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Abstract

The focus of this thesis lies on finding Dirac cones in band structures of two dimensional artificial lattices.
These special band crossing points (BCP’s) indicate interesting electronic properties of the material. In
two dimensional systems, the symmetry of the lattice determines whether BCP’s occur. Graphene, with
its hexagonal lattice structure, is the best known 2D material that contains Dirac cones. Our goal is here
to look for Dirac cones in two dimensional artificial square lattices. Using the symmetries of the square,
we try to find Dirac cones in the band structure. To create these lattices artificially, we use the nearly free
electron model as an approximation to the tight binding model describing a crystal. This approximation
is valid for low energy ranges. Using three different types of lattices, each defined by a different potential
landscape, we find Dirac cones emerging in two of them.
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1. INTRODUCTION 1

1 Introduction

The atomic structure of materials largely determines their electronic properties. The conductivity of metals
arises from their crystalline structure through which loosely bound electrons travel. Insulators, on the other
hand, do not conduct electricity and semi-conductors are somewhere in between. These differences stem from
the range of energies, the electronic band structure, which electrons in a material may occupy. Figure 1 shows
the band structures of metals, insulators and semiconductors. Metals have partially filled bands and empty
states at the Fermi level, allowing charge transport through the material. Insulators have completely filled
bands separated by a large gap, allowing no transport to take place. Between these two types of materials,
semi-conductors have nearly filled bands and only a small band gap, making charge transport possible in
certain conditions depending on, for example, temperature.

Figure 1: Metals have no band gap at the Fermi level. The valence band and the conduction band overlap
allowing charge transport. Insulators show a large gap at the Fermi level, prohibiting charge transport.
Semiconductors have a small band gap, which can be bridged in certain conditions. Figure is taken from
https://archive.cnx.org/contents/d1c4c0c9-7bcb-4245-b320-6d6fdb3ade9e@1/band-gap on Novem-
ber 3, 2017.

In addition to ordinary materials, one may also consider artificial lattices. The interest in these artificial
lattices is manifold. Firstly, it allows us to design any structure we want. Moreover, as opposed to the crystal
lattice structure of existing metals, using these synthetically crafted structures gives us a much higher level
of control. Therefore, we can precisely study the effect of defects or strain on the electronic properties.
The research into these synthetic structures focuses mainly on the study of electronic properties of materials.
It offers a theoretical approach to the the structure of metals, semi-conductors and insulators which may
lead to new insights into their electronic properties. Alternatively, it may also function as a doorway to
the creation of new materials with certain desired properties, such as Dirac-type energy bands. Dirac cones
emerge at the linear crossing point of two energy bands.

In this thesis, we address the question “Can we find Dirac cones in two dimensional artificial lattices?”.
We shall focus especially on the contribution of symmetry to the emergence of this phenomenon.
There are various ways of creating artificial lattices in a lab. Periodic wave guides can be used to trap light
creating a photonic crystal and lasers are used to position ultra-cold atoms in a certain configuration [1].
Another method that is often used to study band structures and other electronic properties with are quantum
dot arrays. Quantum dots are nanoscale particles that behave like artificial atoms with discrete electronic
states and are therefore ideally suited for studying the properties of artificial lattices. An artificial lattice
may also be created on a flat copper or lead surface using carbon monoxide molecules [2]. These molecules
are placed in a certain structural pattern on top of a copper or lead surface using a scanning tunneling
microscope. This creates a potential landscape which determines where the electrons in the material are
allowed to be. Lithography, the etching away of atoms from a surface, uses a similar procedure, but instead
of creating areas where electrons are allowed, it creates holes where electrons are not allowed [3].

The electrons in a crystalline material can be modelled using an atomic tight binding model (TB). This
method takes into account the atomic lattice structure of the system and the interaction between the elec-
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1. INTRODUCTION 2

trons and ions. Each atom is described by a set of orbitals in which electrons may occupy a certain energy.
When orbitals of neighbouring atoms overlap, a dispersive energy band is formed. Theoretical research of
this nature has been done for example on two dimensional honeycomb lattices [4].
Another model used to describe electron behaviour in a crystal is the nearly free electron model (NFE). The
band structure derived from this model is determined by the dispersion relation of a free particle with an
effective mass in a potential field. If a lattice structure is replaced by a nearly free electron model, then the
information pertaining to that lattice is encoded in the effective mass. An advantage of the NFE model is
its malleability. Complicated lattice structures are easily translated to a potential landscape, making calcu-
lations of the band structure less complex.
In the first part of this thesis, we shall take a closer look at these two models and assess whether and under
which conditions the nearly free electron model can be used as an approximation to the tight binding model
for one dimensional systems. In the second part, we use this model to create an artificial lattice in two
dimensions, which we then manipulate in order to find Dirac cones.

2



2. ONE DIMENSIONAL LATTICES 3

2 One Dimensional Lattices

2.1 Tight Binding Model

t

aat

L
Figure 2: A representation of a one dimensional lattice of length L, with a hopping parameter t, atomic
lattice constant aat and superlattice constant as.

