
A Multiagent Approach to Automating

Railway Capacity Request Approval

Master Thesis

MSc. Technical Artificial Intelligence
Information and Computing Sciences

Supervisors:
Dr. Mehdi Dastani, Utrecht University

Emdzad Sehic, ProRail

Arie van den Berg
February 2018

Abstract

Ongoing growth of the Dutch railway passenger and cargo transporting sys-
tem demands that the current infrastructure is utilised at utmost efficiency.
Next to creating a train schedule well in advance, traffic operators regu-
larly have to schedule new trains in a current, dynamic planning. When
the request to create a path for the new train is sent by the transporter
company, it is handled by the different parties responsible for the execution
of the train schedule. A top-down approach is taken where the operator
with the most global view of the network first creates a draft of the train.
After that he notifies those operators that have a smaller but more detailed
view on the infrastructure, all the way down to the level of switches, signals
and sections. This already modular process was subsequently built using a
multi-agent system, closely mimicking the roles and responsibilities seen in
practice. The system was built in PRL-Game, a mockup of the operator
systems used in reality, to ensure a timely realisation and provide a safe
playground for the agents. Experimentation to validate the agent system
was done on a minimal scale, although preliminary results were exciting and
inspiring.

Acknowledgements

I wish to greatly thank my daily supervisor, Emdzad, for giving me the
freedom to pave my own path, for clearing the many hidden obstacles along
the way, for believing in me and for always taking the time to challenge my
poor planning. I feel privileged for having had a former stranger become a
dad at work.

I am also immensely grateful for the kind haven I experienced at the
Innovation department during my research. I always felt part of the team,
building together for the better, smarter and more efficient. Instead of
considering the new as being inferior, they harbour the potential in each
colleague and stimulate them to become greater.

I want to thank Mehdi, my supervising professor, for giving me the
opportunity to land at ProRail, for being scientifically strict, yet considering
what is possible and necessary. Each time I told him why my thesis was
not scientific enough, he would explain the scientific value and urge me to
continue.

Finally, I wish to mention my parents as my perpetual stimulators to
achieve not the best, nor the most expensive, but the results that provide
that little edge in the world, that spark my curiosity. It never mattered to
them how long it would take, or what the result would be, but rather that
it was done.

iii

Contents

List of Figures . vi

1 Introduction vii

2 Background Information 2

2.1 ProRail . 2

2.1.1 Rail Innovations . 4

2.2 Traffic Management . 4

2.3 Rail Infrastructure and Scheduling 5

2.4 Simulation Software . 10

3 Order acceptation: the process 12

3.1 Formal Process . 12

3.1.1 Planning norms . 14

3.2 Informal Process: Interviews With Operators 19

3.3 Summarising the Facets of the Process 20

4 Information needed for gaming an Order Accepting Sce-
nario 22

4.1 Using PRL-Game . 22

4.2 Sources for a Scenario . 24

4.3 Data for New Trains . 25

5 Towards building an order accepting agent 27

5.1 Agent Technology . 27

5.2 Model . 28

5.3 Model Description . 29

5.3.1 Agent’s context . 29

5.3.2 Communication protocol 30

5.3.3 Selecting good routes 33

5.3.4 Levels of automation 33

5.3.5 Track subscription . 34

iv

6 Implementation of the model 39
6.1 Initial Explorations . 39
6.2 Model Creation . 40

6.2.1 ROBERTO . 40
6.2.2 Train plan for templates 45
6.2.3 Modules . 46
6.2.4 VKL agent module . 47
6.2.5 PRL agent module . 49
6.2.6 Aggregating the results 49

7 Experiments, validation and results 51

8 Conclusion and future research 54

v

List of Figures

2.1 Infrastructure in the Netherlands 3
2.2 The time-distance graph . 6
2.3 The plan screen . 8
2.4 Detail of a PPLG panel . 9
2.5 Part of the signalling screen. 9

3.1 Visualisation of different conflicts. 16

4.1 The configuration screen . 23

5.1 The track subscription screen 37

6.1 PRL Agent module tab . 46
6.2 Train conflict types. 48

vi

Chapter 1

Introduction

In the Netherlands, ProRail is in charge of the railway infrastructure. It
manages tracks, maintains signals, builds stations but also creates the train
schedules. The physical trains, the rolling stock of the rail companies, are
not part of ProRail’s assets. The rolling stock is used to service customers,
be it passengers, or industry and logistics. Instead of directly servicing
passengers, ProRail sells its capacity on the railway infrastructure to the
train companies.

Due to recent improvements of the nation’s economy, demand for rail
traffic will rise in the coming years. At the same time, the Dutch govern-
ment wants to stimulate the use of public transportation and has therefore
created a growth challenge until 2020. This means that ProRail will have
to anticipate a rising demand in overall infrastructure capacity and that it
must discover ways to either intensify the use of its infrastructure, or in-
vest in expanding the existing infrastructure, or both. However, the Dutch
government has made clear that intensification of the infrastructure use is
not entirely optional: it has created a high-frequency programme that stip-
ulates that key cities be connected using 10 minute services, in contrast to
the current quarterly service.

Having one of the most intensively used railway systems of the world
already, ProRail faces the challenge of increasing its infrastructure use even
more or adding additional infrastructure. Clearly, simply doubling the ex-
isting infrastructure is too costly, and easy options to intensify are already
exhausted. It is necessary to apply genuine innovative solutions in order to
reach the goals. One of the tools available for this job is simulation.

The Innovation department of ProRail is continuously searching for ways
to make the railway infrastructure management task safer, faster, more ef-
ficient and cheaper. One of the tools that are used is simulation. It is
employed to replay past situations, to practise situations in the present, but
perhaps most importantly to execute future scenarios. Using simulation, one
can evaluate the effects of protocols for handling for example disruptions,

vii

or to educate and train personnel, but also to assist decision makers. All of
these combinations can be and are indeed used to solve current challenges.

Another project that Innovation is actively persuing is the question of
how to effectively use agent-based modeling in a company like ProRail.
Agent-based modeling, like big data, looks like a promising field of research
and several initiatives are embracing these new techniques. Because dif-
ficult operational tasks have gradually become more complex in effective
structure, i.e. more operators work together with complex procedures to
solve these tasks, agent-based modeling which by nature employs an or-
ganisational structure is used to simplify or automate these tasks. Often,
simulation is used to develop and test these new ideas. Similarly, simula-
tions profit from the use of multi-agent systems that automate certain tasks
because that way, simulation studies require fewer participants.

A suitably constrained scenario for applying multi-agent programming
is for the so-called ‘order accepting’ task: train companies place requests
for a new slot in the time table, after which the request is handled by a
procedure involving many operators. Order acceptation happens in the last
36 hours before the train is supposed to run, precluding the use of the default
planning tools that, due to regulations and procedures, are used further in
advance. These orders arrive at the most unfortunate moments, take a long
time to be processed by the whole chain of operators, and are prone to
repetition, which happens when any operator in the chain rejects a proposal
and another often similar proposal is made. The main and sub research
questions are formulated as follows:

1. In what way can agent-based modeling be used to facilitate the work
of rail traffic operators?

(a) What is a suitable scope of the project?

(b) What is a natural and efficient approach to building a supporting
system?

(c) What is a good choice of agent internals?

(d) How to implement the agents in the available architecture?

(e) How to find proper sources of data?

(f) How can the result be verified?

Chapter 2 describes ProRail, their activities, tasks and responsibilities.
It also lays the foundation for this research in terms of the problem state-
ment and the context of this research in terms of scheduling and simulation.
Chapter 3 describes the process of order acceptation, from operator hierar-
chy to technical requirements. Chapter 4 takes a step sidewards from the
order acceptation process in reality and describes how to use the simulation
software around which the rest of the thesis will center. In chapter 5 the

viii

agent and multi-agent models are detailed. Chapter 6 describes how the
agent models were built. In chapter 7 the experimentation is written down.
Chapter 8 concludes with what has been learnt from this study and lists
several developments for the future.

1

Chapter 2

Background Information

2.1 ProRail

As the manager of the railway infrastructure in the Netherlands, ProRail
has three main responsibilities [1, 5]. Firstly, it maintains the infrastructure
by for example renovating old tracks and building new stations. Secondly,
it implements the train schedule in a safe manner. Thirdly, it allocates
the remaining infrastructure capacity not covered by the regular schedule
amongst the train operating companies in a neutral way.

Over the years, the train schedule is getting tighter due to the ongoing
growth challenge until 2020 [1, 2], but also because of the PHS (Program
High-frequency transport) [6, 7], and economic causes [8] in general. Con-
sequently, the rail infrastructure will be stretched to its maximum capacity,
requiring innovative solutions to allow more trains on the same number of
tracks while guarding the safety of the system.

The Dutch railway network is among the busiest in the world, at least
being the most highly utilised in the EU[39, 43]. ProRail manages around
4, 000km track which is being used by approximately 4 to 5 thousand trains
a day [41, 40]. For the Beter en Meer (Better and More) programme, the
timetable on gradually more sections is being changed to a high-frequency
schedule [8]. This involves having 6 or more trains of both types of services
per hour, so at least 6 intercity services and 6 stopping services, per direction.
There should also be room for freight trains, which gets us to the formula
6 + 6 + 2, giving a good indication of the complexity that this creates. A
simple calculation shows that if these 14 trains have to be fit in 60 minutes,
each train has an average slack of a little more than 4 minutes. Most of the
sections in the Netherlands are double tracked, seldomly triple, rarely and
then only partly quadruple tracked (for reference, see figure 2.1).

1Door Treinfan op de Nederlandstalige Wikipedia (Originele tekst: T Houtdijk voor
versie 1.3, ik heb deze bewerkt tot versie 1.4) - Eigen werk + File:Meersporigheid-v1.3.png,
Publiek domein, https://commons.wikimedia.org/w/index.php?curid=2256994

2

Figure 2.1: Situation of the Dutch railroad network in 2012. Red represents
single track, blue double track, green triple track and yellow is quadruple
track.
Image obtained from Wikipedia1.

ProRail is a company of which the Dutch government is the only share-
holder. It is subdivided into several departments, e.g. V&D (Transport &
Timetable), Projects, Asset management and Traffic management[9]2. V&D
is responsible for creating the train schedule, while Traffic management is
responsible for executing this schedule and dealing with incidents and ex-
tra capacity requests during the day. This separation of the central task of

2See the linked document Organogram on this website for a graphical representation
of the organisation, listing all departments.

3

running the train schedule makes for a complicated situation.

2.1.1 Rail Innovations

This project was conducted at the department of Innovation. More specifi-
cally, it was done in the context of the RailwayLAB3. The RailwayLAB [23]
aims to contribute to the better functioning of the railway sector by testing
logistic and infrastructure related concepts in a safe environment. For this,
it uses a combination of games and simulations. By playing serious games
(both analog and digital) with operators and policy makers and executing
simulations, processes in the railway sector are mimicked and their perfor-
mance measured. The results help managers of the policy makers create
guidelines that improve the performance and capacity of the railway.

2.2 Traffic Management

Of the different departments, ProRail’s traffic management has the main
task of monitoring the traffic flow. The train schedule is central in this task.
Every train has a sequence of activities which determine when the train does
what, where. An example stopping service performs all activity types: first,
it departs (V) from the first station. Along the route, it performs short
stops (K), which take less than a minute. At the football stadion, it passes
through (D) because the station is not in use when there’s no match. At
its final station, it arrives (A). At last, it is shunted (R) away from the
platform and set aside for future use. Along with each of these activities
comes a route, which defines what tracks the train will use for that activity.
Altogether, the schedules for all trains form the complete time table.

If there would be no disturbances in the train schedule and given that the
time table were implemented in such a way that there are no route conflicts
between trains, it would be possible to let the system execute by itself: it
would only be necessary to change the switches to the correct position at the
right time and set the safety signals to the correct (safe) state for the next
train. For that, ARI [4] (Automatic Route Booking, Dutch: Automatische
RijwegInstelling) is used. It automatically sets routes for trains as defined in
the schedule, relying on the underlying safety system to handle switches and
signals. In this situation, traffic managers are only monitoring the system.
However, this situation can continue only for so long, because the time table
is easily disturbed by for example delays, technical difficulties with trains or
personnel scheduling problems. Depending on the severity of the situation,
traffic controllers can be busy for hours regulating traffic.

3Description directly translated from [23]

4

2.3 Rail Infrastructure and Scheduling

For our purposes, the whole infrastructure can roughly be divided into TCAs
and free track connecting them. TCAs, short for Terminal Control Areas,
represent every point of interest along the tracks. Key examples of these are
bridges, train stations, shunting yards and other locations where switches
are located. All of these areas can be controlled by traffic managers by
changing the position of switches, changing scheduled platform tracks or
opening and closing bridges. Free track is what connects TCAs and is by
definition uninterrupted and uncontrollable. By their very nature, switches
cannot be part of a stretch of free track, as the switch would belong to a
TCA and the free track would be broken up: one part going to and another
continuing from that TCA. Related TCAs are functionally grouped into
PPLGs, which are Primary Areas of Process Control.

