
Towards real-time ray tracing through
foveated rendering

Erik N. Molenaar
University of Utrecht

ICA-3985725

February 5, 2018

1

Abstract

Foveated rendering is a technique that leverages the rapidly
declining perceived quality of human vision towards the periphery
to speed up 3D rendering. In this thesis a method is proposed
to apply foveated rendering to ray tracing in order to bring ray
tracing to the realm of real-time interactive applications. The
proposed method consists of sampling according to a perceptually
based distribution and the reconstruction of the image through
interpolation.

An experiment with 17 participants was performed in order
to look for the optimal interpolation method and the experiment
showed similar performance with each interpolation method, but
revealed the foveation method’s sensitivity to high contrast when
using lower density distributions due to the precomputed nature
of the distribution. Without changes to the method, such as gen-
erating a content-aware distribution each frame, this eliminates
the possibility of using lower density distributions that would
require fewer samples. However, even with the base density dis-
tribution the method still provides a base speedup of 4.3 times.

2

Acknowledgements

I would like to thank the people that helped me throughout the thesis project.
For starters, I would like to thank my supervisor at Utrecht University, Jacco
Bikker, for helping me set up this project, thinking along and his feedback.
Additionally, I would like to thank Nina Rosa at Utrecht University for help-
ing in the design of the experiment. I would also like to thank Fove and
Remco Kuijper who worked at Fove during this project for the gaze-tracking
HMD, help with the headset and a discussion about the project about what
to look for and keep in mind. Thanks to Michael Stengel at the Technical
Universtiy of Delft for a fruitful discussion about the state of the method
and suggestions for improvement. Lastly, I would like to thank my family
and friends for their continued support.

3

Contents

1 Introduction 5
1.1 Problem statement . 6
1.2 Thesis Structure . 6

2 Background 8
2.1 Ray tracing . 8
2.2 The human eye . 8
2.3 Gaze tracking . 10
2.4 Foveated rendering . 12
2.5 Temporal anti-aliasing . 12
2.6 Psychophysics . 13

3 Previous work 15
3.1 Foveated rasterised rendering 15
3.2 Foveated ray-traced rendering 19
3.3 Generating a distribution . 21
3.4 Scattered interpolation . 22

4 Method 25
4.1 Point distribution . 25
4.2 Scattered sampling . 28
4.3 Scattered interpolation . 29

5 Performance 32

6 Experiment 35
6.1 Design . 35
6.2 Setup . 36
6.3 Results . 38
6.4 Analysis . 39

7 Discussion 40

8 Conclusion 42
8.1 Summary . 42
8.2 Future work . 43

References 44

A Experiment results 49

4

1 Introduction

The field of 3D rendering concerns itself with constructing a generally visu-
ally appealing 2D image from a 3D scene. The most prevalent uses of this are
seen in the entertainment industry, in both films and video games. Of these
two, the video games are more strictly bound in what is possible given the
limits of hardware and the time in which the rendering has to be completed,
since it is a real-time process that needs to yield an interactive result. The
most widespread algorithm across the industry to accomplish this is the ras-
terisation algorithm, thanks to the impressive performance it achieves with
commonly available dedicated hardware. Its alternative is the ray tracing
algorithm, which is slower, but generally achieves better results by trivially
leading to accurate global effects like shadows and reflection, whereas with
rasterisation implementing these effects is both costly and solely an approxi-
mation of the actual effect [Bik12]. Then again, a drawback of ray tracing is
its computational cost. Significant changes need to be brought about before
it can become widely available with real-time performance.

This change might come in the form of a certain type of hardware that
is rapidly growing in popularity and usage: head-mounted displays (HMDs),
more commonly referred to as virtual reality headsets. These devices gen-
erally come in the form of goggles that the user puts on that then shows
the image on screens magnified by lenses to cover most of the user’s view,
resulting in a very immersive experience. The newest development for these
HMDs is gaze-tracking, where the device tracks the gaze direction of the user
in order to utilise this in the application. There are KickStarter funding
projects for such hardware [Kic15], big companies like Google investing in
the technology [Bus16], established VR companies like Oculus seeing the po-
tential and working on the technology as well [Upl15]. There are various uses
for gaze tracking that can already be seen in a select number of existing video
games, such as aiming by looking, moving the camera where you look, getting
blinded by looking at the sun or making eye contact with in-game characters
[Tra17]. Yet the most exciting use for gaze tracking is foveated rendering,
also referred to as gaze-contingent rendering, differing the rendering quality
across the image based on the user’s gaze direction. The perceived quality
of human vision decreases rapidly towards the periphery and this principle
is exploited by foveated rendering by decreasing quality and, by extension,
the work done to render the areas of the image that end up in the user’s
periphery to speed up the overall rendering process significantly.

If we combine the concept of foveated rendering and its potential to sig-
nificantly speed up the rendering process with the fact that the ray tracing
algorithm is preferable to the current dominant rendering algorithm, but is

5

held back by its performance, there is a definite match between the two.
Should foveated rendering bring that needed development to achieve real-
time performance with ray tracing, then that would spell out a giant leap in
the field of 3D rendering and, as such, the video game industry as a whole.

1.1 Problem statement

This thesis sets out to explore the possibilities that foveated rendering pro-
vides to speed up the ray tracing rendering process. The primary aim of this
thesis is to explore the relationship between speed and quality and to find
the maximum achievable speed with correctly functioning foveation. Since
the essence of foveated rendering is to trick the human vision into perceiving
everything happening in the periphery without accurately portraying it, the
threshold of achievable speed is set by the properties of the human visual
system, as it is imperative that the user is not bothered by the foveation and
it does not break the user’s immersion.

These essential points lead to the formation of the following research
question to be answered throughout this thesis:

What is the achievable speedup for ray tracing when utilising
gaze-tracking and foveation without users being able to notice
any differences with a regular image?

The general form of the foveation proposed in this thesis is sampling the
scene non-uniformly based on the properties of human vision and then recon-
structing the image using these samples through an interpolation algorithm.
Different ways or densities of sampling and different interpolation algorithms
will lead to varying results and speeds. The following two sub-questions ex-
plore these results in order to best answer the overarching research question.

1. What are the effects of the different sampling and interpo-
lation options on the performance of foveated rendering?

2. Which settings allow for the biggest decrease in sampling
resolution while keeping the foveation unnoticeable to the
user?

1.2 Thesis Structure

Section 1 provides an introduction to the issue explored in this thesis. Fol-
lowing that, Section 2 gives some background information on the different
concepts involved in the implementation of foveated rendering for ray trac-
ing. Next, Section 3 provides an overview of earlier research into related

6

subjects, such as foveated rendering for rasterisation as well as for ray trac-
ing, the generation of a distribution to sample from and interpolation for
scattered data as resulting from that distribution. Afterwards the method
used for this thesis is explained in Section 4. Using this implementation, the
resulting performance is examined in Section 5. Section 6 then deals with the
experiment performed for this thesis to research the qualitative results of the
settings in the method and to what extent these settings allow for a decrease
of resolution in the periphery, which leads to an increase in performance.
The findings of the performance review, the results of the experiment and
the overall properties and assumptions in the method are then discussed in
Section 7. Finally, the thesis is concluded in Section 8, which summarises
the thesis and proposes future work.

7

2 Background

This section provides an overview with some required theoretical background
on the different concepts related to the proposed method. It highlights the
ray tracing rendering algorithm, provides a background on the workings of
the human eye, touches upon the current state of gaze tracking hardware and
issues it needs to deal with, conveys the concept of foveated rendering, ex-
plores temporal anti-aliasing and finishes with an overview of psychophysics.

2.1 Ray tracing

Rendering a three dimensional scene to a two dimensional image lies at the
basis of a big part of the computer graphics field. There are two methods to
do so that dominate the field: rasterisation and ray tracing. The principle
behind ray tracing is to simulate light physics, using ray optics to traverse
the scene and calculate the resulting colour for individual pixels. Computing
the result of all the branching ray paths for more intricate materials, such as
those containing reflection and refraction, makes the algorithm fairly compu-
tationally expensive. This has a big impact for its potential implementation
in real-time applications, since the algorithm will need to output an image
within a reasonable timeframe in order to meet the required framerate.

Rasterisation, on the other hand, is currently the most widely used ren-
dering algorithm for real-time applications thanks to its speed and the avail-
ability of specialised hardware. The speed of the rasterisation algorithm
stems from its nature of approximating the result throughout separate oc-
clusion and lighting stages. Its available methods for the different global
aspects of rendering, like shadows and reflections, are mere approximations
of the actual global effects, rarely work well together and only do so in spe-
cific cases, and are relatively expensive to add to the rendering [Bik12]. In
contrast, these effects follow trivially in ray tracing due to the algorithm’s
physically-based nature. This comes at a cost, however, since the ray trac-
ing algorithm is significantly more expensive to fully compute, comparatively
even more so due to the lack of specialised hardware for ray tracing. This
generally makes ray tracing very suitable for pre-rendered, realistic imagery
such as in movies, but not so much for real-time applications until significant
speed-ups can be achieved.

2.2 The human eye

By leveraging the properties of human senses, algorithms can become more
efficient without notable difference to the user, as seen for example in MPEG

8

compression of audio and video files [Bra99]. In the case of computer graph-
ics it is possible to exploit properties of the human visual system to focus
computational power on the areas that matter most. In order to accomplish
this, however, it is imperative to first understand the workings of the human
visual system.

Figure 1: An illustration of the
human eye [Wik07]

Figure 2: The distribution of cells in
the retina by eccentricity [SEB03]

When looking out into the world, the optical image of that world is formed
on the membrane lining the back of the eye, called the retina. This retina
contains two types of photoreceptor cells, the cones and the rods that send
their signals through ganglion cells that each receive signals from multiple
cones and rods. The cones provide clear, colour vision, while the rods per-
ceive less intense light, give us colourless vision and are primarily sensitive
to changes in light. In the centre of the retina lies a little pit, about 1.5
millimeters in diameter, called the fovea [SEB03]. This fovea has the highest
concentration of cones and is where the human vision provides the highest
resolution [SEB03]. A full figure of the human eye can be seen in Figure 1,
while Figure 2 shows the relative density of the cells across the retina. It is
the varying densities shown here, the decrease in ganglion cells and cones,
but an increase in rods towards the periphery, that make that peripheral
vision relies mostly on the less accurate rods and the signals are aggregated
by much fewer ganglion cells. This is the reason for the low visual acuity in
human peripheral vision when compared to the fovea.