The tight binding model describes electrons in a lattice. This model assumes that electrons are tightly bound
to the atoms to which they belong. The interaction with potentials on neighbouring sites is limited. The
basis for this model is a one dimensional infinite chain of atoms, or sites, separated by the atomic lattice
constant aat. In this case only nearest neighbour ‘hoppings’ are included through a hopping parameter t.
This parameter allows the electrons to move from one site (or atom) to the next. The on-site energy is given
by E0. The Hamiltonian for a simple one dimensional tight binding model is given by:

H = t
∑
i

|i〉〈i+ 1|+ h.c.+ E0

∑
i

|i〉〈i| (2.1)

where i denotes the lattice site and h.c. is the hermitian conjugate expression. To find the eigenvalues and
eigenvectors of the system, we will exploit the translation symmetry. Using a Fourier transformation, we find
that the wave function is given by:

|k〉 =
∑
j

eikjaat |j〉, (2.2)

where aat denotes the atomic lattice constant and k the momentum. Acting with H on |k〉, we find:

H|k〉 = [E0 + 2t cos(kaat)]|k〉. (2.3)

Thus, the band structure for a simple one dimensional, infinite lattice is given by: E(k) = E0 + 2t cos(kaat).

2.2 Nearly Free Electron Model

For small values of kaat, this energy can be approximated by

ETB ' E0 + 2t(1− (kaat)
2

2
). (2.4)

The first two terms in this equation can be seen together as an on-site energy, such as the Coulomb interac-
tion of the electron with the ion at that site. The third term is quadratic in the momentum, which makes

it similar to the dispersion relation of a free electron gas (EFE = ~2k2

2m , with mass m = me). This suggests
that, if |kaat � 1|, electrons in the lattice behave as free particles and that the nearly free electron model
can be used as an approximation to an intricate tight binding lattice. In the nearly free electron model, the
ionic lattice structure used in tight binding is replaced by a free electron gas with an effective mass. If a
periodic potential is added to this lattice, the energies of the free electrons, which are described by a time
independent Schrödinger equation (2.5), can be solved using Bloch’s Theorem.

The periodic potential creates a superlattice with lattice constant as. For simplicity, as is considered here as

3



2. ONE DIMENSIONAL LATTICES 4

a multiple of the atomic lattice constant aat, but this is not a general restriction. For the one dimensional
case, we consider a chain of atoms of length L with periodic boundary conditions. The atomic lattice constant
is denoted by aat. This is also shown in Figure 4.
The Schrödinger equation for electrons in a one dimensional lattice is given by:

H =
p2

2m∗
+ V. (2.5)

The Bloch Theorem states that the set of eigenfunctions of an electron in a system with a periodic potential
has the same periodicity as that potential. The periodic potential creates a superlattice in which

V (x+ as) = V (x),

with as the lattice constant of the superlattice. The Bloch Theorem then states that the set of eigenfunctions
must also meet this condition, up to a phase factor φ:

ψk,n(x+ as) = ψk,n(x)eikas ,

where ψk,n(x) is chosen as:
ψk,n(x) = eikxuk,n(x), (2.6)

with k the momentum, n the band index and uk,n periodic. The allowed momenta from the periodic bound-
ary condition of the finite chain are then: kj = 2πj

L .

Using the Bloch waves, the Schrödinger equation becomes:(
p2

2m∗
+

~k
m∗

p+
~2k2

2m∗
+ V (x)

)
uk,n(x) = En(k)uk,n(x). (2.7)

This can be simplified, resulting in the following expression:(
∇2 + 2ik∂x − k2 −

2m∗

~2
V

)
uk,n(x) = −2m∗

~2
En(k)uk,n(x). (2.8)

2.3 Comparing the NFE and TB Models

The NFE model is not always a good approximation for the TB model. Away from the band bottom, the
influence of the lattice plays an important role in the TB model. Figure 3 shows the NFE and the TB model
without the presence of an external potential. The region in which NFE model can apply as an approximation
is k · as ∈ [−0.8, 0.8]. The maxima of the band can also be approximated by a NFE model, using a negative
effective mass. In that case the conductivity of the system is determined by holes moving through the lattice
instead of electrons.

-3 -2 -1 0 1 2 3

0

2

4

6

8

10

k

E
(k
)

Figure 3: The dispersion relations of the NFE model (red) and of the TB model (blue) on the first Brillouin
zone without an external potential
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2. ONE DIMENSIONAL LATTICES 5

2.4 Dimensions

In order to compare the eigenenergies given by the TB model to the dispersion relations of the NFE model,
their energies must be given in the same dimensions.
Firstly, the hopping parameter in the TB model can be fixed, which also fixes the fundamental physical
constants in the Schrödinger equation (2.5) of the NFE model. Ignoring the on-site energy term, the tight
binding energy ETB ' −t(kaat)2 can be equated with the energy of a free particle with effective mass m∗,

ENFE = ~2k2

2m∗ . This results in an expression for t:

t = − ~2

2m∗
, (2.9)

where aat is taken to be 1. Therefore, if we take t = −1, then − ~2

2m∗ = −1.
Secondly, it is important to consider the energies on the same domain when comparing both models. The
first Brillouin zone is defined on the region of k ∈ [− π

as
, πas ] and thus k · as ∈ [−π, π].

These two choices result in a Schrödinger equation which gives a dimensionless energy:(
∇2 +

2ik

as
∂x −

k2

a2s
− V

)
uk,n(x) = −En(k · as)uk,n(x). (2.10)

2.5 Adding an External Potential

In order to study the electronic properties of materials, a superlattice is created on top of the atomic lattice
via the external potential V . For simplicity, the periodicity of this potential is again taken to be a multiple
of the atomic lattice constant, thereby creating unit cells as seen in Figure 4. The tight binding Hamiltonian
of such a system is given by:

H =
∑
i

t[|i, 1〉〈i, 2|+ |i, 2〉〈i, 3|+ · · ·+ |i, n〉〈i+ 1, 1|] + h.c.+
∑
i

n∑
α

Vα|i, α〉〈i, α| (2.11)

where i indicates the unit cell in the superlattice, α the n-th atom in the unit cell, t the hopping parameter
and Vα the external potential at lattice site α.