In order to carry out their task as train traffic flow monitors and occa-
sional planners, traffic managers are assigned different roles with differing
scopes. Those at the higher level of perspective are the regional traffic con-
trollers, or DVLs4. (For a full task overview, consult [11].) They monitor
trains travelling between TCAs, ignoring what exactly goes on inside those
places. This model of the state of the network is usually visualised in a
time-distance graph (see also figure 2.2), where TCAs lie on the horizontal
axis and time is on the vertical axis. To be slightly more precise, TCAs hap-
pen to lie on the horizontal axis while the free track represents the actual
distance. In this way, trains going from A to B travel diagonally, with fast
trains having a smaller slope than the slower trains, who take a lot of time
to cover the same distance. The lines show the schedule for each train and
judging from them, the traffic operator can see potential contention issues,
ordering issues and other problems that arise at this level of detail. From
his view, the operator can easily spot free space between subsequent trains,
something that is harder to do with the systems of the local operators.

Local traffic controllers, or TRDLs5, have a lower level view of the in-
frastructure. (See [12] for a detailed task description.) Usually, they manage
several logical units of control called PPLGs, whose numbers cannot exceed
9 for a single controller. This handful of PPLGs is conceptually designated
as a workplace, and each traffic controller operates one of them. Running a
workplace involves several different systems which all have to do with tracks.
For example, the train schedule is displayed in the plan screen (see figure
2.3), showing for each train from which track it will go to which other track

4Dutch: Decentraal Verkeersleider. For the sake of keeping with English terms, the
terminology of regional operator or controller will be preferred. When the use of the
abbreviation is beneficial, later on, it will be reintroduced.

5Dutch: TReinDienstLeider. Again, for the sake of using English terms the use of local
operator or controller will be used throughout this thesis, except for later, when using the
abbreviation becomes beneficial. It will then be reintroduced.

5

Figure 2.2: Example of a time-distance graph. All trains travel diagonally,
one faster than the other. For example, at Ashd to the left, one of the trains
is significantly faster than the other two trains, going almost horizontally
while the others display a steep incline. Between Gdm and Ht in the middle,
one can see that one train gains on the other, but this potential conflict is
solved because trains can pass at Ht (signified by the white vertical line: Ht
is a major station). Between Ut and Ht there is some significant free space
in both directions.

6

(displayed in figure 2.4). The signalling screens show a detailed map of the
PPLGs, including track names and the location of any trains in the area
(shown in figure 2.5). The detail screen shows names for infra elements that
are not shown in the signalling screens. The track occupation graph (SBG)
shows when and how long certain tracks will be occupied by trains.

7

Figure 2.3: The plan screen showing all PPLGs on the A2 corridor, from Amsterdam to Sittard. Each PPLG has its own
plan rules. See figure 2.4 for a closeup of a PPLG panel.

8

Figure 2.4: A detailed view of the PPLG panel in the plan screen. Plan
rules for in this case ASD have train number, activity type, planned time
and to the right the route.

Figure 2.5: A selected piece of the signalling screen, in this case displaying
an area in the workplace of Amsterdam.

The two roles complement each other. The regional controller can spot
potential conflicts on a higher level and is able to direct traffic on the high
level of TCAs. The local operators have full control over the situation in-
side their PPLGs. They have the power to shunt trains, have them arrive
at different tracks, or otherwise control the precise flow on track level. This
distinction will be retained in the software solution that is being explained in
this thesis. There will be the concept of the PRL-Agent, the local controller
agent that knows everything about the tracks and their occupation. Their
colleague, the VKL-Agent, has information that is available to the regional
operator. The agents will work together, given the local information avail-
able to them, in a way that resembles the steps that the human operators
would take.

Note: the term route is ambiguous. It either means the train’s TCA
sequence, which is the main responsibility of the regional operator. Con-
versely, it can also mean the specific tracks the train will follow in a PPLG.
This last route is of importance only to the local controllers. Hence, when a
train is created, first its route is created by the DVL, after which the TRDLs

9

will themselves create routes in their respective areas of control. Through-
out this thesis, this term will be used to signify both concepts, although the
aim is not to use the term for both in the same section.

2.4 Simulation Software

Simulation is a beneficial tool for safety critical systems such as the rail net-
work. Hence, ProRail uses multiple simulators to test implications of future
situations. In this thesis the FRISO simulator [18] is used. Its focus lies
on the micro level of the rail infrastructure, detailing train schedule, exact
travel times and train speed and precise switch changing times rather than
modeling security layers and fallback systems. FRISO can be run stand-
alone, where it can be used for research in, for example, robustness of a
train schedule, effect of the management variant in a specific area (FCFS,
fixed order or following plan), analysing the cause and relationships between
delays and quantifying effects of changes in the train schedule. One applica-
tion of FRISO Standalone that was used in this thesis is its ability to export
a detailed report on which elements of the infrastructure a train has ridden.
This information coupled with data on exact train speeds are further used
by ProRail to compute possible conflicts between trains. This application
will be explained later.

But more interesting things can be done besides simply analysing the
results of a simulation. FRISO has been designed to support external influ-
ence on the running simulation. The first tool that was coupled with FRISO
was TMS [19], ProRail’s Traffic Management System. It was already being
used to influence the driving behaviour of real trains. TMS receives train
positions and their speed and computes the desired speed of the trains, such
that they won’t be blocked by each other. Both systems, FRISO and TMS,
were retrofitted to support the High Level Architecture6 [20, 19] of which
the implementation used is the RTI (Real Time Interface). For the RTI,
every client is called a federate, so there would be the FRISO federate and
the TMS federate. The RTI’s function is to synchronise the systems, making
sure that neither of them can outrun the other.

Now that FRISO supported the HLA, PRL-Game [22, 23] was developed
at the TU-Delft. It was written in JAVA and it was designed from its
inception to exclusively couple with the FRISO federate. PRL-Game acts
as a shell around the simulator, enabling users to change how the simulation
will carry on similarly to how traffic operators influence the situation in
reality. The name is derived from the name of the local traffic control
system, called PRL in Dutch, and the fact that the software is used for
simulation or serious gaming, making it PRL-Game. Currently, PRL-Game
can be used to (re)play past, current or future scenarios using any real-world

6Refer to [21] for a book about the HLA

10

configuration. FRISO is able to work with official documents describing
infrastucture, timetable, train relationships and material configurations and
PRL-Game does the same, heavily relying on the information that comes
from FRISO. Together, they are used to test measures that were designed
to reduce congestion and delays when specific calamities occur, to train
traffic controllers before using a future train schedule, to replay scenarios
in order to scientifically perform psychological tests on users, or to analyse
the performance of multiple variants of a time table before proposing one of
them to be used later on in the real world.

11

Chapter 3

Order acceptation: the
process

During the day, train operating companies may place requests to ride addi-
tional trains. Freight trains are a prime example, for their departure depends
on factors that are out of control of the operating companies. Perhaps the
overseas cargo is delayed, or the weather is bad in the Alps, to name a few
[17]. Empty passenger trains and single locomotives are two other causes
where train companies request capacity from ProRail [38]. These requests
must be manually processed by traffic management. Berends & van Sme-
den [3] presents a summary of daily changes to the train schedule, listing
an average of 431 new trains a day, while van Smeden [38] later performs a
more exhaustive study and finds 500 orders per day. Summarising the most
prominent results from the last source, they find that the orders arrive as a
constant stream throughout the day, roughly 20−40 per hour, while 40% of
the orders are issued less than 30 minutes before departure. Planning trains
is hard, time consuming and therefore interferes with the other tasks of traf-
fic management [3]. The current procedure for processing these new train
requests is unsatisfactory and ProRail is researching different approaches to
tackle this problem. [17] mentiones that freight companies must check in on
their granted time slot 90 minutes in advance, such that ProRail can reuse
those paths for other trains if they would otherwise be left unused. Berends
& van Smeden [3] introduce a tool called RijwegGenerator (RouteGenera-
tor) that helps the local traffic controller with specifying the route of the
train.

3.1 Formal Process

The order acceptation process is a stepwise process that includes train opera-
tors, local traffic controllers [13, 12], regional controllers [11] and occasionally
national traffic managers. Besides being officially documented, the task that

12

the operators perform has been verified using interviews ([46, (Appendix B)]
has the questions, [45, (Appendix A)] has the transcriptions). First, some
train company decides that it needs to ride a train that not yet exists in
the train schedule. It then has to request a path from ProRail which needs
information about the new train. What follows is an incomplete list of
information that is commonly provided [16]:

Date Determines the day on which the new train must ride

Train number Coined by the transporter, it obviously may not already
exist in the schedule on date

From TCA The TCA of departure

To TCA The TCA that is the destination of the new train

From track Defines on which track the company will have the train start

To track Defines on what track the company wants the train to end

Ready time The earliest time on which the train may depart, which is
when the cargo is loaded and the driver is present

Deadline (Optional) The latest time of arrival at to TCA

Traction Defines what type of locomotive will be used

Length The total length of the train

Weight The weight of the train

Special Whether this train transports any special or dangerous cargo

Form Whether this train conforms to the default sizing of the wagons or
whether it needs more care when planning

Extra stops (Optional) Needed for changing drivers or other special needs
of the transporter

Description (Optional) A useful description for ProRail about this new
train

Train companies have an internet-based connection with ProRail through
the ISVL system [16]. As soon as ProRail receives the request, ProRail starts
its internal process. The regional operator (DVL) that is responsible for the
departure PPLG first handles the request. He creates an initial path for
the train by fitting it between existing trains, roughly sketching those parts
that are beyond his area of control. He then asks the local traffic controllers
(TRDLs) that manage the parts of the route for which he is responsible
verbally for verification of the route. The TRDLs will test the train on
criteria that will later be discussed and reply whether the train can safely
run through his workplace. As soon as all TRDLs replied positively, the
DVL sends the draft train to his colleagues along the train’s route. This
communication is done inside the ISVL system. They in turn will perform
the same steps, fitting the draft train correctly through their area of control

13

and asking the TRDLs responsible for his part for ratification. Only if all
DVLs responded positively to the order request, the first DVL is allowed to
accept the new route, after which a notification is sent to the transporter. A
notification is also sent if there is no such path, after which the transporter
company must make sure that his next request is more likely to fit.

3.1.1 Planning norms

ProRail handles a specific agreement amongst itself and rail transporters
called the network agreement [5] (Dutch: netverklaring). It states how
delays are calculated, what tariffs exist for newly created trains, how the
train schedule is designed and which rules are applied when scheduling new
trains, amongst many other things. These last rules are called generic plan-
ning norms. These are in use since two fatal accidents in Barendrecht and
Amsterdam.After careful study, it was found that these were caused by un-
planned red signal approaches. When a train runs on schedule, the train
driver expects that its route will be clear between stops. In constrast to
traffic lights on public roads, which1 follow a fixed cyclic pattern with fixed
duration, railroad signals on the free track generally display non-safe only
if there is a train ahead. Hence, train drivers do not expect to see a signal
that is not green. If there is enough distance between two trains, signals
can safely be set to green. The distance is directly proportional to the
type of activity the trains have at a certain TCA. If the first train passes
through a TCA and a second train will stop there, three minutes is gen-
erally enough time to ensure signals will be green along the second train’s
way. Conversely, if the first train were to stop at a TCA while a second
train would pass through, much more than three minutes would be needed
between the activities. Again, otherwise the second train would get a red
signal and stop before the TCA, a highly unplanned situation for the driver.
To summarise, the planning norms have been devised to quantify how much
time there must be between activities of two trains in order for there to be
enough room between them.

Planning norms only come into play if the routes of two trains conflict.
There are three variants of conflicts, but they share the fact that both trains
have one rail section in common. An example of a case with the longest
conflict is simply two trains after each other, taking the same route. The
smallest conflict is on a double slip switch, where both trains cross each
other’s paths. Their only conflict is in the middle of the switch. As the
last example shows, it is not enough to consider only full blown tracks,
as stretches of track between switches may not have a name, or simply
because there is no sensical meaning of track in the case of the switch conflict.
Therefore, as already alluded to, route conflicts are computed on the basis

1in my experience

14

of sections.
There is an obvious difference between trains going in the same direction

and that have a conflict, and conflicts in opposite direction. In fact, there
are three flavours. First, the so called follow-up times (Dutch: opvolgtijden)
apply to route conflicts of trains going in the same direction and end up going
to the same track. Second, same direction crossings (Dutch: overkruistijden
in zelfde richting) are similar to the follow up times, but now the trains each
end up on their own track. Third, opposite direction crossings (Dutch:
overkruistijden tegengestelde richting) are the cases where trains have an
opposite direction. For conciseness, from now on the first type of conflict
will be called followup, the second cross to, the last cross back. The rationale
for this is easier explained from Dutch, but it also works in English: if both
trains go to the same place, they go in the same direction. Otherwise, the
other train is coming back from where we go. See figure 3.1 for a visualisation
of the different types of conflicts.

15

(a) The situation where the first (red) train passes through a station first, after which the second (blue) train departs. Both trains will
then follow the same piece of track, making this a followup situation.

(b) The situation where the first (red) train departs from a station. It has a common route with a second (blue) train although they end
up going to separate tracks. This situation is a crossing in the same direction.

(c) The situation where the first train (red) arrives at a station and the second train departs in the opposite direction from the station.
As both trains have a partly common route and they travel in different directions, this situation is a crossover in opposite direction.

