
AUTOMATED PERFORMANCE TESTING FOR VIRTUAL
REALITY

Georgios Kokkinos 5793459

A thesis presented for the degree of
Game and Media Technology

Game and Media Technologies
Utrecht University

Netherlands
January 2018

Preface

First and foremost, this thesis is dedicated to my family for supporting me. Without them I wouldn’t have the
opportunity to join this university!
Huge thanks tomy supervisor,Whisnu Prasetya for his guidance through the journey of completing this research.

My thanks also go to my second supervisor Frank Dignum for the feedback and evaluation of my thesis.
Thanks to Patryk Wroblewski and ForceFieldVR for accepting me as a QA tester for a small period of time as

an intern, where I learned the in and outs of manual testing for virtual reality worlds. Without this experience the
research would be lacking.

Automated Performance Testing for Virtual Reality
Master Thesis

Georgios Kokkinos∗
Utrecht University

g.kokkinos@students.uu.nl

S.W.B. Prasetya†
Utrecht University
Utrecht, Netherlands
S.W.B.Prasetya@uu.nl

F.P.M. (Frank) Dignum‡

Utrecht University
Utrecht, Netherlands
F.P.M.Dignum@uu.nl

ABSTRACT
With the coming of Virtual Reality (VR) and its increased compu-
tational requirements, performance testing has become extremely
demanding. In this study automation of such testing is investigated
by comparing results from manual testers versus adaptive agents
that play through a First Person Shooter (FPS) game. Results in-
dicate that automation of performance testing can provide good
results and is on par with manual testers in several aspects. Unfor-
tunately we can’t conclude that such an automation as described
here can replace the human tester but it can certainly help ease the
workload.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Interactive games; Software performance; • Comput-
ing methodologies → Artificial intelligence; Machine learning;

KEYWORDS
Behavior trees, Finite state machine, Reinforcement Learning, Un-
real Engine, Virtual Reality, Head Mounted Display, First Person
Shooter, Frame per second, Domain specific language.
ACM Reference Format:
Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum. 1997. Au-
tomated Performance Testing for Virtual Reality: Master Thesis. In Pro-
ceedings of Test conference (TEST ’18). ACM, New York, NY, USA, 25 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Virtual reality (VR) industry noticed a huge surge in popularity
from 2015 and onwards. It has a big range of uses from entertain-
ment and training to innovative forms of marketing. Virtual reality
headsets have been released from major companies like Oculus
from Facebook and Vive from HTC and Steam. Samsung released
the Gear VR to make VR possible on their smartphones, but with
∗Master student
†First supervisor
‡Second Supervisor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
TEST ’18, January 2018, Utrecht, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Google Cardboard developers were also able to create VR experi-
ences for other types of smartphones [39]. The game industry has
taken advantage of this fairly new technology and a lot of compa-
nies, indie and major ones started developing experimental games
,tech demos and even AAA (triple -A) titles. VR gaming is on the
rise with 63 % of most frequent gamers being familiar with it and
one out of three stating that they will buy VR products in the next
year [16]. Resources spent for the creation of such software are
immense and failure is not an option.

Extensive testing has to be done in order to assure that the quality
of the project is high enough to be competitive in the market. The
game development process is mostly based on black box testing. It
happens though, that game testing can become more complex as a
result of the diverse development for different components of the
game and automation is mandatory to achieve the required results.
Testing plays an important role in every development steps, and
the developing team only moves to the next level after approval
from the testing team [6].

With the coming of VR the range of issues applicable for testing
expands, with the most notable ones being bigger frame rate depen-
dencies ,motion sickness and tracking [45]. When the frame rate
drops below 60 or else the rendering and game logic requirements
exceed 20ms of processing time, jittering can be noticed making
the experience "laggy" causing discomfort to the user [47] [45]. As
a result being able to achieve this frame cap consistently and give
the user a seamless experience, extensive testing has to be done
with full playthroughs in all parts of the game. If you combine it
with diverse hardware (desktop or mobile) that can have different
impact in the game, the resources required for testing became im-
mense. Our core idea is to develop an AI-agent that will provide
essential data in performance runs so we can show that automation
is possible and successful.

AI has been used before to play through a game with different
goals in mind. There are various AI competitions about different
games where competitors create bots that play the game in or-
der to beat it or compete between them . One such competition is
the Infinite Mario Competition with the intention to win as many
levels as possible. The clear victor in the competition was the A*
algorithm [40], which due to Mario’s deterministic nature, allowed
for perfect prediction and timing. One interesting point was that
the algorithm, played in a manner that performs impossible feats,
appearing totally unnatural to the human eye. Competitions with
different goals in mind exist like the Turing test track of Mario AI
Championship with intentions of playing the game in a way similar
to a human. The most common methods used in this competition

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

were hand coded rules, supervised learning , indirect representa-
tion, neuroevolution via Artificial Neural Networks (ANN), directed
scripting and behavior trees [20].

As mentioned already , time and money requirements for game
development are huge. All of themodern game companies use Game
Engines , which are state-of-the-art resource for game development.
They support common foundations such as texture rendering, world
management, event handling and AI. Even though game engines
provide all the core functionality needed , each game is its own en-
tity with different logic than others and has to be treated according
to its needs. Same goes for its AI. Different game logic has to be
implemented according to in game situations and circumstances
although some parts may be common across different games (e.g
path planning). It works in a similar way if you want to create a
bot that plays through the game.

In this study we develop a VR game and implement an agent
that can play through it. We propose a basic agent implementation
that can potentially work in multiple environments without major
changes in the code. We also provide a special implementation of
the agent that can provide good results for re-testing purposes. We
perform a study where we evaluate manual testers versus our im-
plemented agent in terms of performance testing findings. Results
indicate that automation of performance testing can provide good
results and is on par with manual testers in several aspects. The
paper proceeds as follows: In section 2 we provide and analyze
related work. In section 3 we show our research goals. Next in
section 4 we take a look at our research approach. Experiments and
discussion are provided in section 5. Last in section 6 we conclude
our paper.

2 RELATEDWORK
Work has been done before to automate testing in the video games
industry. One approach that is popular in software testing in general
is the record and playback testing. Such a method is presented on
"A Game Framework Supporting Automatic Functional Testing for
Games" [3] where they create an HTML5 testing framework for
games. They basically enhanced that framework with a testing layer
that can execute (playback) test scripts that perform user events
and assert the correctness of the game. A tester can create a test
script either by writing the script directly or by playing the game
and capturing the game-play actions. The test script consists of
various features such as controller events and requests to execute
any methods / functions of the game. (e.g. load a certain level). One
major disadvantage of record and playback methods is that manual
work is required to either write the script that will run the game
or record a certain number of actions that will create the script
automatically. Furthermore another difficult situation to handle,
is the timing of events. Due to the dynamic nature of games (e.g
enemies, randomization of events e.t.c) when timing is not exactly
right as in the recorded test script it may not always reproduce the
same results, which is unacceptable. As a result adaptation in real
time is required.

There has also been substantial work in the domain of creat-
ing Domain specific Languages (DSL) for games that can be used
to express a game as an application domain in a higher level of
abstraction. An important mention in this domain is the Game

Description Language (GDL) which was first introduced by the
Stanford Logic Group of Stanford University [32]. The idea behind
it is to create general game playing which refers to the design of
Artificial Intelligence programs that are able to play more than one
game successfully. For many games like chess, computers are pro-
grammed to play these games using a specially designed algorithm,
which cannot be transferred to another context. For example, a
chess playing computer program cannot play checkers. A General
Game Playing system, if well designed, would even be able to help
in other areas, such as in providing intelligence for search and
rescue missions.

In the same spirit, we created our Agent and tried to generalize
functionalities that possibly remain consistent in the majority of
VR games. We didn’t create a DSL but if we hypothetically connect
it to one, it will provide flexibility in the manner of our Agent’s
suitability to play on other games. The genre of the game also plays
an important part when you try to create a higher level abstract
description. We performed a quantity measurement of how many
VR games are first person games and by first person we refer to
the graphical perspective is rendered from the viewpoint of the
player’s character. It turned out that 75% are first person games so
we decided to develop such a game and perform our tests in that
regard.

For the agent part we used a mix of behavior trees, dynamic
programming and reinforcement learning for retesting. A brief
explanation of the technologies is described here while more infor-
mation about them and extra related work about the most common
machine learning methods for video games [26] including Neu-
ral Networks [19], Reinforcement Learning [37], Apprenticeship
Learning[36] and Evolutionary methods [21] [4] can be found in
the appendix.

A behavior tree (BT) is a mathematical model of plan execution
used in computer science, robotics, control systems and video games.
They describe switchings between a finite set of tasks in a modular
fashion. They have seen great success in the creation of AI for video
games. Considering as the evolution of finite state machine (FSM)
with the advantage over them to be more easily manageable as
the AI grows in complexity and also being reusable. Each tree is
goal oriented, meaning that they are associated with a high level
goal they want to complete. The leaves are the actual commands
that control the AI entity, and forming the branches are various
types of utility nodes that control the AI’s walk down the trees to
reach the sequences of commands best suited to the situation. The
trees can be extremely deep, with nodes calling sub-trees which
perform particular functions, allowing for the developer to create
libraries of behaviors that can be chained together to provide very
convincing AI behavior. Development is highly iterable, where you
can start by forming a basic behavior, then create new branches
to deal with alternate methods of achieving goals, with branches
ordered by their desirability, allowing for the AI to have fall back
tactics should a particular behavior fail. [5] [48]

In our research we tried to make the agent as adaptive as possible
to the environment. One major influence from the literature is the
work Agent Architecture Considerations for Real-Time Planning in
Games. This paper describes lessons learned while implementing
real-time planning for NPCs for F.E.A.R., a AAA first person shooter
shipped for PC in 2005 [34].

2

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

They implement their agents using event driven methods and
define what the agent perceives as stimulus of the environment.
They also create an adaptive system based on a data structure that
is stored dynamically. They call it WorkingMemoryFact which is a
record containing a set of associated attributes. Different subsets of
attributes are assigned depending on the type of knowledge the fact
represents. Ten possible types of knowledge are available, including
Character, Object, Disturbance, Task, PathInfo, and Desire Facts.

A pseudo-code representation of a WorkingMemoryFact follows
found in the above mentioned paper:

Next they introduce the confidence value. Confidence may rep-
resent an NPC’s current degree of stimulation, proximity to some
object, or degree of desire. When applied to the Stimulus attribute,
confidence represents how confident the NPC is that he is sensing
some stimulus. For example, the confidence of a Character Fact’s
Stimulus attribute indicates the current level of visual stimulation
that the NPC is aware of for this character. The intensity of an
NPC’s Desire attribute is characterized by his confidence that he is
feeling this desire. The confidence value of a Desire Fact’s Desire
attribute indicates the NPC’s current urge to satisfy some desire.
This could be for example a value of how much he wants to attack
an enemy and is changed dynamically based on stimulus.

With performance testing comes a lot of testing that needs repeat-
ing for different devices and most important a load of regression.
When we are doing retesting we need to also prioritize our test
cases to get feedback faster. Our core idea for the agent is to reach
the places that performed worse in previous runs faster and as a re-
sult identify possible performance bugs as soon as possible. For the
purpose we used reinforcement learning to memorize the regions
with low performance drops and prioritize them using path nodes
that lead to them faster.

Our major influence for that was the work Reinforcement Learn-
ing for Automatic Test Case Prioritization and Selection in Contin-
uous Integration [42]. Their method uses reinforcement learning
(RL) to select and prioritize test cases according to their duration,
previous last execution and failure history. In RL, an agent interacts
with its environment by perceiving its state and selecting an appro-
priate action, either from a learned policy or by random exploration
of possible actions. As a result, the agent receives feedback in terms

of rewards, which rate the performance of its previous action. [7]
A state represents a single test case metadata, consisting of the
test cases approximated duration, the time it was last executed and
previous test execution results. As an action the test case priority
is returned. After all test cases in a test suite are prioritized, the
prioritized test suite is scheduled, including a selection of the most
important test cases, and submitted for execution. With the test
execution results, i.e., the test verdicts, a reward is calculated and
fed back to the agent. From this reward, their agent adapts its expe-
rience and policy for future actions. We adapted this method in a
VR world by mapping certain regions as our test case targets.