Figure 4: A one dimensional lattice with three atoms in each unit cell i of the superlattice.

An example of such a superlattice is shown in Figure 4, where the potential is periodic over three atomic
lattice sites. For a superlattice with unit cells containing n = 3 atoms and an external potential Vα =
v0 cos( 2π

as
α · aat + φ), the Hamiltonian is given by:

H =

v0 cos( 2π
3 + φ) t teikas

t v0 cos(2 2π
3 + φ) t

te−ikas t v0 cos(3 2π
3 + φ)

 . (2.12)

To determine the ideal size of the unit cells for the superlattice, a cosine potential will be used. Note
that this potential has a phase which is trivial in the NFE model, but not in the TB model. As Figure 5

5



2. ONE DIMENSIONAL LATTICES 6

shows, the dispersion relation in the TB model is dependent on the phase φ of the potential. However, this
dependency is less important for lower values of the potential, indicated by a smaller v0 (compare Figures 5b
and 5a). The phase dependency also decreases for larger unit cells, as is shown in Figure 5c. In the case of
the NFE model, there is no phase dependency, which can be seen in Figure 5d.
For n = 3, Figure 6a shows the energy bands of both the NFE model as well as the TB model. For higher
bands, the tight binding approximation is clearly not optimal in this case. Figure 6c shows that this approx-
imation is valid when n = 30. Hence, in the low energy range (or for large unit cells) the NFE model is a good
approximation to the TB model. We use this result in Chapter 4 to create artificial lattices in two dimensions.

v0 = 1.4

n = 3
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(a)
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(d)

Figure 5: 5a, 5b and 5c show the phase dependency of the TB energy dispersion (φ = 0 yellow, φ = π blue).
When the strength of the external potential (v0) is decreased, this dependency becomes less important. It
becomes even less important when the size of the unit cell (n) is increased. 5d shows that the NFE model
(red) is not dependent on the phase of the potential.
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v0 = 0.015

n = 3
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(a)

v0 = 0.015

n = 10
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(b)

v0 = 0.015

n = 30

-3 -2 -1 0 1 2 3

0.00

0.02

0.04

0.06

0.08

0.10

k

E
(k
)

(c)

Figure 6: The dispersion relation for the NFE model (red) and the eigenvalues of the TB model (blue) when
an external cosine potential is applied to the lattice. In Figure 6a, the unit cell of the superlattice contains
3 atoms, v0 = 0.015 and φ = π. Although the lowest energy bands are comparable, the other two are clearly
not. As we increase the number of atoms in the unit cell, the energy bands given by the NFE model and the
TB model approach each other. In 6c the unit cell contains 30 atoms, v0 = 0.015 and φ = π. In this case,
the NFE model is a good approximation to the TB model for all three bands.

2.6 Effective Mass Theorem

A method often applied to treat perturbations of a tight binding system, such as lattice defects, impurity
atoms or applied electric or magnetic fields, is the Effective Mass Theorem (EMT). In Appendix A, a deriv-
ation of this theorem is given.
In our case, the theorem may be used to relate the results obtained from the TB model and the NFE model.
The effective mass theorem simplifies the behaviour of electrons which move in a periodic potential much
greater than the atomic lattice constant (as � aat). It replaces the full Hamiltonian by an effective Hamilto-
nian based on the energy dispersion of the unperturbed crystal. In particular, it shows that the wave function
obtained through the NFE model corresponds to the envelope wave function, F . As a result, the NFE model
does not describe the shape of the wave function at the atomic scale.

7



3. TWO DIMENSIONAL LATTICES 8

3 Two Dimensional Lattices

The focus of this thesis lies on two dimensional band structures. In one dimensional systems, band structures
consist only of single bands which do not cross, e.g. they are non-degenerate systems. Two dimensional
systems, however, are a completely different picture altogether. The best known and researched example of
a two dimensional material is graphene [5]. This material exhibits degenerate eigenvalues: points where two
energy bands cross and the energy gap between them is 0. These band crossing points (BCP’s) can indicate
interesting electronic properties of the material. A band crossing point from which the two bands disperse
linearly is called a Dirac cone. Examples of lattices which show Dirac cones in the band structure are the
honeycomb lattice seen in graphene and the Kagome lattice. The checkerboard lattice has band crossing
points from which the bands disperse quadratically. It turns out that the presence of BCP’s can be traced
back to a symmetry in the two dimensional lattice. This is treated in section 3.1. Afterwards, we shall go
into more detail about the structure of graphene in section 3.2.
Aside from the hexagonal lattice, other symmetrical structures may be considered for the study of BCP’s,
such as square lattices. It has been shown that the emergence of Dirac cones can be attributed to the
mirror symmetries of the lattices [6]. Our goal is here to look for BCP’s in two dimensional artificial lattices
with square symmetry. In contrast to the procedure outlined in Chapter 1 of this thesis, where we observed
artificial lattices using the tight binding model and the nearly free electron model in one dimensional systems,
we now limit us to the nearly free electron model in two dimensions. Effectively, we consider a two dimensional
electron gas which is restricted by a potential landscape, consisting of square unit cells from which discs have
been cut where the electrons are not allowed. Using three different types of potential landscapes, we hope to
find band structures containing band crossing points, and specifically Dirac cones.