Figure 3.1: Visualisation of different conflicts.

16

Several things can be noted about these definitions. First, there seems
to be no fixed and more importantly, unambiguous definition of when each
category is applicable. It looks like routes are follow-up if they end in the
same track. However, what happens if a same direction crossing has a very
long common route? In this case, although the table is mostly the same,
some values differ for the worse. If we’d take this common route as a follow-
up, we’d be safe because we now have at most one minute slack, although
the definition seems to suggest that we’d need to look at the crossing table.
Now what would happen if we have two trains that diverge? They have
differing end points, but it probably should be categorised as a follow-up.
This becomes even more curious if we consider that if the diverging train,
who is not going straight, is first, he will likely keep his speed in check
until he’s passed the switch. The second train can go full speed through
the straight switch. Nevertheless, the follow-up norms are slightly stronger
which would more likely fit this case. Judging from the above, it might be
best to define every conflict of trains going in the same direction as follow-
up, unless both end points of this conflicting route lead to different tracks.
Conflicts in opposing direction are easy to categorise.

Another observation is that there is no distinction between train types.
Now this is the very nature of generic planning norms, but it does raise
some concerns about the validity and workability of them. For instance, I
have witnessed a long and loaded cargo train leave a station, taking roughly
three minutes to even leave the platform. Even then it was not yet up to
full speed. How would it be valid to plan a passenger train with a crossing
conflict behind this freight train? After two minutes, the first train wasn’t
even gone, let alone that the whole route of the second train was safe, even
worse, the passenger train would be faster and would definately be hindered.
Of course, this is a typical example of when generalisation does not work,
but it does give us some context about the tools we’re working with.

One activity is not listed in the tables. Shunting (R) moves, however,
are of particular interest to the order acceptation process. In fact, shunting
moves are not visible to the regional operator, which makes sense because
shunting takes place inside a TCA or at most a PPLG so that no free track
is involved. Therefore it is the sole responsibility of the local operators to
validate that any proposed new train does not conflict with any shunting
moves. How is he supposed to verify that this is the case?

The most general rule is that trains should be three minutes apart (ver-
ified in interviews (see [45, (Appendix A)]) for a full transcription of the
interviews).Regional controllers usually consider this norm when planning
new trains by making sure that the new path stays three minutes from bor-
dering trains. However, local traffic controllers have a much harder time.
Contrary to the regional operators, they have a perspective that includes
every combination of tracks a train can follow through switches. So in order
to apply the generic planning norms, they should consider every route of

17

Activity 2nd train

A D K V

A
ct

iv
it

y
1s

t

tr
ai

n

Arrival (A) 3 2 3 n/a

Passthrough (D) 3 3 3 2

Short Stop (K) 4 4 4 3

Departure (V) 4 4 4 3

(a) Planning norms for follow-up conflicts.

Activity 2nd train

A D K V

A
ct

iv
it

y
1s

t

tr
ai

n

Arrival (A) 3 2 3 1

Passthrough (D) 3 3 3 2

Short Stop (K) 3 3 3 2

Departure (V) 4 3 3 2

(b) Planning norms of conflicts for same direction crossings.

Activity 2nd train

A D K V

A
ct

iv
it

y
1s

t

tr
ai

n

Arrival (A) 3 2 1 1

Passthrough (D) 4 3 4 1

Short Stop (K) 6 5 6 1

Departure (V) 6 5 6 2

(c) Planning norms of conflicts for opposite direction crossings.

Table 3.1: Generic planning norms.

18

every train in his area that might interfere with the new train. He must
do so based on track information for each train. Despite holding all needed
information of a train’s route, track and route information does not give a
clear image of how a train is going to travel. Hence, for every route the traf-
fic controller must look it up on his overview screen, find out whether there
is an overlap and then apply the generic norms. In practice, it is hardly ever
the case that all local operators test the whole train.

3.2 Informal Process: Interviews With Operators

Although a formal description of the process is useful for grasping the ini-
tial rationale of the problem and for future review when the problem has
been fully understood, it was also possible to talk to the experts in the field.
Because the official documents were already at hand, it was not necessary
to ask them what exactly they do, but rather how they do it. The initial
idea was to perform a full Protocol Analysis with the operators such that
their complete reasoning patterns could be understood and used. Explo-
rations of the subject [26] and some specific applications [24, 25] revealed
how to extract useful information from subjects. There has to be a very
well thought-out script of how the interview will go. One or more scenarios
that will be executed by the subjects must be completely specified. Then,
subjects must be familiarised with the method of talking aloud while think-
ing. During the run of a scenario, the verbal report of the subject is written
down as faithfully as possible. Post processing steps involve categorising the
possible responses and determining how to create a useful protocol from the
analysis.

There were numerous obstacles, many of them known beforehand. First
of all, it was not possible to fit the whole order acceptation process into a
couple of scenarios. At the point when the interviews would be conducted,
it was not known how to distinguish realistic situations that would cover
the whole deliberation process without introducing confounds. The creation
of the scenarios would simply be too time consuming. Second, it is appar-
ent that subjects must perform and know how to perform the task under
question. In our case, the most important part of the process is the testing
of an order. At the locations where the interviews would be held it was
known that order acceptation was rarely performed, if at all. Therefore, the
results would not contain valuable information of how operators perform
the task. Combined with other minor issues, including difficulty to roster
operators free, the lack of expected utility to perform such a big research
and the relevance of doing Protocol Analysis, this led to a shift in inter-
est and instead of a full-blown interview, informal, orientating and concept
verification interviews were held (transcriptions in [?]).

The main advantage of this approach was that the operators could an-

19

swer questions while working, that they could show what they were doing
in their own systems and that they did not need extensive initial training.
However, this meant that the research question shifted from creating an as-
faithful-as-possible system to a system that performs the same task as the
human operators, but likely not in the same manner.

3.3 Summarising the Facets of the Process

The previous sections explained in detail what the process is formally about
and what steps were taken to fully understand it. From this knowledge, we
can state the following aspects:

Hard the process is hard in the sense that it’s not a trivial task to make
sure the new train’s route is conflict free. The regional operator must
know which parts of his section allow for one or more trains at the
same time, while local traffic controllers should consider each train in
his plan when testing the new train.

Communication Mostly informal, the main chunk of communication where
the safety of the rail system in concerned happens between local traffic
controller and DVL. Despite the DVLs notifying each other using the
ISVL system, the lack of formalised communication makes this setup
prone to error and misunderstanding.

Time pressure Monitoring trains goes relatively well in combination with
planning trains. However, the moment that traffic control has to make
changes to the current schedule due to any incident, checking the safety
of new train’s paths becomes unduly time costly.

Repetitive Rejection of one colleague triggers another round of checking
a possibly slightly moved train. The space of possibilities is so large,
that controllers cannot use a remembered reasoning cycle and must
hence do the checking all over again.

Safety The systems that are in use do not assist the user in this task.
Their representation space stops at the level of tracks, while safety
of the system depends on the occupancy status of sections, one level
below tracks. This means that operators either omit a large portion of
the information, or they must go to great lengths looking up relevant
sections for different routes, information that is not represented in a
way that makes order checking easier.

Live situation Extrapolating current delays into the future is very hard.
Delays may propagate several hours from now, diminishing or getting

20

greater depending on the schedule and the human factor of the oper-
ators. Planning a new train while keeping track of delays of relevant
trains is nigh impossible.

21

Chapter 4

Information needed for
gaming an Order Accepting
Scenario

4.1 Using PRL-Game

Being the front-end for playing rail operators, PRL-Game behaves as if it
was the real system. PRL-Game is started using a configuration file with
extension .prl containing data necessary to create a workplace. A typical
workplace for a local traffic controller has four screens.

Operate screen can be used to display the current infrastructure state at
the most detailed level. It also provides low-level tools to manipulate
the infrastructure, for example by revoking routes, changing switch
positions or placing hindrances on signals or switches.

Plan screen shows plan rules for all PPLGs that are operated at this work-
place. For our purposes, plan rules tell which route a train follows and
at which time the switches should be prepared and the route given
free.

Signalling screen displays a schematic view of the PPLGs that belong to
this workplace. The approximate train positions are painted on the
abstract layout of the PPLG. There are usually two screens dedicated
to showing this information.

The regional traffic manager workplace that will be used during simu-
lations only sports one screen, called the Diagram Screen, which is a time-
distance graph. Its only use is for dynamically changing the train schedule. It
offers an interface to delete (parts of) a train, create new trains (potentially
based on an existing train), but also change a train’s activities, schedule (a
part of) a train to some other time and reroute trains.

22

Figure 4.1: Example configuration screen. Along the top are the different
tabs for the screens: Planscherm (twice) and the Signaleringsscherm. The
tab FRISO is for configuring the simulator, the others are for the modules.
The fourth tab is for the PRL Agent. The main panel belonging to the
selected “Simulatie” tab shows the wall clock, as well as buttons for playing,
pausing, stopping and resetting the simulation.

Because PRL-Game is designed to be able to control past, current and
future scenarios alike, it is highly configurable. This mostly happens in a
dedicated configuration window, generally simply called The Configuration
(see figure 4.1). It contains tabs for each screen, simulator and module in use.
Every part of the simulation has different parameters, so each tab displays
different ways to change the settings. During the creation of a scenario this
configuration screen is heavily used, but it still comes in handy during a
simulation as the simulator tab functions as a wall clock.

Each workplace is started as an individual application. After loading the
configuration, PRL-Game will try to connect to the HLA on a pre-specified
port. In HLA terminology, one workplace is called a federate and the whole
federation is assumed to exist in a single local internet network (LAN).
During initial testing, it’s well possible to run multiple PRL-Game federates
on a single machine, but during full blown experimenting, every user has his
own computer. The one special federate is the FRISO federate. It currently
functions as the source of the simulation, holding all necessary characteristics
of the state of the world and continuously publishing that state on the

23

HLA. After starting, FRISO will start simulating without publishing. This
simulation period is called the warm-up time, in which trains are loaded into
the model and the simulation creates state. After this fixed time period,
FRISO sends its state to the other federates, at which point the simulation
begins.

Federates are inherently modular. Conceptually, one workplace handles
no more than a handful of PPLGs. The regional controller only knows high
level information and is not concerned about what happens in other feder-
ates. However, this model is not upheld in the underlying model. Internally,
PRL-Game knows everything, everywhere. It simply displays the relevant
bits of information and lets the user access only local information. It would
be tempting to forgo the idea of modularity and rather design a system that
has access to all information.

During the simulation, PRL-Game federates and FRISO communicate
with each other. FRISO sends messages containing current updated train
positions, amongst many others, while PRL-Game sends messages about
changes to the plan. Of particular intererst here is the message flow between
federates when a new train is created. First, the DVL creates the superficial
route of the train consisting of a sequence of TCAs. This route is already
located in time, preferably without hindering other planned trains. As soon
as the DVL marks this concept train final, two types of messages are sent.
The first message marks the creation of a new train. The second message
type denotes activities of the new train. Obviously, at least one message of
this last type is sent for each TCA, possibly two if the train performs an
arrival + departure move there.

Every federate receives these messages except for the sender. Federates
store the received sequence and await the response from FRISO. FRISO
checks the consistency of the route and we can assume it accepts the route.
On reception of these messages, all PRL federates store these messages as
‘global’ VKL messages. Only those ‘global’ messages that are of importance
to this federate because the TCA is operated are also made ‘local’. The
local message are then displayed to the user. For these local messages the
user can create routes. The train will ride only if a correct and consistent
route is created. As soon as the user enters the routes into the system, PRL-
Game sends these messages to all other federates. Again, these messages are
cached locally until FRISO responds to them. If FRISO accepts the new
routes, they are entered into the system. As a result, they are then displayed
in the plan screen of the local operator who operates those rules.

4.2 Sources for a Scenario

For FRISO to run, a database with relevant simulation data must be pro-
vided. The database is built from information from DONNA which includes

24

trains, schedule and possible combination/split data. A complete description
of the data itself and their format is out of scope of this thesis and will not
be discussed. DONS contains the material types. InfraAtlas is used as the
data source of the infrastructure. For our purposes, a working database can
simply be requested from the RailwayLAB. This database must then be re-
stored into an SQL server. Currently, SQL Server 2012 Express is used. The
restoration process itself happens through the Management Studio which is
a separate program. Because FRISO depends on certain updated libraries
from the studio, version 2016 must be used. The studio can talk to the
older 2012 server. Finally, FRISO must be installed and a licence must be
obtained. Using the FRISO Incontrol Center, a connection can be made to
the database and a federation can be configured and started.

PRL-Game federates need their own configuration. It is usually best to
ask the RailwayLAB for a working Game Leader configuration and tweak
it. All configurations have information about which TCAs exist and which
PPLG each one belongs to and whether it is operated. PRL configurations
need additional data on which PPLGs are visible in the Plan Screen, which
visuals it needs to display on the Signalling Screens and which ARI settings
it must use. VKL federates need other additional information. VKL func-
tionality needs to know which sections (TCA sequences) is being displayed.
This information cannot be generated run-time because FRISO does not
send infra data, so it must be generated offline. Furthermore, information
of material types, for example name, weight, length, minimum, regular and
maixmum speed, etc., must be loaded into VKL.

