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Abstract

This thesis develops a method of quantitatively describing the e�ects of

inserting an impurity into a one- or two-dimensional crystal. Firstly, the

Green's function, a mathematical function necessary to �nd the density

of states for such a system, is introduced. From there on, the thesis will

proceed to �nding the eigenenergies for the pure crystals using an exact

and an approximate method. The impurity is then inserted in the form of

a Dirac delta potential and the results of both methods are compared. For

low energies the two methods reinforce each other and the results indicate

that particles wish to scatter of with speci�c momenta and some positions

are unfavorable to be occupied. For higher energies the approximation is

no longer viable and results di�er from the exact results.
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1 Introduction

In solid-state physics the characteristics of a solid are governed by the underly-
ing geometry of the structure between its molecules or atoms. The conductivity,
rigidity or speci�c heat of a crystal can all be contributed to this crystal struc-
ture. Recently, this �eld has become more interesting. In 2010 the Nobel Prize
in Physics was awarded to André Geim and Konstantin Novoselov for charac-
terizing graphene, a hexagonal carboncrystal with desirable conductivity, both
electronic and thermal [1]. Graphene's high conductivity is due to the fact that
the electrons inside can move easily from atom to atom as they have e�ectively
lost their mass.

The behavior of materials is often greatly impacted by their purity or impu-
rity. Nature rarely produces pure crystals and often leaves small imperfections.
These impurities or defects range from a vacancy at one site to an entirely dif-
ferent atom being situated at said site. Having a di�erent atom at the site
can make this a more or less favorable site for electrons to occupy. Alloys (in-
termetallic compounds) are an example where substituting atoms can result in
much more useful materials [2]. There is also the concept of doping where sili-
con may be altered by inserting an atom with an electron more (or less) in the
valence shell to tune the material's properties. These alterations are re�ected
in the density of states. This thesis will give insight in the e�ect of single im-
purities by comparing the crystals to their pure counterparts.

In Section 2 we will introduce the Green's function. This function is an es-
sential and powerful tool to get reliable results for the density of states. In
Section 3 the lattice model is discussed and approximated as a continuum. We
will then proceed by �nding the density of states for the pure crystals. Sections
4 and 5 are aimed towards �nding the density of states for the crystals with
an impurity inserted and comparing the approximate and exact results. Lastly,
Section 6 concludes by evaluating the results found in this thesis.
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2 The Green's Function

In this section we will give an introduction to the Green's function, an essential
asset in �nding certain characteristics of systems such as the density of states.
To start we will give a formal introduction and then use its de�nition to �nd an
expression for the density of states. From this point on we will closely follow
[4] to �nd an expression for the Green's function and relate it to the density of
states.

2.1 Introducing the Green's Function

Originally introduced to help solve linear di�erential equations, the Green's
function is any solution of the equation

LG (x, s) = δ (x− s) , (1)

where L is a linear di�erential operator and δ (x− s) is the Dirac delta function1
[5]. If we now look at the eigenfunctions ψn (x) for which

Lψn (x) = λnψn (x) (2)

holds, we can perhaps already see that the Green's function can be used for the
Schrödinger equation;

(E −H)G (x, x′, E) = δ (x− x′) . (3)

Using the equation above together with following relations in bra ket notation:

δ (x− x′) = 〈x|x′〉 (4)

I =

ˆ
dx|x〉〈x|

H (x) δ (x− x′) = E〈x|x′〉
≡ 〈x|H|x′〉

G (x, x′, E) ≡ 〈x|G (E) |x′〉,

one can rewrite Eq. (3) to

(E −H)G (E) = I, (5)

and then use the identities from Eqs. (4) to �nd the matrix element of Eq. (5)
corresponding to the elements (x, x′):

1Here we are assuming a continuous system. A square lattice would be discrete and we
would substitute G (x, s) by Gxs and δ (x− s) by δxs.
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〈x| (E −H)G (E) |x′〉 = 〈x|EG (E) |x′〉 − 〈x|HG (E) |x′〉
= EG (x, x′, E)− 〈x|HG (E) |x′〉
= EG (x, x′, E)−H (x) 〈x|G (E) |x′〉
= EG (x, x′, E)−H (x)G (x, x′, E) , (6)

and taking the same matrix element on the righthandside we end up with:

EG (x, x′, E)−H (x)G (x, x′, E) = δ (x− x′) . (7)

When none of the eigenvalues of E−H are equal to 0, we can �nd from Eq. (5)

G (E) = (E −H)
−1
. (8)

Multiplying this expression with an identity matrix, we �nd:

G (E) =
∑
n

ψn (x)ψ?n (x′)

E − En
. (9)

A mindful reader will notice that when the energy is at an eigenenergy level, the
Green's function diverges. To make sure the Green's function is still de�ned at
these essential points we add an in�nitesimal, imaginary value η to the energy.
This version of the Green's function we will denote as the retarded Green's

function:

GR (E) = lim
η→0+

∑
n

ψn (x)ψ? (x′)

E + iη − En
. (10)

2.2 The Green's Function for Impurities

To complete our arsenal of Green's functions we still need to make one im-
portant distinction. Suppose we have a Hamiltonian H which we decompose as
H = H0 +HI where H0 is the bare Hamiltonian (the kinetic part) and HI is the
interacting part (the potential). In Sections 4 and 5 we will consider a Hamilto-
nian describing a single impurity, i.e. with a constant potential except for one
site2. Now we can make the distinction between the bare Green's function and
the total Green's function. The bare Green's function,

GR0 (E) = lim
η→0+

(E + iη −H0)
−1
, (11)

2We will discuss a scattering potential in detail in Sections 4 and 5 and brie�y discuss an
attractive potential in Section 4.1.4.
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is solely dependent on the bare Hamiltonian, while the total Green's function
depends on the full Hamiltonian.