3.1 Wigner von Neumann Theorem

Not all two dimensional systems exhibit band crossing points. The Wigner von Neumann theorem determines
in which cases they may occur. For a generic two band model the Hamiltonian is given by

H(~k) = ~d(~k) · ~σ + d0(~k) · σ0, (3.1)

where ~σ denotes the Pauli matrices, σ0 the identity matrix, ~d a three dimensional vector and d0 the on-site
energy. The dispersion relation E(~k) can be calculated by diagonalising the Hamiltonian matrix, resulting
in:

E±(~k) = d0(~k)±
√
d2x + d2y + d2z. (3.2)

To obtain a degeneracy, we need E+( ~KBCP ) = E−( ~KBCP ) and thus dx( ~KBCP ) = dy( ~KBCP ) = dz( ~KBCP ) =

0. Put differently, to find such a ~KBCP , we need to consider the intersection of the three level sets
d−1x (0) ∩ d−1y (0) ∩ d−1z (0). In a one dimensional system, there is only one parameter (kx) which determ-
ines the system. Therefore, the inverse function will correspond to points, which have no cross section.
Therefore in one dimension, it is not possible to obtain a degeneracy.
In two dimensions, the system is determined by kx and ky. The level sets correspond to three lines, which
can only intersect in a single point in a fine-tuned example. However, if due to some symmetry of the system
one of the conditions is satisfied for all ~k, e.g. dz(~k) = 0, then d−1z (0) = BZ, and we find that the set of band
crossing points is simply the intersection of the two lines corresponding to d−1x (0) and d−1y (0).
In three dimensions, the level set d−1α is a two dimensional surface. Two intersecting surfaces result in a
line, and a line intersecting with a third surface result in two or more intersection points or the empty set.
Therefore, we find that any three dimensional system can potentially exhibit degeneracies. Below, we will
show explicitly that in graphene inversion and time reversal symmetry ensure that dz(~k) = 0.

8



3. TWO DIMENSIONAL LATTICES 9

3.2 Graphene: Symmetries and Dirac Cones

(a) (b)

Figure 7: Shown here is a schematic representation of graphene. Figure 7a shows the unit cell in direct space.
The two atoms in the unit cell ~ı are indicated by a, b. The lattice vectors are given by ~a1,2. Figure 7b shows

the Brillouin Zone. Indicated are the Dirac cones at K and K ′, the reciprocal lattice vectors ~b1,2.

One material that exhibits Dirac cones is graphene. In this section, the band structure of a simple graphene
model will be given and the different symmetries contributing to the existence and stability of the Dirac
cones in graphene will be explained.
Figure 7a shows a schematic representation of graphene. The tight binding Hamiltonian corresponding to
this lattice is given by:

H = −t
∑
~ı

[|a,~ı〉〈b,~ı|+ |a,~ı〉〈b, (i1, i2 − 1)|+ |a,~ı〉〈b, (i1 − 1, i2)|] + h.c. (3.3)

where a, b denote the two atoms in the unit cell~ı = (i1, i2). Here we have assumed that the hopping parameter
t is the same between each pair of atoms (t1 = t2 = t3 = t).
We define the wave functions for each of the atoms by:

|a/b, k〉 :=
∑
~ı

ei
~k·(i1 ~a1+i2 ~a2)|a/b,~ı〉 (3.4)

in which ~a1,2 are the lattice vectors for the honeycomb graphene lattice. Including only nearest neighbour
interactions and ignoring the on-site energy of the atoms, the Hamiltonian can be written as:

H =

∫
d~k(|a,~k〉, |b,~k〉)H(k)

(
〈a,~k|
〈b,~k|

)
, (3.5)

where

H(k) = −t

(
0 1 + e−i

~k· ~a1 + ei
~k· ~a2

1 + ei
~k· ~a1 + e−i

~k· ~a2 0

)
(3.6)

Figure 8 shows the eigenvalues of the tight binding Hamiltonian for graphene, in which the Dirac cones
located at the K and K ′ points are clearly visible. In Figure 9, the energy bands are shown along the path
Γ → M → K → Γ in the Brillouin Zone, also indicated in Figure 7b. This path, taken along the high
symmetry points and lines of the lattice, functions as a cross section of the Brillouin Zone.

9



3. TWO DIMENSIONAL LATTICES 10

Figure 8: The eigenvalues of graphene and the Dirac cones located at points K and K ′.

Figure 9: The band structure of graphene along the path Γ→M → K → Γ.

In the previous section we have seen that in order for Dirac cones to occur, three conditions must be
satisfied: dx = dy = dz = 0. In the case of graphene, inversion and time reversal symmetry ensure that

dz = 0 is always satisfied. The other two conditions, dx = dy = 0, are satisfied only when ~k = ~K or ~K ′.
These high symmetry points occur due to the three-fold rotational symmetry of the lattice. In the following
paragraphs, the contribution of each of these symmetries shall be made explicit.