Another important step in our literature is the work reinforce-
ment learning for solving shortest - path and dynamic scheduling
problems. They show that an RL-based implementation of the in-
ternet protocol with adaptive and cooperative agents can transport
data following the shortest route in time from a source computer to
a destination, even if the transfer capacities of connections change
in time. In contrast to the famously used static routing algorithms,
the proposed method is capable to cope with dynamic conditions as
well. More on this on the section 6, where we discuss the advantages
of such a method for dynamic environments.

To finalize our related work section we take a look at two works
about automation in more traditional software testing. First , in
the work "Unit Testing Tool Competition - Round Three" [38], the
authors evaluate a number of recent automated unit testing tools,
using state of the art techniques. More specifically they evaluate
seven tools that generate JUnit test cases for Java classes. The
results are similar to what we stated in the abstract, namely that
so far automated tools cannot completely replace humans. There
are errors that were found by human and tools; so for these at
least theoretically they can replace human. Nonetheless there are
errors that humans found and the tools did not, exactly like our
approach. Our implementation features a knowledge base that gives
information to our agent about the virtual world. It can be used to
give greater importance to certain objects or decide what actions
are to be performed with them. It can possibly be considered as a
way to create an abstract test case and if it’s used for this purpose,
creating tools to automate test case generation like in thementioned
methods of this paper, would provide interesting future work.

Nextwe discuss thework "Future Internet Testingwith FITTEST"
[44]. The FITTEST project, was set to explore new testing tech-
niques that will improve the capacity to deal with the challenges
of testing Future Internet applications. Future Internet is a general
term for research activities on new architectures for the Internet
and feature different challenges in testing. For example about large
scale and evolution of components which means that components
are continuously added to the system and evolve in a rapid way,
they propose prioritization of tests according to available time and
budget. In the same way we propose a method to overcome a differ-
ent aspect of performance testing. In our paper instead of regular
playthroughs for finding performance errors, we also proposed a
method that provides better performance on retesting with pri-
oritizing of certain regions. Another proposal of theirs is about
large Feature-configuration space where highly customizable envi-
ronments offer too many variables that can be tweaked and need
testing. This is highly related to video games as they are considered
environments with possible infinite actions/variables and having a

3

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

test case for each different component separately can be extremely
time consuming. In our work the abstract test cases of our knowl-
edge base can lead to add more methods into our implementation
for example about combinatorial testing (CT) which the authors
of FITTEST also propose, as a method of software testing that for
each pair of input parameters of a system, tests all possible discrete
combinations of those parameters[2]. More about CT can be found
in the related section of the appendix. Creating a paper such as
this could be possible if our research improves and expands into
covering different aspects of testing.

3 RESEARCH GOALS
Due to the different nature of the VR games that require a headset
instead of a monitor and looking around with head movement in-
stead of a mouse or a controller extra challenges appeared when
developing agents for playthroughs. Also to the best of our knowl-
edge automation in performance testing of VR games was not
covered before in the academic literature so our research question
is formulated as follows:

• RQ1: Can agent-based AI be useful for performance testing
in VR worlds?

Agent-based AI is a broad term and an important part of the
above question would be:

• RQA: What is the intelligence level and behaviours needed
to playthrough the game with performance testing as a goal?

This basically breaks down to if the agent should behave as a
human or not. Each approach has its advantages and disadvantages
as we will see later in the discussion section where we evaluate
manual testers versus our agent that behaves more in a way that
resembles what a tester would do.

Furthermore we will evaluate if prioritization of test cases can be
learned and how a reinforced path planning routing will compare
versus a manual tester in terms of time required to find performance
issues. By that we will answer the our second research question:

• RQ2: Can we retest performance issues using reinforcement
learning in VR?

The paper proceeds as follows: first in section four we provide
insight into our implementation of the adaptive agents. Next in
section five we present the experiment setup and the results. Last
in section six we conclude and offer some discussion points.

4 RESEARCH APPROACH
For this study a VR First person shooter (FPS) was designed in a
way that it resembles modern video games. It features different
regions with enemies, obstacles and items that can be interacted
with.

Given a VR under test, our approach works by deploying an au-
tonomous test agent to the VR in the role of a player. Such an agent
is configured to have a certain testing goal, e.g. to find performance
issues in the VR. Once deployed, it will autonomously explore and
interact with the VR towards fulfilling its goal. In theory multiple
test agents can be deployed, but in the current work we limit our-
selves to single agent setups. Since in this context there is only one
agent, we will refer to it by "the agent".

The agent is based on a sensing system of "seeing" and "hearing"
and can adapt in a dynamic environment while also different varia-
tions of the game without altering the code behind it. For the path
planning we use navigation meshes[43].

For the cause Unreal Engine 4.16.3 (UE4) was used. It’s a pow-
erful game engine that’s been used in a variety of successful AAA
games. With its code written in C++, UE4 features a high degree
of portability. It has won several awards, including the Guinness
World Records award for "most successful video game engine". Fur-
thermore it features some basic AI architectures like Behavior trees
and Navigation meshes. For the implementation of the agent logic a
mix of Blueprints, C++ and Python was used. The Blueprints Visual
Scripting system in Unreal Engine is a complete gameplay scripting
system based on the concept of using a node-based interface to
create gameplay elements from within Unreal Editor. As with many
common scripting languages, it is used to define object-oriented
(OO) classes or objects in the engine. Next we will present more in
depth details about the agent implementation.

4.1 Basic Agent Information
For the agent to work with a VR headset a certain implementation
step is crucial. We need to lock the VR headset orientation settings
and not allow strafing and turning of the camera with movement
from the headset. This will allow the camera to follow the agent
without outside hindrances. The orientation of the camera is purely
controlled by where the agent focuses inside the game.

Next about the sensing system, the agent uses an overlapping
cone originating from it’s head and moving in the forward direction
up to 1200 Unreal Metric Unit with a radius of 95 degrees. This
serves for the vision function , meaning anything that overlaps
with the cone will be perceived from the agent. For the hearing
function an overlapping sphere is used that perceives any item that
produces a sound in a certain radius. This is used for "hearing"
the testing milestones that are used for retesting. (These "sensing"
options are provided by the engine and can be seen in figure 1)

Our agent also features a global knowledge system that gives
additional information about the objects that we want to interact
with. They are used as a data structure in the following format:

It features a struct attribute "ActionMapped" that defines what
should be done with an object when seen. Available options are:

4

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

(1) Interact, which basically performs the action that is spec-
ified in the game for the specific object (e.g "Open" for the
door, "Collect for the statue" e.t.c.).

(2) Wait, which moves near the item and observes it.
(3) Shoot, which moves in a specific range and shoots at the

object.

Fig 1. Example of sensing tools for the agent

Next it features a bool attribute "Ignore" that informs the agent
if an item should be ignored or not . Last it features a float attribute
"Desire" that gives a metric of howmuch the agent wants to interact
with an item. This is used for prioritization reasons in case of
multiple items being perceived simultaneously.

4.2 In depth look
More in depth about the implementation, when the agent sees or
hears an object it updates a data structure called "ActorScores"
that contains information about the identity of the object and its
associated score value. The score value is a combination of the
desire value from the global knowledge base with the distance
between the agent and the object. The further away the object is,
the lower the score is. As a result our agent moves to the object
with the highest score first.

For the gameplay behaviours and most of basic Agent behaviour
the Blueprint based language of Unreal Engine is used. A small
example of the update of "ActorScores" can be seen on figure 2.

The node-function "GetScoreForActor" returns the score value
for the object and the boolean value "Ignore" that states if it should
be ignored or not. The "Branch" node is basically an IF statement
that checks the previouslymentioned boolean and if false, the object
is added to the data table "Actor scores" together with its associated
score using the "Add" node. Some extra details about the function
"GetScoreForActor"; we basically read the "Desire" value from the
knowledge base and get the difference between this value and the
distance of the agent of the object as mentioned before. Because
the desire values has a range between 0 and 1 we also normalize
the distance value. As follows:

S = D − || ®P − ®O | |

With ’S’ showing score ,’D’ desire , ’P’ vector of player location
and ’O’ vector of object location.

Fig 2. Blueprint Example

When no items are seen by the agent a grid of random size (be-
tween a certain radius) is created around the agent and he chooses
a point for his new location goal that satisfies the criteria:

(1) It is far away from other points that the agent previously
visited (Notated as DPV).

(2) It is far away from other objects that the agent previously
visited (DOV).

(3) Its is far away from it’s current location (DS).
A score function is formulated from the above criteria with

specific multipliers that represent their importance:
GoalScore = 10 ∗ DPV + 3 ∗ DOV + 2 ∗ DS (1)

We refer to this as equation (1). If any items are seen during the
path , the action /movement is interrupted and the agent moves
towards the newly discovered item.

Fig 3. Behavior tree Example

On the behaviour tree this is representedwith a selector node and
a boolean check. As we talked about the BT’s on the related work,
selector is basically an if statement that checks a condition. The
implementation of BT’s in UE4 follows an event driven method. It is
based on event-driven programming , a programming paradigm in
which the flow of the program is determined by events such as user
actions (mouse clicks, key presses), sensor outputs, or messages
from other programs/threads [8]. The behavior trees just passively
listen for events which can trigger changes in the tree. When this
happens a certain part of the tree can be executed (More on this
on the related section of the Appendix). Basically when an item
is perceived we set a bool value name "CanSeeActor" to true that
will change the sequence of actions for the agent in the next tree
traversal.

C++ was used for more advanced requirements of the project
when the blueprints visual system didn’t cover our implementation
requirements. An example of that is when we created an Array

5

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

of structs to store value for the Q learning Implementation. Basi-
cally an int array that represents the rewards for the actions and
its corresponding state name. Unreal’s C++ is a bit different than
the regular C++ syntax with added features that enable classes,
functions, variables e.t.c to interact with the engine’s interface and
blueprint merging. An example is seen on figure 4.

Fig 4. Example of C++ snippet in Unreal that describes a struct with an
array and a string. Exposing a variable to the editor is done by using the special
macro, UPROPERTY() . By passing more information to the macro we can call
it in blueprints , put into categories and more. [13]

Considering that the implementation runs on a loop. the key
points of the agent’s algorithm can be described with pseudo-code
as:

if CanSeeActor == false then
Choose Location
Move to Location

else
while ActorsSensed != NULL do

Add object to array ActorsSensed
Calculate Score for object
Move to Location of highest scored object
Perform action (Interact || Shoot || Wait)
Remove object from ActorsSensed

end while
end if

"Choose a Location" on line 2 of the algorithm is based on equation
(1).From this point on we will refer to the whole algorithm as
Algorithm (1).

4.3 Q Learning
As discussed in the related work, since the level of repetition in
performance testing is high, we wanted to prioritize the findings
of performance issues for next runs and provide a way to give
feedback faster. To achieve this we used reinforcement learning
and more specifically Q-learning to reinforce certain behaviors that
can lead to issues or bugs, based on previous results.

In Q learning , an agent interacts with its environment by per-
ceiving its state and selecting an appropriate action, either from a
learned policy or by random exploration of possible actions. As a
result, the agent receives feedback in terms of rewards, which rate
the performance of its previous action.

Moving towards our approach, the core idea is to map locations
of the environment that can have big impact on the performance
or map various actions that can lead to performance bugs / drops.
To achieve that we instantiate certain milestones in key spaces of
the environment. In detail, at the start of the game ,at the position
of each obstacle (in our case "doors") a milestone is added on it’s
origin position. This is done automatically by getting the position

of each obstacle with the help of the game engine functions. These
milestones are programmed to produce a sound and can be per-
ceived by the agent through its hearing sense. As a result the agent
knows their locations from the very start. Their "Desire" score is
also higher so they are prioritized over other objects. When the
agent reaches a milestone a certain amount of time T is given before
the agent moves to the next milestone. Within this specified time
the agent is free to test as described on Algorithm (1) of section
4.2, meaning to interact with objects that he’s seen and that are
near him. If the performance is below a certain tolerance level the
location is mapped. This is used to fill the reward matrix for the Q
learning algorithm.

We map traversal between locations to the Q learning’s reward
matrix, such that Q(i,j) represents the reward of doing the action
"go to location j" when the agent is in the location i. These locations
in our case are the milestones. When a performance drop is mapped
as seen above, a reward is given on the milestone according to how
big the drop was. The bigger the drop, the better the reward.

More specifically, in the matrix above we consider the states
as numbers, basically the number of the milestone and actions
as go to state (milestone). Regarding the values inside the matrix,
the 0 on the matrix indicates that there is a path between the
two milestones but no reward is given when interactions happen
nearby. The -1 indicates that there is no direct path between the
two milestones. The 100 is the reward given if the milestone 5 (for
the above example) is visited and a performance drop is noticed. If
there is a -1 in the matrix and by interacting with an obstacle a path
becomes feasible, for these two milestones the -1 becomes 0. This
is how connectivity is mapped while creating the matrix. After the
reward matrix is created we pass it on the Q learning algorithm.

