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A B S T R A C T

For a dynamical system consisting of a set S and a map f : S → S, the dynamical zeta
function ζ f ,S(T) encodes all information on the (finite) number of fixed points of all nth
iterates of f on S. We are particularly interested in the case where S = X(K), with X an
algebraic variety over K, and f a morphism of degree at least two.

If X = P1
K, where K is a field of characteristic zero, and f is a rational map of degree

at least 2, then the dynamical zeta function is a rational function over Q(T). However, if
K has positive characteristic, then the dynamical zeta function of dynamically affine maps,
which are morphisms of a strongly group-theoretical nature, becomes transcendental over
Q(T).

Under some assumptions, we prove new results for separable endomorphisms on an el-
liptic curve E over a field K of characteristic p > 0, and for multiplication-by-m maps on
abelian varieties, where p - m.

Such transcendence results indicate that for characteristic p > 0 the number of fixed
points does not have an easy pattern. The tame dynamical zeta function is introduced as an
alternative for the original dynamical zeta function; it only counts nth iterates for p - n. We
prove a new theorem which tells us that for dynamically affine maps, the tame dynamical
zeta function is algebraic.
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1
I N T R O D U C T I O N

An arithmetic dynamical system is a pair ( f , X) where X is an algebraic variety over a field
K and f : X → X is a morphism.

When working with dynamical systems we are often interested in all orbits of f . When
an orbit is finite, all its elements are periodic points of f , i.e. fixed points of its iterates. We
will investigate the patterns in the number of fixed points of the nth iterate f ◦n on X(K) via
the dynamical zeta function:

ζ f ,X(T) = exp

(
∞

∑
n=1

#Fix( f ◦n)
n

Tn

)
.

Here we assume the number of fixed points is finite. A more precise introduction of arith-
metic dynamical systems is presented in Chapter 2.

This zeta function was first introduced by Artin and Mazur in [AM65] for a diffeomor-
phism on a topological space in order to study the asymptotic behaviour of its fixed points.
Later Hinkkanen proved in [Hin94] that if X = P1

C and f is a rational map of degree at least
2, then the dynamical zeta function is a rational function in T. This was later generalized
to arbitrary fields of characteristic zero by Lee in [Lee15]. A detailed proof is included in
Chapter 4.

The case where K is a field of positive characteristic had remained more mysterious, until
Bridy proved in [Bri12] and later in [Bri16] that the dynamical zeta function is transcenden-
tal for some sufficiently nice separable morphisms. These morphisms are called dynamically
affine maps and include power maps, Chebyshev polynomials, Lattès maps, and when the
characteristic is positive also (sub)additive polynomials.

His proofs rely on the theory of automata: finite-state machines that take strings of input
and give an output following a deterministic protocol. Therefore, Chapter 3 is included to
introduce all necessary theory on automata.

We were able to rewrite some of his results as simple corollaries of the following theorem:

Theorem (5.1.1). Let p be a prime and m ∈ Z \ {−1, 0, 1} and b, c, d, e, ε ∈ Z≥0 with
ε ∈ {0, 1} and A ∈ Q×. Define the sequence (an)n≥1 by

an := A
(
(mn − 1)b|mn − 1|cp + ε(mn + 1)d|mn + 1|ep

)
.

9



10 I N T R O D U C T I O N

If p - m, then exp
(
∑n≥1

an
n Tn) is transcendental over Q(T). However, if p | m, then

exp
(
∑n≥1

an
n Tn) is algebraic over Q(T). In particular, when p | m and A ∈ Z, then

exp
(
∑n≥1

an
n Tn) is rational over Q(T).

By some basic algebraic computations, we can see that this theorem applies to power
maps, Lattès maps and Chebyshev polynomials. Looking at the proof for Lattès maps, it
became clear that a similar result should hold for endomorphisms of elliptic curves as well.
We proved:

Theorem (5.2.14). Let E be an elliptic curve over a field K of characteristic p > 3, and let
f : E → E be an isogeny of degree at least 2. If f is separable, then ζ f ,E(T) is transcendental
over Q.

The proof consist of the same steps as Theorem 5.1.1, yet generalized to suit all endo-
morphisms of elliptic curves. As the proof relies on the structure of kernels of the endomor-
phisms, the idea arose to generalize this to abelian varieties. For multiplication-by-m maps
it was not hard to see it is in fact a corollary of Theorem 5.1.1:

Theorem (5.2.7). Let A be an abelian variety over a field K of characteristic p > 0, and let
[m] : A → A be the multiplication-by-m map, with |m| > 1. If p - m, then ζ[m],A(T) is
transcendental over Q(T). However, if p | m, then ζ[m],A(T) is rational over Q(T).

Although the majority of steps in the proof of Theorem 5.2.14 apply to general isogenies
of abelian varieties, there was one step in the form of Lemma 5.2.13, regarding the insepa-
rable degree of an isogeny, which proved to be more complicated for abelian varieties. This
problem is reviewed in Chapter 7.

One studies the dynamical zeta function as a way to understand the patterns in the num-
ber of fixed points. The fact that we obtain transcendence results tells us that simple pat-
terns are not easy to detect. Therefore, G. Cornelissen and J. Byszewski came up with an
alternative to the dynamical zeta function, namely the tame dynamical zeta function, which
omits all ‘problematic’ terms:

ζ∗f ,X(T) := exp
∞

∑
n=1,
p-n

#Fix( f ◦n)
n

Tn.

One naively expects that its behaviour is similar to the (full) dynamical zeta function in
characteristic zero. By computing the tame dynamical zeta function for dynamically affine
maps we observe:

Theorem (6.1.2). Let K be a field of characteristic p > 0, and let f : P1
K → P1

K be a
morphism of degree at least 2. If f is a power map, Chebyshev polynomial, Lattès map induced
by a multiplication-by-m map or a (sub)additive polynomial, then the tame dynamical zeta
function ζ∗f ,P1

K
(T) is algebraic over Q(T).

The algebraicity of the tame dynamical zeta function of such f suggests that its structure
might be similar to the dynamical zeta function of a corresponding map f̃ over characteristic
zero. It turns out that there is a natural way of lifting power maps, Chebyshev polynomials
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and Lattès maps to maps over characteristic zero. This allows us to compare the tame
dynamical zeta function of a dynamically affine map f to the dynamical zeta function of
its lift f̃ . For power maps we found promising results, e.g. when p - m we have Equation
6.2.1.6:

ζ∗xm,Gm,Fp
(T) =

ζxm,Gm,K,0(T)
ζxmp ,Gm,K,0

(Tp)1/p ·
(

ζxms ,Gm,K,0
(Ts)

ζxmps ,Gm,K,0
(Tps)1/p

)(A−1)/s

,

where Gm,Fp is the multiplicative group over Fp, and Gm,K,0 the multiplicative group of K,
a field of characteristic zero. Here s and A are constants depending on m. When the tame
dynamical zeta function can be written in this way we call it expressible over its lift.

However, it turns out that such a relation does not exist for (most) separable Chebyshev
polynomials and all separable Lattès maps induced by a multiplication-by-m map:

Theorem (6.3.3.(v,vi,vii)). Let K be a field of characteristic p > 0, and let f : X → X be a
dynamically affine map. Then ζ∗f ,X(T) is not expressible over its lift if f is one of the following:

• Chebyshev polynomial Td on Ga,p(K), with p - d and p 6= 2;

• Chebyshev polynomial Td on Ga,p(K), with p = 2, and d ≡ 1 mod 4;

• Lattès map Lm on P1
K,p(K), with p - m.

There are several aspects of dynamical systems over positive characteristic which have
potential for further study. An overview of interesting problems is presented in Chapter 7.





2
A R I T H M E T I C D Y N A M I C A L S Y S T E M S

In this chapter we will discuss the basic notions in the field of arithmetic dynamical systems
and more algebraic notions of how or where we will apply these. The first section is a brief
introduction which only discusses the necessary definitions. The second section will focus
for algebraic structures for which we will consider these dynamical systems.

2.1 D Y N A M I C A L S Y S T E M S

A (discrete) dynamical system consists of a set S and a self-map f : S→ S. When considering
such a system, we will be interested in the behaviour of f when it is iterated multiple times.
Hereinafter, let S and f be such a dynamical system.

Definition 2.1.1. Let S be a set and f : S→ S a map. We define the n-fold composition of
f as f ◦n := f ◦ . . . ◦ f︸ ︷︷ ︸

n times

, such that f ◦n : S→ S. Any f ◦n is called an iterate of f .

Definition 2.1.2. Let S be a set and f : S → S a map. We call x ∈ S a fixed point of f if
f (x) = x. With Fix( f ) we denote the set of all fixed points of f in S.

Clearly, not every point is fixed for f itself, and hence it is interesting to consider points
being fixed for the n-fold composition.

Definition 2.1.3. Let S be a set and f : S→ S a map. We call x ∈ S periodic if there exists
n ∈ Z≥1 such that f ◦n(x) = x. Moreover, the smallest such integer n0 is called the exact or
minimal period of x.

We are interested in determining how many fixed points we have for each iteration of
f . In other words, we are interested in the sequence |Fix( f ◦n)|. This information can be
given in the form of a generating function defined as a formal power series, similar to the
Hasse-Weil zeta function of an algebraic variety over a finite field.

Definition 2.1.4. Let S be a set and f : S→ S a map. Define the dynamical zeta function
of f over S as

ζ f ,S(T) = exp

(
∞

∑
n=1

Nn

n
Tn

)
,

where

Nn :=

{
|Fix( f ◦n)| if |Fix( f ◦n)| is finite;

0 otherwise.

13



14 A R I T H M E T I C D Y N A M I C A L S Y S T E M S

We needNn to be finite to ensure that the zeta function is well-defined. This formal power
series was first introduced by Artin and Mazur in [AM65], and hence it is also referred to
as the Artin-Mazur zeta function.

Notation. When the set S is understood we may omit it: ζ f (T). Furthermore, we will be
interested in S = X(K), where X is an algebraic variety over a field K. We may just write
ζ f ,X(T) instead of ζ f ,X(K)(T) as we will always count fixed points over the algebraic closure.
Similarly, we can write f : X → X and then we count its fixed points over the algebraic
closure: Fix( f ) := {x ∈ X(K) | f (x) = x}.

Moreover, throughout this thesis we will switch between maps over different fields, i.e.
fields of different characteristic. To avoid confusion, we denote the zeta function of a
map f : X(K) → X(K) by ζ f ,XK,0(T) when K has characteristic or ζ f ,XK,p(T) when K has
characteristic p > 0. When the characteristic is obvious from the field, e.g. Fp, or if we have
not specified the characteristic of K we may just write ζ f ,XK .

2.2 D Y N A M I C A L LY A F F I N E M A P S

We will be particularly interested in the case where S is an algebraic variety, denoted X,
over a field K and f is a morphism. Following Section 6.8 in [Sil07], we introduce a few
other notions in order to discuss a specific family of morphisms on P1

K, called dynamically
affine maps.

Definition 2.2.1. An algebraic group is a group that is also an algebraic variety, such that
the multiplication and inversion operations are given by regular maps on the variety.

Definition 2.2.2. A morphism φ : X → Y of algebraic varieties is said to be unramified at
a point P ∈ X if φ induces an isomorphism between the completion of the local rings at P
and φ(P). We call φ unramified if φ is unramified at all points P ∈ X.

Definition 2.2.3. An unramified morphism φ : X → Y of algebraic varieties is called a
finite morphism if for any point P ∈ φ(X), the inverse image φ−1(P) consists of d points,
counted with multiplicity, for a certain fixed integer d, called the degree of φ.

Definition 2.2.4. Let G be a commutative algebraic group. An affine morphism of G is the
composition of a finite endomorphism of degree at least 2 and a translation.

We can finally give the definition of a dynamically affine map.
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Definition 2.2.5. A self-morphism of an algebraic variety φ : V → V is dynamically affine
if it is a finite quotient of an affine morphism, i.e. if there exist a connected commutative
algebraic group G, an affine morphism ψ : G → G, a finite subgroup Γ ⊂ Aut(G), and a
morphism χ : G/Γ → V that identifies G/Γ with a Zariski dense open subset of V, such
that the following diagram is commutative:

G G

G/Γ G/Γ

V V

ψ

χ χ

φ

Example 2.2.6. A power map φ(x) = xm is an example of a dynamically affine morphism.
Let G = Gm(K) be the multiplicative group of a field K, Γ = 〈1〉, V = P1

K(K) and χ :
Gm(K)→ P1

K(K), defined by identifying Gm(K) with P1
K(K) \ {0, ∞} ⊂ P1

K(K). We get the
diagram:

Gm(K) Gm(K)

Gm(K)/〈1〉 Gm(K)/〈1〉

P1
K(K) P1

K(K)

x→xm

id id

χ χ

x→xm

Clearly, almost all maps are restrictions or identity maps, hence the diagram commutes.
Other dynamically affine maps we will study on P1

K are Chebyshev polynomials and Lat-
tès maps, which come from the multiplicative group or an elliptic curve, these will be intro-
duced in Section 4.2. These three families of maps are the only rational dynamically affine
morphisms on P1

C (Theorem 6.79 in [Sil07]). When K has positive characteristic we also
need to consider (sub)additive polynomials, which will be introduced in 5.1.





3

AU T O M ATA T H E O RY A N D I T S N U M B E R T H E O R E T I C A L A P P L I C AT I O N S

Automata theory is the study of virtual machines known as automata. An automaton is
a very basic notion of a computational model and has its origin in theoretical computer
science, with links to logic, combinatorics and number theory. In particular, automatic
sequences are of interest to us as we can relate these to the coefficient sequences of formal
power series.

3.1 AU T O M ATA T H E O RY

In this section we will introduce the basic notions of automata theory using definitions,
examples and theorems from [AS03].

Definition 3.1.1. An alphabet Σ is a nonempty set of symbols.

Often the alphabet consists of symbols which we will denote with numbers, like 0, 1, 2, 3, . . ..
Note that an alphabet is not necessarily finite.

Definition 3.1.2. Let Σ be an alphabet. A word or string is a finite or infinite list of symbols
in Σ, often denoted without comma’s or spacing. With Σ∗ we denote the Kleene closure of
Σ; it is the set of all finite words on Σ.

Example 3.1.3. One of the most ubiquitous family of alphabets in number theory is Σk :=
{0, . . . , k− 1} for k ≥ 2. Although, the symbols do not necessarily represent the integers,
we often do identify them with each other. Let w ∈ Σ∗. We can write w = wt · · ·w0, where
wt, . . . , w0 ∈ Σ and t is some non-negative integer. Then we can introduce

[w]k =
t

∑
i=0

wiki.

Note that any word w will give the same value if we add zeroes on the left. For example in
the decimal system: [000501]10 = [501]10. We consider the word 501 as the canonical word
corresponding to the integer 501 in the decimal system, as it contains no leading zeroes. We
write (n)k for the canonical word of n in base k. That is [(n)k]k = n and (n)k has no leading
zeroes.

With this basic vocabulary we can now introduce automata. There are several types of
automata, so we will start with a simpler version of what we will need in the end.

17



18 AU T O M ATA T H E O RY A N D I T S N U M B E R T H E O R E T I C A L A P P L I C AT I O N S

Definition 3.1.4. A deterministic finite automaton (DFA) is a 5-tuple M = (Q, Σ, δ, q0, F),
where

• Q is a finite set of states;

• Σ is an input alphabet;

• δ : Q× Σ→ Q is a transition function;

• q0 ∈ Q is a begin state;

• F ⊂ Q is a set of accepting states.

Note that the transition δ : Q× Σ→ Q can be extended on words. Given a begin state, one
can apply delta to this state and the rightmost letter of a word to get to a new state and
then use the next letter to go to another state, etc. To make this more formal: we can define
δ′ : Q× Σ∗ → Q in the following way δ′(q, (an, . . . , a0)) = δ(. . . (δ(δ(q, a0), a1), . . . , an). We
will usually denote the extended map on Q× Σ∗ → Q also by δ.

We can describe a DFA by a diagram: the states are represented by circles; the transition
function consists of arrows between the nodes which depend on the input alphabet; the
begin state will have start arrow and lastly; the accepting states are represented by taking
double circles. To clarify, we give an example.

Example 3.1.5. We can think of a DFA as a machine which either accepts or rejects certain
words on our input alphabet. We will give an example by defining which words the DFA
will accept. Let Σ = {0, 1} and we accept words which contain at least one 1, but no two
consecutive 1’s.

q0start q1 q2

q3

0

1 1

0

0,1

0

1

A more general notion is the following.

Definition 3.1.6. A deterministic finite automaton with output (DFAO) is a 6-tuple M =

(Q, Σ, δ, q0, ∆, τ), where

• Q is a finite set of states;

• Σ is the input alphabet;

• δ : Q× Σ→ Q is a transition function;

• q0 ∈ Q is the begin state;
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• ∆ is the output alphabet;

• τ : Q→ ∆ is the output function.

Just like the DFA, a DFAO can also be described using a diagram: the states are rep-
resented by circles; the transition function consists of arrows between the nodes which
depend on the input alphabet; the begin state will have an incoming arrow with the word
“start”. In some of the literature on automata the circles do not only contain the state, but
also the corresponding output given by τ. However, we chose to omit the output.

We claimed that a DFAO is a more general notion than a DFA. It is easy to turn a DFA into
a DFAO by the following construction. Define ∆ = {accepting, rejecting} to be the output
alphabet, and define the output function as

τ(q) :=

{
accepting if q ∈ F;

rejecting if q 6∈ F.
.

The last type of automata we will introduce is a specific family within the DFAO’s.

Definition 3.1.7. A k-DFAO is a DFAO M = (Q, Σ, δ, q0, ∆, τ), where Σ = Σk for k ∈ Z≥1.

This family allows us to talk about the notion of automatic sequences.

Definition 3.1.8. A sequence (an)n≥0 on an alphabet ∆ is called k-automatic for k ∈ Z≥1

if there exists a k-DFAO M = (Q, Σk, δ, q0, ∆, τ), such that an = τ(δ(q0, w)) for all w ∈ Σ∗k
with [w]k = n, for all n ≥ 0.

Note that we demand that the automaton gives us the correct output, even when we
insert a word with leading zeroes. It turns out that it suffices to just look at the canonical
word. This is expressed in the following theorem.

Theorem 3.1.9. The sequence (an)n≥0 is k-automatic if and only if there exists a k-DFAO
M such that an = τ(δ(q0, (n)k)) for all n ≥ 0. Moreover, we may choose M such that
δ(q0, 0) = q0.

Proof. See the proof of Theorem 5.2.1. in [Sil07].

Example 3.1.10. A famous automatic sequence is the Thue-Morse sequence. Let (tn)n≥0

denote the sequence, defined by

tn =

{
0 if the number of 1’s in the base 2-expansion of n is even;

1 if the number of 1’s in the base 2-expansion of n is odd;
.

We can make a 2-DFAO with 2 states {q0, q1} which generates the Thue-Morse sequence.

q0start q1

0

1

1

0
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Here q0 is the state with output tn = 0 and q1 has tn = 1 as output. Clearly, we start with
output zero and whenever we get a 1 the parity of the number of 1’s changes, and whenever
we get a zero, the parity remains the same. The automaton above clearly represents this
behaviour.

3.2 N U M B E R T H E O R E T I C A L A P P L I C AT I O N S

In this section we will focus on automatic sequences and how to determine which sequences
can or cannot be p-automatic for a prime p. We will obtain many tools throughout this
section which will play a major role in many of the proofs presented in Chapter 5. We start
with a famous theorem which truly exemplifies the connection between automata theory
and number theory.

Theorem 3.2.1 (Christol). Let p be a prime and let ∑∞
i=0 biti ∈ FpJtK be a formal power series.

Then this power series is algebraic over Fp(t) if and only if the coefficient sequence (bi)i≥0 is
p-automatic.

Proof. See the proof of Theorem 12.2.5. in [AS03].

This theorem has a very practical corollary.

Corollary 3.2.2. Let ∑∞
i=0 biti ∈ ZJtK be a formal power series. If it is algebraic over Q(t),

then for every prime p the reduced coefficient sequence (bn mod p)n≥0 is p-automatic.

Proof. Let us write f (t) := ∑∞
i=0 biti for the formal power series. Assume f is algebraic over

Q(t). Then there exists a polynomial P(X) of degree at least 1 with coefficients in Q(t) such
that P( f ) = 0. Let us write P(X) = an(t)Xn + . . . + a0(t), where ai(t) ∈ Q(t), such that for
all primes there is at least one ai with vq(ai) = 0. Now we can write each ai(t) = ãi(t)/αi(t),
where ãi(t), αi(t) ∈ Z[t] and for each i we have (ãi(t) is coprime to αi(t) in Z[t].

Define α(t) as the least common multiple of all αi(t), and define P̃(X) := α(t)P(X). It
follows that P̃( f (t)) = α(t)P( f (t)) = α · 0 = 0. So we get

P̃(X) = a′n(t)Xn + . . . + a′0(t),

where a′i(t) is a multiple of ãi(t). By definition of ãi(t) it must follow that a′i(t) ∈ Z[t].
Note that by taking the least common multiple the a′i(t) are not all divisible by some non-
unit in Z[t]. Hence we can define ai(t) := a′i(t) mod p in Fp(t) and henceforth we get
P(X) = an(t)Xn + . . . a0(t). Similarly, we define bi := bi mod p in Fp which also gives us
f (t) := ∑∞

i=0 biti ∈ FpJtK.
Since P̃( f (t)) = 0 in Z[t], we also know that P̃( f (t)) mod p ≡ 0 in Fp[t]. This is

equivalent to saying that P( f (t)) = 0 in Fp. We need that P is not identically zero. To
get a contradiction, assume however that P is identically zero. This happens if and only if
ai(t) = 0 for all i = 0, . . . , n. This is equivalent to a′i(t) = 0 mod p. By construction all
a′i(t) are coprime over Z[t], in particular they cannot all be divisible by p. Hence, this gives
a contradiction.

As the statements in Chapter 5 often include the notion of transcendence, we need tools to
prove that a specific sequence is not automatic for a certain (prime) number. The following
theorem is a great means to this end.
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Theorem 3.2.3 (Cobham). Let p and q be multiplicatively independent integers
(i.e. log p/ log q 6∈ Q), at least 2. If the sequence (an)n≥0 is both p-automatic and q-automatic,
then (an)n≥0 is eventually periodic, i.e. there exists an integer N ≥ 0, such that the sequence
(an)n≥N is periodic.

Proof. See the proof of Theorem 11.2.2. in [AS03]. In fact this is a corollary of the original
Cobham’s Theorem, given as Theorem 11.2.1. in [AS03].

To apply the aforementioned theorems we often need to modify the given sequence to make
it fit in the framework. We will provide several theorems and propositions which will be
useful tools when proving that certain sequences are not p-automatic for a prime p.

Theorem 3.2.4. Let (an)n≥0 be an eventually periodic sequence, then (an)≥0 is k-automatic
for every k ∈ Z≥1

Proof. See the proof of Theorem 5.4.2. in [AS03].