The human vision spans 160◦ horizontally and 135◦ vertically, but of this
field there is only a circle of 5◦ with which we see fine detail [GFD+12]. This
area is composed of the fovea, which makes up the centre circle of 2◦, and the
surrounding parafovea, which has a lower density of cones than the fovea, but

9

higher than the rest of the eye. Beyond that area, visual acuity diminishes
quickly, meaning that the area with which we see fine detail is only about
the size of a thumb nail at arm’s length. Anything beyond the 30◦ circle,
which is better known as peripheral vision, is mostly motion perception via
the rods [Lin16], whose density decreases with distance from the fovea. This
means that the distance from the centre of the eye, or the visual axis, which
is measured in eccentricity or angle with the visual axis, has a direct impact
on the detail of the perception. This effect is bigger than just the cell density
suggests, since contrary to the cones in the fovea which have a one-on-one
connection to ganglion cells, the rod cells farther from the fovea have a many-
to-one relation, leading to aliasing [PSK+16]. Figure 3 displays a graph of
human visual acuity relative to the maximum possible acuity per degree
eccentricity. From this graph the rapid decline in visual acuity is clear, as
the maximum is clearly at the fovea and at 10◦ from the fovea the acuity is
down to 20 percent and 10 percent at 30◦. After just 1/6th of a degree the
loss in acuity is already 25 percent [SAS16].

Figure 3: Graph of relative visual acuity per degree eccentricity. The left
side is towards the nose, the right side is towards the temple [Wik09].

2.3 Gaze tracking

Since the area with the highest resolution in the user’s perception depends on
the gaze direction of the user, it is necessary to obtain that gaze direction.
Technology limits the possibilities in this field, since performing this in a
real-time application requires high framerate cameras with a resolution that

10

is high enough to identify and read the user’s eyes. For a video game, the
required framerate is 30 frames per second at the least, but is often set
to 60 frames per second. Since received eye tracking results can only be
used for the frame after the results have been processed, the refresh rate of
the camera should be higher than the framerate of the application to limit
latency. Another reason the refresh rate has to be high is human saccade,
which is the most common, rapid movement of the eyes to focus on a new
location, which the camera will have to be able to keep up with and detect.
Consumer cameras for computers, such as webcams, do not offer this kind of
performance yet.

A more feasible method for now would be to use head-mounted displays, or
HMDs for short. These are commonly known as virtual reality (VR) headsets
and generally provide, next to one or two actual displays and lenses, some
hardware to track the orientation of the user’s head. Eye tracking is not com-
monly part of these devices, although more and more companies are starting
to pick up the trend, often looking at the potential for gaming, such as aim-
ing or scanning by looking at an object or in-game characters responding
to eye contact [FOV15]. The KickStarter project for the eye tracking HMD
FOVE has amassed over $480,000 from backers to develop their hardware
[Kic15]. Google bought the start-up company EyeFluence which specialises
in eye tracking [Bus16] and Oculus acquired the eye-tracking startup The
Eye Tribe [Tec16]. The founder of Oculus Rift called eye tracking a “critical
part” of the future of VR and Oculus Rift is researching it themselves as
well [Upl15], most likely leading to the later inclusion of the technology in
their HMD. SensoMotoric Instruments provided extensions for a time to ex-
isting well-known HMDs, such as the Oculus Rift [Sen14], Samsung Gear VR
[Sen16] and the HTC Vive [Upl16] to integrate their eye-tracking hardware
into them.

The performance requirements increase with the decision to utilise head-
mounted displays, however, since in order to prevent cybersickness, a form
of motion sickness which is caused by a conflict between perception and the
user’s expectation in an immersive environment, the frame rate needs to be
higher than on general monitors and 95 frames per second is the established
target as that should eliminate noticeable flickering of the screen [Val14].

Even though peripheral vision is not as accurate as the central part of
human vision, motion and flickering sensitivity are uniform across the entire
visual field [PSK+16]. It is important then to avoid artifacts such as temporal
aliasing that cause such phenomena. This is especially the case with head-
mounted displays, which cover a large part of our visual field with a high
field of view and a low pixel density [Val14].

11

2.4 Foveated rendering

Combining the availability of eye tracking and the knowledge of the proper-
ties of the human eye makes it possible to leverage visual acuity in rendering.
This technique is called foveated rendering, but is sometimes also referred to
as gaze-directed or gaze-contingent rendering. The principle of foveated ren-
dering is to mimic the visual acuity graph around the user’s fixation point,
generally rendering an area around that point at full resolution rather than
solely at that point. Beyond that, with increasing eccentricity, the rendering
resolution diminishes to match the decrease in visual acuity. The distance
from the fixation point and the corresponding lower visual acuity makes the
lower quality imperceivable to the user so the resulting image is indistinguish-
able from a full resolution image. However, for rendering purposes being able
to render big parts of the image at a lower resolution has the potential of
increasing rendering speed significantly. Foveated rendering for rasterisation,
for example, can reduce the number of shaded pixels by up to a factor 10 to
15 [GFD+12].

2.5 Temporal anti-aliasing

Sampling one frame of a continuous world with continuous motion can lead
to aliasing and temporal artifacts such as fast, jerky motions and flickering.
One way of eliminating these issues to create a temporally stable output, is
temporal anti-aliasing or TAA for short [Kar14a, Kar14b]. The concept of
temporal anti-aliasing is to generate the output from samples taken from
multiple frames, not just the current one. This allows for an estimation over
time rather than just capturing an instant.

Since locations of objects change over multiple frames, the first step is
generally reprojection to find out where the object shown in a particular pixel
was before and if it was even in view in the first place, so as to find out which
pixel from the earlier frame, if any, contains the earlier colour data. This can
be done through the same velocity buffer calculations used for motion blur
to trace back the earlier position.

Simply rendering this different frame data together leads to ghosting,
showing the objects in their previous positions as well, while only the current
positions are interesting. This can be solved using neighbourhood clamping,
in which the historical samples’ usage is restricted to the neighbourhood of
the current location, making the anti-aliasing a more local problem without
large smearing effects.

12

2.6 Psychophysics

Measuring stimuli thresholds based on human senses requires some insight
into the field of Psychophysics, the scientific study of the relation between
stimulus and sensation, of which Gescheider provides a clear overview [Ges13].
These thresholds based on human senses are not set, but vary between sub-
jects and even within subjects. Within this field are three classical methods
to measure a threshold while eliminating this variability as much as possi-
ble. On top of that there are two types of thresholds that can be measured:
absolute thresholds that represent when a stimulus is or is not perceived and
difference thresholds which show when a difference between two stimuli can
or cannot be perceived.

The first method is the method of constant stimuli in which a subject is
shown each of the possible stimuli multiple times. Together, the results can
be used to fit an s-shaped curve called an ogive to represent the psychometric
function, as seen in Figure 4. This function can then be used to read the
probability of a positive response at a certain stimulus intensity.

Figure 4: An ogive mapping the relation of the stimulus intensity against
the proportion of ”yes” responses [Ges13].

The next method is the most frequently used method thanks to its effi-
ciency. This is the method of limits, in which the first test value is well above
or below the threshold value and in each successive test the stimulus value
moves towards the threshold in set steps. Once the subject switches answers
from perceiving to no longer perceiving the stimulus, which is called a re-

13

versal, the test ends, although generally multiple such series are performed
to approximate the threshold. One way to do so is the staircase method in
which the test is not terminated, but is instead continued from the reversal
point in the opposite direction until the subject switches answers again. The
reversal points are noted and once enough values have been acquired, the
mean of those values represents the 50% threshold, at which subjects will
respond positively half the time and negatively the other half.

Although the method of limits is more efficient than the method of con-
stant stimuli, it is also less accurate and provides less information. It can be
used as preparation for the method of constant stimuli to make that method
less costly. The method of limits is also sensitive to the human tendency
to predict desired answers or repeating previous answers. The errors intro-
duced by these tendencies are called the error of expectation and the error
of habituation respectively, although there are ways to minimise these errors,
such as varying the starting point and avoiding overly long trial series.

The last method is the method of adjustment in which the subject gains
control over the presented stimulus and attempts to find the threshold them-
selves based on what they perceive. This is generally even more efficient
than the method of limits, since trials can be quickly completed and it is not
necessarily needed to complete any full series. The method of adjustment is
limited in its possible applications however.

14

3 Previous work

This section contains an overview of previous work on different topics re-
quired for the proposed method and shows the groundwork out of which this
method came forth. It deals with the work on foveated rendering for rasteri-
sation, previous research into foveated rendering for ray tracing, methods for
generating a distribution based on human vision and finally discusses several
interpolation methods for scattered data.

3.1 Foveated rasterised rendering

With the emergence of the required technology to perform foveated rendering,
research is widely being performed on the possibilities of foveated rendering
and how to optimally implement it.

A method for foveated rendering for rasterisation was developed by
Guenter et al. [GFD+12] using a desktop eye tracking setup. This method
proposes rendering three distinct, rectangular layers with decreasing sam-
pling rates. The rendered rectangles are then interpolate up to native resolu-
tion and smoothly composited with circular blending masks into a final image
as seen in Figure 5. The layers are sized according to findings by Aubert and
Foerster in 1857, who found that the minimum discernable angular size in-
creases approximately linear to the eccentricity. The smallest layer is centred
around the user’s focus and is rendered at full quality with the highest level
of detail (LOD), while the bigger layers behind that render a lower quality
image. The outermost layer also uses a lower level of detail, using about half
as many triangles as the other layers. Their relatively simple LOD approach
saved only 0.5ms in their proposed method, but shows the feasibility of using
a more profitable LOD system while hiding the LOD transitions from the
user.

Figure 5: The compositing of the three rendered layers into a final,
foveated image [GFD+12].

15

The smallest layer also refreshes at 120Hz, while the bigger layers alter-
natingly refresh at 60Hz. This is to be able to better account for saccades
and to make the updating of the foveal region unnoticeable. A big factor in
this is the system latency, the time between the capture of the eye gaze po-
sition and the rendered image being displayed on the screen. If that system
latency is too big, the system lags behind and the user will be able to see the
update of the foveal region of the image. All the systems in the method work
asynchronously, making the exact latency hard to predict. Guenter et al.
carefully chose their system to minimise that latency and made an analysis
of the best and worst case latencies, which are 23ms and 40ms, respectively.