The total Green's function can be calculated by inserting the full Hamiltonian;

GR (E) = lim
η→0+

(E + iη −H0 −HI)
−1

= lim
η→0+

(
(E + iη −H0)

(
I− (E + iη −H0)

−1
HI

))−1
=
(
I−GR0 (E)HI

)−1
GR0 (E)

= GR0 (E) +GR0 (E)HIG
R
0 (E) +GR0 (E)HIG

R
0 (E)HIG

R
0 (E) + . . . ,

(12)

where we have used the series expansion of (I−A)
−1

= I + A + A2 + . . . for
square matrices A to reach the �nal line. To make this cumbersome expression
easier to read, we will introduce the T -matrix, de�ned as3:

T (E) ≡ HI +GR0 (E)HIG
R
0 (E) + . . .

= (I−GR0 (E)HI)
−1HI . (13)

With this matrix the expression for the operator GR (E) becomes

GR (E) = GR0 (E) +GR0 (E)T (E)GR0 (E) . (14)

Now that we have an expression for the Green's function as an operator �nding
an expression for the Green function is a possibility. The Green function is
useful as it will pave the way towards �nding the local density of states ρ (~r,E)
(LDOS) which we will discuss in Sections 4.1 and 5.1. As expressed in Eq. (4)
the Green's function can be found using:

GR (x, x′, E) = 〈x|GR (E) |x′〉. (15)

If we now insert the expression found in (14) into this equation we �nd that

GR (x, x′, E) = GR0 (x− x′, E) +GR0 (x,E)T (E)GR0 (−x′, E) , (16)

where we have inserted an impurity at x = 0 which alters the second term.
There are a few things worth noting. The �rst term is now dependent on x−x′
as it is solely dependent on the bare Hamiltonian and is therefore translationally
invariant (i.e. G (x+ x0, x

′ + x0, E) = G (x, x′E)). This term describes moving
from point x towards x′ with no interaction with the potential.

3Usually this matrix is very sparse and in our case we will only have one non-zero element.
It can be interpreted as accounting for scattering onto the impurity any amount of times as

Eq. (12) indicates.
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The second term makes up for all other propagations where a particle may
scatter once, twice or any times o� of the impurity at x = 0. This can be
written with a bare Green's function hopping to the impurity. Then the T -
matrix accounts for all possible scatterings and another bare Green's function
to then hop from the impurity to x′.

2.3 The Green's Function and the Density of States

To see the relation between the Green's function and the density of states we
start at the most basic expression of the density of states ρ (E),

ρ (E) =
∑
n

δ (E − En) . (17)

From this point we can �nd the LDOS by simply multiplying by the probability
to �nd a particle at x:

ρ (x,E) =
∑
n

δ (E − En) |〈x|ψn〉|2. (18)

To now see the relation between the density of states and the Green's function
a di�erent de�nition is needed for the Dirac delta function:

δ (x) = lim
η→0+

1

π

η

x2 + η2
. (19)

To motivate this de�nition, note that for any x di�erent than x = 0 this equals
zero as η → 0. When x = 0 the function reduces to limη→0+

1
π

1
η and this tends

to in�nity. These two domains are what de�ne the Dirac delta function. As a
last condition we must check the normalization,

ˆ ∞
−∞

δ (x) = lim
η→0+

ˆ ∞
−∞

dx
1

π

η

x2 + η2

= lim
η→0+

ˆ ∞
−∞

dx
1

πη

1(
x
η

)2
+ 1

= lim
η→0+

ˆ ∞
−∞

1

π

dy

y2 + 1

=

ˆ π/2

−π/2

du

cos2 (u)

1

π

1

tan2 (u) + 1

=

ˆ π/2

−π/2

du

π

1

cos2 (u) + sin2 (u)

= 1.
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Here we have used the substitutions that y = x
η and then tan (u) = y. From this

we can see that as η → 0, y → ±∞, which in turn implies u→ ±π2 . This proves
the behavior of our expression is the same as that of the Dirac delta function4.
Now we can �ll in Eq. (18) with this expression:

ρ (x,E) = lim
η→0+

∑
n

1

π

η

(E − En)
2

+ η2
|〈ψn|x〉|2

= − 1

π
lim
η→0+

∑
n

Im
1

E + iη − En
〈x|ψn〉〈ψn|x〉

= − 1

π
Im lim

η→0+

∑
n

〈x| 1

E + iη − En
|ψn〉〈ψn|x〉

Now we can realize that in the �nal line we can replace En by H;

= − 1

π
Im lim

η→0+

∑
n

〈x| 1

E + iη −H
|ψn〉〈ψn|x〉

= − 1

π
Im lim

η→0+

∑
n

〈x| (E + iη −H)
−1 |x〉

= − 1

π
Im GR (x, x,E) . (20)

Note that we have used 1
x+iη = x−iη

x2+η2 to arrive at the second line of the deriva-
tion. Furthermore it should be noted that we have only taken the retarded
Green's function as a solution while there is also the option of an advanced
Green's function which has a di�erent sign and instead of a positive in�nitesi-
mal amount η it adds a negative amount η. Since we will not use the advanced
Green's function, we disregard it.

