the rate of aquaculture 
compared to that of mangrove. The significance of the differences in the median subsidence rate are 
based on the boxplot notches; the significance of the differences in the mean are based on one-way 
ANOVA and subsequent multiple comparison. Most combinations are significantly different at the 
95% confidence level (Figure 23 in Appendix 10). This is partly related to the large group sizes. The 
median of 63 LU class combinations (i.e. 95%) for all tiles are significantly different. For the Tra Vinh 
tile only, this applied to 41 combinations (i.e. 91%). One-way ANOVA convincingly indicated that at 
least one combination was significantly different (for respectively all InSAR tiles and the Tra Vinh tile 
F(11,562360) = 10455, p = 0 and F(9,112905) = 1043, p = 0). Comparably to the medians, the mean of 
64 class combinations (i.e. 97%) for all tiles are significantly different. For the Tra Vinh tile only, this 
applied to 40 combinations (i.e. 89%).  

In this study, all class combinations with differences of more than a mm/year are significantly 
different based on both analyses for both extents (Figure 23 in Appendix 10). The only exception is 
urban open – urban dense in the Tra Vinh tile; two classes with relatively few points for analysis. 
Other combinations which could not be proven to be significantly different are combinations 
between mangrove, orchard, partly dry-season crop and bare field in dry season, and the 
combination urban open and mixed crops – non-rice. In some other cases, the outcome of both 
statistical analyses vary.  

Overall, all classes combinations with a difference in subsidence rates that actually has a 
physically relevance (i.e. a difference of several mm/yr) are significantly different.  
  

Aquaculture          Agriculture                           Forest                    Urban                Other 

Figure 16  Notched boxplots of the land-subsidence rates for the period 2006-2010 per land-use (LU) class based on all 
points in all tiles for which the LU did not change between 1988 and 2006/2009. Outliers are not shown and whiskers 
extend up to maximal 1.5 times the interquartile range (IQR). n = number of points in the class. 
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Impact of past land-use changes on subsidence rates 
 
The average land-subsidence rate for areas with different LU histories based on all InSAR-tiles are 
shown in Figure 17 (and Table 33 in Appendix 11). This is used to determine whether past changes in 
LU affects subsidence rates. The results of the same analysis for the Tra Vinh tile are shown in 
Appendix 11.1. Almost all differences between the average subsidence rates of a certain LU change 
at different moments in time are significant at the 95% confidence level (Table 33 in Appendix 11). 
Exceptions which do not show a significant difference based on all tiles are 1) the conversion from 
wasteland to dry-season rice and 2) the conversion of mangrove to aquaculture between two 
periods.  

For most LU changes, a trend is visible (Figure 17). The average subsidence rate gradually 
changes from the average subsidence rate corresponding to the first LU (as shown in Figure 15) to 
the rate corresponding to the second LU as function of the moment of change. These trends are 
similar for the analysis based on all tiles together as based on the Tra Vinh tile only. No logical trend 
can be distinguished for the conversion from mangrove to aquaculture (Figure 17). This may partly be 
related to the small difference in average subsidence rates for mangrove and aquaculture in case of 
no change. For urbanization, the average subsidence rate generally is higher for areas where the 
urban LU class has already been present for a longer time. For the intensification of and change to 
agriculture, the trend is even clearer. For areas where wasteland is converted into agricultural land, 
the average subsidence rate is higher if the conversion took place earlier (Figure 17). The opposite is 
observed for the conversion from bare field in dry season to dry-season crop. This is because the 
average subsidence rate for bare field in no change areas is higher than for the dry-season crop class. 
For the change to orchards there is a clear increase in average subsidence rate if the conversion from 
wasteland or dry-season crop to orchard took place earlier. 

 
 

 
 
  

  

Figure 17  Impact of past land use (LU) changes on the mean land-subsidence rate for the period 2006-2010 based on all 
tiles. The first arrow corresponds to the area with no change in the first LU class, the second to the area with the first LU 
class in 1988 until 1996 and the second LU class in 2006/2009, the third to the area with the first LU class in 1988 and the 
second LU class in 1996 until 2006/2009 and the last to the area with no change in the second LU class. Note that the 
changes to orchards are the least important in the VMD over the past decades. n = number of points on which the average is 
based. The transparent arrow is based on less than 100 data points and is thus less representative. For values and 
significance of differences between arrows: see Table 33 in Appendix 9. Full LU class names of the acronyms in the LU 
changes: see Table 4. 
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4.3. Prediction of land subsidence based on land use 
 
The previous section showed that there is a relation between LU and land subsidence. Here, the LU 
change maps for the period 1988-2009 were used to predict land subsidence rates for the period 
2006-2010. 
 
 
Prediction based on all land-use change periods 
 
At least 17% of the total variance in the observed InSAR-based subsidence rates can be explained by 
the random forest prediction when all four periods of LU change were used to train the random 
forest for all tiles together. If the random forest is trained for the Tra Vinh tile only, this percentage is 
lower: 13% (Table 9). This coefficient of determination (𝑟2) of 17% and 13% is similar for the internal 
and external validation, and similar for different random samples used in the training phase of the 
random forest (Table 9). 𝑟2 increases with increasingly more data used to train the random forest.  

The difference between the observed and predicted subsidence rates is relatively large (Figure 
18). The root mean squared deviation (RMSD) between observed and predicted rates based on the 
separate validation is consistently 0.56 cm/yr for the prediction based on all tiles as well as for the 
prediction using the Tra Vinh tile (Table 9). In contrast to the normally-distributed observed 
subsidence rates, the predicted subsidence rates are bimodal distributed. Both peaks can be related 
to the dominant LU history. For the predictions for all tiles, the peak around 0.80 cm/yr corresponds 
to the large area of rice fields, the second peak around 1.35 cm/yr corresponds to the orchards. For 
the predictions for Tra Vinh, the peak at about 1.55 cm/yr and 1.25 cm/yr correspond to respectively 
orchards and aquaculture. Besides, the range in predicted subsidence rates is smaller than the range 
in observed subsidence rates, and the predicted values are discontinuous (Figure 18).  

In sum, predictions can be considered quite acceptable, even though the 𝑟2 seems low and the 
RMSD high. This is, because approaching an 𝑟2 of 1 is unrealistic due to the variation in subsidence 
rates within each LU class. Moreover, only LU history is used to predict the subsidence rate, while 
many other factors will also play a role.  

 
Table 9 Evaluation of predicted land subsidence for the period 2006-2010 for all tiles together and the Tra Vinh tile with 
random forest (RF) regression using all four land-use change maps (’88-’96, ’88-’06, ’96-’06 and ‘06(-’09)). Different runs 
are based on different random samples (different seeds). RMSD = root mean squared deviation between observed and 

predicted land-subsidence rate. 𝒓𝑶𝑶𝑩
𝟐  and 𝒓𝒗𝒂𝒍

𝟐   = coefficient of determination/proportion of variance in observed values 
explained by predicted values of respectively the out-of-bag (OOB) samples in the random forest itself and the separate 
validation dataset. 𝑼𝒃𝒊𝒂𝒔, 𝑼𝒔𝒍𝒐𝒑𝒆 and 𝑼𝒆 are Theil’s partial inequality coefficients related to respectively a bias, the degree 

of consistency and unexplained variation. All values except for 𝒓𝑶𝑶𝑩
𝟐  are based on the external/separate validation. 

 

Tiles used Run 
RMSD    

(cm/yr) 
𝒓𝑶𝑶𝑩

𝟐  𝒓𝒗𝒂𝒍
𝟐  

Linear regression  
𝑼𝒃𝒊𝒂𝒔 𝑼𝒔𝒍𝒐𝒑𝒆 𝑼𝒆 

    Slope Intercept  

All 

1 0.56 0.176 0.174 0.99 0.01 1.7∙10-5 4.0∙10-5 1.0 
2 0.56 0.174 0.174 0.99 0.01 4.3∙10-6 1.6∙10-5 1.0 
3 0.56 0.174 0.174 1.00 0.01 4.3∙10-5 3.1∙10-6 1.0 
4 0.56 0.173 0.174 0.98 0.02 7.6∙10-7 5.6∙10-5 1.0 
5 0.56 0.172 0.174 0.99 0.01 1.0∙10-5 1.2∙10-5 1.0 

Mean 0.56 0.174 0.174 0.99 0.01 1.5∙10-5 2.5∙10-5 1.0 

Tra Vinh  

6 0.56 0.130 0.128 0.98 0.02 2.1∙10-5 4.8∙10-5 1.0 
7 0.56 0.126 0.129 1.00 0.01 3.7∙10-5 3.0∙10-7 1.0 
8 0.56 0.131 0.127 0.97 0.04 1.3∙10-6 1.5∙10-4 1.0 
9 0.56 0.129 0.128 0.98 0.04 1.1∙10-6 9.3∙10-5 1.0 

10 0.56 0.130 0.127 0.98 0.03 1.6∙10-5 7.4∙10-5 1.0 
Mean 0.56 0.129 0.128 0.98 0.03 1.5∙10-5 7.2∙10-5 1.0 
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The random forest prediction is consistent and has no clear model bias. This can be derived from the 
fact that the linear regression line of the observed against the predicted land-subsidence rates is very 
close to the ideal 1:1 line (slope ≈ 1 and intercept ≈ 0). This applies to the predictions for all tiles 
together as well as for the Tra Vinh tile only (Figure 18, Table 9). Additionally, the consistency and 
absence of a bias is confirmed by Theil’s partial inequality coefficients. The proportion of variance in 
the predicted values which are due to a bias and inconsistency are about zero and the unexplained 
error proportion is one (Table 9). The unexplained error can be related to the quality and type of 
input data as well as the type of model.  
 

 

  

Figure 18  Density scatter plot and linear regression of observed InSAR-based land-subsidence rates versus predicted land-
subsidence rates for the period 2006-2010 for A) all tiles (run 1 in Table 9) and B) the Tra Vinh tile (run 6 in Table 9). 
Predictions are based on all LU change periods. The regression equation is A) obs = 0.99 × pred + 0.01 and B) obs = 0.98 × 
pred + 0.02. The regression lines are very close to the ideal 1:1 line (slope = 1, intercept = 0). Other runs closely resemble 
these graphs. Note the different scales of the axes. 

Legend 

A) All tiles, run 1 

B) Tra Vinh tile, run 6 
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If the predicted land-subsidence rates for the separate validation points are visualized spatially, the 
LU patterns of the multiple LU maps are clear (Figure 19). The relative differences in subsidence rates 
over the VMD are largely similar to the original subsidence dataset. The main difference is that the 
values show less variation in space and range. The speckled pattern of the original dataset – which is 
related to actual local variation in subsidence as well as inaccuracies in the dataset – is removed. In 
the cases based on all tiles together, the offsets between the tiles are almost entirely absent. This is 
because the LU change classes used to predict the subsidence rate do not follow the tile borders. All 
these characteristics apply to all runs based on all tiles as well as based on the Tra Vinh tile only. 
Overall, this confirms that the predictions can be considered quite acceptable.  

 
 

The two random forest importance measures are used to determine which LU change map has been 
structurally more important to create the random forest. This can indicate that that LU map has the 
strongest relation to the subsidence rates. In all cases except one, the LU map of 2006 – which 
represents the period 2006-2009 – was the least important for the predictions (Table 35 and Table 36 
in Appendix 12). This can be derived from both importance measures for the predictions for all tiles 
as well as for the Tra Vinh tile only. However, this does not directly indicate that this period is least 
important to explain the subsidence rates, because this map has less variables – classes – to describe 
the same variation in the data. The map representing the entire area for the period 2006-2009 has 
only 11 LU change classes versus 53 LU change classes for the prior periods. For the extent of the Tra 
Vinh tile, this is even a class less. The other LU maps all have 53 classes which are used and can easier 
be compared to each other.  

The relative importance of the different periods slightly varies between the cases with different 
random samples used for the training of the random forest (Table 35 and Table 36 in Appendix 12). 
Besides, the two importance measures do not give the same importance ranks. At last, the ranks 
differ between the predictions for all tiles and the Tra Vinh tile only. Hence, no single LU period 
appears to be significantly more important than the others. 
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Figure 19  Map of predicted land-subsidence rates (A, C) and observed InSAR-based land-subsidence rates (B, D) for the 
period 2006-2010 based on all tiles (above) and based on the Tra Vinh tile (below). Only predicted values for validation 
points based on run 1 (all tiles) and run 6 (Tra Vinh tile) (Table 9) are shown. White no-data spaces correspond to 1) no-
data areas in the input InSAR-based dataset, 2) no-data in the land-use (LU) change maps (cloud and water mask), and 3) 
for the prediction values also the LU change classes which could not be incorporated in the RF due to limitations in number 
of input classes. 
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Prediction based on a single land-use change period 
 
The same analyses as in the previous section were performed using only a single LU change period as 
input for the random forest. For both the Tra Vinh tile as all tiles together, the RMSD is slightly larger 
than if all LU periods are being used. The variation in the predicted values tends to explain the linear 
variation in the observed values less well: 10 to 12% versus 13% for the Tra Vinh area, and 12 to 17% 
versus 17% for the entire area (Table 10). For both areas, the LU for the period 1996-2006 tends to 
give the best results, and 2006(-2009) the least. The latter is in line with the lower importance of this 
map for the predictions based on all LU change maps together. Again, this is partly related to the 
lower number of classes in this map which were used to predict the subsidence rate.  

The other characteristics of all predictions are similar to the cases in which all LU change periods 
were used. For example, 𝑟2 is similar if internally and externally calculated, and if different random 
samples are used. Moreover, the prediction is consistent without a significant model bias (Table 10). 
The spatial patterns are also very similar. The largest differences are observed for the case in which 
only the 2006 LU map is used, which is in line with the lower 𝑟2 and RMSD. 

So, overall, the prediction of land-subsidence rates based on LU improves if multiple periods are 
taken into account. LU during the decade prior to the prediction period seems to be slightly more 
important than the decade before. 
 
Table 10 Results of prediction land subsidence for all tiles and the Tra Vinh tile with random forest (RF) regression using 

different single land-use (LU) change maps (’88-’96, ’88-’06, ’96-’06 and ‘06(-’09)). OOB = out-of-bag sample, 𝒓𝟐 = 
coefficient of determination/proportion of variance in observed values explained by predicted values, RMSD = root mean 

squared deviation. All values except 𝒓𝑶𝑶𝑩
𝟐  correspond to the separate validation. Multiple runs per LU period are based on  

different random samples for the RF.  

 

Tile used 
LU 

period 
Run 

RMSD    
(cm/yr) 

𝒓𝑶𝑶𝑩
𝟐  𝒓𝒗𝒂𝒍

𝟐  
Linear regression  

𝑼𝒃𝒊𝒂𝒔 𝑼𝒔𝒍𝒐𝒑𝒆 𝑼𝒆 
   Slope Intercept  

All 

’88-’96 11 0.56 0.159 0.159 0.99 0.00 2.1∙10-5 7.7∙10-7 1.0 
’88-’06 12 0.57 0.152 0.149 0.98 0.01 2.5∙10-5 4.6∙10-5 1.0 
’96-’06 13 0.56 0.167 0.167 0.98 0.01 3.0∙10-5 6.2∙10-5 1.0 

‘06(-’09) 14 0.58 0.127 0.123 1.04 -0.04 2.7∙10-5 1.9∙10-4 1.0 

Tra Vinh 

’88-’96 

15 0.57 0.109 0.109 0.99 0.01 1.9∙10-5 5.1∙10-6 1.0 
16 0.57 0.107 0.109 1.00 0.00 2.5∙10-5 1.3∙10-6 1.0 
17 0.57 0.106 0.109 1.00 0.00 3.8∙10-7 2.6∙10-6 1.0 

Mean 0.57 0.107 0.109 1.00 0.00 1.5∙10-5 3.0∙10-6 1.0 

’88-’06 

18 0.57 0.122 0.119 0.98 0.03 1.8∙10-5 5.7∙10-5 1.0 
19 0.57 0.117 0.120 1.01 -0.01 4.9∙10-5 1.5∙10-5 1.0 
20 0.57 0.120 0.119 0.98 0.03 6.7∙10-6 6.1∙10-5 1.0 

Mean 0.57 0.119 0.119 0.99 0.01 2.5∙10-5 4.4∙10-5 1.0 

’96-’06 

21 0.57 0.122 0.120 0.98 0.02 2.0∙10-5 3.5∙10-5 1.0 
22 0.57 0.119 0.121 1.01 0.00 4.2∙10-5 5.6∙10-6 1.0 
23 0.57 0.120 0.120 0.99 0.02 2.4∙10-7 2.3∙10-5 1.0 

Mean 0.57 0.120 0.120 0.99 0.01 2.1∙10-5 2.1∙10-5 1.0 

‘06(-’09) 
24 0.57 0.101 0.099 1.04 -0.06 2.0∙10-5 1.4∙10-4 1.0 
25 0.57 0.099 0.099 1.05 -0.07 6.1∙10-5 2.5∙10-4 1.0 
26 0.57 0.099 0.099 1.05 -0.07 4.1∙10-6 2.6∙10-4 1.0 

 Mean 0.57 0.100 0.099 1.05 -0.07 2.8∙10-5 2.2∙10-4 1.0 
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5. Discussion 
 

5.1. Land-use classification 
 
A new, consequent and consistent LU map series for the period of the reference subsidence data 
(2006-2010) and the two decades before was created at delta scale. Below, the trends are compared 
with the trends in the literature. Afterwards, the accuracy, method performance and consequences 
for coupling to land subsidence are discussed. 
 