3.3 Inversion Symmetry

For the derivation of the inversion and time reversal symmetry, we make use of chapters 4 and 7 in Bernevig’s
Topological Insulators and Topological Superconductors [7]. Inversion symmetry mirrors a lattice in both the
x and y direction. For the graphene lattice shown in Figure 7a this means:

I|a,~ı〉 = |b,−~ı〉

10



3. TWO DIMENSIONAL LATTICES 11

When we let the inversion operator work on the reciprocal wave vector, we get:

I|a,~k〉 =
∑
~ı

ei
~k·(i1 ~a1+i2 ~a2)|b,−~ı〉

=
∑
~

ei
~k·(−j1 ~a1−j2 ~a2)|b,~〉

=
∑
~

ei(−
~k)·(j1 ~a1+j2 ~a2)|b,~〉 = |b,−~k〉. (3.7)

The system is invariant under inversion if [H, I] = 0, or also H = IHI−1. This results in:∫
d~k(|a,~k〉, |b,~k〉)H(k)

(
〈a,~k|
〈b,~k|

)
=

∫
d~kI(|a,~k〉, |b,~k〉)H(k)

(
〈a,~k|
〈b,~k|

)
I

=

∫
d~k(|b, ~−k〉, |a,−~k〉)H(k)

(
〈b, ~−k|
〈a,−~k|

)

=

∫
d~k(|a,~k〉, |b,~k〉)σxH(−k)σx

(
〈a,~k|
〈b,~k|

)
.

Thus, inversion symmetry requires that

H(~k) = σxH(−~k)σx (3.8)

3.4 Time Reversal Symmetry

Time reversal symmetry requires that a system regresses along the same path when time is reversed as it
evolves. To understand how time reversal affects the Hamiltonian, we check how it affects the position and
momentum operators:

T [x̂, p̂]T−1 = T (i~)T−1

[x̂, T p̂T−1] = T (i~)T−1

−[x̂, p̂] = −i~ = T (i~)T−1

Only the momentum operator changes sign, because it is dependent on the velocity, which is a time deriv-
ative of the position invariant operator. This shows that the time reversal operator is proportional to the
conjugation operator. This means that T is anti-unitarian. When the time reversal operator works on a
Hamiltonian, it simply returns the complex conjugate of said Hamiltonian.
Once again, we can calculate what TR does to the Hamiltonian. If [H,T ] = 0, then∫

d~k(|a,~k〉, |b,~k〉)H(k)

(
〈a,~k|
〈b,~k|

)
=

∫
d~kT (|a,~k〉, |b,~k〉)H(k)

(
〈a,~k|
〈b,~k|

)
T−1

=

∫
d~k(|a, ~−k〉, |b, ~−k〉)TH(k)T−1

(
〈a, ~−k|
〈b, ~−k|

)

=

∫
d~k(|a,~k〉, |b,~k〉)TH(−k)T−1

(
〈a,~k|
〈b,~k|

)
.

Time reversal symmetry requires that

H(~k) = TH(−~k)T−1 = H∗(−~k) (3.9)

11



3. TWO DIMENSIONAL LATTICES 12

Combining inversion and time reversal symmetry, we get H(~k) = σxH
∗(k)σx, which if we take the gen-

eric Hamiltonian from equation (3.1) results in:

~d(~k) · ~σ + d0(~k) · σ0 = σx(~d(~k) · ~σ + d0(~k) · σ0)∗σx (3.10)

dx(~k)σx + dy(~k)σy + dz(~k)σz + d0(~k)σ0 = dx(~k)σx + dy(~k)σy − dz(~k)σz + d0(~k)σ0. (3.11)

Here we see that dz(~k) must be equal to 0, which is one of the conditions for a band crossing point.

3.5 C3 Symmetry

As we have just seen, one of the conditions for the Wigner von Neumann theorem has been satisfied by
inversion and time reversal symmetry. This means that in the case of a two dimensional system the existence
of Dirac points is possible. However, the presence of inversion and time reversal symmetry does not fix the
position of the Dirac cones. This is done by the C3 rotational symmetry of the lattice points.
Each point in the lattice can be rotated over 2π

3 , which corresponds to a cyclic permutation of the bond
vectors connecting atom a with its neighbouring atoms b. The Dirac cones are stable when the off-diagonal

elements of the Hamiltonian (3.6) are equal to 0. The equation 1 + e−i
~k· ~a1 + ei

~k· ~a2 = 0 has two solutions:
K · ~a2 = 2π

3 , K · ~a1 = 4π
3 and K ′ · ~a1 = 2π

3 , K ′ · ~a2 = 4π
3 .

12



4. ARTIFICIAL SQUARE LATTICES 13

4 Artificial Square Lattices

In this thesis we look at three types of square lattices. Each type contains a different potential landscape,
which determines the behaviour of the electrons. Type 1 is a square lattice from which a disc with diameter
d1 has been cut. At this disc, a potential approaching infinity has been placed, which serves as a restricted
area for electrons. Periodic boundary conditions are placed on the boundaries of the square. An adaption of
this primary lattice is type 2a, to which an extra disc on the corners of the unit cell has been added, with
diameters d1 ≤ d2. Lattices of type 2b contain three areas where an infinite potential excludes electrons, this
time the added discs are located on the edges of the unit cell, with diameters d1 ≤ d2. A schematic of these
types is given in Figure 10.
The band structure is constructed using a Schrödinger equation for the NFE model similar to equation (2.10),
but adapted to a two dimensional system:(

~∇2 + 2i(
kx
as
∂x +

ky
as
∂y)−

(k2x + k2y)

a2s
− Vα

)
uk,n(x, y) = −En(~k · ~as)u~k,n(x, y), (4.1)

where Vα indicates which type of lattice is used:

