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Abstract

We generalize several aspects of gauge theory to 2-gauge theory. We consider 2-transport on prin-

cipal 2-bundles with strict 2-group fiber by categorifying a usual definition of principal bundles,

following [SW11]. We show that locally 2-transport induces a 2-functor from the 2-groupoid of

bigons up to thin homotopy to the 2-group. By generalizing the non-Abelian Stokes’ Theorem to

the 2-group setting, we are able to prove a direct generalization of the Ambrose-Singer Theorem for

2-bundles. Finally we further develop the theory of surface holonomy. In particular we elucidate

how such a theory depends on the choice of marking of a surface. We also show that for covering

2-groups the surface holonomy of any connection taking values in a torus computes an invariant

of the bundle. Roughly the first half of the thesis is dedicated to a comprehensive introduction to

gauge theory and 2-category theory before proceeding to 2-gauge theory.
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1

Introduction

From a mathematical point of view, gauge theory studies connections on principal bundles and

their holonomy. This has a wide variety of applications in contemporary mathematics, mathe-

matical physics, and physics. For example, the celebrated standard model of particle physics is

conveniently stated in terms of gauge theory, and holonomy appears in (mathematical) physics as

Wilson loops. A current trend in mathematics is to try to generalize many well-known objects to

higher categories. In this thesis we will develop 2-gauge theory; that is, gauge theory generalized

to the 2-categorical setting. In this setting we will show one has natural generalizations of principal

bundles, connections and parallel transport. Many important facts about these objects naturally

translate to the higher categorical setting, if phrased in the right way.

Higher gauge theory has potential applications to physics. Gerbes, which are related to 2-bundles,

are already used in physics. Furthermore we will define Wilson surfaces from a purely mathematical

point of view, which appear in numerous physics papers. Finally U(1) surface holonomy is related

to Dirac monopoles, and for other gauge groups it may also have important physical interpretations.

In the first section we carefully introduce many aspects of ‘classical’ gauge theory. A good under-

standing of the classical theory is necessary before attempting to generalize it. In the second section

we introduce the language and methods of 2-category theory, in which 2-gauge theory will be

stated. In the third section we develop 2-gauge theory, mainly based on the works of Urs Schreiber

and Konrad Waldorf. We try to develop the theory from a mostly geometric point of view and

avoid unnecessary ‘abstract nonsense’. Our main result in this section is a generalization of the

Ambrose-Singer Theorem using a non-Abelian Stokes’ Theorem. In the last section we make an

attempt to generalize holonomy to ‘surface holonomy’. It turns out that naive attempts to gener-

alize holonomy to surfaces fails for various reasons, and the language of 2-gauge theory makes it

much easier. We then compute surface holonomy explicitly for some simple situations and relate

the result to Chern-Weil classes.
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1. Gauge Theory

Gauge theory studies parallel transport and connections on principal bundles, often in the context

of physics. We will start by quickly recalling the basic notions of principal bundles, connections

and parallel transports. The main result of this part is that parallel transport defines a functor

P1(M)→ G-tor. To state and prove this result properly we need to develop a number of important

properties of connections and their parallel transport. The main reference for this material is [KN63],

although neither the non-Abelian Stokes’ Theorem nor the concept of thin homotopy appears there;

for this we refer the reader to [SW07] instead.

1.1. Principal bundles

Throughout this section, and indeed throughout the whole text, we let G be a compact connected

Lie group, and let M be a smooth manifold.

Definition 1.1

A principal G-bundle π : P → M consists of a space P, a (left) Lie group action G � P and a

G-invariant surjective submersion π (i.e. π(g · m) = π(m)), such that the following map is a

diffeomorphism:

τ : G× P→ P×M P, (g, p) 7→ (p, g · p)

There are many definitions equivalent to this one, but this one seems to be the most elegant and the

easiest to ‘categorify’, as we shall later do to obtain the definition of a 2-bundle.

We pick the convention that groups act on the left instead of right. The reason for this is that the

notation of left group actions is more compatible with that of function composition. For example

(g · h) ·m = Lgh(m) = Lg ◦ Lh(m),

whereas for right multiplication we have

Rgh = Rh ◦ Rg.

There is no standard convention in the literature, although our main reference, Schreiber & Waldorf

[SW07, SW11, SW13a], use right actions. This will cause a large number of slight differences between

our results. Some formulas become slightly simpler for left actions and some for right. It is mostly

a matter of taste.
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The fact that τ is an isomorphism means that the fibers of π are all isomorphic to G. Since π is

G-invariant, the action of G descents to one on each fiber. This means that every fiber is in fact a

G-torsor (i.e. a space with a free and transitive group action by G). More concretely, given any two

points (p, q) in the same fiber there is a unique q : p ∈ G such that

(q : p) · p = q. (1.1)

Therefore choosing any p ∈ π−1(x) gives us an explicit isomorphism G → π−1(x), namely g 7→ p · g
with inverse q 7→ q : p. It is worth noting how this map changes when changing basepoint p. Let

g ∈ G then note that

(g(q : p)g−1) · g · p = g · q.

Thus we conclude that

(g · q) : (g · p) = g(q : p)g−1. (1.2)

Recall that every surjective submersion admits local sections [Lee03, Thm. 4.26]. Every local section

gives a local trivialization; if σ : U → P is a section, then φ : G×U → P given by φ(g, x) = g · σ(x)

is a local trivialization precisely because τ is an isomorphism (or because the fibers are G-torsors).

Thus P can also be thought of as a locally trivializable G fiber bundle together with a group action

on the fibers. Since the group action on P is free we have M ∼= P/G. In fact all free Lie group actions

define a principal bundle over the quotient in this way (so long as the quotient is a manifold, which

always happens if the action is proper or in particular if the group is compact).

Seeing a principal G-bundle as a locally trivializable G-bundle, the bundle is determined by its

transition functions. That is, if we choose a cover U then a cochain U[2] → G determines a principal

G-bundle. If G is Abelian then (isomorphism classes of) G-bundles are classified by H1(M, G), but

for non-Abelian G one would first need to know what non-Abelian cohomology is. Going further in

this direction, one can define G-gerbes as the geometric objects classified by H2(M, G), and this is

one way to lift principal bundles to a higher categorical setting (but not the approach we will take).

A morphism of G-bundles F : P → Q is an equivariant bundle map. That is, a map such that the

following diagrams commute:

P F //

��

Q

��

M

G× P

��

Id×F
// G×Q

��

P F // Q

More generally if P and Q are not above the same space, the equivariant bundle map F can cover

some map f : M → N. By equivariance, any morphism of F : P → Q of G bundles over the same
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space is an isomorphism (or if the two bundles are not over the same space, but F covers some

diffeomorphism M → N). It is clear that F is a local isomorphism; given a section σ : U → P we

get an isomorphism P|U → Q|U , g · σ(x) 7→ F(g · σ(x)) = g · F(σ(x)). Now F is a bijective local

diffeomorphism, and therefore in particular a diffeomorphism and its inverse is a bundle map.

Just as for fiber bundles one can define pullbacks of principal bundles. Given a map f : M→ N and

a bundle π : P→ N we can define f ∗P→ M as f ∗P = Pπ× f M with the obvious induced G-action.

1.2. Lie algebra valued forms

Central to gauge theory is the notion of a connection on a principal bundle. Before giving a def-

inition we will quickly recall the theory of Lie algebra valued differential forms, as its notation

will be frequently used. See also section 2.4 in [Mor97]. Let g be a Lie-algebra, then define

Ωn(M, g) = Ωn(M)⊗ g the n-forms on M with values in g. Locally one can write ξ ∈ Ωn(M, g)

as ξα
I dxI ⊗Xα, where xi are local coordinates, I is a multi-index with |I| = n , and Xα is a basis

of g. Here we use the familiar convention that repeated indices are summed over. This notion

supports ordinary operations on differential forms; suppose ξ ∈ Ωp(M, g) and η ∈ Ωq(M, g), then

ξ ∧ η ∈ Ωp+q(M)⊗ g⊗ g is defined locally by ξα
I η

β
J dxI ∧ dx J ⊗Xα⊗Xβ.

One can also use the structure of the Lie-algebra for some extra operations, for example we define

[ξ ∧ η] ∈ Ωp+q(M, g) by ξα
I η

β
J dxI ∧ dx J ⊗[Xα, Xβ]. This has a different skew symmetry than ordinary

wedging of forms; the form part contributes a sign (−1)pq whereas the Lie algebra part contributes

a −1 sign. For example, for a 1-form A ∈ Ω1(M, g) one does not a priori have [A ∧ A] = 0. In

general we thus have [ξ ∧ η] = (−1)deg(ξ)deg(η)+1[η ∧ ξ]. By using the Jacobi identity one can also

show that [[ξ ∧ ξ] ∧ ξ] = 0 for any Lie algebra valued form. For operations that ‘act only on the

differential form part’ like the de Rham differential or Lie derivation, the sign rules don’t change;

d[ξ ∧ η] = [dξ ∧ η] + (−1)deg(ξ)[ξ ∧ dη]. Heuristically operators like d ‘don’t see the Lie algebra part’.

One can also do things that ‘only see the Lie algebra part’. For example if we have a pairing

Tr : g⊗ g→ R then we can define a map Ω∗(M)⊗ g⊗ g→ Ω∗(M) locally defined as

ξ
αβ
I dxI Xα ∧ Xβ 7→ ξ

αβ
I dxI Tr(Xα, Xβ).

Such a pairing is of particular interest because it is Ad-invariant, i.e. Tr(Adg(X), Adg(Y)) = Tr(X, Y)

for any g ∈ G. In terms of differential forms this means Tr(Adg(ξ ∧ η)) = Tr(ξ ∧ η). In general any

map of Lie algebras will induce a map of Lie algebra valued forms in this way. Ordinary operations

on differential forms will commute with such maps, e.g. d Tr = Tr d.
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1.3. Connections

The main objects of study in gauge theory are connections on principal bundles. These objects

admit several different points of view, all of which are useful. In fact we will give four equivalent

definitions of a connection, and this section is entirely devoted to stating these definitions and

proving they are equivalent. A connection is the object that allows us to define what it means for a

path in a principal bundle to be horizontal with respect to the group action. Thus a connection is

just a horizontal distribution on P compatible with the group action:

Definition 1.2

Let π : P → M be a principal G-bundle, then π induces a map dπ : TP → TM. Its kernel is a

subbundle V = ker dπ ⊂ TP. A horizontal distribution on P is a rank dim M subbundle H of TP

such that H ⊕V = TP. A horizontal distribution is a connection if Hg·p = (dLg)pHp for all g ∈ G

and p ∈ P.

While fairly conceptual, this definition is hard to work with. Connections are more conveniently

defined in the language of differential forms.

Definition 1.3

Let P→ M be a principal G-bundle. Then a connection is a 1-form A ∈ Ω1(P, g) such that:

1. For all g ∈ G we have L∗g A = Adg A.

2. For every ξ ∈ g consider the fundamental vector field Xξ , then A(Xξ) = ξ.

Here Xξ(p) = d
dt

∣∣∣
t=0

exp(tξ) · p.

The equivalence between the two definitions is sketched as follows. First, given a connection form

A, one can check that ker A ⊂ TP is a horizontal distribution. Given a horizontal distribution, the

orthogonal decomposition TP = H ⊕ V gives us a projection v : TP → V ⊂ TP. The action G � P

allows us to identify V ∼= M× g, namely the ‘vertical part’ is given by the fundamental vector fields

Xξ for ξ ∈ g. Then for a vector field X define A(X) = v(X) ∈ C∞(M)⊗ g by this identification. We

then check that this is a connection 1-form.

Every Lie group G defines a principal bundle G → ∗ over a point with the left action of G on itself.

This principal bundle has a unique connection θ ∈ Ω1(G, g), known as the Maurer-Cartan form. The

tangent space TgG is spanned by fundamental vector fields Xξ . On a Lie group they are given by

(Xξ)g =
d
dt

∣∣∣∣
t=0

exp(tξ) · g = (Rg)∗ξ. (1.3)

Therefore if θ is a connection, it has to satisfy:

θg(v) = (R−1
g )∗v ∈ TeG = g, ∀v ∈ TgG. (1.4)
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We then check the other condition for θ being a connection. Let v ∈ TgG and h ∈ G then

(L∗hθ)g(v) = θhg((Lh)∗v) = (R−1
hg )∗(Lh)∗(v)

= (Lh)∗(R−1
h )∗(R−1

g )∗(v) = (Lh)∗(R−1
h )∗θg(v)

= Adh θ(v).

Thus θ is indeed the unique connection on G → ∗.

If G = GLn then gln = Rn2
and we can see GLn as a subset of gln. The Lie algebra is generated by

Ei
j which are matrices with 0 everywhere except at ji where they have value 1. Around g ∈ GLn

we get local coordinates gi
j by identifying an open neighborhood of g with gln, via the identification

T GLn = GLn× gln. Alternatively we can define these coordinates as those such that
〈

dgi
j, Ek

l

〉
=

δi
jδ

k
l . In these coordinates we claim that the Maurer-Cartan form on GLn is of form

θ = (dg)g−1 = (dg g−1)i
jE

j
i = dgi

k(g−1)k
j Ej

i . (1.5)

Indeed if ξ = ξ i
jE

j
i ∈ g then (Xξ)g = ξ · g = ξ i

kgk
j Ej

i and note that

〈
dg, (Xξ)g

〉
= ξ i

kgk
j

〈
dgj

i , Ej
i

〉
= ξ i

kgk
j = ξg. (1.6)

Thus we compute〈
(dg)g−1, (Xξ)g

〉
= ξ i

kgk
l (g−1)l

jE
i
j = ξ i

kEi
j = ξ, (1.7)

showing that this is indeed the Maurer-Cartan form. This is powerful, because the same formula

also applies to any subgroup of GL(n):

Proposition 1.4

Suppose j : G ↪→ H is an embedding of Lie groups, and θ ∈ Ω1(H, h) the Maurer-Cartan form on

H, then

j∗θ ∈ Ω1(G, j∗g)

is the Maurer-Cartan form on G under the identification j∗g ∼= g.

Proof: This is a simple computation. Let ξ ∈ g and g ∈ G then,

j∗θ((Xξ)g) = θ(j∗((Rg)∗X)) = θ((Rj(g))∗(j∗(X)) = j∗(X). �

Thus if G ⊂ GL(n) (as happens for any compact Lie group, cf. prop. A.3) then with abuse of

notation we can write

θ = dgg−1. (1.8)



7 1. Gauge Theory

This notation will turn out to simplify some computations considerably, since we in matrix algebras

we can treat the group and Lie algebra on equal footing. Now we can use the theory of the Maurer-

Cartan form to obtain another equivalent definition of a connection.

Definition 1.5

Let P→ M be a principal G-bundle. Then a connection is a 1-form A ∈ Ω1(P, g) such that for all

g : M→ G we have

L∗g A = Adg A + g∗θ (= gAg−1 + dgg−1), (1.9)

with θ the Maurer-Cartan form on G.

Note the similarity to definition 1.3 of a connection. The difference now is that instead of taking

constant g ∈ G we allow g to vary over M. The advantage is that the second condition we had

before now becomes superfluous, and a connection can be completely defined in the language of

forms. It also makes directly clear what happens to L∗g A when g is not constant, which is something

we will use almost immediately.

Proposition 1.6

Definitions 1.3 and 1.5 of a connection 1-form are equivalent.

Proof: Let A be a connection according to definition 1.3. Let φ : G × P → P be the action and

consider φ∗A. For a fixed g ∈ G and an X ∈ TxP there is an X̂ ∈ Tg,xP such that φ∗X̂ = X. We have

φ∗A(X̂) = L∗g A(X) = Adg A(X). For a fixed ξ ∈ g we get an associated ξ̂ ∈ Tx,gP from TG ∼= G× g

and φ∗A(ξ̂) = A(Xξ) = ξ. Since such X̂ and ξ̂ together span T(G× P) we conclude

φ∗A(x,g) = Adg A + θ. (1.10)

Now for any g : M → G we get a map g̃ : P → G × P, g̃(x) = (g ◦ π(x), x). Note that g̃∗φ∗A =

Adg A + g∗θ whereas g̃ ◦ φ = Lg, proving that the definition 1.3 implies definition 1.5. For the

inverse implication we note that because L∗g A = Adg A + g∗θ for all g : M → G we must have

φ∗A = Adg A + θ. Then we simply compute A(Xξ) = φ∗A(ξ̂) = θ(Xξ) = ξ. �

Suppose we have a trivial bundle P = M × G. This bundle admits a section s : M → P, and

s∗A ∈ Ω1(M, g). Let X ∈ TpP be given by X = γ′(0) for some path γ : I → P, and let Y = π∗(X) =

(π ◦ γ)′(0). Note that there is then a g : I → G such that g(t) · s(t) = γ(t) (indeed g = γ : s), which

also means that X = (Lg)∗s∗Y. From this we conclude:

A(X) = A(γ′(0)) = A([g · (s ◦ π ◦ γ)]′(0)) = (L∗gπ∗s∗A)(Y). (1.11)

Hence we can fully recover A ∈ Ω1(P, g) from s∗A ∈ Ω1(M, g). Now suppose we have a trivializing

cover {Ui} of M, then the trivializations (i.e. sections Ui → P|Ui ) give us Ai ∈ Ω1(Ui, g) for each

i using the procedure above, indeed Ai = (si)
∗(A|P|Ui

). If gij : Uij → G is a transition function
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defined by sj : si then we have

Aj = s∗j A = s∗i L∗gij
A = s∗i (gAg−1 + dgg−1) = gAig−1 + dgg−1. (1.12)

In other words, we can give a fourth definition of a connection in terms of local data satisfying a

certain transformation rule. This is the definition most often used in physics, and is very useful for

doing concrete computations.

Definition 1.7

Let P → M be a principal G-bundle with trivializing cover {Ui} and transition functions

gij : Uij → G. Then a connection on P is a collection of 1-forms Ai ∈ Ω1(Ui, g) satisfying the

transformation rule

Aj = Adg Ai + g∗θ = gAig−1 + dgg−1. (1.13)

1.4. Parallel transport

The most useful property of connections is that it allows use to lift paths in the base space to

‘horizontal paths’ in the principal bundle.

Definition 1.8

Let π : P → M be a principal G bundle with connection A ∈ Ω1(P, g) and let γ : I → M be a

path. A horizontal lift γ̃ : I → P of γ is any path such that π ◦ γ̃ = γ and A(γ̃′(t)) = 0 for all

t ∈ I.

Proposition 1.9

Any path has a horizontal lift, unique up to multiplication by a constant g ∈ G.

Proof: Let γ : I → M be a path. Since I is contractible γ∗P is trivial and we can without loss of

generality assume P itself is trivial. Then γ̃(t) = (g, γ(t)) ∈ G × M is a lift of γ for any g ∈ G.

In general this lift is not horizontal, but any horizontal lift α must be of form α(t) = f (t) · γ̃(t) for

some f : I → G, and we can moreover assume f (0) = 1. Then α being a horizontal lift is equivalent

to:

0 = A
(

d
dt

( f (t) · γ̃(t))
)
= L∗f A(γ̃′(t)) = f A(γ̃′(t)) f−1 + d f f−1. (1.14)

In other words f should satisfy the initial value problem1

f ′(t) = − f (t) · A(γ̃′(t)), f (0) = 1. (1.15)

1For right actions the initial value problem would instead read f ′(t) = −A(γ̃′(t)) f (t), f (0) = 1.
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We will prove below that this initial value problem has a unique solution. The precise form of the

solution will be of interest later. Given this fact it is clear that fixing γ̃(0), horizontal lifts exist and

are unique. �

Proposition 1.10

Let A : I → g then the initial value problem

g′(t) = g(t)A(t), g(0) = 1

has a unique solution g : I → G, called the path ordered exponential of A, given by

g(t) = P exp
∫ t

0
A :=

∞

∑
n=0

∫ t

0
· · ·

∫ tn

0
A(tn) · · · A(t1)dtn · · · dt1 (1.16)

= 1 +
∫ t

0
A(t1)dt1 +

∫
t>t1>t2

A(t2)A(t1)dt1dt2 + · · · (1.17)

If G is Abelian then this expression simplifies to

g(t) = exp
(∫ t

0
A(t)

)
. (1.18)

Proof: The initial value problem can be reformulated into the integral equation

g(t) = 1 +
∫ t

0
g(t1)A(t1)dt1. (1.19)

One can then iterate this and obtain

g(t) = 1 +
∫ t

0

(
1 +

∫ t1

0
g(t2)A(t2)dt2

)
A(t1)dt1

= 1 +
∫ t

0
A(t1)dt +

∫
t>t1>t2

g(t2)A(t2)A(t1)dt1dt2.