The lower sampling rate of the layers introduces distracting temporal
artifacts that are clearly visible to the user. Simply brute-force supersam-
pling the image back to native resolution reduces the artifacts, but greatly
diminishes the performance gain of the method. Instead they combine three
methods of low computational cost to decrease visible aliasing: multi-sample
antialiasing (MSAA), temporal reprojection and whole frame jitter.

The total cost reduction of this method compared to a full-resolution
render amounts to 5 to 6 times. They estimate that as displays increase in size
and field of view, the comparative benefit of foveated rendering compared to
traditional rendering will become even greater, as traditional rendering cost
grows exponentially and the cost increase for foveated rendering is roughly
linear.

The contributions of this paper include the actual implementation of a
foveated rendering system for general, interactive 3D graphics and showing
the performance increase it can provide, their careful analysis of system la-
tency in collaboration with eye tracking and that their foveated rendering
system avoids distracting artifacts and will provide even greater benefits on
larger, sharper displays.

A perceptually-based implementation of foveation in rasterisation for
virtual reality is proposed by Patney et al. [PSK+16]. In their paper, they
found that previously proposed foveated rendering techniques, such as the one
from Guenter et al., were focused on reducing rendering cost with no regard
for identifying and minimizing the resulting artifacts, which they did appear
to suffer from. Instead, this paper works from the core question of what
constitutes a good foveated image. They established this through a user test
in which they gradually increased the aggressiveness of their Gaussian blur
based on eccentricity for three different setups: aliased, temporally stable
and contrast preserving. They found that filtering the outer regions of the
image too aggressively induces a sense of tunnel vision, caused by the reduced
contrast in the image, which is noticeable to the viewer. By adding a contrast

16

enhancement in post-processing, their viewers tolerated a two times larger
blurring radius. User studies with this enhancement provided a base target
image to use as a goal in the construction of a practical foveated renderer.

Basing their foveated renderer on human perception, the authors per-
formed a literary study on human perception. This showed a number of
essential points for application in a foveated rendering system. The first was
the falloff in visual acuity with eccentricity. Another was Cortical Magnifica-
tion Theory, which states that increased stimulus size at higher eccentricity
provides a similar image. However, the existing foveated renderers based on
this theory are lacking, since the theory does not cover all aspects of pe-
ripheral vision and is not applicable in all cases. Another finding was the
existence of an aliasing zone in human peripheral vision, alluding to the
mismatch between detection acuity and resolution acuity, the ability to de-
tect a stimulus and the ability to discern its content, respectively. Detection
acuity is significantly higher than resolution acuity in peripheral vision and
filtering for foveated rendering can lead to loss of apparent contrast, which
is detectable even if the object is not discernable. The authors intend to
exploit this by enhancing contrast in peripheral regions in order to maintain
apparent detail. The authors also found that motion detection is uniform
across the visual field and that the same applies to flicker detection. Since
the peripheral region is still quite sensitive to motion, foveated renderers
need to be temporally stable or run conservatively in order to not break im-
mersion. Lastly, tests with anisotropic blurring to exploit humans’ unequal
sensitivity between tangential and radial frequencies were inconclusive. Since
specific hardware would be necessary to translate the results into computa-
tional savings, so were tests in exploitation of decreased colour perception
in the periphery, despite promising perceptual results showing that subjects
could not detect the color reduction.

The resulting method includes temporal antialiasing (TAA) to eliminate
distracting aliasing artifacts that draw the users’ attention. This makes the
method temporally stable, although due to the nature of foveated rendering
some more aspects need to be considered before it works as intended. The
blurring in the periphery smears the same colours out over multiple pixels,
reducing the information the surrounding pixels provide on what the colour
should be. As such, the authors introduce variance sampling to exclude
outliers and enabling TAA for subsampled areas such as the periphery in
foveated rendering. Another aspect to consider is saccadic movement of the
eye which can move areas out of focus into focus on the next frame. This
will lead to a mismatch in the color data of the blurred outer region on the
last frame and the detailed rendering of the current frame. The reuse of the
old frame means that it might take several frames for the image to converge

17

to the detailed version. To remedy this focus lag, the authors change the
convergence rate for such cases to have that area prefer the detailed image
instead.

The user study between three rendering algorithms (no foveated render-
ing, the method from Guenter et al. augmented with the proposed TAA and
their own proposed method) showed that they can render more coarsely up
to 30◦ closer to the centre of interest than Guenter et al. without introduc-
ing gaze-dependent aliasing or blur. Through metrics, they also showed that
their final result is highly similar to their perceptual target image. Among
the key contributions of this paper is the revalidation of what constitutes a
good foveated renderer through perceptual studies, specifically that temporal
stability and contrast preservation are key requirements. They also provide
a perceptually-validated target image to use as quality reference in develop-
ment of a correct foveated renderer. Another contribution is their developed
real-time gaze-tracked foveated rendering system with demonstrated perfor-
mance and memory savings while closely resembling the target image quality
and maintaining temporal stability. Lastly, they introduced improvements
to temporal antialiasing for application in gaze-dependent, multi-resolution
shading systems.

Figure 6: A foveated image rendered with the proposed system by Patney
et al. with the user’s gaze directed at the clock in the upper-right corner

[PSK+16].

18

3.2 Foveated ray-traced rendering

While rasterisation is the industry standard, foveation is also beneficial to
ray tracing.

Siekawa implemented a method for gaze-dependent ray tracing with the
goal of increasing performance without perceptible quality loss [SM14]. In
order to decrease the amount of rays cast, the author suggests to cast a
number of rays proportional to the sensitivity of the human visual system.
Based on the gaze-dependent contrast sensitivity function, they can create
a distribution to sample with. Given that one degree of vision at a higher
eccentricity covers more pixels than one degree at the centre of interest, but
is not perceived as well, the author uses the same amount of rays per degree,
automatically leading to a lower ray density in outer regions. The pixels in
one perceptual degree are grouped together into a cell and each cell, smaller
near the centre of interest and bigger near the periphery, receives the same
amount of anti-aliasing rays. Although the effect of this will be less correct
in the periphery, the viewer should not notice this as much as it is far from
the gaze point.

Although this paper did not have a real-time setup to test with, their
offline results allowed for quality tests. They rendered 1920 by 1080 pixel
images using 32 samples for anti-aliasing to be viewed on a desktop setup. No
user study was performed to verify the results. The author reports a more
than 3 times speedup in rendering time while needing around 31 percent
of the sampling rays. Based on the resolution that would be required to
reach the maximum resolution perceivable by the human visual system, which
according to the author is 5400 by 3900, the proposed method would lead to
a 95 percent decrease in rays required to construct an image.

In a presentation, Harada suggested a method with a focus on perfor-
mance for foveated ray tracing for VR using multiple GPUs [AMD14]. He
discusses how the flexibility of ray tracing, specifically the ability to cast rays
in any direction, is a great fit for VR, but the system is lacking in perfor-
mance. The computational cost depends on the scene complexity and the
number of rays cast. Whereas in a testing environment it is easy to reduce
the scene complexity for performance sake, the scene complexity is outside of
the algorithm’s influence. Instead, the focus for a decrease in computational
cost lies on the number of rays cast. Two methods are suggested: sample
reuse between the right and left views and foveated rendering.

The sample reuse, which is more clearly explained in the related abstract
[FH14], stems from their stereo rendering system seen in Figure 7. The
followed principle is that if the scene scale is large enough, many of the

19

Figure 7: The stereo rendering system that generates a right and left eye
view from one central image [AMD14].

pixels in the left and right view will be the same. Instead of calculating
two views, the method uses one bigger image with stereo margins next to
the part of the image shared by both views that will be used solely for
the corresponding view. Although the presented method is an estimation
and, as the authors say, still requires precise parallax correction, that will
not significantly increase the number of required rays, thus maintaining the
method’s efficiency.

The suggested method starts by creating a density map containing cells
that increase in size towards the periphery. Then one sample would be ray
traced for each cell to decide the colour that cell will take. One sample con-
sists of at least 16 rays to prevent distracting spatial and temporal luminance
artifacts [FH14]. Only the cells that actually fall within the rendered area,
which changes location on the density map depending on the gaze location
of the user, will have their colour calculated. When all the cells in the ren-
dered area have a colour, the remaining pixels have their colour estimated
using a weighted blend of the k neighbour cells’ colours. The author then
performs chromatic separation and, in order to match VR screen output, he
also applies barrel distortion.

The reported results are that the method uses only 5 percent of the
samples required for full rate shading. However, the projected speedup of
10 to 30 frames per second is not enough for viable performance in VR. To
fix this, the method uses multiple GPUs, splitting up the frame and dividing
the workload of each frame between the GPUs instead of alternate frame
rendering which would not decrease rendering time for any given frame. They
report a framerate of more than 75 frames per second while preserving visual
quality.

20

3.3 Generating a distribution

Sparse sampling is trivially possible with a ray tracer, since each primary
ray can be individually and independently cast. This is not the case for
rasterisation, since samples can only come from a regular raster. The ability
to freely sample sparsely allows for sampling according to more accurate
systems depending on eccentricity than those confined to rasters.

That leaves the choice of which system to choose to base the sampling on.
Ideally, that should be a system that describes the human vision’s capability
to discern content at different eccentricity values. This function exists and is
called the contrast sensitivity function. In order to translate this function to
sample density on a 2D field, a sampling pattern is needed. A high quality
sampling pattern is important for ray tracing, due to the visibility of the
results and possible sampling errors, but also because it better represents
the continuous function being sampled. Dunbar et al. [DH06] propose the
blue-noise pattern of Poisson-disc sampling.

Poisson-disc sampling is a sampling pattern in which a sample is only used
if there is no other sample in the results to which the distance is smaller than
a given value. By making this distance dependent on the contrast sensitivity
function, thus applying adaptive sampling, it is possible to sample according
to that function while guaranteeing the desired density in all areas of the
distribution.

The distributions used for sampling affect the final result and can cause
some temporal effects in a real-time application, like persistently visible
boundaries between samples, as a result of interpolation. Figure 8 shows
a case in which this might occur. In this case it might be beneficial to use

Figure 8: A depiction of the boundaries (in dark blue) between the
different cells. The cells change colour as the camera moves, but the

separations remain in the same location, which can be noticeable to the user.