• V1 →∞ for x2 + y2 ≤
(
d1
2

)2
• V2a → ∞ for x2 + y2 ≤

(
d1
2

)2
, (x − as

2 )2 + (y − as
2 )2 ≤

(
d2
2

)2
, (x + as

2 )2 + (y − as
2 )2 ≤

(
d2
2

)2
,

(x− as
2 )2 + (y + as

2 )2 ≤
(
d2
2

)2
, (x+ as

2 )2 + (y + as
2 )2 ≤

(
d2
2

)2
• V2b →∞ for x2 + y2 ≤

(
d1
2

)2
, (x− as

2 )2 + y2 ≤
(
d2
2

)2
, (x+ as

2 )2 + y2 ≤
(
d2
2

)2
, x2 + (y + as

2 )2 ≤
(
d2
2

)2
,

x2 + (y − as
2 )2 ≤

(
d2
2

)2

(a) Type 1 (b) Type 2a (c) Type 2b

Figure 10: The three types of artificial lattices used to determine the presence of Dirac cones.

13
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4.1 Lattice Type 1

Figure 11: The lattice structure and band energies for lattice type 1, with a disc/lattice ratio of 0.7
4 .

(a) (b)

(c) (d)

Figure 12: This figure shows the band structures for lattices of type 1, each with a different disc/lattice ratio.
Graphs 12a, 12b, 12c and 12d have a ratio of 1

8 ,
1
4 ,

1
2 and 3

4 respectively. For each lattice, only the four lowest
energy bands are shown along the path Γ→ X →M → Γ in the Brillouin Zone.

Figure 11 shows the lattice and its mirror symmetries in more detail. There are three mirror symmetries in
this simple lattice model. The band structure is plotted along the path Γ → X → M → Γ in the Brillouin
Zone. The band structure in Figure 11 is a specific example for the disc/lattice ratio of 0.7

4 . Figure 12 shows
the band structures for a number of lattices of type 1, each with a different disc/lattice ratio. From these
band structures, we can form conclusions regarding the electronic properties of the lattice.

14



4. ARTIFICIAL SQUARE LATTICES 15

What we see in Figure 12a are the four lowest energy bands calculated along the same path. This band
structure approaches the band structure of a free electron gas, which we saw in Figure 6a. The lowest band
even approaches the form of a parabola, at least in the region M → Γ→ X. This behaviour can be explained
by the low disc/lattice ratio, which in this case is d1

as
= 1

8 . There is only a small region in the lattice where
the electrons are not allowed. A free electron gas experiences no restrictions at all.
At M we can see the second and third band touch each other, while there is still a small gap between them
and lowest band. This gap opens up when the diameter of the disc is increased. The greater the diameter, the
more restricted the electrons are in their freedom and the material changes from a conductor to an insulator,
which is the case in 12d. Between bands two and three, this band gap does not occur: there is a band
crossing point. Whether level repulsion or band crossing points occur is determined by the eigenvalues of the
symmetry operators M̂ and Ĉ4. These operators are explained in more detail in Appendix B. Table 1 shows
the eigenvalues for the symmetry operators of the energy bands for this band structure. At point M , the
BCP is protected by the four-fold rotational symmetry of the lattice. We know that

Ĉ4|a〉 = i|a〉, (4.2)

with |a〉 the wave function corresponding to an energy band at point M and Ĉ4 the rotation operator. For
a system that is time reversal invariant, we can also write:

Ĉ4T |a〉 = TĈ4|a〉 == Ti|a〉 = −iT |a〉. (4.3)

Therefore, 〈a|T |a〉 = 0. The eigenvalues are degenerate and we have a BCP at point M .

n Γ→ X X →M M → Γ M
1 +1 -1 +1 -1
2 +1 +1 -1 +i
3 -1 -1 +1 -i
4 +1 +1 +1 +1

Table 1: The symmetries of the various energy bands (labelled n) in the Brillouin Zone for Figure 12b. The
first three columns show the eigenvalues of the mirror operator M̂ . The fourth column shows the eigenvalues
for the four-fold rotation operator Ĉ4.

However, the BCP at M is not an actual Dirac cone, as the bands do not disperse linearly from the
degeneracy. Hence, we must look at a different model. Here, we will double the original unit cell, while
keeping the square symmetry. This can be done in two distinct ways.

15



4. ARTIFICIAL SQUARE LATTICES 16

4.2 Lattice Type 2a

Figure 13: A type 2a lattice and its corresponding band energies taken along the path Γ → X → M → Γ.
The disc/lattice ratios are d1

as
= 0.6

4
√
2

and d2
as

= 0.8
4
√
2
.

Type 2a is an example of a more complicated lattice structure. The unit cell is doubled in size and the
potential discs on the corners are increased in size with respect to the central disc. Instead of the original
symmetries (indicated with blue, green and red in Figure 11), only two symmetries are preserved. The
blue symmetry is broken due to the alternating sizes of the discs. This results in a more complicated band
structure, an example of which is shown in Figure 14. Since we doubled the size of the unit cell, there are
now six energy bands instead of four in the same energy range as in the case of lattice type 1.
Again, there are several points of interest that can be located in the band structure. There are band crossing
points at M (bands 1 and 2) and Γ (bands 3 and 4).
Clearly visible are two BCP’s in the fourth and fifth band along the high symmetry lines Γ → X (green
symmetry) and M → Γ (red symmetry). The bands do display linear dispersion around these points, which
mean that we are dealing with Dirac cones. No level repulsion takes place as the bands have opposite mirror
symmetry eigenvalues.