 
Trends in land use: comparison with literature 
 
In general, the maps showed similar spatial and temporal patterns as described in the literature 
review: urbanization and change to or intensification of agriculture and aquaculture at the expense 
of wasteland/marsh and mangroves (e.g. Sakamoto et al., 2009a; Tran et al., 2015).  

The timing of the main reduction in wasteland between 1988 and 1996 coincides with the 
economic and political reforms causing the reduction (Funkenberg et al., 2014). The corresponding 
expansion of dry-season rice is in accordance with the results of for example Nguyen-Thanh et al. 
(2014) and Binh et al. (2005). The strongest increase in aquaculture in the coastal area at the expense 
of agriculture and especially mangrove is observed between 1996 and 2006. This is in line with Karila 
et al. (2014), Sakamoto et al. (2009b), Tran et al. (2015) and Binh et al. (2005). The steady increase in 
urban areas along channels, dikes and roads as well as in villages observed in the new LU maps 
corresponds with the findings of e.g. Binh et al. (2005) and Tran et al. (2015). 

The trend of mangrove being converted to aquaculture is in correspondence with literature (e.g. 
Tran et al., 2015). On the other hand, the conversion of fresh-water, melaleuca forest (and 
mangrove) to rice fields up to the end of the 2000’s (e.g. the remote sensing studies of Nguyen et al., 
2011; Thu, 2006) is not observed. The new LU maps show the opposite: an increase in melaleuca 
forest between 1988 and 2006. Maybe, the reference studies count parts of the wasteland as forest.  

A limited number of studies discuss trends in orchards in the VMD. Hence, the expansion of 
orchards along the main river branches and the expansion and subsequent decrease in the 
southwestern part of the study area could not be confirmed. In general, the total area of orchards is 
structurally larger than the area published by Nesbitt (2005). 

The spatial patterns in the number of rice crops a year as found by Nguyen-Thanh et al. (2014) 
and Sakamoto et al. (2009a) are compared with the spatial pattern of the ‘mainly rice’ classes in this 
study. The extent of ‘dry-season crop’ class largely agrees with the extent of the irrigated triple and 
double rice cropping areas with a dry-season crop. The extent of ‘bare field in dry-season’ largely 
agrees with the extent of rain-fed double rice cropping and single rice cropping. This relation can be 
used for comparison with trends found in the literature. This way, the first trend in the intensification 
of agriculture in especially the upstream part – from single cropping to irrigated double cropping with 
a dry-season crop – can be confirmed. On the other hand, the last trend in the intensification of 
agriculture – from irrigated double to triple rice cropping in especially the upstream part of the delta 
(Nguyen-Thanh et al., 2014; Sakamoto et al., 2009a) – could not clearly be observed in our LU maps. 
 

Performance of the classification method 
 
The accuracy based on the validation segments areas is relatively high compared to other studies and 
considering the number of classes: the overall accuracy is respectively 77%, 94%, 92% and 89% for 
the LU map of 1988, 1996, 2006 and 2009, with a 𝜅 coefficient 0.74, 0.93, 0.90 and 0.88. These values 
give an indication of the highest possible overall accuracy of the LU maps, as they are not corrected 
for the number of training and validation samples which could not be assigned to a class. Comparison 
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of the provincial areal statistics of the general statistics office (GSO) about agriculture, forest and dry-
season rice showed that the aquaculture area in the coastal areas is slightly higher and in inland 
areas lower in the new maps. No consistent biases are found for the forest and dry-season rice areas. 

In comparison, Son & Tu (2008) also used a Landsat ETM+ image to classify LU in a much smaller 
area just outside our study area. They applied a pixel-based maximum likelihood classification. This 
classification resulted in an overall accuracy similar to our classification of 91% and a slightly lower 𝜅 
coefficient of 0.81 for the 11 classes based on reference pixels. However, their classification often 
confused water and shrimp farms. This confusion is limited in our study due to the object-based 
approach which makes discrimination based on the characteristic shape of the classes possible. 
Confusions which are similar in the study of Son & Tu (2008) are between winter rice, urban area and 
mixed forest due to low vegetation cover. Another study for comparison is that of Karila et al. (2014). 
In this study, a pixel-based unsupervised ISODATA LU classification is applied to Landsat images of 
the coastal part of the VMD. They also encountered the limitations of the persistent cloud cover and 
using a single image to classify LU representative for a longer period. As a result, they could only 
discriminate four LU classes. The extent of aquaculture in the LU maps is very wide, speckled and 
much further inland than expected: the LU maps of our study seem to be more reliable. A last study 
for comparison is that of Huth et al. (2012). They did not use Landsat images, but they did use a 
method similar to our study to classify LU in the VMD. They performed a hybrid, decision tree (C5.0 
algorithm) classification method called TWOPAC. The object-based classification with 17 spectral 
classes (combined to 14 LU classes) of the central part of the VMD based on a high, 6.5 m spatial 
resolution Rapid Eye mosaic of 2011 resulted in a high overall accuracy of 93.7% and a 𝜅 coefficient 
of 0.93 based on the validation objects. The producer’s and user’s accuracy is at least 67% for all 
classes, which is higher than our classification. It is not clear whether these values correspond to the 
number of correctly classified objects, or the respective area. Just like in our study, class confusions 
are mostly related to strong spectral resemblances between classes. 

The random forest algorithm gave accurate results. A main advantage of this method is that the 
algorithm itself determines the optimal segment variable thresholds to identify all classes. Moreover, 
once the right parameter settings have been determined, the training and application of the random 
forest classification are quick. On the other hand, a disadvantage is that the training dataset has to 
be manually created for each image. At last, the entire image is classified at once, so features related 
to the proximity of certain classes cannot be used as input segment variables. This can be used if a 
ruleset is being developed manually and the image is classified step by step.  
 
 
Land-use classifications in relation to land subsidence 
 
The purpose of the created LU maps is to couple LU to land subsidence. A few points should be taken 
into account for this coupling.  

At first, the LU classes which have been chosen determine in part the success of this coupling. 
Classification inaccuracies could blur the expected relation between the chosen LU classes and land 
subsidence. For example, satellite images reveal land cover and conversion to LU requires 
interpretation which is not always straight forward. Therefore, the classes with low classification 
accuracies were excluded from the analyses to prevent error propagation. Moreover, limitations in 
reference data for especially 1988 and 1996 and available ‘cloud-free’ images required some 
concessions. For example, the lack of multiple images per year limits the discrimination of the exact 
rice cropping system and combined LU classes such as aquaculture in the dry season and rice-
cropping in the summer. Even so, these classes may have different links to subsidence.  

Secondly, the LU map of 2006 is taken as representative for the period 2006-2009, but 43% of 
the area seemed to have changed in this period. Nevertheless, this is the smallest area of change of 
all periods, and a part of the changes will be related to inaccuracies in especially the LU map of 2009. 
Not taking these apparent LU changes into account could have induced uncertainties in the coupling 
to land subsidence. Even so, these uncertainties are expected to be less significant than the 
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consequences of the data loss if the LU map of 2009 with its large data gaps due to clouds was 
included.  

Thirdly, the LU can change quickly, especially within the agricultural classes, while this study uses 
only one image as representative for multiple years. Related uncertainties can be excluded by 
creating additional LU maps to decrease the temporal interval.  

Lastly, actual boundaries between areas with a different LU are generally not as sharp as in the 
LU maps, especially because the maps are classified at delta scale. In other words: the maps 
represent the dominant LU; so a few fields with a different crop in between rice fields are for 
example not distinguished. On the other hand, the InSAR-based subsidence rates are given in a 67 x 
67 m raster, but each raster value corresponds to the strongest reflecting point in the cell. These 
point values do not have to be representative for the larger scale LU to which they are coupled. Since 
many InSAR-based subsidence cells are analyzed per LU class, this issue of unrepresentative 
individual points is averaged out. It will only result in a larger spread of subsidence rates within a LU 
class. Moreover, land subsidence generally does not respect borders of LU classes, especially not if 
groundwater extraction – the dominant subsidence driver in the VMD – is taken into account:. 
 

 

5.2. InSAR-based subsidence rates 
 
In order to draw grounded conclusions on the relation between LU and subsidence, it is important to 
know the opportunities and limitations of the InSAR-based subsidence data. Erban et al. (2014, 2013) 
already pointed out some major issues (see Chapter 3.2.), but for this particular application, some 
additional points should be discussed.  

At first, using InSAR in delta areas is a large challenge, especially in deltas like the VMD with 
significant atmospheric disturbance, and large spatial and temporal variation in surface conditions 
(Erban et al., 2014). The InSAR related noise in the subsidence rates is relatively large compared to 
the subsidence rates in the VMD. In areas with less atmospheric disturbances of the radar signals or 
in areas with larger subsidence rates, this problem is expected to be smaller. For example, the very 
high subsidence rates up to 25 cm/yr related to pumping stations at aquaculture facilities in China 
(Higgins et al., 2013) suffered much less from noise.  

Secondly, a filter has been applied by Erban et al. (2014, 2013) to remove values which were 
unreliable. This filter worked fine for especially the upstream rice fields. Here, only limited values 
remained in the flooded paddies which return unreliable radar signals. Besides, many values 
remained at the dikes or levees between the paddies and buildings which return a more reliable 
signal. However, for other flooded ground surfaces – aquaculture ponds and mangroves – only a very 
limited amount of points is removed. Therefore, the subsidence rates for aquaculture and mangrove 
are expected to be very uncertain. 

Thirdly, it is theoretically very difficult or even impossible to measure net accumulation rates 
with InSAR. If the radar reflector is above the surface, accumulation will not take place and hence will 
not be measured. If the radar reflector is located at the surface, the accumulation on top of it 
changes the reflector. This inhibits reliable comparison with the next moment of radar 
measurements. However, negative subsidence rates were observed across the delta and for most LU 
classes (Figure 16). Hence, these values are probably unreliable, even though net accumulation rates 
were expected for several classes.  

Lastly, the absolute subsidence rates should be used with caution. The error estimate of 0.5 to 
1.0 cm/yr (Erban et al., 2014, 2013) is based on the local variation in the dataset itself. No validation 
based on external subsidence rates could be performed. The offsets between the tiles of the mosaic 
already indicate that the error estimate should rather be seen as a relative error estimate than an 
absolute error estimate. This is because the estimate does not account for errors in the assumptions 
to set the zero-subsidence reference. Additionally, InSAR-based subsidence rates could 
underestimate the actual values, because regional subsidence with variation at a scale larger than an 
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InSAR-tile could be missed (Minderhoud et al., 2017). Nevertheless, the analysis of relative 
differences in subsidence rates between different larger scale units – such as LU types – seems 
appropriate, especially within one InSAR tile. This is because the large scale patterns in subsidence 
rates over the tiles are consistent. Therefore, the focus will be on the relative subsidence rates 
between LU classes hereafter. 
 
 

5.3. Relation land subsidence and land use (change) 
 
Land-subsidence rate per land-use class 
 
The average land-subsidence rate per LU class based on the areas which showed a constant LU in 
1988, 1996 and 2006(/2009) are largely in line with our expectations as described in section 1.4 
about relative subsidence rates. It confirms that dense urban areas experience on average the 
highest subsidence rates, followed by open urban areas, and that wasteland/marsh experiences the 
lowest subsidence rates, followed by melaleuca forest. The actual subsidence rates for urban areas 
may even be higher than found in this study, because the rates based on the InSAR-signal correspond 
to the subsidence below the foundation depth of the reflecting urban constructions. Thus, part of the 
shallow subsidence rate may be excluded.  

Other observations contradict the expectations. At first, the relatively high absolute and relative 
average subsidence rate for mangrove (1.3 cm/yr) and relatively low subsidence rates for 
aquaculture (1.1 cm/yr) are mainly attributed to the inaccuracies in the InSAR dataset as discussed in 
the previous section (5.2).  

Three other results which deviate from the expectations are found within the agriculture 
category: 1) the low average subsidence rate for dry-season rice, 2) the relatively high rate for partly 
dry-season rice and 3) the high rate for non-rice, mixed crops. In an alluvial fan and a plain in Taiwan 
other crops (‘upland planting’) are also observed to subside more rapidly than rice fields (Liu et al., 
2010). Their explanation for the relatively low rate for rice is that during the inundated periods, 
water is recharged to the groundwater aquifer(s), raising the groundwater table and compensating 
for the extracted groundwater. The potential of paddy fields to prevent subsidence due to 
groundwater recharge is also pointed out by Wen (1995) in general. This could also partly apply to 
the VMD as long as groundwater is extracted from shallow aquifers which could be recharged by 
surface water. However, many wells currently extract water from deeper aquifers in the VMD (Erban 
et al., 2013). Miyaji et al. (1995) also observed higher subsidence rates for upland crops than for 
paddies in peatlands in Bibai in central Hokkaido in Japan; a difference of 3 cm/yr. They ascribe this 
to accelerated organic material decomposition to mixing of the sublayer peat with the mineral top 
soil by deeper plowing and to a larger lowering of the groundwater table. Less peat is present in the 
VMD, but this may still play a role. Oxidation of organic matter, ripening of clay and compaction are 
limited for the inundated rice fields. A last option is that groundwater extractions are less 
pronounced in irrigated rice cropping areas than expected in advance due to a well-functioning 
irrigation network which supplies river water.  

The subsidence rate for partly dry-season crop – mainly rice was expected to be in between bare 
field in dry season and dry-season crops – mainly rice, as this class is defined as an alternation of 
fields of those classes. This is probably an example of a significant (small) difference which is still 
inaccurate as a result of InSAR and/or classification inaccuracies. 

The high average subsidence rate of mixed crops could partly be related to a factor which is not 
incorporated in the hypothesis: the subsurface composition or sedimentary environment favored by 
the different LU classes. The largest part of the delta has a fine-grained subsurface, but close to the 
coast, sandy dune ridges of a few meter thick are present (Nguyen et al., 2000). These ridges are 
favored to place buildings due to their higher elevation. They are also used to grow mixed, non-rice 
crops. The dune ridges themselves will not compact, but potentially the underlying fine grained 
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sediments do so because of the continuous pressure of the sand body and the additional pressure of 
the recently constructed buildings.  

The average subsidence rate for orchards is higher than expected compared to the agricultural 
classes. It remains unclear whether this is related to actual subsidence processes, or to uncertainties 
in the mean subsidence rate. These uncertainties can be related to e.g. classification confusion 
between orchard and agricultural classes, or disturbed radar signals as a consequence of the high and 
dense vegetation.  

The average subsidence rate for urban linear features – roads, dikes and direct surroundings – is 
considerably lower than the other urban classes. A large part of the network of urban linear features 
with higher subsidence rates was built after 1988 and hence is not incorporated in the analysis based 
on constant LU over all years. The areas which are included mainly consist of dikes with some roads 
between rice fields in the upstream part of the delta with low subsidence rates. 
 
The above comparison of the observed subsidence rate per LU class  with the expected rates is based 
on the average subsidence rate per LU class. The results showed that the within-class variation is 
relatively large and overlaps between classes. So, if the average of a LU class is significantly different 
from another class, a certain small area of those classes can still have the same subsidence rate. The 
within-class variation can be related to InSAR-noise and actual (local) variation. Actual (local) 
variation can be a consequence of unequally distributed subsidence due to processes which could 
still relate to LU (e.g. radial decrease in rates away from pumping wells for irrigation). It can also be 
related to external factors such as (local) variations in subsurface composition. 
 
The relative differences between the average subsidence rates of multiple LU classes were used to 
get an indication of the impact of LU changes. For example, reclamation or exploitation of 
wasteland/marshes and urbanization are expected to result in most cases in a significantly higher 
subsidence rate. Hereto, it is assumed that a causal relationship between LU and subsidence exists 
and dominates. However, whether the relationship is causal cannot be concluded from this data-
mining study. Besides, it does not have to be the case in all situations. For example, if mixed crops – 
non-rice is converted to another class, the effects are expected to be limited, because the high 
subsidence rate for this class is probably dominated by the sedimentary setting which remains 
unchanged. In addition, if there exists a causal relation between LU and subsidence, larger scale 
subsidence processes related to e.g. deep groundwater extraction do not suddenly stop at 
boundaries of LU classes. This blurs differences between classes.  