One can repeat this iteration indefinitely, and the solution will be any fixed point of this itera-

tion. The existence and uniqueness of such a fixed point is guaranteed by the Banach Fixed Point

Theorem. This procedure leads exactly to formulas (1.16)-(1.17). In the Abelian case we have

d
dt

exp
(∫ t

0
A(t)

)
= exp

(∫ t

0
A(t)

)
A(t), (1.20)

showing that equation (1.18) is indeed valid. Note that in the non-Abelian case there is no such

simple formula for the derivative of an exponential. �

Connections on principal bundles also give us a notion of parallel transport. If we take some path

γ : x → y then given any point p ∈ Px, we can take the unique horizontal lift of γ starting at p. Its

endpoint will be some point in Py. This way we actually obtain a map Px → Py know as the parallel

transport along γ denoted traγ. If γ̃ is a horizontal lift of γ then g · γ̃ for g ∈ G is also a horizontal lift

of γ. Thus by uniqueness traγ(g · p) = g · traγ(p), and parallel transport is actually an equivariant

map.
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Proposition 1.10 gives us an explicit formula for this parallel transport. Let γ : I → M and choose

some trivialization τ : I × G → γ∗P. Then A ∈ Ω1(P, g) induces a map Â : I → g by first pulling A

to γ∗P and then applying τ∗. Consider then,

γ̃(t) = P exp
∫ t

0
−Â. (1.21)

This is a map I → G and hence a path in I × G. Then one checks that τ∗γ̃ is a horizontal lift of γ

starting at τ(0, 1). This thus means that if p = τ(0, 1), then

traγ(p) : τ(1, 1) = γ̃(1) = P exp
∫ 1

0
−Â. (1.22)

This perspective shows that parallel transport behaves well with respect to concatenation of paths.

To state better what we mean we start with a lemma.

Lemma 1.11

Let as in proposition 1.10 A : I → g, then we can define

P exp
∫ t

s
A (1.23)

as the (unique) solution to the initial value problem

g′(t) = g(t)A(t), g(s) = 1 (1.24)

Then using this notation we have for any s, t, u ∈ I that

P exp
∫ u

s
A =

(
P exp

∫ t

s
A
)(
P exp

∫ u

t
A
)

. (1.25)

Proof: We set f (s, t) = P exp
∫ t

s A, and g(u) = f (s, t) f (t, u). We compute

g′(u) = f (s, t) f (t, u)A(u) = g(u)A(u), g(t) = f (s, t).

This initial value problem is solved by f (s, u), therefore by uniqueness of the solution we conclude

that f (s, u) = g(u) = f (s, t) f (t, u), which proves the lemma. �

Suppose now that γ = γ2 ◦ γ1, i.e.

γ(t) =

γ1(2t) t < 1
2

γ2(2t− 1) t ≥ 1
2

.

And suppose as before we have some trivialization on τ : γ∗P ∼= I × G such that τ(0, 1) = p then
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we can write

traγ(p) : τ(1, 1) = P exp
∫ 1

0
−Â =

(
P exp

∫ 1
2

0
−Â

)(
P exp

∫ 1

1
2

−Â
)

= (traγ1(τ(0, 1)) : τ(1/2, 1)) · (traγ2(τ(1/2, 1)) : τ(1, 1))

= traγ2(traγ1(τ(0, 1))) : τ(1, 1)

= traγ2 ◦ traγ1(p) : τ(1, 1),

thus showing that in fact

traγ2◦γ1 = traγ2 ◦ traγ1 . (1.26)

Similarly one can also show that for any path γ : x → y

traγ−1 = tra−1
γ , (1.27)

where γ−1(t) = γ(1− t). Also note that the constant path has trivial parallel transport. From this

it would seem there is some sort of groupoid structure on paths, and one would like to ‘upgrade’

these computations to some kind of functor. One problem is that by the way we parameterize γ2 ◦γ1

the composition of paths is not associative, and we don’t get a category of paths. The way to go

around this is by taking paths modulo some equivalence relation (thin homotopy) and then proving

that parallel transport is independent of this equivalence relation. This is discussed in section 1.8

after first developing more tools.

Remark 1.12

In a trivialization s : M → P we can consider parallel transport to be group valued. That is, for

a path γ : x → y we set tra(γ) = tra(γ)(s(x)) : s(y) ∈ G. Note that in this case we have by

lemma 1.11 that tra(γ ◦ γ′) = tra(γ′) tra(γ). If we would work with right instead of left actions

this would be the other way around.

Another property of parallel transport is that it behaves well with respect to homomorphisms. This

can be stated in terms of a generalization of the familiar h ◦ exp = exp ◦ h∗ one has for Lie groups.
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Proposition 1.13

Let h : G → H be a homomorphism of Lie groups, then the following diagram commutes:

GI H I

gI hI

h

P exp

h∗

P exp (1.28)

Proof: The defining equation for the parallel transport of the map A(t) : I → g is given by

g′(t) = g(t)A(t).

Now we have to be a bit more precise what this equation means. Note that g′(t) ∈ Tg(t)G, so we can

make sense of this equation as

g′(t) = (Lg(t))∗A(t). (1.29)

Since h is a homomorphism it satisfies h = Lh(g(t)) ◦ h ◦ L−1
g(t). Next we apply Dh on both sides of

equation (1.29):

(h ◦ g)′(t) = (Lh◦g(t))∗(h∗A(t)).

Thus P exp
∫ t

0 h∗A = h ◦ g(t) = h ◦ P exp
∫ t

0 A, as required. �

A particular case of parallel transport is when γ : x → x is a loop. In that case traγ(p) lies in the

same fiber for all p ∈ Px, and hence differs from p by a unique element traγ(p) : p ∈ G. Since (cf.

eq. (1.2))

traγ(p · g) : (p · g) = g(traγ(p) : p)g−1,

this group element does not depend on p up to conjugation, and this element is known as the holonomy

around γ at p. The sets of all holonomies form a group (which is well-defined up to conjugation).

Definition 1.14

Let p ∈ P then the holonomy group Holp ⊂ G is the subgroup of G generated by the holonomies

traγ(p) : p around all the loops γ based at π(p). The reduced holonomy group Hol0
p ⊂ Holp is the

(normal) subgroup consisting of holonomies around contractible loops.

Proposition 1.15

Hol0
p is the identity component of Holp.

Proof: First we note that Hol0
p is connected; if γ is a contractible loop and Σ : γ⇒ Id is a homotopy,

then tra(Σt)(p) : p is a path connecting tra(γ)(p) : p to the identity. Next we will show that Hol0
p is
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of countable index in Holp. This implies the Lie algebras of the two groups must coincide. Hence

Hol0
p must be the identity component of Holp, since connected subgroups are classified by sub lie

algebras (cf. Thm. A.15). If γ0, γ1 are homotopic loops, then γ−1
0 γ1 is contractible, thus tra(γ0)(p) : p

and tra(γ1)(p) : p land in the same Hol0
p coset, and γ 7→ tra(γ)(p) : p descends to a surjective map

π1(M, m) → Holp / Hol0
p. Since π1(M, m) is at most countably infinite, so is Holp / Hol0

p, which

concludes the proof. �

1.5. Curvature

Connections give distributions. A natural question is to ask whether or not such a distribution is

integrable. It turns out this is measured by the curvature of the connection. The curvature is a g

valued 2-form which exhibits many useful properties. To define it we first note that connections

give the following operation on forms.

Definition 1.16

Recall that a connection A gives in particular a decomposition TP = V ⊕ H into vertical and

horizontal vectors. Let h : TP → H be the projection to the horizontal part. Then define the

exterior covariant derivative associated to A by

D : Ω∗(P)→ Ω∗(P) Dφ = (dφ) ◦ h. (1.30)

Definition 1.17

The curvature of a connection A ∈ Ω1(P, g) is given by FA = DA ∈ Ω2(P, g).

It turns out the curvature is a very important object. For one thing, it turns out it transforms well

under left multiplication on the fiber; let g : M→ G then

L∗gFA = Adg FA. (1.31)

To see this, let first g ∈ G be constant. Let X, Y ∈ TP and note that we can split them in horizontal

and vertical parts Xh, Xv. Note furthermore that (Lg)∗Xh is horizontal and that (Lg)∗(Xv) is vertical.

Using this we obtain

L∗g(dA)h(X, Y) = (dA)h((Lg)∗(Xh + Xv), (Lg)∗(Xh + Xv))

= (dA)((Lg)∗Xh, (Lg)∗Yh)

= L∗g(dA)(Xh, Yh) = Adg(dA)(Xh, Yh)

= Adg(dA)h(X, Y).

Thus the required property holds for constant g. Now let φ : G× P→ P be the action and consider

φ∗FA. By similar arguments as in the proof of Proposition 1.6 we note that φ∗(FA)x,g = Adg FA. This
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time there is no Maurer-Cartan form because FA kills vertical vectors. Again by similar arguments

we have that L∗gFA = Adg FA holds for any g : M→ G.

The computation is actually more generally true for any basic form:

Definition 1.18

A form ω ∈ Ω∗(P, g) is basic if L∗gω = Adg ω for all g ∈ G and Xξ ∈ ker ω for all ξ ∈ g.

Proposition 1.19

Any basic form satisfies the transformation rule

L∗gω = Adg ω

for any g : M→ G.

Proof: The same argument works as for the curvature form DA �

Given a connection we can also introduce another derivation operation. Let ω ∈ Ω∗(P, g) then

define2

dAω := dω− 1
2
[A ∧ω]. (1.32)

Proposition 1.20

Let φ ∈ Ω1(P, g) be basic. Then Dφ = dAφ.

Proof : We will show Dφ(X, Y) = dAφ(X, Y) for any pair X, Y, following the proof in [KN63,

p. 79]. First suppose X, Y are both horizontal, then Dφ(X, Y) = dφ(X, Y) whereas dAφ(X, Y) =

dφ(X, Y) + 1
2 [A, φ](X, Y) = dφ(X, Y) since X, Y ∈ ker A. Now suppose X, Y are both vertical, then

both sides are zero since X, Y ∈ ker φ. Thus suppose X = Xξ for ξ ∈ g is vertical and Y is horizontal.

Then Dφ(Xξ , Y) = dφ(0, Y) = 0. On the other hand

dAφ(Xξ , Y) = dφ(Xξ , Y)− 1
2
[ξ, φ(Y)]

=
1
2

(
Xξφ(Y)−Yφ(Xξ)− φ([Xξ , Y])

)
− 1

2
[ξ, φ(Y)]

=
1
2

(
Xξφ(Y)− φ([Xξ , Y])

)
− 1

2
[ξ, φ(Y)].

First of all since Lexp tξ is the time t flow of Xξ we have

[Xξ , Y]p =
d
dt

∣∣∣∣
t=0

(Lexp−tξ)∗Yexp tξ·p,

2For right actions the sign of the second term would be different.
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which is zero since horizontal vector fields are invariant. Thus it remains to show that

Xξφ(Y) = [ξ, φ(Y)].

This follows because

Xξφ(Y) =
d
dt

∣∣∣∣
t=0

(L∗exp tξφ)(Y) =
d
dt

∣∣∣∣
t=0

Adexp tξ φ(Y) = adξ φ(Y) = [ξ, φ(Y)].

Thus we conclude Dφ = dAφ. �

Theorem 1.21 (Structure Equation)

The curvature satisfies

FA = DA = dA A = dA− 1
2
[A ∧ A]. (1.33)

Proof: If A were basic, then this would follow trivially from the previous proposition. However

A(Xξ) = ξ 6= 0, and is therefore not basic, although A ◦ h is certainly basic. Furthermore FA =

DA = D(Ah) = dA(Ah), therefore we just need to prove dA A(X, Y) = dA(Ah)(X, Y) for all X, Y. If

X, Y are both horizontal this is trivial. If X = Xξ , Y = Xη are both vertical then dA(Ah)(X, Y) = 0

and

dA A(Xξ , Xη) = (dA)(Xξ , Xη)− [A(Xξ), A(Xη)] = Xξ(η)− Xη(ξ) + A([Xξ , Xη ])− [ξ, η] = 0.

This is zero because Xξ(η) = 0 since η is constant, and because [Xξ , Xη ] = −X[ξ,η]. Now suppose

X = Xξ is vertical and Y horizontal. Then again dA(Ah) = 0, and

dA A(Xξ , Y) = (dA)(Xξ , Y) + [A(Xξ), A(Y)] = YA(Xξ)− Xξ A(Y)− A([Xξ , Y]) = 0,

since Y ∈ ker A and YA(Xξ) = Yξ = 0. Thus dA(Ah) = dA A and we conclude the structure

equation. �

Recall that according to definition 1.7 a connection locally consists of forms Ai ∈ Ω1(Ui, g). In terms

of this local data the curvature is given by forms Fi ∈ Ω2(M, g) given by

Fi = dAi −
1
2
[Ai ∧ Ai]. (1.34)

The fact that F is basic then means that

Fj = Adgij Fi = gijFig−1
ij , (1.35)

which is not immediately clear from the structure equation. This can of course be deduced from the

structure equation directly, but the computation is fairly difficult. In fact by the same argument as

the discussion preceding definition 1.7 we can say something about the local behavior of any basic
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form:

Proposition 1.22

Let ω ∈ Ωn(P, g) be a basic form, and si : Ui → P|Ui a trivialization with transition functions

gij : Uij → G. Then the forms ωi := s∗i ω ∈ Ωn(Ui, g) satisfy the transformation rule

ωj = Adgij ωi. (1.36)

Furthermore any collection ωi ∈ Ωn(Ui, g) satisfying this rule uniquely determines a basic form.

1.6. Non-Abelian Stokes’ Theorem

Suppose A ∈ Ω1(M) is a connection on a trivial U(1) bundle. If Σ is a disk bounding a loop γ then

Stokes’ Theorem tells us that∫
γ

A =
∫

Σ
dA =

∫
Σ

FA. (1.37)

And thus the parallel transport around a loop can be expressed using only the curvature of A.

This has as a direct consequence that if the curvature vanishes, then the parallel transport around

any contractible loop will be zero. A homotopy Σ : γ0 ⇒ γ1 is the same thing as a homotopy

γ0γ−1
1 ⇒ 1. Thus this also means that the parallel transport along two homotopic loops is the same

if the curvature vanishes. This can be generalized to a similar statement valid for any G-bundle

connection, and this is known as the non-Abelian Stokes’ Theorem.

Before stating the non-Abelian Stokes’ Theorem let us consider a heuristic argument why it should

be true. Suppose Γ : γ0 → γ1 is a homotopy. Then the loop around the boundary can be decom-

posed into four smaller loops as shown in figure 1.23.

γ

γs
0,0

γs
1,0

γt
0,0 γt

0,1 γt
0,2

γs
0,1

γs
1,1

γs
2,0

γt
1,1 γt

1,2

γs
2,1

γt
1,0

Γ1,0 Γ1,1

Γ0,0 Γ0,1

Figure 1.23: Decomposing a loop γ into 4 smaller loops Γi,j. In general one can com-
pose γ into arbitrarily small loops, the holonomy around each of which is approxi-
mated by the curvature (cf. lemma 1.33).
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In terms of the notation of figure 1.23, if we set

Γ0,0 = (γs
0,0)
−1(γt

1,0)
−1γs

0,1γt
0,0, (1.38)

Γ0,1 = (γt
0,0)
−1
[
(γs

0,1)
−1(γt

1,1)
−1γs

0,2γt
0,1

]
γt

0,0, (1.39)

Γ1,0 = (γs
0,0)
−1
[
(γs

1,0)
−1(γt

2,0)
−1γs

1,1γt
1,0

]
γs

0,0, (1.40)

Γ1,1 = (γs
0,0)
−1(γt

1,0)
−1
[
(γs

1,1)
−1(γt

2,1)
−1γs

1,2γt
1,1

]
γt

1,0γs
0,0. (1.41)

Then we have that

γ = (Γ1,0 ◦ Γ1,1) ◦ (Γ0,0 ◦ Γ0,1). (1.42)

In principle we can subdivide in this way infinitely. By Lemma 1.33 the holonomy around an

infinitesimal loop is given by the curvature, and thus this way we can express the parallel transport

around γ as an integral over the curvature. This is made precise by the following theorem.

Theorem 1.24 (non-Abelian Stokes)

Let A ∈ Ω1(M, g) be a connection on a trivial G bundle. Let Γ : I2 → M be a homotopy, let Γs be

the path Γ|{s}×I , and let Γs,t denote the path τ 7→ Γ(s, tτ). Then with respect to any trivialization

tra(Γ0) tra(Γ1)
−1 = P exp

∫ 1

0
A, (1.43)

where A ∈ Ω1(I, g) is defined by

As =

[∫ 1

0
dt Adtra(Γs,t) Γ∗FA(∂1, ∂2)

]
ds. (1.44)

Here ∂1, ∂2 denotes the canonical frame on TI2.

We stress that Γ∗FA(∂1, ∂2) is a g valued function, therefore integration produces another g valued

function and hence taking its path ordered exponent makes sense.

(u, 0)

(u + s, t)

(u + s, 0)

IdΓ(0,0)

(u, t)

γ3(u, s, t)

γ2(u, s, t)

γ1(s, t) Γ(−, 0)
Γ(u + s, t)

Γ(u, t)

Γ

(0, 0)

Figure 1.25: Decomposition of γ(u, s, t) = γ−1
3 (u, s, t) ◦ γ2(u, s, t) ◦ γ1(s, t).

Proof: Let f (s) =
(

tra−1
Γs
◦ traΓ0(p)

)
: p for some p ∈ PΓ(0,0). If we have some section σ : Γ(I2) → P

with σ(0, 0) = p we can write this as

traΓ0 · traΓ−1
s

:=
[

traΓ0(p) : σ(0, 1)
]
·
[

tra−1
Γs
(σ(s, 1)) : p

]
.
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It is important to note that there is an inversion of order present here (cf. lemma 1.11). Then

consider

f−1(u) f (u + s) = traΓu traΓ−1
u+s

.

Differentiating with respect to s we obtain the initial value problem:

f ′(u) = f (u)
∂

∂s
traΓu traΓ−1

u+s

∣∣∣∣
s=0

, f (0) = 0, (1.45)

which is solved by a path ordered exponential. Consider the loop

γ(u, s, t) = γ−1
3 (u, s, t) ◦ γ2(u, s, t) ◦ γ1(s, t), (1.46)

as in figure 1.25. Note that γ(u, s, 1) = Γ−1
u+s ◦ Γu, thus to obtain the required formula we have to

show that

∂2

∂s∂t
traγ1 traγ2 tra−1

γ3

∣∣∣∣
(0,t)

= Adtra(Γu,t) Γ∗FA(∂1, ∂2) . (1.47)

This is a straightforward computation, and we leave out some of its details.

∂

∂t
traγ1 traγ2 tra−1

γ3
= traγ1

[
−Au,t(∂2) traγ2 +

∂ traγ2

∂t
+ traγ2 Au+s,t(∂2)

]
tra−1

γ3
.