4Consequently, this also means we can replace limη→0+ with the y-integral from −∞ to
∞. In the next line we use that tan (u)→ ±∞ as u→ ±π

2
to get the �nal result.
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3 Lattice Model and Continuum Approximation

This section will look at the two relevant systems that will be discussed for the
rest of the thesis. First, it will introduce the one-dimensional monatomic chain,
�nd its eigenenergies, approximate it using a quadratic dispersion to then �nd
the density of states for both expressions for the eigenenergies and compare
them. Afterwards this will be repeated for a two-dimensional square lattice.

3.1 A Monatomic Chain

Let us take the most basic crystal we can think of; a monatomic chain of equidis-
tant sites. Let α be the lattice constant and N the amount of atoms (Fig. 1).
For simplicity we will assume each atom only has one orbital and which may
be occupied by a single electron due to the Pauli exclusion principle5 [8]. It is

· · · · · ·
α

Figure 1: A monatomic chain of equidistant sites.

possible for electrons to leave one site and enter another site. This phenomenon
is called hopping. Suppose this hopping is characterized by a hopping constant
t, which is the probability amplitude for an electron to hop to a nearest neighbor
site. Combined with a chemical potential µ the discrete Schrödinger equation
will then be of a form

Hij =− t (δi,j+1 + δi,j−1)− µδi,j , (21)

where we note that with periodic boundary conditions we will use N+1 = 1. As
the Hamiltonian is periodic it can be Fourier transformed to �nd the system's
dependence on the momentum k. The Fourier transformation yields:

Hkk′ = − t

N

N∑
i,j

(
e−ikiαe−ik

′jαδi,j+1 + e−ikiαe−ik
′jαδi,j−1

)
− µ

N

∑
e−ikiαe−ik

′jαδi,j

= − t

N

N∑
i

(
e−ikiαe−ik

′(i−1)α + e−ikiαe−ik
′(i+1)α

)
− µ

N

N∑
i

e−ikiαe−ik
′iα

= − t

N

N∑
i

(
e−i(k+k

′)iαe−ik
′α + ei(k+k

′)iαeik
′α
)
− µ

N

N∑
i

e−i(k+k
′)iα.

After using the relation δk,−k′ =
1

N

∑
n e

i(k+k′)n it is clear to see that

5Strictly speaking states could be occupied by both a down-spin and up-spin electron, but
for simplicity we ignore spin.
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Hk =− (2t cos (kα) + µ) , (22)

from which we can conclude that the eigenenergies are given by:

Ek = −2t cos (kα)− µ. (23)

3.1.1 Approximating the Eigenenergies

As presented in Eq. (23) the eigenenergies for the monatomic chain are given
by Ek = −2t cos (kα) − µ. Now we we will look at an approximation for low
momenta. For this to be a realistic approximation we need to set µ such that
we are in the lower part of the energy band as seen in Fig. 2, i.e. µ ≈ −2. In
the particular case of a cosine function we can approximate:

cos (kα) ≈ 1− α2 k
2

2
+ . . . (24)

and as a result can approximate the eigenenergies as:

Ek ≈ tα2k2 − µ̄ (25)

For the rest of the one dimensional case we will set µ̄ = 0. In Fig. 2 it is clear
the approximation works well for small k, but deviates for larger values, which
we will keep in mind throughout6.

-π 0 π

0

5

10

k

E
k

Figure 2: The exact (−2t cos (kα)−µ) and approximate (−tα2k2) eigenenergies
shown in red and orange respectively. Here µ = 2.

6For all numerical results α and t have been set to 1.
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3.1.2 The Density of States

To �nd the bare density of states ρ0 (E) we can use the approximation found
above and start by �lling in Eq. (20) with a bare Green's function

ρ0 (E) = − 1

π
Im
(
GR0 (0, E)

)
. (26)

As we do not have an expression for the eigenenergies (and thus the Green's
function) dependent on x we must use G (k,E) and perform a Fourier transfor-
mation:

GR0 (x,E) = lim
η→0+

ˆ ∞
−∞

dk

2π

eikx

E + iη − tα2k2

= lim
η→0+

ˆ ∞
−∞

dk

2π

eikx

ω − tα2k2
, (27)

Figure 3: The contour for inte-
gration.

where we have made the substitution ω =
E + iη.