Theorem 3.2.5. Let (an)n≥0 be a k-automatic sequence. Then for all nonnegative integers b
and c, the subsequence (abn+c)n≥0 is also k-automatic.

Proof. See the proof of Theorem 6.8.1. in [AS03].

Proposition 3.2.6. Let (an)n≥0 and (bn)n≥0 be two k-automatic sequences both with values
in the output alphabet ∆. Let f : ∆ × ∆ → ∆ be any binary operation. Then the sequence
( f (an, bn))n≥0 is k-automatic. In particular, if (an)n≥0 and (bn)n≥0 have entries in a ring, this
holds for the sum (an + bn)n≥0 and the product (an · bn)n≥0.

Proof. This is a special case of Corollary 5.4.5. in [AS03]. It follows if one just equates all
output alphabets. Taking the pointwise sum and pointwise product are binary operations,
hence it holds for these cases.

Proposition 3.2.7. Let (an)n≥0 be a k-automatic sequences with entries in the ring R, and let
f : R → R be a unary operation. Then the sequence ( f (an))n≥0 is k-automatic. In particular,
the sequence (can)n≥0 is k-automatic for c ∈ R and if an is invertible in R for all n ≥ 0, then
the sequence (a−1

n )n≥0 is k-automatic.

Proof. Let M = (Q, Σ, δ, q0, R, τ) be the k-DFAO corresponding to (an)n≥0. We define τ′ :
Q → R defined by τ′(qi) := f (τ(qi)). Consider M = (Q, Σ, δ, q0, R, τ′). Then this is an k-
DFAO and moreover, τ′(δ(q0, (n)k)) = f (τ(δ(q0, (n)k))) = f (an). Therefore, the sequence
( f (an))n≥0 is k-automatic. Multiplying by a scalar and taking the inverse (if defined) clearly
are unary operations.

The propositions and theorem mentioned before give very general manipulations. We
will now focus on sequences which include a valuation function, e.g. an = avp(n).

Proposition 3.2.8. Let p be a prime and m a positive integer. If (an)n≥0 is a function of the
equivalence class of vp(n) mod m, then the sequence (an)n≥0 is p-automatic.
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Proof. Let ∆ = {ai | i ≥ 0} be the output alphabet. Because an only depends on vp(n)
mod m, it can only attain a finite number of outputs, which implies that ∆ is finite. This
means there exists some function f : Z/mZ → ∆, such that f (vp(n) mod m) = an for
all n ≥ 0. To prove the proposition we define a p-DFAO M = (Q, Σp, δ, q0, ∆, τ), where we
take Q = {q0, . . . , q2m−1}. Also, we define τ : Q → ∆ by τ(qi) = f (i mod m). We define
δ : Q× Σp → Q, by

δ(qi, k) =


qi if i ∈ {m, . . . 2m− 1};
qi+m if i ∈ {0, . . . m− 1} and k 6= 0;

qi+1 if i ∈ {0, . . . m− 2} and k = 0;

q0 if i = m− 1 and k = 0.

We can represent this automaton with the following graph, where the dashed arrows illus-
trate that this continues analogously for all i ∈ {4, . . . , m− 2}:

q0

q1

q2
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0
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0
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0
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0
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0

1, . . . , p-1

0, . . . , p

0, . . . , p

0, . . . , p

0, . . . , p

0, . . . , p

0, . . . , p

This proposition gives us the opportunity to obtain the following two propositions which
will both be critical to prove significant results in Chapter 5.

Proposition 3.2.9. Let p and q be distinct primes. Suppose a ∈ Z+, a 6≡ 0, 1 mod q. Also,
suppose α, β ∈ Z, with α 6= 0 such that vp(α) ≤ vp(β). Let the sequence (an)n≥0 be a sequence
with entries in Z/qZ be defined by an = avp(αn+β) mod q. Then the sequence (an)n≥0 is not
q-automatic.

Proof. Let d be the multiplicative order of a mod q in Fq, which exists as a 6≡ 0 mod q,
and d is strictly greater than 1 as a 6≡ 1 mod q. Then the sequence bn = avp(n) is a
function of the equivalence class vp(n) mod d. We apply Proposition 3.2.8 to see that
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bn is p-automatic. Then an = bαn+β is also p-automatic by Proposition 3.2.5. Assume by
contradiction that an is q-automatic. As distinct primes are multiplicatively independent,
we apply Theorem 3.2.3 to see that an must be eventually periodic.

Let k be the period and N > 0 such that akn+m = am for all m > N. This means that
avp(αm+β) ≡ avp(α(kn+m)+β) mod q, which is equivalent to vp(αm + β) ≡ vp(α(kn + m) + β)

mod d. Define α′ := α · |α|p and similarly β′ := β · |α|p. Clearly, α′ is coprime to p (we
use that α is nonzero). Because vp(α) ≤ vp(β) we know |α|p ≥ |β|p, hence β′ is still an
integer. By arguments analogous to earlier ones, we have vp(α′m + β′) ≡ vp(α′(kn + m) +

β′) mod d. Choose l := vp(k) such that k′ = k/pl and k′ is coprime to p. As α′ 6= 0 mod p
the following equation is solvable in m:

α′m ≡ −β′ + pl mod pl+2.

We can choose m > N as the sequence (an)n≥N is periodic. Hence, we get vp(α′m + β′) = l.
Moreover, we can also solve the following equation in n:

α′k′n ≡ p− 1 mod pl+2.

Let us multiply this equation with pl and add it to the previous equation.

α′(m + kn) ≡ −β′ + pl+1 mod pl+2.

Therefore, vp(α′(m + kn) + β′) = l + 1. If we combine our results we obtain l ≡ l + 1
mod d. However, d > 1 is in contradiction with this identity.

Proposition 3.2.10. Let a ∈ Z+ and let p and q be primes with q > papa
. If p is odd, also

assume that q− 1 6≡ 0 mod p. If p = 2, instead assume that q ≡ 7 mod 8. Let the sequence
(an)n≥0 with entries in Z/qZ be defined by an = papvp(n) mod q. Then this sequence (an)n≥0

is not q-automatic.

Proof. Because q > papa
the primes q and p are distinct. Hence, pa 6≡ 0 mod q. We can

define d to be the multiplicative order of pa mod q in Fq. As q > papa
, we know that d > pa.

The sequence an is a function of the equivalence class of pvp(n) mod d.
Assume p is odd. Then pa and q − 1 are coprime, and as d | #F×q = q − 1, we have that
pa and d are also coprime. Let e be the multiplicative order of pa mod d in Z/dZ, note
that e 6= 1. Hence, an = am if and only if pvp(n) ≡ pvp(m) mod d, which is equivalent to
vp(n) ≡ vp(m) mod e. By Proposition 3.2.8 this means an is p-automatic.

Secondly, assume p = 2. Then q ≡ 7 mod 8, so 2 is a quadratic residue modulo q.
This means that d | (q− 1)/2, which means d is odd and in particular coprime to p = 2.
Let e be the multiplicative order of p mod d in Z/dZ, and as before e 6= 1. Similarly to
the previous case we get equivalences an = am if and only if vp(n) ≡ vp(m) mod e. In
particular by Proposition 3.2.8 an is again p-automatic.

Assume the contrary: an is q-automatic. Using Cobham’s theorem we see that an must be
eventually periodic. Let k be its ultimate period and N > 0 such that akn+m = am for all
m > N and n ≥ 0. In particular we get vp(kn+m) ≡ vp(m) mod e. We get a contradiction
by analogous arguments as we have seen in the proof of Proposition 3.2.9 with α = 1 and
β = 0.





4

T H E D Y N A M I C A L Z E TA F U N C T I O N I N C H A R A C T E R I S T I C Z E R O

In this chapter we will examine the dynamical zeta function of maps on varieties over a
field K of characteristic zero. Understanding the characteristic zero case allows us to gain
important insight into what to expect in positive characteristic. The most examined object
on which we will consider self-maps is the projective line P1

K.
The first section is dedicated to Theorem 4.1.13 and its proof, which tells us that the

dynamical zeta function of a rational self-map of degree at least two is rational as well.
In the second section we will exhibit some examples of self-maps on the projective line

P1
K, or on its open subsets: the multiplicative group Gm and the additive group Ga. This

underlying algebraic structure of the maps allows us to give the exact dynamical zeta func-
tion. To avoid duplicating certain results, in the second section we will provide results over
general fields, to be used in chapters 6 and 5 over a field of positive characteristic.

4.1 R AT I O N A L I T Y O F T H E D Y N A M I C A L Z E TA F U N C T I O N

This section is based on an article [Lee15] by Junghun Lee. All propositions, lemmas and
theorems which are (partially) his are referenced, although some proofs might deviate from
the ones in the paper.

Throughout this section K will be a field of characteristic zero and X = P1
K(K). We will

consider f : X → X, a rational map. We will always count points over the algebraic closure,
hence we will just write f : P1

K → P1
K and denote the dynamical zeta function as ζ f (T).

Because we can consider P1
K(K) as the set K ∪ {∞}, we can view f as a map on this set.

So in fact f : P1
K(K)→ K ∪ {∞} means that f is a regular map, but we do allow poles. For

any P ∈ P1
K(K) we have the local ring at P, denoted OP,P1

K
. Let mP be the unique maximal

ideal and κ the residue field. We can see f as an element of OP,P1
K

for all P which are not a
pole of f .

Definition 4.1.1. Let f ∈ K(t) with f = f1/ f2 such that f1, f2 ∈ K[t], and f1 and f2 have
no common factors. Define the degree of f as

deg( f ) = max{deg( f1), deg( f2)},

where deg( f1) and deg( f2) are the usual degrees of polynomials.

Definition 4.1.2. Let f ∈ OP,P1
K
. Then for some g ∈ K(t) we have f = g on an open

V ⊂ P1
K. The degree of f is equal to the degree of g. Notation: deg( f ).

25
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This appears to depend on the choice of V, however, let V be the largest non-empty
open on which f coincides with a rational function g. For any non-empty open U on which
f coincides with some rational function h, we have that f = g = h on U ∩ V 6= ∅. In
particular, the degree is invariant under the choice of V.

Definition 4.1.3. Let P ∈ P1
K(K) and f ∈ OP,P1

K
. The multiplicity at P of f is

mP( f ) := max
i≥0
{i | f (z)− z ∈ mi

P}.

Note that mP( f ) ≥ 1 if and only if P is a fixed point of f . Moreover, whether f (z)− z ∈ mi
p

or not, does not depend on coordinates, hence the multiplicity of f at P is invariant under
a change of coordinates.

Proposition 4.1.4. If P ∈ P1
K, then the completion of OP,P1

K
with respect to the mp-adic

topology is equal to the ring of formal power series:

ÔP,P1
K
= KJπPK,

where πP is a uniformizer of the maximal ideal mP.

Proof. We denote the maximal ideal of ÔP,P1
K

by m̂P and the residue field by κ̂. Because P1
K

is nonsingular, OP,P1
K

is a regular local ring for all P ∈ P1
K. Hence, ÔP,P1

K
is a regular local

ring(Theorem 5.4.A in [Har77]). We apply a corollary of Cohen’s structure theorem (Corol-
lary p. 307 in [ZS60]) to say that ÔP,P1

K
= κ̂ Jx1, . . . , xnK, where {x1, . . . , xn} is a system

of regular parameters, i.e. a system of generators of the maximal ideal m̂p. But we have
m̂P = mPÔP,P1

K
(Theorem 5.4.A in [Har77]). Hence, only one generator is needed, namely

the uniformizer πP. We acquire ÔP,P1
K
= κ̂JπPK. Observe that K ⊂ ÔP,P1

K
, as constants are

regular functions and a ring injects naturally into its completion. Now consider the evalu-
ation map φ : ÔP,P1

K
→ K, f 7→ f (P). This is a group homomorphism with ker(φ) = m̂P

and therefore im(φ) ' ÔP,P1
K
/m̂P = κ̂. Note that im(φ) both contains and is contained in

K. Ergo κ̂ = K. This concludes the proof: ÔP,P1
K
= KJπPK.

Remark. The elements of OP,P1
K

are pairs ( f , U) under an equivalence relation. Here f is a

regular function on U, which is an open subset of P1
K containing P. Two pairs ( f , U) and

(g, V) are equivalent if and only if f = g on U ∩ V. Usually we just write f , but for the
following corollary, we do need the pair.

Corollary 4.1.5 (Proposition 2.3. in [Lee15]). Let ( f , U) ∈ OP,P1
K

and let x be the local

coordinate on U. If Px = α with α ∈ K, then

f (z) =
∞

∑
i=0

an(x− α)n ∈ ÔP,P1
K
,

with ai ∈ K.

Proof. Because OP,P1
K

naturally injects into its completion (Theorem 5.4.A in [Har77]), we

can consider f as an element of ÔP,P1
K
= KJπPK. First observe that indeed x− α ∈ mP. We
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know mp is generated by one element, which must divide (x − α) too. Obviously, K 6⊂ mP,
therefore mP is not generated by a scalar. So (x− α) is a uniformizer. It follows that f can
be written as a formal power series in (x− α) with coefficients in K.

Definition 4.1.6. Let P ∈ P1
K and ( f , U) ∈ OP,P1

K
. Let {ai}∞

i=0 be as in Corollary 4.1.5.
Define

• λ( f ; P) := a1;

• µ( f ; P) := min
i≥2
{i | ai 6= 0}.

The definition of λ( f ; P) depends on the choice of the local coordinate on U. In the case
that P is a fixed point of f , we call λ( f ; P) the multiplier of f at P.

Note that we can also obtain λ( f ; P) by taking the formal derivative of f in P, because
f ′(x) = a1 mod mp. This provides us with a useful computational definition of λ( f ; P).
Moreover, we have

mP( f ) =

{
1 if λ( f ; P) 6= 1;

µ( f ; P) if λ( f ; P) = 1.

Proposition 4.1.7 (Proposition 2.1.(2) in [Lee15]). Let f : P1
K → P1

K be a rational map of
degree d ≥ 2 and let P ∈ P1

K be a fixed point. Then the following statements hold.

1. The multiplier λ( f ; P) is independent of the local coordinate x.

2. For any k ∈ Z≥0 we have λ( f ◦k; P) = λ( f ; P)k.

Proof. (1.) The multiplier is defined on some open affine U with local coordinate x. First
note that two pairs ( f , U) and (g, V) are equivalent if f = g on U ∩ V. This means that
on any intersection we need to get the same a1, hence we can consider any open U, as all
should result in the same power series on the intersection. We need to consider a change of
coordinates. We will write λ( fx; α) and λ( fy; β) where P = (α)x and P = (β)y to emphasize
the two different coordinate systems. We can write this as a linear coordinate change given
by a map φ : P1

K,y 7→ P1
K,x, where the subscripts denote the coordinates. Therefore, we can

write fy = φ−1 ◦ fx ◦ φ. We compute λ( fy; β):

λ( fy; β) = λ(φ−1 ◦ fx ◦ φ; φ−1(α))

= (φ−1 ◦ fx ◦ φ)′(φ−1(α))

= (φ−1)′( fx(φ(φ
−1(α)))) · f ′x(φ(φ

−1(α))) · φ′(φ−1(α)) (chain rule)

= (φ−1)′( fx(α)) · f ′x(α) · φ′(φ−1(α)) (φ ◦ φ−1 = id)

= (φ−1)′( fx(α)) · f ′x(α) · φ′(φ−1( fx(α))) (α = fx(α))

= (φ ◦ φ−1)′( fx(α)) · λ( fx; α) (chain rule)

= λ( fx; α).
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Henceforth, we can truly write λ( f ; P).
(2.) We use that f ◦i(P) = P for all i. Let us compute λ( f ◦k; P) using the chain rule for
derivatives.

λ( f ◦k; P) = ( f ◦k)′(α) =
k−1

∏
i=0

f ′( f ◦i(α)) =
k−1

∏
i=0

f ′(α) =
k−1

∏
i=0

λ( f ; α) = λ( f ; P)k.

Remark. Note that the requirement that P is fixed is necessary for λ( f ; P) to be independent
of the choice of coordinates. We define fx : P1

K,x → P1
K,x by f (x) = x2 + 1, and fx(∞) = ∞.

We introduce the coordinate change y = 1/x. So φ : P1
K,y → P1

K,y with φ(0) = ∞, φ(∞) = 0

and φ(a) = 1/a for a ∈ K×. We can see that fx(1) = 2 6= 1. So 1x is not a fixed point. Note
that φ−1(1) = {1}.

d(φ−1 ◦ fx ◦ φ)

dy
(1) =

d
(

1
( 1

y )
2+1

)
dy

(1)

=
2y(1 + y2)− 2y · y2

(1 + y2)2

∣∣∣
y=1

=
2(1 + 1)− 2

22 =
1
2

.

But we can also compute

d fx

dx
(1) = 2x

∣∣∣
x=1

= 2.

Next we discuss the remark given in the introduction of [Lee15] in the form of a proposi-
tion.

Proposition 4.1.8. Let f : P1
K → P1

K be a rational map of degree zero or one over K, a field
of characteristic 0. Then the dynamical zeta function ζ f (T) is algebraic over Q. Moreover, all
zeros lie on the unit circle.

Proof. If f is of degree 0, it must be constant. Let f = c for some c ∈ P1
K. Then we know

that f ◦n = c. We can easily solve f ◦n(x) = x, because we get exactly 1 solution: x = c. So
Nn = 1 for all n ≥ 1. We compute the zeta function:

ζ f (T) = exp

(
∞

∑
n=1

Nn

n
Tn

)
= exp

(
∞

∑
n=1

1
n

Tn

)
= exp

(
log
(

1
1− T

))
=

1
1− T

.

Let f be of the form f (x) = ax + b with a, b ∈ K and a 6= 0. We first treat this case and then
reduce all other cases to this one. The composition is easily determined:

f ◦n(x) = a(a(. . . a(ax + b) + b) . . . + b) + b = anx + an−1b + . . . + ab + b.
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We will write this as f ◦n(x) = anx + cn. Next we solve f ◦n(x) = x:

anx + cn = x ⇐⇒ (an − 1)x = −cn.

To see that ∞ is fixed, use the transformation x = 1/y. We obtain 1/ f (1/y) = y
a+by , which

we consider in y = 0. We can see y = 0 is fixed. Hence, ∞ is fixed.
Here we need to make a distinction. If an 6= 1 then we have precisely two solutions:
x = −cn

1−an and ∞. So Nn = 2 for all such n. If this holds for all n ≥ 1, we can compute
ζ f (T):

ζ f (T) = exp

(
∞

∑
n=1

Nn

n
Tn

)
= exp

(
∞

∑
n=1

2
n

Tn

)
= exp

(
2 log

(
1

1− T

))
=

1
(1− T)2 .

However, if an = 1, then we need the equation 0 = −cn to hold. Now observe that cn =

b(an−1 + . . . + 1). If a = 1, then cn = nb. Here we need that char(K) - n to say that
cn = 0 if and only if b = 0. If b = 0, we have the identity map and hence infinitely
many solutions, so Nk = 0. If b 6= 0 we have a translation, only ∞ is fixed. Hence,
Nn = 1 for all n ≥ 1. We obtain the same result as in the constant case. If a 6= 1, then
0 = an − 1 = (a− 1)(an−1 + . . . + 1) implies that cn = 0. Hence, all points are solutions
of the equation f ◦n(x) = x. This means we have infinitely many fixed points, therefore
Nn = 0 for such n.
Let q be the smallest positive integer such that aq = 1. Then

Nn =

{
2 if q | n;

0 if q - n.

We can determine the zeta function:

ζ f (T) = exp

(
∞

∑
n=1

Nn

n
Tn

)
= exp

 ∞

∑
n=1

1
n

Tn −
∞

∑
n=1,
q|n

1
n

Tn

 = exp

(
∞

∑
n=1

1
n

Tn − 1
q

∞

∑
`=1

1
`
(Tq)`

)

= exp
(

log
(
(1− T)−1

)
− 1

q
log
(
(1− Tq)−1

))
= (1− T)−1 · (1− Tq)

1
q .

Lastly, we will discuss the case where char(K) = p | n and a = 1. We observe that f (x) =
x + b, and hence f ◦n(x) = x + nb. If b = 0 we find the identity map, hence there are
infinitely many solutions. Hence, Nn = 0 for all n. If p | n, then f ◦n(x) = x, hence Nn = 0
as there are infinitely many fixed points.

Let f be any rational map of degree 1. Then it is of the form f (x) = ax+b
cx+d , with a, b, c, d ∈

K such that ad − bc 6= 0, otherwise the map would be of degree 0. Since f has at least
one fixed point, we can assume it is ∞ by some change of coordinates. This means we can
reduce each degree 1 case to the ax + b case.
The fact that all zeros lie on the unit circle, follows easily from the expressions found.

Proposition 4.1.9 (Corollary 2.2. in [Lee15]). Let f : P1
K → P1

K be a rational map of degree
d ≥ 2. Then the number of fixed points of f ◦n in P1

k is exactly dn + 1, counted with multiplicity.
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Proof. Because f is of degree d at least 2, it cannot be the identity map. Hence, there is at
least one point not fixed. Using some change of coordinates we may assume ∞ is not fixed.
Let us write f = f1/ f2, where f1, f2 are polynomial maps with no common factors. Since
∞ is not a fixed point, we know that deg( f1) ≤ deg( f2), as the numerator cannot increase
faster than the denominator. Therefore, d = deg( f2). Observe that α ∈ K is fixed if and
only if

f1(α)

f2(α)
= α ⇐⇒ f1(α)− α f2(α) = 0.

We obtain f1(z)− z f2(z), which is a polynomial over K. Because deg( f1) ≤ deg( f2) = d,
this polynomial is of degree d + 1. Since K is algebraically closed, this polynomial has
precisely d + 1 zeros, counted with multiplicity. Since ∞ is not a fixed point, all fixed points
lie in K. This means that f has precisely d + 1 fixed points counted with multiplicity.

As multiplicities of fixed points are preserved under a change of coordinates this result
holds for any f . In particular under a change of coordinates we may assume ∞ is fixed.
Hence, we can reverse the assumption on the degrees to deg( f1) > deg( f2). We use this
for the following claim, just for simplification of the proof.
Claim: If f = f1/ f2 with d := deg( f1) > deg( f2) = e, then f ◦n = g1/g2 with deg(g1) =

dn > deg(g2).
We will prove our claim using induction. For n = 1 it is true by definition. Assume it is true
for n and consider f ◦(n+1). We will write f ◦n = g1/g2 as in the claim.

f ◦(n+1) = f ( f ◦n) =
f1(g1/g2)

f2(g1/g2)
=

g−d
2 f̃1

g−e
2 f̃2

=
f̃1

gd−e
2 f̃2

,

where f̃1 := gd
2 f1(g1/g2) and f̃2 := ge

2 f2(g1/g2). Note that both f̃1 and gd−e
2 f̃2 are polynomi-

als. We need to check whether they have common factors. Let us write f1 = c1 ∏d
i=1(x− αi)

and f2 = c2 ∏e
i=1(x− βi). Then

f̃1 = gd
2c1

d

∏
i=1

(g1/g2 − αi) = c1

d

∏
i=1

(g1 − αig2), and similarly f̃2 = c2

e

∏
i=1

(g1 − βig2).