Altogether, two main LU change trends observed in the VMD – urbanization and change to 
orchards – have resulted and will most probably on average result in a higher subsidence rate, while 
intensification of agriculture is on average related to a lower subsidence rate. For the main trend of 
the expansion of aquaculture at the expense of mangrove no conclusions can be drawn due to 
unreliable subsidence rates. 
 
 
Impact of past land-use changes on subsidence rates 
 
Next to determining the expected effect of changing LU on the subsidence rate based on the average 
rate per LU class, the impact of past LU changes has been assessed. This was used to determine 
whether time-dependent effects related to previous LU types influence the subsidence rates.  

For all trends related to urbanization, change to and intensification of agriculture and change to 
orchards, the results suggest that the longer the ‘final’ LU class has been present, the higher the 
subsidence rate gets (or the lower for the conversion from bare field in the dry season to dry-season 
rice). The trends for the change from mangrove to aquaculture was unclear. This is in line with the 
conclusion that the subsidence rates for these classes are not reliable. Four of the analyzed trends 
were a conversion from wasteland/marsh to another class. The subsidence rates were lower for 
areas which had the longest period of wasteland between 1988 and 2006/2009. In 2006/2009 almost 
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no wasteland was left. Hence, at present, the only impact of wasteland can be that subsidence rates 
are lower in areas that were recently reclaimed compared to areas which were reclaimed longer ago. 

Based on these results, it can be confirmed that the LU situation before 2006 has an important 
impact on the subsidence rates for the period 2006-2010. Thus, time lag effects and gradual changes 
in subsidence rates over time do play a role. The current study could not discriminate between the 
different time and time-lag effects. So, in general, providing an average subsidence rate for a LU class 
is only appropriate if past LU changes are taken into account. 

The trends suggest that it takes at least about two decades before the subsidence rate depends 
only on the current LU. Otherwise, the mean subsidence rate for the areas with a certain LU change 
between 1988 and 1996 would be similar to the case with no change in the second class. For all clear 
trends, it seems that this takes at least two decades. However, it was expected that this period varied 
between different LU histories, because different LU histories are related to different processes that 
play a role at different time scales. The choice of the time intervals used may have influenced the 
apparent past LU period that influences the subsidence rate.  

For the above conclusions based on the trends, two assumptions were indirectly made: 1) the 
subsidence processes and drivers that determine the relation between LU and land subsidence 
remain constant over time, and 2) no external factors play a role. The first assumption is not entirely 
valid, because in reality, LU practices change over time. This is for example a consequence of 
advances in technology. Herewith, the subsidence rate may also change. The second assumption may 
also be partly violated. Each mean subsidence rate per LU history is based on the data points 
corresponding to that specific LU history. These points correspond to different areas. Hence, 
differences in subsidence rates for the areas with a different LU history could also be related to other 
factors that result in spatial variation in land subsidence. However, these disturbing factors seem to 
have limited impact, because they cannot explain the clear trends in Figure 17. Moreover, the trends 
are very similar if only the Tra Vinh tile is used for the analysis. This also means that the offsets 
between the tiles do not influence the trends. So, the second assumption seems valid. 

 
 

5.4. Predicting land subsidence based on land use 
 
Quality of the predictions 
 
The random forest regression algorithm showed to be a promising predictor of subsidence rates 
based on LU history. The model behaved consistent and without bias for all cases. Spatial patterns in 
the predicted subsidence rates agreed well with the observed rates. More than one sixth (> 17%) of 
the variance of the observed subsidence rates could be explained with the predicted rates. This 
applies to the predictions which used all four LU change periods for the entire area. The explained 
variance is relatively high for predictions based on LU history alone: a much higher 𝑟2 was not 
expected due to the variation observed within the LU classes. In general, the unexplained variance is 
related to factors such as the type and quality of the input data and the type of model. Overall, the 
results confirm that there is a relation between LU history and subsidence, but that this relation is 
not sufficient to predict the entire subsidence signal. Other factors than LU are also important to 
predict the subsidence rates.  

The root mean squared deviation (RMSD) was about 0.6 cm/yr and falls within the error range of 
the InSAR-based subsidence rates. The predictions for the Tra Vinh tile only could explain less of the 
variance compared to the predictions for the entire area: at least 12%. Apparently, the advantages 
related to e.g. better representation of all LU classes outweighs the disadvantage of having offsets 
between the tiles.  

At last, the range for the predicted values is smaller than that of the observed values, and the 
predicted subsidence rates are discontinuous. This is partly expected based on the way the random 
forest applies a regression. Each end node in a regression decision tree represents the average of the 
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training points which ended up in the node. This evens out the predicted subsidence rates. However, 
if the final value assigned to a point is based on the average of all trees, a more continuous outcome 
is expected than observed.  
 
 
Importance of including past land use  
 
Similar to the conclusion in section 5.3, the predictions confirm that past LU is important for 
subsidence rates. Delayed (time lag effects) and slow responses (time effects) of subsidence to LU 
changes are important. This is based on the fact that the explained variance (𝑟2) is larger if all LU 
change periods are used rather than one of these periods only. However, the improvement of the 
RMSD is minimal. Note that if past LU is very important for the subsidence rates, the improvement in 
𝑟2 and RMSD is still expected to be limited. This is because a large part each LU change map is similar 
to the other maps. The predictions for the points corresponding to these areas are not expected to 
improve, which will dampen the effect of the improvement for areas which changed.  
 
It is difficult to say whether a certain period has most influence on the subsidence rates and if yes, 
which one. The most recent period was expected to be most important if time-lag effects are 
unimportant or play a role on a shorter time span than the LU change periods. This seems to be the 
case: the predictions based on the period 1996-2006 resulted in the highest 𝑟2 and lowest RMSD. So, 
this period seems to have has the strongest relation with the subsidence rates. Though, the 
differences with the other periods are small. In addition, no conclusions could be drawn about which 
LU change period is most important for the predictions based on the random forest importance 
measures. This can partly be explained by the fact that the most important LU period varies per LU 
class, because the dominant subsidence processes and the related time scale on which they play a 
role differ per LU type. So, based on the current analyses, it cannot be determined whether one or 
more of the LU change periods can be disregarded, or whether more LU maps at a higher frequency 
and over a longer period are needed. 
 

 

5.5. Implications and suggestions for future research 
 
As confirmed by this study, the VMD underwent significant LU changes within a few decades. A large 
part of the delta was still largely uncultivated at the end of the 1980’s. Based on the mean 
subsidence rates for the different LU types in the delta, the reclamation and urbanization of the delta 
resulted in an increase in subsidence rates. The consequences of this increased subsidence rate – 
such as increased flood risk and salt water intrusion – poses the increasing population and food 
production at risk. However, the change in subsidence rate differs between different LU types.  

The current study could help in choosing LU types and areas with relatively high or unexpected 
subsidence rates on which future research should focus to determine the responsible processes. The 
irrigated rice class with lower subsidence rates than expected is an example of a LU class which 
requires further study. Focusing on the unexpected rates helps understanding the processes behind 
the observed differences in subsidence rates between the different LU types. Though groundwater 
extraction is an important driver for subsidence in the VMD, it has not to be the driving factor behind 
these differences. Hereto, at least further study on the water usage and management per LU type is 
needed. Besides, a process-based approach could help to determine the importance and timespan of 
the different time-dependent  reactions to past LU changes. This helps to determine the period of 
past LU which has to be used for the subsidence-rate predictions using the data-mining approach in 
this study. Hence, this way, research on processes and data-mining can complement each other.  

Subsequently, this information could be used by policy makers and locals to mitigate the 
consequences and to adapt. Though, the current study also showed large variation within subsidence 
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rates per LU class with overlap between classes. Hence, the differences in the mean subsidence rate 
should not directly lead to new regulations which promote or oppose certain LU types. 

Moreover, the fact that different LU types can be coupled to different subsidence rates is a 
comprehensive way to show locals their influence on the subsidence rate and especially the related 
negative consequences. Their influence seems not only to have a short-term, direct effect, but also 
long-term effects as past LU changes have their impact too. Herewith, awareness could be raised, 
which is essential to initiate successful adaptations.  
 
The number of remote sensing platforms and corresponding data on the earth surface is quickly 
growing and the quality is improving. In first instance, remote-sensing data may seem not very useful 
for subsidence research as this discipline studies the subsurface. However, InSAR and LiDAR data 
proved to be useful for subsidence research as a measurement tool. Additionally, this study showed 
that other remote-sensing derived parameters such as LU may also have value for subsidence 
research. Besides, different (remote-sensing) data sources can complement each other. Potentially, 
other remote-sensing derived parameters can be added to the list. 
 
Next to the above suggestions, further research can focus on improving of the results of the current 
study for the VMD. Moreover, it can focus on testing to which extent the random forest algorithm 
can be used in another area or for predicting future subsidence rates. These suggestions are 
elaborated in the paragraphs below. 
 
 
Improvements in coupling land-subsidence rates to land-use history 
 
The results of the coupling of subsidence rates to LU history could not easily be compared to existing 
literature, because similar studies have not been found. As pointed out by Higgins et al. (2013): 
“Subsidence rates in nonurban, near-shore areas are virtually unknown.” Some studies on specific LU 
types have been used for comparison, but large differences in other factors related to subsidence 
(e.g. subsurface composition) complicate comparison. This emphasizes the importance of doing 
additional subsidence measurements in the VMD as reference to draw more solid, generic 
conclusions. Performing similar case studies in other deltas will also contribute to this.  

In the meanwhile, the results could at first be improved by enhancement of the LU 
classifications. For example, the LU classification can be ameliorated by combining multiple images of 
one year – potentially of other remote-sensing platforms due to the limited availability of cloud free 
images – to decrease the data gaps due to clouds, especially for the map of 2009. This would also 
improve the classification of the multiple rice cropping systems and other combined LU types over 
the year. The residual class ‘partly dry-season crop’ could be substituted by a class with a more 
relevant physical meaning. The choice of relevant LU classes is essential for subsequent coupling to 
subsidence. Besides, the accuracy and reliability of the classification can be increased by manually 
increasing the number of samples for each LU class (Huth et al., 2012), because a limited amount of 
samples for training as well as validation is used in this study. At last, the frequency of the LU maps 
can be increased by using additional Landsat images with an acceptable cloud cover or images from 
other satellites. Herewith, it can be checked whether LU did not change in the decades in between. 
Herewith, the reliability will improve of the results of the mean subsidence rate per LU class and the 
trends in the mean subsidence rate for areas with a certain LU change at different moments in time.  

Secondly, the quality of the results of the current study strongly relies on the quality of the 
InSAR-based subsidence rates. The subsidence dataset may be improved by including more SAR-
images captured at other moments in time or by other satellites as the number of high-resolution 
radar satellites is increasing. This can reduce the inaccuracies of atmospheric disturbances (pers. 
com. prof. R. Hanssen). Though, adding images from later or earlier periods will be in conflict with 
the assumption of a constant land-subsidence rate over the acquisition period of all images. Perhaps, 
additional data from the same or new satellites could be used to create a more recent InSAR-based 
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subsidence dataset. Besides, the filter which removes part of the unreliable data could be adjusted to 
exclude more unreliable data. As long as a sufficient subsidence rates remain for each LU (change) 
class, the reduction of data is not expected to hinder the predictions. 
 
 
Improvement and wider applicability of the subsidence predictions 
 
The random forest is consistent and has no bias. However, LU history alone cannot predict the entire 
subsidence signal. Besides, as indicated earlier, the relation between LU and subsidence may partly 
change over time due to changes in LU practices over time. This complicates predicting (future) 
subsidence rates. Hence, a first improvement of the predictions is to use additional input variables to 
explain the remaining variation in the subsidence rates. These additional data may have 1) a direct 
link to subsidence processes, such as parameters describing the subsurface composition, 2) a semi-
direct link, such as groundwater extraction rates, distance to a pumping well, hydraulic heads and 
temporal characteristics of the groundwater table, or 3) an indirect link, such as population density. 
Thematic as well as continuous variables and even incomplete datasets could be used as input for 
the random forest algorithm. The relevance of the variables can be assessed using the importance 
output variable of the random forest algorithm. Moreover, even though the currently used InSAR-
based subsidence dataset is by far the most extensive and appropriate dataset to be used for the 
VMD, the improvements of the InSAR-based subsidence rates suggested in the previous paragraph 
could improve the predictions.  

Next to improvements related to changing the input, some technical limitations may be 
overcome. At first, a main limitation of the predictions is that the R randomForest package cannot 
handle the large amount of input samples and the large number of LU change classes I intended to 
use. The 𝑟2 improved if more points were used to train the random forest. So, probably, the 
predictions further improve if only the number of input points could be larger. Besides, using more 
classes would enable linking and combining the LU maps into less variables which describe the LU 
history. Secondly, the calculations in R require much physical memory. A possible solution to these 
problems could be to use another software package. Other users experienced that the randomForest 
package in R generally is one of the most inefficient options considering physical memory, input 
number of thematic classes and computational time. They indicate that Spark, xgboost, Python and 
H2O are potential better alternatives.   

Additionally, future research could test to which extent the random forest algorithm can be used 
in a broader context in space and time. To test the validity of extrapolation in space, the random 
forest of a single tile of the dataset used in this study can be used to predict subsidence in the 
remainder of the delta; the entire dataset can be used for the validation. Extrapolation of the 
random forest trained on the data of the VMD to another delta is not realistic, because of differences 
in dominant processes and LU classes present. Though, if a similar dataset of land subsidence and LU 
data is available or created for another delta, a similar approach can be used. Such a study could be 
used to test the generality of the trends between LU (changes) and subsidence rates. 

To test the quality of forecasting land-subsidence rates based on LU change scenarios, a second 
subsidence rate dataset of another moment in time and LU changes between the acquisition time of 
both subsidence datasets are needed. This data can be used as follows: 1. Train the random forest 
(RF) using the LU changes before the acquisition period of the first dataset, 2. Use this RF to predict 
the subsidence rates based on the LU changes before the acquisition period of the second dataset, 
and 3. Validate the results using the second subsidence dataset. Of course, variables next to LU can 
also be used in these predictions as long as they are used in both the training and application of the 
RF. If the validation results are as desired, the RF may be applied for real forecasts. 
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6. Conclusion 
 
Land use (LU) has been classified for 1988, 1996, 2006 and 2009 in the VMD to be able to couple LU 
history to the InSAR-based subsidence rates of Erban et al. (2014) for the period 2006-2010. The 
object-based random forest classification resulted in relatively high accuracies compared to previous 
LU classifications: the overall accuracies ranged between at max. 77% and 94% based on the area of 
validation samples. The following main trends are observed in the LU maps: 1) natural wasteland was 
reclaimed and turned into mainly rice fields, 2) mangroves were converted to aquaculture, 3) the 
urban area expanded: cities grew and more buildings appeared along (new) roads, channels and 
dikes, 4) agriculture intensified as the areas where a dry-season rice crop is grown expanded, and 5) 
agricultural areas changed to orchards between 1988 and 1996 along the main river branches.  

The first aim of this study was to quantify and compare land-subsidence rates for different LU 
types and LU changes. Almost all LU classes have a significantly (𝛼 = 0.05) different mean subsidence 
rate. This confirms that there is a relation between LU and land subsidence. Urban areas subsided 
strongest (mean of 2.0 cm/yr based on the entire dataset), followed by agricultural areas with other 
crops than rice (1.8 cm/yr). Wasteland, fresh-water forests and irrigated double or triple rice 
cropping fields (‘dry-season crop – mainly rice’) subsided slowest (0.6, 0.7 and 0.8 cm/yr 
respectively). The mean subsidence rate for orchards (1.4 cm/yr) was similar to rain-fed rice (‘bare 
field in dry-season’) (1.3 cm/yr). The relative differences are largely as expected based on the drivers 
loading, groundwater extraction and management of the groundwater table. The mean subsidence 
rate of aquaculture (1.1 cm/yr) and mangrove areas (1.3 cm/yr) were respectively lower and higher 
than expected. This is probably related to unreliable InSAR values for these water-rich classes. The 
mean subsidence rate of irrigated rice was lower than expected compared to for example rain-fed 
rice. This can indicate that 1) less groundwater was extracted for irrigation purposes than expected, 
and 2) the longer period of inundation resulted in groundwater recharge and significantly less 
shallow subsidence due oxidation and ripening. The rate of the non-rice crops was higher than 
expected. This seems partly related to the subsurface: this class is mainly located on top of beach 
ridges. The compactable layers below these ridges may cause the high subsidence rates as 
consequence of the strong loading. The relative subsidence rates are considered to be reliable, while 
absolute rates are not, due to inaccuracies in the InSAR-based subsidence dataset. Based on the 
relative mean subsidence differences, it can be concluded that in general reclamation, the change 
from agriculture to orchards and especially urbanization result in stronger subsidence. On the other 
hand, the intensification of agriculture may reduce subsidence rates. The overlapping within-class 
spread in subsidence rates of different LU types allows drawing general conclusions, but no 
conclusions on the impact of a case specific LU change.  