The transition rule of Q learning is a very simple formula:

Qt+1(s,a) = Qt (s,a) + α(r + γmaxQt (s ′,a′) −Qt (s,a))
Here Q(s’,a’) denotes the action-state value of the next possible

state, choosing optimal a (i.e. the next action), r the immediate
reward provided by the reward matrix "R", and α is the learning rate
of the agent. Having reached state s, action a must be chosen which
maximizes, Q(s,a). This is referred to as greedy-method where in
each state the best-rewarded action is chosen according to the stored
Q-values. The term policy means assignment between states and
actions. In each state, policy ϕ is defined as ϕ(s) = a, where action a
yields the maximal reward during the next step in state s. However,
in some cases actions which do not assure good immediate rewards
should also be chosen, because after a couple of decision steps the
decision chain may provide much higher reward, than in the case of
greedy steps. Therefore, the agent must carry out exploration when

6

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

it selects an action. We use the ϵ-greedy exploration method where
the agents choose best action a with probability of 1-ϵ , and select
alternative actions randomly with the remaining ϵ probability (ϵ
ϵ[0, 1]). This function gives a certain chance to avoid local optima
and find maximal long run reward. Finally the γ parameter has
a range of 0 to 1 (0 <= γ <= 1). If γ is closer to zero, the agent
will tend to consider only immediate rewards. If γ is closer to one,
the agent will consider future rewards with greater weight, willing
to delay the reward. Alpha notated as α is the learning rate has a
range of 0 to 1 (0 <= α <= 1). It determines to what extent the
newly acquired information will override the old information.A
factor of 0 will make the agent not learn anything, while a factor of
1 would make the agent consider only the most recent information
[41] [28]

The pseudo code of Q-learning proceeds as follows:

(1) Initialize the Values of matrix Q(s, a) to zeros.
(2) Observe the current state ’s’.
(3) Choose an action ’a’ for that state based on one of the action

selection policies (ϵ greedy)
(4) Observe the reward ’r’ as well as the new state ’s’.
(5) Update the Value for the state using the observed reward

and the maximum reward possible for the next state. The
updating is done according to the formula described above.

(6) Set the state to the new state Qt+1, and repeat.

The Q matrix is converged in every step closer to the optimal
solution. In the end it should look like this:

We use the results of the Q matrix which our agent follows as
described below to make him able to find the optimal paths to the
performance drops.

We present certain algorithmic steps that map the most impor-
tant parts of the retesting agent implementation:

(1) Create the Reward Matrix ’R’ using the algorithm:
whileMilestones left to visit != NULL do

Move to a random unvisited milestone
Set milestone to visited
Start Countdown Timer with T=5 seconds
while T < 5 do

Use Algorithm (1)
if Performance < Tolerance Value then

Give reward to milestone
Map Location

end if
end while

end while
(2) Run the Q Learning algorithm offline and get the Q Matrix.

(a) We think of it as running a 2D simulation of rooms in
which we converge the Q matrix step by step by choosing
different states and actions as described above.

(b) After many trials, the action-value function Q keeps im-
proving and will converge to the optimal Q*.

(3) Use the converged Q Matrix and check which actions are
choosed when traversing the Q matrix for each starting state.

(a) The actions are choosed greedily by checking which ac-
tions have the highest Q value.

(b) We also set two different termination criteria. The first
one is when more than 20 steps happen while running
the simulation starting from each state separately and the
second one is if the maximum reward/ terminal state has
been reached.

(4) Sum up the total number an action was choosed in the previ-
ous step and use the results in a form of prioritization for the
agent to follow in the retesting run. For example with the
mentioned matrices the endstate or else more desirable state
would be state 5 and since when we reach state 5 for every
traverse of different starting state, it is the most visited state
and the biggest score is assigned to it.

(5) On the retesting run we use the pseudo-code of step 1 but
instead of moving to random unvisited milestones they are
prioritized as seen on the previous step.

Since our environment is pretty static we create the reward ma-
trix online (while the agent plays the game) but create the Q matrix
offline (not while playing). This could change in more complicated
situations such as a dynamic environment but in our case it was not
needed and saved as a lot of time. We propose this implementation
as a basis for future work in that regard.

Note that the matrices shown above (Reward matrix and Q matrix) are not
the real ones that are produced. They are shown for ease of understanding. A
real example of the matrices can be seen on the appendix. Matrix example is
taken from [28]

5 EXPERIMENT
To answer the research questions two experiment were conducted.
In section 5.1 the game design and the props used are discussed. The
experiment requirements and procedure are covered in section 5.2
and 5.3. The first experiment which is about normal performance
testing, is covered in section 5.4 while the second one is about
retesting and is covered in section 5.5.

Fig 5. Region in the experimental VR game

7

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

Fig 6. Starter Content: Example of free assets used, provided from Unreal
Engine.

5.1 Design and props
For this study a VR FPS game was designed. To create the feel of a
real game we added interactions with the environment and fighting
with enemies. The space is divided in twenty rooms. Sometimes
they are separated with obstacles, meaning doors that the player
can open and gain access to them. An example of a region on our
game can be seen on figure 5.

For the props the "Starter content package" that comes free with
UE4 was used. It features a wide range of assets, everything from
materials to particle effects , primitive shapes and various 3d objects.
Example objects of the "Starter content package" can be seen on
figure 6.

The games was made for mobile VR and can run on any android
device that is above certain hardware requirements. A wireless
game controller is also needed to control the character. For the
experiment we used a Xioami Redmi Note 4 smartphone, a basic
Google Cardboard and an OEM wireless controller.

5.2 Performance drop design
It’s common knowledge that the graphic requirements of video
games use most of the computation time. It is also verified by our
results as you can see on the Figure 8, that rendering (RT , orange
line) takes more time to be processed compared to the game thread
(GT, blue line) or game logic. For the experiment there were several
drops that can be evaluated. Some were created technically by us
and some were already there due to implementation reasons.

List of Performance Errors:

(1) The first performance drop that is noticed is when the level
is loaded. We didn’t add a loading screen and everything is
loaded at once when the game starts. This causes overhead
but since it’s a regular phenomenon it was not considered
to be important and it seemed natural to most of the testers
so we don’t count it.

(2) The second performance drop was noted when an object
is instantiated for the first time. We load everything in the
beginning but the bullets that the player shoots are instan-
tiated when the first shot is fired. This results in a slight
performance drop which occurs most of the time but not
always. This is a common problem in game development
and may be solved by instantiating a number of bullets in a
pool at the start of the game and recycling them. We didn’t
solve it since it added to our experiment.

(3) There are other performance drop that are not found 100%
of the time. One of them is when a certain battle scene takes
place with two enemies. The decisions and results when
fighting can vary from run to run and sometimes can last

longer and be more intense gameplay and rendering wise.
This can cause performance drops.

(4) Five performance drops were technically added on five differ-
ent rooms. We used and invisible trigger box that when the
player overlapped with it an explosion of particles happened,
causing the performance to drop for a couple of seconds.
Three of them were easy to find, as they were inside regions
that required from the player to enter to be able to proceed to
the game. Two of them were added in "dead" regions that the
player would not normally visit and doesn’t contain some-
thing for the agent to perceive and find interest to move to.
One was even harder to find than the other as seen from our
experiment, at least for the agent.

(5) Performance drops can also happen due to gameplay errors.
In our game we had fifteen items that the player can col-
lect. In case the player shot at those items, a performance
drop was triggered. We added this specific bug to simulate
problems that can happen during the game development
cycle and require from the testers to think outside the box
in order to find them. We also try to note the importance of
not playing in a fashion that the designers want to.

(6) Performance spikes can happen at random and not all are
controllable. There are various issues for that. When garbage
collection happens for example, there might be a small drop
in performance. The garbage collector is an important part
of the engine and will automatically delete objects when
they are no longer needed. An object is no longer needed
when it is no longer referenced by any other object. [15]

(7) There was a performance issue that occurred only in a spe-
cific device of one of the testers.We also asked the participant
to use the agent and identify if the same data can be collected.

To concludewe had 20 performance drops available that we knew
about , happened with 100% reproduction rate and expected the
agent and the testers to find. We consider these the main findings
while everything as additional findings.

One of the problems we had to solve is how the agent will report
these problems back once they were found. When a drop happened
we used the in built function of the game engine to capture a
screenshot and save it. We also saved the global location (XYZ)
of the player and exported it into a file. With these information a
developer could use them to reproduce the error quite easily. This
works well for the bugs that happen without interacting with the
environment , but if an interaction is required for the bug to trigger
these are not enough because you likely wouldn’t understand the
interaction needed to reproduce the drop. A video could be captured
in the entire playthrough as a solution so you can see the full
interactions needed but we didn’t go to that extent.

5.3 Methods and experiment procedure
We performed two different experiments. For the first one we tested
how our agent performs versus manual testers. We hired five pro-
fessional testers, gave them detailed instructions about the world
and asked them to report any performance drops found during their
playthrough. We also got the detailed performance log that is auto
generated on the device after a completed playthrough to compare

8

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

the general performance. Last, the time required for the manual
tester versus the agent’s time required is evaluated.

For the second experiment, we evaluated the time required for
the agent to retest the most critical drops versus one manual tester
that was already experienced in the game and was given instruc-
tions of which regions to retest.

5.4 Performance drop finding experiment.
The experiment for the manual tester part consists of the following
parts:

(1) Consent Form. To inform the participant about experiment
and warn him/her about the risks of VR.

(2) Environment familiarization.The participants are shown
the regions of the game via pictures, so they can familiarize
with it.

(3) Game and testing Instructions. The participants are in-
formed about the controls of the game and their objectives.

(4) Testing theVRgame.The participants are testing the game
and mark any performance drop.

(5) General and reporting questionnaire. The participants
answer some general questions and report any issues found
about the game.

The experiment for the agent consists of the following parts:

(1) Agent playmodeWe run the agent ten times to collect data
with the purpose of playing the game like a human would,
or more like the designer’s expectations of playing the game
are. We recorded the performance drops found and also the
time required for the completion of the game.

(2) Agent testing mode We run the agent ten times with a
purpose of testing the game, meaning not finishing the game
but wondering around until all performance drops are found
and doing unorthodox actions that can lead to bad behavior
of the game. We did that by tweaking the knowledge base.
For this experiment we focused only on the main findings
(errors (4) and (5)).

5.4.1 Results for Performance drop finding experiment.
Agent playing the VR game
Let’s start with the agent performance while playing the game.

The agent could complete the game with an average time of 4
minutes and 55 seconds. In the sum of the runs he found all the
performance errors that he was capable of finding. The only errors
that were out of its capabilities were the ones mentioned as game-
play errors (5). By tweaking the knowledge base to make the agent
able to shoot at items he became able to find them but that is not
considered as required behavior to complete the game.

Manual testers playing the VR game
The manual testers played the game with a purpose of finding

performance drops. Almost all the performance drops were found
(no matter hard or easy). Also 4 out of 5 found the gameplay errors
meaning they did try to shoot at the statues while the instructions
of the game that were given stated otherwise. In terms of time
requirements , when the tester was not familiar with the game it
took them around 20 minutes to find all the performance drops.

Agent playing mode results

Performance drop
caused by Found

Number of runs in
which they were
found

Easy to find rendering
errors (3 out of 3 were
found in every case)

Yes 10/10

Hard to find rendering
error Yes 5/10

Hardest to find render-
ing error Yes 1/10

Gameplay errors (15 out
of 15 were found in ev-
ery case)

Yes 0/10

Instantiating error Yes 7*/10
Intense gameplay fight
scenes error Yes 3*/10

Random Yes 5*/10

Manual testers results

Performance drop
caused by Found

Number of runs in
which they were
found

Easy to find rendering
errors (3 out of 3 were
found in every case)

Yes 5/5

Hard to find rendering
error Yes 4/5

Hardest to find render-
ing error Yes 5/5

Gameplay errors (15 out
of 15 were found in ev-
ery case)

Yes 4/5

Instantiating error Yes 3*/5
Intense gameplay fight
scenes error Yes 1*/5

Random Yes 4*/5

When the tester became familiar with the environment and the
game, time requirements drop dramatically to around 5 minutes.

Agent testing mode
The results for agent when he was in testing mode proved to be

quite chaotic in terms of timing. He had though 100% success of
finding all the performance drops.