4.3 Data for New Trains

If we temporarily ignore the separation of tasks of traffic control, the data
needed during the complete process of creating a new train is this:

Route This item is twofold. First, the route through the country must be
known. This includes all TCAs that the train will encounter. There
generally exist multiple possible national routes of which one must
be chosen. Usually only the preferred or most common route for the
current type of train is used. Second, local operators have a broad
choice of routing trains through a station. When submitting a train
into the system, one of them must be chosen. The possibilities may
nevertheless all need to be considered when choosing a path for the
train.

Time Different types of trains have varying travel times between TCAs.
These determine the times for each of the train’s activities. We must
also take into account what braking characteristics the train has when
determining travel times before stops. Together with acceleration

25

times, these depend on the length and weight of the train, as well
as the number of locomotives.

Time table The schedule of all other trains along the route must be known,
including delay information. From this, we can deduce a route that
does not conflict with any existing route.

Conflict margin This determines what criteria exist for the new train rel-
ative to the existing trains. It is an interesting measure: it can be set
to a static 3 minutes, corresponding to a test by the DVL alone. If it’s
set to the general norms, it resembles the ideal state where all opera-
tors test the train. Nevertheless, if it were set to ‘optimal’, it could be
possible to test the new train based on its own characteristics, based
on the infrastructure on hand, leading to the tightest margin possible.
In other words, this measure represents the capabilities of the testing
procedure.

Train and route characteristics All information that is sent by the ISVL
system, c.f. train weight, length, axels, preferred stops, identification
number, traction, etc. For the route planning system, the from and to
tracks that are specified in the ISVL message are important.

Final route The translation of TCAs to conflict free routes to plan rules
is not that trivial. Plan rules must be generated as the train is being
entered into the system.

26

Chapter 5

Towards building an order
accepting agent

In the following, a software agent is developed that performs the task of order
acceptation. To describe the term agent, the definition of [27] is used: an
agent is “anything that can be viewed as percieving its environment through
sensors and acting upon that environment through actuators”. Even more
informal, an agent can notice things and can do things.

5.1 Agent Technology

ProRail is conducting research to learn how to apply agent technology to
various tasks. [28] developed an agent-based train driver model based on real
driving data. [29] built a multi-agent system for determining future train
positions. The benefit of using multi-agent technology lies in its properties.
Wooldridge [30] explains that “agents are computer programs that act inde-
pendently on behalf of their owner”. They do this solely by sensing, deliber-
ating and acting. A good agent program is modular, decentralised, change-
able, ill-structured and complex [31]. Modularity is to be taken as meaning
that the agents are not themselves part of the environment. Changeable
means that agents have state, while ill-structured here means that the a-
priori design of the agent is not fixed. In other words, agents can be defined
by their superficial characteristics or behaviour without needing to go into
detail of their internals.

When designing an agent that needs to take over a task originally done by
a human, it is useful to make it intelligent [30]. Characteristics of intelligence
are reactiveness, proactiveness and social skills. Intelligent agents know how
to react to a current situation, take initiative to perform actions, without
the need for external stimuli, and they’re social, in the sense that they
can communicate with fellow agents (human or computer system). It is no
requirement that the agent is strictly cooperative in its social skills. It is

27

only required for intelligent agents to perform those actions that further
their way to their goals.

One of the ways to implement the internal program of the agent is by us-
ing the Intentional stance[30]. It advocates to describe agents using mental
states: beliefs, desires and intentions [32] (BDI). Beliefs represent the state
of the environment as judged by the agent. Desires are those situations that
the agent wants realised. Another way to think of desires is to call them
goals. Intentions are strong goals. As soon as an intention is adopted, it will
not easily be dropped. Interstingly, goals may conflict with each other, while
intentions cannot. Of the (possibly many) intentions, actions are generated.
These actions together form the plan of the agent.

There exists research into scheduling trains using agent tecnhology, yet
the agents are so simple that there is no need to design them using BDI.
A striking first example is the German Train Coupling and Sharing (TCS)
system [33]. Here, the goal of the system is to combine smaller cargo trains
such that this resulting train only occupies one slot in the infrastructure.
This is done by grouping trains that have a related travel time slot. Not
single trains but groups are modeled as agents, where a single train is a
singleton group. When a train needs a path, one is acquired from the net
manager. The agent then auctions its path with other agents. The highest
bidder is the agent with the longest common route. To optimise the solution,
a simulated trading protocol is used.

Other examples are [34], where train drivers are represented by agents.
When scheduling conflicts arise, other agents volunteer to take over the duty
of the initiator. If this leads to further problems, other agents recursively add
themselves to the group. The solution with the lowest cost (c.f. lunch breaks,
working overtime, etc.) is chosen. [35] describes a multi-agent system where
train agents receive the speed and location of fellow agents and adapt their
own speed to optimise the distance between the next and previous train.
The agent’s actions are determined using fuzzy control.

5.2 Model

Before the proposed model is explored, let us formally define the require-
ments of the system.

As an initial requirement for this project [37], we have

Agent-based The solution should make use of techniques from Agent Tech-
nology.

The Multi-Agent system should perform the act of order acceptation under
the following technical prerequisites:

Environment Agents work from inside PRL-Game.

28

Communication Agents make use of existing messaging framework (HLA).

Modularity Agents use only local information. If the agent functions as
the DVL, it only uses DVL-specific information available only to that
federation.

Performing order acceptation is considered correct if the following practical
considerations are met:

Testing Agents must test the new train. It must minimally abide by the
general planning norms as found in [5].

Route creation Agents that operate at the workplace of the local operator
should be able to enter correct routes for the new train.

Finally, there are some situations that need mentioning.

Dynamic norms The software should be designed such that the norms
can be easily adjusted.

Automating The software should ideally be able to run without user in-
teraction.

5.3 Model Description

Each federate is equipped with its own agent. The goal of the agent is to
respond to order events (in the case of the VKL agent) or to respond to
test requests (for PRL agents). In the following, the models for the separate
agents is described. Treatise of the specific state that is being kept by agents
is delayed and filled in when the communication protocol is explained. This
is the part where the individual agents are integrated into the final multi-
agent system.

5.3.1 Agent’s context

The software agents are situated at the same level as the human user. De-
pending on the level of automation (discussed later), the agent can be used
as a decision support system or as a fully automatic train planner. As sup-
port system, the agent should propose routes based on information that is
also available to the traffic controller. If the system were to be built with a
sophisticated reasoning engine, it could also convey its reasoning to the user
on request. In this case, it could be important that the traffic controller can
verify this train of thought. On the other hand, if the agent were to perform
fully autonomously, its capabilities should be on par with the human user.
For these reasons, the agent must be designed such that it receives the same
information as the human operators do while also being able to act on the
system in a similar fashion.

29

The agent has several sources of information and two communication
channels. All of these are modelled as contexts. The agent’s knowledge
also fits in here, but its description will follow later. The first category is
knowledge. It is further subdivided into data on the current plan and of the
current planning norms. With the plan, the whole train schedule including
delays and other relevant information for the execution of the time table
is meant. These contexts do not have to be shared by all agents. It is
likely that information in the plan of one federate is different from other
federates. Likewise, agents do not necessarily use the same planning norms.
If a real-world scenario would be played, individual agent’s motivation could
influence how the norms are being applied.

Next, the two communication channels are both modelled as separate
contexts. For agents to have an effect on the simulation, for instance by
automatically creating plan rules for the new train, there must be a context
to do so. The context should roughly use the same code functionality as
the user would trigger. Specifically, the agent must be able to create a
train, send the TCA sequence and send complete plan rules. In addition,
it must make sure that the PRL-Game federate is aware that it sent these
messages. In order to communicate with fellow agents, another context is
used. The incentive for modeling this as a separate context is to distinguish
communication among agents themselves and with PRL-Game. Messages
about creating a new train and creating plan rules might be time constrained
and should therefore be managed by the HLA, but communication about
when it should ride are not time critical. Hence, they should not belong to
the same messenger.

5.3.2 Communication protocol

All communication resolves around the possibility of having a train at a
certain time. The main ingredient of the protocol is the time window. It
defines when a train can have a certain activity on a TCA. One can imagine
a station serving two trains per hour only. Trains will stop here only shortly.
Now, considering a fixed planning norm of three minutes, the available time
window for another train is exactly 24 minutes long, having three minutes
space between the endpoints and the already scheduled trains. In general,
the messages flow as follows. The DVL agent creates a series of time windows
for each TCA that the train encounters. The endpoints of these windows
follow the travel time between TCAs, ignoring possible time that is spent
standing still. Hence, the first window would start at the ready time and
continue on through time up to the deadline minus the total travel time.
Visually, the time window ‘bar’ would start at the bottom but not continue
to the deadline. Similarly, the final bar for the last TCA would float, hanging
from the deadline time. These windows are sent to fellow agents. They
incrementally update the windows of their operated TCAs until a valid

30

route can be created.
There are many choices a PRL agent can make. Each of these options

can be prioritised individually. Taking for example a situation where two
tracks A1 and B1 enter the agent’s area, cross over at the middle and leave
the area on A2 and B2, there are four choices. The most logical one is taking
the train from A1 and sending it to A2. As this is a double track situation,
trains will probably go from B2 to B1. This means that the time window
to send the train to B2 will be quite limited, because we are not allowed to
block the trains coming from B2. Similarly, taking the train from B1 will
most likely block the other trains already in the schedule.

Not only is there a routing choice for tracks coming from the previous
area going to the next, but there is also a multitude of paths inside the area.
And not only are there only routing options, there is also a possibility to
have trains stop on an unoccupied track and continue on later. Creating
these arrival + departure activities has implications for the travel times of
the train, but these are ignored here. All of these choices can be prioritised.
Continuing with the previous example, the route A1 A2 would have the
highest priority. If we now take the part B1 to the switches as having a
shorter distance than the switch to B2, B1 A2 would have a higher priority
than A1 B2. Finally, B1 B2 is least favourable. Each of these options can
have several time windows throughout the planning period.

Even the time windows themselves may be prioritised. Imagining a situ-
ation where the train may pass through the station at only one minute, say
9: 13h. If the train were delayed, it would conflict with a previous train or
hinder a train running later. However, at some later point, the time window
is [9: 49h− 9: 56h]. The agent may even be so witty to split up this window
into a preferred window [9: 51h−9: 53h] and the total window itself. If at all
possible, the agent would like the smaller window to be chosen. Only if this
doesn’t fit with his colleage agents, he will accept the other, larger window.
And if that one does not result in a succesful path, the 9: 13h window is
proposed.

The protocol will be guaranteed to be ending. The limiting factors in
this set-up are time (we assume that we cannot plan more than 36 hours into
the future, which correlates with the maximum time an order may be given
[5, pp. 132], although time may also be limited by the order’s deadline), and
possible routes. Currently, ProRail plans in minute precision, and we will
use this measure for the protocol. Now, the DVL agent first sends the initial
time windows. Implicit here are the minimum times. PRL agents generate
the possible routes locally, along with the time windows that belong to those
routes. This can be done at the first step. If each agent would send its first
priority window back to the DVL agent, the DVL agent may try to construct
a route out of these windows. If he doesn’t succeed, he needs to request more
time windows. Based on the latest time window received, he computes the
time points of each TCA using the train’s travel times. The times are sent

31

to the agents. The intent of this message is to provoke the agents by saying
“if you don’t compromise, the train will travel at least this late!”.

Based on the renewed latest time received from the DVL, agents now
send new windows based on their priorities. If the DVL finds no earlier
path, he increments all last times and sends them again. This ensures that
the algorithm ends. It also offers the most flexibility from the agents. PRL
agents may be designed in any way. The friendliest agents do not prioritise
their time windows and blindly trust the planning norms. Less collaborative
agents may favour usual or smart routes, while keeping the time windows in
order. Other agents may mix everything up. They may do this by sending
their favourite windows first and rejecting to send more windows until the
very last moment (when the updated time is equal to their last minute of
the original window sent by the DVL). This strategy hopes to ensure that
their favourite windows are chosen regardless of other agent’s preferences.
Evil agents may only send their favourite windows and be done with the
protocol.

As soon as the DVL agent found a route, it surely is based on time
windows sent by his colleage agents. In order for the agents to know how to
pick routes for the new train, they must know which windows were chosen
for this train. Hence, each time window gets a unique identifier that is later
used by the DVL to inform the agents which route was chosen. This goes
one step further, because the DVL must stitch routes together that match.
Considering our simple example above, if one agent sends a window that
lets the train exit at B1 while the other agent has a matching window but
for A1, it won’t work. Ergo, time windows must be accompanied by both
an identifier, as well as the entry and exit track names.

The algorithm may be improved in speed by allowing the agents to send
back at what time they will proceed to send more windows. This ensures that
the DVL does not have to send times in vain. This change does not influence
the agent’s working, because they can easily deduce from their priorities
when the next compromise would occur. Another improvement might be to
enforce consective TCAs that belong to the same agent to be matching with
regards to tracks. This change conceptually groups the responsibility where
it should, namely the single agent responsible for that part of the route. For
this to work, however, the protocol must be redesigned. Time windows then
no longer apply to one TCA but to a sequence of them. Hence, activity
times cannot readily be distilled from these windows anymore.