If f̃1 and gd−e
2 f̃2 have an irreducible non-constant common component h, then h | g2 or

h | f̃2 and h | f̃1. If h | g2 and h | f̃1, then h | gd
1. This is a contradiction with the assumption

that g1/g2 is reduced. If h | f̃1 and h | f̃2, then h will divide some some factor: h | g1 − αig2

and h | g1 − β jg2. Hence, the difference is also divisible by h: h | g2(αi − β j). As h is non-
constant, h | g2. However, this implies that h | g1, which is again a contradiction. Hence,
the polynomials have no common components.
We can conclude that deg( f ◦(n+1)) = max(deg( f̃1), deg(gd−e

2 f̃2)). We observe that

deg( f̃1) = deg

(
c1

d

∏
i=1

(g1 − αig2)

)
= d · deg(g1 − αig2) = d · deg(g1) = dn+1.



4.1 R AT I O N A L I T Y O F T H E D Y N A M I C A L Z E TA F U N C T I O N 31

Similarly, we find

deg(gd−e
2 f̃2) = deg(gd−e

2 ) + deg( f̃2)

= (d− e)deg(g2) + deg(c2ge
1) = (d− e)deg(g2) + edn.

By the induction hypothesis deg(g2) ≤ dn. Hence, we see that (d − e)deg(g2) + edn ≤
(d− e)dn + edn+1 = dn+1. So indeed, f ◦(n+1) has degree dn+1. The claim is proven.
We may assume f has at least one fixed point, hence we may assume it is the point at
infinity. If we use the first part of the proposition and apply it to f ◦n we can use the claim
to see that f ◦n has precisely dn + 1 fixed points, counted with multiplicity. This concludes
the proof.

Lemma 4.1.10 (Lemma 3.2. in [Lee15]). Let f : P1
K → P1

K be a rational map of degree
d ≥ 2 and let α be a periodic point of f with minimal period n. Suppose that { f ◦k(α)}n−1

k=0 is
contained in K. Then m f ◦k(α)( f ◦n) = mα( f ◦n) for all k ∈ {0, 1, . . . , n− 1}.

Proof. We write f (z) as a formal power series near αk := f ◦k(α) using Proposition 4.1.5.
For each αk we get such a power series, denoted fk.

fk(z) = f (αk) + λk(z− αk) + aµk(z− αk)
µk + . . .

Note that for each αk there is some Uk, formally ( f , Uk) ∈ OP,P1
K
. Because of the equivalence,

the fk will remain the same on the intersection U := ∩n−1
k=0 Uk. This set is open and contains

P, hence we can consider each fk on this open U. Note that f ◦n(αk) = αk, because n is the
minimal period of f . This means that αk = αk+nm for all m ≥ 1. Hence, fk(z) = fk+nm(z)
for all m ≥ 1. Moreover, λk = λ( f ; αk) = λ( f ; αk+nm) = λk+nm for all m ≥ 1 and µk =

µ( f ; αk) = µ( f ; αk+nm) = µk+nm for all m ≥ 1. Therefore, it makes sense to speak of fk, αk,
λk and µk, where we restrict k ∈ Z/nZ. From now on k will denote an element in Z/nZ.
Next we obtain f ◦n using n different representations of f , namely those fk with k ∈ Z/nZ.
We can then find f ◦n near αk by computing f ◦n = fk−1 ◦ fk−2 ◦ . . . ◦ fk+1 ◦ fk. We define a
partial composite gk,i := fk+i ◦ fk+i−1 ◦ . . . ◦ fk+1 ◦ fk, where k, i ∈ Z/nZ.
Claim:

gk,i =αk+i+1 + λk · . . . · λk+i(z− αk)

+
k+i

∑
j=k

λ
µj
k · . . . · λµj

j−1 · aµj · λj+1 · . . . · λk+i(z− αk)
µj + . . .

We let k fixed and prove this by induction on i. First for i = 0:

gk,0 = fk = f (αk) + λk(z− αk) + aµk(z− αk)
µk + . . .

= ak+1 + λk(z− αk) +
k

∑
j=k

aµj(z− αk)
µj + . . .
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We continue with the induction step. Assume the identity holds for i, and consider gk,i+1:

gk,i+1 = fk+i+1 ◦ fk+i ◦ . . . ◦ fk+1 ◦ fk

= fk+i+1(gk,i)

= f (αk+i+1) + λk+i+1(gk,i − αk+i+1) + αµk+i+1(gk,i − αk+i+1)
µk+i+1 + . . .

= αk+i+2 + λk+i+1

(
λk · . . . · λk+i(z− αk)

+
k+i

∑
j=k

λ
µj
k · . . . · λµj

j−1 · aµj · λj+1 · . . . · λk+i(z− αk)
µj + . . .

)
+ αµk+i+1

(
λk · . . . · λk+i(z− αk)

+
k+i

∑
j=k

λ
µj
k · . . . · · · λµj

j−1 · aµj · λj+1 · . . . · λk+i(z− αk)
µj + . . .

)µk+i+1
+ . . .

= αk+i+2 + λk · . . . · λk+i · λk+i+1(z− αk)

+
k+i

∑
j=k

λ
µj
k · . . . · λµj

j−1 · aµj · λj+1 · . . . · λk+i · λk+i+1(z− αk)
µj

+ αµk+i+1 · λ
µk+i+1
k · . . . · λµk+i+1

k+i (z− αk)
µk+i+1 + . . .

= αk+i+2 + λk · . . . · λk+i+1(z− αk)

+
k+i+1

∑
j=k

λ
µj
k · . . . · λµj

j−1 · aµj · λj+1 · . . . · λk+i+1(z− αk)
µj + . . .

The claim is proven. Next, we consider i = n− 1 ∈ Z/nZ.

gk,n−1 =αk + λk · . . . · λk+n−1(z− αk)

+
k+n−1

∑
j=k

λ
µj
k · . . . · λµj

j−1 · aµj · λj+1 · . . . · λk+n−1(z− αk)
µj + . . .

To see what the multiplicity of f ◦n at αk is, we must consider µn,k := min(µj | λ
µj
k · . . . · λµj

j−1 ·
aµj · λj+1 · . . . · λk+n−1 6= 0) = min(µj). Note that this minimum is independent of k. This
means that the multiplicity of αk of f ◦n is independent of k. Hence, the multiplicity is equal
for all k.

Lemma 4.1.11 (Lemma 3.3. in [Lee15]). Let f : P1
K → P1

K be a rational map of degree
d ≥ 2 and α ∈ P1

K be a fixed point of f . Suppose that there exists a natural number q such that
λ( f ; α)q = 1 and λ( f ; α)l 6= 1 for any l ∈ {1, 2, . . . , q− 1}. Then µ( f ◦q; α)− 1 is divisible by
q. Moreover, for any natural number k, such that char(K) - k, we have µ( f ◦q; α) = µ( f ◦kq; α).

Proof. We know there is at least one fixed point and we can assume α = 0. So f (α) = α = 0.
Then we can use Corollary 4.1.5 to write f near α:

f (z) = λz + aµzµ + . . . ,
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where λ := λ( f ; α) and µ := µ( f ; α). We will consider f ◦q. Because α is a fixed point of f
and by the way q is defined, we have λ( f ◦q; α) = λ( f ; α)q = 1, and we write µ̃ := µ( f ◦q; α).
We can write f ◦q near α using Corollary 4.1.5.

f ◦q(z) = z + bµ̃zµ̃ + . . .

We use these expressions for f and f ◦q to compute f ◦(q+1) near α in two different ways. We
wish to obtain information on µ̃ hence we will also include the term aµ̃zµ̃ in our expression
for f . Note that µ̃ ≥ µ, as each term of the iterate f n is either linear or of degree at least µ.

( f ◦q ◦ f )(z) = f (z) + bµ̃ f (z)µ̃ + . . .

=(λz + aµzµ + . . . + aµ̃zµ̃ + . . .) + bµ̃(λz + aµzµ + . . . + aµ̃zµ̃ + . . .)µ̃ + . . .

=λz + aµzµ + . . . + aµ̃zµ̃ + bµ̃λµ̃zµ̃ + . . .

=λz + aµzµ + . . . + (aµ̃ + bµ̃λµ̃)zµ̃ + . . .

Next we use another way to obtain f ◦(q+1).

( f ◦ f ◦q)(z) =λ f ◦q(z) + aµ( f ◦q(z))µ + . . . + aµ̃( f ◦q(z))µ̃ + . . .

=λ(z + bµ̃zµ̃ + . . .) + aµ(z + bµ̃zµ̃ + . . .)µ + . . . + aµ̃(z + bµ̃zµ̃ + . . .)µ̃ + . . .

=λz + λbµ̃zµ̃ + aµzµ + aµ̃zµ̃ + . . .

=λz + aµzµ + (λbµ̃ + aµ̃)zµ̃ + . . .

From this we obtain aµ̃ + bµ̃λµ̃ = λbµ̃ + aµ̃. Hence, bµ̃(λ − λµ̃) = 0. Since bµ̃ 6= 0 per
definition of µ̃, we have λ− λµ̃ = 0. We also know that q is the multiplicative order of λ. If
q = 1 it trivially divides µ̃− 1. If q 6= 1, then λµ̃−1 = 1, so the order must divide the power:
q | µ̃− 1.
To prove the second part of the lemma, we write f ◦kq = ( f ◦q)k and use induction. Our claim
is

f ◦kq = z + kbµ̃zµ̃ + . . .

For k = 1 it is clear. Assume it is true for k, and f ◦(k+1)q:

f ◦(k+1)q)(z) = f ◦q( f ◦kq(z)) = f ◦kq(z) + bµ̃ f ◦kq µ̃

= z + kbµ̃zµ̃ + . . . + bµ̃(z + kbµ̃zµ̃ + . . .)µ̃

= z + kbµ̃zµ̃ + bµ̃zµ̃ + . . .

= z + (k + 1)bµ̃zµ̃ + . . .

The claim is proven. Because char(K) - k, we have that the coefficient kbµ̃ 6= 0. Therefore,
we see that µ( f ◦q; α) = µ( f ◦kq; α) for any natural number k coprime to the characteristic.

Remark. Note that we can see in the proof that the second part of the lemma holds for
k ∈ Z≥1 if and only if char(K) - k. This means we know this lemma holds for all k if
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the field K is of characteristic zero, yet it most certainly does not for a field of positive
characteristic.

Lemma 4.1.12 (Lemma 3.1. in [Lee15]). Let f : P1
K → P1

K be a rational map of degree
d ≥ 2. Then the cardinality of the set

P := {P ∈ P1
K | ∃n ∈ Z≥1, ∃q ∈ Z≥1 such that f ◦n(P) = P and λ( f ; P)q = 1}

is finite.

We call a point P parabolic if λ( f ; P) is a root of unity. Hence, the set P consists of all
parabolic periodic points.

Proof. This proof is based on the Lefschetz principle, that translates statements over arbi-
trary fields of characteristic zero to statements over C (Section VI §6 in [Sil09]).
Let f (x) = p(x)/r(x), with polynomials p(x), r(x) ∈ OK[x], where OK is the ring of inte-
gers of K. Let p0, . . . , pn be the coefficients of p(x) and r0, . . . , rk the coefficients of r(x). We
define A = {p0, . . . , pn, r0, . . . , rk} ∪ (P \ {∞}), and consider the field L := Q(A). This is a
field of characteristic zero, as K has characteristic zero, and it is a countable extension of Q.
Therefore, we get an embedding ι : Q(A) → C (Section VI §6 in [Sil09]). We can define
f̂ (x) ∈ C(x) as p̂(x)/q̂(x), where these are the polynomials with coefficients ι(pi) and ι(ri),
respectively. Clearly, there is a 1-to-1 correspondence between P and

P ′ := {P ∈ P1
C | ∃n ∈ Z≥1, ∃q ∈ Z≥1 such that f̂ ◦n(P) = P and λ( f̂ ; P)q = 1}.

The set P ′ is finite: see proof of Corollary 10.16 in [Mil06]. Hence, P is finite as well.

Remark. This Lefschetz principle can be extended to fields of characteristic p > 0 for
sufficiently large p, but it is not possible to make a general statement like we did here.
Note in particular that over the algebraic closure of a finite field there will always exists an
q ∈ Z≥1 such that λ( f ; P)q = 1.

Theorem 4.1.13 (Theorem 1.1. in [Lee15]). Let f : P1
K → P1

K be a rational map of degree
d ≥ 2 over K. Suppose that the characteristic of K is zero. Then the dynamical zeta function
ζ f (T) of f on P1

K is rational over Q. Moreover, all the zeros of ζ f (T) are on the unit circle.

Proof. As there must be at least one fixed point we can assume without of loss of generality
that ∞ is a fixed point of f , so m∞( f ◦n) = 1 for all n ≥ 1. We want to count fixed points
without multiplicity. If we were to count with multiplicity we would get dn + 1 points
(Proposition 4.1.9). Let us define the differenceMn := dn + 1−Nn. This gives us:

log
(
ζ f (T)

)
=

∞

∑
n=1

Nn

n
Tn =

∞

∑
n=1

dn + 1−Mn

n
Tn

=
∞

∑
n=1

dn

n
Tn +

∞

∑
n=1

1
n

Tn −
∞

∑
n=1

Mn

n
Tn.

We will determine the contributions toMn for all periodic points. Note that we can disre-
gard ∞ as it has multiplicity 1. Define

Bn := {α ∈ P1
K | α periodic of exact period k, with k | n} − {∞}.
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Then we can rewriteMn in the following way:

Mn = ∑
α∈Bn

(mα( f ◦n)− 1) = ∑
α∈Bn∩P

(mα( f ◦n)− 1) + ∑
α∈Bn−P

(mα( f ◦n)− 1).

Let α ∈ Bn, α 6= ∞. Assume α /∈ P , then λ( f ◦k; α)n 6= 1 for all n ∈ Z≥1 by definition
of P . Hence using (Proposition 4.1.7.(2)), λ( f ◦nk; α) 6= 1 for all n ∈ Z≥1. Therefore, the
multiplicity mα( f ◦n) = 1 for all n ∈ Z≥1. This means that for all non-parabolic periodic
points, there is no contribution toMn:

∑
α∈Bn−P

(mα( f ◦n)− 1) = 0.

We will take a closer look at Bn ∩ P . We first use the fact that the set P is finite (Lemma
4.1.12), hence Bn ∩ P is finite. This gives us the possibility to partition P into N cycles
Ci generated by some αi ∈ P with minimal period ni, such that Ci = { f ◦n(αi)}ni

m=1 and
P = äN

i=1 Ci. As all α ∈ P are periodic, these cycles are well-defined and invariant under f .
We obtain a partition of Bn ∩P for all n ≥ 1. Note that there is at most one cycle containing
∞ as it has period 1. Hence, we know for all other cycles Ci ∩ Bn = {α ∈ Ci : ni | n} have
ni elements. We can apply this toMn:

Mn = ∑
α∈Bn∩P

(mα( f ◦n)− 1) =
N

∑
i=1,
ni |n

∑
α∈Ci

(mα( f ◦n)− 1) =
N

∑
i=1,
ni |n

ni ·mαi( f ◦n − 1).

Here we used Lemma 4.1.10, as Bn does not contain ∞. Henceforth, we will only consider
ni | n. Let qi be the smallest positive integer such that λ( f ◦ni ; αi)

qi = 1 (by definition of
P such a number must exist). Let ri be the number such that qiri = µ( f ◦niqi ; αi)− 1 (such
a number exists due to Lemma 4.1.11). If niqi | n, then λ( f ◦n; αi) = λ( f ◦ni ; αi)

n/ni =

1. Similarly, if niqi - n, then λ( f ◦n; αi) = λ( f ◦ni ; αi)
n/ni 6= 1. Hence, the multiplicity

mαi( f ◦n) = 1, if niqi - n. Otherwise, i.e. if niqi | n, the multiplicity mαi( f ◦n) = µ( f ◦n; αi) =

µ( f ◦niqi ; αi) by Lemma 4.1.11. Lastly, we have that µ( f ◦niqi ; αi) = qiri + 1. This gives us:

Mn =
N

∑
i=1,
ni |n

ni(mαi( f ◦n)− 1) =
N

∑
i=1,

niqi |n

niqiri.

We use this expression in the computation of the zeta function:

log
(
ζ f (T)

)
−

∞

∑
n=1

dn

n
Tn −

∞

∑
n=1

1
n

Tn = −
∞

∑
n=1

Mn

n
Tn = −

∞

∑
n=1

1
n

N

∑
i=1,

niqi |n

niqiriTn

= −
N

∑
i=1

∞

∑
n=1,
niqi |n

niqiri

n
Tn = −

N

∑
i=1

∞

∑
`=1

niqiri

niqi`
Tniqi`

= −
N

∑
i=1

ri

∞

∑
`=1

1
`
(Tniqi)` = −

N

∑
i=1

ri log
(
(1− Tniqi)−1

)
.
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We can take the exp to see that

ζ f (T) = (1− dT)−1 · (1− T)−1 ·
N

∏
i=1

(1− Tniqi)ri

As this is a finite product of rational functions, the zeta function is indeed rational over Q

and all zeros lie on the unit circle.

4.2 D Y N A M I C A L LY A F F I N E M A P S O N P1
K

To understand the dynamical zeta functions on P1
K better, we will compute a few examples

of a group-theoretical nature. In a one-dimensional setting we may consider dynamically
affine rational maps. Depending on whether the characteristic of the field is zero or positive
we can categorize these maps in three, respectively five families, namely in both cases:
power maps, Chebyshev polynomials and Lattès maps. When the characteristic is positive,
in addition there are two other families: additive polynomials and subadditive polynomials
[Bri16]. We will give an overview of results for power maps, Chebyshev polynomials and
Lattès maps, we may include some results for fields of arbitrary characteristic, but we will
state this clearly.

To avoid duplicating calculations, we use the following proposition:

Proposition 4.2.1. Let K be a field of characteristic zero and n a positive integer. Then the set
of all nth roots of unity µn := {x ∈ K | xn = 1} has cardinality n.

Proof. Define f (x) = xn − 1 and note that µn = {x ∈ K | f (x) = 0}. As f has degree n
it has exactly n zeroes, counted with multiplicity. Consider the derivative f ′ (x) = nxn−1.
Note that f ′ (x) = 0 if and only if x = 0, which is not a zero of f . Henceforth, all zeroes
of f have multiplicity one and thus there are exactly n distinct zeroes of f . This means that
|µn | = n.

As we are interested in maps on P1
K , it can occur that some points on P1

K are completely
fixed, for example a polynomial will not only fix ∞, any other element will never be send
to ∞ as well. In a way we just want to ignore such elements. Let S be a set and f : S → S.
Let F ⊂ S be a subset such that

• F ⊂ Fix( f );

• F ∩ ∪∞
k=0 f ◦k (S − F) = ∅.

Let x ∈ S − F, then f ◦n (x) ∈ ∪∞
k=0 f ◦k (S − F) and by assumption this implies f ◦n (x) 6 ∈

F. Then f ◦n : S − F → S − F is well defined for all n ≥ 1. If the only such set is F = ∅,
then f is called primitive on S.

Proposition 4.2.2. Let S be a set and f : S → S, and assume #Fix( f ) is finite. For any
subset F ⊂ Fix( f ) ⊂ S such that F ∩ ∪∞

k=0 f ◦k (S − F) = ∅, the following holds:

ζ f ,S (T ) = ζ #F
pt (T ) · ζ f ,S−F (T ) ,

where ζpt(T ) = 1
1−T , that is the dynamical zeta function of any map g : {P} → {P}.

Moreover, there exists a largest set Fmax such that f is primitive on S − Fmax.
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Proof. For any such set f can be considered on F and on S − F separately. We can write f F :
F → F and f S−F : S − F → S − F. Observe that #Fix( f ◦n ) = #Fix( f ◦n

F ) + #Fix( f ◦n
S−F ) =

#F + #Fix( f ◦n
S−F ). We can use this to obtain the required identity on zeta functions:

ζ f ,S (T ) = exp

(
∞

∑
n=1

#Fix( f ◦n )

n
T n

)
= exp

(
∞

∑
n=1

#F + #Fix( f ◦n
S−F )

n
T n

)

= exp

(
∞

∑
n=1

#F
n

T n +
∞

∑
n=1

#Fix( f ◦n
S−F )

n
T n

)

= exp

(
#F

∞

∑
n=1

1
n

T n

)
· exp

(
∞

∑
n=1

#Fix( f ◦n
S−F )

n
T n

)
= ζ #F

pt · ζ f ,S−F .

To prove the second part of the proposition we will define Fmax := Fix( f )− ∪∞
n=1 f ◦n(S−

Fix( f )). We prove that f is primitive on S − Fmax. Assume the contrary, so let ∅ 6= E ⊂
S − Fmax such that E ⊂ Fix( f ) and E ∩ ∪∞

k=0 f ◦k(S − Fmax − E) = ∅. Let x ∈ E, then
x ∈ Fix( f ) − Fmax. Hence, x ∈ ∪∞

n=1 f ◦n(S − Fix( f )). Because Fmax ⊂ Fix( f ) and E ⊂
Fix( f ), we have Fmax ∪ E ⊂ Fix( f ). This also means that S − Fix( f ) ⊂ S − Fmax − E.
Therefore, ∪∞

n=1 f ◦n(S − Fix( f )) ⊂ ∪∞
n=0 f ◦n(S − Fmax − E). But x ∈ ∪∞

n=1 f ◦n(S − Fix( f ))
and x 6∈ ∪∞

n=0 f ◦n(S− Fmax− E). Such x cannot exist, hence f is primitive on S− Fmax. The
following then must hold:

ζ f ,S(T) = ζ#Fmax
pt · ζ f ,S−Fmax .

We claim that Fmax is the largest set such that f is primitive on the complement. If there is
a set G ⊂ Fix( f ) such that there exists x ∈ G− Fmax, then x ∈ ∪∞

n=1 f ◦n(S− Fix( f )). Which
means there exists an y ∈ S− Fix( f ) and n ≥ 1 such that f ◦n(y) = x. Because G ⊂ Fix( f ),
we have that S− Fix( f ) ⊂ S− G. Hence, y ∈ S− G. So x ∈ ∪∞

n=0 f ◦n(S− G). This means
that G ∩ ∪∞

n=0 f ◦n(S− G) 6= ∅. Hence, the function f is not primitive on S− G. Therefore,
Fmax is the largest set such that f is primitive on the complement.

From now on we won’t necessarily compute fixed points on P1
K, but we might only con-

sider points on P1
K \ {∞} or P1

K \ {∞, 0}.