9

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

Agent testing mode results

Performance drop
caused by Found

Number of runs in
which they were
found

Easy to find rendering
errors (3 out of 3 were
found in every case)

Yes 5/5

Hard to find rendering
error Yes 5/5

Hardest to find render-
ing error Yes 5/5

Gameplay errors (15 out
of 15 were found in ev-
ery case)

Yes Based on Knowledge
Base

Instantiating error Yes 4*/5
Intense gameplay fight
scenes error Yes 2*/5

Random Yes 5*/5

Fig 7. Results for artificially created errors. On the vertical axis we can see
the percentage of errors found for each corresponding category.

One problem with this method was the chaotic time consistency
which ranged from 4 minutes and 36 seconds to 25 minutes and
12 seconds. The Agent is less consistent in time than the manual
tester due to the randomness in the pattern of moving when no
items are perceived. This can mean that in bigger environments,
it could be more time depending. Last about the gameplay errors
we have to note that we tweaked the values on the knowledge base
in some runs to simulate "out of the box" behavior. This enabled
the agent to find the gameplay errors. Of course not all out of the
box behavior can be programmed so this is not the most optimal
solution.

*Asterisks in the tables mean that errors didn’t happen in every run.
The agent was able to identify them every time they happened though. For
example Instantiating error doesn’t happen 100% of the time but when it
happens it is reported.

5.4.2 Special case testing.
One of the testers reported he had a field of view (FOV) fluctuation
issue that made it hard for him to complete the test. Basically huge
drops were happening when the field of view changed rapidly. For
example when he was looking at a wall and quickly changing his
orientation resulting on looking at the opposite direction.

Fig 8. Graph comparison for Special Case Testing between Agent (above)
and Manual (below). Horizontal axis x shows the number of the frames and
vertical axis y shows the computational time required for the certain frame to
processed in milliseconds (ms). Orange line represents the Rendering thread
(RT) and blue line represents the game thread (GT)

We wanted to see if our agent would recognize the problem. We
asked the tester to run the automated agent on his device and ob-
serve the performance drops. He told us that the problem occurred
and was exactly the same. This shows that our agent would provide
good results even in situations that happen in a real development
environment.

We can see from the two Frame Rate graphs above that the
patterns that they follow are similar. By similar we mean the fluc-
tuations that are observed on the orange line/ rendering thread
(spikes happen when performance drops occur). Furthermore the
average FPS recorded in this particular case by the user playing
was 48.73 while the average FPS recorded by the agent was almost
the same 52.29

5.4.3 Discussion.
As the results indicate from the tables and figure 7, the agent can
perform good in terms of finding performance errors that are based
on graphic issues and gameplay actions that are scripted by the
programmer. This answers our first research question (RQ1) by
showing that it is possible to automate performance testing in VR
worlds with 100% success rate, at least for certain parts.

We can’t really support though, that the agent will be able to find
performance drops caused by functional errors or player actions
that are not anticipated. Having a knowledge base that can differen-
tiate in terms of gameplay actions can definitely help; however not
everything can be predicted. This is the major cause that forces us
to support the claim, that agents can’t replace human testers as of
now. Resulting in answering the RQ1 on a more negative way but
not absolute. It also helps us answering RQA by showing the poten-
tial of increased intelligence in agents. It might be true that even
an agent with very limited to no intelligence at all could provide

10

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

some results about performance testing. However by seeing that
more complicated issues can cause performance errors we believe
that the more intelligent the agent the better the findings will be.
This problem can be considered as a requirement engineering prob-
lem that balances work needed to increase the agent’s intelligence
versus using manual users to do the testing.

Next, the reporting of the problems can’t be as accurate as one of
a human user. While communicating with the testers I understood
that additional information can be provided by them that can be
essential and really difficult to collect with the agent. An example
of that could be the performance fluctuation drops mentioned on
5.4.2. While communicating with the tester he provided an accurate
description of the problem that an outside observer would have
difficulties understanding by looking at the currently generated
reports. Even if a video captured the whole gameplay action it
might be difficult to tell what the real problem is just by observing
it.

On the other hand we can never be sure that the human tester
will be 100% accurate in his reports or if he will even notice that the
performance errors always happened. For example in an intense
fighting scene the tester might not notice that the performance
dropped below the acceptable level because he is too focused on the
actions that he needs to do. In contrast to that because the agent is
absolute in terms of numerical values (e.g. when the framerate for
the last 20 consecutive frames is below threshold, save the location).
As a result we can be sure that no performance drops will be missed.
The threshold should be a bit lenient and not absolute e.g 60 frames
per second. A small spike to 40 for example in one frame may
not even be noticeable. Instead a certain number of frames can be
checked together and if the drop is constant and below a specific
threshold, it is then reported as a performance error.

It is also important to note that there may be false positives;
these are performance drops reported by the agent, but are not
actually noticeable by the users. In our case once the appropriate
tolerance level was found the false positives were minimal; For our
agent experiment while in playing mode, only 2 false positives were
noticed during 10 play tests.

Finally, we notice that an inexperienced user requires as much
time to cover the testing procedure as the agent in testing mode.
However it can be reduced dramatically when the user gains experi-
ence with the environment, resulting in overall better productivity.
We also had our agent to learn from previous experiences, so we
created as discussed above a method of mapping crucial test cases
on the environment that the agent can learn to navigate to and as a
result find performance errors faster. In the next section we discuss
the experiment based on this method.

5.5 Retesting experiment
The experiment for the manual tester part consists of the following
parts:

(1) Consent Form. To inform the participant about experiment
and warn him/her about the risks of VR.

(2) Game familiarization. The user was part of the first ex-
periment and was given extra time to familiarize with the
game even more.

(3) Test cases instructions. The participant is informed about
the locations and/ or actions they need to prioritize. Specifi-
cally pictures of the roomswere given that the tester was able
to recognize due to his experience with the environment.

(4) Testing the VR game. The participants are visiting the test-
ing locations and mark any performance drop while timing
their playthrough.

The experiment for the agent part consists of the following parts:
(1) Mapping performance drop locations in a reward matrix that

connects them.
(2) Running Q learning algorithm to find optimal traversal route.
(3) Applying the results and record time required to retest cer-

tain locations first.

5.5.1 Results for Retesting experiment.
Manual Testing.
The results for the manual tester are pretty straightforward. The

tester was able to recognize the locations and move to them in the
fastest way possible. The average time required to retest all locations
was 1 minute and 29 seconds with very small deviations.
Q Learning based agent.

The average time required to retest all locations was on par and
even slightly better than than the manual testing experiment with
average time 1 minute and 24 seconds. This results are after all
the learning procedure is completed. The milestones that the agent
prioritized were the best possible options, meaning that the agent
, if there was a path available, moved on the region that had the
lowest noticed performance first. One last mention is that while
the agent retested all the main findings he also retested all regions
that were mapped while creating the reward matrix and are seen
on the next table marked as additional findings . That doesn’t mean
thought that he always re-found the error in the additional findings
regions since they don’t happen with 100% reproduction rate.

5.5.2 Discussion.
The results answer our RQ2 about retesting. We implemented
a method that is on par with human testers in terms of time re-
quired to retest. Nevertheless there are still some things that can
be improved.

As we have seen above the learning procedure uses a free roam-
ing procedure like the testing mode , a run that creates the reward
matrix and running the q learning algorithm to produce the Q ma-
trix. The time required for everything can deviate greatly since it
requires the agent to run in testing mode. The whole procedure
can take a lot of time especially in larger and complicated envi-
ronments but the benefits can be great as we see in our results.
Unfortunately in case all the performance drops locations change
everything should be re-learned from the start.

On the contrary while the tester should also be experienced with
the virtual world, a large amount of that experience remains and
even if the performance drop locations or if the design of the world
changes a bit, there shouldn’t be a problem for a manual tester to
cope with it. This probably puts the manual tester ahead of the
game again.

Another possible problem of our approach is that on testing
mode, locations of random drops are also mapped and they are
re tested along with the performance drops that happen 100% of

11

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

Retesting Agent timings
Additional Findings Time
3 1.19
3 1.27
1 1.27
2 1.14
5 1.34

the time. This may require extra time requirements but in our
case of limited space it didn’t seem to affect the results that much.
As we can see on the table above (Retesting Agent timings) the
resulting additional findings doesn’t seem to matter that much for
our occasion and the time required remains pretty much the same.

6 CONCLUSION AND FUTUREWORK
In case of a larger environment the agent would probably require a
lot of time to traverse from one place to another with all the required
gameplay actions in between. The required sequence of actions
needed in this case could be very long. What we would like to do
then, is minimize the sequence to obtain a new test sequence that
reproduces the error as fast as possible. There has been substantial
related work in traditional software testing for this kind of problem.
One of them is "Guided Algebraic Specification Mining for Failure
Simplification" which addresses the problem of log reduction by
rewriting the reported log in such a way that it preserves the ability
to reproduce the same error[11]. The paper presents an algorithm
for rewrite rules inference, and a terminating reduction strategy
based on inferred from a set of predefined algebraic rewrite rule
patterns that transform the log reports into a Finite State Machine
(FSM) procedure. A log is also generated in games (at least with
UE4) which provides ways to track actions and errors and the FSM
closely resembles the behavior tree systemwe use. Another solution
for failure simplification is Delta debugging (DD). In a few words,
DD tries to replay various subsequences of the original failing
sequence, starting from binary splitting and gradually increasing
the granularity until a smaller subsequence is found. Depending
on the size of the virtual world this could potentially take huge
amounts of time. Nevertheless various researchers have studied on
how to minimize the time required for DD as we see in the paper
"Reduce First, debug later"[12] where by combining the approach
of log reduction seen on "Guided Algebraic Specification Mining
for Failure Simplification"[11] they proved an improvement of the
DD execution time.

Next, we want to note that our solution of retesting would need
a lot of tweaks and adjustments in case that is applied in a different
andmore complicated virtual world. In terms of a world that is more
dynamic the Q matrix should be converged online to minimize any
possible differentiations. This would also show the positives of this
implementation over solving a path planning network with a static
algorithm like Dijkstra. Dijkstra’s algorithm is a method for finding
the shortest paths between nodes in a graph, which could easily
represent our milestone network and solve it in a faster and easier
way [50]. However it can’t cope with dynamic environments as we
have seen in the related work section where we discuss the paper

"Reinforcement learning for solving shortest - path and dynamic
scheduling problems"[41]. Their method demonstrates the advan-
tages of the RL implementation in dynamic environments. They
do that by introducing a value named "Temperature" which greatly
affects the learning behaviour. When this is high the learning ca-
pabilities also become high and thus fluctuations in the delivery
time are observed. The goal to this is to reduce the temperature of
the system in order to reach optimal behaviour. In a basic sense it
can be considered that an increase in temperature when delivery
of packages is slow , should increase learning capabilities of the
agent to converge into more optimal values and finally when this
is achieved , the temperature value to be decreased and follow the
optimal policy. In the same way when testing of certain regions
takes long times or is unfeasible we could re evaluate the learned
value function or policy accordingly. This can also work to evaluate
dynamic conditions that may make the testing not feasible at all.
For example what if there is an enemy that must be beaten in order
to reach the next milestone? And what if there is a certain weapon
that must be obtained in order to beat this enemy? Increasing the
scalability of the experiments and tweak the Q algorithm to provide
results for such a case would be an interesting direction for future
implementations.

To conclude we successfully showed that testing of performance
errors focused on heavy rendering for VR can be automated and
possibly unload a huge amount of workload from manual testers if
used right. We also showed that the agent can recognize real world
problems and not only artificially made as shown on the chapter
5.4.2 Special case testing. It remains yet to see if the ideas presented
in this paper can work in a modular fashion and be incorporated in
a modern game development environment.

We also provided a way to do retesting and learn from experience
so we can have better timings when a rerun to test specific problems
is performed. The implementation provided results on par with
human testers in terms of timing. Of course substantial work of has
to be done to work in more complicated and dynamic environments
as mentioned above.

Nevertheless the experiments are promising and if the core im-
plementation of the agent can expand and work with minor adjust-
ments in any first person VR game, it would prove a valuable asset
to any company. It could even expand in a more adaptive way for
regression testing, meaning to also check other potential problems
that could occur based on if a fix was found.

Finally we have to note that the next big step in the research
is to implement this method in a commercial VR game , research
the requirements needed to do that and finally find out what’s the
impact that can be made. This will provide more integrity to the
research approach and ideas behind it and possibly convert into a
fully working testing framework.