Extending this protocol to include multiple DVL agents is trivial. Con-
ceptually, agents push the time horizon forward until a suitable path is
found. Using more DVL agents only adds one layer of agents that push the
horizon, while also executing in parallel. The initiating DVL agent needs
to only merge the partial routes together. If that fails, he pushes on and
requests a new route from colleage DVLs.

32

5.3.3 Selecting good routes

Choosing a route through the PPLG is based on a multitude of factors.
For instance, the size of platforms or the orientation of track and platform
may prevent some wagon forms to use a track. The dimensions of the
train’s wagons are known beforehand and any deviations from normal are
listed as “out of proportion” (Dutch: Buiten Proportie). Throughout the
Netherlands, a handful of these restrictions are in order [15]. Moreover, an
often heard rule of thumb (personal communication) [45, (Appendix A)] is
that cargo trains should not use platform tracks when passing through a
station. Furthermore, if a train must halt at a station, the operator must
take into account the length of the tracks in order not to block paths of
other trains. Finally, forcing a train over different switches might incur a
speed loss because different switches may only be used with a certain speed.

Much of the initial priorities among the above factors can be learned
from the daily time table. However, as shortcomings in the plan are some-
times corrected by the operators or as a personal preference overrides default
behaviour, a more dynamic approach must be taken to find the realisation
data. ProRail’s Sherlock program aggregates this information. It discloses
both the static time table as well as the routes as they are executed. A final
option for changes to these patterns is when calamities occur. The rules
applied for routes of trains may diverge even more. Using historical data of
incidents these deviations can be recognised. Machine learning techniques
can be used to find patterns in the data, yet another option that can be
considered more agent-like is explored here.

Of all possible routes, those that violate the BP conditions are cut.
Then, agents may choose to put a high priority on the platform criterium,
or on the infrastructure/switch behaviour, or maybe on following scheduled
behaviour. These chosen prioritisations can then be matched against known
previous behaviour of operators. This information can be used to tweak
the behaviour of the agent’s choices. However, in order to enable playing
future scnario’s lacking user information, the agent must evolve such that we
can trust it to make realistic choices. This may also lead to the definition of
several attitudes to solve the route problem, but the effects of these attitudes
must be well defined in order to be useful. Then, research can be done on
the effects of user attitude on the routes of trains and the effects on the
whole time table realisation.

5.3.4 Levels of automation

The agents can be put to work at different levels of autonomy. These levels
are related to the ease of use and conversely to the trust accredited to the
system. For example, at the lowest level, an agent performs the planning of
the new train and proposes its result to the human user. Its task is that of

33

a decision support system. The user is fully responsible for the new train
and he only uses the agent system to initially guide his actions. The system
cannot yet be trusted to do the right thing. When that trust increases, users
may decide to only verify the most difficult trains and accept the others as
they are presented by the agent. This potentially saves a lot of time, but the
user is still responsible for the actions of the system. The last step is when
the agent gains full responsibility over his actions, gained from extensive
testing and proofs of validation. At this point, the agent enters new trains
in the system itself, freeing the user from the burdon to check its every
action. Note that it is not necessary that the user loses all control. He may
disable the agent and perform the planning himself, just as what happens
with other automatic systems like ARI.

5.3.5 Track subscription

On any double track, one side is usually for one direction and the other side
for trains coming from the other side. Hence, when creating plan rules for
new trains, the computer system may already fill in the correct track names
if the direction is known. This process is already present in the operational
traffic control systems. However, PRL-Game lacked this funcitonality. This
provided a great opportunity to learn from the original design and still being
able to improve it. This part is not inherent to the agent’s design, but the
agent needs it in order to automatically fill plan rules, so it is discussed here.
Much of the information found here was acquired by questions in person, so
it cannot be referred to.

The route of a train is a sequence of TCAs. These are defined when
the infrastructure model is made and are considered static information in
this context. Of these TCAs, some are operated and some are not. Because
TCAs are simply points of interest, they may not contain switches which
renders them useless. Nevertheless, PRL receives all TCAs and filters out
the unoperated ones. This leaves the system with a bunch of TCAs. The
systems does not care about TCAs but wants plan rules for PPLGs. Thus,
TCAs must be converted to plan rules. Because operated TCAs all belong to
some PPLG and routes are defined on the level op the PPLG, not every TCA
needs a route. Operators may assign a route to every TCA, which causes
the route of the train on that specific PPLG to be split up, which gives the
system and himself some freedom by not having to free the complete route.
Instead, the route is freed and assigned in parts. The conversion from TCA
sequence to plan rules is lossy and difficult [3].

Next, for all operated TCAs found in a region, only those are selected
which are actually interesting for routing purposes. Note that all of them are
theoretically useful for routing so this step seems a bit unecessary. Finally,
the regional admin enters track names for common sequences of TCAs. The

34

format is

FromTCA, ToTCA,FromTrackName, ToTrackName

. This system is not designed and not used for filling platform tracks. It
is deemed that operators will always want to select a platform track man-
ually. This simple system is called the Track Subscription system (Dutch:
Spoorabonnement). There are several drawbacks and shortcomings of this
sytem, taking into account that PRL agents want to create complete plan
rules:

Force The format presented above lists only track names. However, a route
is slightly more than simply naming tracks. Due to restrictions of the
initial time table, or for any other reason, it may be interesting to add
the force field to the subscription. For agents this is crucial, because
force is a major part of the choices for the route.

Train characteristics The subscription as presented here does not take
into account what type of train will follow this route. For instance,
in areas where there are four parallel tracks, two out and two back,
cargo trains may be sent over the outer track while passenger trains
must take the inner track in order to reach the platform (see figure
2.5 where this is the case). Or a distinction may be made between
stopping trains and continuing trains taking different tracks. These
options are lost by not taking into account on what type of train the
rule will be applied. Filling tracks may therefore result in unwanted
situations, leading to a situation where these tracks are not filled in in
order to avoid accidents. This kind of attitude is unwanted.

Platform tracks Filling in tracks for platforms is not done. However, if
there is little choice or if there are clear rules of thumb that are usually
followed, it might be a bonus if these tracks were filled. For agents, the
ability to do this is crucial, as one of their strengths is that arbitrary
stops may be planned for cargo trains, meaning they must be able to
use platform tracks.

Unused rules As discussed above, only TCAs that are deemed interesting
are used to create routes. For our purposes, we can assume that this
encompasses all operated TCAs. This however means that each oper-
ated TCA will generate a potential plan rule, while in reality, only a
single rule is wanted. There is no way to ignore certain TCAs and fill
fitting tracks for the other TCAs.

Route splitting In general, but more specific in the case of cargo trains,
train operators can split a plan rule into two parts. This partitioning
will decrease the stress of the rail network if done correctly. The

35

current track subscription system cannot advise the user to create a
certain split route. Again, agents may want to opt for split routes
if it were advanced enough to compute the advantage of that. For
instance, splitting a rule may enable another train to go in front of
this train, while a non split rule would prevent the other train from
using the tracks to get there. In the former case, there is better use of
the infrastructure and more trains can be planned.

The system that was designed for human use and agent use was built
on the knowledge described above. Taking into account that it was being
created in PRL-Game, it did not have access to all information which steered
its design. Two main changes to the above format were made. First, instead
of simply naming tracks, complete routes can be defined. Nevertheless, if
no full route is wanted, parts can be omitted, rendering the resulting plan
rule partly filled in. By allowing such freedom, the generated rules can be
made such that the operator is automatically steered into the right direction
when choosing the route. Second, the design was made fully modular with
regards to train type. The way that is done is by using the train series
number. This number gives a good impression what type of material the
train will consist of. For example, the 3500 series is an intercity service.
Instances of this series are the 3515, 3517 and so on, which ride each half
hour. When splitting a 3517, the front part may continue to use the number
3517 while the second part may get the number 403517. When cancelling
trains halfway on its route, the original train will ride with its own number
until the cancelling point, while the part of the train further along the route
will be called 303517. (Obviously, the material itself cannot go and perform
the 303517’s service because it was cancelled. Local operators will have to
juggle in some other train to take over the 303517’s duty.)

What follows is a description of all elements to a subscription rule. The
model is more advanced than the original.

Train number Default (−1) series, other series number, or train number

PPLG Name of the PPLG for which this rule exists

From TCA Name of the TCA from where the train will come

To TCA Name of the TCA to where the train will go

Sequence number Number that is used for route splitting

From track Name of the from track of a plan rule

To track Name of the to track of a plan rule

Force Number of the forced route. Empty means default route.

Cause Identifies who created this subscription rule

Description Optional description for this rule

36

Figure 5.1: The track subscription screen. It belongs to the Planscreen tab,
as that is where the tracks are being entered. Not only are all subscribed
rules displayed neatly, but the user can also filter on selected columns. The
two filter rows above and below the table indicate the previous and next
subscription rule along the train’s route, regardless of the filter. Moreover,
the bottom row enables the user to automatically create rules for an existing
train, generalising them for use by other trains of its series.

37

Inherent in the design of this system is specificality. Rules for the default
train series, −1, are applicable to every train. However, if there is also a
rule for the 5700 series, that rule will be taken rather than the −1 rule
if the train belongs to this series. More specifically, if there were a rule
for the 305700 series and the train had a number in that series, that rule
would have priority. The most specific rule has a series number equal to
the train number and will therefore only be applicable for one specific train.
Yet this specificality continues beyond series numbers. TCA names need
not both be filled in, as are track names. For any new train, the sequence
of TCAs is filtered into only the operated ones. These are then grouped
by PPLG. Now, if there exist no rules specifically for this train and PPLG
combination, all TCAs must be displayed to the user and their route must
be empty. Otherwise, each TCA that has a matching (chain of) rule is being
displayed with the correct route. TCAs that are not found are considered
to be not interesting.

Throughout a PPLG there may be several TCAs. Yet before these and
after are the neighbouring TCAs. Subscription rules may be defined on
any of these TCAs. For each TCA in this PPLG, rules are searched. Each
previous TCA may be used in combination with any next TCA. However,
if any next TCA is skipped, it cannot create a plan rule anymore. If rules
are found, they are sorted based on the cause, where SYSTEM (statically
defined) rules have lower priority than USER rules, and AGENT rules have
the highest priority. The remaining rules are then sorted based on their
specificality. The first chain of rules is finally applied to the TCA.

The only thing that has not been addressed so far are defining platform
tracks. However, the definition of the subscription rules follows directly from
the TCA sequence. If a train performs a stop somewhere, its activities on
the same TCA will be an Arrival and Departure. The TCA sequence will
reflect this, so the same TCA will be listed twice. This is not the case for
route splits, because there we manually create two routes for one activity
(effectively splitting it into two activities with the same name). The rule for
arriving will have as next TCA itself. Likewise, the departure rule has itself
as previous TCA. The To Track of the arriving rule can now be a platform
track name and the plan rule will be correctly filled.

38

Chapter 6

Implementation of the model

6.1 Initial Explorations

In order to get familiar with the way PRL-Game enables changing the train
schedule, the train removal “Script” was developed. Changes to the time
table are done in the VKL system. Being an independent JAVA application,
the source code for VKL had been incorporated into PRL-Game. It had
already been noted by the maintainers of PRL-Game that the code was
messy and incredibly hard to edit [22] and this was verified in this small
project. The state of the code can technically be best described as a tangled
ball of static classes, of which most are singletons, that all use a handful of
stateful static classes that themselves allow other static classes to set their
variables. The Script project has succeeded but is entirely not maintainable.
The most viable option for finding out what a handful of code does, is setting
a breakpoint at some interesting line and tirelessly stepping through the code
flow, making mental notes about which paths are chosen and due to which
variables, because the program flow as displayed by the code itself does not
reveal any purpose or intent.

VKL is a client-server application. Changes done on one client are prop-
agated to the server for verification and further distribution. Instead of
implementing the interface between client and server, mimicking the server
but plugging a connection to FRISO in its stead, VKL’s source code has
been directly changed to support FRISO’s messages. An important obser-
vation is that it was done in such a manner that it disallowed using more
than a single VKL federate. Specifically, FRISO creates a new train and
then sends its activities one by one, while VKL assumes that a train with-
out activities means a removal. Although the solution looks simple enough,
by caching the created train and pushing it to VKL as soon as its activities
are received, the code still uses a full system refresh path instead of smoothly
incorporating the changes in the displayed model. The integration of VKL
into PRL-Game was deemed sufficient for the time being and hence did not

39

necessitate implementing VKL to allow multiple VKL federates. If a second
VKL federate would dynamically change a train, the first federate would
not synchronise that change.

6.2 Model Creation

The main trouble that appeared during the development of the agent soft-
ware was that PRL-Game does not have access to infrastructure data. This
means that the PRL agent cannot plan routes on its own. Neither can the
DVL agent compute exact travel times. The visualiser for the infrastructure
in PRL-Game was using a slightly disjunct set of data already, leading to
subtle yet persisting bugs. Although there exist infrastructure deliverables,
preliminary research concluded that the data was difficult to read and of-
ten incomplete. Furthermore, FRISO changes the data when it imports it
into its own database, so this approach was not guaranteed to work. A
workaround was needed.

