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Abstract 
The Ebro Basin near Zaragoza, Spain is the northern most semi-arid region in Europe with 

shrubland vegetation, a large water deficit and high grazing pressure in the last century.  Early 

warning signals of desertification in the form of spatial and temporal variation in vegetation 

cover derived using remote sensing and field measurements were studied. They may provide 

enough time to act before a critical shift to a barren state induced by overgrazing in semi-arid 

zones takes place. Vegetation cover derived using a spectral mixture analysis from 18 Landsat 

images (1984-2008) was used to calculate spatial variation using the coefficient of variation 

(𝐶𝑣) with a 5x5 moving window. Temporal variation was calculated using a moving window of 

5 images. Vegetation cover showed a significant moderate correlation with spatial variation (-

0.49) and temporal variation (-0.35). 80% of the study area showed this negative relationship. 

Differences in the mean of the environmental factors slope, aspect and vegetation cover show 

differences between these areas and itself could influence the relationship between early 

warning signal and vegetation cover. Early warning signals were also measured in the field 

using the line intercept method in 24 500m transects. Spatial variation again showed a 

moderate correlation (-0.46) with vegetation cover. Remotely sensed spatial variation 

correlated with spatial variation measured in the field (0.47). This shows that the early warning 

signals spatial and temporal variation can possibly contribute to remotely mapping of 

desertification. 
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1. Introduction 
The importance of drylands to the food security of large parts of the global population was 

demonstrated by droughts in the last few decades. Millions of people were and are still 

affected by desertification (Dregne et al., 1991). The Sahel droughts and famines in the 1970s 

are a good example. Desertification can be caused by an increase in grazing pressure. Small 

changes in the load of grazing can cause a total shift to a barren state once a critical threshold 

is passed (Scheffer et al., 2001). There was a call for improved prediction of these shifts after 

the Sahel droughts (Westing, 1994).  Early warning signals derived from statistical properties 

of vegetation cover might provide ample time to prevent a critical shift induced by overgrazing 

in semi-arid zones (Karssenberg and Bierkens, 2012).   

The theory of critical shifts and early warning signals in ecosystems can contribute to remotely 

mapping of desertification (Scheffer et al., 2001, 2009, 2012). Thus far, the existence of early 

warning signals of critical shifts in ecosystems has mainly been proven in model studies (Kéfi 

et al., 2007; Guttal and Jayaprakash, 2008; Dakos et al., 2009; Karssenberg and Bierkens, 

2012). Occurrence in the field should be determined but early warning signals have not been 

effectively measured in the field. There have been some studies using field experiments or 

observations but their main focus was on vegetation patterns (Rietkerk et al., 2004; Kéfi et al., 

2007, 2014). Most remote mapping of desertification is done observing change in biomass 

using rain use efficiency (RUE) or similar indicators instead of early warning signals (Munyati 

and Makgale, 2009; Paudel and Andersen, 2010; Vicente-Serrano et al., 2012; Fensholt et al., 

2013). Karssenberg and Bierkens (2012) concluded that the use of spatial and temporal 

variance were better early warning signals than mean biomass. There is a lack of empirical 

data of spatial early warning signals and temporal indicators (Kéfi et al., 2014). Early warning 

signals for desertification can be measured using remote sensing and field measurements. 

This study will aim to determine if early warning signals occur in the field using both remote 

sensing and field measurements and answer the following questions; 

▪ Can early warning signals contribute to remotely mapping of desertification? 
o Can remotely sensed spatial and temporal variation of vegetation cover be used 

as early warning signals of desertification? 
o Are remotely sensed early warning signals of desertification dependent on 

environmental factors? 
o Can early warning signals of desertification be measured in the field? 
o How are remotely sensed early warning signals related to early warning signals 

measured in the field? 
 

The study area lies in the Ebro Basin near Zaragoza, Spain which is the northern most semi-

arid region in Europe with a large water deficit and high grazing pressure in the last century. 