Here Au,t = (Γ∗σ∗A)u,t, which arises through equation 1.15. Now the s derivative:

∂2

∂s∂t
traγ1 traγ2 tra−1

γ3

∣∣∣∣
(0,t)
= traγ1

[
Au,t(∂2)Au,t(∂1)−

∂Au,t(∂1)

∂t
− Au,t(∂1)Au,t(∂2) +

∂Au,t(∂2)

∂s

]
tra−1

γ3

When s = 0 we have γ1 = γ3 = Γu,t. Identifying the middle term as Γ∗F proves equation (1.47). �

Note that

Adtra(Γs,t) Γ∗F = Ltra(Γ∗s,t)
Γ∗F

We define Γ̃(s, t) = Γ̃s(t) with Γ̃s the horizontal lift of Γs starting at σ(Γ(0, 0)) (if σ is a section). Then

since Γ∗∂i is a horizontal vector field we obtain

tra(Γ0) tra(Γ1)
−1 = P exp

∫ 1

0
ds
∫ 1

0
dt Γ̃∗F(∂1, ∂2) (1.48)

which makes sense without reference to a section, so long as we fix a basepoint Γ̃(s, 0) ∈ P.
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1.7. The Ambrose-Singer Theorem

Note that if X, Y are horizontal then FA(X, Y) = dA(X, Y) = −A([X, Y]) so FA = 0 if and only if the

bracket of horizontal vectors is horizontal. That is, if and only if the horizontal distribution defined

by A is involutive. In this case we call the connection flat. By the non-Abelian Stokes Theorem

we note that we can express holonomy around contractible loops in terms of the curvature. In fact

it turns out the holonomy group is completely determined by the curvature form. This is made

precise by the Ambrose-Singer Theorem [KN63, p. 89], [AS53]. Before stating it, it is convenient to

define an equivalence relation on P:

Definition 1.26

Two points q, p ∈ P are said to be horizontally equivalent if there is a path γ such that traγ(p) = q,

i.e. p and q are the endpoints of some horizontal path. This is an equivalence relation, and we

write q ∼ p

Theorem 1.27 (Ambrose-Singer)

Let A be a connection on a G-bundle π : P → M. Let p ∈ P and consider the Holp ⊂ G. Let

holp ⊂ g be its Lie algebra, then

holp =
{

Fq(X, Y)
∣∣ q ∼ p, X, Y ∈ TqP

}
. (1.49)

Since the reduced holonomy group Hol0p is the identity component of Holp (cf. prop. 1.15), we

deduce the following corollary:

Corollary 1.28

Parallel transport is homotopy independent if and only if the connection is flat (i.e. FA = 0).

We shall provide a proof quite different from the original. The main ingredient in the proof is the

non-Abelian Stokes’ Theorem; it tells us that every element in Hol0
p is of form (cf. eq. (1.48))

P exp
∫∫

Γ̃∗F,

which tells us a lot about the Lie algebra of Hol0
p:

Lemma 1.29

Every element of holp is of form∫ 1

0
dt γ̃∗F (1.50)

for some loop γ : x → x with π(p) = x.

Proof: Let Ω(M, x) be the space of loops at x, then we have a surjection ψ : Ω(M, x)→ Holp given
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by γ 7→ traγ(p) : p. We claim that every path in Holp lifts to a path in Ω(M, x), at least locally.

This is equivalent to ψ being a subduction of diffeological spaces [IZ13, art. 1.48], and the fact that

it is a subduction is clear from [IZ13, art. 8.35]. This means that every X ∈ holp can be written as

(ψ∗Σ)′(0) for Σ a homotopy of loops x → x. By the non-Abelian Stokes’ Theorem (ψ∗Σ)(s) is of

form

P exp
∫ s

0
ds
∫ 1

0
dt Σ̃∗s F

differentiating at s = 0 gives the required result. �

To prove the Ambrose-Singer Theorem we only need to prove that Fq(X, Y) ∈ holp for any q ∼ p.

First we show that if q ∼ p, then their holonomy groups coincide.

Proposition 1.30

Suppose σ : x → y is such that traσ(p) = q. Then if γ : x → x is a loop, we have

traσ traγ tra−1
σ (q) : q = traγ(p) : p. (1.51)

In other words traσ Holp tra−1
σ = Holp ⊂ G. And γ 7→ σγσ−1 shows Holp = Holq ⊂ G.

Proof: This is a straightforward computation:

traσ traγ tra−1
σ (q) : q = traσ traγ(p) : q = traσ(traγ(p) : p · p) : q

= (traγ(p) : p)(traσ(p) : q) = traγ(p) : p. �

A less trivial result is that traγ ∈ Holp, at least with respect to some appropriate section. This is

implied by the Reduction Theorem [KN63, Thm. 2.7.1]:

Theorem 1.31 (Reduction Theorem)

Let P→ M be a principal bundle with connection A. Let p ∈ P and denote

P(p) = {q ∈ P | q ∼ p} . (1.52)

Then P(p) is a subbundle of P with structure group Holp and the connection A is reducible to a

connection on P(p), i.e. A|P(p) is a holp-valued connection on P(p).

Thus it remains to show that Fq(X, Y) actually lies in holp. Since for q ∼ p the holonomy groups

coincide, it is without loss of generality enough to show it for a single point p ∈ P. This is done

by showing that the curvature arises as the holonomy around an ‘infinitesimal loop’. First we need

to make precise what we mean by such an ‘infinitesimal loop’. Let Γ : I2 → M be a map with

Γ(0, 0) = m, then for each s, t ∈ I2 we can define a new map Γs,t : I2 → M by Γs,t(u, v) = Γ(su, tv),
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i.e. be rescaling Γ to a smaller domain. The boundary of Γs,t defines a loop γs,t : m→ m, explicitly:

γs,t(u) =



Γ(4us, 0) u ∈ [0, 1
4 ]

Γ(s, (4u− 1)t) u ∈ [ 1
4 , 1

2 ]

Γ((3− 4u)s, t) u ∈ [ 1
2 , 3

4 ]

Γ(0, (4− 4u)t) u ∈ [ 3
4 , 1].

(1.53)

Γ(0, 0)

Γ(s, t)

Γ(s, 0)

γt
s→0

γ0→t
s

γ0
0→s

Γ(0, t)

γt→0
0

Figure 1.32: Sketch of γs,t from equation (1.53) decomposed into four paths.

Lemma 1.33

Let p ∈ Pm and suppose A is a connection on P with curvature F. For any Γ : I2 → M with

Γ(0, 0) = m define γs,t as above, then we have

∂2

∂s∂t

∣∣∣∣
(0,0)

tra(γs,t)(p) : p = −Fp(X, Y). (1.54)

Here X, Y are the horizontal vectors at p respectively corresponding to

∂Γ(s, 0)
∂s

∣∣∣∣
0

,
∂Γ(0, t)

∂t

∣∣∣∣
0

.

Proof: Assume the bundle is trivial over the image of Γ and that (m, 1) corresponds to p ∈ Pm in

the trivialization. Then parallel transport is just group valued, which will make the computation

easier. We decompose the path γs,t as sketched in figure 1.32:

γs,t = γt→0
0 γt

s→0γ0→t
s γ0

0→s, (1.55)

which leaves us to compute

∂2

∂s∂t

∣∣∣∣
(0,0)

tra(γ0
0→s) tra(γ0→t

s ) tra(γt
s→0) tra(γt→0

0 ).
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We first compute the partial derivative with respect to s:

− tra(γ0
0→s)AΓ(s,0)(X) tra(γ0→t

s ) tra(γt
s→0) tra(γt→0

0 )

+ tra(γ0
0→s)

(
∂

∂s
tra(γ0→t

s )

)
tra(γt

s→0) tra(γt→0
0 )

+ tra(γ0
0→s) tra(γ0→t

s )AΓ(s,t) tra(γt
s→0) tra(γt→0

0 ).

Where we use equation (1.15) to compute ∂t tra(γ0→t
s ). To compute ∂t tra(γt→0

0 ) we also use (1.15)

together with the fact that ( f−1)′(t) = −( f−1)(t) f ′(t)( f−1)(t); this follows from differentiating

1 = f−1 f . Now taking the partial derivative with respect to s and evaluating at 0 we get

− A(X) (−A(Y) + A(Y))− ∂

∂s

(
tra(γ0→t

s )AΓ(s,t)

)
− A(Y)A(X) + Y(A(X)) + A(X)A(Y)

= −XA(Y) + YA(X)− A(Y)A(X) + A(X)A(Y) = −F(X, Y),

as required. Together with the earlier remarks this also proves the Ambrose-Singer Theorem. �

1.8. Thin homotopy

One consequence of this is that the parallel transport doesn’t change under reparameterization of

paths, this is because reparameterizations are given by homotopies that ‘don’t sweep out any area’.

More precisely:

Definition 1.34

Let h : I2 → M be a (smooth) homotopy. We say h is a thin homotopy if rank dh : TI2 → TM ≤ 1

everywhere.

This definition is more general than most notions of reparameterization. For example we don’t

require that rank dh = 1 everywhere; it could well be zero. This is useful because it allows us

to parameterize paths in such a way as to have ‘sitting instants’ near its endpoints, i.e. we can

use thin homotopies to make paths constant for some finite time at its endpoints. This will make

composition of paths in the smooth setting more natural and simple.

Corollary 1.35

Parallel transport is thin homotopy invariant, i.e. thinly homotopic paths have the same parallel

transport

Proof: Let h : I2 → M be a thin homotopy. Then h∗F = 0, since F is 2-form and h is at most of rank

one. Hence by the non-Abelian Stokes’ Theorem tra(h0) = tra(h1). �
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Definition 1.36

For any manifold M we define the path groupoid P1(M) to be the groupoid with objects points

in M and morphisms x → y thin homotopy classes of paths x → y. The identity morphisms

x → x are thin homotopy classes of constant paths. To compose two morphisms, let [γ] : x → y

and [γ′] : y → z be two thin homotopy classes of paths. Then [γ ◦ γ′] : x → z is defined by

first applying a thin homotopy to γ and γ′ so that the paths are constant near their endpoints,

and then concatenating the two and taking the thin homotopy class of the result. This ensures

that the concatenated path is again smooth, and that the composition is associative. Inversion is

[γ]→ [γ−1] where γ−1 is the reversed path.

To see that the inversion map is correct we need to show that γ ◦ γ−1 is thinly homotopic to a

constant path. We can define a thin homotopy as:

h(s, t) =

{
γ(st) t ≤ 1

2

γ(s− s(t− 1/2))) t ≥ 1
2

This is thin because everywhere its differential is proportional to γ′(u). If we can compose two

paths γ,γ′, then traγ◦γ′ = traγ ◦ traγ′ by uniqueness of parallel transport (cf. page 11). This amounts

to tra defining a functor P1(M)→ G-tor.

Definition 1.37

Let G by a Lie group, and let G-tor be the category of G-torsors, i.e. of smooth manifolds

equipped with a free and transitive G-action.a The morphisms in this category are G-equivariant

maps.

aG acting on itself by multiplication is a G-torsor. Any G-torsor is necessarily isomorphic to G, but not canonically
so. The isomorphism X ∼= G amounts to choosing an x ∈ X and sending it to e ∈ G and using the action to uniquely
extend it to an equivariant map X → G.

Proposition 1.38

Let P → M be a G-bundle with connection. Parallel transport defines a functor P1(M) → G-tor.

It sends objects x ∈ M to the G-torsors Px, and thin homotopy classes of paths [γ] : x → y to

traγ : Px → Py.

Remark 1.39

If s : M → P is a section and γ : x → y then we get a map F : P1(M) → G given by γ 7→
traγ(s(x)) : s(y). By lemma 1.11 this satisfies F(γ1 ◦ γ2) = F(γ2) · F(γ1). Thus seeing G as a

category with one object and composition g ◦ h = h · g then F is a functor P1(M)→ G.

This functor actually captures the full information of the bundle P and its connection. Let Ωm(M)

denote the loop space of M at m. Then note that any connection on a principal P bundle gives a

functor F : Ωm(M) → G, after choosing a basepoint p ∈ Pm. Call any map φ : U → Ωm(M) such
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that the map U × I → M, (u, t) 7→ φ(u)(t) is smooth a plot (i.e. we give Ωm(M) a diffeological

structure, cf. section 3.5). Then F is smooth in the sense that F ◦ φ : U → G is smooth for any plot.

The converse of this also true: [Bar90].

Theorem 1.40

Let F : Ωm(M) → G be a smooth functor such that F is thin-homotopy invariant. Then there is

a principal bundle P → M with connection and a basepoint p ∈ Pm such that F arises from the

parallel transport of P.

Thus the functorial point of view of parallel transport captures all the information of both the

connection and bundle. This justifies the fact that when considering 2-transport over 2-bundles we

will start with a functorial point of view and derive from this a definition of 2-transport in terms of

connection forms.

1.9. Wilson loops

Let us consider again holonomy around loops γ : I → M (cf. page 12). We know that up to

conjugation they are determined by the group element traγ(p) : p for p ∈ Tγ(0)P. Loops can be

identified with maps S1 → M, except to get a map I → M we need to fix a basepoint. We can

wonder what happens to the holonomy if we change basepoint. Let γ : S1 → M and for x ∈ S1

denote γx : I → M the map obtained by setting x as the basepoint. If y ∈ S1 is another point, then

denote γx,y : I → M to be the path obtained by restricting γ to the interval [x, y] ⊂ S1 starting at x

and going counterclockwise to y. Then,

traγy = traγx,y traγx tra−1
γx,y

(1.56)

since γy = γx,yγxγ−1
x,y up to thin homotopy. Let p ∈ Tγ(y)P and let q = tra−1

γx,y
(p) then

traγx,y traγx tra−1
γx,y

(p) = traγx,y traγx(q)

= (traγx(q) : q) · traγx,y(q)

= (traγx(q) : q) · p.

And thus we conclude

traγy(p) : p = traγx(q) : q, (1.57)

and up to conjugation one can define the holonomy of the loop γ : S1 → M. In other words, γ

defines an element holγ ∈ G/G, where G/G denotes the quotient of G by the action of conjugation.

Suppose we now have some representation φ : G → Aut(V). Then Tr : Aut(V) → R is conjugation
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invariant and thus descends to a map G/G → R (also denoted Tr). Thus one can consider the

Wilson loop:

Wγ(A) = Tr(holγ) = Tr(traγx(p) : p) = Tr
(
P exp

∫
S1
−ρ(A)

)
, (1.58)

which is then independent on the choice of x ∈ S1 and p ∈ Tγ(x)P. The last equation is abuse

of notation and denotes the element of G obtained from evaluating equation (1.21) at t = 1 some

choice of basepoint. Such notation is common in physics literature. One interesting property of the

Wilson loop is that it’s a gauge invariant quantity.

Definition 1.41

LetA denote the affine space of connections on some principal G bundle P. A function S : A → R

is said to be gauge invariant if S(L∗g A) = S(A) for any g : M→ G.

The action of G on P is physically interpreted as a symmetry. Any two gauge-equivalent connections

A, A′ (i.e. ∃g such that L∗g A = A′) represent the same physical state. Thus any physical observable

must be gauge invariant.

Proposition 1.42

Wilson loops are gauge invariant

Proof: Without loss of generality suppose G ⊂ GLn and let γ : I → M be a loop, then we will show

that

P exp
∫

I
−L∗g A = g(0)

(
P exp

∫
I
−A

)
g−1(0), (1.59)

for any connection on I × G and any g : I → G such that A(0) = A(1) and g(0) = g(1). Suppose

f : I → G solves the initial value problem

f ′(t) = − f (t)A(t), f (0) = 1.

Let us define

fg(t) = g(0) f (t)g(t)−1. (1.60)

Then we compute

f ′g(t) = g(0) f ′(t)g(t)−1 − g(0) f (t)g(t)−1g′(t)g(t)−1

= −g(0) f (t)A(t)g(t)−1 − fg(t)(dgg−1)(t)

= − fg(t)
(

g(t)A(t)g(t)−1 + (dgg−1)(t)
)

= − fg(t)L∗g A(t).
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Here we computed (g−1)′(t) using

0 = (gg−1)′ = g′g−1 + g(g−1)′. (1.61)

Note that fg(0) = g(0) f (0)g(0)−1 = 1 and thus fg(1) gives the parallel transport along γ of L∗g A by

proposition 1.10. We thus have

P exp
∫

I
−L∗g A = fg(1) = g(0) f (1)g(1)−1 = g(0)

(
P exp

∫
I
−A

)
g−1(0),

since g(0) = g(1). Now using this result we have that if g : S1 → M and x ∈ S1 is some basepoint

then

Wγ(L∗g A) = Tr(g(x)(traγx(p) : p)g(x)−1) = Tr(traγx(p) : p) = Wγ(A). �

1.10. Chern-Weil theory

Principal G bundles admit classifying spaces:

Theorem 1.43

For every Lie group G there exists a space BG together with a G-bundle EG → BG, such that the

total space EG is contractible and for each M there is an isomorphism

[M, BG]→ G-bund(M), [ f ] 7→ [ f ∗EG], (1.62)

where [X, Y] denotes the set of homotopy classes of maps X → Y, and G-bund is the set of

isomorphism classes of G bundles over M. We call BG the classifying space and EG the universal

bundle.

These spaces are typically infinite dimensional (some exceptions are G finite or contractible). The

only requirement on EG is that it’s a contractible space with a free G action, and therefore EG and

BG are certainly not unique. The fact that EG is contractible means in particular that πi(EG) is

trivial for all i. From the long exact sequence in homotopy of the fibration G → EG → BG we then

obtain πi+1(G) ∼= πi(BG). For example π1(G) = π2(BG) = [S2, BG] = G(S2). Thus G-bundles over

S2 are the same thing as elements of π1(G). This can also been seen from the clutching construction;

we can trivialize a bundle over two hemispheres and the transition function is then given by a map

I × S1 → G. The isomorphism class of this bundle then only depends on the homotopy class of the

transition function.

For U(n) the classifying space is fairly explicit. Let Gr(n, k) be the Grassmannian of n-planes in Ck.

Then BU(n) = Gr(n, ∞), i.e. the direct limit obtained from the inclusions Gr(n, k) → Gr(n, l) for

l > k. Similarly EG = Vn(C∞), or n-tuples of orthonormal vectors in C∞. Recall that any compact
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Lie group is isomorphic to a subgroup of U(n) for an appropriately large n (cf. proposition A.4).

The free U(n) action on Vk(C
∞) induces a free action G action after we embed G in U(n), and

therefore BG = Vk(C
∞)/G.

The classifying space gives us a large class of ‘characteristic classes’. Let c ∈ Hi(BG, R) and let

P → M be a bundle classified by f : M → BG. Then we can consider f ∗c ∈ Hi(M, R), which

is an invariant of principal bundles. It is a characteristic class in the sense that if we have a map

g : N → M then to g∗P we associate the class g∗( f ∗c), and thus the invariant behaves well with

respect to pull backs. Recall that a U(n)-principal bundle is just a rank n complex vector bundle.

To such vector bundles we can associate Chern classes. It turns out the class f ∗c is necessarily a

polynomial in Chern classes. For general G it turns out that this class will always be a polynomial

in the curvature form. We will make this precise.

Consider the ring of polynomials Sym(g∗) on g. The adjoint action of G on g extends to an action

Ad∗ on Sym(g∗):

Ad∗g α(X1, . . . , Xn) = α(Adg X1, . . . , Adg Xn). (1.63)

We call a polynomial α invariant if Ad∗g α = α for all g ∈ G. Let I∗(g) denote the space of invariant

polynomials on g. Applying these polynomials to a power of the curvature of a connection we

obtain characteristic classes. [FH13, KN69]

Theorem 1.44

Given a connection A on a bundle π : P → M and α ∈ I l(g) we consider α(Fl) ∈ Ω2l(P). This

satisfies the following properties:

• There is a unique closed form f ∈ Ω2l(M) such that π∗ f = α(Fl)

• The induced element [ f ] ∈ H2l(M, R) is independent of choice of connection.

• The induced map w : I∗(g) → H∗(M, R) is an algebra homomorphism (the Weil homomor-

phism).

• There is an isomorphism ŵ : I l(g) ∼= H2l(BG, R).a

• If φ : M → BG classifies P, then φ∗ŵ(α) = w(α). In particular w is natural with respect to

pull-backs.

aThis is essentially the same as the Weil homomorphism, except one should be careful when talking about connec-
tions and even differential forms on infinite dimensional spaces. For a precise statement refer to [FH13].

For U(n) the relation to Chern classes is as follows. A vector bundle E of rank n is equivalent to a

U(n) bundle over the same space. If F is the curvature of some connection, then consider

det
(

In −
F

2πi

)
=

n

∑
k=0

αk(F),

where each αk is an invariant polynomial of degree k. Then by Theorem XII.3.1 in [KN69] we have

ck(E) = w(αk).
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2. 2-Category Theory

We will assume basic familiarity with category theory. For reference the reader can refer to [Lan71].

In its essence 2-categories are a simple generalization of ordinary categories. In ordinary categories

we have objects and morphisms between them. In 2-categories we also have ‘2-morphisms’ between

morphisms. More generally one can go on in such a way to define n-categories, but we shall

not go beyond 2-categories in this thesis. Such categories arise naturally in many situations. For

example, if one has a category of categories with functors as morphisms, then one can see natural

transformations as morphisms between functors. Or one can consider the path groupoid P1(M)

for some smooth manifold (cf. def. 1.36), then (thin homotopy classes of) homotopies are the

2-morphisms for this category. The main reference for this chapter is the nLab, besides this any

reference will only cover some part of what we discuss here. A significant amount of information

is also found scattered throughout appendices and introductions of papers on higher gauge theory,

see for example [BL03, BS04, SW11].