4.2.1 Power maps

First let K have any characteristic. For any m ∈ Z≥1 the mth power map is defined by
f (x) = xm on P1

K. It is clear that 0 and ∞ are always fixed for any m. Hence, we can simply
consider f on the multiplicative group Gm/K = P1

K−{0, ∞}. We observe that f ◦n(x) = xmn
.

Hence, we solve xmn
= x for x ∈ Gm = K−{0}. This is equivalent to xmn−1 = 1. Therefore,

we can see that Fix( f ◦n) = µmn−1.
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Now we let K have characteristic zero, so we can use Proposition 4.2.1 to obtain Nn =

mn − 1. From this we easily find the zeta function.

log ζ f ,Gm,K,0(T) =
∞

∑
n=1

Nn

n
Tn =

∞

∑
n=1

mn − 1
n

Tn

=
∞

∑
n=1

(mT)n

n
−

∞

∑
n=1

Tn

n
= log

(
1

1−mT

)
− log

(
1

1− T

)
.

Hence, we have that

ζ f ,Gm,K,0(T) =
1− T

1−mT
. (4.2.1.1)

4.2.2 Chebyshev polynomials

Another well-known example of rational maps with a group-theoretical origin is the family
of Chebyshev polynomials. At first we will only assume that K is an arbitrary field, not
necessarily of characteristic zero. We start with the multiplicative group Gm. On Gm we
have the non-trivial isomorphism z 7→ z−1. This gives rise to the following proposition.

Proposition 4.2.3. Let Gm denote the multiplicative group and Ga the additive group of a
field K. Then the map

φ : Gm(K)/{x ∼ x−1} → Ga(K),

z 7→ z + z−1

is a bijection.

Proof. We start by showing that φ is well-defined. First note that if x ∈ Gm(K), then
x−1 ∈ Gm(K). Moreover, we can consider Gm(K) ⊂ Ga,0(K), hence a, a−1 ∈ Ga,0(K). We
have addition on Ga,0, hence a + a−1 ∈ Ga,0(K). On the left-hand side we have a ∼ a−1,
which proves that φ does not depend on the choice of representative: φ(a) = a + a−1 =

a−1 +(a−1)−1 = φ(a−1). We continue by proving that the map is surjective. Let x ∈ Ga,0(K).
We want to solve z + z−1 = x for z ∈ Gm(K). Because z 6= 0, the equation is equivalent to
z2 − xz + 1 = 0. This equation has solutions for z ∈ Ga,0(K) as we consider the algebraic
closure. Note that z = 0 is not a solution. Therefore the equation has solutions for z ∈
Gm(K). The map is thus surjective.
To prove that the map is injective, we start with w, z ∈ Gm(K) such that z + z−1 = w + w−1.
Because we have both z 6= 0 and w 6= 0, the equation is equivalent to z2w + w = zw2 + z,
which is equivalent to (zw− 1)(z− w) = 0. This gives two possibilities: z = w or z = w−1.
Because of the equivalence on Gm(K) we have that w = w−1 ∈ Gm(K)/ ∼, hence the map
is injective.

Note that the power map x 7→ xd commutes with the isomorphism x 7→ x−1. The dth
Chebyshev polynomial Td satisfies an identity closely related to this property.
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Definition 4.2.4. The dth Chebyshev polynomial is the polynomial in Z[w] that satisfies
the following identity

Td(z + z−1) = zd + z−d

in the field Q(z).

The definition requires existence and uniqueness. The following proposition will provide
all necessary properties.

Proposition 4.2.5. For each integer d ≥ 0 there exists a unique monic polynomial Td(w) ∈
Z[w] of degree d satisfying

Td(z + z−1) = zd + z−d

in the field Q(z). We call Td the dth Chebyshev polynomial. Moreover, we have Td(Te(w)) =

Tde(w) for all d, e ≥ 0.

Proof. See the proof of Proposition 6.6. in [Sil07].

For any field containing Z the dth Chebyshev polynomial naturally exists. For a field of
positive characteristic we reduce the coefficients modulo the characteristic.

Proposition 4.2.6. Let K be any field, and let d be a positive integer. Then the number of fixed
points in Ga(K) is

|Fix(T◦nd )| = |µdn+1|+ |µdn−1|
2

,

where µdn+1 and µdn−1 denote the sets of (dn + 1)-th and (dn− 1)-th roots of unity, respectively.

Proof. To compute Fix(T◦nd ), we start by remarking that T◦nd = Tdn . We also use the bijection
z 7→ z + z−1. Hence, by the surjectivity, solving Tdn(x) = x for x ∈ Ga,0 is equivalent to
solving Tdn(z + z−1) = z + z−1, with z ∈ Gm,0. By definition of the Chebyshev polynomial
this is equivalent to zdn

+ z−dn
= z + z−1. Lastly, using the injectivity of φ we know that

zdn
= z or zdn

= z−1. Note that z 6= 0, hence this is equivalent to z being a root of unity of
order dn − 1 or dn + 1. We have the following.

Fix(Tdn) = {x ∈ Ga,0 | Tdn(x) = x}
= {z + z−1 | z ∈ Gm,0, Tdn(z + z−1) = z + z−1}
= {z + z−1 | z ∈ Gm,0, z ∈ µdn−1 ∪ µdn+1}.

Note that z + z−1 = w + w−1 if and only if w = z or w = z−1 by injectivity of φ. Hence,
most elements in the set occur twice, except for those z + z−1 such that z = z−1. In other
words, the cardinality |Fix(Tdn)| = 1/2|µdn+1 ∪ µdn−1|+ 1/2|µdn+1 ∪ µdn−1 ∩ µ2|. We have
that µdn+1 ∩ µdn−1 = µdn+1 ∩ µ2. This leads us to the final result.

|Fix(Tdn)| = 1
2
(|µdn+1|+ |µdn−1| − |µdn+1 ∩ µdn−1|+ |µdn+1 ∪ µdn−1 ∩ µ2|)

=
1
2
(|µdn+1|+ |µdn−1|) .
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Now let K have characteristic zero. We combine Proposition 4.2.1 and Proposition 4.2.6
to obtain the number of fixed points in Ga,0(K)

Nn =
|µdn+1|+ |µdn−1|

2
=

dn + 1 + dn − 1
2

= dn.

From this the zeta function follows easily:

ζTd,Ga,K,0(T) = exp
∞

∑
n=1

dn

n
Tn =

1
1− dT

. (4.2.2.1)

Remark. We count fixed points over P1
K \ {∞}, and from an algebraic point of view the

structure of Chebyshev polynomial it should be considered as a dynamically affine map
coming from Gm,0. This is clear as P1

K \ {∞} is the Zariski open from Definition 2.2.5 and
Proposition 4.2.3 tells us how this map works.

4.2.3 Lattès maps

Lastly, we will investigate the family of Lattès maps.

Definition 4.2.7. Let K be any field. Let φ : P1
K → P1

K be a rational map of degree d ≥ 2.
We call φ a Lattès map if there exists an elliptic curve E over K, a morphism ψ : E → E,
and a finite separable covering π : E→ P1

K such that the following diagram commutes.

E E

P1
K P1

K

π

ψ

φ

π

.

Let us introduce a family of Lattès maps. Let E/K be an elliptic curve with OE the identity
element in the group. The map σ : E → E, defined by P 7→ −P is an automorphism of
order 2 in Aut(E), i.e. σ2 = id. Hence, the quotient E/〈σ〉 is isomorphic to P1(Proposition
6.37. in [Sil07]). We obtain a map π : E → P1, such that π(P) = π(σ(P)) for all P ∈ E.
This means that π(P) = π(Q) if and only if P = ±Q. Consider m ∈ Z≥2 and the map
[m] : E → E, which induces a Lattès map Lm : P1 → P1 such that Lm ◦ π = π ◦ [m]. The
map Lm depends on the chosen elliptic curve. However, we will see that the zeta function
does not depend on E if K has characteristic zero and in the positive characteristic case it
only depends on whether E is ordinary or supersingular.

Proposition 4.2.8. Let K be a field, E/K an elliptic curve with identity element OE and an
integer m ≥ 2. Let Lm be the corresponding Lattès map. Then

|Fix(L◦nm )| = |Emn−1|+ |Emn+1|
2

.
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Proof. To find the fixed points, we start with rewriting L◦nm (x) = x. As π is a covering, there
exists P ∈ E such that π(P) = x. From this we get L◦nm (π(P)) = π(P). Now we use the
commuting property Lm ◦ π = π ◦ [m] repeatedly:

L◦nm (π(P)) = L◦(n−1)
m (π ◦ [m])(P) = L◦(n−2)

m (π ◦ [m]◦2(P)) . . . = π([m]n(P)).

Combine this with the fact that [m]◦n = [mn], and we can find the fixed points set. We will
denote the set of n-torsion points of E(K) with En. We get:

Fix(L◦nm ) = {x ∈ P1 | L◦nm (x) = x}
= {x ∈ P1 | π(P) = x = π([mn]P) for some P ∈ E}
= π({P ∈ E | π(P) = π([mn]P)})
= π({P ∈ E | P = [mn]P or P = −[mn]P})
= π({P ∈ E | [mn − 1]P = OE or [mn + 1]P = OE})
= π({P ∈ E | P ∈ Emn−1 or P ∈ Emn+1})
= π(Emn−1) ∪ π(Emn+1).

To determine the cardinality of this set, we use the set-theoretic fact that

|Fix(L◦nm )| = |π(Emn−1)|+ |π(Emn+1)| − |π(Emn−1) ∩ π(Emn+1)|.

To use this we have the following claim:
Claim: π(Emn+1) ∩ π(Emn−1) = π(Emn±1) ∩ π(E2) = π(Emn±1 ∩ E2).

Moreover, |π(Emn±1 ∩ E2)| = |Emn±1 ∩ E2|, where the ± sign means for either choice of
sign.
We start with π(Emn−1) ∩ π(Emn+1). If x ∈ π(Emn−1) ∩ π(Emn+1), then there exists some
P ∈ Emn−1 and Q ∈ Emn+1, such that π(P) = π(Q). By definition of π this implies that
P = ±Q.

• If P = Q, then [mn − 1]P = OE = [mn + 1]P. This implies that OE = OE −OE =

[mn + 1]P− [mn − 1]P = [2]P. So P ∈ E2.

• If P = −Q, then [mn − 1]P = OE = [mn + 1](−P). This implies OE = OE + OE =

[mn − 1]P + [mn + 1](−P) = −2[P], and hence P ∈ E2.

Consequently, π(Emn−1) ∩ π(Emn+1) ⊂ π(E2). Moreover, we have

π(Emn−1) ∩ π(Emn+1) ⊂ π(Emn±1) ∩ π(E2).

Assume x ∈ π(Emn±1)∩π(E2), then there exist P, Q such that π(P) = π(Q) and P ∈ Emn±1

and Q ∈ E2. From this we find that Q = −Q, as it is of order two, and P = ±Q. Together,
we get that P = Q. Hence, OE = OE ±OE = [mn ± 1]P∓ 2[P] = [mn ∓ 1]P. So indeed

π(Emn+1) ∩ π(Emn−1) = π(Emn±1) ∩ π(E2).

Furthermore, the fact that P = Q implies that x ∈ π(Emn±1 ∩ E2). Because all 2-torsion
points have exactly one image, we have |π(E2)| = |E2| and similarly for any subset of E2.
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In particular we find |π(Emn±1 ∩ E2)| = |Emn±1 ∩ E2|. The claim is proven.
Determining |π(Emn−1)| and |π(Emn+1)| is completely analogous. Hence, we will write
mn ± 1. We use that all points P ∈ E have 2 pre-images, except for those P ∈ E2. Hence,
|π(Emn±1)| = 1

2 |Emn±1|+ 1
2 |E2 ∩ Emn±1|. We can use this in the formula.

|Fix(L◦nm )| = |π(Emn−1)|+ |π(Emn+1)| − |π(Emn−1) ∩ π(Emn+1)|

=
1
2
|Emn−1|+

1
2
|E2 ∩ Emn−1|+

1
2
|Emn+1|+

1
2
|E2 ∩ Emn+1| − |π(Emn−1 ∩ E2)|

=
1
2
|Emn−1|+

1
2
|Emn+1|.

Now let K have characteristic zero. To determine the size of the torsion groups we use
the following proposition.

Proposition 4.2.9. Let E be an elliptic curve over a field K and let m ∈ Z at least two. Then

Em(K) = Z/mZ×Z/mZ.

Proof. See the proof of Corollary III.6.4. in [Sil09].

Henceforth, we have |En| = n2 and Nn = (mn−1)2+(mn+1)2

2 = m2n + 1. The zeta function
can be computed:

ζLm,P1
K,0
(T) = exp

(
∞

∑
n=1

m2n + 1
n

Tn

)

= exp

(
∞

∑
n=1

(m2T)n

n
+

∞

∑
n=1

Tn

n

)

=
1

(1−m2T)(1− T)
.

(4.2.3.1)
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In this chapter we will explore the case where the characteristic of K is positive. The first
section is focused on dynamically affine maps as introduced in Section 2.2. In particular it
centers around the results proved by Andrew Bridy in [Bri12] and later in [Bri16].

The second section involves generalizing this result to abelian varieties, in particular to
elliptic curves.

5.1 D Y N A M I C A L LY A F F I N E M A P S O N P1
K

As introduced in Section 2.2 a dynamically affine map involves some underlying algebraic
structure. We will prove transcendence of the corresponding dynamical zeta function in the
separable case. We first prove a general theorem, which is easily applicable to many cases,
and then cover each family in short.

5.1.1 General theorem for transcendence

We start by stating the main theorem.

Theorem 5.1.1. Let p be a prime and m ∈ Z \ {−1, 0, 1} and b , c , d , e , ε ∈ Z≥0 with
ε ∈ {0, 1} and A ∈ Q× . Define the sequence (an )n≥1 by

an := A
(
(mn − 1)b |mn − 1 | cp + ε(mn + 1)d |mn + 1 | ep

)
.

If p - m, then the power series exp
(

∑n≥1
an
n T n) is transcendental over Q(T ).

However, if p | m, then the power series exp
(

∑n≥1
an
n T n) is algebraic over Q(T ). In

particular, when A ∈ Z, it is rational.

To prove this theorem, we need two lemmas and some basic facts on p-adic norms. We
start by summarizing all norm related facts in the following proposition.

Proposition 5.1.2. Let p be a prime number and m an integer coprime to p. With µm we
denote the set of all mth roots of unity in F p . Then the following hold for all positive integers
n.

1. |µn | = n · |n | p .

43
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2. Let p 6= 2 and let s be the smallest positive integer such that m s − 1 ≡ 0 mod p.

|mn − 1 | p =

{
|m s − 1 | p · |n | p if s | n ;

1 if s - n .

3. If p 6= 2, then

|mn + 1|p =

{
|ms/2 + 1|p · |n|p if 2n

s ∈ 1 + 2Z;

1 otherwise.
.

4. If p 6= 2 and 2n
s ∈ 1 + 2Z, where s is as before, then

|ms − 1|p = |ms/2 + 1|p.

5. If p = 2 and m is odd, then

|mn − 1|2 =

{
2|m− 1|2 · |m + 1|2 · |n|2 if 2 | n;

|m− 1|2 if 2 - n.
.

6. If p = 2 and m is an odd integer, then

|m2n + 1|2 = 1/2.

Proof. (1.) Write n = pku, where k ∈ Z≥0 and u ∈ Z such that p - u. Then we consider
x ∈ µn.

xn = 1 ⇐⇒ xpku − 1 = 0 ⇐⇒ (xu)pk − 1pk
= 0 ⇐⇒ (xu − 1)pk

= 0 ⇐⇒ xu − 1 = 0.

Hence, µn = µu. Consider the polynomial f (x) = xu − 1, the derivative is f ′(x) = uxu−1.
Since f (x) and f ′(x) have no common zeros, all zeros have multiplicity one. Because Fp is
algebraically closed, f (x) has exactly u unique zeros. So |µn| = |µu| = u = n · |n|p.
(2.) Because s is the multiplicative order of m in F×p , if s - n then mn 6≡ 1 mod p. Therefore,
we find that |mn − 1|p = 1 if s - n. Now consider the case where s | n. Note that s | p− 1
which is the order of the multiplicative group. This implies that s and p are coprime. Write
n = spku, where k ∈ Z≥0 and u ∈ Z such that p - u. Also, write ms − 1 = api, where
p - a ∈ Z and i ∈ Z≥1. Then we have

mn − 1 = mspku − 1 = (api + 1)pku − 1

= −1 +
pku

∑
j=0

(
pku

j

)
(api)j

=
pku

∑
j=1

(
pku

j

)
(api)j

= pku · api + higher p-order terms.
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From this we see that ordp(mn − 1) = ordp(pku · api) = i + k = ordp(ms − 1) + ordp(n).
Indeed we find |mn − 1|p = |ms − 1|p · |n|p.
(3.) Unlike the previous case mn ≡ −1 mod p does not necessarily have a solution for n.
If it does not, we find |mn + 1|p = 1 for all n. Assume such a solution exists and define t to
be the smallest positive solution to mt ≡ −1 mod p. Obviously, we have m2t ≡ 1 mod p,
hence s | 2t. Because p 6= 2 we have that s 6= t. If s < t, then −1 ≡ mt ≡ mt−sms = mt−s.
Since t− s > 0 this contradicts the minimality of t. Therefore s > t. We know sk = 2t for
some k > 0 and hence tk < sk = 2t, which means k = 1. So we see that s = 2t. Therefore,
if s/2 /∈ Z we have |mn + 1|p = 1 for all n. Note that s/2 /∈ Z implies 2n/s /∈ 1 + 2Z.
Clearly, this means |mn + 1|p = 1 if s/2 6∈ Z. Now assume 2 | s and write t = s/2. Then
mn + 1 ≡ 0 mod p implies s | 2n, so t | n. Also, if n/t is even, then mn ≡ 1 mod p. This
means that if 2n/s ∈ 2Z, then |mn + 1|p = 1. If n/t is odd, so 2n/s ∈ 1 + 2Z, then we
see |mn + 1|p < 1. We will now prove the formula given in the proposition. Write n = tp`v,
where 2, p - v ∈ Z and ` ∈ Z≥0, and mt + 1 = bpj

mn + 1 = mtp`v + 1 = (bpj − 1)p`v + 1

= 1 +
p`v

∑
i=0

(
p`v

i

)
(bpj)i

=
p`v

∑
i=1

(
p`v

i

)
(bpj)i

= p`v · bpj + higher p-order terms.

This implies that ordp(mn + 1) = ordp(p`v · bpj) = `+ j = ordp(mt + 1) + ordp(n). This
leads us to the formula in the case that 2n/s ∈ 1 + 2Z: |mn + 1|p = |ms/2 + 1|p · |n|p.
(4.) Write ms/2 + 1 = pku, where k > 0 and p - u ∈ Z. Then we square ms/2 = pku− 1 and
obtain ms = p2ku2− 2pku + 1. From this we can deduce that |ms− 1|p = |pku(pku− 2)|p =

|pku|p, because p - 2. Hence, we see that indeed |ms/2 + 1|p = |ms − 1|p.
(5.) First we write n = k · 2`, where 2 - k and ` ≥ 0. Note that mn − 1 = (m2`)k − 1 =

(m2` − 1)((m2`)k−1 + . . . + m2`). Because k is odd, we have that k − 1 is even. Note that
m2` ≡ 1 mod 2 as m is odd and that m2`)k−1 + . . . + m2` ≡ k · 1 mod 2 = 1 mod 2.
Hence, v2(mn − 1) = v2(m2` − 1). If ` = 0, and hence 2 - 2, then this already proves the
first case. If ` > 0, that means 2` is divisible by 2, and as the square of an odd prime is 1
mod 4, we get that m2` − 1 = (m2`−1

+ 1) · (m2`−2
+ 1) · . . . · (m2 + 1)(m + 1)(m− 1). As m

is odd, we know that m2i ≡ 1 mod 4 for all i ≥ 1. Hence, m2i
+ 1 ≡ 2 mod 4. We see that

each such factor has exactly one factor 2. There are exactly `− 1 such factors. This yields:
v2(m2` − 1) = `− 1 + v2(m + 1) + v2(m− 1). If we combine this with the first part, we see
that v2(mn − 1) = v2(n)− 1 + v2(m + 1) + v2(m− 1). This result is easily translated to the
result on norms.
(6.) As m is odd, its square is 1 mod 4. Hence, m2n + 1 ≡ 2 mod 4. Hence, |m2n + 1|2 =

2−1.

Now we give the lemma which incorporates all automata theory related notions.
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Lemma 5.1.3. Let p be a prime and m, b, c, d, e, ε ∈ Z≥0 with m coprime to p,c 6= 0 and
ε ∈ {0, 1}. If p = 2, assume moreover that rad(m) - rad(2c − 1). Define the sequence (an)n≥1

by

an := (mn − 1)b|mn − 1|cp + ε(mn + 1)d|mn + 1|ep.

Then there exists a prime q such that (an mod q)n≥1 is not q-automatic.

Proof. First for p 6= 2. Choose a prime q such that q ≡ −1 mod p and q > max{m, (mp−1−
1)b, pc}. By Dirichlet’s theorem on primes (Theorem 13.2 in [Neu92]), such a prime must
exist. Now q is fixed. Assume the sequence (an mod q)n≥1 is q-automatic. The subsequence
a(p−1)((q−1)n+1) mod q is q-automatic by Proposition 3.2.5. We obtain the sequence defined
by

bn := (m(p−1)((q−1)n+1) − 1)b|m(p−1)((q−1)n+1) − 1|cp
+ ε(m(p−1)((q−1)n+1) + 1)d|m(p−1)((q−1)n+1) + 1|ep mod q.

Obviously, as q > m, we know that m 6≡ 0 mod q and hence m is invertible. Moreover,
mq−1 ≡ 1. Hence, we get

bn = (mp−1 − 1)b|m(p−1)((q−1)n+1) − 1|cp + ε(mp−1) + 1)d|m(p−1)((q−1)n+1) + 1|ep mod q.

Also, as m is coprime to p, we know that mp−1 ≡ 1 mod p, and hence |m(p−1)((q−1)n+1) +

1|ep = 1. We get

bn = (mp−1 − 1)b|m(p−1)((q−1)n+1) − 1|cp + ε(mp−1 + 1)d mod q.