We will not calculate this integral explicitly,
but rather see it as a component of a contour
integral consisting of a straight line along the
real axis from −a to a to then loop back with
a semi-circle of radius a (Fig. 3). In Fig. 3 a
possible pole has been indicated with j. For
a contour integral we know it is proportional
to the sum of residues residing inside the con-
tour thanks to the Residue theorem [6];

lim
a→∞

ˆ a

−a
dk

eikx

ω − tα2k2
+

ˆ
arc

lim
a→∞

dk
ei
~k·~x

ω − tα2a2

= 2πi · Res
(

eikx

ω − tα2k2
, kpole

)
, (28)

where Res(f (k) , kpole) gives us the residue of the function at the pole located
at kpole. What is important is to realize is that the second integral will go
to zero as a goes to in�nity. This as k is a positive imaginary number and
thus the exponent becomes e−Im(k)x which goes to zero. To add upon this, the
denominator also goes to in�nity which nulli�es the expression even quicker.
This means the second term can be disregarded and we end up with

lim
a→∞

ˆ a

−a
dk

eikx

ω − tα2k2
= 2πi · Res

(
eikx

ω − tα2k2
, kpole

)
. (29)
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Some basic rewriting shows us that kpole = ±
√

ω
tα2 . Combining this with the

de�nition of Res(f (k) , kpole) ≡ limk→kpole (k − kpole) f (k) grants us for x > 0:

lim
a→∞

ˆ a

−a
dk

eikx

ω − tα2k2
= 2πi · lim

k→kpole
(k − kpole)

(
eikx

ω − tα2k2

)
= 2πi · lim

k→kpole

eikx

−2tα2k

= −πi ·
√

1

tα2ω
exp

[
i

√
ω

tα2
x

]
. (30)

What there is yet to see is that for x < 0 we can repeat the same process but
now for a contour in the negative imaginary plane. This yields

lim
a→∞

ˆ a

−a
dk

eikx

ω − tα2k2
= −πi ·

√
1

tα2ω
exp

[
−i
√

ω

tα2
x

]
(31)

and combining Eqs. (30) and (31) with Eq. (26):

GR0 (x,E) = lim
η→0+

−1

2

[
i

√
1

tα2ω
exp

(
i

√
ω

tα2
|x|
)]

. (32)

From this we can �nd the bare density of states (i.e. without an impurity):

ρ0 (E) =
1

2π
lim
η→0+

Im

[
i

√
1

tα2ω

]

=
1

2π
lim
η→0+

Re

[√
1

tα2ω

]
(33)

=
1

2π
lim
η→0+

√
1

tα2E
Θ (E) , (34)

where Θ (E) is the Heaviside function de�ned to be 0 for E < 0 and 1 for E ≥ 0.
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3.1.3 Comparison of the Exact and Approximate Density of States

For this relatively simple case we can also calculate the exact density of states.
To get an idea of how accurate our method is, we will calculate the bare density
of states exactly and compare the results.

We will start out with the expression for the density of states using the Green's
function:

ρ0 (E) = − 1

π
Im

[ˆ π

−π

dk

2π

1

E + iη + µ+ 2t cos (kα)

]
= − 1

π
Im

[ˆ π

−π

dk

2π

1

E + iη + µ+ t (eikα + e−ikα)

]
= − 1

π
Im

[˛
C

dz

2πiαz

1

E + iη + µ+ t (z + z−1)

]
= − 1

π
Im

[˛
C

dz

2πiα

1

tz2 + z (E + iη + µ) + t

]
, (35)

where we have made the substitution z = eikα and C is the contour of a circle
from −1 counterclockwise. For this integral we can once again use the Residue
theorem

ρ0 (E) = − 1

πtα
Im

[
Res

(
1

z2 + zE+iη+µ
t + 1

)
, zpole

]

= − 1

πtα
Im

[
lim

z→zpole

z − zpole
z2 + zE+iη+µ

t + 1

]

= − 1

πtα
Im

[
lim

z→zpole

1

2z + E+iη+µ
t

]
. (36)

Note that zpole = 1
2

(
−E+iη+µ

t ±
√(

E+iη+µ
t

)2
− 4

)
but we are only interested

in the pole in the positive imaginary plane which results in
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ρ0 (E) =
1

πtα
Im

 1√(
E+µ
t

)2
− 4



=
1

2πtα
Im

−i 1√
1−

(
E+µ
2t

)2


=
1

2πtα

1√
1−

(
E+µ
2

)Θ
(

4− (E + µ)
2
)
. (37)

As to be expected the approximation holds well for small µ so that the eigenener-
gies behave similarly and the discrepancy only shows up for the greater eigenen-
ergies (Fig. 4).

0 0.5 1 1.5 2 2.5 3 3.5 4

0.1

0.2

0.3

0.4

E

ρ
0
(E
)

Figure 4: The exact and approximate bare density of states shown in red and
orange respectively. For the exact solution we set µ = −2 and furthermore we
have set η = 0.0001.
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3.2 A Square Lattice

For this case we simply make some alterations to the Hamiltonian found previ-
ously. Let us take a square N×N lattice in the x, y-plane with a lattice constant
α (Fig. 5).