16
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4.3 Lattice Type 2b

Figure 14: A type 2b lattice and its corresponding band energies taken along the path Γ → X → M → Γ.
The disc/lattice ratios are d1

as
= 0.5

4
√
2

and d2
as

= 0.7
4
√
2
.

We can alter the simple lattice in a different way as well. Type 2b consists of a unit cell that has been doubled
in size with an extra potential disc placed in the center of each unit cell. This configuration conserves the
blue and green symmetries.
The band structure of type 2b is similar to that of type 2a, although the position of some of the BCP’s has
shifted. The lowest energy band is isolated once again, and the BCP’s are now located at Γ (bands 2 and
3) and M (bands 2 and 3). However, the BCP between bands 4 and 5 is much more interesting. Similar to
the previous case, there is a Dirac cone along the line Γ→ X (green symmetry). However, whereas type 2a
also showed a Dirac cone along M → Γ, type 2b shows level repulsion. We can explain this by looking at
the symmetries of the lattice. Lattices of type 2b only exhibits the blue and green symmetry, and thus the
Dirac cone along the green line is conserved, while the Dirac cone along the red line has disappeared. Energy
bands 4 and 5 correspond to eigenfunctions with the same symmetry along the path M → Γ.

17
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5 Conclusion, Discussion and Outlook

5.1 Conclusion

The purpose of this thesis is to create an artificial lattice that contains Dirac cones, using a nearly free
electron model (NFE). We specifically focus on the symmetries of the (square) lattice which contribute to
this phenomenon. In Chapter 2 we have seen that the NFE model, which describes the behaviour of a particle
in a potential landscape, can be valid approximation for the tight binding model (TB model) for the one
dimensional system. However, this validity depends on the size of the unit cell of the superlattice (e.g. the
potential landscape). A large unit cell ensures that we stay in the low energy regions where the TB model can
be approximated by a quadratic dispersion. The Effective Mass Theorem shows us that in this low energy
range, the effects of the atomic lattice are of little importance. It is therefore a localised solution.
Having established that the nearly free electron model is a valid approximation with which to describe lattices,
we can use it to create a two dimensional artificial lattice. In Chapter 3 we analyse the conditions necessary
for the emergence of Dirac cones in two dimensional materials, taking graphene as an illustrative example.
From Wigner von Neumann’s theorem we infer that for two dimensional systems, the symmetry of the lattice
is vital for the existence of band crossing points in general, and Dirac cones in particular. Therefore, in
Chapter 4 we create three types of square lattices, each of which contains a certain set of mirror symmetries.
Lattice type 1 contains three sets of symmetries. Although the band structure derived from it shows a band
crossing point on the high symmetry point M of the Brillouin Zone, it does not contain Dirac cones. These
linear crossings do emerge, however, in two adaptations of the basic lattice type 1. The band structure of
type 2a shows two Dirac cones, located on the high symmetry lines in the Brillouin Zone. The symmetries
contributing to this are the red and the green symmetry of the original lattice. Type 2b only shows one Dirac
cone, located on the diagonal high symmetry line. Because the red symmetry is broken in this lattice, the
second Dirac cone has disappeared. On the blue symmetry, the eigenfunctions have the same eigenvalues for
the mirror operators, resulting in level repulsion.

5.2 Discussion

The model used in this thesis to find Dirac cones in two dimensional lattices is accurate for low energy ranges,
yet it is also simplistic. The nearly free electron model is a valid approximation to the tight binding model
in low energy ranges (see sections 2.3-2.5), but this does not take into account the complicated interactions
of the electrons with the lattice, as it only considers nearest neighbour interactions. Other interaction terms
are also neglected, such as the spin-orbit coupling of the electrons.
During our research we encountered several problems regarding the technological tools used for calculating
the band structures. Mathematica is not optimally equipped for dealing with eigenvalue problems with
complicated boundary conditions.

5.3 Outlook

There are several possibilities for future research in using the nearly free electron model as a tool for creating
artificial lattices. One could, for example, look at triangular or other types of lattices. Another possibility
is to take into account the interactions of the lattice beyond the nearest neighbour approximation, as well
as the effects of the spin-orbit coupling of the electrons. In this thesis, we have assumed the electrons to
be non-interacting and have neglected their spin orientation. Including this contributes to a more realistic
description of electron behaviour in crystals, than the model described here.

18



6. ACKNOWLEDGEMENT 19

6 Acknowledgement

I would like to thank my supervisors Prof. Dr. Cristiane de Morais Smith and Guido van Miert MSc at the
Institute of Theoretical Physics at Utrecht University. Guido’s door seemed always to be open whenever I
had questions or doubts about this thesis. I never left his office without a renewed sense of motivation or ideas.