Because ε(mp−1 + 1)d is just a constant (possibly zero), subtracting this is a unary operation,
hence by Proposition 3.2.7 the sequence cn := (mp−1 − 1)b|m(p−1)((q−1)n+1) − 1|cp mod q

is q-automatic. Now let us write cn := (mp−1 − 1)b p−cvp(m(p−1)((q−1)n+1)−1) mod q. By our
choice of q we have that q > (mp−1 − 1)b, and in particular we get that (mp−1 − 1)b is
invertible modulo q. Hence, we can multiply (cn)n≥1 by the inverse of this constant, which
is a unary operation, and then invert every element, and then by Proposition 3.2.7 the se-
quence dn := pcvp(m(p−1)((q−1)n+1)−1) mod q is also q-automatic, note that as q 6= p we can
just invert p in Fq. We use Proposition 5.1.2(2) to see that vp(m(p−1)((q−1)n+1) − 1) =

vp(mp−1− 1) + vp((q− 1)n + 1). We get that dn := pcvp(mp−1−1)pcvp((q−1)n+1) mod q. How-
ever, we know that pc ∈ Z and pc 6≡ 0, 1 mod q and vp(q− 1) = 0 as q ≡ −1 6≡ 1 mod p
as p 6= 2. Note that vp(q− 1) = 0 ≥ vp(1), hence we can use Proposition 3.2.9 to conclude
that (dn)n≥1 is not q-automatic. We found a contradiction.
Now let p = 2. Then consider q prime such that q | m and q - 2c − 1, such a prime must
exist by the assumption that rad(m) - rad(2c − 1). Note that q | m implies that q 6= 2. Let
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us fix this q. Again assume that (an)n≥1 mod q is q-automatic. Then the subsequence a2n

mod q is also q-automatic. We get

bn := (m2n − 1)b|m2n − 1|c2 + ε(m2n + 1)d|m2n + 1|e2 mod q

= (m2n − 1)b2−cv2(m2n−1) + ε(m2n + 1)d2−e mod q

= (−1)b2−cv2(m2n−1) + ε2−e mod q

We can subtract the (possibly zero) constant ε2−e, which is a unary operation, hence by
Proposition 3.2.7 the sequence cn := (−1)b2−cv2(m2n−1) mod q is also q-automatic. Clearly,
we have that (−1)b is invertible in Fq. We can construct another sequence by multi-
plying with its inverse and taking the inverse of each element in the sequence. We get
dn = 2cv2(m2n−1) mod q, which is also q-automatic by Proposition 3.2.7. Now use Propo-
sition 5.1.2(5) to obtain dn = 2c(v2(m−1)+v2(m+1))2cv2(n) mod q. As q 6= 2, we know that
2c(v2(m−1)+v2(m+1)) is invertible in Fq. Hence, we can multiply the sequence with its inverse
to obtain another q-automatic sequence by Proposition 3.2.7, namely: en := 2cv2(n) mod q.
We assumed that q - 2c − 1. Hence, 2c 6= 0, 1 mod q. Now by Proposition 3.2.9 this
sequence is not q-automatic. We have a contradiction.

The second lemma tells us the connection between the dynamical zeta function and the
automata theory.

Lemma 5.1.4. If exp
(
∑n≥1

an
n Tn) is algebraic over Q(T), where an ∈ Z for all n ≥ 1. Then

(an mod q)n≥1 is a q-automatic sequence for any prime q.

Proof. By assumption exp
(
∑n≥1

an
n Tn) is algebraic over Q(T).

Write F(T) := exp
(
∑n≥1

an
n Tn). So let P(x) ∈ Q(T)[x] be such that P(F(T)) = 0. Then

we can write P(x, T) = ∑n
i=0 pi(T)xi for some n ∈N and pi(T) ∈ Q(T).

d(P(F(T)))
dT

= 0 ⇐⇒
n

∑
i=0

d(pi(T)(F(T))i)

dT
= 0

⇐⇒
n

∑
i=0

dpi(T)
dT

(F(T))i + pi(T)
d(F(T)i)

dT
= 0

⇐⇒
n

∑
i=0

p′i(T)(F(T))i +
n

∑
i=0

pi(T)iF′(T)(F(T))i−1 = 0

⇐⇒
n

∑
i=0

p′i(T)(F(T))i = −
(

n

∑
i=0

pi(T)i(F(T))i−1

)
F′(T)

⇐⇒ F′(T) =
−∑n

i=0 p′i(T)(F(T))i

∑n
i=0 pi(T)i(F(T))i−1 .

Because pi(T) ∈ Q(T), that means p′i(T) ∈ Q(T). Moreover, as F(T) is algebraic, we know
that −∑n

i=0 p′i(T)(F(T))i and ∑n
i=0 pi(T)i(F(T))i−1 are algebraic. The quotient of algebraic
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elements is algebraic (algebraic elements form a field), hence F′(T) is algebraic over Q(T).
Observe the following

F′(T) =
d
(
exp

(
∑k=1

ak
k Tk))

dT
=

d
(
∑k=1

ak
k Tk)

dT
· exp

(
∑
k=1

ak

k
Tk

)

= ∑
k=1

ak

k
d(Tk)

dT
· F(T) = ∑

k=1
akTk−1 · F(T).

We can see that ∑k=1 akTk−1 = F′(T)/F(T), which is algebraic, as it is the quotient of
algebraic elements. Note that an ∈ Z for all n ≥ 1, hence ∑∞

k=0 ak+1Tk ∈ ZJTK. Apply
Corollary 3.2.2 to conclude that (ak)≥1 is a q-automatic sequence for all primes q.

These two lemmas already represent the main ingredients of the proof of Theorem 5.1.1,
and hence the proof follows easily:

Proof of Theorem 5.1.1. First let p - m. Assume by contradiction that exp
(
∑n≥1

an
n Tn) is

algebraic over Q(T). Define bn := A−1an, which is defined over Z for all n. Hence, we see
that

exp

(
∑
n≥1

A−1bn

n
Tn

)
=

(
exp

(
∑
n≥1

bn

n
Tn

))A−1

is algebraic over Q(T). Taking a rational power A of an algebraic function preserves being

algebraic over Q(T). Therefore, we know that exp
(

∑n≥1
bn
n Tn

)
must be algebraic over

Q(T). Then we use Lemma. 5.1.4 to see that (bn mod q)n≥1 is q-automatic for any prime
q. In our case that means that bn = (mn − 1)b|mn − 1|cp + ε(mn + 1)d|mn + 1|ep mod q is
q-automatic for any prime q. However, this is in contradiction with Lemma 5.1.3.
Now let p | m. Then an = A(mn − 1)b + ε(mn + 1)d. This can be rewritten using the bino-
mial identity to some polynomial in mn with integral coefficients times A: an = A(bk(mn)k +

. . . + b0). We use this in our computation of the dynamical zeta function.

∞

∑
n=1

A(bk(mn)k + . . . + b0)

n
Tn = A

(
∞

∑
n=1

bk(mnk

n
Tn + . . . +

∞

∑
n=1

b0

n
Tn

)

= A

(
∞

∑
n=1

bk((mkT)n

n
+ . . . +

∞

∑
n=1

b0Tn

n

)

= A
(

bk log
(

1
1−mkT

)
+ . . . + b0 log

(
1

1− T

))

We take the exp:

exp

(
∞

∑
n=1

an

n
Tn

)
=

(
k

∏
i=1

(
1

1−miT

)bi
)A

.
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This is a finite product of rational functions to a fractional power, hence the formal power
series are in fact algebraic. When A ∈ Z, it is clearly rational.

5.1.2 Power maps

To compute the zeta function for power maps we do something similar to Subsection 4.2.1.
Let f (x) = xm for some m ∈ Z≥1. Again we will study this map on Gm,p, the multiplicative
group of the field Fp. The n-fold composition is f ◦n(x) = xmn

. Similarly to before we
need to solve xmn

= x for x ∈ Gm,p. This is equivalent to solving xmn−1 = 1 for x ∈ Gm,p.
Again we can conclude that Fix( f ◦n) = µmn−1. Using Proposition 5.1.2(1), we obtain the
following.

Nn = (mn − 1) · |mn − 1|p

If p | m, then Nn = mn − 1 for all n ≥ 1. Hence, we get exactly the same result as in
Subsection 4.2.1: ζ f ,Gm,Fp

(T) = 1−T
1−mT .

If p - m, then we can clearly see that this formula fits into the requirements (A = 1, b = 1,
c = 1, d = 0, e = 0, ε = 0) of Theorem 5.1.1 and hence the zeta function becomes
transcendental over Q(T).

5.1.3 Chebyshev polynomials

Using Proposition 4.2.6, we know that: |Fix(T◦nd )| = |µdn+1|+|µdn−1|
2 . Here we can use the for-

mula from Proposition 5.1.2(1), so |µk| = k · |k|p, where |k|p can be found using Proposition
5.1.2(2,3). We denote the additive group of Fp be Ga,p. We get

Nn =
(dn + 1)|dn + 1|p + (dn − 1)|dn − 1|p

2
.

If p | m, then Nn = (dn+1)
2 + (dn−1)

2 = dn for all n ≥ 1. Therefore, we get the same result as
in Subsection 4.2.2: ζTd,Ga,Fp

(T) 1
1−dT .

If p - m, then we can again use Theorem 5.1.1 with (A = 1/2, b = 1, c = 1, d = 1, e = 1,
ε = 1) to see that the zeta function becomes transcendental over Q(T).

5.1.4 Lattès maps

We start our computation using the result from Proposition 4.2.8: |Fix(L◦nm )| = |Emn−1|+|Emn+1|
2 .

Now we need to determine |EN | for a general N. Let us write N = pk · u, where p - u ∈ Z.
Because EN is an abelian torsion group it is the direct product of its coprime torsion groups.
In particular, the fact that pk and u are coprime implies EN ' Epk × Eu. Because u is coprime
to p we know that |Eu| = u2 (Corollary III.6.4.(b) in [Sil09]). The other factor depends
on whether E is supersingular (h = 2) or ordinary (h = 1). Namely, Epk ' {0} when E
is supersingular, and Epk ' Z/pkZ when E is ordinary (Theorem V.3.1.(v,b) in [Sil09]).
We obtain |EN | = u2 when E is supersingular and |EN | = u2 pk when E is ordinary. We
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can write this in a general formula: |EN | = N2 · |N|hp. We can use this formula for both
N = mn + 1 and N = mn − 1. We can assemble the formula:

|Fix(L◦nm )| = 1
2
|Emn−1|+

1
2
|Emn+1|

=
1
2
(mn − 1)2|mn − 1|hp +

1
2
(mn + 1)2|mn + 1|hp.

If p | m, then Nn = (mn−1)2+(mn−1)2

2 = m2n + 1. The zeta function is again equal to the one
we find in Subsection 4.2.3:

ζLm,P1
Fp
(T) =

1
(1−m2T)(1− T)

.

If p - m, we use Theorem 5.1.1 with (A = 1/2, b = 2, c = h, d = 2, e = h, ε = 1) to again
conclude that the zeta function is transcendental over Q(T).

5.1.5 Additive and subadditive polynomials

We start with two definitions.

Definition 5.1.5. Let k be a field. A polynomial f (x) ∈ k[x] is called additive over Ga if
f (x + y) = f (x) + f (y) for all x, y ∈ Ga.

And the other family of polynomials.

Definition 5.1.6. Let k be a field. A polynomial f (x) ∈ k[x] is called subadditive over Ga

if f (ωdx) = ωd f (x) for a d-th root of unity, such that char(k) - d.

Unlike the previous three families, these families do not contain any non-trivial examples
over fields of characteristic zero. Moreover, these two families can be handled as one. We
can just consider the endomorphism ring of Ga. We know that this contains all multiplica-
tions x 7→ cx, and also the Frobenius map. We get End(Ga) ' k〈φ〉, where φ is the Frobe-
nius, so φc = cpφ for c ∈ k. These results can be found in [Wat79] on p. 65. As we work in
the algebraic closure of k, the Frobenius is not commutative, and hence the endomorphism
algebra is not commutative. The Frobenius and its n-fold compositions are the only purely
inseparable maps on Ga. The inseparable degree of a map f is thus the number of times
it contains the Frobenius. Let f ∈ End(Ga), then # ker( f ) = degs( f ) = deg( f ) · p−vφ( f ).
Let f be a (sub)additive polynomial of degree d ≥ 2 on Ga. As it is a polynomial, we have
deg( f ◦n) = deg( f )n. Moreover, subtracting the identity (x 7→ 1x, so represented by 1 in
k〈φ〉) does not impact the degree, as d > 1.

|Fix( f ◦n)| = # ker( f ◦n − 1) = deg( f ◦n − 1)pvφ( f ◦n−1) = dn pvφ( f ◦n−1).

If f ∈ k〈φ〉, then surely vφ( f ◦n − 1) = 0. Hence, we get Nn = dn. So it is easy to see that
we get ζ f ,Ga,Fp

(T) = 1
1−dT . If f 6∈ k〈φ〉. Then there is an s, such that f s − 1 ∈ φk〈φ〉 (the

multiplicative order in the residue field, so s is coprime to p). We need a lemma to rewrite
the formula into the proper form.
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Lemma 5.1.7 (Lemma 6.3. in [Bri16]). Let k be an algebraically closed field of characteristic
p, and let k〈φ〉 be the noncommutative polynomial ring, with multiplication rule φc = cpφ.
Let x ∈ k〈φ〉 be such that x− 1 ∈ φk〈φ〉. Then

vφ(xn − 1) = vφ(x− 1)pvp(n).

Proof. First we assume vp(n) = 0. In that case we get

xn − 1 = (1 + (x− 1))n − 1 =
n

∑
i=0

(
n
i

)
(x− 1)i − 1 ≡

(
n
1

)
(x− 1) mod φ2k〈φ〉.

As vp(n) = 0, we also have that vφ(n) = 0. Therefore, we get vφ(xn − 1) = vφ(x − 1)p0.
This allows us to reduce to the case where n = pk, as we can take out all coprime factors. We
will prove this for k ≥ 1. So let n = pk. Then xpk − 1 = (x− 1)pk

because the characteristic
is p (generalized high school student’s dream). It is clear that we get vφ((x − 1)pk

) =

pkvφ(x− 1).

We then get Nsn = dsn pvφ( f s−1)pvp(n) . Unfortunately, this does not match the form of
Theorem 5.1.1. We can still use Lemma 5.1.4 to see that Nn mod q is q-automatic for all
primes q. Hence, the subsequence Ns(q−1)n mod q is also q-automatic by Proposition 3.2.5.
Moreover, we assume q 6≡ 1 mod p if p is odd, and q ≡ 7 mod 8 if p = 2. By Dirichlet’s
theorem (Theorem 13.2 in [Neu92]) there are still an infinite number of such primes q. For
q sufficiently large we obtain another q-automatic sequence.

bn = ds(q−1)n pvφ( f s−1)pvp(n(q−1))
mod q

= 1pvφ( f s−1)pvp(n)pvp(q−1)
mod q

= p(vφ( f s−1)pvp(q−1))pvp(n)
mod q

So we demand q > d. Now define a := vφ( f s − 1)pvp(q−1) and assume q > papa
. By

Proposition 3.2.10 this sequence is not q-automatic. This is a contradiction, hence the zeta
function ζ f ,Ga,Fp

(T) is transcendental over Q(T).

5.2 A B E L I A N VA R I E T I E S

We want to use the structure of proofs we saw in the previous section and apply them to
different maps on different varieties, namely on isogenies on abelian varieties. We will
provide a short introduction to abelian varieties following [MvdG].

Definition 5.2.1. A group variety over a field K is a K-variety X together with K-morphisms
m : X× X → X (group law), i : X → X (inverse) and a K-rational point e ∈ X(K) (identity
element), such that

i. m ◦ (m× idX) = m ◦ (idX ×m) : X× X× X → X;

ii. m ◦ (e× idX) = j1 : X× Spec(K)× X → X and m ◦ (idX × e) = j2 : X× Spec(K)→ X,
where j1 : Spec(k) × X ∼−→ X and j2 : X × Spec(K) ∼−→ X are the canonical isomor-
phisms;
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iii. e ◦ π = m ◦ (idX × i) ◦ ∆X/K = m ◦ (i× idX) ◦ ∆X/K : X → X, where π : X → Spec(K)
is the structure morphism.

If X is a group variety, then the set X(K) of K-rational points naturally inherits the struc-
ture of a group. As a variety (or morphism or point) over K is a variety (or morphism or
point) over K as well, we see that X(K) is a group is as well, this is very relevant to us, as
we are interested in this group structure. We continue with abelian varieties:

Definition 5.2.2. An abelian variety is a group variety which, as a variety, is complete.

A famous example of an abelian variety is an elliptic curve. It turns out that demanding
completeness makes abelian varieties into a very special class of varieties, most notable its
group structure is very useful. Let us now show that the name is well chosen:

Proposition 5.2.3. Let X be an abelian variety over a field K, then X(K) has an abelian group
structure.

Proof. See the proof of Corollary 1.14(ii) in [MvdG].

Definition 5.2.4. Let f : X → Y be a homomorphism of abelian varieties. Then f is called
an isogeny if f is surjective and dim(X) = dim(Y).

So clearly, all isogenies f : X → X are endomorphisms. An endomorphism which is not
an isogeny is not surjective. A group homomorphism f that is not surjective must have a
proper subgroup as its image. However, we only consider maps of degree at least two, and
hence all generic points need to have a pre-image. Therefore, the set of all endomorphisms
of degree at least two is the same as the set of all isogenies of degree at least two.

Definition 5.2.5. Let f : A→ B be an isogeny of abelian varieties over k.

• the degree of f is the degree of function field extensions [k(A) : f ∗k(B)];

• the separable degree of f is the separable degree of the function field extensions
[k(A) : f ∗k(B)]s;

• the inseparable degree of f is the inseparable degree of the function field extensions
[k(A) : f ∗k(B)]i.

It turns out that these notions are very useful to gain a better understanding of how to
approach our generalization for abelian varieties.

Lemma 5.2.6. Let f : A→ A be an endomorphism of degree at least 2. Then the order of the
kernel equals the separable degree degs( f ).

Proof. This result can be found in [Shi98] on p. 4.

5.2.1 Multiplication-by-m maps on abelian varieties

We can generalize the results of the previous section to abelian varieties for the familiar
multiplication-by-m map:
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Theorem 5.2.7. Let A be an abelian variety over a field K of characteristic p > 0, and let
[m] : A → A be the multiplication-by-m map, with |m| > 1. If p - m, then ζ[m],A(T) is
transcendental over Q(T). However, if p | m, then ζ[m],A(T) is rational over Q(T).

To prove this we need an expression for the number of fixed points. We first introduce a
new notion and then give a useful lemma.

Definition 5.2.8. Let A be an abelian variety of dimension g over K, a field of characteristic
p > 0. Then the p-rank of A is

r := vp(|A[p](K)|).

Lemma 5.2.9. Let A be an abelian variety of dimension g over a field K of characteristic p > 0,
and let [m] : A → A be the multiplication-by-m map, defined by P 7→ ∑m

i=1 P, with m ∈ Z,
not divisible by p. Then # ker([m]) = m2g p(r−2g)vp(m), where r is the p-rank of A.

Proof. Write m = pk · u, with k ∈ Z≥0 and u ∈ Z, such that p - u. This means [m] = [pk][u].
As the separable degree is multiplicative (follows from a tower of field extensions), we find
degs([m]) = degs([p

k]) · degs([u]). Because p - u, the map [u] is separable (Proposition 5.9.
in [MvdG]), therefore degs([u]) = deg(u) = u2g (Proposition 2.9. in [MvdG]). We are left
with degs([p

k]). Define r to be the p-rank of A. As ker(pk) ' (Z/pkZ)r (Proposition 5.22.
in [MvdG]), we know that degs([p

k]) = pkr. We get:

degs([m]) = u2g pkr = m2g p(r−2g)vp(m).

We can now prove the theorem with this lemma.

Proof of Theorem 5.2.7. By Lemma 5.2.6 we know that #Fix([`]) = degs([`m]). We can also
apply Lemma 5.2.9 and see that #Fix([`]) = `2g p(r−2g)vp(`). When we take ` = mn − 1, we
see that

Nn = (mn − 1)2g p(r−2g)vp(mn−1).

Then we can apply 5.1.1 to this for (A = 1, b = 2g, c = r − 2g, ε = 0, d = 1, e = 1) and
obtain that ζ[m],A(T) is transcendental over Q(T), when p - m and it is rational if p | m.

5.2.2 Endomorphisms on elliptic curves

We wish to generalize our results to a wider range of endomorphisms on abelian varieties.
We will present several lemmas which correspond to steps or lemmas of Theorem 5.1.1. It
turns out that we can apply this theory to elliptic curves.

Lemma 5.2.10. Let α : A → A be an endomorphism of degree at least 2. Then the vector
space generated by α and all its kth compositions α◦k denoted Q(α) is a Q-subalgebra, and
Q(α) is a finite field extension of Q. Moreover, we have that deg(β) = NQ(α)/Q(β)2g/d, for all
β ∈ Q(α), where g = dim(A) and d is the degree of the field extension Q(α)/Q.
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Proof. It is clear that 1 ∈ Q ⊂ Q(α) and by definition we generate it as a vector space. Any
isogeny has a characteristic polynomial of degree 2g. When we fill in the isogeny itself, the
polynomial is zero. This can be found in [Shi98] on p. 4,5. Moreover, the polynomial is
defined over Z, hence α can be considered an algebraic element over Q. That means Q(α)

can be seen as a field extension of Q of finite degree.
As K = Q(α) is a Q-subalgebra of End0(A), and it is a field. We can use that deg(β) =

NmK/Q(β)2g/d, where d is the degree of the field extension, so d = [K : Q], and g = dim(A).
The proof of this claim can be found in [Mil08] as the proof of Proposition 10.23.

Lemma 5.2.11. Let K := Q(α) be a finite separable extension of Q, and L its normal closure.
If α ∈ OK, then there exists an integer N ∈ Z such that for each prime q > N the sequence
(an)n≥1 defined by an := NK/Q(α

n − 1) mod q is periodic of (not necessarily exact) period
q f − 1, where f is the inertia degree of the prime ideals above q in OL.

Proof. Let σ1, . . . , σk be the distinct Q-embeddings of K into a normal closure L of K. Then
the norm for x ∈ K becomes

NK/Q(x) =
k

∏
i=1

σi(x).

We are interested in the norm of αn − 1. We get the following:

NK/Q(α
n − 1) =

k

∏
i=1

σi(α
n − 1) =

k

∏
i=1

(σi(α)
n − 1).

We know that σi(α) ∈ L for all σi. Moreover, as the set {σi(α)}i is finite, we know there are
only finitely many prime ideals q in OL such that σi(α) ∈ q for some i. Hence, there are only
a finite number of primes q ∈ Z such that σi(α) ∈ q for some q | qOL. Hence, there exists
an N ∈ Z, such that for every prime number q > N we have that σi(α) 6∈ q for every prime
ideal q | qOL.

Note that over the number field L there are only finitely many primes that ramify. Hence,
there exists an M ∈ Z≥N such that for every prime q > M the prime q does not ramify
over L. For any q > M there is a factorization qOL = q1 · . . . · q`, where qj 6= qk for j 6= k
and each ideal qj is maximal. For each maximal ideal qj we know that OL/qj is a field and
moreover it is a finite extension of Fq of degree f j, the inertia degree. Note that L/Q is a
Galois extension as it is a normal extension of a separable extension. Because we have a
Galois extension we get f j = f for all 1 ≤ j ≤ ` with e f ` = d′, where e is the ramification
degree (e = 1 in our case), ` the number of distinct prime ideals and lastly: d′ = [L : Q],
which is finite as the normal closure of an algebraic extension is also of finite degree.