α
α

Figure 5: A square lattice of equidistant sites.

What we need to note is the amount of possible hops. At site (x, y) an
electron can hop to four neighboring sites; (x+ α, y), (x, y + α), (x− α, y) and
(x, y − α). This gives four hopping terms in our Hamiltonian;

Hx,x′,y,y′ =− t [δx,x′δy,y′+1 + δx,x′δy,y′−1 + δx,x′+1δy,y + δx,x′−1δy,y′ ] (38)

− µ [δx,x′δy,y′ ] ,

Similar to the one-dimensional chain, we can perform a Fourier transformation
and as a result from applying this and the Kronecker δ relation:

Hkx,ky =− 2t (cos (kxα) + cos (kyα))− µ. (39)

As with the chain in 3.1 we can then conclude that the eigenenergies are given
by:

Ek = −2t (cos (kxα) + cos (kyα))− µ. (40)

3.2.1 Approximating the Eigenenergies

From Eq. (40) we can try to take the approximate expression for low momenta
which requires a chemical potential µ ≈ −4. As found in Eq. (24) we can
approximate the eigenenergies for the square lattice:
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Ek ≈ −tα2
(
k2x + k2y

)
− µ̄, (41)

where we again set µ̄ = 0 similar to the one-dimensional situation.

(a) (b)

Figure 6: (a): The exact and approximate eigenenergies shown in red and
orange respectively. Here µ = −4 for the exact eigenenergy.
(b): The di�erence between the two functions as a colorfunction.

As can be seen the functions are very similar for low momenta. It is useful
however to check when the approximation is no longer expected to give a rep-
resentative result. From the quadratic dispersion we know it will always have
a circular Fermi surface, no matter at what energy the system is. The exact
result is only circular for low momenta. In Fig. 7 we can see that the Fermi
surface is circular to good approximation for µ ≈ −4. At µ ≈ −2 we can see
some morphing and the surface becomes more square-like. At µ = 0 the surface
has become perfectly square and we expect the results coming from the exact
and approximation to be entirely di�erent.
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(a) (b)

(c)

Figure 7: The Fermi surface for low, intermediate and high energies.

3.2.2 The Density of States

Similar to the one-dimensional case we will start with our approximation for
the eigenenergies

Ek = tα2
(
k2x + k2y

)
.

Using this in combination with our expression for the Green's function and
LDOS from Eqs. (16) and (20) we can start out with

GR0 (x, y, E) = lim
η→0+

¨
d~k

(2π)
2

ei
~k·~r

ω − tα2~k2
,

15



where ~k = (kx, ky) and ~r = (x, y) and remind ourselves that ω = E + µ.
From this point on our approach will be di�erent as we cannot use the Residue
theorem. Switching to cylindrical coordinates results in

GR0 (r, θ, E) = lim
η→0+

ˆ 2π

0

ˆ ∞
0

dκdθ

(2π)
2

κ exp [iκr (sin (θ) sin (φ) + cos (θ) cos (φ))]

ω − tα2κ2
,

in which we have used kx = κ cos (θ) and x = r cos (φ) and similar substitutions
for ky and y. Using the product-to-sum identities for sin (β) and cos (β) we get

ei
~k·~r = eiκr cos(θ−φ) and combining this with the fact that we are integrating θ

over 2π we can discard φ and shift θ to θ+ π
2 which converts cos (θ) to − sin (θ);

GR0 (r, θ, E) = lim
η→0+

ˆ 2π

0

ˆ ∞
0

dκdθ

(2π)
2

κ exp [−iκr sin (θ)]

ω − tα2κ2
.

The θ-integral can be recognized as a Bessel function J0 (x) and then the κ-
integral results in the K0 (x) Bessel function and this gives us the �nal result:

GR0 (r, E) = lim
η→0+

ˆ ∞
0

dκ

2π

κJ0 (κr)

ω − tα2κ2

= lim
η→0+

− 1

2πtα2
K0

(
r

√
− ω

tα2

)
. (42)

The real part of the K0 (x) Bessel function tends to in�nity for small r. Luckily,
this is not an actual problem, as the imaginary part is relevant and it remains
�nite. For r → 0 we see that K0

(
r
√
− ω
tα2

)
→ π

2 . To verify we can calculate
the bare density of states in a di�erent way:
Let us start with

ρ0 (E) = − 1

π
Im

[¨
d2k

(2π)
2

1

ω − tα2k2

]

= − 1

π
Im

[ˆ ∞
0

dk

2π

k

ω − tα2k2

]
= − 1

πtα2
Im

[ˆ ∞
0

dκ

2π

κ

ω − κ2

]
.

Now we use that limη→0+
1

E+iη+µ−Ek = −iπδ (E + µ− Ek) and have rescaled

κ2 = tα2k2.
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Figure 8: A histogram of the density of states for a dkx and dky of
π

400 .

ρ0 (E) =
1

πtα2
Re

[ˆ ∞
0

dκκ δ
(
E + µ− κ2

)]
=

1

2πtα2
Re

[ˆ ∞
0

dκκ
δ (κ0 − κ)

|2κ|

]
=

1

4πtα2
. (43)

This indicates the density of states is a constant and reassures us of the correct-
ness of the Green's function in Eq. (42).