We begin with an informal definition of a 2-category, a more formal definition follows later. A

(strict)-2-category is a category C with objects C0 (‘0-morphisms’) and morphisms C1 (‘1-morphisms’)

together with a collection of ‘2-morphisms’ C2 and source and target maps s, t : C2 → C1. We write

η : f ⇒ g if the source and target of η are f and g respectively. We then require that f and g share

the same source and target (say respectively x, y) so that we can write η as

y x

f

g

η

One can compose 2-morphisms, just like one can compose 1-morphisms. But now there is both

a ‘vertical’ and ‘horizontal’ composition. Diagrammatically horizontal composition is written like

this:

z y x

f ′

g′

η′

f

g

η 7→ z x

f ′◦ f

g′◦g

η′◦η (2.1)

and vertical composition is written like this:

y x

f

g

h

η

η′
7→ y x

f

h

η′•η (2.2)
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Horizontal and vertical composition satisfy an interchange law guaranteeing that in a diagram with

vertical and horizontal compositions the order in which we take vertical/horizontal composition

doesn’t matter. Consider the diagram

z y x
ξ

ξ ′

η

η′
(2.3)

then we require the following coherence condition

(ξ ′ • ξ) ◦ (η′ • η) = (ξ ′ ◦ η′) • (ξ ◦ η). (2.4)

Naturally we also require the existence of an identity 2-morphism Id f : f ⇒ f for every morphism

f , which should satisfy some obvious properties.

Remark 2.1

We write these diagrams of 2-morphisms with 1-morphisms going from right to left instead

of from left to right. This is to make notation more in line with the convention that function

composition is read right to left. For example we write

f ◦ g = z y x
f g

,

and we don’t have to invert the order to translate between these two notations. The same is

true for 2-morphisms, of which composition is also read right to left. Not all authors use this

convention.

Remark 2.2

We use ◦ for horizontal composition and • for vertical composition. Notation differs throughout

the literature. We chose to use ◦ for horizontal composition because it is the most like composition

of 1-morphisms, whereas the vertical composition really comes from the extra structure and has

no parallel in 1-morphism composition.

The informal definition we just gave is that of a strict 2-category, which can be thought of as a cat-

egory with some extra structure. In a more general 2-category one does not assume an underlying

category and allows composition of 1-morphisms to be associative only up to some appropriate

invertible 2-morphism. We do not need such generality and will therefore consider this easier case.

Remark 2.3

From now on, whenever we speak of 2-categories we will always mean strict 2-categories.

For the sake of precision we give a more complete definition of a 2-category using the notion of an

enriched category. The informal definition is good enough for most purposes, and therefore we will
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not go into detail.

Definition 2.4

Let V be a monoidal category then a V-enriched category or a category enriched over V is a small

category C together with the following data:

• A hom-object hom(a, b) in V for each pair of objects a, b in C
• For each triple a, b, c a composition morphism: hom(b, c)⊗ hom(a, b)→ hom(a, b)

• For each a an identity element 1A : 1→ hom(a, a).

Such that the composition is both associative and unital.

Definition 2.5

A strict 2-category is a category enriched over Cat.

What this definition means is that fixing two objects a, b in a 2-category C, we get a category

hom(a, b). The objects of hom(a, b) are the morphisms a → b (1-morphisms in C) and the mor-

phisms of hom(a, b) are 2-morphisms in C. Composition of morphisms in hom(a, b) corresponds to

vertical composition of 2-morphisms. The composition functor hom(b, c)× hom(a, b) → hom(a, c)

corresponds to composition of 1-morphisms and horizontal composition of 2-morphisms. The fact

that this is a functor guarantees the coherence condition (2.4).

Definition 2.6

Let C and D be categories enriched over V. Then an enriched functor F : C → D consists of a

function (of sets) F0 : C0 → D0 between the objects of C and D and for each pair a, b a morphism

(in V)

Fa,b : homC(a, b)→ homD(F0(a), F0(b))

of hom objects. We require that this enriched functor respects composition and units.

Definition 2.7

A 2-functor F between (strict) 2-categories C and D is a Cat-enriched functor. More concretely, it

associates to each object a ∈ C0 an object F0a ∈ D0. To each morphism f : a → b it associates a

morphism F1 f : F0a → F0b respecting units and composition. To every 2-morphism α : f ⇒ g it

associates a 2-morphism tra2 α : F1 f ⇒ F1g respecting vertical/horizontal composition and units.

2.1. Pasting

We can generalize vertical and horizontal composition of 2-morphisms to composition of labeled

planar graphs. This procedure is known as pasting, and is well defined because of our coherence
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law relating vertical and horizontal composition. Instead of a 2-morphism we can consider diagrams

like this:

a b

c d

f

g h

i

The double arrow ⇒ means we have some 2-morphism h ◦ f ⇒ i ◦ g. As long as there is a clear

starting and ending vertex such a diagram always makes sense. For example we can have triangles

or heptagons as well:

a b

c

a b

c d

e f

a b

c d

e f

The important fact is that such diagrams can be composed. For example take two squares, then we

can compose them as follows

a b c

d e f

=

a b

d e f

•
a b c

e f

where we recall the bullet • denotes vertical composition (◦ is horizontal composition). The point

here is that in order to vertically compose 2-morphisms they need to have a matching source and

target morphism. If two diagrams have matching source and target vertices we can compose them

horizontally. In order to state in general how we can compose such 2-morphisms, we must make

precise what kind of diagrams we allow.

Definition 2.8

A pasting diagram is a planar graph G satisfying:

• G has a well-defined source vertex, i.e. a unique vertex with only outgoing arrows

• G has a well-defined sink vertex, i.e. a unique vertex with only incoming arrows

• For each face/2-cell F there must be a distinct source and target vertices s, t and two dis-

tinct directed paths σ(F), τ(F) : s → t around the boundary of F such that σ(F)τ(F)−1 is

precisely the boundary of F (respecting orientation).

We can label any pasting diagram by a 2-category C. That is, to each vertex we associate some object
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in C, to each edge a 1-morphism and to each face a 2-morphism such that source and targets of the

morphisms match properly. By using induction on the amount of faces in such a diagram one can

prove [Pow90]:

Theorem 2.9 (Pasting Theorem)

Let G be a pasting diagram with source s and sink t. There are unique paths σ and τ such that

στ−1 is the boundary of G respecting orientation. To any labeling of G by a 2-category C we can

associate a unique composite 2-morphism α : σ̃ ⇒ τ̃, where σ̃ and τ̃ are the 1-morphisms in C
associated to σ, τ respectively

The proof is a simple induction on the number of faces.

2.2. Internalization

Often if we have a category we can see the objects and morphisms in this category as objects of

some other category. For example a Lie group is a group (a category with one object where all the

arrows are invertible) such that the objects and arrows are themselves smooth spaces i.e. objects in

the category of smooth manifolds. Formally we say that the category of Lie groups is internal to

that of smooth manifolds.

Definition 2.10

Let A be any category then a category C internal to A consists of an object of objects C0 ∈ A and an

object of morphisms C1 ∈ A together with: source and target morphisms s, t : C1 → C0, identity

assigning morphism e : C0 → C1 and composition morphism c : C1 ×C0 C1 → C1 satisfying the

usual axioms of a category.

Of course one should have an appropriate notion of functors between internalized categories. Some-

times this notion is too restrictive and one needs the notion of anafunctors. For example one is

often more interested in Morita equivalences (which are anafunctors) between Lie groupoids than

the more restrictive notion of isomorphism. We will however not need this.

Definition 2.11

If A and B are categories internal to C then an internal functor F : A → B consists of morphisms

F0 : A0 → B0 and F1 : A1 → B1 which satisfies the usual requirements for a functor (i.e. it should

respect source, target, unit and composition).

Of particular interest are categories internal to smooth manifolds. We will elaborate what this entails

precisely.
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Definition 2.12

A smooth category or a 2-space is a category internal to Diff, the category of smooth manifolds

A 2-spaceM consists of 2 smooth manifolds M0 and M1 together with smooth maps:

• Source and target maps s, t : M1 → M0

• An identity map Id : M0 → M1

• A composition map ◦ : M1s ×t M1

Satisfying the usual axioms for a category. We can think of M1 as the ‘space of arrows’ lying over

M0 and we will denote f ∈ M1 by f : s( f ) → t( f ). In particular any manifold M is a 2-space if

we set M0 = M1 = M and have s, t, Id, ◦ be equal to the identity morphism. Or we can also see

any manifold as a 2-space by setting M1 = M and M0 = {∗}. Both turn out in fact to be action

groupoids (cf. page 38).

2.3. 2-Groups

Gauge theory relies heavily on Lie groups. In 2-gauge theory we try to replace Lie groups with

(Lie) 2-groups and principal bundles with 2-bundles which have 2-groups as fibers. One obtains

the notion of a 2-group by internalization. It turns out there are quite a few equivalent definitions

of a 2-group. Again we only consider strict 2-groups, but we will usually omit the word ‘strict’ for

brevity.

Definition 2.13

A 2-group is a category internal to Group. Equivalently it’s a group internal to Cat.

This definition is very compact but not very intuitive. Let’s decipher what this means in terms of

some concrete structure. Let G be a category internal to Group. Its objects form group G1 and its

morphisms a group G2. On morphisms there are two operations, we can compose them (denote

•) and we can multiply them (denote ◦). Denote the objects by arrows ∗ ∗f
and denote a

morphism α : f → g by

∗ ∗

f

g

α

Then composition of morphisms corresponds to vertical compositions of such diagrams, and mul-

tiplication of 2-morphisms corresponds to horizontal composition of such morphisms. The latter is

ensured by the fact that source and target are group homomorphisms. The fact that composition
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is a group homomorphism ensures the coherence condition (2.4) relating vertical and horizontal

composition. Thus we note:

Proposition 2.14

A 2-group is a 2-category with one object where all 1- and 2-morphisms are invertible.

The correspondence between these two points of view is given by the delooping:

Definition 2.15

Let G be a category (or an internalized/enriched/2-category) with one object ∗. Then BG, the

delooping of G, is the category with as objects the morphisms of G and only identity morphisms.

For a 2-category with one object this corresponds to the category of morphisms ∗ → ∗. a

aThe notation BG is almost the same as that of the classifying space BG of a group G. This is no accident; in
abstract terms the classifying space BG is the geometric realization of the nerve of the delooped category BG [Seg68]

It turns out 2-groups are also equivalent to a more concrete concept known as a crossed module.

Definition 2.16

A crossed module is a tuple (G, H, τ, α) where G, H are groups, τ : H → G is a homomorphism

and α : G → Aut(H) is an action satisfying the following two conditions:

α(τ(h))h′ = hh′h−1 (2.5)

gτ(h)g−1 = τ(α(g)h). (2.6)

Before showing the correspondence between 2-groups and crossed modules, let us give a few ex-

amples of crossed modules. As two simple examples let G be a group. Then set H = G, τ = Id

and α just the conjugation action of G on itself. This is known as the inner automorphism crossed

module/2-group. We can also set H = {1}, which gives the discrete crossed module/2-group.

As a less trivial example, let H ⊂ G be a normal subgroup, and let τ be the inclusion and α the

action by conjugation on H. The fact that H is normal means that this is indeed an action, and this

defines a crossed module.

Finally, let Z ⊂ Z(H) be a central subgroup and consider G = H/G. Or equivalently suppose

G is a central extension of H. Since conjugation by a central element is trivial, G has an action

by conjugation on H. The projection map τ : H → G together with this action give the structure

of a crossed module. We call this central extension 2-group. later we will elaborate further on this

structure in the case that G and H are Lie groups (cf. p. 39).

Proposition 2.17

Crossed modules correspond to 2-groups

Proof: Let (G, H, τ, α) be a crossed module, then set G0 = {∗}, G1 = G and G2 = G n H, where n
denotes a semi-direct product with respect to α. I.e. as a set G n H is G × H, and as product we
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have

(g′, h′) · (g, h) = (g′g, h′α(g′)h). (2.7)

We can see the pair (g, h) as an arrow g⇒ τ(h)g. We want to give this the structure of a 2-category,

thus we need to define vertical/horizontal composition. We propose vertical composition is given

by

(τ(h)g, h′) • (g, h) = (g, h′h), ∗ ∗

g

τ(h)g

τ(h′)τ(h)g

h

h′
= ∗ ∗

g

τ(h′)τ(h)g

h′h (2.8)

and horizontal composition by

(g′, h′) ◦ (g, h) = (g′g, h′α(g′)h), ∗ ∗ ∗

g′

τ(h′)g′

h′

g

τ(h)g

h = ∗ ∗

g′g

τ(h′α(g′)h)g′g

h′α(g′)h (2.9)

We have to check that the target on the right hand side is actually correct. We compute:

τ(h′)g′τ(h)g = τ(h′)g′τ(h)(g′)−1g′g = τ(h′)τ(α(g′)h)g′g = τ(h′α(g′)h)g′g, (2.10)

which is precisely what we require. Since vertical and horizontal composition are given by group

operations, all the 2-morphisms are in particular invertible. To show that this structure gives a

2-group we now only need to show the coherence condition (2.4). Consider,

∗ ∗ ∗

g′

h′

i′

g

h

i

(2.11)

Then the left hand side of the coherence equation is

((τ(h′)g′, i′) • (g′, h′)) ◦ ((τ(h)g, i) • (g, h)) = (g′, i′h′) ◦ (g, ih) = (g′g, i′h′α(g′)(ih)).
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The right hand side of the coherence equation reads

((τ(h′)g′, i′) ◦ (τ(h)g, i)) • ((g′, h′) ◦ (g, h))

= (τ(h′ ◦ h)g′g, i′α(τ(h′)g′)(i)) • (g′g, h′α(g′)(h))

= (τ(h′ ◦ h))g′g, i′h′α(g′)(i)(h′)−1) • (g′g, h′α(g′)(h))

= (g′g, i′h′α(g′)(i)α(g′)(h))

= (g′g, i′h′α(g′)(ih)).

which proves the coherence equation and we conclude that from each crossed module we can

construct a 2-group. For the converse, suppose G is a 2-group, then set G = G1 and

H = {G2 | s(h) = 1} = ker s. (2.12)

Then let τ : H → G = t|H and define an action α : G � H by

α(g)(h) = 1g ◦ h ◦ 1−1
g = ∗ ∗ ∗ ∗

g

g

Idg

1

t(h)

h

g−1

g−1

Idg−1 (2.13)

We then obtain an isomorphism φ : G2 ∼= G n H by φ(h) = (s(h), h ◦ 1−1
s(h)). Indeed, let h = k1g and

h′ = k′1g′ then

h ◦ h′ = k1gk′1g′ = k1gk′1−1
g 1g1g′ = kαg(k′)1g1g′ .

Thus

φ(h ◦ h′) = (gg′, kαg(k′)) = (g, k)(g′, k′),

and φ is a homomorphism. Its inverse (k, g) 7→ k1g is by the same argument also a homomorphism.

To conclude (G, H, τ, α) is a crossed module we need to confirm equations (2.5) and (2.6), the latter

of which is obvious. Let h, h′ ∈ H and consider the following diagram

∗ ∗ ∗

1

h′

1′
τ(h′)

1

11

h

(2.14)

We then will compute both sides of the coherence equation (2.4) for this particular diagram. One

the one hand we obtain,

LHS = ((τ(h′), 1) • (1, h′)) ◦ ((1, h) • (1, 1)) = (1, h′) ◦ (1, h) = (1, h′h).
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On the other hand we have

RHS = ((τ(h′), 1) ◦ (1, h)) • ((1, h′) ◦ (1, 1)) = (τ(h′), α(τ(h′))h) • (1, h′) = (1, α(τ(h′))hh′).

Equating the two we obtain

α(τ(h′))hh′ = h′h,

from which we conclude identity (2.5), and consequently the fact that (G, H, τ, α) is a crossed mod-

ule. Since the central fact of this proof is that G2 ∼= G n H, we claim that the two constructions are

inverse to each other and we in fact obtain an equivalence. �

One can in principle upgrade this proof to some equivalence of 2-categories [BS76], but we do not

wish to go much deeper into this.

Proposition 2.18

ker τ is a central subgroup of H

Proof: Let h ∈ ker τ and h′ ∈ H. Then

hh′ = hh′h−1h = (α(τ(h))h′)h = h′h (2.15)

where we use property (2.5) of a crossed module. �

Remark 2.19

From the proof of proposition 2.17 it is clear that a 2-group is also a groupoid, namely under the

identification G2 ∼= G n H we can set s(g, h) = g and t(g, h) = τ(h)g. One can go on to proof that

any 2-group is actually also a group internal Grpd rather than just internal to Cat [BS76]. Another

point of view is that a 2-group is a groupoid which also has a compatible monoidal structure.

The groupoid composition then takes the role of vertical composition and the monoidal structure

takes the role of horizontal composition.

Definition 2.20

Define Lie 2-groups to be a 2-category internal to Diff with one object an all morphisms invertible.a

We define a smooth crossed module to be a tuple (G, H, τ, α) where G, H are Lie groups, τ : H → G

is a homomorphism and α an action G � H satisfying (2.5) and (2.6).

aStrictly speaking we only defined what it means for a category to be internal to another category, but one can just
as easily ask for a strict 2-category to be internal to another category

By the same proof as that of 2.17 we have:
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Proposition 2.21

Smooth 2-groups correspond to smooth crossed modules.

By taking the differentials of τ and α we obtain an infinitesimal version of a crossed module, a strict

Lie 2-algebra, so to speak.

Definition 2.22

A differential crossed module (g, g, τ∗, α∗) is a pair of Lie algebras g, h together with maps τ∗ : h→ g

and α∗ : g→ Der(h) such that

τ∗(α∗(X)(ξ)) = [X, τ∗ξ] (2.16)

α∗(τ∗(ξ))η = [ξ, η] (2.17)

for all X ∈ g, ξ, η ∈ h. Similarly we can also define gn h as the Lie algebra g× h with bracket

[X, Y] = adX Y, [X, ξ] = α∗(X)ξ

[ξ, X] = adτ∗(ξ) X, [ξ, η] = adξ η
(2.18)

for X, Y ∈ g and ξ, η ∈ h.

From remark 2.19 we conclude that 2-groups are actually also groupoids. In the case of Lie 2-groups

we get the structure of a Lie groupoid. Lie groupoids are interesting objects in their own regard,

and deserve mention.

Definition 2.23

A Lie groupoid is a groupoid internal to Diff. Concretely a Lie groupoid G consists of two smooth

manifolds G0 and G1 together with smooth maps s, t : G1 → G0, an inversion map i : G1 → G1 a

unit mapa 1 : G0 → G1 and a composition map ◦ : G1 s×t G1 → G1 such that G with objects G0 and

morphisms G1 is a groupoid.

aDenote 1(g) by either 1g or Idg

A broad class of examples of Lie groupoids is that of action groupoids. Let G be a Lie group acting

on some manifold M. Then define a groupoid M
//

G with (M
//

G)0 = M and (M
//

G)1 = G ×M.

Set s(g, m) = m and t(g, m) = g · m. Define the identity map by 1m = (1, m), the inversion by

i(g, m) = (g−1, g ·m) and the composition by (g′, g ·m) ◦ (g, m) = (g′g, m).

Some of the example 2-groups we gave so far are of this form, if we forget about the extra struc-

ture and see a 2-group as a groupoid. The inner automorphism 2-group is obtained as G
//

G by

conjugation action. A discrete 2-group is obtained as G
//
∗, with ∗ the trivial group. More gen-

erally if M is a manifold we can define the discrete groupoid Mdis = M
//
∗. Concretely this has

(Mdis)0 = (Mdis)1 = M and s, t = Id.

An important example of a smooth 2-group comes from covering groups. Recall from proposition

A.14 that coverings H → G coincide with central extensions of G as well as subgroups K ⊂ π1(G)
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by Theorem A.13. This interplay of algebra, topology and geometry gives a rich and useful theory

which we will rely on later. For now we will consider the 2-group obtained from such a covering

from several angles.

Definition 2.24

Let t : H → G be a covering of groups. Then since ker t is central, the conjugation action of H on

itself extends to an action α : G � H. Namely if t(h) = g and x ∈ H then define

α(g)x = hxh−1. (2.19)

We note that (2.5) and (2.6) obviously hold. We call the corresponding crossed module (G, H, t, α)

the covering 2-group. If H, G are Lie groups then this is a Lie 2-group.

Of particular interest is the case when H = Ĝ is the universal cover. In that case we can refer to

this crossed module as the universal covering 2-group of G.