6.2.1 ROBERTO

FRISO offers a run configuration called “ROBERTO” that rides each train
in the schedule individually, noting every infrastructure element it passes, its
speed on each of those points, the signals that are encountered and routing
information. From this data, conflicting routes can be computed. So to use
this feature, the train that we want to create dynamically using the agent
must initially be created in FRISO. To enable multiple routes to choose from,
multiple trains must be created in FRISO. Then, the whole time table can
be executed with ROBERTO which gives us the exact routing information.

There was no documentation available for the output of the ROBERTO
computations, so empirical analysis was needed to figure out how to use the
data. It appears that as soon as the train is placed in the model, the infra
elements are listed beginning from the back of the train. This was evident
because the speed on the first several sections was zero. Then, during its
journey, all signals, switches, sections, isolators and other elements are listed.
For our purposes, only the section names are of importance and the direction
of which the train passes the section.

Listing 6.1: Example ROBERTO input data.

<ROBERTO>
<ROBERTOINPUT ROBERTOINPUT VERSIE=” 1 .2 ”>

<TREINEN>
<TREIN id=”1” naam=”1011−T−1” mater iee lTypeId=”

56” beve i l i g i ng sType=”NS54” t r e i n S e r i e=”1011”
tre inType=”HS” tre inGebru ik=”R” treinLengteM

40

=”177” bronDi en s t r ege l i ng=”Donna BasisDagen
20150907−BD−002 van 2015−07−03”>

<TREINPAD>
<SPOORTAKSTUKBEGRENZER id=”13347” naam=”

Hsghtn HART1” type=”DIENSTREGELPUNT HART”
lengteVanafVorigeBegrenzerM=”185”

volgnummer=”1” r i c h t i n g=”T” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”137300”
sectieNaam1=”1133AT−7”
d ienst rege lpuntCode=”Hsghtn”
voorkantPassageTi jds t ipS=” 11.000225 ”
voorkantSnelheidMS=” 44.4444444444444 ”
voorkantVersnel l ingMS2=”0”
voorkant Inte rva lS=”−99999” remAfstandM=”
2582.10279996772 ”
achte rkantPassageTi jds t ipS=” 14.982725 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=”−99999”/>

<SPOORTAKSTUKBEGRENZER id=”13331” naam=”
HSL16” type=”PERMISS SEIN”
lengteVanafVorigeBegrenzerM=”1675”
volgnummer=”2” r i c h t i n g=”M” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”138975”
sectieNaam1=”1133AT−7”
d ienst rege lpuntCode=”Hsghtn”
voorkantPassageTi jds t ipS=” 48.687725 ”
voorkantSnelheidMS=” 44.4444444444444 ”
voorkantVersnel l ingMS2=”0”
voorkant Inte rva lS=” 37.6875 ” remAfstandM=”
2582.10279996772 ” s e i n b e e l d=”GR”
eindeRodeGolf=” f a l s e ” isHoogSein=” true ”
achte rkantPassageTi jds t ipS=” 52.670225 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 37.6875 ”/>

<SPOORTAKSTUKBEGRENZER id=”13302” naam=”1133
AT−7” type=”SECTIE”
lengteVanafVorigeBegrenzerM=”11”
volgnummer=”3” r i c h t i n g=”T” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”138986”
sectieNaam1=”1133AT−7”
d ienst rege lpuntCode=”Hsghtn”
voorkantPassageTi jds t ipS=” 48.935225 ”

41

voorkantSnelheidMS=” 44.4444444444444 ”
voorkantVersnel l ingMS2=”0”
voorkant Inte rva lS=” 0.247500000000002 ”
remAfstandM=” 2582.10279996772 ”
achte rkantPassageTi jds t ipS=” 52.917725 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 0.247499999999995 ”/>

<SPOORTAKSTUKBEGRENZER id=”13301” naam=”
LAS14:45:15 ” type=”LAS”
lengteVanafVorigeBegrenzerM=”12”
volgnummer=”4” r i c h t i n g=”M” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”138998”
sectieNaam1=”1133AT−6” sectieNaam2=”1133
AT−7” d ienst rege lpuntCode=”Hsghtn”
voorkantPassageTi jds t ipS=” 49.205225 ”
voorkantSnelheidMS=” 44.4444444444444 ”
voorkantVersnel l ingMS2=”0”
voorkant Inte rva lS=” 0.270000000000003 ”
remAfstandM=” 2582.10279996772 ”
achte rkantPassageTi jds t ipS=” 53.187725 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 0.270000000000003 ”/>

<SPOORTAKSTUKBEGRENZER id=”7623” naam=”FV”
type=”SPOOR” lengteVanafVorigeBegrenzerM=
”1040” volgnummer=”5” r i c h t i n g=”T”
k i l omete rL in t=”Rtd−Hfd” k i l o m e t r e r i n g=”
140038” sectieNaam1=”1133AT−6”
vri jebaanCode=”Ght Hfdght”
voorkantPassageTi jds t ipS=” 72.605225 ”
voorkantSnelheidMS=” 44.4444444444444 ”
voorkantVersnel l ingMS2=”0”
voorkant Inte rva lS=” 23 .4 ” remAfstandM=”
2582.10279996772 ”
achte rkantPassageTi jds t ipS=” 76.587725 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 23 .4 ”/>

<SPOORTAKSTUKBEGRENZER id=”13332” naam=”
HSL15” type=”PERMISS SEIN”
lengteVanafVorigeBegrenzerM=”1009”
volgnummer=”6” r i c h t i n g=”M” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”141047”

42

sectieNaam1=”1133AT−6” vri jebaanCode=”
Ght Hfdght” voorkantPassageTi jds t ipS=”
95.307725 ” voorkantSnelheidMS=”
44.4444444444444 ” voorkantVersnel l ingMS2=
”0” voorkant Inte rva lS=” 22.7025 ”
remAfstandM=” 2582.10279996772 ” s e i n b e e l d=
”GR” eindeRodeGolf=” f a l s e ” isHoogSein=”
true ” achte rkantPassageTi jds t ipS=”
99.290225 ” achterkantSnelheidMS=”
44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 22.7025 ”/>

<SPOORTAKSTUKBEGRENZER id=”13299” naam=”1133
AT−6” type=”SECTIE”
lengteVanafVorigeBegrenzerM=”13”
volgnummer=”7” r i c h t i n g=”T” k i l omete rL in t
=”Rtd−Hfd” k i l o m e t r e r i n g=”141060”
sectieNaam1=”1133AT−6” vri jebaanCode=”
Ght Hfdght” voorkantPassageTi jds t ipS=”
95.600225 ” voorkantSnelheidMS=”
44.4444444444444 ” voorkantVersnel l ingMS2=
”0” voorkant Inte rva lS=” 0.292500000000004 ”

remAfstandM=” 2582.10279996772 ”
achte rkantPassageTi jds t ipS=” 99.582725 ”
achterkantSnelheidMS=” 44.4444444444444 ”
achterkantVersne l l ingMS2=”0”
acht e rkant In t e rva lS=” 0.29249999999999 ”/>

<SPOORTAKSTUKBEGRENZER id=”13298” naam=”
LAS14:40:49 ” type=”LAS”
lengteVanafVorigeBegrenzerM=”15” . . .

...

Looking at the data, every SPOORTAKSTUKBEGRENZER, which is
a thing along a track and will be called separator in this part, is listed in
order of encounter. It lists TCA hearts, permissive, automatic and standard
signals, sections, isolators, tracks and more. Every such item has a unique
id. Elements have many attributes which cannot be displayed on a single
sheet of paper. Those include speed of the train, acceleration, location, time
stamp, TCA or free track code, distance from previous separator, sequence
number, direction, and more.

For our current purposes, only the actual route of the train is important.
We define it here as the sections that are encountered. We want the train’s
route on each TCA, but not on free tracks. Free track is not considered
because the entry section uniquely determines on what section the train will

43

end up. This will always be in another TCA. Ergo, it is only needed to
extract the route up to the next free track. Judging from the input data, it
is possible that two TCAs connect directly. TCA name is defined in the key
dienstregelpuntcode (TCA code) and free track names are defined in the key
vrijebaancode (free track code) and they are mutually exclusive. Because
these keys are not always filled with a non-null value, a sequence of section
names is defined to lie in one TCA if the TCA code remains the same,
excluding empty values. If the section name becomes empty, it only signals
the end of the TCA if the element has a non-empty vrijebaancode.

Isolator elements connect two sections. This means that such an element
has two sectieNaam elements. These are not ordered, however, so special
logic is needed to deal with this. It appears that there is no fixed order of
infrastructure elements, so in theory it is possible to encounter an isolator
followed by another isolator. In this case the section name in between is
missing, but this is not a problem. In order to find the very first section
the train is on, either the first section element that is read is used, or the
isolator combined with the next section name determines the first section, or
the second isolator determines what the very first section would be. Consider
that the first isolator has sections A and B, and the next section is named
A, we know that the first section was B. Likewise, if the second isolator has
D and E, there is an error. Otherwise, if it is A and C, we know the first
section was B, because the common section was A.

The route of the train is deduced from the above. Because either the
section elements or the isolator elements could be used to list all sections
that were encountered, it was decided that this reduncandy would be used
to verify the correctness of the route. Hence, the section elements would
forcefully set the current section, while isolator elements would verify that
the current section was indeed the section that was isolated. If the isolator
element found that the iteration state was still correct, it would add the last
seen section to the route. As soon as the current TCA was lost, the last
seen section was also added to the list, regardless of whether a final isolator
was encountered.

Armed with the routes for each train, how should the appropriate plan-
ning norm be selected? First off, checking norms is only relevant if the
route of two trains conflict. This can easily be verified by iterating through
all sections of both routes at the same TCA and checking if at least one of
them has the same name. However, based solely on the sequence of sections,
finding the train’s direction is more complicated. If the number of common
sections is more than one, the process is straightforward: if the sequence of
one train is the other’s reverse, the conflict is cross back. Otherwise, if both
endpoints are the same, it is followup, otherwise it is cross to. However, if
both trains only have one section in common, this approach is not viable.

Because finding the direction of a single section conflict poses a problem,
external information is needed. One element of the train route is particularly

44

useful for this. TCA Hearts (DIENSTREGELPUNT HART) are located on
each track in a TCA and determine where delays are computed. Conceptu-
ally, they can be thought of as the centre of the TCA. Now, the route of a
train is split between those section that come before the heart and those that
come after, relative to the direction of the train. The conflict is now easy
to resolve, because if the single section appears in the same list of sections
(either both towards or from) the heart for both routes, the conflict is cross
to. Otherwise, it is cross back. It can never be a followup if there is only a
single section in common.

Determining the relative position of the heart along the route is done
by keeping a flag during parsing, which flags whether the heart has been
seen. As soon as the heart element is read, the flag is flipped. Depending
on the state of the flag, sections made final by reading the isolator element
are placed in the correct list. Dummy section names are inserted in the list
if the heart element is the first or last element to be read to prevent dealing
with null values.

Arrivals and Departure activities complicate the matter further. A train
that arrives at a station now may depart after several hours. Potential con-
flicts during arrival are thus not relevant anymore during departure. How-
ever, the routing information does not care about activities and lists the
whole route as a continuous sequence. Fortunately, the ROBERTO input
file also lists every activity of the train, including time stamp and last seen
separator ID. Interestingly, K activities are listed twice there, the first entry
being the arrival time and the second the departure time. For our purposes,
K activities can be considered to be one activity with a route, and the sep-
arator IDs of the A and V activities can be used to create proper routes for
each of them.

6.2.2 Train plan for templates

Superficial route information on TCA level was already available in the VKL
federate. Because creating a train programmatically from scratch in VKL
is a mess, it was decided to persist an existing train and reload it when an
agent needs to create a variant of that train. The only change that must be
made to this clone is the actual activities, because the agent may introduce
stops along the route. The decision to persist the train outside of PRL-Game
was made because otherwise a dummy train had to be always present in the
train schedule. The Train class was changed to support writing its internals
to XML. This was done recursively, because train objects have delay objects
and activity objects. The XML structure that was created was saved to a
file that could be specified in the configuration.

The single dependency for exporting trains is the ROBERTO routing
information. So before saving the trains to file, a separate ROBERTO run
must be done, yielding the text file containing the route. After linking the

45

Figure 6.1: The PRL Agent module offers a way to merge the route file with
the template file.

file in the configuration, the trains that are needed for creating new trains
can be exported. This export is an XML file containing both the train’s
details from VKL as well as the ROBERTO information extracted from the
linked file. This resulting file will be called the templates file. It contains
different options for a final train: one template may pass through a station
(D) on track 705, while another template follows the exact same route, but
performs an A+V on track 702.

A detail that is overlooked upto now is the data needed for creating
plan rules. While platform tracks might be deduced from the ROBERTO
information, free track names are not so easily defined. The final step to
creating a workable templates file is by adding plan rule information to each
activity. The names of the tracks and the route numbers were extracted
from the time table in FRISO. There, each template has its own plan rules
and these could be easily copied. An excel document was created containing
a sheet per train and the route per activity. It is possible to add split routes
for activities. The configuration was then amended with the option to merge
both excel file and templates XML into the final templates file.