3.2.3 Comparison of the Exact and Approximate Density of States

To compare the approximate result with the exact we will turn to numerical
results from a model inMathematica. Here we have set up a 100×100 lattice.
We set up a matrix for the Hamiltonian analogous to Eq. (39) with small
discrete steps for dkx and dky from −π to π. From there on out we use a route
similar to the one discussed in Section 2.3. As found in the previous section, the
density of states is a constant both with respect to space and the eigenenergies
for low chemical potential. Numerically we �nd that this true in that regime
as well. In Fig. 8 we can see that for low energies the density of states can be
approximated as �at.
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4 A Monatomic Chain with an Impurity

In this section we will include an impurity in the monatomic chain and look at
how this changes the characteristics of the density of states. Both a repulsive
and attractive potential will be discussed in that order. We will calculate the
approximate density of states analytically and then turn to numerics for the
exact density of states. At the end we will conclude with a comparison of the
results.

4.1 The Local Density of States

4.1.1 The Approximate Local Density of States

Now that we have found an expression for the bare Green's function GR0 (x,E),
we can �nd the function for the DOS due to an impurity (IDOS) ρI (~r,E);

ρI (~r,E) ≡ − 1

π
lim
η→0+

Im
[
GR0 (~r,E)T (E)GR0 (~r,E)

]
. (44)

Let us take a monatomic chain with an impurity at one site (Fig. 9) separated
by a lattice constant α. Suppose we have an impurity at x = 07. In continuous

· · · · · ·
α

Figure 9: A monatomic chain with an impurity at one site.

space we can describe such an impurity with a Dirac delta function:

HI = V0δ (x) .

This allows us to concretely set up our T -matrix according to Eq. (13)

T (E) =
(
1−GR0 (0, E)V0

)−1
V0. (45)

This matrix is only non-zero for x = 0. As such, we can treat it as a number
instead of a matrix. Using the bare Green's function found in Section 3.1.2 we
�nd for the IDOS:

ρI (x,E) = − 1

π
lim
η→0+

Im
[
GR0 (x,E)T (E)GR0 (−x,E)

]
= − 1

π
lim
η→0+

Im

[
− 1

4tα2ω
exp

(
2i

√
ω

tα2
|x|
)
T (E)

]
, (46)

7This may be a di�erent atom or a vacancy at the position x = 0
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where T (E) =
(
1−GR0 (0, E)V0

)−1
V0. With the bare density of states ρ0 (E)

from Eq. (33) and the IDOS ρI (x,E), we can assemble the LDOS:

ρ (x,E) = ρ0 (E) + ρI (x,E)

=
1

2π

(
Im

[
i

√
1

tα2ω
+

1

2tα2ω
exp

(
2i

√
ω

tα2
|x|
)
T (E)

])
(47)

4.1.2 Low Energies

The graphs below are all evaluated with µ = −2. Here η has been set to 0.08.
The size of η is very much related to the system size as it will destabilize the
numerical model. Due to this we cannot choose η extremely small. For low
energies we would expect the expression in Eq. (46) to match with the exact
result. In Fig. 10 we can see the results match up very well. Note that for
negative energies there is no oscillation in the IDOS as the particle does not
have the energy to occupy closeby states.

4.1.3 Higher Energies

For higher energies we saw in Section 3.1.1 that there is a clear di�erence between
the eigenenergies. In Fig. 11 we can see that this already starts to form at
µ = −1.5. For µ = −1.0 this becomes more evident and for µ = 0 the starting
amplitude is nearly halved.

4.1.4 An Attractive Potential

An attractive potential is a di�erent . For such a potential it is important that
V0 is not too negative or it will cancel itself out as can be seen in Eq. (45)
which would reduce to −1/GR0 (0,E). For this situation we will choose a slightly
attractive potential V0 (Fig. 12). The graphs show the results again agree for
low energies but the discrepancy comes up for higher energies.
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Figure 10: The IDOS for a repulsive potential for µ = −3.9.
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Figure 11: The IDOS for a repulsive potential.
(a): µ = −1.5. (b): µ = −1.0. (c): µ = 0.
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Figure 12: The IDOS for an attractive potential.
(a): µ = −1.9. (b): µ = −1.5. (c): µ = −1.0.
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5 A Square Lattice with an Impurity

This section is analogous to the previous, but will treat the case of a square
lattice with solely a repulsive potential. We will �nd the approximate LDOS
analytically with the quadratic dispersion found in Section 3.2.1 and then �nd
the numerical results for the exact density of states. Unlike the monatomic
chain we will also look at the density of states in momentum space. We will
conclude with a comparison of the results.

5.1 The Local Density of States

5.1.1 The Approximate Local Density of States

Similar to earlier we will insert an impurity at one site in the lattice (see Fig.
13).

α
α

Figure 13: A square lattice with an impurity at one site.