12

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

A APPENDIX
The contents of the appendix proceeds as follows. On section A1 we
provide some extra information about Virtual Reality. Next, on sec-
tion A2 we provide some more info about testing in games. Moving
on section A3 extra related work is provided that is connected to
our research. The experiment details and procedure are described
on section A4. Last on section A5 we show some more details of
our research approach and the appendix is concluded.

A.1 Virtual Reality Information
As already discussed companies like Samsung and Google made
VR possible in the mobile market by introducing head mounted dis-
plays (HMD) that you can slide your smartphone into and provide
a VR experience. The smartphone acts as the headset’s display and
processor, while the HMD unit itself acts as the controller, which
contains the field of view, as well as a custom inertial measure-
ment unit, or IMU, for rotational tracking, which connects to the
smartphone via micro-USB. Google introduced cardboard. Named
for its fold-out cardboard viewer, the platform is intended as a
low-cost system to encourage interest and development in VR ap-
plications. Users can either build their own viewer from simple,
low-cost components using specifications published by Google, or
purchase a pre-manufactured one. To use the platform, users run
Cardboard-compatible applications on their phone, place the phone
into the back of the viewer, and view content through the lenses.
Samsung Introduced Gear VR which is a more comfortable headset
that resembles traditional HMD’s like Oculus with adjustable head
straps and options of focuses to whatever your eyes need. It also
has its own marketplace with seperate apps.[39] [49]

We decided to implement a First Person Shooter game for the
reason of almost 75% of VR games are being controlled from a
first person perspective. This number is based on the database of
the web site "VR Games for"[17] which features an impressive list
of published and upcoming Virtual Reality games for the most
known platforms. For each game they provide information such
as genre, platform, operating system and various features that de-
scribe it gameplay wise. Since the list was quite extensive in size,
with over 2400 titles we used the software Selenium [52] to col-
lect the required data. It is a portable software-testing framework
for web applications. Selenium provides a playback (formerly also
recording) tool for authoring tests without the need to learn a test
scripting language (Selenium IDE). We used it to navigate through
the list and collect the genre of its game. Then we calculated the
results.

A.2 Testing on games
First thing first, it is noteworthy to mention the two basic classes
of software testing, namely black box testing and white box testing.
Black box testing is the testing process that ignores the internal
mechanism of a system or component and focuses solely on the
output generated in response to selected inputs and execution con-
ditions. White box is testing by taking into account the internal
mechanism of a system or component.[22]

A.2.1 Testing steps.
Testing plays a very important role in Games. A game is tested at

different level of its development process. Most of game testing is
black box testing. Developers don’t really test their own games, nei-
ther have time to , nor is it a good idea to test by themselves. Quoting
the authors of "An Overview of Game Testing Techniques"[6] game
testing is performed in the following six step order:

• Plan and design the test: Although much of this plan is
done earlier in the software test plan document, with every
new prototype of the game, this documents need to be re-
visited to update any change in the specifications, new test
cases, new configuration support. The tester should insure
that no new issues were introduced.

• Prepare the test: All the teams should update their code,
tests, documents and test environment and align it with one
another. The test development team should mark the bugs
fixed, and the test time should verify them.

• Perform the test: Run the test suit again. If any defect is
found, test around the defect to make sure that the bug is
verified.

• Report the results: Complete details about the bugs are
reported.

• Repair the Bug: The test team participates in this step by
explaining the bug to the developing team and provides
direct testing to track the bug.

• Return to step 1 and retest: A new build is produced after
one cycle.

A.2.2 Types of testing.
Among others, black box testing includes functional testing, stress
testing, performance testing and usability testing. According to the
authors of "Testing overview and Black Boxing Techniques"[56] :

Functional testing involves ensuring that the functionality
specified in the requirement specification works. For example this
could be a specific action of the game e.g pressing the A button
shoots a bullet.

Compliance or system testing involves putting the game in
many different environments to ensure that it works in typical user
environments with various versions and types of operating systems
and /or devices and specific parts of devices.

Stress testing is conducted to evaluate a system or component at
or beyond the limits of its specification or requirement. For example
this could be over using a certain action to see if the results break
the application e.g. shooting at a destructible object too many times.

Usability testing is conducted to evaluate the extent to which a
user can learn to operate, prepare inputs for, and interpret outputs
of a system or component. While stress testing can be and is often
automated, usability testing is done by human-computer interaction
specialists that observe humans interacting with the system. In
VR this holds more applications as it is required that no motion
sickness is occured while playing the game. On the other hand a
tester gains resistance to motion sickness as he is continuously
presented to it. As mentioned on best practices of Occulus[45]
users with no experience in VR should test the applications to get
appropriate results as they provide better samples and are more
objective towards it.

Performance testing is testing conducted to evaluate the com-
pliance of a system or component with specified performance re-
quirements . When the frame rate drops below the required levels,

13

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

performance errors are present and a variety of reasons can be the
cause. It should also be mentioned that performance bugs can cause
excess motion sickness in VR and must be avoided at all costs. [56]

A.2.3 Definition of errors in video games.
One important mention of literature in game testing is the work
"What Went Wrong: A Taxonomy of Video Game Bugs" [27] where
they present a taxonomy of possible failures that can happen in
video games. They support that a categorization of buggy gameplay
experiences is possible and can lead to new methods of analyzing
and solving video game bugs. Quoting the authors, some of them
are:

Object out of bounds: Object out of bounds for any state is a
classification of an object being outside of the world boundaries.
This category encompasses many common types of failures, such
as escaping a map or falling through the floor.

Invalid graphical representation: An Invalid graphical rep-
resentation occurs when a certain aspect of the world state is being
rendered incorrectly.

Invalid value change: Invalid value change is a broad term that
describes any game event that changes some form of counter in
an unexpected way, such as a bullet that should remove health not
doing so or collecting a coin that changes the score by 100 instead
of 1.

Artificial stupidity: Artificial stupidity is another broad cat-
egory that catches bugs related to an NPC performing some act
that breaks the illusion of intelligence. Common examples include
characters not responding to being shot at, blocking doorways or
walking into walls.

Information: The Invalid information access category encom-
passes failures that allow the player to gain more information than
is expected by the game design. This category includes seeing
through walls or gaining complete information on a game map that
should have a fog of war.

Invalid position over time: This category describes invalid
movements, such as rapid accelerations or hovering in the air, but
can also include objects teleporting around the world due to poor
physics or faulty world updates. This category also describes the
lack of expected movement.

Invalid context state over time: Invalid context state over
time applies to objects that stay in a state for too long or too in-
frequently. State is used only to mean the user-observable charac-
teristics that an object is showing, not the actual fags used in the
implementation.

Implementation response issues: Implementation response
is the category most closely aligned to how the game interacts
with the base hardware. This category covers failures where some
aspect of the hardware is not performing at an optimal speed. Such
failures include network lag, input lag (time from pressing a button
to something occurring in game) or frame rate fluctuations.

All these types of errors can potentially lead to performance
errors. We also need to note that if any of these errors happen
our agent wouldn’t possibly respond in the best possible way or
maybe even understand that something is wrong. This is another
problem of having agents test the game instead of manual testers.
The manual testers would report any other issues found along the
way while the agent will either crash or ignore the errors. Our

implementation focuses mostly on the end of development cycle
where the rest of the errors are minimized.

A.3 Extra Related work
In this section additional related work will be provided about the
state of the art technologies used for agents in video games and
works about testing in regular software.

A.3.1 Path Planning.
In video games, every entity that can move and describes some
form of intelligence must plan their motions in the virtual world.
We will take a look at two of the most popular approaches used in
modern video games.

A.3.2 A* planning.
First we will take a look at the survey; Path planning: A 2013 sur-
vey [33]. The authors presented literature review on path planning
methods. This survey confirms the most common belief about path
planning in video games, meaning that the A* algorithm is the un-
doubtedly victor in terms of popularity for video game development.
Before going deeper into A* let’s take a look at the grids.

Quoting the authors, regular grids are the most used in envi-
ronment modeling especially in robotics and video games. They
have several advantages such as the ease of implementation and the
simplicity of updates. Because regular grids always have the same
number of nodes and edges regardless the number of obstacles that
may exist. Three types of cells are used in the state-of the-art which
are Square, Triangular and Hexagonal grids. In figure 1 we can see
an example square grid.

Fig 1. Square grid example with obstacles (figure taken from [24])

A*, pronounced as "A star", is the most well-known pathfinding
algorithms . The A* algorithm g offers an acceptable solution when
applied with a grid. It can be described as solving a graph node, by
setting the initial position as a (node) and place it on a list named
"Open", along with its estimated cost to the destination, which is
determined by a heuristic. The heuristic is often just the geometric
distance between two nodes (Euclidean and Manhattan distance are
the most common ones). Then perform the following loop while
the Open list is nonempty:

(1) Switch the node that has the lowest estimated cost to the
destination to another list named "Closed List".

14

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

(2) If the node is the destination, we’ve successfully finished
(quit).

(3) Else examine the node’s eight neighboring nodes.
(4) For each of the nodes which are not blocked, calculate the

estimated cost to the goal of the path that goes through that
node. (This is the actual cost to reach that node from the
origin, plus the heuristic cost to the destination.)

(5) Push all those nonblocked surrounding nodes onto the Open
list, and repeat loop.

The algorithm stops if the target goal is not found (all nodes
are in the closed list) or if the goal is reached .There are various
improvements over the A* algorithm like D* which is dynamic and
react quickly when there is a change on the studied map or the
Field D* which does not constrain movement to a grid, instead the
best path can have the unit moving along any angle and not just
45- (or 90-) degrees between grid-points [33]. Since our main focus
is not path planning we will not go into further detail about A* and
accompanied implementations for this thesis.

A.3.3 Navigation meshes.
One of the most interesting mentions of the above survey is the
navigation meshes (navmesh) [33]. It is a common strategy for effi-
ciently computing realistic paths with partition the environment
into a collection of walkable areas. This method is growing in popu-
larity as game engines such as Unity and Unreal have implemented
it internally.

Navigation mesh is a collection of two-dimensional convex poly-
gons that define which areas of an environment are traversable
by agents. In other words, a character in a game could freely walk
around within these areas unobstructed by trees, lava, or other
barriers that are part of the environment. Adjacent polygons are
connected to each other in a graph. Pathfinding within one of these
polygons can be done trivially in a straight line because the polygon
is convex and traversable. Pathfinding between polygons in the
mesh can be done with one of the large number of graph search
algorithms, such as A*. Agents on a navmesh can thus avoid com-
putationally expensive collision detection checks with obstacles
that are part of the environment. [33] [51]

We take a closer look with the literature Navigation Meshes for
Realistic Multi-Layered Environments [43]. The authors model a
complicated environment and use multi layered navigation meshes.
A multi-layered environment is represented by a set of two dimen-
sional layers and a set of connections. Each layer is a collection of
two-dimensional polygons that all lie in a single plane, and each
connection provides a means of moving between layers.

Fig 2. Example navigation mesh, multi layered (figure taken from [43])

They first compute the traditional medial axis of each two dimen-
sional layer in the environment. The medial axis of these layers

is the set of all points having more than one closest point on the
object’s boundary. The connections are then used to iteratively
merge this collection of medial axes into a single data structure. By
adding a linear number of line segments to this structure. A naviga-
tion mesh is obtained that mathematically describes the walkable
areas in a multilayered environment. An example of the medial
actions connections and a complete multilayered environment with
navmeshes can be seen on figure 2.

Unreal Engine has its own path planningmethodwith navmeshes
integrated. We find it pretty much satisfactory and it covered our
needs without problems.

A.3.4 Real Time path planning. Last mention about path plan-
ning is the paper Real Time Path Planning in heterogeneous en-
vironments [30]. This work is focused on character preferences
for the traversable region types. They take into account various
actions that occur in real life, for example pedestrians may prefer
to walk on sidewalks, but they may occasionally need to traverse
roads and dirt paths. By contrast, wild animals might try to stay in
forest areas, but they are able to leave their protective environment
when necessary.

To achieve that, they use the indicative route, which is a curve
that passes through traversable region that a character wishes
to use. But this path is not absolute. The character also steers to
avoid collisions. For the purpose, a number of attractions points are
computed. They are like milestones before reaching the last goal.
A character chooses between different attraction points based on
weights. Attraction points use reference points that are the closest to
the character position between an attraction point and the previous
reference point (First reference point is the initial character position)
and two different distances. How far can attraction points be and
how far is the reference point from the farthest attraction point.