The second aim of this study was to determine the importance of time-dependent effects related 
to LU history on land-subsidence rates. It is concluded that time-dependent effects were important 
for the subsidence rates in the VMD between 2006 and 2010. Hence, land subsidence should be 
coupled to LU history rather than to current LU only. This is based on 1) the differences in mean land-
subsidence rates for unchanged areas compared to areas with a certain LU change history, and 2) the 
fact that the subsidence predictions improved if more than one LU period was used for the 
predictions. It seems that the LU between 1996 and 2006 as well as between 1988 and 1996 is 
important for the subsidence rates in 2006-2010 in the VMD, but this may depend on the chosen 
time intervals and it may differ per LU class. 

The third aim of this study was to determine to which extent LU history can predict land-
subsidence rates. Spatial patterns in the rates predicted with the random forest using two decades of 
LU history agree well with the patterns in the InSAR-based subsidence rates for the period 2006-
2010. More than one sixth (>17%) of the variance in the observed rates could be explained by the 
predictions of the entire VMD. This percentage is relatively high considering the variation in 
subsidence rates within the LU classes. This variation is related to InSAR-noise and local variation due 
to other variables which influence subsidence. The root-mean-squared deviation (RMSD) of the 
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predictions (0.6 cm/yr) is within the error range of the InSAR-based subsidence rates. Besides, the 
random forest is promising, because it has no bias and is consistent. Overall, the unexplained 
variance can be related to the quality and type of input data as well as the type of model. Although 
LU history can predict a relatively large part of the subsidence signal, more factors should be 
included to predict the entire signal.  

 
This study helps to choose LU classes with high or unexpected subsidence rates on which research on 
responsible processes should focus. This could be used by policy makers to mitigate or adapt to 
consequences. Moreover, the fact that different LU types can be coupled to different subsidence 
rates is a comprehensive way to create awareness among locals about their influence, which is 
essential for successful mitigation and adaptation. Lastly, this study also showed that optical remote-
sensing derived parameters (LU) could complement more accepted remote-sensing products (InSAR) 
in land-subsidence research. 
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A.1 

Appendix 1 Overview of pre-existing land-use/cover maps 
 

Nr. Map Title Year Extent Scale Format How created? Source Quality/Notes Thumbnail 

1 Republic of Vietnam 
Vegetation Map 

1969 Vietnam 1:1.000.000 High res. 
scan 

- National Geographic 
Service Dalat, first 
edition and printing 1969 

- few classes for VMD 

 
2 Land Utilization and 

Vegetation 
1972 Vietnam - Low res. 

scan 
- - - few classes for VMD 

 
3 Bassin Inferieur du 

Mekong – Carte de 
l‘occupation du sol 
(Lower Mekong Basin 
– Land use map) 

1972/
1973 

Vietnam 1:1.000.000 High res. 
scan 

- Committee for 
coordination of 
investigations of the 
Lower Mekong Basin, 
printed by the French 
National Geographical 
Institute. 

- few classes for VMD 

 

4 Figure 4. The land-use 
classifications from 
the Landsat imagery 

1979 
2000 

Eastern 
coast 
VMD + 
up-
stream 

Resp. 60m 
and 15m 
 

Image in 
scientific 
article, 
geotiff 

Pixel-based unsupervised 
ISODATA classifier  
Data: Landsat 3 MSS, and 
7 ETM 

(Karila et al., 2014) - only 3 land-use classes: 
all rice, aquaculture and 
settled areas + coconut + 
sugar cane + orchard 

 
5 Hiện trạng sử dụng 

đất đến năm 1980 
(Land use status up to 
1980, in Vietnamese) 

1980/
1981 

Vietnam 1:1.000.000 High res. 
scan 

- N.T. Vu et al., 1981. 
General Department of 
Land Administration 

- few classes for VMD 
- Vietnamese legend 

 
6 Figure 3. The land-use 

classifications from 
the SPOT imagery 

1987 
1999 
2005 

Eastern 
coast 
VMD 

20m Image in 
scientific 
article, 
geotiff 

Pixel-based unsupervised 
ISODATA classification  
Data: mosaicked SPOT 1, 
2 & 3 images.  

(Karila et al., 2014) - Accuracy 2005 = 88.2% 
(based on ground truth 7-
10 Oct 2013) 
- multiple rice classes  
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7 Land cover 
classification for the 
Mekong Delta from 
Landsat 5 data from 
1989 

1989 VMD 
except 
south 
and NW 

Ca. 30m Geotiff Pixel-based, semi-
automatic, supervised, 
decision tree classification 
of a Landsat 5 image 

WISDOM Information 
System (credit: German 
Remote Sensing Data 
Center (DFD), German 
Aerospace Center (DLR)) 

- unflooded image 
- vegetation classes based 
on density, not type 
- overall accuracy = 94%, 
individual classes > 85% 

 

8 Fig. 9. Annual changes 
in rice-cropping 
patterns estimated by 
the WFCS method 
from 2001 to 2006, 
and the inland-
aquaculture area 
estimated by the 
WFIA method from 
2000 to 2006 

2000 
2001 
2002 
2003 
2004 
2005 
2006 

Hau 
Giang + 
Bac Lieu 
+ Soc 
Trang 

250m Small 
images 
in 
scientific 
article 

Complex classification 
scheme using 3 wavelet 
based filters: WFCS, WFFI 
and WFIA) for which EVI 
and LSWI are used Data: 
7-yr MODIS (MOD09) 
composite surf. refl. time-
series 

(Sakamoto et al., 2009b) - small maps 
- 11 rice cropping system 
classes +  aquaculture 
- accuracy not included, 
but district statistics used 
to get optimal result 

 
9 Figure 8. Main land-

use classes in Tra Vinh 
area 

2000 
22 Jan 

Tra Vinh 10 or 20m Low res. 
images 
in 
scientific 
article 

Thresholding using NDVI, 
NDWI & SWIR and 
maximum likelihood 
classification  
Data: SPOT4 HRVIR 

(Tong et al., 2004) - maps have very low 
resolution 
- average accuracy nearly 
80% based on ground 
data & forest map  

 

10 Fig. 6 Classification of 
results using MODIS 
time-series imagery 

2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 

VMD 250m Small 
images 
in 
scientific 
article 

Complex classification 
flow chart; classification 
using 4 wavelet filters 
(WFCS, WFCP, WFFI and 
WFIA) & a decision tree.  
Data: MODIS composite 
surf. refl. time-series 

(Sakamoto et al., 2009a) - 10 LU classes, focus on 
rice and shrimp; other 
areas masked using Sub-
NIAPP LU map of 2002.  
- area rice, shrimp–rice 
farming & inland aquac. 
agreed well with 
provincial statistics (R2 ≥ 
0.96). Some prov.: large 
error margin in estimate. 
- Mixture classes: pixels 
have no discriminating EVI 
feature. 
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11 Land cover 
classification (LCC) for 
the Mekong Delta 
from Landsat 7 ETM+ 
2001 

2001 VMD 
except 
south 
and NW 

Ca. 30m Geotiff Unsupervised pixel-based 
classification with the C5 
algorithm using 3000 
training data points from 
image itself.  
Data: Landsat 7 ETM+ 

WISDOM Information 
System (Credit: German 
Aerospace Center (DLR)) 

- many small clouds 
- during flooding 
- 4 land classes; 
vegetation classes based 
on density, not type 
- Overall classification 
accuracy = 95% 

 

12 Figure 8. Spatial 
distributions of rice 
cropping systems in 
the study area. 

2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 
2011 
2012 

VMD 500 m 
 
 

Small 
images 
in 
scientific 
article 

Smooth MODIS EVI time-
series for whole period, 
mask non-rice area based 
on EVI thresholds, classify 
rice using timing and 
number of peaks in EVI 
Data: MODIS  Surf. refl. 8-
day L3 time-series 
(MOD09A1)  

(Nguyen-Thanh et al., 
2014) 

- 4 rice only LU classes 
- overall accuracies & 𝜅:  
81.4% & 0.75 for 2002, 
80.6% & 0.74 for 2006, 
85.5% & 0.81 for 2012 
using ground ref. data 
- relative error in area 
(REA) between the 
MODIS-derived rice areas 
and the government’s rice 
area statistics = 0.9–15.9% 

 
etc.  

13 Fig. 5. Distribution of 
rice cropping systems 
for (a) 2001; (b) 2002; 
(c) 2003; (d) 2004; (e) 
2005; (f) 2006; and (g) 
2007 

2001 
2002 
2003 
2004 
2005 
2006 
2007 

An 
Giang, 
Dong 
Thap 
 

250m Small 
images 
in 
scientific 
article 

Endmember extraction & 
training in a linear mixture 
model (LMM) for classi-
fication of rice systems, 
take largest abundance, 
apply majority filter  
Data: MODIS NDVI 

(Chen et al., 2012) - 4 land-use rice classes 
- small maps 
- overall accuracy = 90.1% 
  Kappa coef. = 0.7 
  Based on ground-truth  
  (e.g. 2002 Sub-NIAPP LU  
  map)  

14 Land cover 
classification for the 
Mekong Delta form 
Landsat 7 data from 
2002 

2002 
14 
Dec 

VMD 
except 
south 
and NW 

30m Geotiff Semi-automatic, 
supervised, decision tree 
classification based on 
Tasseled Cap of a Landsat 
7 ETM+ image 

WISDOM Information 
System (credit: German 
Remote Sensing Data 
Center (DFD), German 
Aerospace Center (DLR)) 

- in S and W large cloud 
- 5 land classes; 
vegetation classes based 
on density, not type 
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15 Figure 1. The 2002 
land-cover map of the 
study area showing 
different rice cropping 
systems and the 
locations of sampling 
sites used for the 
accuracy assessment 
of the classification 
results 

2002 VMD 1:125,000 Image in 
scientific 
article & 
shapefile 

-  (Nguyen-Thanh et al., 
2014) 
 
Most probable original 
source: Sub-NIIAPP 

- 14 land-use classes 
- focus on rice 
- includes field data points 
for rice cropping system 
- image in paper differs 
slightly from shapefile 

 
16 Mekong Delta:  

Land-use 
2002  VMD - Tiff-file - Sub-National Institute of 

Agriculture Planning & 
Projection (Sub-NIIAPP), 
Document AA1403 –      
W ICEM 2014 

- 11 land-use classes 
 

 
17 Fig. 3. Land-use map 

for 2002 
2002 VMD 30m Image in 

scientific 
article 

Data sources, i.a. Landsat 
7 ETM+ (02-2002), map of 
agricultural LU 2002 of 12 
provinces at 1:50,000 & 
1:100,000 scale (Prov. 
dep. MARD, dep. 
MONRE), LU map 2000 at 
1:250,000 scale (MONRE), 
2 field surveys in 2002.  

(Sakamoto et al., 2006) 
 
Originally from Sub-
NIIAPP 

- 19 land-use classes 
 

 
18 ‘Land cover 2005 in 

study area in Tra Vinh’ 
and  
‘Land cover 2005 in 
study area in Ben Tre’ 
 

2004 
1 Dec 
and  
2005 
22 
Feb 

Tra Vinh 
and  
Ben Tre 

10m Image in 
ppt per 
province
& 
shapefile 
for 
entire 
area 

Isodata classification and 
post classification (class 
combination, LCT 
assignment, filtering/ 
smoothening) 
Data: SPOT 5 

(Giang & Hoa, 2013) for 
maps; 
(Space Technology 
Institute, 2014) for full 
report on classification 
 

- 11 land-use classes 
- legend unreadable in Tra 
Vinh image in ppt: see 
shapefile and map of Ben 
Tre  
- area outside the study 
areas less accurately 
classified 
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19 Land cover 
classification for the 
Mekong Delta of 13 
SPOT 5 scenes from 
2004 and 2005 

2004 - 
2005 

VMD 10m  Imagine 
file 

Unsupervised ISO-data 
classification of 13 SPOT 5 
scenes. Grouping of the 
100 classes for final 
classes. Ref. data: 
topographic & LU maps. 

Tiff-file: WISDOM 
Information System  
Report: (Space 
Technology Institute, 
2011) 

- Some cloud remnants 
- 16 LU classes 

  

20 Figure 2. The land-use 
classifications from 
ENVISAT ASAR 
imagery 

2005 
2009 
2011 

Eastern 
coast 
VMD + 
up-
stream 

Ca. 74 m Image in 
scientific 
article, 
geotiff 

Unsupervised 
ISODATA classifier.  
Data: 9 - 15 ENVISAT ASAR 
WSM images  per year. 
Accuracy using ground 
truth 7-10 Oct 2013. 

(Karila et al., 2014) - Incl. rice farming system 
- Accuracy:  
2011 = 80.0%,  
2009 = 82.7%,  
2005 = 77.3% 

 
21 Figure 3. 2005 land 

use map of the 
Mekong delta with 
focus on rice areas  

2005 VMD 30m? Image in 
scientific 
article 

Data: all cloud-free 
Landsat ETM+ images 
 

(Nguyen et al., 2012) 
Originally: National 
Institute Of Agricultural 
Planning And Projection 
(NIAPP), 2008 (Ho Chi 
Minh City, Vietnam: Vien 
Quy hoach va Thiet ke 
Nong nghiep (NIAPP) –
MARD) 

- 7 rice LU classes 

 
22 Fig. 9. Rice map 

derived from the STC 
images for Season 2 
and Season 3. 

2007 VMD Probably 
92m 

Image in 
scientific 
article 

Radar algorithm & 
classification thresholds: 
see paper. 
Data: ENVISAT ASAR WS 

(Bouvet & Le Toan, 2011) - 4 rice LU classes, for 2 
seasons 
- Overall classification 
accuracy = 75.8% 
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23 Land use Mekong 
River Delta 2007 

2007 VMD - Image in 
report 
 

Unknown (RS & field data 
according to Dijk et al. 
(2013)) 

(Dijk et al., 2013) 
 
Originally: FIPI (Forest 
Inventory Planning 
Institute) 

- 7 land-use classes 
- very little detail: mainly 
‘paddy rice’ 

 
24 Combined land cover 

/ land use 
classification (LC-LUC) 
for the Mekong Delta 
from SPOT5 data 2007 

2007 
Dec 

Can Tho 10 m Geotiff Unsupervised pixel-based 
image classification using 
the C5 classifier based on 
training points derived 
from SPOT 5 image itself 

WISDOM Information 
System (credit: German 
Aerospace Center (DLR)) 

- small clouds 
- 6 land classes 

 

25 Mekong Delta Land 
Use Map 

2008 VMD - No -  (Nguyen et al., 2013)  
Part of WWF Greater 
Mekong Vietnam 
Country Programme, 
Wetland Mapping and 
Other Ancillary Maps for 
Mekong Delta 

- 22 land-use classes,  
  many forest classes  
  based on usage 
- no distinction within rice 
- some classes difficult to    
  distinguish 
 

 

26 - 2008 VMD  250m Image in 
scientific 
paper 

Source: MODIS NDVI 
time-series. Filtering noise 
with wavelet filter >> 
parametric & nonpara-
metric class. algorithms: 
the max. likelihood 
classifier (MLC) & support 
vector machines (SVMs) 

(Chen et al., 2011) - 5 land-use classes: 
rice only 
- SVMs better than MLC 
- overall accuracy & Kappa 
coef. for SVMs =  89.7% & 
0.86, for MLC = 76.2% & 
0.68 
 

 

27 Land cover 
classification for Can 
Tho province from 
SPOT 5 data from 
2009 

2009 
6 Feb 

Can Tho 10m Geotiff Semi-automatic and 
supervised decision tree 
classification approach 
(using e.g. indices NDVI, 
GI and MTVI) 

WISDOM Information 
System (credit: German 
Remote Sensing Data 
Center (DFD), German 
Aerospace center (DLR)) 

- 4 LU classes, ‘managed 
herbaceous cover’ 
dominant, small clouds 
- Accuracy individual 
classes > 80% (only lower 
for ‘artificial surface’) 
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28 Land cover 
classification for the 
Mekong Delta of 11 
SPOT 5 scenes from 
2009 and 2010 

2009- 
2010 

VMD 10m  Imagine 
file 

Unsupervised ISO-data 
classification of 11 SPOT 5 
scenes. Grouping of the 
100 classes for final 
classes. Ref. data: 
topographic & LU maps 

Tiff-file: WISDOM 
Information System  
Report: (Space 
Technology Institute, 
2011) 

- 16 LU classes 
- Overall accuracy 87.89% 
- Producer & user 
accuracy between 0% and 
100% 

 

29 LUT 2010 2010 VMD - Yes - Received from Dr. V.P.D. 
Tri at 29 nov. 2016 

- many LU classes    
 
 
 
 