Let us remark that #OL/qi = q f , as it is a field extension of Fq of degree f . Note that we
choose q > M > N, hence σi(α) 6∈ qj for all 1 ≤ j ≤ ` and 1 ≤ i ≤ k. This means that

σi(σ)
q f−1 ≡ 1 mod qj as this is just the order of the multiplicative group. Note that we get
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σi(α)
q f−1+a ≡ σi(α)

a mod qj for each 1 ≤ j ≤ `, 1 ≤ i ≤ k and all a ∈ Z. This also implies
the following for all 1 ≤ j ≤ ` and all a ∈ Z.

k

∏
i=1

(σi(α)
q f−1+a − 1) ≡

k

∏
i=1

(σi(α)
q f−1σi(α)

a − 1) mod qj

≡
k

∏
i=1

(σi(α)
a − 1) mod qj.

Note that as all qj are maximal they must be pairwise coprime. Hence, we can use the
Chinese remainder theorem on the product qOL = q1 · . . . · q` to obtain that

k

∏
i=1

(σi(α)
q f−1+a − 1) ≡

k

∏
i=1

(σi(α)
a − 1) mod qOL.

We know that ∏k
i=1(σi(α)

q f−1+a− 1) = NK/Q(α
q f−1+a− 1) and ∏k

i=1(σi(α)− 1) = NK/Q(α−
1) for all a ∈ Z≥1. By assumption α ∈ OK, hence αq f−1+a − 1 ∈ OK and α− 1 ∈ OK for all
a ≥ 1. Because integral elements have integral norm (Corollary 2.21 in [Mil17]), we see
that our identity must hold in Z:

NK/Q(α
q f−1+a − 1) ≡ NK/Q(α

a − 1) mod q.

We clearly see that the sequence (an)n≥1 with an := NK/Q(α
n − 1) mod q is periodic of

(not necessarily exact) period q f − 1.

Lemma 5.2.12. Let A be an abelian variety over a field of characteristic p of dimension g, and
α : A→ A a separable self-map. Assume one of the following conditions holds:

1. p− 1 > 2g!;

2. p− 1 > [Q(α) : Q]!.

Then there exist an infinite number of primes q such that q f − 1 6≡ 0 mod p, where f is the
inertia degree of q in the normal closure of Q(α).

Proof. We will prove that there exist and infinite number of primes q that split completely, so
its inertia degree f = 1 and are not congruent to 1 mod p. It is clear that, then q f − 1 6≡ 0
mod p. We first prove it for assumption 2.

Denote the density of a subset A of all primes by δ(A). By Dirichlet’s theorem on the
density of primes (Theorem 13.2 in [Neu92]), we know that the density of primes of the
form a mod p, for a coprime to p, is 1/(p − 1). Hence, the number of primes of the
form a mod p for a 6≡ 0, 1 must be (p − 2)/(p − 1). Denote this set by A, so δ(A) =

(p− 2)/(p− 1).
As α is algebraic (mentioned in proof of Lemma 5.2.10, we know the extension Q(α) is

welldefined and separable. Now let L be the normal closure of Q(α). As it is defined by
adjoining all other roots of the minimal polynomial of α, it is a separable extension. Because
the extensions L/K and K/Q are separable, the extension L/Q is separable. This means
the extension L/Q is both normal and separable, hence it is Galois.
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Chebotarev’s density theorem tells us that the density of primes that split completely in
an Galois extension L/Q is precisely 1/[L : Q] (Theorem 13.4 in [Neu92]). As Q(α) is
a separable extension, α has a minimal polynomial F of degree d := [Q(α) : Q], and the
normal closure is created by adjoining all n− 1 other roots of F to Q(α). For each root of
F the extension can be of degree at most d. However, if it were of degree d, then all roots
are included at once. Hence, if we need to extend Q(α) for each root separately, we have
extensions of degrees at most d− 1, d− 2, etc. So [L : Q] ≤ d!. Hence, the degree [L : Q(α)]

is at most (d− 1)!. We see that [L : Q] ≤ [Q(α) : Q]!. Let us denote the set of primes that
split completely in L by B, therefore: δ(B) = 1/d(d− 1). We are interested in the density
of A ∩ B. Note that if δ(A) + δ(B) > 1, then δ(A ∩ B) > 0. In other words if

p− 2
p− 1

+
1
d!

> 1 ⇐⇒ 1
d!

>
1

p− 1
⇐⇒ p− 1 > d!.

We now prove that assumption 1. implies assumption 2. Because Q(α) is a field, it is also a
simple Q-subalgebra on End0(A), and it contains 1. Therefore the the degree [Q(α) : Q] = d
must divide 2g, with g = dim(A). This follows from Proposition 2 on p. 36 of [Shi98] by
noting that a field is it its own centre. This means that d = [Q(α) : Q] is at most 2g. We see
that p− 1 > 2g! > d!.

Lemma 5.2.13. Let E be an elliptic curve over a field K of characteristic p > 0 of height h,
and let α : E → E be a separable isogeny of degree at least 2. Define K = Q(α) ⊂ End0(E) as
before, then for all β ∈ K ∩ End(E)

degi(β) = pavp(β),

Where a is an integer and

p =

{
(π) if π ∈ K;

(p) if π 6∈ K,

where π is the pth Frobenius on E. Moreover, if β = αk(p2−1) − 1, then

vp(αk(p2−1) − 1) = vp(αp2−1) + bvp(k),

with b an integer only depending on K.

Proof. If α ∈ Q, then π 6∈ K = Q. This means β = [m] for some m ∈ Z, and therefore
degi(β) = phvp(m). This proves the lemma.
Now let α 6∈ Q and assume π ∈ K, then n = 2, because n | 2g = 2 and K 6= Q. We get
that deg(β) = NK/Q(β) (Lemma 5.2.10). Note that β = γ ◦ πn for some separable γ and
integer n (Corollary 2.12. in [Sil09]). So degi(β) = degi(π)n = pn. We claim that (π) is a
prime ideal in OK. Clearly, the ideal norm N((π)) = p, because NK/Q(π) = deg(π) = p.
When the norm of an ideal is prime, it clearly cannot be divisible by another ideal, hence it
must be prime. We can see that vπ(β) = n, and hence

degi(β) = degi(γ ◦ πn) = degi(γ)degi(π)n = degi(π)n = pvπ(n).
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Lastly, we let α 6∈ Q and π 6∈ K. We still have that β = γ ◦ πn for some separable γ and
integer n. However, as π 6∈ K, we must consider the smallest prime ideal that contains
π. Because NK/Q(π) = deg(π) = p, we know that π ◦ π̂ = p (the dual in Theorem 6.1
in [Sil09]). Hence, the smallest ideal which contains elements divisible by π must be (p),
as N((p)) = p2, and no ideal of degree p containing elements divisible by π can exist, as π

itself is not contained in K. Therefore, we see that β = δ ◦ pk, with

degi(β) = degi(δ ◦ pk) = degi(p)n = phk

Here h is the height of E and we see that degi(β) = phvp(β).
For the second part of the lemma we take β = αk(p2−1) − 1. Note that #p = pε − 1, with
ε = 1, 2 as the field extension has degree 2. In either case, #p | p2 − 1. Because α is
separable, it is clear that α 6= 0 mod p. Hence, we get αp2−1 − 1 ∈ p. Now we will write
γ = αp2−1 for easier notation. We prove vp(γk − 1) = vp(γ− 1) + vp(k), for γ− 1 ∈ p and
γ 6= 1. We prove this by induction on vp(k). Observe that γk − 1 = (γ− 1)(γk−1 + . . . + 1),
and hence vp(γk − 1) = vp(γ− 1) + vp(γk−1 + . . . + 1). We compute

γk−1 + . . . + 1 ≡ 1 + . . . + 1 mod p ≡ k mod p,

First suppose vp(k) = 0, then clearly k is not zero over any ideal p dividing (p) either. Now
suppose k = p, then it just depends on vp(p) which is an integer:

vp(γk − 1) = vp(γ− 1) + bvp(k),

with b = 1 or b = vp(p), an integer either way. Now let k = piu, for some integer i and
p - u. Then γpi − 1 ∈ p holds, hence we apply the proof for vp(u) = 0 and see that

vp(γk − 1) = vp(γpi − 1) + bvp(u) = vp(γpi − 1).

Now we also note that γpi−1 − 1 ∈ p for i > 0, hence we apply the proof for vp(p) = 1:

vp(γk − 1) = vp(γpi − 1) = vp(γpi−1 − 1) + b.

With induction on i we get

vp(γk − 1) = vp(γ− 1) + bvp(k).

Theorem 5.2.14. Let E be an elliptic curve over a field K of characteristic p > 3, and let
α : E → E be an isogeny of degree at least 2. If α is separable, then ζα,E(T) is transcendental
over Q(T).

Proof. We first remark that the fixed point set of α◦n is the same as the kernel of α◦n − 1.
Therefore, we want to find | ker(αn − 1)|. By Lemma 5.2.6 we know that | ker(αn − 1)| =
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deg(αn − 1)/ degi(α
n − 1). We start with the case where α is separable. So assume the zeta

function is algebraic. Then by Lemma 5.1.4 the sequence

an := deg(αn − 1)/ degi(α
n − 1) mod q = NQ(α)/Q(α

n − 1)2/d p−avp(αn−1) mod q

is q-automatic for all primes q. Note that we used Lemmas 5.2.10 and 5.2.13 here. We will
find a prime q such that this statement is false. First let let q > N as in Lemma 5.2.11, such
that NK/Q(α

n − 1) mod q is periodic of period q f − 1, where f is the inertia degree of the
prime ideals above q in OL. We consider a subsequence, which must be q-automatic as well
by Proposition 3.2.5:

bn := a(p2−1)((q f−1)n+1) = NQ(α)/Q(α
(p2−1)((q f−1)n+1) − 1)2/d p−avp(α(p2−1)((q f −1)n+1)−1) mod q

As we choose q > N, the norm becomes periodic and we obtain:

bn = NQ(α)/Q(α
p2−1 − 1)2/d p−avp(α(p2−1)((q f −1)n+1)−1) mod q

Choose q > N′ := max{NQ(α)/Q(α
p2−1 − 1)2/d, N}. Because deg(α) > 2 we must have

αp2−1 − 1 6= 0 and hence NQ(α)/Q(α
p2−1 − 1)2/d is invertible in F×q . We multiply by its

inverse and obtain another q-automatic sequence:

cn := (NQ(α)/Q(ap2−1 − 1)2/d)−1bn = p−avp(a(p2−1)((q f −1)n+1)−1) mod q

Because p > 3, we know that p − 1 > 2 = 2!, and hence we may use Lemma 5.2.12:
there exists an infinite number of primes such that q f − 1 6≡ 0 mod p. Certainly, there exist
infinitely many such primes q > N′. So now let q > N′ also be such that q f − 1 6≡ 0 mod p.
We use Lemma 5.2.13 to get

vp(α(p2−1)((q f−1)n+1) − 1) = vp(α(p2−1) − 1) + bvp(q f − 1)n + 1).

We get
cn = p−a(vp(α(p2−1)−1)+bvp(q f−1)n+1)) mod q

As q 6= p, we can invert p and hence we can invert p−avp(α(p2−1)−1) to obtain another q-
automatic sequence:

dn := pavp(α(p2−1)−1)cn = pabvp(q f−1)n+1) mod q

Because ab ∈ Z, we can assume ab ∈ Z+ as otherwise we just add multiples of q − 1.
Moreover, we can choose q > pab to ensure that pab 6= 0, 1 mod q. Because we choose
q such that vp(q f − 1) = 0 ≤ 0 = vp(1), we can apply Proposition 3.2.9 and see that dn

cannot be q-automatic. This is a contradiction, hence the zeta function cannot be algebraic:
it must be transcendental.

Remark. To replace ‘elliptic curve’ with ‘abelian variety’ in Theorem 5.2.14 we need to find
an equivalent to Lemma 5.2.13 for abelian varieties. Note that all other steps in the proof
of Theorem 5.2.14 can be duplicated as Lemmas 5.1.4, 5.2.6, 5.2.10, 5.2.11, 5.2.12 are all
stated in full generality, except for the fact that we need to increase the lower bound on p.
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T H E TA M E D Y N A M I C A L Z E TA F U N C T I O N I N P O S I T I V E
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In the previous chapter we saw that over positive characteristic the dynamical zeta function
can become transcendental for certain endomorphisms on P1

K or abelian varieties. This
suggests that a straightforward pattern in the number of fixed points of iterates cannot easily
be deduced. However, one would like to have an alternative which contains at least part of
the information in a way that we can use or compute it well. In this chapter we present an
alternative to the (full) dynamical zeta function: the tame dynamical zeta function due to
J. Byszewski and G. Cornelissen. This chapter will exhibit some computations and results
on the tame dynamical zeta function of dynamically affine maps. We will also discuss the
notion of lifting to characteristic zero.

6.1 I N T R O D U C T I O N T O T H E TA M E D Y N A M I C A L Z E TA F U N C T I O N

In this section we provide the definition of the tame dynamical zeta function, give the main
result and a proposition which will be most useful in doing computations.

Definition 6.1.1. Let X be a variety defined over a field K of characteristic p > 0, and let
f : X → X be a map. Then the tame dynamical zeta function of f is defined as

ζ∗f ,X(T) := exp
∞

∑
n=1,
p-n

Nn

n
Tn,

where

Nn =

{
|Fix( f

◦n
)| if |Fix( f

◦n
)| ∈N;

0 otherwise.

It turns out that the tame dynamical zeta function of all maps for which we computed it,
unlike the full dynamical zeta function, is algebraic:

Theorem 6.1.2. Let K be a field of characteristic p > 0, and let f : P1
K → P1

K be a morphism
of degree at least 2. If f is a power map, Chebyshev polynomial, Lattès map induced by a
multiplication-by-m map or a (sub)additive polynomial, then the tame dynamical zeta function
ζ∗f ,P1

K
(T) is algebraic over Q(T).

59
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We will prove this theorem in Section 6.3.1, after we have completed all computations.
To simplify parts of those computations we will use Proposition 6.3.1 to only do the compu-
tations for Ga ⊂ P1 or Gm ⊂ P1. Also, we have the following proposition:

Proposition 6.1.3. Let k ∈ Z≥1 and T a variable. Then the following holds:

∞

∑
n=1,
k-n

Tn

n
= log

(
(1− Tk)1/k

1− T

)
.

Proof. Let k ∈ Z≥1. We compute:

∞

∑
n=1,
k-n

Tn

n
=

∞

∑
n=1

Tn

n
−

∞

∑
n=1,
k|n

Tn

n

=
∞

∑
n=1

Tn

n
−

∞

∑
`=1

Tk`

k`
(substitute n = k`)

=
∞

∑
n=1

Tn

n
− 1

k

∞

∑
`=1

(Tk)`

`

= log
(

1
1− T

)
− 1

k
log
(

1
1− Tk

)
(power series log)

= log
(
(1− Tk)1/k

1− T

)
.

We will often use this where k is equal to the characteristic p. Also, we may use substitu-
tions T = aT′`, for some a ∈ Q and ` ∈ Z.

6.2 D Y N A M I C A L LY A F F I N E M A P S O N P1
K

We will now compute the tame dynamical zeta functions, rather than the regular dynamical
zeta functions in the positive characteristic case. We will discuss all five families of dynami-
cally affine maps: power maps, Chebyshev polynomials, Lattès maps, additive polynomials
and subadditive polynomials. For the first three families we will use results from the previ-
ous chapter as several results were for arbitrary field, i.e. not necessarily of characteristic
zero.
As several computations are quite lengthy, boxes are used to assist the reader in recognizing
all significant results.

6.2.1 Power maps

As we have seen in Subsection 5.1.2, we obtain a formula for the number of fixed points:

Nn = (mn − 1) · |mn − 1 | p .

To determine the tame dynamical zeta function, we distinguish between a number of cases.
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Case 1: p | m.

Assume p | m. Then p - mn − 1 for all n ≥ 1, which means that |mn − 1 | p = 1. Therefore,
we find Nn = mn − 1. We find:

log ζ ∗xm ,Gm ,F p
(T ) =

∞

∑
n=1,
p -n

Nn

n
T n =

∞

∑
n=1,
p -n

mn − 1
n

T n =
∞

∑
n=1,
p -n

(mT )n

n
−

∞

∑
n=1,
p -n

T n

n

= log
(
(1 − (mT ) p )1/ p

1 − mT

)
− log

(
(1 − T p )1/ p

1 − T

)
.

The tame dynamical zeta function is easily determined:

ζ∗xm,Gm,Fp
(T) =

(1− (mT)p)1/p

(1− Tp)1/p · 1− T
1−mT

. (6.2.1.1)

Case 2: p 6= 2 and p - m.

Assume p - m and p 6= 2. In this case m is invertible in Fp. Hence, m has a multiplicative
order s ∈ Z in Fp. We apply Proposition 5.1.2(1,2):

Nn = (mn − 1) · |mn − 1|p =

{
(mn − 1) · |ms − 1|p · |n|p if s | n;

mn − 1 if s - n.

First notice that as p - n, the norm |n|p = 1 in all cases. Let us introduce the notation

A := |ms − 1|p.

Also, note that s and p are coprime, because s divides the order of F×p , which is p− 1. We
get:
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log ζ∗xm,Gm,Fp
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,

p-n,s-n

mn − 1
n

Tn +
∞

∑
n=1,

p-n,s|n

(mn − 1)A
n

Tn

=
∞

∑
n=1,
p-n

mn − 1
n

Tn −
∞

∑
n=1,

p-n,s|n

mn − 1
n

Tn + A
∞

∑
n=1,

p-n,s|n

mn − 1
n

Tn

=
∞

∑
n=1,
p-n

mn − 1
n

Tn + (A− 1)
∞

∑
n=1,
p-k

msk − 1
sk

Tsk

=
∞

∑
n=1,
p-n

(mT)n

n
−

∞

∑
n=1,
p-n

Tn

n
+

A− 1
s

 ∞

∑
n=1,
p-k

(mT)sk

k
−

∞

∑
n=1,
p-k

Tsk

k


= log

(
(1− (mT)p)1/p

1−mT

)
− log

(
(1− Tp)1/p

1− T

)
+

A− 1
s

log
(
(1− (mT)ps)1/p

1− (mT)s

)
− A− 1

s
log
(
(1− Tps)1/p

1− Ts

)
.

The tame dynamical zeta function then becomes:

ζ∗xm,Gm,Fp
(T) =

1− T
1−mT

· (1− (mT)p)1/p

(1− Tp)1/p

·
(
(1− (mT)ps)1/p

(1− Tps)1/p · 1− Ts

1− (mT)s

)(A−1)/s

.

(6.2.1.2)

Moreover, assume m ≡ 1 mod p. In this case s = 1 and the tame dynamical zeta function
simplifies further:

ζ∗xm,Gm,Fp
(T) =

(
(1− (mT)p)1/p

(1− Tp)1/p · 1− T
1−mT

)A

. (6.2.1.3)

Case 3: p = 2 and 2 - m.

Assume p - m and p = 2. We can still use Proposition 5.1.2(1) to obtain that Nn =

(mn− 1)|mn− 1|2. Note that by assumption m is odd, hence s = 1. We define A := |m− 1|2
and B := |m + 1|2. Then we have Nn = 2AB(mn − 1) for all p - n.

We compute the tame dynamical zeta function:

log ζ∗xm,Gm,Fp
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
2-n

2AB(mn − 1)
n

Tn

=2AB log
(
(1− (mT)2)1/2

1−mT

)
− 2AB log

(
(1− T2)1/2

1− T

)
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This gives us the tame dynamical zeta function:

ζ∗xm,Gm,Fp
(T) =

(
(1− (mT)2)1/2

(1− T2)1/2
1− T

1−mT

)2AB

. (6.2.1.4)

Comparison to characteristic zero

In Section 4.2.1 we had Equation 4.2.1.1 that said for K of characteristic 0:

ζxm,Gm,K,0(T) =
1− T

1−mT
.

In this subsection we saw a few different answers. Recall that s denotes the multiplicative
order of m in Fp and A := |ms − 1|p, also B = |m + 1|2 in the last case. We will give
identities in each case to show the relation between the tame dynamical zeta function in
positive characteristic and the zeta function in characteristic zero.

• If p | m, then

ζ∗xm,Gm,Fp
(T) =

(1− (mT)p)1/p

(1− Tp)1/p · 1− T
1−mT

.

This can be rewritten:

ζ∗xm,Gm,Fp
(T) =

ζxm,Gm,K,0(T)
ζxmp ,Gm,K,0

(Tp)1/p . (6.2.1.5)

• If p 6= 2 and p - m, then

ζ∗xm,Gm,Fp
(T) =

1− T
1−mT

· (1− (mT)p)1/p

(1− Tp)1/p

·
(
(1− (mT)ps)1/p

(1− Tps)1/p

)(A−1)/s

·
(

1− Ts

1− (mT)s

)(A−1)/s

.

Again, we can write this using the zeta function in characteristic zero:

ζ∗xm,Gm,Fp
(T) =

ζxm,Gm,K,0(T)
ζxmp ,Gm,K,0

(Tp)1/p ·
(

ζxms ,Gm,K,0
(Ts)

ζxmps ,Gm,K,0
(Tps)1/p

)(A−1)/s

. (6.2.1.6)

• A special case of this is when m ≡ 1 mod p, then

ζ∗xm,Gm,Fp
(T) =

(
(1− (mT)p)1/p

(1− Tp)1/p · 1− T
1−mT

)A

.
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As we did before, we will now rewrite this:

ζ∗xm,Gm,Fp
(T) =

(
ζxm,Gm,K,0(T)

ζxmp ,Gm,K,0
(Tp)1/p

)A

. (6.2.1.7)

• If p = 2 and m is odd, then

ζ∗xm,Gm,Fp
(T) =

(
(1− (mT)2)1/2

(1− T2)1/2
1− T

1−mT

)2AB

.

And we repeat this process:

ζ∗xm,Gm,Fp
(T) =

(
ζxm,Gm,K,0(T)

ζxm2 ,Gm,K,0
(T2)1/2

)2AB

. (6.2.1.8)

6.2.2 Chebyshev polynomials

As we have seen in Subsection 5.1.3, we have that: |Fix(T◦nd )| = |µdn+1|+|µdn−1|
2 . In this

formula we again use the identity from Proposition 5.1.2(1), so |µk| = k · |k|p.

Case 1: p | d.

If p | d we know that |dn − 1|p = |dn + 1|p = 1. This means we get a formula for the
number of fixed points:

Nn =
dn + 1 + dn − 1

2
= dn.

With this identity we determine the log of the tame dynamical zeta function:

log ζ∗Td,Ga,Fp
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
p-n

dn

n
Tn = log

(
(1− (dT)p)1/p

1− dT

)
.

This gives us the tame dynamical zeta function:

ζ∗Td,Ga,Fp
(T) =

(1− (dT)p)1/p

1− dT
. (6.2.2.1)

Case 2: let p be odd, p - d and s odd.