21

a different distribution each frame, meaning the distribution would have to
be regenerated each frame. Bridson proposed an extension to the method by
Dunbar et al. to extend the method to arbitrary dimensions in O(N) time
[Bri07]. In turn, Wei proposed a parallel implementation of the algorithm
to speed it up even further [Wei08]. The reported results show that the
method could generate up to 4.06 million samples per second in 2008. In the
case of a real-time VR method at 95 frames per second, this means that per
frame the method could generate about 42.7 thousand samples. The more
recent Nvidia flagship GPU, the GeForce GTX 1080, is about 20 times faster
than the GeForce 8800 GTX used in the paper by Wei, meaning the possible
samples generated per frame today would be around 854.7 thousand samples
with this method.

Assuming the resolution of the Oculus Rift and the HTC Vive, which is
1080 by 1200 for each eye [Dig16] or 1296 thousand pixels per eye, combined
with the theoretical 30 percent of the samples needed as reported by Guenter
et al. [GFD+12] and Patney et al. [PSK+16] (and by extension the 5 per-
cent reported by Harada [AMD14]), means that the required 388.8 thousand
samples per eye could theoretically be generated per frame.

Another method, however, would be to precompute a distribution or a
number of distributions and reusing those in their original and transformed
forms, such as flipped horizontally and vertically. This should seem random
enough to the user since no distributions are repeated in subsequent frames.
A consequence of this method is that the calculated distributions would need
to be 4 times the screen size, assuming the centre of interest is in the middle
of the distribution, in order to be able to position the distribution on the
view regardless of the user’s gaze direction. The increased size of the distri-
bution is irrelevant for computational purposes, however, since in this case
the distribution is precomputed.

3.4 Scattered interpolation

Many different 2D interpolation algorithms exist, but many assume an or-
dered, complete set of initial data, often laid out in a grid. To reconstruct
a full image from the samples taken with a randomly generated distribu-
tion as described in Section 3.3, however, a scattered interpolation algorithm
is needed. An added requirement to the algorithm is that it can be run
efficiently in order to use it in a real-time application. Although it does
not directly reveal feasibility in a real-time application, time complexity is
a good indicator of the runtime speed of the algorithm and can at least be
used as a guideline. Anjyo et al. provide an overview of scattered interpola-
tion algorithms for computer graphics and their performance [ALP14]. The

22

algorithms addressed in this overview are claimed to have a runtime that is
linear in the number of samples, sometimes with setup precomputation.

Different algorithms have different properties, such as containing visible
peaks in either the points themselves or the borders between the points,
depending on the basis for the interpolation. Such properties will have an
effect on the resulting image, but to what extent that will be beneficial or
harmful may vary. The complexity of interpolation algorithms also varies
greatly and a higher complexity generally coincides with a higher quality.

A fairly näıve interpolation algorithm, Nearest Neighbour, offers minimal
interpolation by making each pixel the colour of the closest known sample.
An extension to it, Natural Nearest Neighbour, applies weighted interpolation
based on volume. These algorithms both run in O(N) time, while Natural
Nearest Neighbour offers limited smoothness in its interpolation and Nearest
Neighbour is a class C−1, discontinuous, method [BU06]. Figure 9 shows the
results of these methods.

Figure 9: The resulting cells from Nearest Neighbour in black and an
example cell from Natural Nearest Neighbour in purple. [Wik10].

Another weighted interpolation algorithm, which has often been rein-
vented in different forms and lies at the basis of many of the scattered in-
terpolation algorithms, is Shepard’s interpolation. This algorithm performs
weighted interpolation based on distance to the known samples. It is far
from an ideal interpolator in its original form, with a derivative of zero at
the known data points and scaling quite poorly to large data sets and, as
such, spawned many improvements. One such modification, Modified Shep-
ard’s interpolation, only considers samples that are close by for efficiency
on large datasets and to reduce the local impact of distant samples. This
method is continuously differentiable, or class C1 smooth [MM05].

Another fairly simple interpolation is linear interpolation between points
over, for example, triangles. This method requires constructing a triangula-

23

tion of the samples and applies interpolation within each triangle. It results
in a less smooth interpolation of C0 differentiability class.

A more complicated method, Wiener interpolation, known in machine
learning as Gaussian processes and in geostatics as Kriging, is quite flexible
in the smoothness of the result and the shape of the resulting function and,
for discrete data, boils down to solving a matrix equation [ALP14]. It can use
infinitely differentiable, class C∞ functions to provide smooth interpolation
[SCL13].

The most versatile and most commonly used scattered interpolation tech-
niques are Radial Basis Functions. Within radial basis functions, each known
data point has a set influence in a sphere around that point and the sums of
these influences construct the values at the interpolated points. The radial
basis function kernel, the function determining the influence of a point, can
be freely substituted for a different effect, like increased smoothness, falling
back down to zero after the last point or approximating through regularisa-
tion [ALP14]. The computation required involves solving a linear system of
functions with a vector of weights as unknowns. These solutions generally
have an O(N3) time complexity, but more efficient approaches to solve radial
basis functions have been developed, which allow for precomputation of the
most expensive calculations [ALP14]. Several of the popular Radial Basis
Function kernels are class C∞ smooth [FF05].

24

4 Method

The following section describes the proposed method as it has been developed
based on the previous work discussed in Section 3, starting with the efficient
generation of a distribution of points based on human perception. Next, the
sampling of the scene based on these random points is discussed, after which
a description of the chosen scattered interpolation methods is provided.

4.1 Point distribution

The contrast sensitivity function describes the perceptive ability of the hu-
man eye which rapidly decreases with increased eccentricity. To aptly capture
the varying perception in sampling and rendering, we propose the use of a
point distribution, where the density of the points at each location is based on
the contrast sensitivity function and the user’s gaze direction. This proposed
method utilises precomputed Poisson-disc sampling sets. The point set is
distributed over a canvas with a size of 2 ∗ screen width by 2 ∗ screen height
with the supposed centre of interest in the middle. This is done so that
the resulting point distribution can be shifted across the screen according to
the user’s gaze direction at execution, while maintaining coverage across the
entire screen, as portrayed in Figure 10.

Since the point set is precomputed to save time during execution, there
is no need for a real-time algorithm to create the point set. Instead, dart
throwing is used for the Poisson-disc sampling, initially throwing darts at
twice the screen size around the centre, followed by a series of darts thrown
at 0.8 times the screen size around the centre to ensure sufficient coverage
over the denser central area.

The Poisson-disc dart throwing is based on the contrast sensitivity func-
tion proposed by Wang et al. [WBLK01]. With the eventual user’s centre
of interest set in the middle of the canvas at the point (screen width, screen
height), the darts thrown have their threshold values set dependent on the
dart’s distance from the middle of the canvas. In other words, the value
depends on the contrast sensitivity for the eccentricity at the location of
the dart. As laid out in the paper by Wang et al., the eccentricity can be
computed as:

e(v, x) = tan−1
(
d(x)

Nv

)
(1)

where e is the eccentricity, d(x) is the distance in pixels between the middle of
the canvas and the dart’s position with d(x) =

√
(x1 − x2)2 + (y1 − y2)2, the

parameterN is the width in pixels of the display the image is perceived on and
v is the user’s viewing distance measured in display widths. In order to obtain

25

Figure 10: An illustration of the point set as it shifts across the screen.
The bottom-left and bottom-right images portray the used part of the point
set when the user looks at the centre of the screen and the top-left of the

screen respectively.

differently spaced point sets containing fewer points, this method scales the
resulting eccentricity by a set scaling value. The resulting eccentricity value
can then be used in the following function to obtain the cut-off frequency fc,
the maximum perceivable frequency at the given eccentricity in cycles per
degree:

fc =
e2 ln(1/CT0)

(e+ e2)α
(2)

The parameters CT0, α and e2 are model parameters and are set by Wang et
al. based on the best fit reported in another paper by Geisler et al. [GP98]
to CT0 = 1/64, α = 0.106 and e2 = 2.3, which are also the values used
in this method. The cut-off frequency represents how much human vision
can perceive at certain eccentricities, but on the other hand, the perceivable
frequency is also limited by the display the image is presented on. To calcu-

26

late the maximum display frequency, the highest frequency the display can
show without aliasing, which is the display’s Nyquist frequency or half of the
display resolution in pixels per degree, resulting in the following function:

fd =
πNv

360
(cycles/degree) (3)

In practice, this means that the cut-off frequency in the area direcly
around the user’s centre of interest is capped at the maximum display fre-
quency and starts to decrease beyond that point, as shown in Figure 11.
Since the point set that will be used to sample and reconstruct the final
image is pre-computed, it has to contain enough information to be able to
represent a worst-case scenario. In other words, the density of the points will
be dictated by the cut-off frequency at each point. The highest values for
the cut-off frequency are in the centre, where the distance between points is
supposed to be lowest. To fix this, the following function is used:

p =
fd
fc0
− (1− a) (4)

where a is the area of one pixel, calculated with
√

1/π and fc0 is the result
of min(fd, fc). By using p as the distance value of the points in the Poisson-
disc sampling, this function makes sure the point density around the centre

Figure 11: Graph of the resulting cut-off frequency fd with the eccentricity
on the x-axis, where the maximum display frequency fc is shown in red.

27

of attention is not higher than one point per pixel and increases the spacing
of points farther away from the centre.

During the dart throwing procedure, the darts are stored in a grid system
to speed up the process and are finally stored ordered by Morton index for
better memory access in the final application. In addition to this, another
array is set up to store the indices in the aforementioned array of the k
nearest neighbours for every pixel within the quadruple screen size plane to
save the cost of looking up the nearest neighbours per pixel during execution.
The application used for this method calculates and stores the 20 nearest
neighbours, but varies in the number of used k neighbours during execution.

Figure 12: A render of each point in the resulting distribution for a
resolution of 1920 by 1080 and no scaling.

4.2 Scattered sampling

Sparse sampling is trivially possible with ray tracing since rays can be inde-
pendently cast at different locations in different directions. For the purposes
of this method, these rays will be cast for each point generated in Section 4.1.
The point distribution has to be offset by the gaze tracking location obtained
by the gaze tracking hardware to centre the distribution around that loca-
tion. Then each point within the boundaries of the screen can be sampled
for. Points that fall within 10 pixels outside the boundaries of the screen
are also included to prevent the interpolation algorithms using neighbouring
points that have not been sampled in edge cases.