Author
Wies Uijttewaal

19
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A The Effective Mass Theorem

Here we follow the method of Smith, Janak and Adler to explain the Effective Mass Theorem [8]. We start by
replacing the Hamiltonian in the Schrödinger equation by an unperturbed Hamiltonian and a perturbation:

(H0 +H ′)ψn(~r, t) = i~
∂ψn(~r, t)

∂t
(A.1)

The wave function ψn(~r, t) is replaced by a wave packet centered around k = 0:

ψn(~r, t) =

∫
d3kAnk(t)ei

~k·~runk(~r), (A.2)

with Ank an amplitude function, and ei
~k·~runk(~r) the Bloch functions, giving the result∫

d3k(En(~k) +H ′)Ank(t)ei
~k·~runk(~r) = i~

∫
d3kȦnk(t)ei

~k·~runk(~r) (A.3)

where we used the result of Bloch’s Theorem: H0e
i~k·~runk(~r) = En(~k)ei

~k·~runk(~r). Bloch’s Theorem also states

that En(~k) is periodic in reciprocal space. This allows us to write

En(~k) =
∑
~Rl

Enle
i~k·~Rl , (A.4)

with ~Rl the lattice vectors. Replacing ~k by −i~∇ requires that the following identity must hold:

En(−i~∇) =
∑
~Rl

Enle
~Rl·~∇ (A.5)

If we let this operator En(−i~∇) work on a function f(~r), we get:

En(−i~∇)f(~r) =
∑
~Rl

Enle
~Rl·~∇~r

≈
∑
~Rl

Enl[1 + ~Rl · ~∇+
1

2
(~Rl · ~∇)(~Rl · ~∇) +O(~Rl · ~∇)]f(~r)

=
∑
~Rl

Enl[f(~r) + ~Rl · ~∇f(~r) +
1

2
~Rl,α ~Rl,β

∂2

∂r,α∂r,β
f(~r) +O(~Rl · ~∇) = f(~r + ~Rl) (A.6)

We can also let it operate on a Bloch function, giving us:

En(−i~∇)ψnk(~r) =
∑
~Rl

Enlψnk(~r + ~Rl)

=
∑
~Rl

Enle
i~k·(~r+~Rl)unk(~r + ~Rl)

=
∑
~Rl

Enle
i~k·~Rlei

~k·~runk(~r)

=
∑
~Rl

Enle
i~k·~Rlψnk(~r)

= En(~k)ψnk(~r). (A.7)

Substituting this result into the Schrödinger equation gives us the Effective Mass Theorem:

[En(−i~∇) +H ′]ψn(~r, t) = i~
∂ψn(~r, t)

∂t
. (A.8)

20



A. THE EFFECTIVE MASS THEOREM 21

The original Hamiltonian has been replaced by an effective Hamiltonian in the form of the operator En(−i~∇),

which is derived from the result of the perfect crystal. This operator can also be written as p2

2m∗ , in the case
of a free particle (V = 0).

In order to apply the effective mass theorem, the dispersion relation of the perfect crystal, E(~k), must
be known throughout the Brillouin Zone. If that is the case, perturbations on the crystal can be calculated
in a relatively simple manner, without having to use the full Hamiltonian.
The Effective Mass Theorem can be applied in local regions in tight binding systems, where the dispersion
relation can be specified or approximated on a part of the Brillouin Zone, for example with the NFE model.
The EMT then provides a solution for the wave function in these regions.
If the dispersion relation is localised around k = 0, the Bloch functions can be expanded to:

ψn(~r) = ei(
~k− ~k0)·~rψnk0(~r).

This results in a new wave function

ψn(~r, t) =

∫
d3kAnk(t)ei(

~k− ~k0)·~runk0(~r) (A.9)

= F (~r, t)ψn0
(~r), (A.10)

where the function F represents an envelope function varying slowly in ~r. This envelope function contains
the information of the superlattice.
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B Symmetry Operators

The symmetry of the lattice can be exploited to determine whether a band structure contains BCP’s. There
are several operations we can perform on the band structures obtained by (4.1). In this thesis we focus on two
of these. In the first place, the mirror operator M̂ , operates on the eigenfunctions of the Hamiltonian. It gives
us information regarding the symmetry of the energy bands along high symmetry lines. It determines whether
an energy band in a particular region of the Brillouin Zone belongs to an even or an odd eigenfunction. This is
useful, because we know that energy bands with equal symmetry do not form a band crossing point. Instead
a band gap will appear when the disc/lattice ratio is increased. However, increasing this ratio will not result
in a gap between two touching bands with opposite symmetry. This indicates the presence of a band crossing
point. The operator works along the following equations:

〈ψ|M̂ |ψ〉 =

∫
dxdyψ∗(x, y)M̂ψ(x, y) = ±1, (B.1)

where ψ(x, y) = e
i

as
(kxx+kyy)uk,n(x, y) and M̂ is the mirror operator along one of the high symmetry lines

of the Brillouin Zone. On the region Γ → X, the mirror operator M̂y is used, with M̂yψ(x, y) = ψ(x,−y).

On the region X → M , M̂x is used, with M̂xψ(x, y) = ψ(−x, y). On the region M → Γ, M̂xy is used, with

M̂xyψ(x, y) = ψ(y, x).

A second operator that indicates BCP’s is the rotation operator, R̂. This is actually a special variant of the
mirror operator, but instead of operating along high symmetry lines, it operates on high symmetry points. At
these points (indicated by M in the Brillouin Zone) a double degeneracy is protected both by the four-fold
rotation symmetry of the lattice as well as time-reversal symmetry. This is similar to the C3 symmetry
stabilising the Dirac points in the graphene lattice. The symmetries under C4 rotation of the crossing energy
bands are given by the eigenvalues of the rotation matrix:(

〈ψi|R̂|ψi〉 〈ψi|R̂|ψj〉
〈ψj |R̂|ψi〉 〈ψj |R̂|ψj〉

)
,

with

〈ψi|R̂|ψi〉 =

∫
dxdy ψ∗i (x, y)R̂ψi(x, y) =

∫
dxdyψ∗i (x, y)ψi(−y, x). (B.2)
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