6.2.3 Modules

Orders are modelled as events that arrive in the system at a specified time.
All events are specified in advance in a dedicated excel file. Only the most
important fields are given, namely event time, train number, from TCA,
to TCA, ready time, deadline, from track, to track, and template numbers.
As each order is read at simulation start and should only fire at a certain
simulation time, PRL-Game modules were used. The module was registered
as a listener to the simulation clock, and it supported access to the orders
file. The orders would be parsed when the module was created and stored
as event objects in a priority queue. At each time step, the head of the
queue would be inspected and if its due time is before the current time, it
is executed. This is done for each remaining event with due time in the

46

past. This method ensures that orders can be dynamically loaded in the
system, either by manually creating orders, by loading the orders file while
the simulation is running, or by simulating a hickup in the order delivery
channel.

Both the PRL agent and the VKL agent are modelled as modules. They
both extend from the Order Module. As both agents need information of
the template trains, the data model is created in this parent class. However,
each module only uses information that is relevant for its job.

6.2.4 VKL agent module

The VKL agent handles orders on the level of TCAs. From the order, the
template train numbers are read. For each of these dependent numbers, the
timetable is deduced from the template file. For each of the TCAs in the
train’s schedule, a time window model is created based on the schedule of
all other trains travelling in that TCA. Between each two sequential TCAs
of the template train, the agent checks if there are other trains doing that
exact crossing.

The two TCAs can be named this and that. The route in this TCA
ends with a certain section. If there is any route of the other train that
lies in this TCA and contains our last section, we have a conflict. The next
step is to create the diagonal line. For that, the non-arriving activity of the
other train in this TCA is taken, as well as the non-departing activity in
that TCA. The activity times give the slope of the line of the other train.
Our time window in this TCA is thus intersected with a time window of
the other train’s departure time, just like the time window in that TCA is
intersected with a time window of the other train’s arrival time.

Based on the direction of the conflict, the intersecting time window is
different. If the direction is cross back, the free track is assumed to be occu-
pied until the other train finishes his route. Assuming a 3 minute norm, the
window becomes a block form beginning at three minutes before departure
of the other train, until three minutes after arrival. Conversely, cross to
conflicts need to take the slope of the other train into account. If the other
train has the same travel time, the blocked time window runs parallel to the
train. Otherwise, for example if the other train is slower, the blocked win-
dow does not follow the other train’s slope. Instead, it ends three minutes
after arrival, but it does not have to start three minutes after departure.
Rather, it starts as many minutes earlier as is our travel time.

After all these conflicts have been processed, the agent has a model of
free space over time. For each template train, it sends a request to check
it to all PRL agents. It is assumed that TCA are controlled by only one
agent, so the VKL agent waits until for each template, each TCA’s time
windows are verified. Because these templates all belong to a single order,
they are sent as such. Moreover, the message contains the order’s from and

47

(a) Train conflict where trains travel in opposite direction. The other (red) train
creates a box around it. This box contains a certain margin around the train that
represents the generic norm that is applicable in this case. The train that we want
to add to the schedule (green) can go anywhere in the green area. The white area
is not reachable because of the train’s travel time.

(b) Train conflicts where trains travel in the same direction. The other (red) train
creates a margin around itself that represents the generic norms that are applicable.
Note that these margins do not have to be parallel to either other line, as ordering
(as in: first or second train) determines the norm, as well as activity, which are not
necessarily the same at A and B. The green area is where the new train can go.
The white area poses no conflict, but cannot be utilised because the green train’s
travel speed must be taken into account.

Figure 6.2: Train conflict types.

48

to tracks that are needed by the PRL agent. Sending messages is done using
PRL-Game’s own message handling system. Treatise of this agent’s logic
will continue after the PRL agent has responded.

6.2.5 PRL agent module

The PRL agent receives multiple trains that each have multiple TCAs that
each possibly have multiple time windows to be checked. By looking at the
schedule of all trains, the received time windows will be adapted to reflect
the agent’s knowledge. Because this agent only needs to respond for the
TCAs that are operated locally, a check is done to see if the TCA is known
at all, and if it is, if its PPLG’s ARI state is not inactive. For these operated
TCAs, the complete timetable is checked to see if any train passes the TCA.
If it does, and the routes conflict, the time windows may be adapted.

As the PRL agent considers track occupation, a special case must be
made for arrival and departure movements. Whereas trains conflict with
all other trains using the same connecting track between TCAs, platform
tracks may be unoccupied for a significantly longer period of time. We must
therefore make an additional distinction between arrivals and departures,
which were called stops. Any ongoing train intersects the arriving window,
while the stopping window remains intact as long as no other train uses
that track. The train may arrive at its track if its arriving window is clear,
waiting at its stopping track as long as the stopping window is clear, and
departing in any clear departure time window.

Special care must be taken when dealing with train relations. When a
train combines with another train, the track occupation of the first train
should be merged with the occupation of the second. Likewise, whereas the
second train only has a relatively small occupation, the occupation of the
first train must also be taken into account. This special case only occurs
however on train arrival and departures.

Depending on the type of conflict detected, the type of activity the new
train will perform and the other train’s relations, the time windows are
updated. For conflict handling, the generic planning norms are used. As
soon as all other trains have been checked and all windows adapted, the PRL
agent sends the new schedule to the requesting DVL agent. Note that the
stopping activities are also transmitted, as they will be needed for creating
the final plan.

6.2.6 Aggregating the results

The initiating DVL has the grand task of consolidating all responses into one
single train. There are time windows for each of the template trains, created
independently by each PRL agent. The DVL agent attempts to find a result
by building a graph. The templates differ on a few key points. There, one

49

template may perform a passthrough while another halts on track A, while
another train halts at platform B. These are called the choice points of the
graph. Another choice lies in a single template. The agent is free to choose
the staying time of a train on a station. It might pick a departure time
that further along the route leads to an impossible situation. It can then
backtrack to this branching location and choose to depart at a later time.

It makes sense to aim for a train schedule that results in as small travel
time as possible. That way, the infrastructure is used most optimally. How-
ever, the DVL agent must also adhere to the suggested departure time as
found in the order specification. Hence, taking the earliest possible depar-
ture time in consideration, the earliest arrival of all possible paths through
the graph is not guaranteed to be the best route. From the earliest arrival,
the latest possible departure time should be found. This last path is the
shortest and therefore preferred path. In order to find this option, the agent
naively computes all paths and finds the shortest one.

When the DVL agent settles on a specific option, or is unable to find
any path, it informs his fellow agents of the result. The other agents are
interested in what exact route the DVL agent has chosen. It may be the
route over track A, but also over B. The trdl agents can create track sub-
scription rules for this specific new train such that, as soon as the system has
processed the creation of the new train and the usual messages are passed
asking to create tracks for the new train, the correct route information is
present.

50

Chapter 7

Experiments, validation and
results

Ultimately, a single experiment was conducted. This had everything to do
with the scale of manual operations needed to create useful initial data.
For the scenario, the then-current SCHIPHOL00 was chosen. It is an ex-
tract of the current infrastructure and train schedule of 2017. The use-
case for the scenario was to test the effects of an innovative way to handle
emergency calls in the Schiphol Airport tunnel. The effects studied were
located around Schiphol, Amsterdam and specifically the so-called A2 corri-
dor, passing through Utrecht and Geldermalsen into Den Bosch, Eindhoven
and further. It was on this stretch of the network that the MAS was tested.

On a practical note it should be said that the MAS experimentation
happened in close connection with the development of the above scenario.
Therefore, at the time that a suitable freight train had been chosen to base
‘new’ trains on, no cargo trains had been tested yet. These tests would
change the train schedule such that the simulation would execute it prop-
erly. Moreover, due to issues in the scenario that would later be solved,
certain trains ((1)3500 series) were taken out of the model because their
train relationships were not correctly configured. It was practically impos-
sible to merge the model in progress with the changes made to the model
for use with the multi-agent system. Hence, the experiment was done in the
face of some missing trains and with untested cargo trains.

One such cargo train runs from Germany, through Venlo on the A2
corridor, passing through Amsterdam and then follows its way to the North
Sea coast. It was this train that was chosen to recreate. The first thing that
had to be done is figure out possible routes. It was deemed unnecessary to
consider multiple global routes to get to the destination, so only the route
along the A2 corridor was taken. Along that route, however, are many choice
points. For instance, it can pass through Geldermalsen or utilise a stopping
track. If it does so, dos it go there by track X or track Z? It can get as

51

specific as choosing which switches to set. But not only does this apply to
Geldermalsen, the same choices can be made for Den Bosch and Utrecht.

For this experiment three template trains were made based on the orig-
inal train. The original passes through all stations, so two extra stops were
created. One of them in Eindhoven, the other in Geldermalsen. Each of
those stops could happen on two separate tracks, yielding no more than
two extra templates in total. To create these schedules, the scenario’s train
schedule was consulted using FIC (FRISO Incontrol Center), an application
that holds all data needed for a simulation. The train had to be copied
twice, after which for each activity the planned times and claim times had
to be adapted depending on the length of the stop. It was decided to set
the scheduled stopping time at 2 minutes, knowing that the agents would
change the final schedule due to safety and feasibility considerations.

In addition to those two templates, 20 others were made using the same
strategy. These 20 were not even all imaginable routes for Eindhoven. Then
all trains were run individually, yielding ROBERTO information about track
utilisation. This data was read into the application in advance and coupled
with a manual file that held the tracks of each templates. Finally, the newly
created trains were removed from the scenario except the original. An order
was created that required the new train to be created at 1 minute past 7
in the morning. The deadline was three in the afternoon, a large enough
time frame to place the train. As the initial attempt to use all 23 options
for templates resulted in a too long computation time, it was settled to use
only three templates.

The workplaces of the operators were divided in only two. One operated
as DVL, the other as trdl. As this workplace operated all places, it could
also be called the gameleader workplace. This set-up was refined until no
bugs were present and was presented to current traffic controllers, colleagues
of the Innovation department at ProRail, but also ICT specialists and other
office staff working with planning trains. This proof of concept was enough
to stirr interest, although many were critical as to its use in real systems
as-is at the time. The most visible improvement of the MAS technique was
that the creation of a new train took only 6 seconds, while otherwise 20
minutes would have been needed on average.

There are three main results of this experiment and therefore this thesis.
First, this multi-agent system shows that it is possible to automate on a
small scale using relatively simple software. This system that is not nearly
as complex as otherwise used software is already able to show promising
results. It is not necessary to spend a lot of money to have a system built
that performs this task. Second, it shows that is is possible to use personal
agents to assist in the operator’s tasks. Users are surprised that it is possible
to show a system that proposes a train schedule in their systems. They still
hold responsibility for the final schedule and this is reinforced by allowing
the operator to change the proposal. Nevertheless, the steps that are taken

52

automatically relieve the users of having to do repetitive actions.
The third result is that it is possible to create a planning system in

a live and dynamic environment. By restricting the agents to only plan
between existing trains and preventing them to change existing schedules,
the planning problem they solve becomes easier. Obviously, generating an
optimal planning for each new train takes far too much time and does not
yield a tractable time table. Is it also not necessary to have a correct or
safe or executable time table to start with. The agents only search the free
space as dictated by the current situation.

53

Chapter 8

Conclusion and future
research

Solving the problem of creating a safe path for a new train in a dynamic,
currently existing train schedule was done naturally using a multi-agent
system. Because the original procedure for planning trains was already
based on the interaction between multiple operators along the hierarchy of
train traffic control, the modular setup of the MAS proved to be an elegant
solution. Moreover, using this modular approach stretches further than
simply the architectual design part: separating the interests of the agents
leads to the desirable situation where agents can be freely turned on or
off, tuned or otherwise changed based on the required functionality. For
example, if one wished to research the impact of the task of train planning
for a local operator, a simulation could be run where the other operators
were simulated using agents. That way, only a single participant has to be
in the simulation. Another possibility is to vary the levels of automation
of the agents, or the strictness of their following of the official rules. The
MAS provides an easy paradigm where such interactions are inherent in the
design, they come for free, so to say.

The main research question is ‘In what way can agent-based modeling
be used to facilitate the work of rail traffic operators?’. By following the
subquestions it can be determined whether this research answered the main
question.

(a) What is a suitable scope of the project?

54

One of the tasks of ProRail’s rail traffic monitors is to create schedules
for new trains in a live, dynamic train schedule. This task deviates from
their other work, which mainly involves problem solving during conflicts
or incidents. Manually planning trains is a difficult task which is also not
fully supported by the operators’ tools. The procedure is subdivided into
subtasks for multiple operators, which unfortunately translates into a de-
pendence between operators. Busy operators have even more work to do,
while colleagues have to wait long for the whole process to be finished. Be-
cause the task can be easily defined and is mostly separated from the other
work of the operators, it is most suitable for this project.

(b) What is a natural and efficient approahc to building a supporting sys-
tem?
A multi-agent system provides a unique solution for automating the task
of dynamic train planning. Its multi-module nature closely resembles the
hierarchy of the process under study. Each operator can be represented
by a single agent, that handles the planning, checking and communication
between the other participants. Agents can also be used as a temporary
substitution for a final integral planning solution, where humans gradually
entrust their tasks to the agents until the task can be fully automated.