28

Each point stores its Poisson-disc distance and since the Poisson-disc
distance is derived from the contrast sensitivity at that point, it signifies
an aliasing zone, where the contents of the circle cannot be distinguished.
Within this circle, whose radius is set to be the Poisson-disc distance of
the point, several rays are cast through random locations. These random
locations the rays are cast through are used for anti-aliasing purposes across
the area of each point. The random numbers are generated with the same
seed each frame to ensure the same locations are sampled between frames to
prevent temporal artifacts. The results are of all rays are accumulated per
point and stored to later reconstruct a final image from.

4.3 Scattered interpolation

In order to construct a full image from the scattered samples, an interpolation
algorithm needs to be employed to fill the blank spaces. For the sake of this
method and to get a comparative overview of scattered interpolation for
the purposes of foveated rendering, three methods are chosen to represent
different ends of the complexity spectrum. This spectrum consists of a trade-
off between quality and computational cost. The first method is Nearest
Neighbour interpolation, a very simple, efficient interpolation method with
low cost, but also low quality interpolation, being a discontinuous function.
To represent the other end of the spectrum, with high cost but also high
quality interpolation, we include a class C∞ interpolation method, namely
the Radial Basis Functions method. As a middle ground, the last included
interpolation algorithm is the class C1 smooth Modified Shepard’s Method.
An example of the resulting images can be found in Figure 13.

Figure 13: The resulting interpolation at high eccentricity for Nearest
Neighbour (NN), the Modified Shepard’s Method (MSM) and Radial Basis

Functions (RBF).

29

The first algorithm, Nearest Neighbour, does not scale at all with k since
it only looks at one neighbour. As with all the other interpolation algorithms,
the GPU kernel for this algorithm uses the arrays computed in the generation
of the point distribution as described in Section 4.1 to look up the k nearest
neighbours per pixel. In the case of the Nearest Neighbour algorithm, it really
only looks at the first neighbour in the list and takes the point’s accumulated
colour obtained in Section 4.2, divides it by the amount of samples taken to
accumulate that colour and applies it directly to the current pixel.

The second, middle ground algorithm, the Modified Shepard’s Method as
proposed by Renka [Ren88], scales linearly with k. It takes the k neighbours
and uses their accumulated colours from sampling to calculate the resulting
colour value for the current pixel through the formula:

F (x, y) =

k∑
i=1

wifi

k∑
i=1

wi

(5)

where wi is the weight for point i and fi is the colour value for point i. The
weight value is derived directly from the distance of the given point to the
pixel being processed, as:

wi =
R− hi
Rhi

(6)

where R is the distance from the current pixel to the farthest point of the
k neighbours and hi is the distance from the point i to the current pixel’s
location.

The third and final algorithm, the Radial Basis Function, generally has
an O(N3) complexity, although there are options for precomputation. The
general form to find interpolant s(x) with radial basis functions, as described
by Du Toit [DT08], is:

s(x) =
N∑
i=1

λiφ(r) (7)

where r is the distance function from data point i to the current pixel, φ(r)
is the RBF kernel and λi is the weight for data point i. Since the resulting
s(x) at each point is known, the accumulated colour value fi, it is possible

30

to set up a system of linear equations to solve for λ:
φ(‖x1 − x1‖) φ(‖x2 − x1‖) · · · φ(‖xn − x1‖)
φ(‖x1 − x2‖) φ(‖x2 − x2‖) · · · φ(‖xn − x2‖)

...
...

. . .
...

φ(‖x1 − xn‖) φ(‖x2 − xn‖) · · · φ(‖xn − xn‖)

 =


λ1
λ2
...
λn

 =


f1
f2
...
fn

 (8)

This matrix computation is the biggest cost and scales rapidly as the k × k
size of the matrix increases, so keeping k small is beneficial.

The result of radial basis functions can vary greatly due to the kernel func-
tions they use. For this method, two popular RBF kernels, the Gaussian and
multiquadric kernels, were considered and tested, of which the multiquadric
kernel provided the best results. The Gaussian kernel has the form:

φ(r) = e−(cr)
2

(9)

while the multiquadric kernel has the form:

φ(r) =
√
r2 + c2 (10)

where r is still the distance function and c is an arbitrary scale parameter to
change the shape of the kernel function in order to customise it to the current
needs. The sensitivity to the c factor varies between kernels and obtaining
the right setting to get a good result requires some experimentation.

31

5 Performance

The benefit gained in performance using our proposed method depends on
two primary factors: the scaling factor of the generated point set and the
interpolation method used. The performance of the interpolation method
can also vary depending on the chosen k.

The first factor, the scaling factor in the generation of the point set,
changes the density of the resulting set, lowering the final number of points
stored and used for sampling the scene. This leads to an immediate benefit
with a higher scaling value, although not all sets are viable to use if the
user can notice a lack of resolution. Should the interpolation still restore
enough quality for the user to not notice any change, that could provide
a huge benefit. Note, however, that not all of the generated points in the
set are within the confines of the screen at any given time which can vary
performance slightly, as there will be fewer points when looking at a corner
than when the user’s gaze is centred on the screen and the complete denser
area is used, as shown in Table 1.

Total Centred Corner

576,775 420,248 153,857

100% 72.86% 26.68%

Table 1: The change in number of points on screen depending on user’s
gaze direction for a non-scaled point set, showing the total number of points,
the number of points on screen with a centred gaze and with a gaze directed
at the bottom-right corner, including the percentage of the total.

Although based on these results, this could potentially change perfor-
mance quite drastically, users will generally focus on the area around the
centre of the screen. Additionally, it is fairly difficult to direct eye-tracked
gaze to the very corner or edge of the screen. Regardless, the values shown in
Table 1 merely portray a factor of the total number of points, which makes
a more significant, constant impact on performance. Figure 14 shows the
tested scaling values plotted against the corresponding number of points in
resulting set, which clearly shows diminishing returns at higher scaling val-
ues, but a significant point reduction in the lower values.

The second factor is the interpolation method that is used to restore the
complete image. The interpolation runs over all pixels on the screen and
uses the k nearest neighour points to estimate the colour at that pixel. This
means that the interpolation performance is completely independent from
the scaling factor of the point set and is solely affected by the chosen k value

32

Figure 14: The scaling factor used in the point set generation plotted
against its resulting number of points in the set.

and the resolution that is rendered to. Assuming the rendering resolution is
the full resolution that the HMD uses, the only remaining parameter that
can be changed in order to affect the method’s performance is the k value.
Although the k value does not affect the Nearest Neighbour method, there
could be merit in using a higher k to increase the qualitative output from
the Modified Shepard’s Method or the Radial Basis Function. If a higher
k increases the runtime of the interpolation, but allows for a higher scaling
value that reduces the number of sampled points which saves more time than
it costs, it could be worth using the higher k value. On the other hand, since
colour interpolation is a local problem, the benefit of an increased k value
suffers from diminishing returns, as seen in Figure 15, meaning that a higher
value is not always a significant improvement. In the same vein as balancing
k against the required number of points, it could prove worthwhile to choose a

Figure 15: High eccentricity areas from the images resulting from the RBF
method with different k values displaying the diminishing returns of a

higher value.

33

more costly Radial Basis Function over the Nearest Neighbour interpolation
if the result is significantly better.

For the purposes of performing measurements and experiments, a custom
ray tracing framework was extended with the proposed foveation method.
To test the performance of each interpolation method, four different k values
were tested: 5, 10, 15 and 20. This way the methods (with the exception of
Nearest Neighbour) use between 5 and 20 nearest points in their calculations,
which shows how each method scales quite clearly. Table 2 shows the results
of these measurements.

k = 5 k = 10 k = 15 k = 20

NN 2.3 ms 2.3 ms 2.3 ms 2.3 ms

MSM 4.8 ms 7.2 ms 10.2 ms 13.4 ms

RBF 4.6 ms 15.3 ms 112.0 ms 372.3 ms

Table 2: The measured time cost to run each of the evaluated three inter-
polation methods: Nearest Neighbour (NN), the Modified Shepard’s Method
(MSM) and the Radial Basis Function (RBF). The measurements were per-
formed on an Nvidia GTX960M GPU at the FOVE HMD resolution for one
eye of 1280 by 1440.

From these results we can tell quite clearly that the Nearest Neighbour
method is indeed not affected by k, while the Modified Shepard’s Method
scales linearly and the Radial Basis Function method scales rapidly. The cur-
rent implementation of the Radial Basis Function method clearly becomes
entirely impractical at k values beyond 10. Altogether, this eliminates 5 set-
tings for the interpolation. Although these numbers might not all appear
feasible for a real-time application running at 90 frames per second where
each frame has to be calculated within little more than 11 milliseconds, the
measurements were performed on an Nvidia GTX960M GPU, which is about
5 times slower than the recent flagship Nvidia GPU, the GeForce GTX 1080
[Use16]. Taking this into account, the Nearest Neighbour method, all Modi-
fied Shepard’s Method settings and the Radial Basis Function settings up to
a k of 10 can be utilised.

34

6 Experiment

This section addresses the qualitative experiment performed to establish
which settings are perceptually adequate. To start, the design of the ex-
periment is laid out, explaining which concepts were considered for the test
and which ones were or were not used and why. Next, the experiments
setup is formulated based on the previously explained design choices. This
is followed by a report on the results of the performed experiment and the
section is concluded by an analysis of the results and further outcomes of the
experiment.

6.1 Design

To see which methods are in fact useful and to identify the best interpolation
method to use in our proposed method, it is necessary to perform a qualitative
experiment comparing the different interpolation options. The selection of
methods can be based on the performance found in Section 5 and those
results can be combined with the outcome of the qualitative experiment
to establish the most ideal interpolation method to use combined with the
highest scaling factor that it allows to obtain the maximum benefit from
applying our foveation method.

The experiment was to be performed using the FOVE HMD, which runs
at an eye tracking rate of 120 Hz and a refresh rate of 70 Hz, and an Nvidia
GTX960M GPU, so in order to approach real-time performance for the sake
of the experiment, this experiment is performed using a sandbox cubemap
sampling application instead of fully ray tracing a scene. This speeds up
the sampling part of the application significantly to allow some leeway for
the performance of the actual foveation for testing purposes. In this setup,
a cubemap image is directly sampled to provide the colour values for the
points, which are then interpolated according to different schemes.