We will now make the equivalent structure of a 2-group for covering 2-groups explicit. Let K ⊂
π1(G) be given (for a covering t : H → G we would have K = t∗π1(H)). Then let G1 = G, and set

(cf. Def. 1.36)

G2 = P1(G)
/
∼, (2.20)

where γ ∼ γ′ if [γ−1γ′] ∈ K. Then we have maps s, t : G2 → G1 given by

t(γ) = γ(1), s(γ) = γ(0), (2.21)

in other words the source and target of a path are just its beginning and endpoints. Horizontal

composition is pointwise multiplication of paths;

(γ ◦ γ′)(t) = γ(t) · γ′(t). (2.22)

Vertical composition is concatenation of paths. For g ∈ G1 set Idg(t) = g to be the constant path. This

defines the structure of a 2-group. For this one would have to show the coherence condition (2.4).

This can be done by writing an explicit homotopy between the two paths involved. It is however

also enough to argue that this 2-group corresponds to the crossed module of Definition 2.24. This

follows from the Galois correspondence Theorem A.13. From this point of view α : G1 � ker s ⊂ G2

is given by pointwise conjugation;

α(g)(γ)(t) = gγ(t)g−1. (2.23)
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Now that we have seen gauge theory and 2-groups, it is time to combine the two. We start with a

natural generalization of principal 2-bundles, which have smooth crossed modules as fibers instead

of Lie groups. We then wish to define parallel transport for such bundles, however it is not imme-

diately clear what a connection is on 2-bundles. Therefore instead we start with parallel transport

as a 2-functor P(M) → G-tor and from there deduce what a 2-connection on a 2-bundle should

be. After that we proceed to describe the parallel transport completely in terms of the 2-connection

using a surface ordered exponentiation procedure. We will show this satisfies all the properties one

would want from it, including thin-homotopy invariance. Like our proof for thin-homotopy invari-

ance in the ordinary setting, we will prove a non-Abelian Stokes’ Theorem and an Ambrose-Singer

Theorem in the progress. We conclude the chapter by considering 2-bundles from the point of view

of paths spaces. The main reference for this material is [SW11].

3.1. Principal 2-bundles

Principal 2-bundles are obtained by categorifying the notion of G-bundles. First we consider 2-

group actions on 2-spaces. The definition of a 2-group action is obtained by taking the definition of

a usual action and ‘replacing morphisms by functors’.

Definition 3.1

Let G be a Lie 2-group (cf. def. 2.20) and M a 2-space (cf. def. 2.11). Then a left action G �M
consists of a smooth functora R : BG ×M →M such that R(1, m) = m and R(Idg, f ) = f for all

g ∈ G1, m ∈ M0 and f ∈ M1. And such that the following diagram commutes:

BG × BG ×M BG ×M

BG ×M M

◦×Id

R×Id R

R

(3.1)

aWe defined a Lie 2-group G as a type of 2-category and M is a category, therefore in order to speak of functors
we need to turn G into a category. This is done by taking the delooping BG (cf. Def 2.15).

It should be noted that this means there is an G1 action on M0 and a G2 action on M1 such that if

h : g⇒ g′ and f : p→ p′ then h · f is an arrow g · p→ g′ · p′. The fact that R is a functor means that

if we have

p′′ p′ p
f ′ f

, g′′ g′ gh′ h ,
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then we require that

(h′ · f ′) ◦ (h · f ) = (h′ • h) · ( f ◦ f ′). (3.2)

Using this we can now define a principal 2-bundle by ‘categorifying’ definition 1.1;

Definition 3.2

Let G be a 2-group andM a 2-space. A principal G-2-bundle π : P → M consists of a 2-space P ,

a (left) Lie 2-group action G � P and a G-invariant surjective submersion functor π : P → M
such that the following functor is an equivalence of smooth categories:

τ = (π2, R) : BG × P → P ×M P (3.3)

That is, on objects g ∈ G1, p ∈ P0:

(g, p) 7→ (p, g · p) = (p, R(g, p)) (3.4)

and on arrows h : g→ g′, f : p→ p′

(h, f ) 7→ ( f , h · f ) = ( f , R(h, f )), (3.5)

where h · f is a map g · p→ g′ · p′.

By π : P → M being a surjective submersion functor we mean that it is a functor P → M which

induces a surjective submersion on the spaces of objects and arrows. This in particular means that

P is a G1-bundle over P0 and a G2-bundle over P1, since a 2-group action in particular gives group

actions on the point and arrow space. Thus restricting to P0 or P1 we recover exactly definition 1.1

of a principal bundle. However a 2-bundle is more than just a pair of 2 principal bundles; there are

also maps s, t : P1 → P0, as well as a composition of arrows on P1. However this point of view does

give us local trivializations for 2-bundles.

Proposition 3.3

Principal G-2-bundles admit local trivializations.

Proof: Note that P0 →M0 and P1 →M1 both admit local sections, since these maps are submer-

sions. Therefore locally we can find a functor σ : U → P|U such that πσ = Id. Then we obtain a

local trivialization using the map

BG × U BG × P
∣∣
U (P ×M P)

∣∣
U P

∣∣
U

Id×σ τ

R

π2 . (3.6)

We claim that the following map is its inverse:

BG × U BG × P
∣∣
U (P ×M P)

∣∣
U P

∣∣
U

Id×π τ−1 (σπ, Id)
. (3.7)
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Denote τ−1(p, q) by (q : p, p) (whether q, p ∈ M0 or M1). This notation makes sense because we

must have Rτ−1 = π2. Then let (g, m) ∈ BG × U then (3.7) ◦ (3.6) gives

(g, m) 7→ (g, σ(m)) 7→ (σ(m), g · σ(m)) 7→ g · σ(m) 7→

7→ (σ(m), g · σ(m)) 7→ (g, σ(m)) 7→ (g, m),

on the other hand let p ∈ P|U then (3.6) ◦ (3.7) gives

p 7→ (σπ(p), p) 7→ (p : σπ(p), σπ(p)) 7→ (p : σπ(p), π(p)) 7→

7→ (p : σπ(p), σπ(p)) 7→ (σπ(p), p) 7→ p.

Thus this is indeed a local trivialization. �

Note that this is actually exactly the same argument as that used to show an ordinary principal

G-bundle is locally trivializable given definition 1.1. From the local trivializations of a 2-bundle we

can also conclude that the total space P is in fact a groupoid.

Remark 3.4

We can relax the definition of a 2-bundle by not requiring that τ is an equivalence of categories

but instead just a weak equivalence. In that case we don’t get a locally trivializable bundle and

the discussion becomes more complicated. This is because to construct the local trivialization

we have to explicitly use the inverse τ−1, and having a weak inverse is just not good enough.

One can for such ‘weak’-2-bundles (as opposed to ‘strict’ ones) also define parallel transport and

2-holonomy as we shall do, but it’s considerably more complicated; see [Wal16, Wal17].

One particularly simple 2-space is Mdis for M any manifold (cf. page 38). A principal G-2-bundle

over Mdis consists of a G-bundle P0 over M and a Gn H-bundle P1 over M together with equivariant

maps s, t : P1 → P0 and a compatible notion of unit and composition on P1.

Given a Lie group G let G be the universal covering 2-group of G (cf. 2.24). From this point of

view, starting with any principal G-bundle P→ M we can obtain a G-2-bundle over Mdis simply by

taking a ‘fiberwise path groupoid’ of P. More precisely P0 = P and

P1 = { [γ : p→ q] | p, q ∈ Px, x ∈ M} , (3.8)

where [γ : p → q] denotes the homotopy class of γ . This space has a G n Ĝ action obtained by

pointwise multiplication:

((g, h) · γ)(t) = h(t) · g · γ(t). (3.9)

This defines a principal Gn Ĝ-bundle over M, which is easily seen in a local trivialization. These two

bundles together define a principal G-2-bundle. The source and target maps P1 → P0 are obtained

by respectively taking the begin and endpoints of the paths, and the identity map P0 → P1 is
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obtained by taking constant paths. The fact that π : P → Mdis is a surjective submersion functor

and that τ is an isomorphism both immediately follow from the fact that P0 and P1 are themselves

principal bundles.

Definition 3.5

We will call the 2-bundle above the covering 2-bundle and denote it by P(P).

This bundle will be our primary example of 2-bundles, and we will perform some computations

specifically for this bundle in section 4.2.

3.2. Parallel transport in 2-bundles: transport 2-functors

Our main aim for now is to define parallel transport along bigons (i.e. 2-transport) as a gener-

alization of parallel transport along paths. We will restrict our attention to principal G-2-bundles

over Mdis. From the outset it’s not clear what parallel transport should be in 2-bundles. In this

section we will start with a very natural (but vague) notion of 2-transport and use it to derive the

notion of a 2-connection. A 2-connection can then be used to give an unnatural but more practical

(i.e. computable) definition of parallel transport. This section mostly serves as motivation why the

definition given in the next section is a good definition. We note the similarity with ordinary con-

nections where the most natural definition (i.e. a horizontal distribution) is not the most practical

one (i.e. a 1-form on the total space).

Parallel transport in G-bundles behaves well under composition of paths and under changes of

paths by thin holonomy. Any good definition of a parallel transport for 2-bundles should satisfy

similar properties. To this end we define the path 2-groupoid P2(M) as a natural generalization of

the path groupoid P1(M) of definition 1.36.

Definition 3.6

A bigon Σ : I × I → M is a homotopy of paths Σ0 ⇒ Σ1, where Σt = Σ|{t}×I . A homotopy of

bigons h : I × I × I → M is a homotopy such that ht is a bigon for all t with the same source

and target path (up to thin homotopy). A homotopy of bigons is thin if rank dh : TI3 → TM ≤ 2

everywhere. Similar to definition 1.36 we define the path 2-groupoid P2(M) to be the (smooth)

2-groupoida with

• Objects: points in M

• 1-Morphisms: thin homotopy classes of paths in M

• 2-Morphisms: thin homotopy classes of bigons between paths in M.

aA (strict) 2-groupoid is a 2-category where all morphisms are invertible

Here one should note that thin homotopies are themselves bigons, and vertical composition with

thin homotopies doesn’t change the thin homotopy class of a bigon. Thus a thin homotopy class of

bigons can correctly be seen as a morphism between thin homotopy classes of paths.
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Mimicking proposition 1.38 we want parallel transport to give us a 2-functor

tra : P2(M)→ G-tor. (3.10)

For now we ignore the fact that we haven’t defined G-torsors. Note that this by itself is not a defi-

nition of parallel transport for 2-bundles, rather we pose this as a requirement any good definition

should satisfy. It should also be a generalization of ordinary parallel transport, so that if we restrict

such a 2-functor tra to the objects and 1-morphisms we recover the functor tra1 : P1(M) → G-tor

for some connection. Finally it should be locally trivializable, i.e. if P|U is trivializable then we

should obtain a functor P2(U)→ G in a compatible way. Stating precisely what local trivializability

means is technical and we refer the reader to [SW13a, SW13b]. Using these three requirements we

will naturally arrive at a definition of parallel transport for 2-bundles. First we give a definition of

the 2-category G-tor.

Definition 3.7

A G-2-torsor is a 2-space with a free and transitive G action. G-2-torsors form the objects of a

2-category G-tor. A morphism of 2-spaces is a smooth functor, and a morphism F : M → N of

G-2-torsors is an equivariant smooth functor. If R : BG ×M → M and R′ : BG ×N → N are the

respective G actions we require the following diagram to commute for F to be equivariant:

BG ×M BG ×N

M N

Id×F

R R′

F

(3.11)

A 2-morphism η : F ⇒ F′ is a natural transformation of the functors. That is, a smooth map

η :M0 → N1 such that the following diagram commutes for every f : x → y inM

F0(x) F′0(x)

F0(y) F′0(y)

η(x)

F1( f ) F′1( f )

η(y)

(3.12)

Lemma 3.8

A G-2-torsor is the same thing as a principal G-2-bundle over a point.

Proof: Let P → ∗ be a G-2-bundle over a point, then the fact that

τ : BG × P → P ×P

is a smooth equivalence of categories means in particular that for each pair ( f , g) there is a unique

g : f such that R(g : f , f ) = g (similarly for objects). Then transitivity is equivalent to existence of

such an element, and freedom is equivalent to uniqueness. �
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It turns out that any 1-morphism of G-tor is completely determined by what it does on objects.

Indeed suppose F :M→ N is an equivariant smooth functor between G-2-torsors and let p ∈ M0.

By transitivity of the G2 action on morphisms, there is for each f : p → q an h ∈ G2 such that

h · Idp = f . By equivariance we have that

F1( f ) = h · F1(Idp) = h · IdF0(p) = ( f : Idp) · IdF0(p) . (3.13)

In fact we note that the entire functor F is determined by its image of a single point. Compare this

to the fact that any map of G-torsors is determined by the image of a single point.

Similarly a 2-morphism is also completely determined by the image of a single point. Let η : F ⇒ F′

be a 2-morphism of G-2-torsors and F, F′ : M → N . Then let p ∈ M0, the aim is to write η(g · p)

in terms of η(p) and g for any g ∈ G. To this end let g ∈ G and let f : p → g · p be any morphism,

and consider the following diagram:

F0(p) F′0(p)

F0(g · p) F′0(g · p)

η(p)

F1( f ) F′1( f )

η(g·p)

(3.14)

We can always write f = (1, h) · Idp for some unique h ∈ H with τ(h) = g, since the action is free

and transitive. Using this we then write

F1( f ) = (1, h) · IdF0(p)

F′1( f ) = (1, h) · IdF′0(p) = (F′0(p) : F0(p), h) · IdF0(p) = (τ(ξ), h) · IdF0(p)

η(p) = (1, ξ) · IdF0(p)

η(g · p) = (g, ξg) · IdF0(p) .

Here ξ, ξg are some elements of H, and we wish to write ξg in terms of ξ. From (3.14) we obtain the

following identity:

(g, ξg) • (1, h) = (τ(ξ), h) • (1, ξ), (3.15)

which is equivalent to

ξg = hξh−1 = αg(ξ). (3.16)

Thus we have shown that a 2-morphism of G-2-torsors also only depends on its value on a single

object. Now we want to apply this to describe better what a parallel transport 2-functor tra :

P2(M) → G-tor must look like. Let P → Mdis be a G-2-bundle, A ∈ Ω1(P0, g) a connection and

tra1 : P1(M) → G-tor the associated parallel transport functor. First of all F must send objects

x ∈ M to fibers Px. By equation (3.13) it should send a 1-morphism γ : x → y to the 1-morphism of



3.2. Parallel transport in 2-bundles: transport 2-functors 46

G-2-torsors:

p 7→ tra1
γ(p) (3.17)

f : p→ q 7→ ( f : Idp) · Idtra1
γ(p), (3.18)

and this is in fact the only consistent definition. To each bigon Σ : Σ0 ⇒ Σ1 it should associate

a natural transformation tra1
Σ0
⇒ tra1

Σ1
. For a given p ∈ (P0)x this is determined by an element

ξp ∈ H with τ(ξp) = tra1
Σ1
(p) : tra1

Σ0
(p). If we take a g ∈ G then ξp·g = αg(p) by equation (3.16). As

a sanity check we compute that this has the correct target

τ(αg(ξp)) = gτ(ξp)g−1 = g
(

tra1
Σ1
(p) : tra1

Σ0
(p)
)

g−1 = tra1
Σ1
(g · p) : tra1

Σ0
(g · p),

where in the last equality we used equation (1.2). To summarize we have the following proposition:

Proposition 3.9

2-Transport associates to each Σ : γ0 ⇒ γ1, γi : x → y a map tra2(Σ) : (P0)x → H such that

τ(tra2(Σ)(p)) · tra1(γ0)(p) = tra1(γ1)(p). (3.19)

Moreover it is equivariant in the sense that

tra2(Σ)(g · p) = αg
(
tra2(Σ)(p)

)
. (3.20)

It turns out that if we assume 2-transport is locally trivial then we obtain some 2-form B ∈ Ω2(P0, h).

The precise definition of local triviality of a 2-functor is a little complicated. A naive way to think

about local triviality is that if we restrict to a chart domain, then F can be transformed into a functor

F : P2(M) → G. This can be made precise, but we choose not to do so, since it would require

introducing a lot of technical machinery. For the moment suppose we have a 2-functor

tra : P2(M)→ G, (3.21)

then we want to obtain a map
∧2 TM → h (i.e. a form). This should somehow glue to a form

B ∈ Ω2(P0, h), but we will just paint the local picture of this form. To this end fix m ∈ M and

v1, v2 ∈ Tm M, and suppose we have some map

Γ : R2 → M Γ(0, 0) = m,
d
ds

∣∣∣
s=0

Γ(s, 0) = v1,
d
dt

∣∣∣
t=0

Γ(0, t) = v2. (3.22)

One easily obtains such a map explicitly in any chart. For each s, t ∈ R2 one canonically obtains a

thin homotopy class of bigons Σs,t in R2, see figure 3.10. This gives us a map Σ : R2 → B2R2 where

B2R2 is the space of thin homotopy classes of bigons in R2.

By taking a pushforward by Γ : R2 → M we get a map Γ∗ : B2R2 → B2M. Applying tra2 : B2M →
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(0, 0)

(s, t)

(s, 0)

(0, t)

Figure 3.10: Canonical bigon Σs,t in R2. Any two bigons in R2 with this source and
target are necessarily thinly homotopic since by dimensional reasons any homotopy of
bigons is thin.

G n H and then projecting to H by we obtain a map:

FΓ : R2 B2R2 B2M G n H HΣ Γ∗ tra2 pH . (3.23)

Then we can differentiate this map twice at the origin to get an element of h. This makes sense

since FΓ(0, t) = 1 = FΓ(s, 0), since this corresponds to taking 2-transport along a thin bigon. Thus

∂sFΓ(s, t)|(0,t) : R → TH is zero at the origin and hence ∂t∂sFΓ|(0,0) defines an element of h (and the

same for the other order of derivation). We then have [SW11, Lem. 2.6]:

Proposition 3.11

Let m ∈ M and v1, v2 ∈ Tm M and suppose Γ : R2 → M satisfies equation (3.22). Then

∂2

∂s∂t
FΓ

∣∣∣
(0,0)

=
∂2

∂t∂s
FΓ

∣∣∣
(0,0)

∈ h

is independent of choice of Γ satisfying (3.22).

Proof: Suppose Γ0, Γ1 are two maps satisfying equation (3.22). Let Σ0, Σ1 be the induced maps

R2 → B2M, then we will construct a homotopy between Σ0 and Σ1. We work in a chart so that we

can assume M = Rn, then we can start with the homotopy

h : I ×R2 → B2M, hτ(s, t)(u, v) = (1− τ)Σ0(s, t)(u, v) + τΣ1(s, t)(u, v),

where the addition is defined with respect to the chart. Because Γ0, Γ1 are the same up to linear

order in some neighborhood (0, 0) ∈ V ⊂ R2, the homotopy h factors through a map I×V → I×V

of form (τ, s, t) 7→ ((s2 + t2)τ, s, t) (for a more precise argument see [SW11, Lem. 2.6]). Thus

∂2

∂s∂t
hτ

∣∣∣
(0,0)

is independent of τ. Hence so is

∂2

∂s∂t
tra2 ◦ hτ

∣∣∣
(0,0)

,
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which proves the proposition. �

Proposition 3.12

Proposition 3.11 gives us a map B : TM ×M TM → h. We claim that this gives a form B ∈
Ω2(M, h). For this we need to check:

• The map is skew-symmetric: Bm(v1, v2) = −Bm(v2, v1)

• The map is linear: Bm(v1 + λv2, v3) = Bm(v1, v3) + λBm(v2, v3)

• The map is smooth

Proof: We will follow [SW11, Lem. 2.7] but omit some details. Denote Γ(s, t) = Γ(t, s), and note

that if Γ satisfies (3.22) then so does Γ with v1, v2 interchanged. The map R2 → B2M obtained

from Γ is precisely the vertical inverse to the map R2 → B2M obtained from Γ. Vertical inversion

in G n H corresponds to inversion in H thus FΓ = F−1
Γ . Taking derivatives we obtain the required

skew symmetry.