This provided as an inspiration for the way we mapped the
environment with the milestones and their corresponding score.
This method could also prove as an alternative in case we need to
remove the learning part from the agent implementation for a more
stable solution.

A.3.5 Movement in VR. Movement for the player avatar in VR
games differs from traditional video games. This is because move-
ment and acceleration most commonly come from the user’s avatar
moving through the virtual environment (by locomotion or riding
a vehicle) while the user’s real-world body is stationary[45]. These
situations can be discomforting because the user’s vision tells them
they are moving through space, but their bodily senses (vestibular
sense and proprioception) say the opposite. This illusory perception
of self-motion from vision alone has been termed vection, and is a
major underlying cause of simulator sickness [25].

As such VR developers created the "teleport" like movement. By
pointing somewhere in the environment the user can teleport there
instead of the actual player pawn moving to the goal. This method
is accumulated by popular AAA titles like the upcoming DOOM
VR and Robo Recall [46].

We didn’t use this method for moving our agent but even if
we did, it shouldn’t change the results. If this method becomes
the standard of moving in VR though , it should be incorporated
accordingly.

15

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

A.3.6 Behavior trees. Following from the introduction of be-
haviour trees in the paper, we take a more extensive look at some
functions and procedures that they follow.

There are many different implementations of behavior trees.
Here we will analyze some of the key concepts that define them.

Fig 3. Selector Node with N tasks (figure taken from [48])

A.3.7 Key concepts of BT’s. The execution of a BT starts from
the root which sends ticks with a certain frequency to its children. A
tick is an enabling signal that allows the execution of a child. When
the execution of a node in the BT is allowed, it returns to the parent
a status "running" if its execution has not finished yet, "success" if
it has achieved its goal, or "failure" otherwise. A particular node or
branch in the tree may take many ticks to complete. In the basic
implementation of behavior trees, the system will traverse down
from the root of the tree every single frame, testing each node down
the tree to see which is active, rechecking any nodes along the way,
until it reaches the currently active node to tick it again. When
this happens , it will again have the opportunity to succeed, fail or
continue running. [48] [5]

A control flow node is used to control the subtasks of which it is
composed. A control flow node may be either a selector (fallback)
node or a sequence node. A graphical representation of the selector
can be seen on figure 3.

The selector node executes all the children in succession until
it finds one that doesn’t fail. Pseudo of the two control flow nodes
follow taken from [48]

The sequence node runs until it finds a child that fails.

This is more or less the key concepts in general but since Unreal
Engine 4 (UE4) will be used for the project we will take a closer
look at how behavior trees are treated there.

A.3.8 Unreal Engine Behavior trees. The implementation of BT’s
in UE4 follows an event driven method. It is based on event-driven
programming , a programming paradigm in which the flow of
the program is determined by events such as user actions (mouse
clicks, key presses), sensor outputs, or messages from other pro-
grams/threads. Event-driven behavior trees avoid doing lots of work
every frame (like we’ve seen above with the constant ticking per
time for checking the whole tree). Instead of constantly checking
whether any relevant change has occurred, the behavior trees just
passively listen for events which can trigger changes in the tree.
This makes it more optimized and easier for debugging since you
have knowledge for example about when and where a control flow
node failed. To achieve the event driven behavior they make an
important change on the architecture. The control flow nodes are
not task leaf nodes that just succeed or fail but are used with deco-
rators instead. Decorators have exactly one child leaf node. Their
function is either to transform the result they receive from their
child node’s status, to terminate the child, or repeat processing of
the child, depending on the type of decorator node. So instead of
ticking the entire tree again they tick that specific child directly.
An example can be seen on figure 4 where the decorator is named
CloseEnough and checks if someone is close enough to the agent.
If this is true then the sequence is activated.

Fig 4. Decorator example in Unreal Engine [14]

Concurrent behaviors are also treated differently than normal.
Standard behavior trees often use a Parallel composite node to
handle concurrent behaviors. The Parallel node begins execution
on all of its children simultaneously. Special rules determine how
to act if one or more of those child trees finish (depending on the
desired behavior). For optimization , simplicity and ease of use

16

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

Unreal uses simple parallel nodes. Simple Parallel nodes allow only
two children: one which must be a single task node (with optional
decorators), and the other of which can be a complete subtree. You
can think of the Simple Parallel node as "While doing A, do B as
well". For example, "While attacking the enemy, move toward the
enemy." Basically, A is a primary task, and B is a secondary or filler
task while waiting for A to complete. While there are some options
as to how to handle the secondary meanwhile task (Task B), the
node is relatively simple in concept compared to traditional Parallel
nodes. Nonetheless, it supports much of the most common usage of
Parallel nodes. Simple Parallel nodes allow easy usage of some of
the event-driven optimizations. Full Parallel nodes would be much
more complex to optimize.[9]

A.3.9 Learning AI in games. The majority of current approaches
for game AI lead to predefined, static and predictable game agent
responses, with no ability to adjust during game-play to the be-
havior or playing style of the player. Machine learning techniques
provide a way to improve the behavioral dynamics of computer
controlled game agents by facilitating the automated generation
and selection of behaviors, thus enhancing the capabilities of digital
game artificial intelligence and providing the opportunity to create
more engaging and entertaining game-play experiences. In this
literature review we will focus on three of the most used methods
for machine learning in video games. Neural Networks, evolution
and reinforcement learning. [26]

A.3.10 Evolutionary Machine Learning. Evolutionary compu-
tation comprises a class of optimization techniques which utilize
simulated evolutionary processes in order to search through a prob-
lem space for an optimal solution. By representing the solution to
a problem in genetic terms, a population of potential solutions is
generated and maintained through the use of genetic operators.
Each potential solution is encoded as a genotype, represented by a
chromosome string, which is decoded into its corresponding phe-
notype form in order to enable the fitness of the genotype to be
evaluated. Evolutionary methods enable the process of learning
to be considered as a special case of optimization, whereby the
learning process attempts to discover an optimal solution based
on the fitness of individuals within a population of solutions [21]
As a starting point of our learning literature we look at the work
Evolving Behavior Trees for the Commercial Game DEFCON [4].
Their goal is to to highlight the potential for evolving behavior
trees as a practical approach to developing AI-bots in games. They
achieve it by designing and developing an AI-controlled player for
the commercial real-time strategy game DEFCON. In particular,
they evolved behavior trees to develop a competitive player which
was able to outperform the game’s original AI-bot more than 50 %
of the time. At first they implemented a method to create randomly
generated BT’s that have different values for various actions of
the game (e.g where to place troops, buildings..). Then they apply
genetic operations by using crossovers on branches and mutations
on nodes. An AI-bot was constructed with a controller that used the
best trees evolved for four different in game behaviors. To define
the best result available they used fitness functions. The fitness
function simply defined is a function which takes a candidate so-
lution to the problem as input and produces as output how "fit
/good" the solution is with respect to the problem in consideration.

The main problem with genetic methods to work, is that they need
many generations of a lot of individuals to provide good results and
the fitness functions take immense time for the processing. Quot-
ing the authors of the mentioned paper; With each game taking
approximately 90 seconds to complete, a total time of 3.6 million
seconds (41 days) of continuous processing would be required for
the project.

We can easily understand that using advanced AI using evolu-
tionary behavior trees in a similar way, as it stands now may be
unsuitable for testing of large scale games due to time requirements.
We didn’t use this approach since we don’t consider that having an
agent who is more competitive would help in performance testing.
Simple BT’s can work just fine and if for example we need better
fighting capabilities in order to beat a certain enemy we can always
"cheat" by adding more health or stronger bullets without possibly
affecting performance testing.

A.3.11 Neural Networks. Neural networks (NN) present a class
of learning models that are capable of providing a robust approach
to learning discrete-valued, real-valued or vector-valued target
functions. They can consist of a number of possible network topolo-
gies, incorporating varieties of different architectures containing
a choice of feed-forward, feedback and lateral weighted connec-
tions between neurons, neural network learning has been applied
to a range of learning tasks. [29] To get a bit more familiar with
NN let’s take a closer look at Integrated Machine Learning For
Behavior Modeling in Video Games [19]. They show that a subset
of AI behaviors can be learned effectively by player modeling us-
ing the machine learning technique of neural network classifiers
trained with boosting and bagging. Under this system they have
successfully been able to learn the combat behaviors of an expert
player and apply them to an agent in a modified version of the video
game Soldier of Fortune 2. First they extract data by observing an
expert player playing the game, then by defining the feature set
with common actions that they believe of great importance, such
as closest goal, closest enemy, directions e.t.c they learn from this
data collected. In a bit more detail they record whether or not the
player accelerates, changes movement, changes facing, or jumps
This part of the feature vector represents the decision made by the
player. Next with the input features as well as the decision, we
have a complete feature vector. This feature vector is saved and
the collection of samples becomes our training and testing sets
used for applying the learning algorithms. ANN with the basic
back-propagation algorithm was used in this project As mentioned
above we don’t need the agent to be competitive for performance
testing so we didn’t enhance it in such a way. Also one possible
problem with the mapping method for testing is that several play
sessions are needed to get enough samples for the NN’s to produce
minimal errors. Quoting the writer; "Data was collected over the
course of several game sessions and combined into one massive
data set of approximately 6000 examples. Each game was run by
the same expert player, whose performance was fairly consistent".
This could prove quite an overkill for testing as some can argue that
if several game sessions are completed the game is already tested.

A.3.12 Reinforcement learning. Reinforcement learning (RL)
comprises a set of algorithms and techniques focused on maxi-
mizing an accumulated discounted reward over a period of time in

17

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

response to a series of actions performed within an environment.
Through exploration and exploitation of a state-action space, based
on feedback from interactions with an environment, a control policy
can be learned that maximizes the reward for a sequence of actions
without requiring explicit training from a domain expert [37]. RL
seems really promising since the complexity of digital games co-
exists with the nature of exploration-based learning through an
agent’s interactions with its environment, underpinned by the the-
ory of sequential decision processes, would seem complementary
to the creation of game AI. We used it in a bit of a different way as
described in the paper for reinforcing retest of certain regions.

A.3.13 Apprenticeship learning. "When teaching a young child
to play a game, it is much easier and more practical to demonstrate
it to the child rather than listing all the game rules. Then the child
will learn by trying to mimic the demonstrator’s performance and
grasp the task gradually" [20]. Learning from an expert by watching,
imitating, or from demonstration is called apprenticeship learning
(AL), which employs Inverse Reinforcement learning (IRL) to solve
such a problem. [36] Next we will take a look at Apprenticeship
learning and IRL with the paper Learning a Super Mario Controller
from Examples of Human Play [20]. They demonstrate that by us-
ing apprenticeship learning via Inverse Reinforcement Learning,
it is possible to get an optimal policy which yields performance
close to that of an human expert playing the game Super Mario, at
least under specific conditions. To do that they use Markov Deci-
sion Processes. In machine learning, the environment is typically
represented as a Markov Decision Process (MDP) and decisions
made by the agent are called a policy (a probability distribution for
selecting actions at each state). The goal of the agent is to find the
optimal policy , a policy that maximizes accumulated rewards over
time. What they do is to derive a reward function by thinking of an
expert as an agent trying to maximize a hidden reward function R,
which can be expressed as a linear combination of known features
from the environment:

R∗(s) = w∗ · ϕ(s)
Where R∗ is a "true" reward function ,ϕ is a vector matrix of

features and s represents states. Lastw is a vector which specified
the relative weights between these features corresponding to the re-
ward function. The algorithm solves a linear programming problem
by bringing the policy π of a RL algorithm close to πε , the optimal
policy performed by expert. Apprenticeship learning seems promis-
ing for the future. But still the issue that multiple playthroughs
have to be completed in order to have sufficient data persists. Six
playthroughs were done from an expert player in order to have
sufficient results. Also note that Mario is a 2D game which tones
down the complexity of feature extraction quite a lot.That makes it
unappealing for testing agents in VR at the moment. Nevertheless
a method that learns from a human tester could potentially be even
better than our approach. Right now to the best of our knowledge
it seems quite unstable so we didn’t follow this route.