(c) What is a good choice for agent internals?
The agents must be rational. Their task is largely safety-related and must
therefore be precisely specified. The advantage of using rational agents is
that human operators can verify the reasoning of the agents. This makes
it possible for operators to quickly correct a proposed action of the agents,
while also allowing operators to gain insight in decisions that were automat-
ically taken.

(d) How to implement the agents in the available architecture?
The traffic operators’ workplace are simulated in PRL-Game. Due to the
intimate data sharing protocols employed between PRL-Game and the sim-
ulator FRISO, it was considered best to build the agent code directly into
PRL-Game. This however prevented the use of more sophisticated multi-
agent platforms. The communication capabilities of PRL-Game were suffi-
cient because the agent communication protocol was kept very basic for this
proof of concept.

(e) How to find proper sources of data?
There is not yet a standardised set of interfaces to get realistic ProRail data
from. Worse, the simulation used data that was slightly modified in order to
create a working model. Unfortunately, retrieving that information was not
trivial at all. Although the simulator did not expose simple ways to retrieve
model data, the FRISO simulator was solely chosen as the source of data.
This meant that the data could at least be considered consistent.

(f) How can the result be verified?

55

Given the difficulty of obtaining a large workable dataset to experiment
with, it was impossible to showcase the potential of the multi-agent system.
A workable demo was created and the results were manually verified. The
demo was then shown to staff and traffic operators, who agreed that the
results were feasible. The demo was also shown to managers at nearly all
levels of ProRail management, who were all enthousiastic about the potential
of this multi-agent solution.

The question of how multi-agent programming can help automate the
order acceptation process can be answered with a resounding “trivially”, as
long as the process remains in the current hierarchy of operator responsibil-
ity. It is debatable whether the solution to an automatic scheduling system
should be sought in a multi-agent system, instead of a linear constraint
model or a path finder through a graph of possibilities. However, as long
as multiple operators each control separate areas of the total solution space
and they remain responsible for the safe outcome of the planning process,
the use of agents is advantageous in multiple ways. (1) The inherent mod-
ularity of the multi-agent system closely resembles the hierarchical model
of the problem domain. (2) The rationality employed by the agents can
be used to prove that the agent will execute correctly and obeys all safety
constraints, and can be used by the operator to understand the reasoning
underlying the agent’s proposal. (3) Different levels of automation can be
set, enabling a smooth transition from a system that proposes solutions to
a fully automatic multi-agent system that operates autonomously.

A great difficulty of the scope of the problem involved is the effort it costs
to create a working scenario. Because the environment is based largely on
legacy software and other proprietary software, streamlining the generation
of test data was so involving that only a single scenario could be tested.
Despite that, the modularity of the agent system lends itself to easy testing
nevertheless. Each module has a strictly defined set of possible interactions
so each of those could be individually tested. The lack of integral data
made this automatic testing far more difficult and it has not been tried in
this research.

The very existence of PRL-Game provided a magnificent kickstart to the
research. It was not necessary to create a mockup interface for participants,
nor was it needed to convince the ICT department to grant an entry into
their systems. The source code of the PRL-Game project was directly acces-
sible and it was straightforward to build a custom processing and messaging
system that this MAS is in it. Because of its portability, the whole concept
could be presented in any location without the hassle to access resources in
private networks. Using an environment like PRL-Game greatly speeds up
the time needed to create such a proof of concept.

The hardest part of building the multi-agent system was its internals.
There was so much specialised knowledge that needed to be built into the
system that the effort greatly overshadowed the initial explorations or the

56

design and implementation of the messaging system, for example.
In the future, multiple parts of this thesis will be revisited and extended.

Firstly, work is already on its way to revise the design of this system. As it
currently stands, the program is highly interconnected with existing source
and does not use original software for tasks that have previously been solved.
For instance, there currently are advancements in creating a working and
timely interface with the ROBERTO component that is used to precisely
compute data on conflicting trains. A very basic implementation was done
for this thesis, but working with the real thing is far more beneficial.

Secondly, the current implementation lacks almost all advanced features
described in the module design chapter. Those points should be studied in
more detail and built into the system. Only then will the program start to
behave as advertised. During that process, more detailed output should be
given. For instance, use cases show that it is far more relevant to see why a
path cannot be created at a certain time than the very fact that it did not
succeed.

Another improvement would be to devise an interface between the agent’s
internals or behaviour and a potential user. An example of the functionality
envisoned herewith is a popup to the user detailing a set of path options,
after which the user may give a first choice. This choice should then be com-
municated to the rest of the agent system. Another possiblity is to decide
the robustness of the chosen route, requesting user interaction if the robust-
ness falls below a certain threshold. Allowing the user to interact with the
agent system provides both a feeling of control for the operators, as well as
a fallback if the system fails to decide on an outcome.

In parallel of this research, ProRail is conducting and already has con-
ducted more and more research using agents. One of those deals with the
automatic replanning of trains in the face of a disturbance in the infras-
tructure. For these systems to communicate and cooperate in a structured
manner, this system must be retrofitted to communicate using a fixed com-
munication protocol. This is a good moment to further explore the use of
OO2APL [44] and its framework of agent interactions.

57

Bibliography

[1] Middelkoop, D., Meijer, S., Steneker, J., Sehic, E., & Mazzarello, M.
(2012, December). Simulation backbone for gaming simulation in rail-
ways: a case study. In Proceedings of the Winter Simulation Conference
(p. 287). Winter Simulation Conference.

[2] Meijer, S. (2012). Introducing gaming simulation in the Dutch railways.
Procedia-Social and Behavioral Sciences, 48, 41-51.

[3] Berends, H., van Smeden, K. (2015). Project Start Architectuur, Snel
en Veilig Plannen (SVP), (in de bijsturing). ProRail ICT / CC Be- en
Bijsturing (Concept) (Dutch!).

[4] VL Vakopleidingen (2015). Systemen ARI en ABT versie 4.1 definitief.
ProRail: basisleertraject treindienstleider (Dutch!).

[5] ProRail (2016). Netverklaring 2016.
http://www.prorail.nl/vervoerders/netverklaring (Dutch!).

[6] ProRail (2016). Programma Hoogfrequent Spoorvervoer.
http://www.prorail.nl/programma-hoogfrequent-spoorvervoer (Dutch!).

[7] Rijksoverheid (2016). Spoorboekloos reizen.
https://www.rijksoverheid.nl/onderwerpen/spoor/inhoud/spoorboekloos-
reizen (Dutch!).

[8] ProRail & NS (2013). Beter en meer; Werkdocument: Concept
operationele uitwerking van de Lange Termijn Spooragenda. team-
sites.prorail.nl: Operatie ICT LTVL (Dutch!).

[9] ProRail (2016). Organisatie - Reizigers - ProRail.
http://www.prorail.nl/reizigers/wie-zijn-we/organisatie (Dutch!).

[10] ProRail (2016). Beheerplan.
http://www.prorail.nl/sites/default/files/prorail beheerplan 2016.pdf
(Dutch!).

58

[11] ProRail, staf Verkeersleiding Bureau Productieservices (2010). Werk-
wijze Verkeersleider.
https://teamsites.prorail.nl/teams/Operatie VL RW/oude%20documentatie/
verkeersregie/Werkwijze%20Verkeersleider%20uitgave%20december%202011.pdf
(Dutch!).

[12] ProRail, Verkeersleiding (2015). Werkwijze treindienstleider.
https://teamsites.prorail.nl/teams/Operatie VL PE/Gedeelde%20documenten/
Werkwijze%20en%20Handboek/Werkwijze%20treindienstleider
%20uitgave%20november%202015%20definitief.pdf (Dutch!).

[13] ProRail, Verkeersleiding (2014). Handboek treindienstleider.
https://teamsites.prorail.nl/teams/Operatie VL RW/wwvl/Werkwijzen/
Handboek%20treindienstleider%20versie%20november%202014.pdf
(Dutch!).

[14] RailwayLAB, de Rijk, R., Bekius, F.
(2015). Spelsimulatie Veiliger plannen.
https://teamsites.prorail.nl/projecten/Directie IenO SG/Gedeelde%20documenten/
Rapport%20game%20Veiliger%20plannen.docx (Dutch!).

[15] Standaard voorwaarden Buitenprofielcodes 1-2-3 - versie 2018-01 defini-
tief. ProRail intern, available on SharePoint (Dutch!).

[16] ProRail Verkeersleiding, Steensma, P., Swaans, K. (2012). ISVL, ge-
bruikershandleiding.

[17] ProRail (2016). Goederentreinen checken voortaan in op het spoor.
http://www.prorail.nl/nieuws/goederentreinen-checken-voortaan-in-op-
het-spoor (Dutch!).

[18] Steneker, J., van Schayk, M., Cunes, B. (2015). Conceptueelmodel
FRISO. Provided on installation (Dutch!).

[19] van den Berg, T. W., Jansen, R. E. J., & Middelkoop, D. (2008, June).
Application of HLA in the Optimization of Rail Transport. In Pro-
ceedings of the 2008 Summer Computer Simulation Conference (p.3).
Society for Modeling & Simulation International.

[20] van Lieshout, F., Cornelissen, F., Neuteboom, J., & Möller, B. (2008,
June). Simulating Rail Traffic Safety Systems using HLA 1516. In Pro-
ceedings of 2008 Euro Simulation Interoperability Workshop, 08E-SIW-
069, Simulation Interoperability Standards Organization.

[21] Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating computer sim-
ulation systems: an introduction to the high level architecture. Prentice
Hall PTR.

59

[22] Wouda, B., PRLGame Technical Manual. RailwayLAB.

[23] RailwayLAB (2016). Gebruikershandleiding PRL-game simulator Rail-
wayLAB ProRail Innovatie.

[24] Barber, A. E., & Roehling, M. V. (1993). Job postings and the decision
to interview: A verbal protocol analysis. Journal of Applied Psychology,
78 (5), 845.

[25] Bettman, J. R., & Park, C. W. (1980). Effects of prior knowledge and
experience and phase of the choice process on consumer decision proc-
cesses: A protocol analysis. Journal of consumer research, 7 (3), 234-
248.

[26] Ericsson, K. A., & Simon, H. A. (1980). Verbal reports as data. Psy-
chological review, 87 (3), 215.

[27] Russell, S. & Norvig, P. (1995). A modern approach.

[28] Tielman, W. (2015). An Agent-based Approach to Simiulating Train
Driver Behaviour. Master’s thesis.

[29] van der Lof, J. (2015). Multi Agent Based Train Simulation. Master’s
thesis.

[30] Wooldridge, M. (2009). An introduction to multiagent systems. John
Wiley & Sons.

[31] Parunak, H. V. D. (1999). Industrial and practical applications of DAI.
Multiagent Systems: a modern approach to distributed artificial intelli-
gence, 337-421.

[32] Rao, A. S., & Georgeff, M. P. (1995, June). BDI agents: From theory
to practice. In ICMAS Vol. 95, pp. 312-319).

[33] Böcker, J., Lind, J., & Zirkler, B. (2001). Using a multi-agent approach
to optimise the train coupling and sharing system. European Journal
of Operational Research, 131 (2), 242-252.

[34] Abbink, E. J., Mobach, D. G., Fioole, P. J., Kroon, L. G., van der Hei-
jden, E. H., & Wijngaards, N. J. (2009, May). Actor-agent application
for train driver rescheduling. In Proceedings of The 8th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1
(pp. 513-520). International Foundation for Aunomous Agents and Mul-
tiagent Systems.

[35] Siahvashi, A., & Moaveni, B. (2010). Automatic train control based on
the multi-agent control of cooperative systems. The Journal of Mathe-
matics and Computer Science, 1 (4), 247-257.

60

[36] Dastani, M. (2015). Programming multi-agent systems. The Knowledge
Engineering Review, 30 (04), 394-418.

[37] ProRail (2015). Afstudeeropdracht ProRail: Ontwerpen en imple-
menteren van een multi-agent systeem in railsimulatie omgeving.
Project description.

[38] van Smeden, K. (2016). Rapport Verwerking Orders Vervoer en Beheer
na Overdracht Plan. ProRail (Dutch!).

[39] Ramaekers, P., de Wit, T., & Pouwels, M. (2009). Hoe druk is het nu
werkelijk op het Nederlandse spoor? CBS (Dutch!).

[40] Treinreiziger.nl. Cijfers Nederlandse spoor.
www.treinreiziger.nl/kennisnet/kerngetallen. Retrieved: 19-12-2016.

[41] WillemWever. Hoeveel treinen heeft NS? willemwever.kro-
ncrv.nl/vraag antwoord/wetenschap-techniek/hoeveel-treinen-heeft-ns.
Retrieved: 19-12-2016.

[42] ProRail. ProRail in cijfers. https://www.prorail.nl/over-prorail/wat-
doet-prorail/prorail-in-cijfers. Retrieved: 17-12-2016.

[43] DG MOVE, A. Kroon. (2016). Fifth report on monitoring development
of the rail market. European Commission {SWD(2016) 427 final}

[44] Dastani, M., & Testerink, B. (2014, May). From multi-agent program-
ming to object oriented design patterns. In International Workshop on
Engineering Multi-Agent Systems (pp. 204-226). Springer, Cham.

[45] Appendix A, transcription of interviews with ProRail rail traffic oper-
ators. Available on demand.

[46] Appendix B, interview questions for both local and regional traffic op-
erators.

61