30 Rice paddy mapping 
using MODIS (2010) 

2010 VMD -  Image in 
power-
point 
presen-
tation 

MODIS data, method 
unknown 

(Nguyen & Viet, 2013) 
 
Original source: Pham 
Duy Tien, AGU 

- colors largely 
  undistinguishable  
- 6 land-use classes 

 
31 Land use/land cover 

map of the Mekong 
Delta, 2010 (MODIS 
500) 

2010 VMD 500m Geotiff Classification of cloud-free 
MODIS 8-day refl. 
composites & EVI time-
series classification 

WISDOM Information 
System 

- 16 land-use classes 
 

 

32 Mekong delta: forest 
cover 

2010 VMD - Tiff-file - Sub-Forest Inventory  
and Planning Institute  
(Sub-FIPI),  
Document AAS1403 – 
WB ICEM 2014 

- forest and its uses cover 
  only 

 

33 Existing landuse map 
in Quan Lo - Phung 
Hiep area - Development 

of operational regulations 
for Quan Lo - Phung Hiep 
Irrigation system 

2010 Quan Lo  
Phung 
Hiep (a.o. 
Soc Trang 
& Bac 
Lieu) 

1:120,000 A0 image 
with 
English 
legend, 
map-info 
files 

Map of Institute for 
Agriculture Planning (IAP) 
(purchased by SIWRP), 
supplemented with field 
data & data from local 
officials 

Integrated Coastal 
Management 
Programme (ICMP) 
(received from Mr. Ly 
Minh Dang) 

- Resolution/accuracy up 
to singly land plot (but 
no validation available) 

- For displaying, use layer 
‘QLPH_Landused_New’, 
field ‘loaidat’  
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34 Land cover 
classification for parts 
of the provinces Can 
Tho, Dong Thap, Vinh 
Long (Rapid Eye, 
2011) 

2011 
27 Jan 

parts of 
Can Tho, 
& 
surroun- 
dings 

6.5 m  Shapefile Supervised object-based 
C5.0 algorithm in 
TWOPAC (twinned object 
& pixel-based automated 
classification chain) using 
Rapid Eye data 

(Huth et al., 2012) & 
WISDOM information 
system (credit: German 
Remote Sensing Center 
(DFD), German 
Aerospace Center (DLR)) 

- some small clouds 
- about 10 land use 
classes 
- overall accuracy > 85% 
- accuracy individual 
classes >80%  

35 ‘Land cover 2012 in 
study area in Tra Vinh’ 
and  
‘Land cover 2012 in 
study area in Ben Tre’ 
 

2012 
14 
Feb 
and  
2012 
2 Jan 

Tra Vinh 
and  
Ben Tre 

10m Image in 
ppt per 
province
& 
shapefile 
for 
entire 
area 

Isodata classification and 
post classification (class 
combination, LCT 
assignment, filtering/ 
smoothening) 
Data: SPOT 5 

(Giang & Hoa, 2013) for 
maps; 
(Space Technology 
Institute, 2014) for full 
report on classification 
 

- 11 land-use classes 
- legend unreadable in Tra 
Vinh image: see shapefile 
and map of Ben Tre  
- area outside the study 
areas less accurately 
classified 
- Overall accuracy = 82.7% 
based on google earth 
ground control points 

 

36 - 2012? VMD -  Image in 
power-
point 
presen-
tation 

- (Nguyen et al., 2013) - 17 land-use classes 
- no distinction within rice 

 
37 Land use/land cover 

map of the Mekong 
Delta, 2014 (MODIS 
500) 

2014 VMD 500m Geotiff Classification of cloud-free 
MODIS 8-day refl. 
composites & EVI time-
series classification 

WISDOM Information 
System 

- 10 land-use classes; 3 
rice classes 
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Appendix 2 Land-use classification: segmentation settings 
 
The first step in object-based image classification is to create the objects to be classified. This step is 
called segmentation. In this study, multiresolution segmentation in eCognition Developer 9.1.3. has 
been used. This algorithm adds neighboring pixels together until the user defined homogeneity 
criterion is exceeded. The homogeneity criterion measures how homogeneous the object is within 
itself, for which it takes both spectral information and the shape of the segments into account 
(Trimble, 2015b). Areas with little variation result in larger segments. The scale parameter 
determines the maximum allowed heterogeneity for the segments. The larger this parameter, the 
larger the segments in an image. However, the same scale parameter results in different segments 
sizes between different images. The relative importance of spectral homogeneity to shape 
homogeneity determines the total homogeneity criterion. The spectral homogeneity is based on the 
standard deviation of the selected layers and the shape homogeneity is based on the deviation from 
a compact or smooth shape (Trimble, 2015b). 

The segmentation settings used for the classification of the clouds for the cloud masks and the 
classification of LU itself are given in Table 11 and Table 12 respectively. In the case of the 
classification of the clouds, the different cloud types with different sizes, shapes and thicknesses 
required different segment sizes to classify all clouds. Hence, three multi-resolution segmentation 
levels with different scale parameters (100, 200 and 500) were created. In the case of the land-use 
classification, only one segmentation could be used for the random forest classification. In order to 
allow for larger variation in the object size and shape, which is needed to optimally represent the 
areas of each LU class, two subsequent segmentations were performed. At first, a multiresolution 
segmentation was performed, followed by a spectral difference segmentation. The latter merges 
segments with similar spectral characteristics. 

 
 
Table 11  Multiresolution segmentation settings for each classification of clouds (step 2 in Figure 11). 
 

Setting Value 

Scale parameter 100, 200 and 500 
Shape parameter 0 
Layers  blue, green, red, NIR, SWIR1, SWIR2, TIR, EVI and NDMI 

  
 
Table 12  Segmentation settings for each land-use classification (step 3 in Figure 11). 
 

Segmentation Setting Value 

Multiresolution 
Scale parameter 200 
Shape parameter 0 

Spectral difference 
Maximum spectral 
difference parameter 

200 (100 for 2009) 

Both Layers  blue, green red, NIR, SWIR1, SWIR2, EVI and NDMI 
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Appendix 3  Land-use type code per land-use class 
 
The digital LU maps contain LU type codes (numbers) instead of the full names or acronyms. The 
names corresponding to each code is given in this appendix. 
 
Table 13 Land-use (LU) classes used in for classification including LU type code.   
 
 

LU group LU type/subclass Acronym LU type code 

Aquaculture Aquaculture Aqua 1 

Agriculture  

Dry-season crop – mainly rice Dry-S Rice  2 
Partly dry-season crop – mainly rice  P Dry-S Rice 3 
Harvested dry-season crop – mainly rice  H Dry-S Rice 6 
Bare field in dry season  Bare Field 4 
Mixed crops – non-rice  Mix No Rice 5 

Forest 
Mangrove Mangr 7 
Melaleuca forest  Mel For 14 
Orchard  Orch 8 

Urban area 

Urban dense Urb D 9 
Urban open Urb O 10 
Urban linear features (dikes, roads with 
buildings and gardens) 

Urb Line 11 

Water  
Water body (river/sea) Water 12 
Water: small channels Water Ch 13 

Other 
Wasteland/marsh Waste 16 
Cloud remnants  Cloud 15 
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Appendix 4 Spectral and spatial characteristics of all LU classes 
 
 
Aquaculture 
 
The aquaculture group and type mainly consists of shrimp farms, but it also includes fish farms. The 
man-made ponds are generally concentrated close to the sea. The farms are on average about 5 ha 
and have a length of a few tens of meters to hundreds of meters. They have a structured geometric 
pattern: a small dike at the border with more or less rectangular strips of planted rows of mangrove 
trees inside which are surrounded by the water of the actual shrimp pond (Vo et al., 2013). The cover 
of mangrove varies strongly. When shrimps are grown, the ponds are filled with water and have a 
relatively low reflectance in all Landsat 5 TM spectral bands. In case of turbid water or dry ponds, the 
reflectance is higher. 
 
 
Agriculture 
 
The reflectance characteristics of crops, among which rice, cyclically vary over the growing season 
(Figure 20). The first few weeks, the surface characteristics dominate the reflectance, as the (rice) 
plants are still small (Kuenzer & Knauer, 2013). The values of the vegetation indices EVI and NDVI are 
still very low (Nguyen-Thanh et al., 2014): the near infrared (NIR) reflectance is only slightly lower 
than the reflectance in the visible spectrum (VI) (Kuenzer & Knauer, 2013). After about 12 weeks, the 
NDVI and EVI are maximum as the NIR and VI reflectance reaches their respective maximum and 
minimum (Kuenzer & Knauer, 2013). After maturity, the plant becomes yellowish and the NIR 
reflectance decreases (Kuenzer & Knauer, 2013); the EVI and NDVI lower again (Nguyen-Thanh et al., 
2014). Hence, the vegetation indices are important for classifying crops among which rice. Though, 
Panigrahy and Parihar (1992) pointed out that the classification accuracy of rice increases 
substantially if short-wave infrared (SWIR) bands are also used. 

 

Figure 20  Reflectance signatures of rice plants at different growth stages. The spectral range 
of the Landsat 5 bands  are indicated. After Chang et al. (2005) in Kuenzer & Knauer (2013). 

Blue Green Red NIR SWIR1, SWIR2, TIR 
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Nowadays, multiple crops per year are grown in the VMD, but the crop phenology (timing and 

number of crops) differs over the delta (Table 14). This is reflected in differences in reflectance over 
space and time. The temporal variation in the EVI vegetation index for different rice systems is shown 
in Figure 21. It is assumed that these profiles are representative for all years. Hence, all images used 
in our study roughly overlap with a peak in EVI – and herewith a peak in rice growth – if a dry  season 
crop was grown, as intended.  

 The dry-season crop class can be distinguished based on the peak in the vegetation indices. This 
peak is not only a peak over time, but also spatially in comparison to other LU classes. Besides, the 
shape of the fields surrounded by generally bare dikes is characteristic. Based on pre-existing LU 
maps of 2000 to 2010, the largest area of this class is covered by rice, but this cannot directly be 
confirmed from the Landsat images, especially for the images of before 2000. Hence, the subclass(es) 
have the suffix ‘mainly rice’.  

Figure 21  Smoothened EVI (Enhanced Vegetation Index) profiles for (a) single-cropped rain-fed rice, (b) double-cropped 
irrigated rice, (c) double-cropped rain-fed rice (d) and (e) triple-cropped irrigated rice. DOY = day of the year. Vertical lines 
correspond to the julian day of the four Landsat 5 TM images used in this study: 1988 = blue, 1996 = red, 2006 = green, 2009 
= orange. Note that the profiles are based on data of mainly 2012. After Son et al. (2014). 
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The timing of the dry-season crop peak varies spatially, because the start of the rice cycle 
depends on the local water distribution scheme (Kuenzer & Knauer, 2013) and herewith on the 
yearly and spatially varying flood duration and intensity for the flood-prone upper VMD (Sakamoto et 
al., 2009a). Accordingly, the dry-season crop may just have been harvested in the satellite image to 
be classified, especially for the relatively late satellite image in 2006. The spectral characteristics 
change significantly, but based on their dark appearance in a false color image respective to the 
surrounding unharvested fields, these fields can generally still be classified as dry-season crop. Due 
to their different characteristics, these fields get a separate class for the LU classification. Afterwards, 
this class will be merged to the first agriculture class.  

The ‘bare fields in dry season’ form another agriculture subclass. Most probably, these fields are 
covered with rice – or another crop – during the rainy season. The absence of vegetation in the 
satellite images results in low EVI values, negative NDVI values, a bright appearance in true and false 
color images and a much higher SWIR1 and SWIR2 reflection than most other classes if the soil is dry. 
If the soil is wet, the reflectance is significantly lower and the area appears dark. In some cases, a 
region shows an alternation of fields with and without dry-season crops within small areas. The 
classification aims at classifying LU at delta scale and therefore, these relatively small scale inter-field 
alternations are taken together as one class: partly dry-season crop – mainly rice.  

The last agriculture subclass is ‘mixed crops – non-rice’, which contains all other crops than rice. 
Generally, this class has a lower NIR reflection and hence lower vegetation indices than rice. Besides, 
the fields seem to be smaller and the spectral difference between fields is larger than for rice. For a 
part, the non-rice crops are grown on the dune ridges parallel to the coast. These patches can be 
discriminated based on their elongated shape and their relatively high reflection of especially SWIR1 
and SWIR2 compared to their surroundings. 
 
 
Table 14 Rice-cropping seasons and systems. 

1
 Son et al. (2014), 

2
 Bouvet & Le Toan (2011). 

 

Season 
Vietnamese 
name 2  

From 1 To 1 Cropping system 1 Main location 2 

rainy / winter Mùa July/Aug. Dec./Jan. 1x rain-fed rice Coastal 
winter–spring  Đông Xuân Nov./Dec. Feb./March 2x irrigated rice 

3x irrigated rice 
Inland  

spring–summer   March/April May/June 3x irrigated rice  
summer–autumn  Hè Thu April/May July/Aug. 2x irrigated rice 

2x rain-fed rice 
3x irrigated rice 

Inland + coastal 

autumn–winter  Thu Đông July/Sept Oct./Dec. 2x rain-fed rice 
3x irrigated rice  

Inland  

 
 
Forest 
 
The forest class is subdivided in three subclasses which contain mainly trees.  

The first forest subclass is mangrove. Multiple definitions of mangrove exist (Kuenzer et al., 
2011). In this case, the salt-tolerant forest parallel to the coastline is meant, not a specific species 
growing in such a forest. Generally, the spectral reflectance of mangroves is determined by multiple 
mangrove species and a tidally varying contribution of water and soil (Kuenzer et al., 2011). In a 
mangrove in Tra Vinh, the five most abundant groups of mangrove species are Avicennia and 
Sonneratia, Excoecaria agallocha, Derris trifoliatta, Phoenix paludosa and Nypa (Thu & Populus, 
2007). Besides, Rhizophora and Laguncularia can often be found in mangroves in and around the 
VMD (Kuenzer et al., 2011). Some “mangroves” are actually forestry farms – they are planted by 
humans for the wood – or mixed low density mangrove with shrimp farms (Thu, 2006). 
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The spectral signature of each species in the mangrove forest varies over time and space due to 
changes in biophysical and chemical conditions (Kuenzer et al., 2011). Differences between 
mangrove species are minimal in the visible part of the spectrum and relatively large in the near-
infrared region (Figure 22). However, irrespective of these variations within mangrove forests, Giri et 
al. (2003) indicate that mangrove forest is easy to discriminate by its specific spectral signature. In 
the Landsat images, mangrove can be discriminated from other vegetated classes by its lower NIR 
reflectance than e.g. rice. In addition, its location is crucial: bordering the sea or in between 
aquacultural ponds. 

 
The second forest subclass is melaleuca forest. Melaleuca trees are found in fresh-water flooded 

conditions and hence mainly occur inland. Their spectral characteristics are similar to mangrove. The 
main difference between melaleuca forest and mangroves is their spatial distribution: inland versus 
bordering the coast respectively. Compared to the other inland LU classes, melaleuca forest has 
relatively low SWIR1 and SWIR2 reflectance values. 

 

 
 
The last forest subclass is orchard. This class comprises the orchards of fruit gardens and pineapple 
plants, which form the dominant LU close to the main river branches. Examples of fruit trees which 
are grown are coconut and banana trees (Binh et al., 2005). Generally, the orchards are close to a 
residential house. If these houses are not part of a clear cluster in the satellite image, these houses 
are classified as part of the larger scale orchard class. Spectrally, the subclass orchard is similar to the 
other vegetated classes. However, in this case its NIR reflectance and herewith vegetation indices 
values are in between those of dry-season rice and melaleuca forest. Additionally, the spectral 
variation within a patch of this class is slightly larger than for a dry-season rice patch. Spatially, their 
wide patches close to the main rivers and in strips along canals and roads are characteristic. 
 
 

 

Figure 22  Spectral signature of two mangrove species, measured using a with spectrometer in the province Ca Mau in the 
the VMD in January 2010. Parameters which influence the signature are indicated. Colored bands correspond to spectral 
bands of Landsat 5 TM (l-r: blue, green, red, NIR, SWIR1, SWIR2. TIR out of reach at the right). After Kuenzer et al. (2011). 
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Urban areas 
 
The two main subclasses of the urban-areas class are ‘urban dense’ and ‘urban open’. Urban dense 
corresponds to cities with many buildings close to each other and little vegetation. This class has a 
high reflection in all bands from VI to SWIR and herewith contrasts to its surroundings, forming local 
spots. Urban open corresponds to the periphery of cities and other areas with many buildings 
combined with vegetation. Spectrally, this class is a combination of urban dense and vegetation 
classes. As a consequence, the spectral variation within a patch of this class is high. Spatially, they 
form spots along roads and canals and border dense urban areas.  

The third urban subclass is ‘linear features’, which corresponds to dikes and roads with some 
buildings and gardens along it. These features are spectrally similar to the other urban classes, with 
high overall reflectance – especially in SWIR – for the roads and bare dikes, which is partly mixed with 
spectral characteristics of vegetation and water of small channels which are too small to be identified 
as such. 