The basis of the experiment is the comparison of the different interpola-
tion methods. To limit the scope of the experiment, the fastest versions of
the Nearest Neighbour, Modified Shepard’s Method and Radial Basis Func-
tion interpolations were included — each with a k value of 5. This allows for
comparison between the methods without relying on significant qualitative
improvements at higher k values that could allow for fewer samples overall,
since those higher k values suffer from diminishing returns anyway, as seen
in Figure 15 in Section 5. This results in a total of three test settings.

Different numbers of samples per point were tested for temporal stability
and artifact reduction. Lower values tend to allow for bigger changes from
frame to frame, while a higher number of samples diminishes the effect of

35

one changing sample, leading to increased stability at the cost of requiring
more samples. The final value that provided a significant improvement, 32
samples per pixel, was chosen as the sampling basis of our method.

A simple version of temporal anti-aliasing over the whole frame, using
just the information of the previous and the current frame, was implemented
and tested based on findings in previous work in order to limit or eliminate
temporal artifacts, such as flickering. Since this did indeed lead to a signifi-
cantly improved experience, it was decided to use this temporal anti-aliasing
in all test settings.

Figure 16: The scene of Newberry Market in San Francisco by Steel Blue
used in the experiment.

The scene to be tested with was decided to be a scene of a shopping
mall in San Francisco [Ste16], as seen in Figure 16. This scene was primarily
chosen for its varying contents, as it contains varying lighting, man-made,
straight structurs as well as some natural elements and many busy human
characters. Since a lot goes on in the scene this allows for testing different
circumstances as well as keeping test subjects engaged during the test.

Lastly, these concepts need to be tested across different point sets to be
able to compare their results. For this experiment, we had a range of 1.0 to
3.0 available, in steps of 0.1. The goal is to find the threshold values where
test subjects start to notice the employment of foveation. This is not an exact
threshold, however, since it stems from human senses and perception, which
can differ between different people. To account for this, the method of limits
from the field of psychophysics, as explained in Section 2.6, can be employed.
The resulting averages can then be compared between the methods.

6.2 Setup

The final experiment was performed on 17 subjects of different ethnicities,
ages and genders, where each subject tested each setting across a staircase
method series. For efficiency purposes, the initial step size was set to 0.2
in an ascending series starting from the scaling value of 1.0 and at the first

36

reversal that was not included in the results, the step size was decreased
to 0.1. From there the regular staircase method was performed until each
subject reported four threshold values per setting.

The method should work and be unnoticeable regardless of whether the
user knows about it, so to replicate such a situation, each subject was told
about the method and what they will be presented with before the tests.
Testing the detection in the subjects’ peripheral sight also proved to be quite
difficult if they did not know what was going on, so the full explanation also
helped correctly detect the threshold values.

Prior to the experiment, each subject got a short explanation of the ex-
periment and the FOVE HMD needed to be calibrated. The subjects then
tested each method with a staircase series with breaks between each method.
Before starting a series, each subject was shown the most extreme case of
foveation available, with a scaling factor of 3.0, and was asked what they
noticed about the image so that it would be possible to talk to them about
what they see in their own words throughout the rest of the series. All in all,
the experiment took around one hour per test subject.

The aim in the test setup was to simulate a real experience with foveated
rendering in an interactive environment and to investigate whether users
would notice anything unnatural within their vision. To simulate such an
experience the subject was asked each step in the series to shift their at-
tention to the next location or object in the scene and was asked to report
anything they saw while looking for or at that location that they found
strange or unnatural. The order of locations and objects was set in advance
and remained the same for each test subject. In the interest of the test sub-
jects, each series was assigned its own theme in order to maintain interest
in the experiment. The first round focused on locations and interior design,
the second focused on the people in the scene and the last series was based
around notable occurrences such as duplicate people repeated throughout the
scene. The subjects were asked at each step whether they noticed anything
off with the scene and were sometimes purposefully thrown off by showing
a non-foveated image to keep them attentive and critical. This was done to
test subjects against falling back on previous answers and limit the the error
of habituation and the error of expectation. Should they note that something
is off, they were also asked what it was that they saw or where they saw it,
so that further conclusions could be reached about the vulnerabilities of this
foveation method.

37

6.3 Results

The experiment provided four threshold values per person per method with
a total of 17 test subjects. These values were then aggregated into their
respective means, visible in Table 3. The SPSS MIXED procedure for linear
mixed-effect models was performed on the natural logarithms of the means
for a better model fit to compare them against each other, taking into account
that the means for different methods came from the same test subject. The
method was set as a fixed effect and was also set as the repeated variable,
while the subject ID’s were set as subject with a scaled identity repeated
covariance type. The p-values reported in Table 4 were obtained through
pairwise comparisons of the estimated marginal means and show no signif-
icant differences between the methods, with all values being greater than
0.05.

Mean Std. dev.

NN 1.751 0.350

MSM 1.675 0.248

RBF 1.779 0.362

Table 3: The means and standard deviations per interpolation method of
the per-person means of their respective test results. These values represent
the scaling values for the point set density.

The same result is also shown by the univariate test performed on the
estimated marginal means, resulting in F (2, 48) = 0.403, p = 0.670, which is
also greater than 0.05, again showing there is no significant difference between
any of the methods.

The test subjects were also questioned on what it was that they saw
or noticed during the experiment. Their findings very often pointed to the
same locations being noticeably irregular. These were generally locations

NN MSM RBF

NN - 0.792 0.544

MSM 0.792 - 0.386

RBF 0.544 0.386 -

Table 4: The p values for the pairwise comparisons between the different
interpolation methods. A p value below 0.05 would indicate a significant
difference between the two compared methods.

38

with high contrast, like a dark pillar against a light background, the lights
on the ceiling of a shop or shadows cast on a lit floor, where the edges would
appear to be trembling. Another commonly noticed location was the tree in
the scene where it seemed as though its leaves were flickering, which is most
likely also a result of high contrast through the irregular lighting as the light
falls onto the individual leaves.

6.4 Analysis

The values shown in Table 4 show that no one method appears to perform
better than another in reconstructing a sufficiently detailed image for the
user’s perception, leaving the question of which interpolation method to use
in this method up to circumstance and preference. One way to make this
choice is to look at the performance as reported in Section 5 and picking the
method with the smallest effect on overall performance, which would be the
Nearest Neighbour method. Another advantage is the sheer simplicity of the
method, making it very easy to implement and work with. It is worth noting
that our qualitative experiment excluded higher k values and extra additions
that could lead to a better result.

Before the qualitative experiment was performed, the Modified Shepard’s
Method was expected to perform worse than the others, because it introduced
a much more notable tunnel vision effect. The final results show that this
was not the case, although the responses from different test subjects were
very divergent. One test subject was quite vocal about his dislike for the
Modified Shepard’s Method’s tunnel vision effect compared to the other two,
while another test subject was bothered by that interpolation the least of all.

The Radial Basis Function, with a k value of 5, displayed some darker
values in the periphery at higher density scales, which may have affected its
results. This was caused by the balancing of the arbitrary scale parameter c in
Function 10. Its effect had been significantly reduced, but could not be fully
eliminated, so it was still present in higher scales. This problem is not present
with a k of 10. Regardless, the test subjects were questioned each time they
reported they noticed something strange on what it was that they saw and
the areas they reported did always align with earlier expectations and areas
that had been reported before across all the methods. No strange results were
noticed during the tests because of this, although it might have an effect on
the sensitivity to trembling edges or flickering due to high contrast.

39

7 Discussion

Given the results found through the performance review in Section 5 and the
qualitative experiment in Section 6, the questions posed in Section 1.1 can
be answered. The primary research question posed is as follows:

What is the achievable speedup for ray tracing when utilising
gaze-tracking and foveation without users being able to notice
any differences with a regular image?

The answer to this follows from its individual elements, the first of which
is performance. It became clear from Section 5 that the aim for the first
part of the method, the sampling, is to use a scaling factor that is as high
as possible, since the primary computative benefit comes from a reduction
of taken samples, as was also noted by Harada [AMD14]. For the second
part of the method, the interpolation, it shows that the Nearest Neighbour
interpolation is the fastest method, being twice as fast as the other tested
methods.

The second element of the research question is the question of which
setting allows for the biggest decrease in sampling resolution, or in other
words, which settings allow for using the highest scaling factor value, without
the users being disturbed by the performed foveation. Section 6.3 appears to
show that no one method comes out on top and all methods perform similarly.
It is worth noting here that the results across all methods show similarities
in which locations in the scene proved to be problematic, suggesting that
the primary challenge with the proposed method appears to lie not in the
individual interpolation methods, but in the general method’s sensitivity to
high contrast. At least while that is not improved upon, the interpolation
methods show similar qualitative performance. An improvement is not trivial
in the current setup, though, since the sampling is based on a precomputed
set and does not take into account which areas might perceptually be more
problematic. This directly leads to a potential solution to the problem, which
would be to use a dynamic distribution generated per frame that uses scene
data to establish high-risk areas. One such implementation by Stengel et al.
[SGEM16] was shared with us in a discussion about our method at the TU
Delft, which takes different factors into account such as visual acuity, eye
motion, adaptation and contrast to establish their sampling pattern. As the
other potential factor for the allowed resolution reduction is the interpolation
method used and no method currently qualitatively performs better than any
other, the choice for which method to use can rely solely on its performance,
as there is no motivation to use a more costly method. This means that the

40

best method to use, based on these results, is the Nearest Neighbour method,
thanks to its relative simplicity and the efficiency resulting from that.

Together, these results should provide some insight into the answer of
the overall research question. Yet there is one issue with calculating a set
achievable speedup, as the resulting means reported in Table 3 do not repre-
sent safely usable scaling factors. Instead they show the 50 percent threshold
described in Section 2.6. Needless to say, the desired outcome is a foveation
that is noticed in 0 percent of the cases, which was the assumption from the
outset and is the reason why the point set distribution is generated based
on the worst-case scenario, assuming maximum contrast everywhere in the
image. As such, it makes sense that issues can arise when scaling the distri-
bution beyond this worst-case scenario. Still, it should be possible to scale
or change the distribution, since maximum contrast is a rare occurence and
if the scene even contains such areas, it is often a very local issue. Since
the method does not currently accomodate for local differences, it cannot be
guaranteed that scaling the point set further works in all cases.