For linearity assume we are working in a chart so that M = Rn. This can be done without loss

of generality since we are only interested in an arbitrarily small neighborhood around m. Then let

Γv1,v2 satisfy (3.22), and note that

Γv1+λv2, v3 = Γv1,v3 + λΓv2,v3 , (3.24)

since derivation of maps Γ : R2 → Rn is a linear operation. Note that we can add and scale bigons

in Rn pointwise, and one can conclude

∂2

∂s∂t
FΓv1+λv2, v3

∣∣∣
(0,0)

=
∂2

∂s∂t
FΓv1, v3

∣∣∣
(0,0)

+ λ
∂2

∂s∂t
FΓv2, v3

∣∣∣
(0,0)

,

which shows linearity.

For smoothness, let φ : Rn → M be a chart and let

Dφ⊗Dφ : Rn ×Rn ×Rn = TRn ×Rn TRn → TM×m TM

be the induced map. Then we need to show that B ◦ Dφ⊗Dφ is smooth. We obtain a map

Γ : TRn ×Rn TRn → B2M, Γ(x, u, v)(s, t) = φ(x + su + tv).

Clearly Γ(u, v1, v2) satisfies (3.22) for m = φ(x), v1 = Dφx(u), v2 = Dφx(v). One then sees that

B ◦ Dφ⊗Dφ = pH ◦ tra2 ◦Γ,

and the three maps on the right hand side are smooth. Thus we conclude smoothness of B. �
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Proposition 3.13

Let FA be the curvature of the connection A on P0. Then B satisfies the fake-flatness condition

FA + τ∗(B) = 0. (3.25)

Proof : Consider Σ : R2 → B2R2, then let γ0(s, t) and γ1(s, t) denote respectively the source

and target paths of Σ(s, t). Then the connection A gives us parallel transport maps F1(γi(s, t)) =

tra1
γi(s,t) : R2 → G. Note that 2-transport along a bigon h : h0 ⇒ h1 should give us a 2-morphism

tra2(h) : F1(h0)⇒ F1(h1) in a local trivialization. Thus we have that

τ(FΓ(s, t)) · F1(γ0(s, t)) = F1(γ1(s, t)). (3.26)

Note that γ−1
0 ◦ γ1 is precisely the path γs,t from lemma 1.33. Thus we have by lemma 1.33 that

τ∗B =
∂2

∂s∂t

∣∣∣∣
0

τ(FΓ(s, t)) =
∂2

∂s∂t

∣∣∣∣
0

F1(γ
−1
0 ◦ γ1) = −F. �

In summary, a 2-functor F : P2(M) → G gives us a 2-form B ∈ Ω2(M, h) with FA + τ∗(B) = 0.

However a 2-functor tra : P2(M)→ G corresponds to transport on trivial 2-bundles. For non-trivial

2-bundles we need to describe how local triviality gives us such functors, and then we need to show

that such a form B glues to a form B ∈ Ω2(P0, h). However the notions of locally trivializable

functors (at least those described by Schreiber and Waldorf) are quite complicated, and to continue

we would have to spend a lot of time discussing several abstract 2-categorical notions. We want to

avoid the use of too much abstract nonsense, and therefore take it on good faith that this can all

be formalized. In [SW13a] the relevant notions and statements discussed in full detail. For us the

most important thing is that studying 2-functors F : P2(M) → G-tor naturally leads us to consider

2-forms B ∈ Ω2(P0, h).

Theorem 3.14 Schreiber&Waldorf

A transport 2-functor P2(M)→ G-tor (i.e. a smooth 2-functor which is smoothly locally trivializ-

able in some appropriate sense) is equivalent to a 2-bundle P → Mdis together with a pair (A, B)

with A ∈ Ω1(P0, g) a connection and B ∈ Ω2(P0, h) a basic form such that FA + τ∗(B) = 0. By

basic we mean L∗gB = (αg)∗B for any f : M→ G.

The property that B is basic is required so that locally it is given by a form on the base space. Thus

we can describe 2-transport completely in terms of the pair (A, B). Our goal will now be to describe

precisely how such a pair gives us a transport 2-functor P2(M)→ G-tor.
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3.3. Parallel transport in 2-bundles: 2-connections

Using the previous section as a motivation we now introduce the notion of a 2-connection, and we

will phrase 2-transport completely in terms of these 2-connections. The aim is to show that it leads

to a locally trivializable 2-functor P2(M) → G-tor generalizing ordinary parallel transport. All the

arguments in this section are essentially based on [SW11].

Definition 3.15

Let P → Mdis be a 2-bundle. A 2-connection (A, B) on P is a pair of forms A ∈ Ω1(P0, g),

B ∈ Ω2(P0, h) such that A is a connection on P0, B is basic (i.e. L∗gB = (αg)∗B) and such that the

pair satisfies the fake-flatness condition:

τ∗B + FA = 0, (3.27)

where FA is the curvature of A.

Recall that 2-transport should give for a bigon Σ : γ0 ⇒ γ1 for γi : x → y a morphism tra(γ0) ⇒
tra(γ1). That is, for p ∈ P0 we need to find an h ∈ H with τ(h) tra(γ0)(p) = tra(γ1)(p). Recall that

the non-Abelian Stokes’ Theorem 1.24 shows us that for a bigon Γ : Γ0 ⇒ Γ1 we have,

tra1(Γ0) tra1(Γ1)
−1(p) : p = P exp

∫ 1

0
ds
∫ 1

0
dt Γ̃∗F(∂1, ∂2).

Note that the right hand side is in the image of τ by replacing F with −B. On the other hand if

tra2(Γ) is the 2-transport along Γ, then its target should satisfy

τ(tra2(Γ)) tra1(Γ0)(p) = tra1(Γ1)(p)

Consider therefore the following definition for 2-transport:

tra2(Γ) =
[
P exp

∫ 1

0
ds
∫ 1

0
dt − Γ̃∗B(∂1, ∂2)

]−1

. (3.28)

At least the target of tra2(Γ) is correct and moreover tra2(Γ) is trivial for thin bigons, and does not

depend on a trivialization. This makes it a good candidate for 2-transport.
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Definition 3.16

Let (A, B) be a 2-connection on a G-2-bundle P . If Σ : γ0 ⇒ γ1 is a bigon then we define the

2-transport tra2(Σ) along Σ to be given by the formula,

tra2(Σ) =
[
P exp

∫ 1

0
dsAΣ

]−1

, (3.29)

where AΣ ∈ Ω1(I, h) is defined by

AΣ =
∫ 1

0
dt − Σ̃∗B (∂1, ∂2) , (3.30)

where Σ̃ is the horizontal lift of Σ with respect to the connection A.

In a local trivialization σ : M→ P0 this instead takes form

tra2(Σ) =
[
P exp

∫ 1

0
ds
∫ 1

0
dt − L∗tra(γs,t)

Γ∗σ∗B(∂1, ∂2)

]−1

(3.31)

=

[
P exp

∫ 1

0
ds
∫ 1

0
dt − α(tra(γs,t))∗Γ∗σ∗B(∂1, ∂2)

]−1

(3.32)

for γs,t(u) = Σ(s, tu). For convenience we will often just denote tra2(Σ) to be the 2-transport in

some trivialization without mentioning the trivialization explicitly.

If this is a good definition of 2-transport, it should give us a 2-functor P2(M) → G-tor. The fact

that it does is something we will check for the remainder of this section. We will need to check the

following things:

• 2-transport should be equivariant: tra2(Σ)(g · p) = αg(tra2(Σ)(p)).

• 2-transport should respect vertical composition: tra2(Σ • Σ′) = tra2(Σ) · tra2(Σ′).

• 2-transport should respect horizontal composition: if Σ : γ0 → γ1, then tra2(Σ′ ◦ Σ) =

tra2(Σ) · αtra1(γ0)
(tra2(Σ′)). Compare this to the fact that in a trivialization tra1(γ1γ2) =

tra1(γ2) tra1(γ1).

• 2-transport should be thin-homotopy invariant

Finally it should be locally trivializable, i.e. in a local trivialization we should obtain a 2-functor

P2(M) → G. While stating what this means precisely is difficult, it should not be surprising. We

have that P1(M) → G-tor is locally trivializable, and fixing a basepoint, tra2 is already H valued.

We again refer the reader to [SW13a] to make this precise. Following the same order as [SW11] we

will check thin homotopy invariance last. It would be more natural to first prove thin homotopy

independence, since vertical/horizontal requires some choice of parameterization. However in the

proof of thin homotopy independence we use the way 2-transport behaves under composition as a

preliminary result.
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Proposition 3.17

2-transport is equivariant, that is if Σ : γ0 ⇒ γ1, γi : x → y and p ∈ (P0)x then

tra2(Σ)(g · p) = αg
(
tra2(Σ)(p)

)
(3.33)

Proof: Changing the choice of basepoint by g is the same thing as replacing B by L∗gB = (αg)∗B.

Using the functoriality of P exp (prop 1.13) we thus have

tra2(Σ)(g · p) =
[
P exp

∫ 1

0
ds
∫ 1

0
dt − L∗gΓ̃∗B(∂1, ∂2)

]−1

=

[
P exp

∫ 1

0
ds
∫ 1

0
dt − (αg)∗Γ̃∗B(∂1, ∂2)

]−1

= αg

[
P exp

∫ 1

0
ds
∫ 1

0
dt − Γ̃∗B(∂1, ∂2)

]−1

�

Proposition 3.18

Let Σ1 : γ0 ⇒ γ1 and Σ2 : γ1 ⇒ γ2 be bigons, then

tra2(Σ2 • Σ1) = tra2(Σ2) tra2(Σ1). (3.34)

Additionally tra2(Σ) = 1 for thin bigons and tra2(Σ) = tra2(Σ)−1 (where Σ is the vertical inverse

of Σ).

Proof: The fact that tra2(Σ) = 1 for thin Σ is because Σ∗B then vanishes. For vertical inversion note

that it is equivalent to inverting the order of the path ordered exponential, which by uniqueness

gives the inversion. First we define vertical composition by

Σ2 • Σ1(s, t) =

Σ1(2s, t) s < 1
2

Σ2(2s− 1, t) s ≥ 1
2

(3.35)

One easily convinces oneself that then

AΣ2•Σ1 |s =

AΣ1 |2s s < 1
2

AΣ2 |2s−1 s ≥ 1
2

(3.36)

If we then define

fi = P exp
∫ 1

0
dsAΣi ,

then by lemma 1.11 we have that

tra2(Σ2 • Σ1) = ( f1 f2)
−1 = f−1

2 f−1
1 = tra2(Σ2) tra2(Σ1), (3.37)
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proving the compatibility of 2-transport with vertical composition. �

We note that this proof used the particular choice of parameterization of Σ2 • Σ1. For horizontal

composition a natural parameterization would be

Σ2 ◦ Σ1(s, t) =

Σ1(s, 2t) t < 1
2

Σ2(s, 2t− 1) t ≥ 1
2

(3.38)

Unfortunately this is hard to work with in our setting. Somehow it is easier to take the following

parameterization, which is thinly homotopic to the former.

Σ2 ◦ Σ1(s, t) =



Σ1(0, 2t) t ≤ 1
2 , s ≤ 1

2

Σ2(2s, 2t− 1) t ≥ 1
2 , s ≤ 1

2

Σ1(2s− 1, 2t) t ≤ 1
2 , s ≥ 1

2

Σ2(1, 2t− 1) t ≥ 1
2 , s ≥ 1

2

(3.39)

Let Σi : γi ⇒ γ′i then figure 3.19 sketches what this parameterization looks like.

(0,0) (1,0)

(1,1)(0,1)

Σ2 Idγ′2

Idγ1 Σ1

t

s

Figure 3.19: Sketch of the parameterization of horizontal composition Σ2 ◦ Σ1(s, t)
given by equation (3.39) for Σi : γi ⇒ γ′i .

Proposition 3.20

Let Σ1 : γ1 ⇒ γ′1 and Σ2 : γ2 ⇒ γ′2 be horizontally composable bigons, i.e. t(γ1) = s(γ2). Then

with this parameterization we have

tra2(Σ2 ◦ Σ1) = tra2(Σ1)α(tra1(γ1), tra2(Σ2)). (3.40)

Proof: We first consider τ(FΣ2◦Σ1(s, t)) in these four quadrants of I2:

τ(FΣ2◦Σ1(s, t)) =



1 t ≤ 1
2 , s ≤ 1

2

tra1(γ1) τ
(

FΣ2(2s, 2t− 1)
)

tra1(γ1)
−1 t ≥ 1

2 , s ≤ 1
2

τ(FΣ1)(2s− 1, 2t) t ≤ 1
2 , s ≥ 1

2

τ(FΣ1)(2s− 1, 1) t ≥ 1
2 , s ≥ 1

2

(3.41)
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Let us denote

fi = P exp
∫ 1

0
dsAΣi ,

then from equation (3.41) and lemma 1.11 we deduce that

P exp
∫ 1

0
dsAΣ2◦Σ1 = (α(tra1

γ1
, f2) f1)

−1 = tra2(Σ1)α(tra1
γ1

, tra2(Σ2)). �

3.4. 2-Transport and homotopies of bigons

Similarly to how we proved thin-homotopy invariance of parallel transport, we can prove thin-

homotopy invariance of 2-transport by first proving a non-Abelian Stokes’ Theorem involving a

curvature 3-form. The added benefit is that this also gives us a generalization of the Ambrose-

Singer Theorem 1.27. As of yet, we don’t know what the curvature for a 2-connection is, and we

will show that it naturally arises as the 2-transport around an infinitesimal cube, generalizing lemma

1.33.

First we need to show what we mean by the 2-holonomy around the boundary of an infinitesimal

cube. Suppose we have a map h : I3 → M then for each (r, s, t) we can rescale h to get a map hr,s,t

defined by hr,s,t(x, y, z) = h(rx, sy, tz). All of the edges of the cube give paths in M and all faces give

bigons in M. All of the edges are of form:

iγ
u
x,y,z(t) = (x, y, z) + utei (3.42)

for some x ∈ {0, r}, y ∈ {0, s}, z ∈ {0, t}. Here ei is the ith coordinate unit vector in I3. Similarly all

the faces keep exactly one coordinate fixed and they are of form

iΣu,v
x,y,z = kγ ◦ jγ⇒ jγ ◦ kγ, (3.43)

where j = i + 1 mod 3 and k = i + 2 mod 3. If j, k are flipped we denote it iΣ instead (for vertical

inverse). This choice of orientation is in principal arbitrary, and this choice suits our specific situ-

ation. Because these bigons are contained in a plane in R3, there is only one thin homotopy class

of such bigons after fixing orientation. Since we don’t yet have thin homotopy invariance, we will

fix any consistent parameterization. This notation is useful for facilitating computations. We have

sketched the cube with this notation in figure 3.21.

In figure 3.21 we have marked two paths with a different color. We set:

µ = 2γ ◦ 3γ ◦ 1γ = 2γs
r,0,t ◦ 3γt

r,0,0 ◦ 1γr
0,0,0 (3.44)

ν = 1γ ◦ 3γ ◦ 2γ = 1γr
0,s,t ◦ 3γt

0,s,0 ◦ 2γs
0,0,0. (3.45)
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Γ(0, 0, 0) Γ(0, 0, t)

Γ(r, 0, 0) Γ(r, 0, t)

Γ(0, s, t)Γ(0, s, 0)

Γ(r, s, t)Γ(r, s, 0)

1γr
0,0,0

1γr
0,0,t

1γr
0,s,t

1γr
0,s,0

3γt
0,0,0

3γt
r,0,0

3γt
r,s,0

3γt
0,s,0

2γs
0,0,0

2γs
0,0,t

2γs
r,0,t

2γs
r,0,0

Figure 3.21: A cube in I3 spanned by (0, 0, 0) and (r, s, t). The edges are labeled by
paths iγ as in equation (3.42). The path µ = 2γ ◦ 3γ ◦ 1γ is marked red and dashed and
the path ν = 1γ ◦ 3γ ◦ 2γ is marked blue and dotted.

We can cut open the cube along ν−1µ into two pieces as shown in figure 3.22. By pasting, each of

the two pieces represents a bigon µ ⇒ ν or ν ⇒ µ, depending on which orientations of the bigons

we choose.

1Σs,t
r,0,0

2Σr,t
0,s,03Σr,s

0,0,0

1Σs,t
0,0,0

2Σr,t
0,0,0 3Σr,s

0,0,t

2γs
0,0,0 3γt

0,s,0

1γr
0,s,t

1γr
0,0,0

3γt
r,0,0

2γs
r,0,t

2γs
0,0,0 3γt

0,s,0

1γr
0,s,t

1γr
0,0,0

3γt
r,0,0

2γs
r,0,t

1γr
0,s,0

2γs
r,0,0

3γt
r,s,0

3γt
0,0,0

1γr
0,0,t

2γs
0,0,t

Figure 3.22: Diagram of the cube of figure 3.21 split into two parts with the faces
labeled by bigons. Using pasting the left side is a bigon ν ⇒ µ and the right side a
bigon µ⇒ ν.
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Composing the bigons in 3.22 we get on the left side:

L(r, s, t) := (1Σs,t
r,0,0 ◦ Id 1γr

0,0,0) • (Id 3γt
r,s,0 ◦ 3Σr,s

0,0,0) • (2Σr,t
0,s,0 ◦ Id 2γs

0,0,0). (3.46)

On the right side we obtain:

R(r, s, t) := (Id 1γr
0,s,t ◦ 1Σs,t

0,0,0) • (3Σr,s
0,0,t ◦ Id 3γt

0,0,0) • (Id 2γs
r,0,t ◦ 2Σr,t

0,0,0). (3.47)

Then we define

u(r, s, t) = tra2(L • R). (3.48)

This is the 2-transport µ ⇒ µ in M. It turns out that its third order derivative is computed by a

3-form we will call the 2-curvature.

Lemma 3.23

Define the 2-curvature form of a 2-connection (A, B) by

K = dB− α∗(A ∧ B), (3.49)

where α is seen as a map G× H → H. Let p ∈ (P0)m, then for any Γ : I3 → M with Γ(0, 0, 0) = m

we have
∂3

∂r∂s∂t

∣∣∣∣
0

u(r, s, t) = Kp (X, Y, Z) . (3.50)

With X, Y, Z the horizontal vectors (w.r.t. A) at p corresponding to respectively

∂Γ(r, 0, 0)
∂r

∣∣∣∣
0

,
∂Γ(0, s, 0)

∂s

∣∣∣∣
0

,
∂Γ(0, 0, t)

∂t

∣∣∣∣
0

.

Proof: Assume we have a trivialization of Γ∗P and assume A, B are forms on M. Using propositions

3.18 and 3.20 we compute

u(r, s, t) = α(tra1(1γr
0,0,0), tra2(1Σs,t

r,0,0)) · tra2(3Σr,s
0,0,0) ·

· α(tra1(2γs
0,0,0), tra2(2Σr,t

0,s,0)) · tra2(1Σs,t
0,0,0) · (3.51)

· α(tra1(3γt
0,0,0), tra2(3Σr,s

0,0,t)) · tra2(2Σr,t
0,0,0).

This expression has six terms, and we remark the cyclic symmetry present in the expression. All

the terms vanish if we take a single derivative and evaluate at 0. Therefore to compute the third

derivative of u at 0, we just need to consider each of the six terms individually. From the definition

of tra2 we have that

∂2

∂s∂t

∣∣∣∣
0

tra2(1Σs,t
r,0,0) = BΓ(r,0,0)(Y, Z),
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where Y = ∂sΓ(r, s, 0)|0 and Z = ∂tΓ(r, 0, t)|0, and thus

∂3

∂r∂s∂t

∣∣∣∣
0

tra2(1Σs,t
r,0,0) = X(Bm(Y, Z)).

From the definition of parallel transport we have that

∂

∂r

∣∣∣∣
0

tra1(1γr
0,0,0) = −AΓ(0,0,0)(X).

Hence we conclude,

∂3

∂r∂s∂t

∣∣∣∣
0

α(tra1(1γr
0,0,0), tra2(1Σs,t

r,0,0)) = X(B(Y, Z))− α(A(X)B(Y, Z))∗.

Furthermore we recall that Σ(s, t) = Σ(1− s, t) so that

∂2

∂r∂s

∣∣∣∣
0

tra2(3Σr,s
0,0,0) = −BΓ(0,0,0) (X, Y) ,

and hence we have that

∂3

∂r∂s∂t

∣∣∣∣
0

tra2(3Σr,s
0,0,0) =

∂

∂t

∣∣∣∣
0
− BΓ(0,0,0) (X, Y) = 0.