 
 

Water 
 
Water absorbs most of the electromagnetic radiation, resulting in a very low overall reflectance. In 
the VMD, the water is turbid, resulting in a higher reflection in especially the visible spectrum. Water 
has the lowest NIR, SWIR1, SWIR2, EVI and NDVI values of all classes except aquaculture. This applies 
to both water classes: water bodies of rivers and seas, and small channels. The water subclasses can 
be separated from each other based on their spatial characteristics. The channels – which include 
man-made straight canals and natural, meandering creeks – are very small and elongated. On the 
other hand, the water bodies have larger dimensions and are less elongated. The water classes can 
be separated from aquaculture based on their overlap with the rivers and ocean shapefiles and the 
fact that aquaculture ponds are alternated with small dikes and mangrove patches. 
 
 
Other 
 
The other two classes are ‘wasteland/marsh’ and clouds.  

Wasteland refers to areas which are uncultivated or barren; unused by humans. A large part of 
wasteland in the VMD consists of marshes. Most wasteland/marsh has been reclaimed over the last 
decades and turned into agricultural fields. Hence, this class is not often found in recent LU maps. In 
the satellite images, this class lacks many human made patterns and has gradually varying spectral 
characteristics of wet to dry surfaces and none to some vegetation. The wastelands/marshes are 
generally located in or at the borders of the flood plain of the main river branches. 

Most clouds are masked before classification, but some – especially small – clouds are missed by 
the masking and are incorporated in the classification. Clouds have very high overall reflectance 
values. However, if the cloud is thin, a part of the signal from below the cloud can also reach the 
satellite sensor, and a mixed signal is observed. 
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Appendix 5  Spectral and spatial segment features used for land  
use classification 

 
For explanation on the features, see Trimble (2015a). 
 

Layer values 

Mean 

Blue 

Green 

Red 

NIR 

SWIR1 

SWIR2 

TIR 

EVI 

NDVI 

Mode 

Blue 

Green 

Red 

EVI 

Standard deviation 
NIR 

SWIR1 

EVI 

Quantile 
50

th
 EVI quantile  

5
th

 NDVI quantile 

Pixel-based 
Max. red pixel value 

Max. SWIR1 pixel value 

To neighbors 

Mean difference to neighbors: NDVI 

Mean difference to darker neighbors: NDVI 

Mean difference to darker neighbors: red 

Mean difference to brighter neighbors: EVI 

Mean difference to brighter neighbors: NDVI 

Geometry 

Extent 

Area (pixels) 

Border length (pixels) 

Length (pixels) 

Length/width (pixels) 

Width (pixels) 

Shape 

Asymmetry 

Border index 

Compactness 

Density 

Elliptic fit 

Radius of largest enclosed ellipse 

Radius of smallest enclosing ellipse 

Rectangular fit 

Roundness 

Shape index 

Based on skeletons 

Curvature/length (only main line)  

Length of main line (no cycles) (pixels) 

Length/width (only main line) 

Maximum branch length (pixels) 

Standard deviation curvature (only main line) 

Width (only main line) (pixels) 

Position Distance to vectors 
Distance to Ocean (outline) (pixels) 

Distance to Rivers (centroid) (pixels) 

Thematic attributes 
Minimum overlap (%) 
with thematic polygons 

Ocean 

Rivers 

Customized  

(2*width+2*length)/border length 

Area/border length 

Mean difference to neighbors: 5% quantile of NDVI 

Mean of neighboring mean NDVI 

Standard deviation EVI divided by mean EVI 
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Appendix 6  Land-use classification maps 

A6.1. Land-use map of 1988 
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A6.2. Land-use map of 1996 
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A6.3. Land-use map of 2006 
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A6.4. Land-use map of 2009 
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Appendix 7  Areal statistics of the land-use classification maps 
 
Table 15 Areal statistics of the classified land-use maps. Note that the total area varies as a result of a different area 
excluded from the statistics due to cloud cover. This also resulted in some differences in area of a certain class between 
different years. 

 
Area (km2) Area (%) 

 
1988 1996 2006 2009 1988 1996 2006 2009 

Aquaculture 850 954 1669 1980 3.5% 4.0% 7.3% 10.2% 

Dry-S Rice 2002 7296 6514 6558 8.2% 30.8% 28.4% 33.9% 

Partly Dry-S Rice 4124 828 2464 1674 16.9% 3.5% 10.7% 8.6% 

Bare Field 6147 2768 2498 1415 25.2% 11.7% 10.9% 7.3% 

Mix No Rice 429 440 519 532 1.8% 1.9% 2.3% 2.7% 

Agriculture 12702 11332 11995 10179 52.2% 47.9% 52.3% 52.6% 

Mangrove 524 584 165 124 2.2% 2.5% 0.7% 0.6% 

Melaleuca For. 263 422 903 610 1.1% 1.8% 3.9% 3.2% 

Orchard 4314 6481 4414 2948 17.7% 27.4% 19.2% 15.2% 

Forest 5101 7487 5481 3682 20.9% 31.7% 23.9% 19.0% 

Urban Dense 15 48 103 99 0.1% 0.2% 0.5% 0.5% 

Urban Open 83 51 14 328 0.3% 0.2% 0.1% 1.7% 

Urban Line 533 1019 1982 1560 2.2% 4.3% 8.6% 8.1% 

Urban 631 1118 2099 1987 2.6% 4.7% 9.1% 10.3% 

Wasteland 3130 957 23 18 12.9% 4.0% 0.1% 0.1% 

Water 1935 1805 1676 1521 7.9% 7.6% 7.3% 7.9% 

Total 24350 23653 22942 19367  100% 100% 100% 100% 
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Appendix 8  Confusion matrices land-use maps based on validation segments 
 

All LU maps have been validated using a part of the randomly selected segments similar to those used for the classification itself. Each map has three 
confusion matrices. The first is calculated internally in the random forest classification using the out-of-bag segment samples, the second and third are 
based on the separate validation segments. The third confusion matrix is corrected for the varying area of the validation segments. The accuracy – or 
producer’s accuracy or recall – is the percentage of the total number of segments classified as a certain class in the reality which is classified in the same way 
in the map. The reliability – or user’s accuracy or precision – is the percentage of the total number of points classified as a certain class in the map which is 
classified in the same way in the field. 

A8.1. Confusion matrices land-use classification 1988 
 

Table 16 Confusion matrix of the land-use map of 1988 based on the out-of-bag segments in the random forest classification. The numbers indicate the number of segments that have the 
same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.74. Full class 
names: see Table 4. 
 

 
  Reference land-use class 

  

 
  Aqua 

Dry-s 
rice 
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s rice 
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Mix no 
rice Mangr 
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Urb 
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Ch Waste Cloud Total Reliability 
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Aqua 42 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 45 93% 

Dry-s rice 0 83 3 0 0 0 1 0 8 0 0 1 0 1 0 0 97 86% 

P dry-s rich 0 1 61 1 6 4 1 0 11 0 1 3 0 1 3 0 93 66% 

H dry-s rice 1 0 3 3 3 0 0 0 0 0 0 1 0 0 4 0 15 20% 

Bare field 5 0 6 0 197 0 0 0 0 0 0 0 0 0 5 0 213 92% 

Mix no rice 0 0 6 0 4 17 2 0 3 0 0 1 0 0 2 0 35 49% 

Mangr 1 0 2 0 0 0 42 0 2 0 0 0 0 0 0 0 47 89% 

Mel for 0 0 1 0 0 0 0 27 2 0 0 0 0 0 4 0 34 79% 

Orch 0 6 12 0 0 4 3 1 72 0 0 1 0 0 0 0 99 73% 

Urb D 0 0 0 0 14 0 0 0 0 1 1 0 0 0 0 0 16 6% 

Urb O 0 0 2 0 6 0 0 0 0 0 7 0 0 1 0 0 16 44% 

Urb Line 0 1 5 0 2 1 1 0 1 0 0 17 0 2 0 0 30 57% 

Water 2 0 0 0 0 0 0 0 0 0 0 0 12 2 1 0 17 71% 

Water ch 3 0 0 0 0 0 0 0 0 0 0 1 0 49 0 0 53 92% 

Waste 0 0 7 0 7 0 0 6 1 0 0 1 0 0 50 0 72 69% 

Cloud remn 0 0 1 0 7 0 0 0 0 0 0 0 0 0 0 13 21 62% 

 
Total 54 91 109 4 248 26 50 34 100 1 9 26 12 56 70 13 903   

 
Accuracy 78% 91% 56% 75% 79% 65% 84% 79% 72% 100% 78% 65% 100% 88% 71% 100%   88% 



 

A.23 

Table 17 Confusion matrix of the land-use map of 1988 based on the separate validation segments. The numbers indicate the number of segments that have the same class in the ‘ground 
truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.69. Full class names: see Table 4. 
 

 
  Reference land-use class 

  

 
  Aqua 
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H dry-
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 c
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Aqua 22 0 0 0 5 0 1 0 0 0 0 0 0 0 3 0 31 71% 

Dry-s rice 0 34 1 0 0 0 1 0 4 0 0 1 0 0 0 0 41 83% 

P dry-s rich 0 2 24 3 7 0 0 0 1 0 1 1 0 1 3 0 43 56% 

H dry-s rice 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0% 

Bare field 0 0 5 1 89 1 0 0 1 6 2 3 0 1 0 2 111 80% 

Mix no rice 0 0 6 0 0 13 0 0 2 0 0 1 0 0 0 0 22 59% 

Mangr 0 0 0 0 0 0 21 0 1 0 0 0 0 0 0 0 22 95% 

Mel for 0 1 1 1 0 0 0 16 1 0 0 0 0 0 4 0 24 67% 

Orch 0 11 6 0 0 2 0 1 37 0 0 1 0 0 0 0 58 64% 

Urb D 0 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 3 67% 

Urb O 0 0 1 0 0 0 0 0 0 0 4 0 0 0 0 0 5 80% 

Urb Line 0 0 0 0 1 1 0 0 0 0 0 4 0 1 0 0 7 57% 

Water 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 4 50% 

Water ch 0 0 0 0 0 0 0 0 1 0 0 2 6 23 0 0 32 72% 

Waste 0 0 1 2 3 0 0 0 1 0 0 0 0 0 25 0 32 78% 

Cloud remn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 6 100% 

 
Total 22 48 46 7 106 17 23 17 49 8 7 14 8 26 35 10 443   

 
Accuracy 100% 71% 52% 0% 84% 76% 91% 94% 76% 25% 57% 29% 25% 88% 71% 60%   73% 
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Table 18 Confusion matrix of the land-use map of 1988 based on the separate validation segments, corrected for the segment area. The numbers indicate the area (ha) of segments that 
have the same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.74. 
Full class names: see Table 4. 
 

 
  Reference land-use class 

  

 
  Aqua 
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Aqua 6174 0 0 0 526 0 63 0 0 0 0 0 0 0 80 0 6843 90% 

Dry-s rice 0 3454 47 0 0 0 42 0 353 0 0 664 0 0 0 0 4560 76% 

P dry-s rich 0 83 13367 153 236 0 0 0 21 0 13 21 0 101 199 0 14194 94% 

H dry-s rice 0 0 47 0 63 0 0 0 0 0 0 0 0 0 0 0 110 0% 

Bare field 0 0 480 24 5294 15 0 0 7 317 100 105 0 11 0 31 6384 83% 

Mix no rice 0 0 298 0 0 1582 0 0 166 0 0 83 0 0 0 0 2129 74% 

Mangr 0 0 0 0 0 0 2566 0 47 0 0 0 0 0 0 0 2613 98% 

Mel for 0 21 103 31 0 0 0 1398 53 0 0 0 0 0 274 0 1880 74% 

Orch 0 1703 621 0 0 79 0 94 5551 0 0 22 0 0 0 0 8070 69% 

Urb D 0 0 0 0 0 0 0 0 0 300 0 15 0 0 0 0 315 95% 

Urb O 0 0 173 0 0 0 0 0 0 0 257 0 0 0 0 0 430 60% 

Urb Line 0 0 0 0 65 165 0 0 0 0 0 748 0 59 0 0 1037 72% 

Water 0 0 0 0 0 0 0 0 0 0 0 0 15229 0 0 27 15256 100% 

Water ch 0 0 0 0 0 0 0 0 19 0 0 45 15283 1300 0 0 16647 8% 

Waste 0 0 66 45 110 0 0 0 97 0 0 0 0 0 21997 0 22315 99% 

Cloud remn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 100% 

 
Total 6174 5261 15202 253 6294 1841 2671 1492 6314 617 370 1703 30512 1471 22550 87 102812   

 
Accuracy 100% 66% 88% 0% 84% 86% 96% 94% 88% 49% 69% 44% 50% 88% 98% 33%   77% 

 

  



 

A.25 

A8.2. Confusion matrices land-use classification 1996 
 
Table 19 Confusion matrix of the land-use map of 1996 based on the out-of-bag segments in the random forest classification. The numbers indicate the number of segments that have the 
same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.78. Full class 
names: see Table 4. 
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Aqua 48 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 51 94% 

Dry-s rice 0 170 2 0 0 0 0 1 8 0 0 1 0 0 0 0 182 93% 

P dry-s rich 1 8 32 1 7 3 0 1 12 1 0 1 0 0 0 1 68 47% 

H dry-s rice 2 0 2 9 1 0 0 1 2 0 0 0 0 0 1 0 18 50% 

Bare field 2 0 4 3 107 1 0 0 0 0 0 0 0 0 2 0 119 90% 

Mix no rice 0 0 3 0 1 31 0 0 6 0 0 1 0 0 2 0 44 70% 

Mangr 0 0 0 0 0 1 47 0 3 0 0 0 0 0 0 0 51 92% 

Mel for 0 0 0 0 0 1 0 25 5 0 0 0 0 0 6 0 37 68% 

Orch 1 6 6 0 1 4 5 0 94 0 0 2 0 1 2 0 122 77% 

Urb D 0 0 0 0 3 0 0 0 1 11 1 0 0 0 0 0 16 69% 

Urb O 0 0 4 0 7 0 0 0 2 1 6 1 0 1 0 0 22 27% 

Urb Line 0 3 0 0 3 2 0 0 4 0 0 27 0 0 1 0 40 68% 

Water 1 0 0 0 0 0 0 0 0 0 0 0 20 4 0 1 26 77% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 1 0 50 0 0 51 98% 

Waste 1 0 3 0 3 0 0 0 4 0 0 0 0 0 43 0 54 80% 

Cloud remn 0 0 2 0 1 0 0 0 0 0 0 0 2 0 0 18 23 78% 

 
Total 56 187 58 13 135 43 52 28 142 13 7 34 22 56 57 21 924   

 
Accuracy 86% 91% 55% 69% 79% 72% 90% 89% 66% 85% 86% 79% 91% 89% 75% 86%   80% 
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Table 20 Confusion matrix of the land-use map of 1996 based on the separate validation segments. The numbers indicate the number of segments that have the same class in the ‘ground 
truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.77. Full class names: see Table 4. 
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Aqua 22 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 26 85% 

Dry-s rice 0 87 2 0 0 0 0 0 3 0 0 0 0 0 0 0 92 95% 

P dry-s rich 0 2 8 2 2 1 0 0 2 0 3 0 0 0 3 0 23 35% 

H dry-s rice 0 0 2 3 2 0 0 0 0 0 0 0 0 0 1 0 8 38% 

Bare field 0 0 4 1 50 2 0 0 0 3 1 0 0 0 0 2 63 79% 

Mix no rice 0 0 1 0 0 14 0 0 2 0 0 0 0 0 0 0 17 82% 

Mangr 1 0 0 0 0 1 22 0 2 0 0 0 0 0 0 0 26 85% 

Mel for 0 1 4 1 0 1 0 14 1 0 0 0 0 0 1 0 23 61% 

Orch 0 0 10 0 1 2 3 1 51 0 1 2 0 0 2 0 73 70% 

Urb D 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 6 83% 

Urb O 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 5 80% 

Urb Line 0 0 0 0 1 0 0 0 0 0 0 16 0 1 0 0 18 89% 

Water 1 0 0 0 0 0 0 0 0 0 0 0 12 1 0 0 14 86% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 23 100% 

Waste 0 0 1 1 1 1 0 3 0 0 0 0 0 0 19 0 26 73% 

Cloud remn 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 9 11 82% 

 
Total 25 90 33 9 59 22 25 18 61 8 10 19 13 25 26 11 454   

 
Accuracy 88% 97% 24% 33% 85% 64% 88% 78% 84% 63% 40% 84% 92% 92% 73% 82%   79% 
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Table 21 Confusion matrix of the land-use map of 1996 based on the separate validation segments, corrected for the segment area. The numbers indicate the area (ha) of segments that 
have the same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.93. 