Nonetheless, even without scaling the point set further, there is a signif-
icant speed-up compared to traditional ray-traced rendering. Only a max-
imum of 420,248 points (see Table 1) or when rendering for each eye indi-
vidually, as will generally be the case, its double, 840,496 points, need to be
sampled, instead of the full resolution of 1280 ∗ 1440 ∗ 2 = 3,686,400 pixels,
again accounting for both eyes. This means that with a 1.0 scaling factor
in the point set generation, this method already requires only 22.80% of the
samples for about a 4.3 times speedup. This speedup may be diminished by
the required number of samples taken to represent the sampled area, since
the points—at least in the periphery—represent a bigger area than the pixels
in traditional ray tracing, but does still allow for further improvements.

With further technical developments, HMD’s keep increasing their display
resolutions and field of view in order to provide the best immersion and
most realistic experience. The current performance improvement will only
become greater as displays increase in size and resolution as it will be possible
to simply interpolate the values for more and more pixels instead of fully
sampling and calculating them.

41

8 Conclusion

This thesis designed a method to perform foveated rendering within the ray
tracing algorithm and tested the performance benefit and it’s qualitative
soundness. Foveated rendering alleviates the burden put on the existing ren-
dering algorithms with ever increasing screen sizes and resolutions, especially
in head-mounted displays, but also gives the ray-tracing algorithm the op-
portunity to move to the forefront in the rendering field by mitigating its
primary disadvantage—its high cost. The method proposed in this thesis is
a step towards a future with real-time, interactive ray-traced rendering with
all the practicality and quality it delivers.

This concluding section provides a summary of the thesis with its pro-
posed method and the resulting findings and wraps up with suggestions for
potential future research topics.

8.1 Summary

The research question this thesis was built around is as shown below:

What is the achievable speedup for ray tracing when utilising
gaze-tracking and foveation without users being able to notice
any differences with a regular image?

This thesis proposes a method that samples the scene’s colour according to a
adaptive Poisson-disc distribution of points constructed based on the contrast
sensitivity function, which describes the human visual systems ability to
distinguish objects across the visual field. The colours are sampled per point
in an area with a radius of the Poisson-disc weight value and then stored per
point to represent the sampled area. Next, a scattered interpolation method
is used to provide the individual pixels of the screen with colours depending
on the surrounding points and the according colours.

The primary performance gain of foveated rendering in ray tracing comes
from a reduction of the rays cast, so there is a benefit as long as the num-
ber of points in the distribution multiplied by the number of samples taken
to adequately depict its area is smaller than the number of pixels multi-
plied by the number of anti-aliasing samples taken. By scaling the point
distribution the number of points it contains can be reduced, but since the
distribution initially accounts for the human visual system’s ability to dis-
cern contrast, this reduction leads to possible detection of the used foveation,
as was found in the performed experiment. This experiment was meant to
identify the interpolation method to use out of three potential candidates:

42

Nearest Neighbour, Modified Shepard’s Method and Radial Basis Functions.
As the primary issue found across all interpolation methods was that test
subjects were sensitive to big changes in contrast in the periphery, no one
interpolation method appeared to perform better than any other. Based on
this, the proposed interpolation method to use is the least complex and most
efficient—the Nearest Neighbour method. With these findings, the answer to
the posed research question amounts to about a 4.3 times speedup without
changing the number of samples taken per pixel, with potential extensions
and improvements, like the real-time construction of a scene-aware distribu-
tion to allow for distribution scaling while accounting for high contrast areas
and varying the amount of samples to take based on distance from the gaze
location to reduce the number of rays cast further.

8.2 Future work

The method proposed in this thesis allows for extensions and improvements
and work can still be done in areas beyond the scope of this project. Such
areas include, among others, reusing and reprojecting samples from the view
for one eye to the other, for example like proposed by Fujita et al. [FH14]
and the related presentation by Harada [AMD14].

Another possible extension could be to update the foveal region with a
higher update rate than the peripheral regions to save on some sampling time
as proposed by Guenter et al. [GFD+12]. The risk this brings, however, is
that asynchronicity of the different regions lead to further temporal artifacts,
which are especially harmful in head-mounted displays.

Including a customised temporal anti-aliasing that is content-aware in
both distance and contrast difference may be worthwhile in further alleviating
temporal artifacts and troublesome high-contrast areas.

An area that could be further researched is the inclusion of contrast en-
hancements as described by Patney et al. [PSK+16]. They argue that thanks
to the contrast enhancements they were able to further scale down their high-
resolution area, while maintaining enough contrast in the periphery to keep
users from experiencing tunnel vision effects.

A more efficient implementation of the Radial Basis Function could be
included in the method for further research into the effect of that method
with higher k values, although so far its performance cost did not seem worth
the investment based on its results in the qualitative experiment.

To further reduce the number of rays cast without changing the sampling
distribution, an option could be to vary the number of samples cast per point
based on the distance from the gaze location. Since the foveal area directly
around the gaze location essentially has regular pixel density, less samples

43

would need to be taken there for anti-aliasing purposes than for a point in
the periphery that represents an entire area of pixels.

Lastly, the most promising extension to our proposed method would be
the inclusion of a real-time, scene-aware generation of a point distribution.
This way, the distribution can allow for scaling, while maintaining enough
samples in high-risk, high-contrast areas to provide a temporally stable result.
A possible implementation of such a system is described by Stengel et al.
[SGEM16].

References

[ALP14] Ken Anjyo, John P. Lewis, and Frédéric Pighin. Scattered data
interpolation for computer graphics. In ACM SIGGRAPH 2014
Courses, page 27. ACM, 2014.

[AMD14] AMD, Takahiro Harada. Foveated Ray Tracing for VR on
Multiple GPUs. http://www.slideshare.net/takahiroharada/
foveated-ray-tracing-for-vr-on-multiple-gpus, December
2014. [Online; accessed 1-1-2018].

[Bik12] J. Bikker. Ray tracing in real-time games. PhD thesis, Delft Uni-
versity of Technology, Delft, The Netherlands, 2012.

[Bra99] Karlheinz Brandenburg. MP3 and AAC Explained. In Audio
Engineering Society Conference: 17th International Conference:
High-Quality Audio Coding. Audio Engineering Society, Septem-
ber 1999.

[Bri07] Robert Bridson. Fast Poisson disk sampling in arbitrary dimen-
sions. In SIGGRAPH sketches, page 22, 2007.

[BU06] Tom Bobach and Georg Umlauf. Natural neighbor interpolation
and order of continuity. GI Lecture Notes in Informatics, Visual-
ization of Large and Unstructured Data Sets, pages 68–86, 2006.

[Bus16] Business Insider, Jason D. Rowley. Google buys Eyeflu-
ence, which builds eye-tracking technology for virtual reality.
http://www.businessinsider.com/google-buys-eyefluence-
vr-ar-eye-tracking-startup-2016-10, October 2016. [Online;
accessed 1-1-2018].

44

http://www.slideshare.net/takahiroharada/foveated-ray-tracing-for-vr-on-multiple-gpus
http://www.slideshare.net/takahiroharada/foveated-ray-tracing-for-vr-on-multiple-gpus
http://www.businessinsider.com/google-buys-eyefluence-vr-ar-eye-tracking-startup-2016-10
http://www.businessinsider.com/google-buys-eyefluence-vr-ar-eye-tracking-startup-2016-10

[DH06] Daniel Dunbar and Greg Humphreys. A spatial data structure
for fast Poisson-disk sample generation. ACM Transactions on
Graphics (TOG), 25(3):503–508, 2006.

[Dig16] Digital Trends, Digital Trends Staff. Oculus Rift vs.
HTC Vive — Spec Comparison — Digital Trends.
http://www.digitaltrends.com/virtual-reality/oculus-
rift-vs-htc-vive/, October 2016. [Online; accessed 1-1-2018].

[DT08] Wilna Du Toit. Radial basis function interpolation. PhD thesis,
Stellenbosch: Stellenbosch University, 2008.

[FF05] Bengt Fornberg and Natasha Flyer. Accuracy of radial basis func-
tion interpolation and derivative approximations on 1-d infinite
grids. Advances in Computational Mathematics, 23(1):5–20, 2005.

[FH14] Masahiro Fujita and Takahiro Harada. Foveated real-time ray trac-
ing for virtual reality headset. Technical report, Tech. rep., Light
Transport Entertainment Research, 2014.

[FOV15] FOVE. FOVE Eye Tracking Virtual Reality Headset. https:

//www.getfove.com/, May 2015. [Online; accessed 1-1-2018].

[Ges13] George A Gescheider. Psychophysics: the fundamentals. Psychol-
ogy Press, 2013.

[GFD+12] Brian Guenter, Mark Finch, Steven Drucker, Desney Tan, and
John Snyder. Foveated 3D graphics. ACM Transactions on Graph-
ics (TOG), 31(6):164, 2012.

[GP98] Wilson S. Geisler and Jeffrey S. Perry. Real-time foveated multires-
olution system for low-bandwidth video communication. In Human
vision and electronic imaging, volume 3299, pages 294–305, 1998.

[Kar14a] B. Karis. High Quality Temporal Supersampling.
https://de45xmedrsdbp.cloudfront.net/Resources/files/
TemporalAA small-59732822.pdf, 2014. [Online; accessed
1-1-2018].

[Kar14b] B. Karis. High-quality temporal supersampling. Advances in Real-
Time Rendering in Games, SIGGRAPH Courses, 1, 2014.

[Kic15] Kickstarter, FOVE. FOVE: The World’s First Eye Track-
ing Virtual Reality Headset by FOVE — Kickstarter.

45

http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
http://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://www.getfove.com/
https://www.getfove.com/
https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf
https://de45xmedrsdbp.cloudfront.net/Resources/files/TemporalAA_small-59732822.pdf

https://www.kickstarter.com/projects/fove/fove-the-
worlds-first-eye-tracking-virtual-reality, May 2015.
[Online; accessed 1-1-2018].

[Lin16] Tim Lindeberg. Concealing rendering simplifications using gaze-
contingent depth of field. Master’s thesis, KTH Royal Institute of
Technology, 2016.

[MM05] A.V. Masjukov and V.V. Masjukov. Multiscale modification of
shepard’s method for multivariate interpolation of scattered data.
Mathematical Modelling and Analysis, 10:467–472, 2005.

[PSK+16] Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan,
Chris Wyman, Nir Benty, David Luebke, and Aaron Lefohn. To-
wards foveated rendering for gaze-tracked virtual reality. ACM
Transactions on Graphics (TOG), 35(6):179, 2016.

[Ren88] Robert J. Renka. Multivariate interpolation of large sets of
scattered data. ACM Transactions on Mathematical Software
(TOMS), 14(2):139–148, 1988.