Since d ∈ F×p , let s be the multiplicative order of d in Fp and A := |ds − 1|p. Again, we
have that:

|µdn−1| = (dn − 1)

{
1 if s | n;

A · |n|p if s - n.
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We define:

An =

{
A if s | n;

1 if s - n.

In this case s is odd, which means that |dn + 1|p = 1 for all n. When p - n, we get a
formula for the number of fixed points:

Nn =
(dn − 1)An + dn + 1

2
.

In fact we obtain two summations which we will compute separately. We start with the
first half which depends on An:

∞

∑
n=1,
p-n

(dn − 1)An

2n
Tn =

∞

∑
n=1,

p-n,s|n

(dn − 1)A
2n

Tn +
∞

∑
n=1,

p-n,s-n

(dn − 1)
2n

Tn

=(A− 1)
∞

∑
k=1,
p-k

dks − 1
2ks

Tks +
∞

∑
n=1,
p-n

(dn − 1)
2n

Tn.

These two sums need to be split in two again:

∞

∑
n=1,
p-n

(dn − 1)An

2n
Tn =

A− 1
2s

 ∞

∑
k=1,
p-k

(dT)ks

k
−

∞

∑
k=1,
p-k

Tks

k

+
1
2

 ∞

∑
n=1,
p-n

(dT)n

n
−

∞

∑
n=1,
p-n

Tn

n


=

A− 1
2s

(
log
(
(1− (dT)ps)1/p

1− (dT)s

)
− log

(
(1− Tps)1/p

1− Ts

))
+

1
2

(
log
(
(1− (dT)p)1/p

1− dT

)
− log

(
(1− Tp)1/p

1− T

))
.

Next we compute the second summation:

∞

∑
n=1,
p-n

dn + 1
2n

Tn =
1
2

(
log
(
(1− (dT)p)1/p

1− dT

)
+ log

(
(1− Tp)1/p

1− T

))
.

In this case the tame dynamical zeta function becomes:

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)ps)1/p

1− (dT)s
1− Ts

(1− Tps)1/p

)(A−1)/2s

·
(
(1− (dT)p)1/p

1− dT
1− T

(1− Tp)1/p

)1/2

(
(1− (dT)p)1/p

1− dT
(1− Tp)1/p

1− T

)1/2

.

This can be written in a simpler formula:
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ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)ps)1/p

1− (dT)s
1− Ts

(1− Tps)1/p

)(A−1)/2s

· (1− (dT)p)1/p

1− dT
. (6.2.2.2)

If d ≡ 1 mod p, then s must be 1 and the above can be simplified:

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)p)1/p

1− dT

)(A+1)/2

·
(

1− T
(1− Tp)1/p

)(A−1)/2

. (6.2.2.3)

Case 3: p is odd, p - d and s even.

Because s is even, we can write t = s/2 and we know that |dt + 1|p = |ds − 1|p = A by
Proposition 5.1.2(4). Similar to before, we can find a useful identity:

|µdn+1| = (dn + 1)

{
1 if t | n or n

t ∈ 2Z;

A · |n|p if n
t ∈ 1 + 2Z.

Again, we define:

An =

{
A if s | n;

1 if s - n,
and Bn =

{
A if n

t ∈ 1 + 2Z;

1 otherwise.

With this, we can write:

Nn =
(dn − 1)An + (dn + 1)Bn

2
.

Again this renders two summations. However, we already computed the first half in the
previous case. Hence, we only have to compute the second half:

∞

∑
n=1,
p-n

(dn + 1)Bn

2n
Tn =

∞

∑
n=1,

p-n,t|n

(dn + 1)Bn

2n
Tn +

∞

∑
n=1,

p-n,t-n

dn + 1
2n

Tn

=
∞

∑
n=1,

p-n,t|n

(dn + 1)(Bn − 1)
2n

Tn +
∞

∑
n=1,
p-n

dn + 1
2n

Tn

=
∞

∑
k=1,
p-k

(dkt + 1)(Bkt − 1)
2kt

Tkt +
∞

∑
n=1,
p-n

dn + 1
2n

Tn

=
∞

∑
k=1,

p-k,2|k

(dkt + 1)(1− 1)
2kt

Tkt +
∞

∑
k=1,

p-k,2-k

(dkt + 1)(A− 1)
2kt

Tkt +
∞

∑
n=1,
p-n

dn + 1
2n

Tn.
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We can see that the first summation cancels and the last summation is one we computed
already for case 2. Hence, we compute the second summation:

∞

∑
k=1,

p-k,2-k

(dkt + 1)(A− 1)
2kt

Tkt =
A− 1

2t

∞

∑
k=1,

p-k,2-k

dkt + 1
k

Tkt =
A− 1

2t

 ∞

∑
k=1,
p-k

dkt + 1
k

Tkt −
∞

∑
`=1,
p-`

d2`t + 1
2`

T2`


=

A− 1
2t

log
(
(1− (dT)pt)1/p

1− (dT)t
(1− Tpt)1/p

1− Tt

)
− A− 1

4t
log
(
(1− (dT)2pt)1/p

1− (dT)2t
(1− T2pt)1/p

1− T2t

)
.

When we combine the results we obtain the tame dynamical zeta function:

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)ps)1/p

1− (dT)s
1− Ts

(1− Tps)1/p

)(A−1)/2s

·
(
(1− (dT)p)1/p

1− dT
1− T

(1− Tp)1/p

)1/2

·
(
(1− (dT)p)1/p

1− dT
(1− Tp)1/p

1− T

)1/2

·
(
(1− (dT)pt)1/p

1− (dT)t
(1− Tpt)1/p

1− Tt

)(A−1)/2t

·
(

1− (dT)2t

(1− (dT)2pt)1/p
1− T2t

(1− T2pt)1/p

)(A−1)/4t

.

Using the fact that s = 2t, we can simplify the expression and regroup certain factors:

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)pt)1/p

1− (dT)t
(1− Tpt)1/p

1− Tt
1− T2t

(1− T2pt)1/p

)(A−1)/2t

·
(
(1− (dT)p)1/p

1− dT

)
.

(6.2.2.4)

Case 4: p = 2 and d is odd.

For p = 2 we still have Nn = 1
2 ((d

n + 1)|dn + 1|2 + (dn − 1)|dn − 1|2). Also, as d is an odd
integer, we know that s = 1. Define A := |d− 1|2 and B := |d + 1|. Then |dn − 1|2 = 2AB
because 2 - n. Similarly, we get |dn + 1|2 = B for 2 - n. Let us write this in a formula:

Nn =
(dn + 1)B + (dn − 1)2AB

2
=

(2A + 1)Bdn

2
+

(1− 2A)B
2

.
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The log of the tame dynamical zeta function becomes::

log ζ∗Td,Ga,Fp
(T) =

∞

∑
n=1,
p-n

(2A + 1)Bdn

2n
Tn +

∞

∑
n=1,
p-n

(1− 2A)B
2n

Tn

=
(2A + 1)B

2

∞

∑
n=1,
p-n

(dT)n

n
+

(1− 2A)B
2

∞

∑
n=1,
p-n

Tn

n

=
(2A + 1)B

2
log
(

1− (dT)p)1/p

1− dT

)
+

(1− 2A)B
2

log
(
(1− Tp)1/p

1− T

)
.

Moreover, we find the tame dynamical zeta function:

ζ∗Td,Ga,Fp
(T) =

(
1− (dT)p)1/p

1− dT

)(2A+1)B/2

·
(
(1− Tp)1/p

1− T

)(1−2A)B/2

. (6.2.2.5)

Comparison to characteristic zero

In Subsection 4.2.2 we had Equation 4.2.2.1 that said, for a field K of characteristic 0:

ζTd,Ga,K,0(T) = exp
∞

∑
n=1

dn

n
Tn =

1
1− dT

.

In Subsection 6.2.2 we obtained results for distinct cases. Recall that s denotes the multi-
plicative order of d in Fp, and A := |ds − 1|p, also B = |d + 1|2 in the last case. If s is even,
then t = s/2. Unfortunately, unlike the power map case, here we cannot give an identity
solely in terms of the zeta function in characteristic zero. We will give an identity that is as
close as possible.

• If p | d, then

ζ∗Td,Ga,Fp
(T) =

(1− (dT)p)1/p

1− dT
.

This can be rewritten:

ζ∗Td,Ga,Fp
(T) =

ζTd,Ga,K,0(T)
ζTdp ,Ga,K,0(Tp)1/p . (6.2.2.6)

• If p 6= 2, p - d and s odd, then

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)ps)1/p

1− (dT)s
1− Ts

(1− Tps)1/p

)(A−1)/2s

· (1− (dT)p)1/p

1− dT
.
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And we repeat this process:

ζ∗Td,Ga,Fp
(T) =

(
ζTds ,Ga,K,0(T

s)

ζTdps ,Ga,K,0(Tps)1/p
1− Ts

(1− Tps)1/p

)(A−1)/2s

·
ζTd,Ga,K,0(T)

ζTdp ,Ga,K,0(Tp)1/p .

(6.2.2.7)

• A particular case of the above is when d ≡ 1 mod p, we get:

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)p)1/p

1− dT

)(A+1)/2

·
(

1− T
(1− Tp)1/p

)(A−1)/2

.

As we did before, we will now rewrite this:

ζ∗Td,Ga,Fp
(T) =

(
ζTd,Ga,K,0(T)

ζTdp ,Ga,K,0(Tp)1/p

)(A+1)/2

·
(

1− T
(1− Tp)1/p

)(A−1)/2

. (6.2.2.8)

• If p 6= 2, p - d and s even, then

ζ∗Td,Ga,Fp
(T) =

(
(1− (dT)pt)1/p

1− (dT)t
(1− Tpt)1/p

1− Tt
1− T2t

(1− T2pt)1/p

)(A−1)/2t

· (1− (dT)p)1/p

1− dT
.

We rewrite this using the zeta function in characteristic zero:

ζ∗Td,Ga,Fp
(T) =

(
ζTdt ,Ga,K,0(T

t)

ζTdpt ,Ga,K,0(Tpt)1/p
(1− Tpt)1/p

1− Tt
1− T2t

(1− T2pt)1/p

)(A−1)/2t

·
ζTd,Ga,K,0(T)

ζTdp ,Ga,K,0(Tp)1/p .

(6.2.2.9)

• If p = 2 and d is odd, then

ζ∗Td,Ga,Fp
(T) =

(
1− (dT)p)1/p

1− dT

)(2A+1)B/2

·
(
(1− Tp)1/p

1− T

)(1−2A)B/2

.

This can be rewritten:

ζ∗Td,Ga,Fp
(T) =

(
ζTd,Ga,K,0(T)

ζTdp ,Ga,K,0(Tp)1/p

)(2A+1)B/2

·
(
(1− Tp)1/p

1− T

)(1−2A)B/2

. (6.2.2.10)
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6.2.3 Lattès maps

We use the result we obtained in Subsection 5.1.4:

|Fix(L◦nm )| = 1
2
|Emn−1|+

1
2
|Emn+1|

=
1
2
(mn − 1)2|mn − 1|hp +

1
2
(mn + 1)2|mn + 1|hp.

Case 1: p | m.

When p and m are not coprime, we know that |mn − 1|p = |mn + 1|p = 1. This simplifies
the formula for the number of fixed points to:

Nn =
1
2
(mn − 1)2 +

1
2
(mn + 1)2 = m2n + 1.

Using this identity we can compute the log of the tame dynamical zeta function:

log ζ∗Lm,P1
K,p
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
p-n

m2n + 1
n

Tn =
∞

∑
n=1,
p-n

(m2T)n

n
+

∞

∑
n=1,
p-n

Tn

n

= log
(
(1− (m2T)p)1/p

1−m2T

)
+ log

(
(1− Tp)1/p

1− T

)
.

This gives the tame dynamical zeta function:

ζ∗Lm,P1
K,p
(T) =

(1− (m2T)p)1/p

1−m2T
· (1− Tp)1/p

1− T
. (6.2.3.1)

Case 2: let p be odd, p - m and s odd.

As before we write A := |ms− 1|p, where s is the multiplicative order of m in Fp. We define:

An =

{
Ah if s | n;

1 if s - n.

As s is odd we know that |mn + 1|p = 1. We again use Proposition 5.1.2 to see that
Nn = (mn − 1)2An/2 + (mn + 1)2/2 for n not divisible by p. This identity allows us to
compute the log of the tame dynamical zeta function:

log ζ∗Lm,P1
K,p
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
p-n

(mn − 1)2An

2n
Tn +

∞

∑
n=1,
p-n

(mn + 1)2

2n
Tn.
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We compute these two sums separately, starting with the summation depending on An:

∞

∑
n=1,
p-n

(mn − 1)2An

2n
Tn =

∞

∑
n=1,

p-n,s|n

(mn − 1)2Ah

2n
Tn +

∞

∑
n=1,

p-n,s-n

(mn − 1)2

2n
Tn

=
∞

∑
k=1,
p-k

(mks − 1)2(Ah − 1)
2ks

Tks +
∞

∑
n=1,
p-n

(mn − 1)2

2n
Tn

=
Ah − 1

2s

∞

∑
k=1,
p-k

m2ks − 2mks + 1
k

Tks +
1
2

∞

∑
n=1,
p-n

m2n − 2mn + 1
n

Tn

=
Ah − 1

2s
log

(
(1− (m2T)ps)1/p

1− (m2T)s

(
(1− (mT)ps)1/p

1− (mT)s

)−2
(1− Tps)1/p

1− Ts

)

+
1
2

log

(
(1− (m2T)p)1/p

1−m2T

(
(1− (mT)p)1/p

1−mT

)−2
(1− Tp)1/p

1− T

)
.

Now we determine the second summation:

∞

∑
n=1,
p-n

(mn + 1)2

2n
Tn =

1
2

∞

∑
n=1,
p-n

m2n + 2mn + 1
n

Tn

=
1
2

log

(
(1− (m2T)p)1/p

1−m2T

(
(1− (mT)p)1/p

1−mT

)2
(1− Tp)1/p

1− T

)
.

We can combine the results to find the tame dynamical zeta function:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)ps)1/p

1− (m2T)s
(1− Tps)1/p

1− Ts

)(Ah−1)/2s

·
(

1− (mT)s

(1− (mT)ps)1/p

)(Ah−1)/s

·
(
(1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T

)1/2

· 1−mT
(1− (mT)p)1/p

·
(
(1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T

)1/2

· (1− (mT)p)1/p

1−mT
.

We obtain a simpler identity:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)ps)1/p

1− (m2T)s

(
1− (mT)s

(1− (mT)ps)1/p

)2 (1− Tps)1/p

1− Ts

)(Ah−1)/2s

· (1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T
.

(6.2.3.2)

Now we can assume m ≡ 1 mod p which means s = 1. The above formula simplifies
even further to another identity:
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ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T

)(Ah+1)/2

·
(

1−mT
(1− (mT)p)1/p

)Ah−1

.

(6.2.3.3)

Case 3: let p be odd, p - m and s even.

Because m and p are coprime, m is a root of unity in Fp. Let s be the multiplicative order
of m in Fp and write A := |ms − 1|p. We can use Proposition 5.1.2(4.) to also write
A := |mt + 1|p, where t = s/2. For p - n we define:

An =

{
Ah if s | n;

1 if s - n,
and Bn =

{
Ah if n

t ∈ 1 + 2Z;

1 otherwise.

Again we can start with computing the log of the tame dynamical zeta function:

log ζ∗Lm,P1
K,p
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
p-n

(mn − 1)2An + (mn + 1)2Bn

2n
Tn.

The first summation has already been determined in the previous case. Hence, we only
have to compute the second summation depending on Bn. Note that this computation is
quite similar to case 3 of the Chebyshev polynomials.

∞

∑
n=1,
p-n

(mn + 1)2Bn

2n
Tn =

∞

∑
n=1,

p-n,t|n

(mn + 1)2Bn

2n
Tn +

∞

∑
n=1,

p-n,t-n

(mn + 1)2

2n
Tn

=
∞

∑
k=1,
p-k

(mkt + 1)2(Bkt − 1)
2kt

Tkt +
∞

∑
n=1,
p-n

(mn + 1)2

2n
Tn

=
∞

∑
k=1,

p-k,2|k

(mkt + 1)2(1− 1)
2kt

Tkt +
∞

∑
k=1,

p-k,2-k

(mkt + 1)2(Ah − 1)
2kt

Tkt +
∞

∑
n=1,
p-n

(mn + 1)2

2n
Tn.
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The first summation is zero and the last summation we already computed in the previous
case. Therefore, we continue computing only the second summation:

∞

∑
k=1,

p-k,2-k

(mkt + 1)2(Ah − 1)
2kt

Tkt =
Ah − 1

2t

 ∞

∑
k=1,
p-k

m2kt + 2mkt + 1
k

Tkt +
∞

∑
`=1,
p-`

(m4`t + 2m2`t + 1
2`

T2`t


=

Ah − 1
2t

log

(
(1− (m2T)pt)1/p

1− (m2T)t ·
(
(1− (mT)pt)1/p

1− (mT)t

)2
(1− Tpt)1/p

1− Tt

)

+
Ah − 1

4t
log

(
(1− (m2T)2pt)1/p

1− (m2T)2t ·
(
(1− (mT)2pt)1/p

1− (mT)2t

)2
(1− T2pt)1/p

1− T2t

)
.

We can combine this result with the part depending on An to get the complete tame
dynamical zeta function:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)ps)1/p

1− (m2T)s

(
(1− (mT)ps)1/p

1− (mT)s

)−2
(1− Tps)1/p

1− Ts

)(Ah−1)/2s

·
(
(1− (m2T)p)1/p

1−m2T

(
(1− (mT)p)1/p

1−mT

)−2
(1− Tp)1/p

1− T

)1/2

·
(
(1− (m2T)pt)1/p

1− (m2T)t

(
(1− (mT)pt)1/p

1− (mT)t

)2
(1− Tpt)1/p

1− Tt

)(Ah−1)/2t

·
(
(1− (m2T)2pt)1/p

1− (m2T)2t

(
(1− (mT)2pt)1/p

1− (mT)2t

)2
(1− T2pt)1/p

1− T2t

)(Ah−1)/4t

·
(
(1− (m2T)p)1/p

1−m2T

(
(1− (mT)p)1/p

1−mT

)2
(1− Tp)1/p

1− T

)1/2

.

Fortunately, we can reduce this expression quite a bit using s = 2t:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)pt)1/p

1− (m2T)t

(
(1− (mT)pt)1/p

1− (mT)t

)2
(1− Tpt)1/p

1− Tt

)(Ah−1)/2t

·
(
(1− (m2T)2pt)1/p

1− (m2T)2t
(1− T2pt)1/p

1− T2t

)(Ah−1)/2t

· (1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T
.

(6.2.3.4)
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If m ≡ −1 mod p, then t = 1 and the identity becomes:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)p)1/p

1− (m2T)
· (1− Tp)1/p

1− T

)(Ah+1)/2

·
(
(1− (mT)p)1/p

1−mT

)Ah−1

·
(
(1− (m2T)2p)1/p

1− (m2T)2
(1− T2p)1/p

1− T2

)(Ah−1)/2

.

(6.2.3.5)

Case 4: Let p = 2 and m odd.

For p = 2 we still have Nn = 1
2 (m

n − 1)2|mn − 1|hp + 1
2 (m

n + 1)2|mn + 1|hp. As m is odd, we
can introduce A := |m− 1|2 and B := |m + 1|2. This gives us a formula for 2 - n:

Nn =
(mn − 1)2(2AB)h + (mn + 1)2Bh

2

=
(2h Ah + 1)Bhm2n

2
+ (1− 2h Ah)Bhmn +

(2h Ah + 1)Bh

2
.

We use this to find the log of the tame dynamical zeta function:

log ζ∗Lm,P1
K,p
(T) =

∞

∑
k=1,
2-k

(2h Ah + 1)Bhm2n

2n
Tn +

∞

∑
k=1,
2-k

(1− 2h Ah)Bhmn

n
Tn +

∞

∑
k=1,
2-k

(2h Ah + 1)Bh

2n
Tn

=
(2h Ah + 1)Bh

2

∞

∑
k=1,
2-k

(m2T)n

n
+ (1− 2h Ah)Bh

∞

∑
k=1,
2-k

(mT)n

n
+

(2h Ah + 1)Bh

2

∞

∑
k=1,
2-k

Tn

n

=
(2h Ah + 1)Bh

2
log
(
(1− (m2T)2)1/2

1−m2T

)
+ (1− 2h Ah)Bh log

(
(1− (mT)2)1/2

1−mT

)
+

(2h Ah + 1)Bh

2
log
(
(1− T2)1/2

1− T

)
.

The tame dynamical zeta function follows easily:

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)2)1/2

1−m2T
· (1− T2)1/2

1− T

)(2h Ah+1)Bh/2

·
(
(1− (mT)2)1/2

1−mT

)(1−2h Ah)Bh

.

(6.2.3.6)

Comparison to characteristic zero

In Subsection 4.2.3 we had Equation 4.2.3.1, for a field K′ of characteristic zero:

ζLm,P1
K′ ,0

(T) =
1

(1−m2T)(1− T)
.
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In Subsection 6.2.3 we distinguished between several cases again. We recall that s denotes
the multiplicative order of m in Fp, and A := |ms − 1|p, also B := |m + 1|2 when p = 2
and m is odd. If s is even, then t = s/2. As before, it is not possible to express the tame
dynamical zeta function in positive characteristic completely in terms of the zeta function
in characteristic zero. Instead, we provide an identity which emphasizes the connection as
much as possible:

• If p | m, then

ζ∗Lm,P1
K,p
(T) =

(1− (m2T)p)1/p

1−m2T
· (1− Tp)1/p

1− T
.

We substitute the zeta function in characteristic zero where possible:

ζ∗Lm,P1
K,p
(T) =

ζLm,P1
K′ ,0

(T)

ζLmp ,P1
K′ ,0

(Tp)1/p . (6.2.3.7)

• If p 6= 2, p - m and s is odd, then

ζ∗
P1

K,p,Lm
(T) =

(
(1− (m2T)ps)1/p

1− (m2T)s

(
1− (mT)s

(1− (mT)ps)1/p

)2 (1− Tps)1/p

1− Ts

)(Ah−1)/2s

· (1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T
.

As we did before, we will now rewrite this:

ζ∗
P1

K′ ,0,Lm
(T) =

 ζLms ,P1
K′ ,0

(Ts)

ζLmps ,P1
K′ ,0

(Tps)1/p

(
1− (mT)s

(1− (mT)ps)1/p

)2
(Ah−1)/2s

·
ζLm,P1

K′ ,0
(T)

ζLmp ,P1
K,0
(Tp)1/p .

(6.2.3.8)

• We get a special case if m ≡ 1 mod p, then

ζ∗Lm,P1
K,p
(T) =

(
(1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T

)(Ah+1)/2 (
1−mT

(1− (mT)p)1/p

)Ah−1

.