Full class names: see Table 4. 
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Aqua 4525 0 87 168 68 0 0 0 0 0 0 0 3 0 0 0 4851 93% 

Dry-s rice 0 14965 32 0 0 0 0 0 54 0 0 0 0 0 0 0 15051 99% 

P dry-s rich 0 36 432 7 121 26 0 0 146 0 152 0 0 0 65 0 985 44% 

H dry-s rice 0 0 153 192 21 0 0 0 0 0 0 0 0 0 3 0 369 52% 

Bare field 0 0 117 41 5980 85 0 0 0 38 16 0 0 0 0 9 6286 95% 

Mix no rice 0 0 37 0 0 2869 0 0 53 0 0 0 0 0 0 0 2959 97% 

Mangr 59 0 0 0 0 47 1507 0 25 0 0 0 0 0 0 0 1638 92% 

Mel for 0 14 297 22 0 55 0 6085 17 0 0 0 0 0 6 0 6496 94% 

Orch 0 0 1344 0 31 125 531 56 14974 0 24 103 0 0 308 0 17496 86% 

Urb D 0 0 0 0 0 0 0 0 0 323 45 0 0 0 0 0 368 88% 

Urb O 0 0 0 0 0 0 0 0 0 0 146 44 0 0 0 0 190 77% 

Urb Line 0 0 0 0 47 0 0 0 0 0 0 12431 0 53 0 0 12531 99% 

Water 96 0 0 0 0 0 0 0 0 0 0 0 2165 62 0 0 2323 93% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 1920 0 0 1920 100% 

Waste 0 0 20 6 13 9 0 95 0 0 0 0 0 0 9174 0 9317 98% 

Cloud remn 18 0 0 0 12 0 0 0 0 0 0 0 0 0 0 61 91 67% 

 
Total 4698 15015 2519 436 6293 3216 2038 6236 15269 361 383 12578 2168 2035 9556 70 82871   

 
Accuracy 96% 100% 17% 44% 95% 89% 74% 98% 98% 89% 38% 99% 100% 94% 96% 87%   94% 
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A8.3.  Confusion matrices land-use classification 2006  
 
Table 22 Confusion matrix of the land-use map of 2006 based on the out-of-bag segments in the random forest classification. The numbers indicate the number of segments that have the 
same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.75.  Full class 
names: see Table 4. 
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Aqua 59 0 0 9 0 0 0 0 0 0 0 0 1 1 0 2 72 82% 

Dry-s rice 0 114 4 0 0 0 1 0 9 0 0 0 0 0 0 2 130 88% 

P dry-s rich 2 2 48 2 9 1 0 0 5 0 0 4 0 0 0 2 75 64% 

H dry-s rice 3 0 7 99 5 0 0 0 0 0 0 0 0 0 0 0 114 87% 

Bare field 0 0 7 9 112 0 0 0 0 0 0 0 0 0 0 1 129 87% 

Mix no rice 0 0 4 4 3 26 0 1 3 0 0 1 0 0 0 0 42 62% 

Mangr 1 3 0 1 0 0 21 0 1 0 0 0 0 1 0 0 28 75% 

Mel for 0 1 0 0 0 0 0 21 8 0 0 0 1 0 0 0 31 68% 

Orch 0 8 6 0 0 1 1 4 41 0 0 3 0 0 0 0 64 64% 

Urb D 0 0 1 0 4 0 0 0 0 17 1 1 0 0 0 0 24 71% 

Urb O 1 0 7 1 1 0 0 0 0 3 0 1 0 0 0 0 14 0% 

Urb Line 3 2 3 1 2 0 0 0 3 1 0 36 0 1 0 1 53 68% 

Water 2 0 0 2 0 0 0 0 0 0 0 0 9 1 0 0 14 64% 

Water ch 1 0 1 1 0 0 0 0 0 0 0 1 2 29 0 0 35 83% 

Waste 0 0 1 0 2 1 0 0 0 0 0 0 0 0 5 0 9 56% 

Cloud remn 1 1 1 0 3 0 0 0 0 0 0 0 0 0 0 44 50 88% 

 
Total 73 131 90 129 141 29 23 26 70 21 1 47 13 33 5 52 884   

 
Accuracy 81% 87% 53% 77% 79% 90% 91% 81% 59% 81% 0% 77% 69% 88% 100% 85%   77% 
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Table 23 Confusion matrix of the land-use map of 2006 based on the separate validation segments. The numbers indicate the number of segments that have the same class in the ‘ground 
truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.77.  Full class names: see Table 4.  
 

 
  Reference land-use class 

  

 
  Aqua 

Dry-s 
rice 

P dry-
s rice 

H dry-
s rice 

Bare 
field 

Mix no 
rice Mangr 

Mel 
for Orch  Urb D Urb O 

Urb 
Line Water 

Water 
Ch Waste Cloud Total 
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n
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 c
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Aqua 33 0 1 0 0 0 0 0 0 0 0 0 2 1 0 0 37 89% 

Dry-s rice 0 54 3 0 0 1 1 1 4 0 1 2 0 0 0 0 67 81% 

P dry-s rich 0 2 23 0 3 2 0 0 6 0 2 6 0 0 0 0 44 52% 

H dry-s rice 2 0 1 54 2 0 0 0 2 1 1 1 1 0 1 0 66 82% 

Bare field 0 0 4 2 57 0 0 0 0 2 1 1 0 0 0 2 69 83% 

Mix no rice 0 0 0 0 0 13 0 0 1 0 0 0 0 0 0 0 14 93% 

Mangr 0 0 0 0 0 0 13 0 0 0 0 0 0 0 0 0 13 100% 

Mel for 0 0 1 0 0 0 0 13 2 0 0 0 0 0 0 0 16 81% 

Orch 0 7 1 0 0 4 0 1 15 0 0 1 0 0 0 0 29 52% 

Urb D 0 0 0 0 1 0 0 0 0 8 0 0 0 0 0 0 9 89% 

Urb O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  - 

Urb Line 0 1 1 0 0 0 0 0 1 0 2 15 0 1 0 0 21 71% 

Water 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 100% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 15 100% 

Waste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 100% 

Cloud remn 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 23 27 85% 

 
Total 36 64 37 56 64 20 14 15 31 11 7 26 6 17 4 25 433   

 
Accuracy 92% 84% 62% 96% 89% 65% 93% 87% 48% 73% 0% 58% 50% 88% 75% 92%   79% 
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Table 24 Confusion matrix of the land-use map of 2006 based on the separate validation segments, corrected for the segment area. The numbers indicate the area (ha) of segments that 
have the same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.90.  
Full class names: see Table 4. 
 

 
  Reference land-use class 

  

 
  Aqua 

Dry-s 
rice 

P dry-
s rice 

H dry-
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Aqua 7406 0 33 0 0 0 0 0 0 0 0 0 23 8 0 0 7470 99% 

Dry-s rice 0 7503 214 0 0 16 6 47 191 0 48 18 0 0 0 0 8043 93% 

P dry-s rich 0 247 1650 0 65 122 0 0 660 0 36 270 0 0 0 0 3050 54% 

H dry-s rice 12 0 27 2581 13 0 0 0 23 8 14 85 5 0 56 0 2824 91% 

Bare field 0 0 149 42 3409 0 0 0 0 42 6 28 0 0 0 52 3728 91% 

Mix no rice 0 0 0 0 0 2724 0 0 20 0 0 0 0 0 0 0 2744 99% 

Mangr 0 0 0 0 0 0 1228 0 0 0 0 0 0 0 0 0 1228 100% 

Mel for 0 0 74 0 0 0 0 6345 148 0 0 0 0 0 0 0 6567 97% 

Orch 0 4050 68 0 0 592 0 122 6222 0 0 32 0 0 0 0 11086 56% 

Urb D 0 0 0 0 88 0 0 0 0 891 0 0 0 0 0 0 979 91% 

Urb O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 

Urb Line 0 3 56 0 0 0 0 0 231 0 41 6664 0 161 0 0 7156 93% 

Water 0 0 0 0 0 0 0 0 0 0 0 0 46939 0 0 0 46939 100% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 3496 0 0 3496 100% 

Waste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 412 0 412 100% 

Cloud remn 23 0 30 0 12 0 0 0 0 0 0 0 0 0 0 293 358 82% 

 
Total 7441 11803 2301 2623 3587 3454 1234 6514 7495 941 145 7097 46967 3665 468 345 106080   

 
Accuracy 100% 64% 72% 98% 95% 79% 100% 97% 83% 95% 0% 94% 100% 95% 88% 85%   92% 
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A8.4.  Confusion matrices land-use classification 2009 
 
Table 25 Confusion matrix of the land-use map of 2009 based on the out-of-bag segments in the random forest classification. The numbers indicate the number of segments that have the 
same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.79. Full class 
names: see Table 4. 

 

 
  Reference land-use class 

  

 
  Aqua 

Dry-s 
rice 

P dry-
s rice 

H dry-
s rice 

Bare 
field 
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rice Mangr 
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 c
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Aqua 58 0 1 0 5 0 1 0 0 0 0 0 2 1 0 1 69 84% 

Dry-s rice 0 209 1 0 0 0 0 1 4 0 0 2 0 0 0 5 222 94% 

P dry-s rich 0 3 44 0 2 4 0 0 0 0 3 2 0 0 0 1 59 75% 

H dry-s rice 1 0 0 14 2 0 1 1 0 0 0 0 0 0 0 0 19 74% 

Bare field 10 0 4 1 95 0 0 0 0 0 1 0 0 1 0 1 113 84% 

Mix no rice 0 0 6 0 3 22 0 0 5 0 1 0 0 0 0 0 37 59% 

Mangr 1 1 2 0 0 1 21 0 1 0 0 0 0 0 0 0 27 78% 

Mel for 0 0 0 1 0 0 0 38 7 0 0 0 0 0 0 0 46 83% 

Orch 1 4 2 0 0 5 0 6 34 0 0 2 0 0 0 0 54 63% 

Urb D 2 0 0 0 6 0 0 0 0 21 5 0 0 0 0 2 36 58% 

Urb O 0 0 5 0 5 0 0 0 0 6 18 4 0 1 0 0 39 46% 

Urb Line 0 5 1 0 3 2 0 0 0 2 2 37 0 0 0 0 52 71% 

Water 1 0 0 0 0 0 0 0 0 0 0 0 23 5 0 0 29 79% 

Water ch 1 0 0 0 0 0 0 0 0 0 0 0 1 55 0 0 57 96% 

Waste 0 0 3 0 0 1 0 0 0 0 0 0 0 0 2 0 6 33% 

Cloud remn 2 3 0 0 3 0 0 0 0 0 2 0 0 0 0 118 128 92% 

 
Total 77 225 69 16 124 35 23 46 51 29 32 47 26 63 2 128 993   

 
Accuracy 75% 93% 64% 88% 77% 63% 91% 83% 67% 72% 56% 79% 88% 87% 100% 92%   81% 
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Table 26 Confusion matrix of the land-use map of 2009 based on the separate validation segments. The numbers indicate the number of segments that have the same class in the ‘ground 
truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.77. Full class names: see Table 4. 
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Aqua 30 0 0 0 5 0 0 0 0 0 0 0 1 0 0 0 36 83% 

Dry-s rice 0 108 0 0 0 0 0 2 3 0 0 3 0 0 0 2 118 92% 

P dry-s rich 0 1 15 0 5 3 0 1 4 0 4 1 0 0 0 1 35 43% 

H dry-s rice 0 0 2 7 3 0 0 0 0 0 0 0 0 0 0 0 12 58% 

Bare field 0 0 4 1 38 2 1 0 0 4 1 1 0 0 0 0 52 73% 

Mix no rice 0 0 1 0 0 12 0 1 2 0 0 0 0 0 0 0 16 75% 

Mangr 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 9 100% 

Mel for 0 0 0 0 1 0 0 18 5 0 0 0 0 0 0 0 24 75% 

Orch 0 2 1 0 0 1 3 0 13 0 0 0 0 0 0 0 20 65% 

Urb D 1 0 0 0 3 0 0 0 0 10 3 0 0 0 0 0 17 59% 

Urb O 0 0 1 0 1 0 0 0 0 4 6 0 0 0 0 1 13 46% 

Urb Line 0 0 3 0 0 0 0 0 0 0 4 21 0 0 0 1 29 72% 

Water 1 0 0 1 0 0 0 0 0 0 0 0 13 0 0 0 15 87% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 28 100% 

Waste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 100% 

Cloud remn 2 0 2 0 0 0 0 0 0 0 1 0 0 0 0 59 64 92% 

 
Total 34 111 29 9 56 18 13 22 27 18 19 26 14 28 3 64 491   

 
Accuracy 88% 97% 52% 78% 68% 67% 69% 82% 48% 56% 32% 81% 93% 100% 100% 92%   79% 
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Table 27 Confusion matrix of the land-use map of 2009 based on the separate validation segments, corrected for the segment area. The numbers indicate the area (ha) of segments that 
have the same class in the ‘ground truth’ validation set as in the classification (green) or the number of deviating segments (red). Overall accuracy in lower right corner, 𝜿 coefficient = 0.88. 
Full class names: see Table 4. 
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Aqua 12471 0 0 0 135 0 0 0 0 0 0 0 24 0 0 0 12630 99% 

Dry-s rice 0 8490 0 0 0 0 0 47 482 0 0 134 0 0 0 26 9179 92% 

P dry-s rich 0 3 3991 0 217 435 0 85 538 0 257 17 0 0 0 26 5569 72% 

H dry-s rice 0 0 73 579 50 0 0 0 0 0 0 0 0 0 0 0 702 82% 

Bare field 0 0 512 19 2873 59 29 0 0 99 11 4 0 0 0 0 3606 80% 

Mix no rice 0 0 23 0 0 2347 0 158 350 0 0 0 0 0 0 0 2878 82% 

Mangr 0 0 0 0 0 0 668 0 0 0 0 0 0 0 0 0 668 100% 

Mel for 0 0 0 0 80 0 0 3168 431 0 0 0 0 0 0 0 3679 86% 

Orch 0 221 64 0 0 71 232 0 3354 0 0 0 0 0 0 0 3942 85% 

Urb D 12 0 0 0 20 0 0 0 0 700 323 0 0 0 0 0 1055 66% 

Urb O 0 0 236 0 247 0 0 0 0 266 654 0 0 0 0 32 1435 46% 

Urb Line 0 0 56 0 0 0 0 0 0 0 488 5216 0 0 0 27 5787 90% 

Water 22 0 0 591 0 0 0 0 0 0 0 0 14433 0 0 0 15046 96% 

Water ch 0 0 0 0 0 0 0 0 0 0 0 0 0 1442 0 0 1442 100% 

Waste 0 0 0 0 0 0 0 0 0 0 0 0 0 0 431 0 431 100% 

Cloud remn 18 0 15 0 0 0 0 0 0 0 49 0 0 0 0 1079 1161 93% 

 
 Total  12523 8714 4970 1189 3622 2912 929 3458 5155 1065 1782 5371 14457 1442 431 1190 69210   

 
 Accuracy 100% 97% 80% 49% 79% 81% 72% 92% 65% 66% 37% 97% 100% 100% 100% 91%   89% 
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Appendix 9 Land-use changes 
 
 
 
Table 28 Area of land-use (LU) changes between 1988 and 1996 in km

2
. 38% of the total area did not change. Green font color = no change LU class. Orange font color = more than 10% of 

the area of the class in 1988 shows this change, pink font color = more than 10% of the area of the class in 1996 is a result of this change, blue font color = both the rule for the orange as the 
pink font color applies. Grey shade = LU change class used for predicting land-subsidence rates for entire InSAR-dataset. Note that some changes with large surface area are not used for the 
prediction, because they did not pass the criteria based on e.g. class accuracy (see section 2.6.). Total area = study area without all clouds in 1988, 1996 and 2006, without areas classified as 
water in 1988, 1996 and 2006 and without water in 2006. 