Noting the cyclic symmetry present, the same arguments compute the remaining four terms, and

we obtain

∂3

∂r∂s∂t

∣∣∣∣
0

u(r, s, t) = X(B(Y, Z)) + Y(B(Z, X)) + Z(B(X, Y))−

− α(A(X)B(Y, Z))∗ − α(A(Y)B(Z, X))∗ − α(A(Z)B(X, Y))∗,

which is precisely dB− α(A ∧ B)∗. �

We can interpret this as the fact that the 2-holonomy around ‘the boundary of an infinitesimal cube’

is given by the 2-curvature. Interestingly, this 2-curvature can also be obtained as dB ◦ h, with h

a horizontal projection in TP given by the connection A [MP07]. Compare this to the fact that

F = dA ◦ h. Furthermore if we see A and B as gn h-valued forms, then K = dAB, since the adjoint

action of g on h is by α∗. Therefore it is a very natural generalization to ordinary curvature. Every

bigon Γ : γ⇒ γ homotopic to the identity is the boundary of a cube. The parallel transport around

such bigons form the elements of a 2-holonomy group based at p.
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Definition 3.24

Let (A, B) be a 2-connection on P and suppose p ∈ (P0)x, then define the 2-holonomy group

Hol2
p ⊂ H at p by

Hol2
p =

{
tra2(Γ)(p) : (Idtra1(γ)(p))(p)

∣∣∣ Γ : γ⇒ γ, γ : x → y, y ∈ M
}

. (3.52)

We also define the reduced 2-holonomy group (Hol2
p)0 as the subgroup of Hol2

p given by holonomies

around bigons γ ⇒ γ homotopic to Idγ. Both groups are subgroups of ker τ, and are hence

Abelian by proposition 2.18.

Proposition 3.25

(Hol2
p)0 is the identity component of Hol2

p

Proof: First of all if Σ : γ ⇒ γ is a contractible bigon, then the homotopy h : Σ : Idγ gives a path

tra2(ht)(p) : (Idtra1(γ)(p))(p), showing that (Hol2
p)0 is connected. Then by the same argument as the

proof of proposition 1.15 we only need to show that (Hol2
p)0 is of countable index. Note that by

proposition 3.20 we have

tra2(Σ ◦ Idγ−1) = α(tra1
γ−1) tra2(Σ). (3.53)

By virtue of the Reduction Theorem 1.31 we have tra1
γ−1 ∈ Holp, thus

Hol2
p =

{
αg(tra2(Σ))

∣∣ g ∈ Holp, Σ : Idx ⇒ Idx
}

. (3.54)

Suppose Σ, Σ′ : Idx ⇒ Idx are homotopic, then Σ • Σ′ is contractible, thus tra2(Σ)−1 tra2(Σ′) ∈
(Holp)0. For g ∈ Hol0

p we have αg(tra2(Σ)) = h tra2(Σ)h−1 = tra2(Σ) if t(h) = g, since tra2(Σ)

is central. Such an h always exists, since any g ∈ Hol0
p is given by traγ for a contractible γ; the

2-transport along the homotopy γ⇒ Idx then gives such an h. Thus we have a surjective homomor-

phism:

π2(M, x)×
(

Holp
/

Hol0
p

)
→ Hol2

p
/
(Hol2

p)0, ([Σ : Idx ⇒ Idx], [g]) 7→ [αgΣ].

Since π2(M, x) and Holp / Hol0
p are both countable, this means (Hol2

p)0 is of countable index, which

proves the proposition. �

The computation of lemma 3.23 now shows that the Lie algebra elements Kp(X, Y, Z) land inside

the Lie algebra Hol2p. This suggests a generalization of the Ambrose-Singer Theorem to the setting

of 2-bundles. The original proof of the Ambrose-Singer Theorem seems hard to generalize to this

setting, although it may be possible to generalize it to the setting of principal bundles over path

spaces which we consider in the next section. Instead we will first suggest a generalization to the

the non-Abelian Stokes’ Theorem and generalize our proof of the Ambrose-Singer Theorem instead.

This will also immediately show thin-homotopy invariance.
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Theorem 3.26 (Non-Abelian Stokes’ Theorem)

Let h : I3 → M be a homotopy h0 V h1 then

tra2(h0) tra2(h−1
1 ) = P exp

∫ 1

0
dr
∫

I2
dsdt Adtra2(hr(s,1)) h∗K

(
∂

∂r
,

∂

∂s
,

∂

∂t

)
(3.55)

= exp
∫

I3
h∗K (3.56)

Proof: This formula is suggested in [AFG97] using different notation. Also using different notation

a very similar formula is proven in [MP07] and [MP08]. We will show it follows as a corollary from

lemma A.11 in [SW11]. In all cases the proof is a long and technical computation and we do not see

the benefit of repeating the computation in this thesis. Let h : I3 → M be a homotopy then instead

of considering u(r, s, t) we consider uρ(r, s, t) which is obtained by shifting the origin to (ρ, 0, 0).

Then using vertical composition we have that

uρ(r, 1, 1) = u(ρ, 1, 1)−1u(ρ + r, 1, 1),

and thus differentiating with respect to r we obtain the initial value problem

∂u(r, 1, 1)
∂r

= u(r, 1, 1)
∂uρ(r, 1, 1)

∂r

∣∣∣∣
r=0

, u(0, 1, 1) = 0.

Thus we need to show that

∂uρ(r, 1, 1)
∂r

∣∣∣∣
r=0

=
∫

I2
dsdt Adtra2(hr(s,1)) h∗K

(
∂

∂r
,

∂

∂s
,

∂

∂t

)
,

or equivalently

∂

∂r
∂

∂s
∂

∂t
uρ(r, s, t)

∣∣∣∣
(0,s,t)

= Adtra2(hr(s,1)) h∗K(r,s,t)

(
∂

∂r
,

∂

∂s
,

∂

∂t

)
.

This formula follows directly from the proof of lemma A.11 in [SW11].

For the final formula, note that τ∗K = −dF + [A ∧ F] = −dAF = 0, and also recall that ker τ is a

central subgroup of H (cf. prop. 2.18). Thus in particular Adtra2(hr(s,1)) K = K. Finally since K takes

values in an Abelian algebra the path-ordered exponentiation becomes ordinary exponentiation of

the integral. �

Corollary 3.27

Let (A, B) be a 2-connection on a principal G-2-bundle. If Σ0 : γ⇒ γ′ and Σ1 : γ⇒ γ′ are thinly

homotopic bigons then tra2(Σ0) = tra2(Σ1).

Proof: If h is a thin homotopy then h∗K = 0. Thus by the non-Abelian Stokes’ Theorem we have

tra2(Σ0) = tra2(Σ1). �
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Corollary 3.28

If ker τ is discrete (e.g. τ : H → G is a covering, or H is semi-simple so that Z(H) is discrete)

then (A, B) is always flat; i.e. K = 0 and 2-transport is homotopy invariant.

Using this notion and lemma 3.23 we can now state and prove a generalization of the Ambrose-

Singer Theorem 1.27:

Theorem 3.29 (Ambrose-Singer)

Let (A, B) be a 2-connection on a principal G-2-bundle P . Then the Lie algebra hol2p of the 2-

holonomy group Hol2
p satisfies

hol2p =
{

Kq(X, Y, Z)
∣∣ q ∈ P(p), X, Y, Z ∈ TqP

}
(3.57)

Proof: Let σ : π(p) = x → y be a curve and let q = tra1
σ(p). Let Σ : γ ⇒ γ with γ : y → z

be a bigon, then consider the bigon Σ ◦ Idσ. It has 2-holonomy α(tra1
γ, tra2(Σ)). By the Reduction

Theorem 1.31 tra1
γ ∈ Holp. In other words, there is also a loop σ at y with tra1

γ = tra1
σ. Since Σ ◦ σ is

a bigon at y, this shows that Hol2p = Hol2
q. Thus by lemma 3.23, Kq(X, Y, Z) lies inside hol2p for any q

that can be joined to p by a horizontal path. By the non-Abelian Stokes’ Theorem 3.26 we note that

hol2p is spanned by elements of form KΓ(s,t) for some bigon Γ. By the Reduction Theorem 1.31, we

can assume that we are considering K restricted to P(p). This proves the theorem. �

3.5. Bundles over path spaces

Now that we have developed the theory of principal 2-bundles it is worthwhile to discuss some other

equivalent points of view. One is that of G-gerbes and non-Abelian Čech cocycles, which are proven

to be equivalent to our construction of 2-bundles in [NW11]. Instead will consider yet another point

of view towards 2-bundles and 2-transport developed in [BS04]. Recall that 2-transport over a bigon

has form

P exp
∫ 1

0
A,

this suggests that A ∈ Ω1(I, h) should play the role of some sort of connection. Indeed we will

show that if we go to path space P(M) then A is locally a connection on a principal bundle over

P(M). Moreover its curvature is

(FA)γ =
∫ 1

0
α(tra1

γt
)K. (3.58)

In this section we will first develop the theory of bundles on diffeological spaces and then argue

that A is locally a connection and consider its curvature.
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Definition 3.30

A diffeology on a set M is a set of plots U , i.e. maps from finite dimensional convex sets U →M

such that:

• If φ : U →M is a plot, and φ′ : U′ → U is smooth then φ ◦ φ′ is a plot

• Every constant map U →M is a plot

• If φ : U →M is a map such that each φ|Ui is a plot for some cover {Ui} of U, then φ is also

a plot.

We call a set M together with a diffeology U a diffeological space. We call a map f : M → N

between two diffeological spaces smooth if for every plot φ : U →M the map f ◦ φ : U → N is

a plot.

Any smooth manifold has a canonical diffeology; if M is smooth then φ : U → M is a plot if

and only if its smooth. Moreover the diffeology uniquely determines the smooth structure on M.

The concept of diffeological spaces gives a notion of differential geometry on infinite dimensional

spaces, such as path spaces.

Definition 3.31

Let M be a smooth manifold (or a diffeological space), then define the path spacea

P(M) =
{

γ ∈ MI
∣∣∣ γ is smooth

}
, (3.59)

together with the following diffeology: we say φ : U → P(M) is a plot if the associated map

U × I → M, (u, t) 7→ φ(u)(t) is smooth.

aThis is not a groupoid under concatenation of paths with matching source and target since the required reparam-
eterization makes associativity fail.

A lot of concepts of differential geometry can be generalized to diffeological spaces. For example a

differential p-form ω on a diffeological space M assigns to each plot φ : U → M a differential form

ωφ ∈ Ωp(U) such that for any smooth map θ : U′ → U we have θ∗ωφ = ωφ◦θ . Thus we get a set

Ωp(M ) of p-forms. Wedge products and exterior derivation can be defined locally; (dω)φ := d(ωφ)

and (ω ∧ η)φ = ωφ ∧ θφ. One also has a natural notion of g-valued differential forms Ωp(M , g)

which admits similar operations as the finite dimensional version. Moreover definition 1.1 caries

over word-by-word to the diffeological setting to give us a notion of principal G bundles over

diffeological spaces. In fact G can even be a group in the diffeological category.

Let A ∈ Ω1(M, g) be a (local) connection on a trivial G-bundle P → M. For any ω ∈ Ωp(M, g) and

plot φ : U → M define((∮
A

ω

)
φ

)
p

=
∫ 1

0
dt Ad(tra1

φ(p)t
) (evt ◦φ)∗

(
iφ(p)′(t)ω

)
. (3.60)

This defines a form
∮

A ω ∈ Ωp−1(P(M), g). Naively assuming P(M) is a smooth space and

γ ∈ P(M) then a ‘tangent vector at γ’ is just a map X : I → TM, X(t) ∈ Tγ(t)M. In this naive
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setting the form reduces to(∮
A

ω

)
γ

(X1, . . . , Xp−1) =
∫ 1

0
dt Ad(tra1

γt
) ω(γ′(t), X1(t), . . . , Xn(t)). (3.61)

Of course one must be careful since diffeological spaces don’t necessarily admit a ‘tangent space’ in

the ordinary sense. If P is now a trivial G-2-bundle, then a 2-connection gives forms A ∈ Ω1(M, g)

and B ∈ Ω2(M, h). We can see g and h as subspaces of gn h, the Lie algebra of G n H. Since

(g, 1)(1, h)(g−1, 1) = (1, αg(h)), (3.62)

we have that Adg(X, Y) = (Adg X, (αg)∗Y) for X ∈ g, Y ∈ h. Thus seeing A, B as gn h valued

forms we can consider
∮

A B. Note that a bigon Σ : I × I → M induces a plot σ : I → P(M),

σ(s) = Σ|{s}×I . Note furthermore that now

(∮
A

B
)

σ

=
∫ 1

0
dt α(tra1(γs,t))i(∂t)Σ∗B, (3.63)

which is precisely A from definition 3.16 (the sign comes from the fact that one has to flip ∂t and

∂s). The form
∮

A B defines a connection on a trivial bundle over P(M) and its parallel transport

gives us 2-transport. One can then show that the curvature of this form is
∮

A K:

F = d
∮

A
B +

[∮
A

B,
∮

A
B
]
=
∮

A
K

The fake-flatness condition plays an essential role here. Computing d
∮

A B is a little complicated and

requires a bit of technical machinery, and we refer to [BS04] or [AFG97] for a proof. A homotopy

h̃ : I3 → M between bigons induces a bigon h : I2 → P(M). For the same reasons as for parallel

transport on ordinary bundles, the parallel transport between thinly homotopic paths I → P(M)

will be zero. In fact for diffeological bundles we have an Ambrose-Singer Theorem [Mag13]. Thus

the 2-transport is thin-homotopy invariant.

One problem with this point of view is that
∮

A B is only locally a connection, and we do not see

a way to extend it to a global connection on some bundle over P(M). Furthermore the fact that

P(M) is infinite dimensional brings in some non-trivial analysis to many of the definitions. While

more abstract, seeing 2-bundles from a 2-categorical point of view seems more powerful.
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4. Surface Holonomy

4.1. Surface holonomy

Using parallel transport we were able to associate to loops, i.e. maps S1 → M, some group element

(up to conjugation). We want to generalize this to the setting of 2-transport, where we can consider

maps S2 → M instead. In fact, nothing is stopping us from considering maps Sg → M where Sg is a

surface of genus g ≥ 0. In order to apply parallel transport to maps S1 → M we first need to select

a basepoint x ∈ S1. The essential property of the basepoint is that it allows us to ‘cut open’ S1 at x

so that we get an interval. For a surface Sg we need to find a loop τ along which we can cut open Sg

as to get a square I2. This approach was developed in [SW13a]. The first statement is that one can

indeed always cut open a surface, and the amount of necessary loops depends only on the genus.

Theorem 4.1 (Classification of Surfaces)

Let Sg be a surface of genus g, then one can find a set of 2g loops
{

α1, β1, . . . , αg, βg
}

(i.e. maps

S1 → Sg) based at some point x ∈ Sg such that

π1(Sg) =

〈
[α1], [β1], . . . , [αg], [βg]

〉
∏

g
i=1 [[αi], [βi]]

, (4.1)

where [γ] denotes the equivalence class of γ modulo homotopy, and [ · , · ] denotes the commu-

tator. For a sphere the story is a bit easier, since we just have to pick a basepoint. Furthermore

there is a surjective map Σ : I2 � Sg such that Σ|Int(I2) is an embedding and Σ|∂I2 = ∏
g
i=1 [αi, βi]

up to thin homotopy under a diffeomorphism ∂I2 ∼= S1.

This well-known theorem is proven by considering the universal cover of a surface. For genus 0,1

the theorem is easily shown to be true, and for genus >1 one shows that every surface is the quotient

of the hyperbolic half space Γ by a Fuchsian group. One then constructs a fundamental domain for

this action in Γ. [Bea83]

This theorem can be interpreted as every surface being presentable as a quotient of a polygon with

2g sides as shown in figure 4.2. Such a polygon can be interpreted as a bigon

Σ : Idx ⇒∏
i
[αi, βi].

Given a 2-connection (A, B) on some 2-bundle over Sg we can take the 2-transport of this bigon,

giving us a morphism

tra2(Σ) : 1⇒∏
i
[tra1(αi), tra1(βi)].
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α1
β1

α−1
1

β−1
1

β−1
g

α−1
g

βg

αg . . .

. . .
. . .

. . .

Figure 4.2: Sketch of a fundamental polygon of a surface of genus g. All the edges
in this polygon correspond to a loop in Sg, and the all the vertices correspond to the
same basepoint in Sg.

Choosing a point p ∈ (P0)x this gives us an element h ∈ H. Changing p to g · p we see that h

changes to αg(h). Hence such a bigon Σ defines for us an element of

H/G = H/ ∼, h ∼ h′ if h = αg(h′) for some g ∈ G. (4.2)

This is a good candidate for ‘surface holonomy’, however a priori this still depends several choices.

We list all the choices that we made so far:

• A basepoint x ∈ Sg

• A set of 2g loops {αi, βi} giving a presentation of the fundamental group π1(Sg).

• A choice of map Σ : I2 → Sg and parameterization of Σ into a bigon Idx ⇒ ∏i[tra1(αi), tra1(βi)].

In full generality we can’t prove independence of the second of these choices, but the other choices

don’t pose much of a problem.

Proposition 4.3

Let P → Sg be a G-2-bundle with 2-connection (A, B). Let Σ : I2 → Sg and Σ′ : I2 → Sg be two

maps such that Σ|∂I2 = Σ′|∂I2 , then Σ, Σ′ induce the same surface holonomy.

Proof: First of all by thin homotopy invariance of 2-transport, we have that it doesn’t matter how

we parameterize Σ, Σ′ into a bigon Idx ⇒ ∏i[αi, βi]. The fact that Σ, Σ′ agree on the boundary

means that they glue to a map S2 → Sg. If g > 0, any such map is contractible (π2(Sg) = 0

since the universal cover of Sg is contractible). This contraction then gives a homotopy Σ ⇒ Σ′.

By dimensional reasons, this homotopy is necessarily thin, and hence Σ and Σ′ give the same 2-

holonomy. If g = 0 the maps Σ, Σ′ themselves descent to maps S2 → S2. One checks that these

maps are of degree 1, and hence Σ, Σ′ are homotopic as well. This homotopy is again thin and

proves that Σ, Σ′ have the same 2-holonomy. �

We can also change all the αi, βi by thin homotopy. This results in changing the bigon Idx ⇒ ∏i[αiβi]
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by thin homotopy, which does not affect the result. However in general we can’t change αi, βi by

a homotopy that is not thin; this can change the target of the 2-transport. We can also change

basepoint without much of a loss; suppose we have a path γ : y → x, then conjugating all the αi, βi

by γ we get another presentation of the fundamental group. Note that

∏
i
[γαiγ

−1, γβiγ
−1] = γ ∏

i
[αi, βi]γ

−1,

thus such a change of basepoint changes the 2-transport by a factor α(tra1
γ).

Definition 4.4

A marking M of a surface Sg of genus g is a choice of basepoint x ∈ Sg and a cycli-

cally ordered set of g pairs of thin homotopy classes of loops (αi, βi) based at x such that

π1(Sg, x) = 〈[αi], [βi]〉
/

∏i[[αi], [βi]].

One can also consider surfaces with boundary, where one has to fix one additional loop for each

boundary component.

Proposition 4.5

Given a marked surface (Sg,M) and a 2-bundle P → M with connection (A, B), the procedure

above associates to each map Σ : Sg → M a well-defined surface holonomy W(Σ) ∈ H/G. If we

fix a basepoint p ∈ P0 and mandate that the basepoint of Sg maps to π(p), then we obtain an

element W(Σ) ∈ H.

If Tr : h→ R is such that Tr(α(g)∗X) = Tr(X) for all g, then in particular Tr(W(Σ)) ∈ R is gauge

invariant. We call this the Wilson surface; if g = 0 we call it the Wilson sphere.

If we have a punctured surface Sg,n with χ(Sg,n) = 2− 2g− n < 0, (e.g. g ≥ 2) then we can endow

Sg,n with a hyperbolic structure (i.e. a Riemannian metric with constant curvature −1). We can

then require the edges in the marking of the surface to be simple closed geodesics with respect to

this structure. This is powerful, because any homotopy class of loops contains a unique geodesic

[Thu02, prop. 5.3.1]. Moreover, if we represent a surface as a quotient H/Γ then the boundary of

the fundamental domain of this action will give such a marking by geodesics. This still leaves the

choice of a fundamental domain, however.