And we repeat this process:

ζ∗
P1

K,p,Lm
(T) =

 ζLm,P1
K′ ,0

(T)

ζLmp ,P1
K′ ,0

(Tp)1/p

(Ah+1)/2 (
1−mT

(1− (mT)p)1/p

)Ah−1

. (6.2.3.9)
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• If p 6= 2, p - m and s is even, then

ζ∗
P1

K,p,Lm
(T) =

(
(1− (m2T)pt)1/p

1− (m2T)t

(
(1− (mT)pt)1/p

1− (mT)t

)2
(1− Tpt)1/p

1− Tt

)(Ah−1)/2t

·
(
(1− (m2T)2pt)1/p

1− (m2T)2t
(1− T2pt)1/p

1− T2t

)(Ah−1)/2t

· (1− (m2T)p)1/p

1−m2T
(1− Tp)1/p

1− T
.

Again, we obtain a similar identity:

ζ∗
P1

K,p,Lm
(T) =

 ζLm,P1
K′ ,0

(T)

ζLmp ,P1
K′ ,0

(Tp)1/p

(Ah−1)/2 (
(1− (mT)pt)1/p

1− (mT)t

)Ah−1

·

 ζLm2t ,P1
K′ ,0

(T2t)

ζLm2pt ,P1
K′ ,0

(T2pt)1/p

(Ah−1)/2t

·
ζLm,P1

K′ ,0
(T)

ζLmp ,P1
K′ ,0

(Tp)1/p .

(6.2.3.10)

• A special case of this is when m ≡ −1 mod p:

ζ∗
P1

K,p,Lm
(T) =

(
(1− (m2T)p)1/p

1− (m2T)
· (1− Tp)1/p

1− T

)(Ah+1)/2

·
(
(1− (mT)p)1/p

1−mT

)Ah−1

·
(
(1− (m2T)2p)1/p

1− (m2T)2
(1− T2p)1/p

1− T2

)(Ah−1)/2

.

This gives us the following more compact formula:

ζ∗
P1

K,p,Lm
(T) =

 ζLm,P1
K′ ,0

(T)

ζLmp ,P1
K′ ,0

(Tp)1/p

(Ah+1)/2

·
(
(1− (mT)p)1/p

1−mT

)Ah−1

·

 ζLm2 ,P1
K′ ,0

(T2)

ζLm2p ,P1
K′ ,0

(T2p)1/p

(Ah−1)/2

.

(6.2.3.11)

• If p = 2 and m is odd, then

ζ∗
P1

K,p,Lm
(T) =

(
(1− (m2T)2)1/2

1−m2T
· (1− T2)1/2

1− T

)(2h Ah+1)Bh/2

·
(
(1− (mT)2)1/2

1−mT

)(1−2h Ah)Bh

.

Lastly, we find the another identity:

ζ∗
P1

K,p,Lm
(T) =

 ζLm,P1
K′ ,0

(T)

ζLmp ,P1
K′ ,0

(Tp)1/p

(2h Ah+1)Bh/2

·
(
(1− (mT)2)1/2

1−mT

)(1−2h Ah)Bh

. (6.2.3.12)
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Relation between ζLm,P1
K

and the elliptic curve

It is clear that the fixed points of a Lattès map and the corresponding multiplication-by-m
map are closely related, as Emn−1 = Fix([m]◦n]). Unfortunately, it appears impossible to
find a endomorphism g to consider the mn + 1-torsion points as a fixed point set of g. We
do see that for any field K:

ζLm,P1
K
(T) = ζ1/2

[m],E ·
(

exp

(
∞

∑
n=1

|Emn+1|
n

Tn

))1/2

.

When K is a field of characteristic p > 0, then a similar equality holds for the tame
dynamical zeta function:

ζ∗Lm,P1
K,p
(T) =

(
ζ∗[m],E

)1/2
·

exp

 ∞

∑
n=1,
p-n

|Emn+1|
n

Tn




1/2

.

6.2.4 Additive and subadditive polynomials

We use the result found in Subsection 5.1.5: Nn = dn pvφ( f ). Again, we will distinguish
between a few cases.

Case 1: p | f

In other words, let f be inseparable. Then it is clear that f n − 1 is separable. We then get
Nn = dn. The tame dynamical zeta function is easily determined.

With this identity we determine the log of the tame dynamical zeta function:

log ζ∗f ,Ga,Fp
(T) =

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,
p-n

dn

n
Tn = log

(
(1− (dT)p)1/p

1− dT

)
.

This gives us the tame dynamical zeta function:

ζ∗Td,Ga,Fp
(T) =

(1− (dT)p)1/p

1− dT
. (6.2.4.1)

Case 2: p - f

Let s be the multiplicative order of f in the residue field k〈φ〉/φk〈φ〉. Note that, as s | p− 1,
the multiplicative order s must be coprime to p. Then f n − 1 6∈ φk〈φ〉 if and only if s - n.
For n not divisible by p we get vp(n) = 0, and hence:

Nn =

{
dn if s - n;

dn pvφ( f s−1) if s | n.
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We define A := pvφ( f s−1). We can compute the tame dynamical zeta function now:

∞

∑
n=1,
p-n

Nn

n
Tn =

∞

∑
n=1,

p-n,s|n

dn A
n

Tn +
∞

∑
n=1,

p-n,s-n

dn

n
Tn

=
∞

∑
k=1,
p-k

dsk A
sk

Tsk +
∞

∑
n=1,
p-n

dn

n
Tn −

∞

∑
k=1,
p-k

dsk

sk
Tsk

=
A− 1

s

∞

∑
k=1,
p-k

((dT)s)k

k
+

∞

∑
n=1,
p-n

dn

n
Tn

=
A− 1

s
log
(
(1− (dT)sp)1/p

1− (dT)s

)
+ log

(
(1− (dT)p)1/p

1− dT

)
.

This allows us to find the tame dynamical zeta function:

ζ∗f ,Ga,Fp
(T) =

(
(1− (dT)sp)1/p

1− (dT)s

)(A−1)/s

·
(
(1− (dT)p)1/p

1− dT

)
. (6.2.4.2)

6.3 R E S U LT S R E G A R D I N G T H E TA M E D Y N A M I C A L Z E TA F U N C T I O N

To place the computations of the previous section in some context we focus on two aspects.
The first regards the fact that the tame dynamical zeta function is algebraic over Q(T) for
the maps we investigated. The second focuses on the lifting of maps and how we can see
the the relation between the tame dynamical zeta function in positive characteristic and its
corresponding dynamical zeta function in characteristic zero.

6.3.1 Proof of theorem on algebraicity

In the previous section we gathered all computations. These allow us to prove the following:

Theorem (Theorem 6.1.2). Let K be a field of characteristic p > 0, and let f : P1
K → P1

K be a
morphism of degree at least 2. If f is a power map, Chebyshev polynomial, Lattès map induced
by a multiplication-by-m map or a (sub)additive polynomial, then the tame dynamical zeta
function ζ∗

P1
K , f (T) is algebraic over Q(T).

We first adjust Proposition 4.2.2 for the tame dynamical zeta function to exclude a few
points, e.g. zero and/or infinity.

Proposition 6.3.1. Let S be a set and f : S → S, such that #Fix( f ) is finite. For any subset
F ⊂ Fix( f ) ⊂ S such that F ∩ ∪∞

k=0(S− F) = ∅, the following holds:

ζ∗S, f (T) =
(
(1− Tp)1/p

1− T

)#F

· ζS−F, f (T).
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Proof. The proof is completely analogous to the proof of Proposition 4.2.2. We can write
fF : F → F and fS−F : S− F → S− F. Observe that #Fix( f ◦n) = #Fix( f ◦nF ) + #Fix( f ◦nS−F) =

#F + #Fix( f ◦nS−F). We can use this to obtain the required identity on zeta functions:

ζ∗S, f (T) = exp

 ∞

∑
n=1,
p-n

#Fix( f ◦n)
n

Tn

 = exp

 ∞

∑
n=1,
p-n

#F + #Fix( f ◦nS−F)

n
Tn



= exp

 ∞

∑
n=1,
p-n

#F
n

Tn +
∞

∑
n=1,
p-n

#Fix( f ◦nS−F)

n
Tn



= exp

#F
∞

∑
n=1,
p-n

1
n

Tn

 · exp

 ∞

∑
n=1,
p-n

#Fix( f ◦nS−F)

n
Tn


=

(
(1− Tp)1/p

1− T

)#F

· ζ∗S−F, f (T).

We will now start the proof of Theorem 6.1.2.

Proof of Theorem 6.1.2. First let f be a power map, so f (x) = xm for some m > 1. It is clear
that 0 and ∞ are fixed by f . Moreover, if y ∈ f−1{0, ∞}, then y ∈ {0, ∞}. Hence, we apply
Proposition 6.3.1:

ζ∗
P1

p, f (T) =
(
(1− Tp)1/p

1− T

)2

· ζ∗Gm,Fp , f (T).

It is clear that the first factor is algebraic. The latter is algebraic when p | m (Equation
6.2.1.1), when p 6= 2 and p - m (Equation 6.2.1.2) and when p = 2 and p - m (Equation
6.2.1.4). Now let f be a Chebyshev polynomial. This time we observe that ∞ is an isolated
fixed point. With Proposition 6.3.1 we get:

ζ∗
P1

p, f (T) =
(1− Tp)1/p

1− T
· ζ∗Ga,Fp , f (T). (6.3.1.1)

The first factor is clearly algebraic. The second factor is algebraic when p | d (Equation
6.2.2.1), when p 6= 2, p - d and 2 - s (Equation 6.2.2.2), when p 6= 2, p - d and 2 | s
(Equation 6.2.2.4), and when p = 2 and p - m (Equation 6.2.2.5). Now let f be a Lattès
map induced by the multiplication-by-m map [m]. The tame dynamical zeta function is
algebraic when p | d (Equation 6.2.3.1), when p 6= 2, p - d and 2 - s (Equation 6.2.3.2),
when p 6= 2, p - d and 2 | s (Equation 6.2.3.4), and when p = 2 and p - m (Equation
6.2.3.6).
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Remark. Our results show that the tame dynamical zeta function is algebraic, even when
the full dynamical zeta turned out to be transcendental (Theorem 5.1.1). This suggests
that the tame dynamical zeta function can be an alternative. No general results have been
proven, hence it is unclear whether this would work for more general maps, e.g. x → x2 + 1.
But as we do not even know if the full dynamical zeta function is transcendental in a general
setting, offering an alternative might be premature.

6.3.2 Lifting properties of the tame dynamical zeta function

We first remark that (sub)additive polynomials do not occur as a dynamically affine map
over fields of characteristic zero, hence they are not of interest in this section.

For power maps, Chebyshev polynomials and Lattès maps over positive characteristic
there is a natural way to lift these to characteristic zero. For Chebyshev polynomials and
power maps in characteristic zero, it is clear that these maps are defined over Z, hence
considering them over a field of positive characteristic is done by looking at the coefficients
reduced modulo p.

As Chebyshev polynomials and power maps are uniquely determined by their degree, it is
clear that we can uniquely lift any Chebyshev polynomial f of degree d over positive charac-
teristic to a Chebyshev polynomial f̃ over a field of characteristic zero of degree d (any field
of characteristic zero contains a unique subring additively generated by the multiplicative
identity isomorphic to Z). Analogously, any power map over positive characteristic can be
uniquely lifted to one over a field of characteristic zero.

For Lattès maps there is a lot to be considered when trying to lift such maps. Note that the
(tame) dynamical zeta function over positive characteristic does not depend on the specific
elliptic curve, but only on whether it is supersingular or ordinary. Over characteristic zero
the dynamical zeta function does not depend on the elliptic curve nor its field of definition at
all. Hence, to lift the Lattès map Lm, we first remark that any lift of an elliptic curve E over a
field of positive characteristic to an elliptic curve Ẽ over any field of characteristic zero will
suffice. Deuring’s lifting theorem (Theorem 14 in §15 of Chapter 13 in [Lan73]) gives us a
proper lift: an elliptic curve Ẽ over a field of characteristic zero which reduces to E. Also,
the map [m] is lifted to some map [̃m] over Ẽ. As the group operation needs to be respected
by the lift, we know that [̃m] is the multiplication-by-m map on Ẽ. Taking the quotient
under the relation P ∼ −P as described in Section 4.2.3 is defined for elliptitc curves over
fields of arbitrary characteristic. We obtain a lift of Lm over positive characteristic given by
Lm̃ = L̃m.

We are interested in how we can view the tame dynamical zeta function of a function f
as a ‘function’ in the dynamical zeta function of its lift f̃ . To make this precise, we introduce
the following notion:

Definition 6.3.2. Let f : X → X be a power map, Chebyshev polynomial or Lattès map
induced by a multiplication-by-m map, with X equal to P1

K,p(K), Gm,Fp(K) or Ga,p(K). Then
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we call X̃ the lift of X and f̃ : X̃ → X̃ the lift of f , both defined by the construction above.
Moreover, we call the tame dynamical zeta function ζ∗X, f (T) expressible over its lift if

ζ∗X, f (T) = P(ζwidetilde f ◦i1 ,X̃(T
j1), . . . , ζ f̃ ◦i` ,X̃(T

j`)),

where P(x1, . . . , x`) is an algebraic function over Q(x1, . . . , x`) and i1, . . . , i`, j1, . . . , j` ∈ Z.

In the last section we looked at whether a dynamically affine map is expressible over its
lift, we summarize all results in the following theorem:

Theorem 6.3.3. Let K be a field of characteristic p > 0, and let f : X → X be a power map,
Chebyshev polynomial or Lattès map induced by a multiplication-by-m map, with X equal
to P1

K,p(K), Gm,Fp(K) or Ga,p(K). Then ζ∗f ,X(T) is expressible over its lift if f is one of the
following:

i. Power map x → xm on Gm,Fp(K);

ii. Chebyshev polynomial Td on Ga,Fp(K), with p | d;

iii. Chebyshev polynomial Td on Ga,Fp(K), with p = 2, and d ≡ 3 mod 4;

iv. Lattès map Lm on P1
K,p(K), with p | m.

However, ζ∗f ,X(T) is not expressible over its lift if f is one of the following:

v. Chebyshev polynomial Td on Ga,Fp(K), with p - d and p 6= 2;

vi. Chebyshev polynomial Td on Ga,Fp(K), with p = 2, and d ≡ 1 mod 4;

vii. Lattès map Lm on P1
K,p(K), with p - m.

Proof. We will prove this case by case, mainly referring to the equations we found in the
previous section.
i. If f is a power map, then we can see that it is a (fractional) power of a rational function
in ζ f̃ ,P1

K′ ,0
when p | m (Equation 6.2.1.5), when p 6= 2 and p - m (Equation 6.2.1.6) and

when p = 2 and p - m (Equation 6.2.1.8).
ii. If f = Td : Ga,Fp → Ga,Fp is a Chebyshev polynomial with p | d, then we can see that
the statements holds in Equation 6.2.2.6.
iii. If f = Td : Ga,Fp → Ga,Fp is a Chebyshev polynomial with p = 2 and d ≡ 3 mod 4,
then A = |d− 1|2 = 1/2. We set A = 1/2 in Equation 6.2.2.10:

ζ∗Td,Ga,Fp
(T) =

(
ζTd,Ga,K′ ,0

(T)

ζTdp ,Ga,K,0(Tp)1/p

)(2·1/2+1)B/2

·
(
(1− Tp)1/p

1− T

)(1−2·1/2)B/2

=

(
ζTd,Ga,K′ ,0

(T)

ζTdp ,Ga,K′ ,0
(Tp)1/p

)B

.

(6.3.2.1)

Hence, the statement holds.
iv. If f = Lm : P1

K,p → P1
K,p with p | m, then Equation 6.2.3.7 clearly confirms the state-

ment.
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v. If f = Td : Ga,Fp → Ga,Fp is a Chebyshev polynomial with p = 2 and p - d, then
we can only partially express the tame dynamical zeta function in the required way, as we
saw in Equations 6.2.2.6, 6.2.2.7 and 6.2.2.9. Note that the factor(s) we are left with has
a rational factor in T, not in dT. As A < 1 and B 6= 0 it is clear that this last factor cannot
disappear.
vi. If f = Td : Ga,Fp → Ga,Fp is a Chebyshev polynomial with p = 2 and d ≡ 1 mod 4,
then A = |d− 1|2 < 1/2. This means that 1− 2A 6= 0 in Equation 6.2.2.10, and as B 6= 0
we know this last factor cannot disappear.

vii. If f = Lm : P1
K,p → P1

K,p is a Lattès map with p - m, then we can partially ex-
press certain factors of the tame dynamical zeta function in the required way, as we saw in
Equations 6.2.3.7, 6.2.3.8, 6.2.3.10 and 6.2.3.12. Note that we always have a factor left of
the form (

(1− (mT)pt)1/p

1− (mT)t

)Ah−1

,

with a slight abuse of notation we set t = 1 for the cases no t occurred. Clearly, no such
factor exists in

ζLm,P1
K′ ,0

(T) =
1

(1−m2T)(1− T)
.

This factor can only disappear if Ah − 1 = 0, which cannot happen as h = 1, 2 and A <

1.

Remark. Because the tame dynamical zeta function is algebraic (Theorem 6.1.2) one might
expect that the behaviour is similar to that of the dynamical zeta function of its lift in char-
acteristic zero. This suspicion is confirmed for power maps, but contradicted by the results
for (most) separable Chebyshev polynomials and all separable Lattès maps. It is possible
that there is another way of interpreting the functions, but it is not as straightforward as it
was for power maps.
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F U T U R E R E S E A R C H Q U E S T I O N S

In this thesis, we studied the behaviour of dynamical systems on varieties defined over a
field K, of both characteristic zero and of positive characteristic. We have investigated this
problem in roughly three ways: first we looked at results over a field K of characteristic zero
and analyzed which steps of the proofs did or did not rely on the characteristic of the ground
field; secondly we looked at the behaviour of certain specific maps on algebraic varieties
over fields of positive characteristic; lastly, we investigated the possibility of an alternative:
the tame dynamical zeta function. We now discuss some opportunities for further study.

7.1 P R O D U C T O F R AT I O N A L F U N C T I O N S

In Chapter 4 we saw that the dynamical zeta function of a rational map on P1
K, with K a

field of characteristic zero, is a finite product of rational functions. We can ask ourselves
the following question:

Q: Is there an expression of the zeta function of a rational map on P1
K, with K

a field of arbitrary characteristic, as a (possibly infinite, but convergent)
product of rational functions?

When K has characteristic zero, we saw that the answer is yes (Theorem 4.1.13). Many
steps were independent of the characteristic. The most notable that did depend on the
characteristic was the following:

Lemma 7.1.1 (4.1.12). Let f : P1
K → P1

K be a rational map of degree d ≥ 2, with K a field of
characteristic zero. Then the cardinality of the set

P := {P ∈ P1
K(K) | ∃n ∈ Z≥1, ∃q ∈ Z≥1 such that f ◦n(P) = P and λ( f ; P)q = 1}

is finite.

Over fields of positive characteristic this is generally untrue, e.g. if K = Fp. As all nonzero
elements are roots of unity, the condition of λ( f ; P)q = 1 for some q can be omitted. Then
this set consists of all periodic points, which can easily be infinite. In the proof of Theorem
4.1.13 we saw that a partition of P corresponds to factors of the dynamical zeta function.

It would be interesting to partition P in a different way over a general field: perhaps an
infinite number of finite subsets, which also corresponds with an infinite product (indeed,

83
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we do not expect rationality, as demonstrated in Chapter 5), which may give us more insight
in the dynamical zeta function.

7.2 T R A N S C E N D E N C E I N P O S I T I V E C H A R A C T E R I S T I C

Again, we can ask ourselves a compelling question:

Q: When is the dynamical zeta function of a separable endomorphism
on an abelian variety transcendental?

We obtained pleasing results for endomorphisms on elliptic curves in Theorem 5.2.14 and
for multiplication-by-m maps on abelian varieties in Theorem 5.2.7. The only obstruction
to finding a similar result for all endomorphisms of degree at least two on abelian varieties,
was that it is unclear how to relate the inseparable degree of an isogeny f n − 1 to the
valuation vp(n). We need this to apply automata theory in the same way as Bridy.

Unlike for elliptic curves, higher dimensional abelian varieties may have endomorphism
algebras where the inseparable isogenies do not form an ideal. For example: consider the
abelian variety E× E′, where E and E′ are elliptic curves over a field of characteristic 2 and
consider the maps [2]× id and id× [2]; they are both inseparable, but the sum [3]× [3] is
separable.

Perhaps there is a different way of finding out more about degi( f n − 1). We could ask
ourselves:

Q: Given that f − 1 is inseparable, can we write degi( f n − 1) as an explicit function
depending only on the variety A, the map f and vp(n)?

We expect the formula to depend on constants like the p-rank and dimension of the variety,
but any constant depending on the variety or on f that is included in the formula will most
likely not pose a problem for the structure of transcendence proofs.

It might be worth studying simple abelian varieties first as that would entail eliminating
maps like the example mentioned. Later one could look at products of simple abelian
varieties, where we might need to consider maps that operate on each simple abelian variety
separately, and later consider even more complicated maps. Also, once we have a good
understanding of what happens for abelian varieties, it is natural to consider algebraic
groups next, as abelian varieties are a subcategory of algebraic groups.

7.3 TA M E D Y N A M I C A L Z E TA F U N C T I O N

Let us start with another question:

Q: When is the tame dynamical zeta function of a rational map f : P1
K → P1

K algebraic?
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We know that for dynamically affine maps the tame dynamical zeta function is indeed
algebraic. However, we used that we could actually write down formulas for the number of
fixed points. At the moment it is not obvious whether this would hold for general rational
maps on P1

K. Also, we should consider expanding to other algebraic varieties, such as:

Q: Is the tame dynamical zeta function of endomorphisms on abelian varieties algebraic?

We already found several formulas; especially for multiplication-by-m maps it should not be
difficult to check this. For general endomorphism it might turn out to be more complicated
than for endomorphisms on elliptic curves because a norm function enters the formula.

One might also consider looking at a map f and its tame dynamical zeta function and the
dynamical zeta function of its lifts f̃ to characteristic zero. Note that there is not always
a canonical choice of a lift. For power maps we observed that the tame dynamical zeta
function can be written using the dynamical function of its lift: 6.2.1.6:

ζ∗xm,Gm,Fp
(T) =

ζxm,Gm,K,0(T)
ζxmp ,Gm,K,0

(Tp)1/p ·
(

ζxms ,Gm,K,0
(Ts)

ζxmps ,Gm,K,0
(Tps)1/p

)(A−1)/s

,

We say that ζ∗xm,Gm,Fp
(T) is expressible over its lift and we know that such a pattern cannot

always be detected as easily (Theorem 6.3.3). We ask ourselves the question:

Q: When is the tame dynamical zeta function expressible over its lift?

Now it appears that we can always recognize the dynamical zeta function of the lift as a
factor in the tame dynamical zeta function. Does this hold in general? It is compelling to
first look at examples coming from algebraic groups, but simple maps such as x → x2 + 1,
might also prove to be very insightful.
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