 

  
1988 

 

  
Aqua 

Dry-S 
Rice  

P Dry-S 
Rice 

Bare 
Field  

Mix No 
Rice Mangr Mel For Orch  Urb D Urb O Urb Line Water Waste Total 

1
9

9
6

 

Aqua 526 2 13 78 11 129 1 15 0 1 3 55 9 843 

Dry-S Rice  3 1539 1419 1867 31 10 35 837 1 7 153 14 1188 7106 

P Dry-S Rice 4 24 151 317 21 7 3 88 1 6 17 4 96 739 

Bare Field  30 21 139 1597 42 20 3 70 0 7 51 10 113 2102 

Mix No Rice 6 0 35 117 129 9 1 34 0 3 14 2 69 420 

Mangr 130 1 21 57 15 231 0 55 0 0 2 22 3 538 

Mel For 0 8 37 8 3 0 90 59 0 0 2 1 204 413 

Orch  17 264 1675 761 60 41 31 2496 1 30 91 58 355 5880 

Urb D 3 0 4 15 0 0 0 1 5* 4* 2 2 2 40 

Urb O 0 1 12 11 0 0 0 5 3* 6* 3 2 4 47 

Urb Line 3 105 215 174 18 2 14 164 2 2 100 15 153 969 

Water 6 3 21 18 2 4 1 18 0 1 5 108 19 207 

Waste 1 5 38 29 13 0 69 16 0 1 1 1 748 920 

 
Total 729 1975 3779 5047 348 454 247 3858 14 69 446 294 2965 20225 

 

* These classes will be merged to one urban class for the prediction of land subsidence. 
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Table 29 Area of land-use (LU) changes between 1988 and 2006 in km

2
. 30% of the total area did not change. Green font color = no change LU class. Orange font color = more than 10% of 

the area of the class in 1988 shows this change, pink font color = more than 10% of the area of the class in 2006 is a result of this change, blue font color = both the rule for the orange as the 
pink font color applies. Grey shade = LU change class used for predicting land-subsidence rates for entire InSAR-dataset. Note that some changes with large surface area are not used for the 
prediction, because they did not pass the criteria based on e.g. class accuracy (see section 2.6.). Total area = study area without all clouds in 1988, 1996 and 2006, without areas classified as 
water in 1988, 1996 and 2006 and without water in 2006. 
 

 

  
1988 

 

  
Aqua 

Dry-S 
Rice  

P Dry-S 
Rice 

Bare 
Field  

Mix No 
Rice Mangr Mel For Orch  Urb D Urb O Urb Line Water Waste Total 

2
0

0
6

 

Aqua 637 6 45 239 35 313 7 61 0 3 16 103 39 1504 

Dry-S Rice  0 1080 1129 1698 33 11 56 684 1 9 135 33 1444 6313 

P Dry-S Rice 0 240 554 733 75 35 5 479 1 14 68 18 114 2336 

Bare Field  0 174 292 1370 41 8 3 165 1 6 57 5 112 2233 

Mix No Rice 14 8 42 105 95 17 3 74 0 1 12 5 102 478 

Mangr 27 1 4 6 1 52 0 20 0 0 0 44 0 156 

Mel For 1 12 52 10 0 0 118 58 0 0 1 1 623 876 

Orch  29 243 1225 459 32 11 29 1927 0 15 35 46 246 4298 

Urb D 1 6 22 23 2 1 0 17 7* 12* 3 3 2 99 

Urb O 0 1 5 1 0 0 0 4 0* 1* 0 0 0 14 

Urb Line 20 205 409 399 33 7 24 368 3 8 119 37 266 1897 

Water 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Waste 0 0 1 2 0 0 1 1 0 0 0 0 17 22 

 
Total 729 1975 3779 5047 348 454 247 3858 14 69 446 294 2965 20225 

 

* These classes will be merged to one urban class for the prediction of land subsidence. 
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Table 30 Area of land-use (LU) changes between 1996 and 2006 in km
2
. 50% of the total area did not change. Green font color = no change LU class. Orange font color = more than 10% of 

the area of the class in 1996 shows this change, pink font color = more than 10% of the area of the class in 2006 is a result of this change, blue font color = both the rule for the orange as the 
pink font color applies. Grey shade = LU change class used for predicting land-subsidence rates for entire InSAR-dataset. Note that some changes with large surface area are not used for the 
prediction, because they did not pass the criteria based on e.g. class accuracy (see section 2.6.). Total area = study area without all clouds in 1988, 1996 and 2006, without areas classified as 
water in 1988, 1996 and 2006 and without water in 2006. 
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Aqua 

Dry-S 
Rice  

P Dry-S 
Rice 

Bare 
Field  

Mix No 
Rice Mangr Mel For Orch  Urb D Urb O Urb Line Water Waste Total 

2
0

0
6

 

Aqua 758 7 20 167 20 322 2 134 8 0 5 58 3 1504 

Dry-S Rice  0 4221 212 359 17 18 122 873 2 3 281 24 182 6313 

P Dry-S Rice 0 844 155 210 86 33 9 841 2 9 114 16 16 2336 

Bare Field  0 645 127 1072 51 14 3 234 5 4 45 5 26 2233 

Mix No Rice 11 14 19 64 159 33 6 88 1 1 8 7 67 478 

Mangr 39 3 2 2 0 70 0 22 0 0 0 19 0 156 

Mel For 0 103 11 14 6 0 169 91 1 2 46 4 428 876 

Orch  21 706 100 79 57 35 55 3017 1 4 83 28 113 4298 

Urb D 0 9 11 10 3 1 0 30 15* 12* 4 4 0 99 

Urb O 0 2 1 0 1 0 0 7 0* 2* 0 0 0 14 

Urb Line 14 553 81 124 19 12 45 542 5 9 382 44 68 1897 

Water 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Waste 0 0 0 1 0 0 2 1 0 0 1 0 17 22 

 
Total 843 7106 739 2102 420 538 413 5880 40 47 969 207 920 20225 

 

* These classes will be merged to one urban class for the prediction of land subsidence. 
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Table 31 Area of land-use (LU) changes between 2006 and 2009 in km

2
. 57% of the total area did not change. Green font color = no change LU class. Orange font color = more than 10% of 

the area of the class in 2006 shows this change, pink font color = more than 10% of the area of the class in 2009 is a result of this change, blue font color = both the rule for the orange as the 
pink font color applies. Note that this LU change map is not use for correlation with and predictions of the land-subsidence rate, as explained in section 2.5 and 2.6. Total area = study area 
without all clouds in 2006 and 2009. 

 

  
2006 

 

  
Aqua 

Dry-S 
Rice  

P Dry-S 
Rice 

Bare 
Field  

Mix No 
Rice Mangr Mel For Orch  Urb D Urb O Urb Line Water Waste Total 

2
0

0
9

 

Aqua 1243 77 48 61 35 53 2 26 3 0 49 41 0 1638 

Dry-S Rice  3 3453 779 700 16 3 64 748 5 1 503 4 1 6280 

P Dry-S Rice 19 232 381 287 94 5 8 347 6 1 135 11 2 1529 

Bare Field  34 88 85 728 56 2 19 31 7 0 76 1 1 1129 

Mix No Rice 6 29 42 38 164 0 78 112 1 0 31 1 0 503 

Mangr 19 4 5 0 2 66 0 2 0 0 1 3 0 102 

Mel For 0 94 5 2 9 1 356 98 0 0 37 1 0 603 

Orch  11 317 244 77 41 17 84 1952 1 0 129 10 1 2883 

Urb D 3 7 14 13 3 0 1 4 34 3 9 2 0 93 

Urb O 5 15 85 45 25 0 1 33 17 4 67 5 0 302 

Urb Line 4 351 234 76 17 2 46 250 3 1 465 14 1 1463 

Water 44 20 4 1 1 3 1 24 1 0 11 1348 0 1459 

Waste 0 6 1 1 0 0 1 2 0 0 1 0 6 18 

 
Total 1391 4693 1926 2030 463 153 662 3629 77 11 1515 1441 12 18003 

 



 
A.38 

Appendix 10 Land-subsidence rate per land-use class   
 
 
Table 32 InSAR-based land-subsidence rate statistics per land-use (LU) class based on respectively all points in all tiles 
and in the Tra Vinh tile for which the LU did not change between 1988 and 2006/2009. Std.dev. is the standard deviation, 
CV is the coefficient of variation. 
 

LU class 

InSAR-based subsidence rate 
Nr. of points 

Mean (cm/yr) Median (cm/yr) Std.dev. (cm/yr) CV (-) 

All tiles Tra Vinh All tiles Tra Vinh All tiles Tra Vinh All tiles Tra Vinh All tiles Tra Vinh 

Aqua 1.11 1.26 1.12 1.24 0.7 0.6 0.6 0.5 59,394 15,795 

Dry-S Rice 0.78 1.08 0.78 1.05 0.5 0.5 0.6 0.5 109,013 2,749 

P Dry-S Rice 1.35 1.63 1.33 1.57 0.7 0.6 0.5 0.4 6,996 1,232 

Bare Field 1.29 1.45 1.26 1.42 0.7 0.6 0.6 0.4 80,210 21,429 

Mix No Rice 1.84 1.99 1.82 1.95 0.7 0.7 0.4 0.4 10,450 3,900 

Mangr 1.29 1.26 1.31 1.26 0.7 0.6 0.5 0.5 3,018 954 

Mel For 0.74 - 0.74 - 0.4 - 0.5 - 11,700 0 

Orch 1.35 1.54 1.36 1.54 0.5 0.5 0.4 0.3 264,534 66,032 

Urb D 2.04 2.28 2.07 2.2 0.5 0.6 0.2 0.3 1,540 330 

Urb O 1.76 2 1.78 2.05 0.5 0.7 0.3 0.3 128 32 

Urb Line 0.85 1.46 0.83 1.45 0.5 0.6 0.6 0.4 13,102 462 

Waste 0.6 - 0.58 - 0.4 - 0.7 - 2,287 0 

 
 

  
  

Figure 23  Visualization of which combination of mean or median land-subsidence rates per LU class are significantly 
different from each other at the 95% confidence level based on boxplot notches and/or multiple comparison. Left: 
based on all tiles, right: based on Tra Vinh tile only.  
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Appendix 11 Impact of past land-use changes on subsidence rates 
 

A11.1. Impact land-use change on subsidence based on all InSAR-tiles 
 
Table 33 Impact of past land-use (LU) changes on the average land-subsidence rate based on all InSAR-tiles. A, B, C and D 
represent respectively arrow 1, 2, 3 and 4 in the legend of Figure 24: A = area with no change in first LU class, B = area with 
first LU class in 1988 until 1996 and second LU class in 2006/2009, C = area with first LU class in 1988 and second LU class in 
1996 until 2006/2009, D = area with no change in LU second class. The significance of the difference between the 
subsidence rate related to two different timings of a certain LU change is based on the analysis of boxplots notches and a 
multiple comparison test at the 95% confidence level (y = yes, n = no).  
 

LU change 
Subsidence rate (cm/yr) 
 Longer period second class 

f        

Significant 
difference? 

Number of points 
(*103) 

Category From To  A B C  D BC BD CD A B C D 

Change to 
aquaculture 

Mangr Aqua 1.3 1.1 1.1 1.1 n y y 3.0 22 15 59 

Urbanization 

Dry-S Rice Urb D 0.8 0.9 2.7 2.0 y y y 109 0.5 0.02 1.5 

Bare Field Urb D 1.3 1.6 2.3 2.0 y y y 80 0.9 1.1 1.5 

Orchard Urb D 1.4 1.6 2.0 2.0 y y y* 265 2.6 0.2 1.5 

Waste Urb Line 0.6 0.8 0.8 0.9 y y y 2.3 9.6 10 13 

Change to and 
intensification  
of agriculture 

Bare Field Dry-S Rice 1.3 1.0 0.8 0.8 y y y 80 25 112 109 

Waste Dry-S Rice 0.6 0.8 0.8 0.8 n n n 2.3 16 85 109 

Waste Bare Field 0.6 0.9 1.0 1.3 y y y 2.2 1.5 2.8 80 

Change to 
orchards 

Dry-S Rice Orchard 0.8 1.0 1.2 1.4 y y y 109 16 18 265 
Waste Orchard 0.6 0.9 1.1 1.4 y y y 2.3 10 8.0 265 

* based on boxplot analysis only 
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Figure 24  Impact of land-use (LU) changes on the mean land-subsidence rate for the period 2006-2010 based on the Tra 
Vinh tile only. The first arrow corresponds to the area with no change in the first LU class, the second to the area with the 
first LU class in 1988 until 1996 and the second LU class in 2006/2009, the third to the area with the first LU class in 1988 
and the second LU class in 1996 until 2006/2009 and the last to the area with no change in the second LU class. Note that 
the changes to orchards are the least important in the VMD over the past decades. n = number of points on which the 
average is based. The transparent arrow is based on less than 100 data points and is thus less representative. For values 
and significance of differences between arrows: see Table 33 in this appendix. Full LU class names of the acronyms in the 
LU changes: see Table 4. 
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A11.2. Impact land-use change on subsidence based on the Tra Vinh 
InSAR-tile 

 

Table 34 Impact of past land-use (LU) changes on the average land-subsidence rate based on the Tra Vinh InSAR-tile 
only. A, B, C and D represent respectively arrow 1, 2, 3 and 4 in the legend of Figure 24: A = area with no change in first LU 
class, B = area with first LU class in 1988 until 1996 and second LU class in 2006/2009, C = area with first LU class in 1988 
and second LU class in 1996 until 2006/2009, D = area with no change in LU second class. The significance of the difference 
between the subsidence rate related to two different timings of a certain LU change is based on the analysis of boxplots 
notches and a multiple comparison test at the 95% confidence level (y = yes, n = no). 
 

LU change 
Subsidence rate (cm/yr) 
 Longer period second class 

f        

Significant 
difference? 

Number of points 
(*103) 

Category From To  A B C  D BC BD CD A B C D 

Change to 
aquaculture 

Mangr Aqua 1.3 1.1 1.1 1.3 y y y 1.0 9.6 6.1 16 

Urbanization 

Dry-S Rice Urb D 1.1 1.3  - 2.3  - y - 2.7 0 0 0.3 

Bare Field Urb D 1.5 1.7 2.1 2.3 y y y 1.2 0.1 0.4 0.3 

Orchard Urb D 1.5 1.8 1.9 2.3 n y y 66 0.4 0 0.3 

Waste Urb Line  -  -  - 2.3  -  -  - 0 0 0 0.3 

Change to and 
intensification  
of agriculture 

Bare Field Dry-S Rice 1.5 1.3 1.3 1.1 y y y 21 2.9 3.5 2.7 

Waste Dry-S Rice  -  - 1.2 1.1  -   - y 0 0 0.5 2.7 

Waste Bare Field  -  - 1.3 1.5  -  -  n 0 0 0.1 21 

Change to 
orchards 

Dry-S Rice Orchard 1.1 1.3 1.4 1.5 y y y 2.7 1.4 1.9 66 

Waste Orchard  -  - 1.5 1.5  -  -  y* 0 0 0.4 66 
* based on multiple comparison test only 
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Appendix 12 Importance of the different land-use periods for 
predicting land-subsidence rates 

 
 
Table 35 Importance of the different land-use (LU) periods for predicting land-subsidence rates for all tiles and for the 
Tra Vinh tile based on the increase in mean square error (MS) importance measure of the random forest regression (see 
section 2.4). A higher importance value indicates a larger importance of the LU period for the predictions. Different runs are 
based on different random samples (different seeds) used in the training of the random forest. The run numbers for all tiles 
are identical to those in Table 9; run 1 - 5 in this table correspond to run 6 - 10 for the Tra Vinh tile in Table 9. 
 

  LU period 

Increase in MSE (%) 

Run 1 Run 2 Run 3 Run 4 Run 5 

Value Rank Value Rank Value Rank Value Rank Value Rank 

A
ll 

ti
le

s 

 '88-'96 66 1 64 1 61 2 57 2 64 1 

 '88-'06 59 2 59 2 64 1 57 1 57 2 

 '96-'06 54 3 53 3 53 3 47 4 56 3 

 '06(-'09) 47 4 50 4 47 4 48 3 47 4 

Tr
a 

V
in

h
 t

ile
 

 '88-'96 53 2 64 1 66 1 68 1 72 1 

 '88-'06 54 1 54 3 60 3 62 3 59 3 

 '96-'06 51 3 62 2 63 2 63 2 64 2 

 '06(-'09) 49 4 44 4 53 4 50 4 50 4 
 
 
 
Table 36 Importance of the different land-use (LU) periods for predicting land-subsidence rates for all tiles and for the 
Tra Vinh tile based on the increase in node-purity importance measure of the random forest regression (see section 2.4). 
A higher importance value indicates a larger importance of the LU period for the predictions. Different runs are based on 
different random samples (different seeds) used in the training of the random forest. The run numbers for all tiles are 
identical to those in Table 9; run 1 - 5 in this table correspond to run 6 - 10 for the Tra Vinh tile in Table 9. 
 

  LU period 

Increase in node purity 

Run 1 Run 2 Run 3 Run 4 Run 5 

Value Rank Value Rank Value Rank Value Rank Value Rank 

A
ll 

ti
le

s 

 '88-'96 605 2 619 1 601 2 614 1 603 1 

 '88-'06 492 3 507 3 474 3 516 3 511 3 

 '96-'06 618 1 584 2 632 1 600 2 580 2 

 '06(-'09) 393 4 360 4 373 4 385 4 369 4 

Tr
a 

V
in

h
 t

ile
 

 '88-'96 389 3 376 3 391 3 382 3 404 3 

 '88-'06 425 1 411 1 430 1 424 1 415 2 

 '96-'06 400 2 377 2 416 2 411 2 421 1 

 '06(-'09) 302 4 297 4 304 4 297 4 274 4 
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