A.3.14 Testing Methodologies.
Following into our literature review, we will take a look at testing
and it’s automation for normal software engineering and see how
the logic behind it can help us in our project. Let’s start with an in-
troduction to unit testing. In computer programming, unit testing is

a software testing method by which individual units of source code,
sets of one or more computer program modules together with asso-
ciated control data, usage procedures, and operating procedures,
are tested to determine whether they are fit for use [10]. Unit testing
is commonly automated, but may still be performed manually .The
goal of unit testing is to isolate each part of the program and show
that the individual parts are correct. A unit test provides a strict,
written contract that the piece of code must satisfy. As a result,
it affords several benefits such as finding problems early, simplify
integration for the system and facilitating changing allowing the
programmers to refactor code easily. [53]

A.3.15 Random and Directed Testing. Random testing is a black-
box software testing technique where programs are tested by gen-
erating random, independent inputs. Results of the output are com-
pared against software specifications to verify that the test output
is pass or fail . Advantages are that it quickly generate a lot of tests,
ease of implementation, scales to large software applications, and
reveals software errors. The problem is that it tends to generate
many tests that are illegal or that exercise the same parts of the
code as other tests, thus limiting its effectiveness. [23] Next we take
a look at Directed random testing [35]. Directed random testing
is a new approach to test generation that overcomes these limita-
tions, by combining a bottom-up generation of tests with runtime
guidance. A directed random test generator takes a collection of
operations under test and generates new tests incrementally, by
randomly selecting operations to apply and finding arguments from
among previously-constructed tests. As soon as it generates a new
test, the generator executes it, and the result determines whether
the test is redundant, illegal, error-revealing, or useful for gener-
ating more tests. The technique outputs failing tests pointing to
potential errors that should be corrected, and passing tests that can
be used for regression testing. In a similar way we have our agent
wander with a randomized pattern in the environment executing
test cases according to stimulus or direct him towards operations
and arguments .

A.3.16 Combinatorial Testing. As the complexity of system grows
,testing requirements became immense. Testing all the inputs for a
program and their combinations is an outstanding task and that’s
when Combinatorial Testing rises. Combinatorial Testing (CT) can
detect failures triggered by interactions of parameters in the Soft-
ware Under Test (SUT) with a covering array test suite generated by
some sampling mechanisms. CT has the following characteristics:
CT creates test cases by selecting values for parameters and by
combining these values to form a covering array. The covering ar-
ray specifies test data where each row of the array can be regarded
as a set of parameter values for a specific test [2]. Here we will
give an example of combinatorial testing in games, found in the
above mentioned paper. Suppose we want to test a network game
software running in the Internet environment. The operation of
this game may be influenced by many parameters, such as browser,
operating system, the type of network access, graphics, audio, the
number of players, and so on. Each of these parameters may take
on many possible values. The interactions of these parameters may
cause some failures. Due to the large combination space, exhaustive
testing by testing all the parameter value combinations is generally

18

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

impractical. Even if we have the resources to try all value combina-
tions, this is not effective because most of the value combinations
do not cause any failure. CT provides a practical way to detect
failures caused by parameter interactions with a good trade off
between cost and efficiency. It samples the large combination space
using a smaller test suite to cover certain key parameter value com-
binations. Combinatorial testing will probably not be integrated in
our testing scenarios , but in a larger scalability it would become
really useful and interesting as future work.

A.3.17 Automation in testing for FIFA. Last stop in our litera-
ture for testing is the paper; Software Testing by Active Learning
for Commercial Games [18] This work focused on creating an ac-
tive learning framework for blackbox software testing. The active
learning approach samples input/output pairs from a blackbox and
learns a model of the system’s behavior. This model is then used to
select new inputs for sampling. They used the popular game FIFA
of EA for their research and focused on corner kick testing. Lets
dive a bit more into detail about the framework which is based on
"semi-automated gameplay analysis" (SAGA). The game engine is
treated as a black box and SAGA-ML interacts with it through an
abstraction layer. This layer is game-specific and translates game
specific data and function calls to an abstract state format. The sam-
pler component uses the abstraction layer to evaluate situations by
running the game with an initial state and a sequence of actions,
and then observing the outcome. The learner uses the data gathered
by the sampler to construct a concise model (or summary) of the
game’s behavior. The learner may then request more samples to
refine its model. Together the sampler and learner form the active
learning part of the system. Finally, the learned model is passed to
the game-specific visualizer for the designer to evaluate. They use a
rule based system for the learning part. For example, in the shooter-
goalie scenario, such a rule might be: IF the shooter is within 5
meters of the goalie AND the angle between shooter and goalie is
between 30 and 40 degrees AND the goalie is within 1 meter of the
goal’s center THEN the probability of scoring is greater than 70
% To sample all the regions and decide what to sample next they
used and evaluated different active learning algorithms and even
developed one of their own. In their own method called Decision
Boundary Renement Sampling the rules describe rectangles where
a prediction like the above described is positive (true) or negative
(false) (this is just an example, predictions could be more complex,
e.g. probabilities). If there are several rules that overlap, but all
agree in their prediction, then they can merge them together to
form a region. To evaluate that a region’s boundary is correct, new
samples are randomly placed on both sides of the boundary within a
small margin. Using automated black box methods to learn specific
parts of the game and creating an active learning framework for
automated software testing seems to work for commercial games
and help in various design elements and balancing of the overall
game. Since we won’t use a commercial game and our focus is
performance testing and not testing that helps game designers, a
complete framework is not needed. As such it was not created but
a thought of a framework for testers with no coding experience in
a similar way could be interesting future work.

A.4 Defining Game Components
There is no extensive literature of identifying specific game com-
ponents for different game genres. Game development is usually
an ad-hoc engineering process which is characterized by low level
development due to the unique nature of different games. One such
effort and notable mention is the paper Improving Digital Game
Development with Software Product Lines [1]. They integrate the
idea of software product lines into game development and try to
create domain specific language (DSL) and core architectures for
2D arcade games. They also provide advices for analyzing game do-
mains, with some important mentions being; Select domain samples
,defining and refining game domain features ,create sub domains
and anticipating future features. They give special focus on the sub-
domain part mentioning that they don’t believe in a one-size-fits-all
game architecture. They advise to consider partitioning the target
game domain into subdomains (for example, partitioning a broader
arcade domain into shooter and maze subdomains). The individual
analyses of more specific subdomains lead to more expressive and
effective SPL assets, such as DSLs. We also tried to create functions
that the agent will follow like "Shoot", "Collect" e.t.c that could
potentially work in a DSL format and be universal across FPS or VR
games. They could even be defined as part of "agnostic behavior"
that is be common in most recent games (e.g look around) while
everything else as "game specific" logic which describes gameplay
elements (e.g. throw grenades). This paper complements the DSL
related work of the paper and together make a nice consideration
for future work.

A.5 Experiment Details
The experiment was conducted via the online freelancer platform
Upwork [54]. We listed the experiment as a paid job to attract
freelancers with testing skills.

A.5.1 Job Posting.
Needs to hire 5 Freelancers
Looking for testers to play an experimental Virtual Reality game
and report any performance issues found. Task is fairly simple so
no extreme experience is required
Tester must have:

• A decent Android 6.0+ phone
• A virtual reality mask for mobiles (e.g google cardboard)
• A wireless mobile controller

The whole procedure should take less than an hour and pays be-
tween 10-15$

• One-time Project: Find a bug
• Project Type: One-time project

You will be asked to answer the following questions when submit-
ting a proposal:

• What android phone do you have? Do you have a wireless
controller for mobile?

A.5.2 Consent Form.
A consent form was used to inform the participant about experi-
ment to warn him/her about the risks of VR.
Consent form

19

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

Experiment: VR performance testing
Experimenter: Georgios Kokkinos
Affiliation: Utrecht University

You are invited to participate in a research study that tests a VR
FPS setup. In the experiment, you will be wearing a headmounted
display. You will explore a VR world and report any performance
issues found.

Risks: The headmounted display may cause temporary nausea
and temporary dizziness in some users. The procedure should be
stopped immediately when you indicate you are experiencing these
or any other type of discomfort.

Your individual privacy will be maintained in all published and
written data resulting from the Study.

If you agree with the above stated conditions and are willing
to participate in the experiment, please sign below. By signing the
form, you confirm that you meet the following conditions:

• You have read the above consent form, understood it and
you agree to it.

• You want to participate in the above mentioned Experiment.

A.5.3 Instructions.
Specific Instructions were given about the testing procedure:

(1) Connect your phone with the PC and run the .bat file. The
game will be installed. (you need usb debugging on, transfer
files mode and trust any sources on settings)

(2) If it doesn’t you will have to install the apk on the of the zip
folder manually.

(3) Check the "rooms.pdf" file so you can have a general idea
about the environment.

(4) On the entry level move over the letters "manual play" and
the game will start.

(5) Time your playthrough and stop when you think you found
all the performance drops.

(6) Play through the game with the goal to find any performance
drops.

(7) When you find a performance drop please note down the
room that you found it or/and the action you did to cause it.

(8) Complete the questionnaire on:
https://goo.gl/forms/AlnCVkHbuBCGb8uB2

Game instructions for gameplay help
The game in general plays as a first-person shooter. The main

objective is to collect the statues (figure 5), beat the enemies and
reach the final goal (figure 6). You will need to rotate a lot so find a
comfortable space to play.

Fig 5. Statue / Collectible in the game

Fig 6. End goal

Fig 7. Control Representation

(1) Use the left thumb stick or dpad to move around
(2) Rotate your head to look around
(3) Press the X* button to collect statues or open Doors
(4) Press the A* button to shoot (You can also shoot with the

trigger button if your controller has one it).

*According to figure 7.

A.5.4 Room Overview
. All the roomswere provided in pictures for the testers to check and
be able to report errors based on them. For the retesting experiment
only the pictures with the performance drops where shown.

Fig 8. Example of pictures of rooms provided to the testers (room1, room2,
room3).

A.5.5 Questionnaire.
After the testers finished the game the participants answered some
general questions and reported any issues found via a questionnaire.

20

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

Aswe see on the last question of the questionnaire the users were
asked to send a csv file that is generated when they complete the
game. This file contains information about the performance. We use
it to create graphs for ease of comparison between the testers, either
human testers or agents-AI testing bots. The graphs are created
by a windows form application [55] we developed. By passing the
csv generated file, a graph is created, showing the rendering thread
(RT) and game thread (GT) computational time required for the
frame to be processed. Our graph creator works without problems
for different games. An example of it’s graphical interface can be
seen on figure 9.

Fig 9. You can load a CSV by pressing the button LoadCSV while adding
it’s name on the text box next to it. Using the buttons GT and RT the graph
lines appear accordingly. On Y axis we can see the time required for processing
and the X axis shows the number of the frame.

A.6 Research Approach additional information
In this section we provide more information about our implemen-
tation through some blueprints examples that also show how to
reproduce the algorithmic steps of the retesting approach discussed
on the paper.

One of the major step is learning the rewards and creating the
reward matrix. This serves as the first step in our implementation
of retesting and is controlled with a boolean value called "learnRe-
wards" (on the Level blueprint/script).

21

TEST ’18, January 2018, Utrecht, Netherlands Georgios Kokkinos, S.W.B. Prasetya, and F.P.M. (Frank) Dignum

Fig 10. Blueprint Example

As seen in figure 10, if the learnRewards is set to true we save
the locations to the array "TestMilestones" that the performance
drop happened by using the global location of the player at that
point. So for the first step of the retesting experiment this boolean
should be set to True.

After the reward matrix is created we use an external q learning
algorithm to produce the Q matrix. Our works is heavily based
on John McCullock’s implementation of path planning using q
learning[28]. It’s a python implementation that follows the prin-
ciples described on the paper. On figure 11 we see an example of
code that updates theQ(i, j)t+1 using the equation described in the
paper.

Fig 11. Code example of Q learning implementation

The results of the Q matrix (figure 11) as discussed on the algo-
rithmic steps of the paper are then passed via a data table to the
agent and we can run the retesting experiment.

Fig 12. Converged Q matrix

By setting to true the boolean named "followQMatrix" (on the
AIController blueprint/script) the agent prioritizes the milestones
accordingly (if we don’t want to prioritize milestones it should be
set to false, which is by default). To do that we multiply the default
desire value of the milestone with the times a milestone is visited
in the previous step.

Fig 13. Blueprint Example 2

We can see in figure 13 that the results of the data table are used
using the game engine built node "Get Data Table Row TestAr-
raysDataTable". We check the name of the milestone perceived and
we multiply its score with the integer "timesAppeared". Then we
set the variable "finalScore" and its added on the perceived object
list. The full code is commented either it’s blueprint based , c++ or
python scripts. It’s online and available for review.

Note that the game and the agents are implemented with version
of engine 4.16.3 but it should run successfully with newer versions
of the engine with no to minor adjustments. Last if an android build
is needed the system should also have the NVPack installed which
is a tool that contains multiple sdk’s which are needed for building
android applications [31]. The whole project though can also be
used on the pc or the editor of the game engine without building it
externally.