Now using Eq. (42) we �nd for the IDOS:

ρI (r, E) = − 1

π
Im

[(
1

2πtα2

)2

K2
0

(
r

√
− ω

tα2

)
T (E)

]
, (48)

where T (E) = (I−GR0 (E)HI)
−1HI and HI = V0δ (x, y). Complementing this

with the bare density of states from Eq. (43), we can �nd the LDOS:

ρ (~r,E) = ρ0 (E) + ρ (~r,E)

=
1

4πtα2
− 1

π
Im

[(
1

2πtα2

)2

K2
0

(
r

√
− ω

tα2

)
T (E)

]
.
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5.1.2 Low Energies

For a 100× 100 lattice the LDOS with an impurity inserted at the center of the
lattice is known. In Fig. 14 both IDOSs can be seen. While the exact IDOS
clearly has stronger oscillations of a shorter wavelength than the approximate
IDOS. This is not unexpected as our approximation was for low energies, i.e.
low k. This means it will work well for longer wavelengths in real space and as
r →∞ we see that the results do match up.
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Figure 14: Plots for the exact and approximate IDOS for µ = −3.9
(a): Plot of the numerical result for the exact IDOS.
(b): Plot of the analytical result for the approximate IDOS.
(c): Density plot of the numerical result for the exact IDOS.
(d): Density plot of the analytical result for the approximate IDOS.
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5.1.3 Higher Energies

For higher energies however, there is a clear di�erence (Fig. 15) . The exact
solution now clearly lacks rotational symmetry and it is easy to see the IDOS
does not depend on r but on x and y separately.. This is due to the fact that the
model is a square lattice and not an actual rotationally symmetric crystal. The
approximation does assume such symmetry (it depends on r instead of x and y
separately) which explains its shape even at higher energies and is no longer a
reliable alternative.
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Figure 15: Plots for the exact and approximate IDOS forµ = −2:
(a): The numerical IDOS.
(b): The analytical IDOS.
(c): Density plot of the numerical IDOS.
(d): Density plot of the analytical IDOS.
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This pattern continues as we look at µ = 0 (Fig. 16). We can now see in the
exact IDOS that there is a profound aversion to sit at positions where x = y.
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Figure 16: Plots for the exact and approximate IDOS for µ = 0:
(a): Plot of the numerical result for the exact IDOS.
(b): Plot of the analytical result for the approximate IDOS.
(c): Density plot of the numerical, exact IDOS.
(d): Density plot of the analytical, approximate IDOS.

24



5.2 The Fourier-Transformed Local Density of States

An interesting quantity is the Fourier-transformed local density of states (FT-

LDOS). It shows the probability to scatter at certain momenta ~k which relies
on the energy of the incoming particle. To this end we will Fourier-transform
the density of states due to the impurity (FT-IDOS) and then compare it to the
numerical result.

5.2.1 The Approximate Fourier-Transformed Local Density of States

The FT-IDOS is given by:

ρI

(
~k,E

)
= − 1

π
Im

[¨
d~r

(2π)
2 ρI (r, E) ei

~k·~r

]
.

Similar to the derivation in Section 3.2.2 we can rewrite the exponent e−i
~k·~r =

e−ikr cos(θ);

ρI (k, θ, E) = − 1

π
Im

[¨
dθdr r

(2πtα2)
2K

2
0

(
r

√
− ω

tα2

)
T (E) e−ikr cos(θ)

]

= − 1

π
Im

[ˆ ∞
0

dr r

2π (tα2)
2 J0 (kr)K2

0

(
r

√
− ω

tα2

)
T (E)

]

= −Im

[
T (E)

π2 (tα2)
3/2
k
√

4ω − tα2k2
arcsinh

(√
tα2

ω

k

2

)]
. (49)
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5.2.2 Low Energies

Now that there is an expression for the FT-IDOS it can be compared to the
exact result. As can be seen in Fig. 17 similar to the IDOS the FT-IDOS
approximation and exact solution agree for low energies (µ = −3.9). Both show
a steep, circular peak around the origin.
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Figure 17: Plots for the exact and approximate FT-IDOS for µ = −3.9:
(a): Plot of the numerical result for the exact FT-IDOS.
(b): Plot of the analytical result for the approximate FT-IDOS.
(c): Density plot of the numerical FT-IDOS.
(d): Density plot of the analytical FT-IDOS.
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Figure 18: Overlay plot showing the numerical data in blue and analytical result
in red. The width of the peaks match up very well. This peak is located at the
scattering momentum.

Comparing the graphs in Fig.17 can be tricky, but remarkably for this energy
the approximation seems to represent reality better as the density plot shows
the center is actually zero. The numerics have trouble with the peak so close to
the origin and the centet is not actually equal to zero. In Fig. 18 a cross-section
of both FT-IDOSs show that their peaks do line up very well. The radius of the
circle is related to the energy. This can be seen from Eq. (49) where the density
of states shoots o� to in�nity for 4ω − tα2k2 = 0. For the analytical result we
can see that the peak should be located at k2 = 4ω

tα2 . For ω = 0.1 and α = t = 1
this corresponds to k2 = 0.4 or k ≈ 0.632. The radius of the circular peak is
10 discrete steps of 2π

N . For N = 100 this corresponds to k = 10 · 2π
100 ≈ 0.628.