We also have the π1(Sg) admits a presentation with only one relator ∏i[αi, βi]. Such groups are

special, namely if we choose two different presentations then the relators are conjugate [MKS66,

Thm. 4.11]. Perhaps together with fixing a hyperbolic metric this allows us to obtain a well-defined

surface holonomy as well, up to conjugation. This is however speculation at this point.
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4.2. Surface holonomy for covering 2-group 2-bundles

Recall from definition 3.5 we can create from any principal G-bundle P a principal G-2-bundle P
where G = (G, Ĝ, t, α) is the universal covering 2-group of g (cf. def. 2.24). The morphisms of this

2-bundle are just (homotopy classes of) paths in the fibers of P. Suppose A is a connection on P, then

since τ : Ĝ → G induces an isomorphism on the level of Lie algebras, we have that B = −(τ∗)−1F

is a 2-connection on P . In fact it is the only 2-connection with 1-connection A. It will turn out that

2-transport for such 2-bundles is particularly simple. Parallel transport for this type of 2-bundles

was studied in great detail in [Par14].

Suppose we have a covering 2-bundle P of P. Let Σt : Σ0 ⇒ Σ1 be some bigon and p ∈ P then

2-transport gives us a morphism tra1(Σ0)(p) → tra1(Σ1)(p), i.e. a path tra1(Σ0)(p) → tra1(Σ1)(p).

Since Σt is a path for each t, one such path is given by t 7→ tra1(Σt)(p). In fact we can take the

2-transport of Σs,1 for any s, which should give a morphism F(s) : tra1(Σ0)(p) → tra1(Σs)(p). This

gives us a differential equation:

(τ ◦ F)′(s) = (τ ◦ F)(s)A(∂sΣ(s, 1)), τ ◦ F(s) = 1 (4.3)

Since τ∗ is an isomorphism and F(0) = 1, this uniquely determines F(s) to be the path F(s)(u) =

tra1(Σsu)(p). Therefore for the covering 2-bundle P the only consistent definition of 2-transport is

the one given. This means that definition 3.16 with (A,−τ−1
∗ F) has to produce the same definition.

In fact by Corollary 4.19 in [Par14] any 2-functor P2(M) → G is of this form, for G the covering

2-group of G.

We should also note that the 2-curvature of the 2-connection (A,−τ−1
∗ F) is zero:

K = −dτ−1
∗ F + α∗(A ∧ τ−1

∗ F) = −τ−1
∗ (dF− [A ∧ F]) = −τ−1

∗ dAF = 0. (4.4)

The final step, dAF = 0 follows from the fact that F is basic, hence by proposition 1.20: dAF =

DF = D2 A = (d2A) ◦ h = 0. This can also be seen from another perspective. If Σ, Σ′ : γ ⇒ γ′ are

homotopic through some homotopy h : ΣV Σ′ then

Fr(s) = tra1(h(r, s, 1))(p)

is a homotopy between the paths tra1(Σs)(p) and tra1(Σ′s)(p). Hence the 2-transport along Σ and

Σ′ produce homotopic paths which thus define the same element of Ĝ. Thus for this bundle, 2-

transport is homotopy independent which also implies that K must be zero.

We claimed that the naive definition of surface holonomy we gave in the previous section depends

on the choice of marking our surface. Let us show this using an example. Consider the trivial

principal G-bundle over a torus T2 = R2/Z2 with coordinates φ, θ. We can endow this bundle with

the connection A = Xdφ + Ydθ for some X, Y ∈ g. For a torus we can give an explicit fundamental
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polygon; take the map I2 → T2 given by (s, t) 7→ (s, t) mod 1. This gives a homotopy Σ : 1⇒ [α, β]

given by

hs(t) =



(4st, 0) t ∈ [0, 1
4 ]

(s, (4t− 1)s) t ∈ [ 1
4 , 1

2 ]

((3− 4t)s, s) t ∈ [ 1
2 , 3

4 ]

(0, (4− 4t)s) t ∈ [ 3
4 , 1]

(4.5)

The parallel transport around hs with respect to A is given by

tra2(Σ)(s) = exp(−sY) exp(−sX) exp(sY) exp(sX). (4.6)

This is because by proposition 1.10 the path ordered exponent in a commutative Lie algebra is just

the exponent. In each of the four segments the connection takes values in a torus (spanned by X or

Y), and thus the path ordered exponent of A over these segments reduces to an ordinary exponent.

We can change the marking by any element of SL(2, Z) and see how the 2-transport changes. For

example we can change the marking by
(

1 1
1 2

)
as shown in figure 4.6.

(
1 0
0 1

) (
1 1
2 1

)
Figure 4.6: Two different markings of the torus with the same basepoint. We get
precisely one such marking for each element of SL(2, Z), and the respective matrices
are shown below the two markings.

In this different marking we instead get

tra2(Σ)(s) = exp(−s(X + 2Y)) exp(−s(X + Y)) exp(s(X + 2Y)) exp(s(X + Y)). (4.7)

To convince oneself that equations 4.6 and 4.7 are really different we can consider g = so(3) and

X = 2π


0 1 0

−1 0 0

0 0 0

 , Y = 2π


0 0 0

0 0 1

0 −1 0


In that case equation 4.6 gives us tra2(Σ)(1) = Id but equation 4.7 gives something much more
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complicated; we present a numerical approximation:

tra2(Σ)(1) =


0.791 −0.417 −0.449

0.583 0.735 0.345

0.186 −0.534 0.825


In the case of holonomy we could get something well defined by taking Tr. In this case even this is

not enough, and we need some careful analysis to produce an invariant out of this.

The main issue that comes into play is that X and Y do not commute, and in any situation where

[X, Y] 6= 0 the generic situation is that tra2(Σ) is different for two different markings. On the other

hand if [X, Y] = 0 then for any choice of marking we would always get the constant path as 2-

transport. More generally if the connection takes values in any maximal torus t then the 2-transport

will only depend on the topology of the principal bundle. To see this, we first classify principal

bundles on surfaces.

Proposition 4.7

Principal G-bundles over any surface S are classified by π1(G) ∼= ker t ⊂ Z(Ĝ).

Proof: Choose a marking αi, βi of S (i.e. representative paths of generators of π1(S)). Then let U

be a tubular neighborhood of the image of ∏i[αi, βi]. Per definition U retracts to a wedge of circles.

We thus have that any map U → BG is contractible, since π1(BG) ∼= π0(G) = {1} (we always

assume G is connected). Hence any G-bundle over U is trivial. Similarly let V = S \∏i[αi, βi] be the

complement of the image of ∏i[αi, βi]. This subspace is contractible, hence any G-bundle over V is

trivial.

Now given a G-bundle P → S, we can trivialize P over U and V. Then the bundle is up to

isomorphism completely determined by the homotopy class of the transition function U ∩ V → G.

Since U ∩V retracts to a circle we can conclude that G-bundles over S are classified by π1(G). The

fact that we can see π1(G) as a subgroup of Z(Ĝ) is by Theorem A.13 and proposition A.14. �

This classification also gives us a very explicit description of connections on a principal bundle over a

surface. On the fundamental polygon of the surface we can choose polar coordinates (r, θ) (with θ ∈
[0, 2π)) by identifying the polygon with a unit disk in R2. We can then set U =

{
(r, θ) ∈ D2

∣∣ r > 0
}

and V =
{
(r, θ) ∈ D2

∣∣ r < 1
}

. We can choose the transition function g : Σ∗P|U∩V → (U ∩ V)× G

to be

g(r, θ) = exp(θt∗X), (4.8)

with X ∈ ĝ such that exp(2πX) ∈ ker t ⊂ Z(Ĝ), and thus exp(2πt∗X) = 1. Then a connection on

P is determined by two one forms AΣ(U) ∈ Ω1(Σ(U), g) and AΣ(V) ∈ Ω1(Σ(V), g). We then get two

one-forms AU = Σ∗AΣ(U) and AV = Σ∗AΣ(V) on I2 which together give a connection on Σ∗P. That
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is, they satisfy

AV |U∩V = Adg AU |U∩V + dgg−1 = Adg AU |U∩V + t∗X dθ. (4.9)

Using this local description we get a particularly nice formula for the 2-transport if g is a torus.

Proposition 4.8

Let P → S be a principal G-bundle corresponding to some z ∈ Z(Ĝ) by proposition 4.7. Let

Σ : I2 → S be a marking. If t is a maximal torus in G then any connection A ∈ Ω1(P, g) which

takes values strictly in t has 2-holonomy tra2(Σ) = z. Put differently, if Q ⊂ P is a principal

T ⊂ G subbundle embedded in P, then the surface transport of any connection on Q is z.

Proof: Assume that A takes values in a maximal torus t ⊂ g. We can choose the X as above in

such a way that t∗X ∈ t. This is because Z(Ĝ) is the intersection of all maximal tori, hence for each

maximal torus t in ĝ and z ∈ Z(Ĝ) there is an X ∈ t such that exp(2πX) = z. Equation 4.9 then

becomes

AV |U∩V = AU |U∩V + t∗X dθ. (4.10)

This means that there are globally defined functions fθ , fr : D2 → g such that

AU = fθ dθ + fr dr, AV = ( fθ + t∗X)dθ + fr dr. (4.11)

We can now parameterize Σ : I2 → Sg as a bigon using the path (in polar coordinates (r, θ))

γs(t) =


Σ(3st, 0) t ∈ [0, 1

3 ]

Σ(s, 2π(3t− 1)) t ∈ [ 1
3 , 2

3 ]

Σ((3− 3t)s, 0) t ∈ [ 2
3 , 1]

as sketched in figure 4.9. Note that for s = 0 this path is not the constant path, but rather it is thinly

homotopic to the constant path.

Now computing the 2-transport along Σ is a simple integration procedure. For each s we can use AU

or AV to compute the parallel transport of γs. Since A takes values in t, path ordered exponentiation

becomes ordinary exponentiation and we obtain:

tra1(γs) =

(
exp

∫ 1

0
fr(sr, 0)dr

)(
exp

∫ 2π

0
fθ(s, θ)dθ

)(
exp−

∫ 1

0
fr(sr, 0)dr

)
= exp

∫ 2π

0
fθ(s, θ)dθ,

where that last line follows from commutativity of exp t. There is no dependence on X, since

exp(2πt∗X) = 1. Because AU and AV are pullbacks from S we necessarily have that AV |r=0 = 0,
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s

γs

Figure 4.9: Parameterization of the bigon Id⇒ ∏i[αi, βi] using polar coordinates.

thus fθ(0, θ) = −t∗X. Furthermore since the image of ∂I2 under Σ is a product of commutators of

loops we necessarily have that

∫ 2π

0
AU(1, θ)dθ = 0.

This means that the function u(r) =
∫ 2π

0 fθ(r, θ)dθ is a map I → g starting at −2πt∗X and ending

at 0. Any such map is homotopic to the linear map s 7→ −2πsX. Hence the loop s 7→ tra1(γs) in G

is homotopic to the loop s 7→ t(exp(2πsX)), which corresponds to the element z ∈ Z(Ĝ) we started

with. This computation is a generalization of the examples given in [Par14], where this computation

was done in great detail for several specific groups in genus 0. �

This means that in the case that a connection takes values in a torus, not only is the 2-transport

independent of the choice of marking, it doesn’t even depend on the connection or choice of torus.

The surface holonomy computes a topological invariant of the bundle. From the perspective of

definition 3.16 of 2-transport this can also be seen. Let (G, H, α, τ) be any 2-group. If B takes values

in some torus t ⊂ h and A values in t∗t, then α(tra1(γs,t)) is trivial, and thus we obtain for any

marking Σ : I2 → S

tra2(Σ) = exp
[∫ 1

0
ds
∫ 1

0
dt − Σ∗B(∂s, ∂t)

]−1

= exp
∫

S
B. (4.12)

If we have some representation π : T → GL(V) then we can consider

det ◦π ◦ t tra2(Σ) = exp
(∫

S
Tr π∗F

)
. (4.13)

Notice that the term in the exponential is a Chern-Weil characteristic class. This shows that surface

holonomy has in general a non-trivial dependence on the topology of the principal bundle. Perhaps

one can therefore think of surface holonomy as a generalization of Chern-Weil numbers.

Wilson surfaces were also studied in [ACM15], and there also torus subbundles were considered

and the same Chern-Weil characteristic classes appeared. Their approach is however by considering
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∫
γ Tr λ(dgg−1 + Adg A) where λ ∈ t∗ is a highest weight, b : γ → g∗ is any map, and g : γ → G

is such that b(s) = g(s)λg(s)−1. This appears from physical considerations when studying Wilson

Loops. They then noted that form in the integral is exact, with primitive DPλ(A, g) = Tr b(FA −
(dAgg−1)2). The integral of this primitive over a surface was then studied, and they found that for

a connection taking values in a maximal torus we recover
∫

S Tr π∗F.

So far our results offer a partial answer to the question posed in [BS04]:

“Is the nonabelian surface holonomy in 2-bundles with strict structure 2-group ‘re-ducible’

in some appropriate sense to ordinary abelian surface holonomy?”

Namely, non-Abelian surface holonomy is not well-defined without choosing a marking, and there-

fore not reducible to Abelian surface holonomy. However assuming B takes values in a torus (e.g.

by restricting to a torus subbundle), the dependence on the marking goes away and we recover the

definition of Abelian surface holonomy.
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A. Compact Lie Groups

Throughout the thesis we heavily rely on some of the properties of compact Lie groups. Therefore

we will review some of these properties in this appendix. We will assume some basic familiarity

with the theory of Lie groups in this exposition, and focus specifically on the properties of compact

Lie groups. This exposition does not necessarily follow a logical order and is more a collection of

important facts about compact Lie groups. All of the material can be found in [Kna02].

Definition A.1

A compact Lie group is a Lie group G such that the smooth manifold G is compact. A compact

Lie algebra is the Lie algebra of a compact group. Throughout this appendix, let G be a compact

connected Lie group and g be its Lie algebra.

Proposition A.2

G admits a measure µ (the Haar measure) which is invariant under both left and right multiplica-

tion.

Proposition A.3

Let φ : G → GL(V) be a representation, then V admits an inner product such that Φ is a unitary,

i.e. (Φ(x)u, v) = (u, Φ(x)v) for all x ∈ G and u, v ∈ V.

Proof: Take any inner product 〈· , ·〉 on V and define

(u, v) =
∫

G
〈Φ(x)u, Φ(x)v〉 dx, (A.1)

where we integrate with respect to the Haar measure µ. Unitarity of Φ now follows from the

bi-invariance of µ. �

Proposition A.4

Any compact Lie group admits a faithful finite-dimensional unitary representation. In particular

any compact Lie group is isomorphic to a closed subgroup of U(n) for some n.

Proof: The existence of a faithful representation is guaranteed by the Peter-Weyl Theorem, and it

can be assumed to be unitary by proposition A.3. �

Using an embedding G ↪→ U(n) we can assume all compact Lie groups are just matrix groups. This

can make notation simpler since this gives an explicit form to the adjoint action, Lie brackets and

exponentiation operations.
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Proposition A.5

The Lie algebra g admits an Ad-invariant inner product, which is also ad-skew symmetric i.e.

(Ad(g)X, Ad(g)Y) = (X, Y), (ad(Z)X, Y) + (X, ad(Z)Y) = 0.

Proposition A.6

g is reductive and thus g = Zg ⊕ [g, g] where Zg is the center of g and [g, g] is semi-simple In

particular a compact Lie group is semi-simple if and only if its center is discrete.

Definition A.7

A maximal torus T ⊂ G is a maximal Abelian subgroup (i.e. it’s not contained in a larger one). By

compactness T ∼= (S1)n for some n. Note that Z(G) ⊂ T for any T and subsequently Z(G) is the

intersection of all maximal tori.

Proposition A.8

Let t ⊂ g be the Lie algebra of T ⊂ G. Then T is a maximal torus if and only if t is a maximal

Abelian subalgebra.

Theorem A.9

Let t, t′ be two maximal Abelian subalgebras of g, then t′ = Adg t for some g ∈ G. Alternatively,

let T, T′ ⊂ G be maximal tori then T′ = gTg−1 for some g ∈ G.

Theorem A.10

Let T be a maximal torus, then for each g ∈ G there is an h ∈ G such that g ∈ hTh−1.

This can be informally interpreted as saying that every element of a compact Lie group can be

diagonalized. That is, in U(n) the set of diagonal matrices diag(eiφ1 , . . . , eiφn) is a maximal torus,

and the previous theorem just means that each element can diagonalized by conjugating it by some

other element.

Using Theorem A.10 we show that any element is contained in a maximal torus, and one can also

show that on tori the exponential map is surjective. Thus we obtain:

Theorem A.11

The exponential map exp : g→ G is surjective

This is very useful since it allows us to pass easily between the Lie algebra and Lie group.

Finite covers of Lie compact Lie groups are of particular interest. For any semi-simple Lie group G

there is a universal covering group Ĝ, i.e. the unique simply connected finite cover of G. The fact
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that the cover is finite is because of the following theorem:

Theorem A.12 (Weyl)

If G is compact and semi-simple, then π1(G) is finite. Hence the universal cover Ĝ → G is also a

compact Lie group

The semi-simplicity is essential here. If G has a non-discrete center then the fundamental group

will contain a cyclic subgroup. The universal covering group has a simple geometric interpretation.

Namely it is the set of all homotopy classes of paths rel boundary in G starting at the identity;

Ĝ = { [γ] ∈ Π1(G) | s(γ) = γ(0) = 1} , (A.2)

where Π1(G) is the fundamental groupoid, i.e. the groupoid of homotopy classes of paths rel

boundary. The covering map t : Ĝ → G is then just t([γ]) = γ(1). The multiplication is given by

pointwise multiplication in G. This space is indeed simply connected; take any path h : I → Ĝ, then

each h(t) is a path in G, so define for each s a new path h(t)s(u) = h(t)(su). Then (s, t) 7→ h(t)s is a

homotopy between h and the trivial path in Ĝ. This is a specific case of a more general phenomenon

[Hat01, Thm. 1.38]:

Theorem A.13 (Galois Correspondence)

Let X be a path-connected, locally path-connected, and semilocally simply-connected space (e.g.

a connected manifold). Then there is a bijection between the set of isomorphism classes of con-

nected covering spaces p : X̃ → X and conjugacy classes of subgroups of π1(X)

The correspondence is given on the one hand by associating to p : X̃ → X the group p∗(π1(X̃)). On

the other hand given a K ⊂ π1(X) we set

X̃ = XK = { [γ] ∈ Π1(X) | s([γ]) = γ(0) = 1}
/
∼, (A.3)

where [γ] ∼ [γ′] if [γγ′] ∈ K. Again t : XK → X is just [γ] 7→ γ(1). In particular for K = {1} we

obtain the universal cover. For Lie groups the classification of covers goes even a little further.

Proposition A.14

If t : G → H is a cover then ker t is a central subgroup. Thus a cover of a Lie group G is equivalent

to a central extension of G.

Proof: Let z ∈ ker t and g ∈ G, then we need to show zgz−1 = g. At least t(zgz−1) = t(g). Let

K = t∗π1(G) and identify z and g with some path in H denoted by ζ, γ respectively. Then we need

to show that γ(ζγζ−1) ∈ K where K = t∗π1(G). Actually ζγζ−1 and γ are homotopic; just take the

homotopy s 7→ ζsγ(ζ−1)s (in fact the same argument shows π1(G) is Abelian for any topological

group). We conclude that zgz−1 = g for all z ∈ ker t and g ∈ G and thus ker t is central. �
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Theorem A.15 (Lie Integration)

Let g be a Lie algebra, then there is a 1-connected Lie group G with Lie algebra g. Furthermore if

G is 1-connected then for every φ : g→ h there is a unique homomorphism f : G → H such that

φ = f∗. In particular, this also means that the 1-connected Lie group integrating any Lie algebra

is unique. Finally if h is a Lie subalgebra of g, then there is a unique connected Lie subgroup H

of G with Lie algebra h.

Proposition A.16

Let g be a semi-simple compact Lie algebra, and let Ĝ be the 1-connected Lie group integrating

it. Then the other connected Lie groups integrating g are classified by central subgroups of Ĝ.

Proof: If G is any other Lie group with lie algebra g then Ĝ is necessarily its universal cover. Denote

the covering map by t : Ĝ → G then by the Galois correspondence ker t ∼= π1(G). On the other

hand if Z ⊂ Z(Ĝ) is a central subgroup then Ĝ/Z is covered by Ĝ. Since g is semi-simple, Z(Ĝ)

is discrete and hence Ĝ/Z has the same Lie algebra as Ĝ. If g is not semi-simple, then Z(Ĝ) is not

discrete and the argument doesn’t work. �
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