[SAS16] SKYbrary Aviation Safety. Vision (Operator’s Guide to Human
Factors in Aviation). http://www.skybrary.aero/index.php/
Vision (OGHFA BN), October 2016. [Online; accessed 1-1-2018].

[SCL13] Hyeongjin Song, KK Choi, and David Lamb. A study on improving
the accuracy of kriging models by using correlation model/mean
structure selection and penalized log-likelihood function. In 10th
world congress on structural and multidisciplinary optimization.
Florida, Orlando, 2013.

[SEB03] Hamid R. Sheikh, Brian L. Evans, and Alan C. Bovik. Real-time
foveation techniques for low bit rate video coding. Real-Time Imag-
ing, 9(1):27–40, 2003.

[Sen14] SensoMotoric Instruments. Eye Tracking HMD Upgrade Package
for the Oculus Rift DK2. http://www.mindmetriks.com/uploads/
4/4/6/0/44607631/smi flyer hmdpackage.pdf, 2014. [Online;
accessed 8-1-2018].

[Sen16] SensoMotoric Instruments. SMI Mobile Eye Track-
ing HMD based on Samsung GearVR. https:

//www.smivision.com/wp-content/uploads/2016/10/

46

https://www.kickstarter.com/projects/fove/fove-the-worlds-first-eye-tracking-virtual-reality
https://www.kickstarter.com/projects/fove/fove-the-worlds-first-eye-tracking-virtual-reality
http://www.skybrary.aero/index.php/Vision_(OGHFA_BN)
http://www.skybrary.aero/index.php/Vision_(OGHFA_BN)
http://www.mindmetriks.com/uploads/4/4/6/0/44607631/smi_flyer_hmdpackage.pdf
http://www.mindmetriks.com/uploads/4/4/6/0/44607631/smi_flyer_hmdpackage.pdf
https://www.smivision.com/wp-content/uploads/2016/10/smi_prod_mobile_ET_HMD_SamsungGearVR.pdf
https://www.smivision.com/wp-content/uploads/2016/10/smi_prod_mobile_ET_HMD_SamsungGearVR.pdf

smi prod mobile ET HMD SamsungGearVR.pdf, 2016. [Online;
accessed 8-1-2018].

[SGEM16] Michael Stengel, Steve Grogorick, Martin Eisemann, and Mar-
cus Magnor. Adaptive Image-Space Sampling for Gaze-Contingent
Real-time Rendering. In Computer Graphics Forum, volume 35,
pages 129–139. Wiley Online Library, 2016.

[SM14] Adam Siekawa and Supervised Radoslaw Mantiuk. Gaze-
dependent ray tracing. In Proceedings of Central European Semi-
nar on Computer Graphics (non-peer-reviewed), 2014.

[Ste16] Steel Blue - Newberry Market scene. SBrusse.com - WIP. http://
wip.sbrusse.com/SB CubeMap/, 2016. [Online; accessed 1-1-2018].

[Tec16] TechCrunch, Josh Constine. The Eye Tribe Oculus Rift DK2 so-
lution. https://techcrunch.com/2016/12/28/the-eye-tribe-
oculus/, December 2016. [Online; accessed 8-1-2018].

[Tra17] Tobii Eye Tracking. Tobii Eye Tracking | Assassin’s Creed R©

Origins. https://tobiigaming.com/games/assassins-creed-
origins/, 2017. [Online; accessed 1-1-2018].

[Upl15] UploadVR, Will Mason. Oculus is working on eye
tracking technology for the next generation of VR.
http://uploadvr.com/oculus-is-working-on-eye-tracking-
technology-for-next-generation-of-vr/, October 2015.
[Online; accessed 1-1-2018].

[Upl16] UploadVR, Joe Durbin. SMI Releases Eye Tracking Developer
Kit For The HTC Vive. https://uploadvr.com/smi-releases-
eye-tracking-dev-kit-htc-vive/, July 2016. [Online; accessed
8-1-2018].

[Use16] UserBenchmark. UserBenchmark: Nvidia GTX 1080 vs
960M. http://gpu.userbenchmark.com/Compare/Nvidia-GTX-
1080-vs-Nvidia-GTX-960M/3603vsm27242, 2016. [Online; ac-
cessed 1-1-2018].

[Val14] Valve, Steam Dev Days, Michael Abrash. What VR
Could, Should, and Almost Certainly Will Be Within Two
Years. http://media.steampowered.com/apps/abrashblog/
Abrash%20Dev%20Days%202014.pdf, 2014. [Online; accessed 1-1-
2018].

47

https://www.smivision.com/wp-content/uploads/2016/10/smi_prod_mobile_ET_HMD_SamsungGearVR.pdf
http://wip.sbrusse.com/SB_CubeMap/
http://wip.sbrusse.com/SB_CubeMap/
https://techcrunch.com/2016/12/28/the-eye-tribe-oculus/
https://techcrunch.com/2016/12/28/the-eye-tribe-oculus/
https://tobiigaming.com/games/assassins-creed-origins/
https://tobiigaming.com/games/assassins-creed-origins/
http://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-next-generation-of-vr/
http://uploadvr.com/oculus-is-working-on-eye-tracking-technology-for-next-generation-of-vr/
https://uploadvr.com/smi-releases-eye-tracking-dev-kit-htc-vive/
https://uploadvr.com/smi-releases-eye-tracking-dev-kit-htc-vive/
http://gpu.userbenchmark.com/Compare/Nvidia-GTX-1080-vs-Nvidia-GTX-960M/3603vsm27242
http://gpu.userbenchmark.com/Compare/Nvidia-GTX-1080-vs-Nvidia-GTX-960M/3603vsm27242
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf
http://media.steampowered.com/apps/abrashblog/Abrash%20Dev%20Days%202014.pdf

[WBLK01] Zhou Wang, Alan C Bovik, Ligang Lu, and Jack Kouloheris.
Foveated wavelet image quality index. In Proc. SPIE, volume 4472,
pages 42–52, 2001.

[Wei08] Li-Yi Wei. Parallel Poisson disk sampling. In ACM Transactions
on Graphics (TOG), volume 27, page 20. ACM, 2008.

[Wik07] Wikimedia Commons, Rhcastilhos. Schematic diagram of
the human eye. https://commons.wikimedia.org/wiki/File:
Schematic diagram of the human eye en.svg, January 2007.
[Online; accessed 1-1-2018].

[Wik09] Wikimedia Commons, Vanessa Ezekowitz. Approximation of the
acuity of the Human eye, horizontal cross section. https://

commons.wikimedia.org/wiki/File:AcuityHumanEye.svg, July
2009. [Online; accessed 1-1-2018].

[Wik10] Wikimedia Commons, Markluffel. Natural neighbors coeffi-
cients example. https://commons.wikimedia.org/wiki/File:
Natural-neighbors-coefficients-example.png, January 2010.
[Online; accessed 1-1-2018].

48

https://commons.wikimedia.org/wiki/File: Schematic_diagram_of_the_human_eye_en.svg
https://commons.wikimedia.org/wiki/File: Schematic_diagram_of_the_human_eye_en.svg
https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://commons.wikimedia.org/wiki/File:AcuityHumanEye.svg
https://commons.wikimedia.org/wiki/File:Natural-neighbors-coefficients-example.png
https://commons.wikimedia.org/wiki/File:Natural-neighbors-coefficients-example.png

A Experiment results

Subject 1 2 3 4 5 6 7 8 9

Gender M F F M M M F F M

Age 57 49 31 23 23 63 45 31 26

Nearest Neighbour 1.6 1.7 1.3 2.5 1.9 1.9 1.4 1.4 2.1

1.7 1.8 1.5 2.8 2.2 2.0 1.9 1.6 2.2

1.6 1.7 1.3 2.4 2.1 1.9 1.7 1.4 2.0

1.7 1.8 1.4 2.5 2.2 2.0 1.8 1.6 2.2

Modified Shepard’s 1.6 1.5 1.9 1.7 1.7 2.2 1.3 1.3 2.7

Method 1.8 1.7 2.2 1.8 1.9 2.3 1.4 1.5 2.9

1.6 1.6 2.0 1.5 1.8 2.2 1.3 1.4 2.7

1.7 1.7 2.1 1.8 2.1 2.3 1.5 1.5 2.9

Radial Basis 1.6 1.3 1.9 1.8 1.9 1.7 1.2 1.5 1.7

Functions 1.8 1.7 2.0 1.9 2.1 2.0 2.1 1.6 1.8

1.5 1.5 1.9 1.6 2.0 1.8 2.0 1.5 1.5

1.8 1.7 2.0 1.7 2.3 1.9 2.1 1.6 1.7

Subject 10 11 12 13 14 15 16 17

Gender F M M F M M F M

Age 65 23 28 27 23 35 62 59

Nearest Neighbour 2.2 1.5 1.4 1.9 1.3 1.1 1.4 1.5

2.3 1.6 1.6 2.0 1.4 1.5 1.6 1.6

2.2 1.5 1.5 1.9 1.2 1.3 1.5 1.5

2.3 1.7 1.8 2.0 1.3 1.5 1.6 1.6

Modified Shepard’s 1.8 1.4 1.7 1.8 1.4 1.5 1.8 1.7

Method 1.9 1.5 1.8 2.2 1.5 1.6 2.0 1.8

1.8 1.2 1.6 2.0 1.4 1.4 1.6 1.6

1.9 1.3 1.9 2.1 1.6 1.5 1.8 1.8

Radial Basis 1.9 1.2 1.3 2.0 1.2 1.3 1.3 1.3

Functions 2.0 1.3 1.4 2.2 1.5 1.5 1.8 1.5

1.8 1.2 1.3 1.9 1.3 1.4 1.6 1.4

1.9 1.4 1.6 2.2 1.4 1.6 1.9 1.6

Table 5: The four scaling value results per subject per interpolation method.

49

	Introduction
	Problem statement
	Thesis Structure

	Background
	Ray tracing
	The human eye
	Gaze tracking
	Foveated rendering
	Temporal anti-aliasing
	Psychophysics

	Previous work
	Foveated rasterised rendering
	Foveated ray-traced rendering
	Generating a distribution
	Scattered interpolation

	Method
	Point distribution
	Scattered sampling
	Scattered interpolation

	Performance
	Experiment
	Design
	Setup
	Results
	Analysis

	Discussion
	Conclusion
	Summary
	Future work

	References
	Experiment results