This explicitly shows how well the two methods agree for low momenta.

5.2.3 Higher Energies

For higher energies the exact solution shows a very di�erent pattern. This is due
to the square nature of the model. The approximation does not account for this
and keeps its rotational symmetry (Fig. 19). The discrepancy becomes more
clear in Fig. 20 where we can see that there is a di�erence between the peaks.
The analytical peak is situated at k =

√
8 ≈ 2.82. The peak for the numerical

result is 50 discrete steps from the origin, which means k = 50 · 2π
100 ≈ 3.14. As

expected we already see a signi�cant di�erence. It is safe to say that for µ ≤ 2
the quadratic dispersion is no longer as reliable.
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Figure 19: Plots for the exact and approximate FT-IDOS for µ = −2:
(a): The numerical FT-IDOS.
(b): The approximate FT-IDOS. The chopped look of the approximate result
is due to Mathematica having trouble with the divergence at 4ω− tα2k2 = 0.
(c): A density plot of the numerical FT-IDOS.
(d): A density plot of the analytical FT-IDOS.
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Figure 20: Overlay plot showing the numerical data in blue and analytical result
in red. The scattering momenta do not match up as well as for µ = −3.9.

To look at the extreme case we can also evaluate µ = 0. As can be seen in
Figure 21. the analytical solution continues to expand the radius of the peak.
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The numerical solution however shows a completely di�erent behavior. It is
high where k2x = k2y and low where this signi�cantly di�ers. This is due to the
Fermi surface that is now a square and can no longer be represented with a
quadratic dispersion.
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Figure 21: Plots for the exact and approximate FT-IDOS for µ = 0:
(a): Plot of the numerical result for the exact FT-IDOS.
(b): Plot of the analytical result for the approximate FT-IDOS.
(c): Density plot of the numerical, exact FT-IDOS.
(d): Density plot of the analytical, approximate FT-IDOS.

29



6 Conclusion

This section will conclude the thesis by evaluating the results found in Sections
4 and 5. Speci�cally the reliability of the approximation for low energies will be
discussed and when it is still legitimate to make use of the approximation. An
outlook for future research will then be given as a �nal thought.

6.1 Results

The thesis was aimed towards �nding the e�ects of an impurity in a crystal.
In the �rst section it familiarizes us with the Green's function and shows its
use by relating it to the density of states. The next section neatly follows up
on this by �nding the eigenenergies required to perform the calculations. As
the exact solution cannot always be calculated analytically it grants a useful
alternative to �nally �nd the density of states for a regular monatomic chain
and square lattice. The �nal and most signi�cant results are found in the last
two sections where the impurities are implemented. It is safe to conclude that
an impurity radically alters the behavior of the crystal in close proximity to the
impurity. Most importantly the density of states implies preferred positions and
momenta when scattering occurs. The approximation made has allowed us to
get analytical results which are reliable for µ > −2, but fail for higher chemical
potentials.

6.2 Outlook

More research could be conducted by looking at three-dimensional systems and
making a distinction between the surface and bulk of such crystals. Among
other things spin, more impurities, bound states and more complex potentials
could also be a point of interested that has physical signi�cance. The problem of
numerics is still there and the choppy density plots are a direct result. Increasing
the amount of plot points and maximum recursion combat this quite well, but
signi�cantly increase the calculation time so more powerful computing could
be an answer. A second issue is that the exact solution cannot be calculated
analytically. This limits the research to either low energies or numerics.
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Layman's Summary

Most solids have a certain geometry on a microscopic scale. This geometry
combined with the actual atoms determine many properties of these solids. A
common known implementation of this are alloys where two (or more) metals
are combined to create an often stronger material[2]. The thesis aims at cal-
culating how an impurity (i.e. a di�erent atom or no atom at all) in one place
of this geometric structure a�ects the density of states. The density of states
gives a lot of information about a material. It can for example make the distinc-
tion between conductors, semiconductors and insulators. The density of states
ρ (x,E) can be interpreted as a probability for a particle to be at position x
when it has energy E.

Section 2 is the most mathematical. It introduces the Green's function and
shows how it can be used to �nd the density of states. The Green's function is
a function that solves a speci�c kind of equation. The Schroedinger equation
falls among this kind and makes it such a powerful tool for us.

In Section 3 we start looking at the lattices. We �rst look at an in�nitely
long chain of atoms at the same distance from each other. We want to �nd the
density of states for the pure crystals. To do so we �rst calculate the energies
that the system can hold and make an approximation that we will need to con-
tinue analytically (instead of numerically). The energies are called eigenenergies
and are needed for the expression found in the previous section for the density
of states, we then repeat this for an in�nitely long lattice of atoms again at the
same distance apart.

In Section 4 and 5 we treat the one-dimensional and two-dimensional case where
there is an impurity separately. The impurities make the system spatially de-
pendent and we expect the density of states to be varying as we move away or
towards the impurity. In the second part of the square lattice section we also
look at the density of states ρ (k,E) as a function of the momentum k instead of
the position x. This should then be interpreted as the probability for a particle
to be scattered away at a momentum k when it has energy E.
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