REFERENCES
[1] W.B. Furtado Andre, L.M. Santos, and L. Ramalho Geber. 2011. Improving Digital

Game Development with Software Product Lines. (2011).
[2] Nie Changhai and Leung Hareton. 2011. A survey of combinatorial testing. (2011).

http://dspace.mit.edu/handle/1721.1/53297
[3] Woei-Kae Chen. 2016. A Game Framework Supporting Automatic Functional

Testing for Games. (2016).
[4] Lim Chong-U, Baumgarten Robin, and Colton Simon. 2010. Evolving Behaviour

Trees for the Commercial Game DEFCON. (2010). https://pdfs.semanticscholar.
org/2763/7d4de11b3d6baeb9bf26597ec6fd86a51d5a.pdf

[5] Simpson Chris. 2014. Behavior trees for AI: How they work, Gamasutra arti-
cle. (2014). https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/
Behavior_trees_for_AI_How_they_work.php

[6] Redavid Claudio and Farid Adil. 2011. An Overview of Game Testing Tech-
niques. (2011). http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/
FinalPapers/ircse11_submission_15.pdf

[7] Andrew G. Barto d S. Sutton. 1998. Reinforcement learning: an introduction. The
MIT Press. (1998).

[8] Frank Dabek. 2002. Event-driven Programming for Robust Software. (2002).
[9] Unreal Engine documentation. [n. d.]. How Unreal Engine 4 Behavior Trees Differ.

([n. d.]). https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/
HowUE4BehaviorTreesDiffer/index.html

[10] Huizinga Dorota and Kolawa Adam. 2007. Automated Defect Prevention: Best
Practices in Software Management. (2007).

[11] A. Elyasov, I.S.W.B. Prasetya, and J. Hage. 2013. Guided Algebraic Specification
Mining for Failure Simplification. http://dx.doi.org/10.1007/978-3-642-41707-8_
15. (2013).

[12] A. Elyasov, I.S.W.B. Prasetya, J. Hage, and A. Nikas. 2014. Reduce First, Debug
Later. http://dx.doi.org/10.1145/2593501.2593510. (2014).

[13] Unreal Engine. [n. d.]. Introduction to C++ Programming in C++. https://docs.
unrealengine.com/latest/INT/Programming/Introduction/. ([n. d.]).

[14] Unreal Engine. 2017. Documentation BT Unreal. (2017).
[15] Unreal Engine. 2017. Documentation garbage collector. (2017).
[16] ESA and Entartainment software association. 2017. Essential facts about the

computer and video game industry. http://essentialfacts.theesa.com/mobile/.
(2017).

[17] VR Games for. 2017. List of virtual reality games. https://vrgamesfor.com/list/.
(2017).

[18] Xiao Gang and Wilkinson Dana. 2005. Software Testing by Active Learn-
ing for Commercial Games. (2005). https://www.aaai.org/Papers/AAAI/2005/
AAAI05-142.pdf

[19] Ben Geisler. 2017. Integrated Machine Learning For Behavior Modeling in
Video Games. (2017). https://www.aaai.org/Papers/Workshops/2004/WS-04-04/
WS04-04-012.pdf

22

http://dspace.mit.edu/handle/1721.1/53297
https://pdfs.semanticscholar.org/2763/7d4de11b3d6baeb9bf26597ec6fd86a51d5a.pdf
https://pdfs.semanticscholar.org/2763/7d4de11b3d6baeb9bf26597ec6fd86a51d5a.pdf
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
https://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php
http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/FinalPapers/ircse11_submission_15.pdf
http://www.idt.mdh.se/kurser/ct3340/ht11/MINICONFERENCE/FinalPapers/ircse11_submission_15.pdf
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
https://docs.unrealengine.com/latest/INT/Engine/AI/BehaviorTrees/HowUE4BehaviorTreesDiffer/index.html
http://dx.doi.org/10.1007/978-3-642-41707-8_15
http://dx.doi.org/10.1007/978-3-642-41707-8_15
http://dx.doi.org/10.1145/2593501.2593510
https://docs.unrealengine.com/latest/INT/Programming/Introduction/
https://docs.unrealengine.com/latest/INT/Programming/Introduction/
http://essentialfacts.theesa.com/mobile/
https://vrgamesfor.com/list/
https://www.aaai.org/Papers/AAAI/2005/AAAI05-142.pdf
https://www.aaai.org/Papers/AAAI/2005/AAAI05-142.pdf
https://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-012.pdf
https://www.aaai.org/Papers/Workshops/2004/WS-04-04/WS04-04-012.pdf

Automated Performance Testing for Virtual Reality TEST ’18, January 2018, Utrecht, Netherlands

[20] Lee Geoffrey, Luo Min, and Zambetta Fabio. 2014. Learning a Super Mario
Controller from Examples of Human Play. (2014). https://titan.csit.rmit.edu.au/
~e46507/publications/min-mario-cec14.pdf

[21] David E. Goldberg. 1998. Genetic Algorithms In Search, Optimization, and
Machine Learning. (1998).

[22] IEEE. 1990. IEEE Std 610.12-1990,pp. 1–84,. (1990).
[23] J. Marciniak John. [n. d.]. Random Testing chapter in Encyclopedia of Software

Engineering. ([n. d.]).
[24] Matt Klingensmitt. 2013. Overview of Motion Planning. (2013).
[25] J. Hettinger Lawrence, S. Berbaum Kevin, and S. Kennedy.. Robert. 1990. Vection

and Simulator Sickness. (1990).
[26] Galway Leo, Keith Charles Darryl, andM. BlackMichaela. 2008. Machine learning

in digital games: A survey. (2008).
[27] C Lewis. 2010. What Went Wrong: A Taxonomy of Video Game Bugs. (2010).
[28] John McCullock. [n. d.]. Q learning tutorial. http://mnemstudio.org/

path-finding-q-learning.htm. ([n. d.]).
[29] Tom Mitchell. 1997. Artificial Neural Networks, Chapter 4. (1997).
[30] Jaklin Norman, Cook Atlas, and Geraerts Roland. 2013. Real-time path planning

in heterogeneous environments. (2013). http://www.cs.uu.nl/docs/vakken/mpap/
papers/7.pdf

[31] Nvidia. [n. d.]. NVIDIA CodeWorks for Android. https://developer.nvidia.com/
codeworks-android. ([n. d.]).

[32] Stanford Logic Group of Stanford University. [n. d.]. General Game Playing.
http://www.general-game-playing.de/. ([n. d.]).

[33] Souissi Omar, Duvivier David, and Artiba Abdelhakim. 2013. Path planning: A
2013 survey. (2013).

[34] Jeff Orkin. 2004. Agent Architecture Considerations for Real-Time Planning in
Games. (2004).

[35] Carlos Pacheco. 2009. Directed random testing. (2009). http://dspace.mit.edu/
handle/1721.1/53297

[36] Abbeel Pieter and Y. Ng Andrew. 2004. Apprenticeship Learning via In-
verse Reinforcement Learning. (2004). http://ai.stanford.edu/~ang/papers/
icml04-apprentice.pdf

[37] S. Sutton Richard and G. Barto Andrew. 2004. Reinforcement Learning: An
Introduction. (2004). http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.
pdf

[38] U. Rueda, T.E.J. Vos, and I.S.W.B. Prasetya. 2015. Unit Testing Tool Competition
ÂŰ Round Three. http://dx.doi.org/10.1109/SBST.2015.12. (2015).

[39] Wikipedia s. 2017. Virtual reality headset. https://en.wikipedia.org/wiki/Virtual_
reality_headset. (2017).

[40] Karakovskiy Sergey and Togelius Julian. 2011. The Mario AI Benchmark and
Competitions. (2011). http://julian.togelius.com/Karakovskiy2012The.pdf

[41] Helge Spieker. 2015. REINFORCEMENT LEARNING FOR SOLVING SHORTEST-
PATH AND DYNAMIC SCHEDULING PROBLEMS. (2015).

[42] Helge Spieker. 2017. Reinforcement Learning for Automatic Test Case Prioritiza-
tion and Selection in Continuous Integration. (2017).

[43] Wouter van Toll, F. Cook Atlas, and Geraerts Roland. 2011. Navigation meshes
for realistic multi-layered environments. (2011).

[44] T.E.J. Vos, P. Tonella, J. Wegener, M. Harman, I.S.W.B. Prasetya, E. Puoskari, and
Y. Nir-Buchbinder. 2011. Future Internet Testing with FITTEST. http://www.
academia.edu/download/43917809/csmr2011.pdf. (2011).

[45] Occulus VR. 2017. Oculus Best Practices. (2017). https://static.oculus.com/
documentation/pdfs/intro-vr/latest/bp.pdf

[46] VRHeads. 2016. Motion in VR. (2016).
[47] Brooklyn Waters. 2015. Physics and Frame Rate: Beating mo-

tion sickness in VR. (2015). http://mtechgames.com/downloads/
PhysicsandFramerateBeatingmotionsicknessinVR.pdf

[48] Wikipedia. 2017. Behavior trees, Wikipedia. (2017).
[49] Wikipedia. 2017. Cardboard VR, Wikipedia. (2017).
[50] Wikipedia. 2017. Dijkstra’s Algorithm. https://vrgamesfor.com/list/. (2017).
[51] Wikipedia. 2017. Navigation Mesh, Wikipedia. (2017).
[52] Wikipedia. 2017. Selenium software. https://en.wikipedia.org/wiki/Selenium_

(software). (2017).
[53] Wikipedia. 2017. Unit Testing, Wikipedia. (2017).
[54] Wikipedia. 2017. Upwork Freelancer Platform. https://en.wikipedia.org/wiki/

Upwork. (2017).
[55] Wikipedia. 2017. Windows Forms Application. https://en.wikipedia.org/wiki/

Windows_Forms. (2017).
[56] Laurie Williams. 2006. Testing Overview and Black-Box Testing Techniques.

(2006).

23

https://titan.csit.rmit.edu.au/~e46507/publications/min-mario-cec14.pdf
https://titan.csit.rmit.edu.au/~e46507/publications/min-mario-cec14.pdf
http://mnemstudio.org/path-finding-q-learning.htm
http://mnemstudio.org/path-finding-q-learning.htm
http://www.cs.uu.nl/docs/vakken/mpap/papers/7.pdf
http://www.cs.uu.nl/docs/vakken/mpap/papers/7.pdf
https://developer.nvidia.com/codeworks-android
https://developer.nvidia.com/codeworks-android
http://www.general-game-playing.de/
http://dspace.mit.edu/handle/1721.1/53297
http://dspace.mit.edu/handle/1721.1/53297
http://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
http://ai.stanford.edu/~ang/papers/icml04-apprentice.pdf
http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf
http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf
http://dx.doi.org/10.1109/SBST.2015.12
https://en.wikipedia.org/wiki/Virtual_reality_headset
https://en.wikipedia.org/wiki/Virtual_reality_headset
http://julian.togelius.com/Karakovskiy2012The.pdf
http://www.academia.edu/download/43917809/csmr2011.pdf
http://www.academia.edu/download/43917809/csmr2011.pdf
https://static.oculus.com/documentation/pdfs/intro-vr/latest/bp.pdf
https://static.oculus.com/documentation/pdfs/intro-vr/latest/bp.pdf
http://mtechgames.com/downloads/PhysicsandFramerateBeatingmotionsicknessinVR.pdf
http://mtechgames.com/downloads/PhysicsandFramerateBeatingmotionsicknessinVR.pdf
https://vrgamesfor.com/list/
https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Selenium_(software)
https://en.wikipedia.org/wiki/Upwork
https://en.wikipedia.org/wiki/Upwork
https://en.wikipedia.org/wiki/Windows_Forms
https://en.wikipedia.org/wiki/Windows_Forms

	Abstract
	1 Introduction
	2 Related Work
	3 Research Goals
	4 Research approach
	4.1 Basic Agent Information
	4.2 In depth look
	4.3 Q Learning

	5 Experiment
	5.1 Design and props
	5.2 Performance drop design
	5.3 Methods and experiment procedure
	5.4 Performance drop finding experiment.
	5.5 Retesting experiment

	6 Conclusion and Future work
	A Appendix
	A.1 Virtual Reality Information
	A.2 Testing on games
	A.3 Extra Related work
	A.4 Defining Game Components
	A.5 Experiment Details
	A.6 Research Approach additional information

	References