It shows a trend of decreasing vegetation cover under water stress conditions even during a 

period of decreasing grazing pressure in the last decade (Vicente-Serrano et al., 2012). This 

makes it suitable for studying early warning signals of critical shifts in desertification. The 

theory behind desertification, critical shifts and early warning signals are covered in the 

following introductory chapters as well as an outline of the study area. The methodology and 

results were split up in chapters for remotely sensed and field measured early warning signals.   
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2. Background 

2.1. Desertification 
Thirty percent of the world’s land surface suffers from desertification (Dregne et al., 1991). 

Desertification is defined as 'land degradation in arid, semi-arid and dry sub-humid areas 

resulting from various factors, including climatic variations and human activities’ (UNCED, 

1992). Significant desertification can be prevented in two thirds of the regions at risk if the 

maximum global warming level is limited to 1.5 °C (Park et al., 2018). These areas have 

between 0–300 mm precipitation per year and are characterised by drought, low and variable 

rainfall and high temperature and evaporation (FAO, 1987). The interest in desertification was 

sparked by the droughts in the African Sahel in the 1970s, for the first time satellite photos 

could show the human impact on the land (Nicholson et al., 1998). Ecological frailty is one of 

the causes of desertification, which is related to limited water resources, the variability of 

rainfall, thin plant cover and poor soils (Kassas, 1995). However, desertification in arid and 

semi-arid zones can primarily be contributed to the over utilization of resources and 

insufficient land management (Li et al., 2000). The driving forces behind this are increased 

population and the transition from sustenance farming to farming for export (Kassas, 1995). 

These changes bring about growing livestock numbers, overcultivation, intensive irrigation 

and deforestation (Nicholson et al., 1998). Livestock grazing is more intensive close to 

watering points and therefore these areas will be more degraded, a piosphere, which 

decreases with distance (Jafari et al., 2008). Animals grazing near watering points also makes 

the land more impacted by wind and water erosion (Nicholson et al., 1998). In Europe 

desertification processes affect the Mediterranean and the Central and Eastern European 

countries (Montanarella and Tóth, 2008). 

2.2. Critical Shifts and Early Warning Signals 
Critical shifts are large sudden changes in the structure and functioning of a system (Biggs et 

al., 2009). Desertification as the complete loss of vegetation is such  a transition (Scheffer et 

al., 2009). The behavior of such a change in an ecosystem is explained by Scheffer et al. (2001). 

External conditions on a system such as the climate, grazing and harvest often change 

gradually with time. A system can change sudden from one stable situation to another when 

a critical boundary in external conditions has been surpassed. To restore the previous 

conditions, the system needs to recover past the external conditions of the critical shift 

(Scheffer et al., 2009). This means more effort is needed in reversing the critical shift than is 

needed to prevent it, in this study from a barren state back to a vegetative state.  

Thus, detecting beforehand if a system is approaching a critical shift is useful, because it allows 

acting to prevent the actual shift to unfold. Scheffer et al. (2009) described the concept of 

critical slowing down as a possible early warning signal. A system close to a critical shift is more 

susceptible to forcing and small fluctuations can lead to a large change in state. This means 

that fluctuations are larger near the tipping point. In arid ecosystems this might be exhibited 

by the patchiness of the vegetation (figure 2.2.1) (Rietkerk et al., 2004). Different patterns 

such as gaps, labyrinths stripes and spots are self-organized by the system. Dakos et al. (2009) 

suggest that an increase in spatial correlation is a leading indicator for an impending critical 

shift. Kéfi et al. (2007) modelled the relation between the spatial organization of the 
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vegetation and the amount of external stress.  The patch size distribution of the vegetation 

follows a power law, which is deviated from close to the critical shift. Therefore, this might be 

an early warning signal for desertification. Karssenberg and Bierkens (2012) found that the 

use of spatial and temporal variance in biomass collected from modelled samples as early 

warning signals reduces the uncertainty of the forecasted timing of the critical shift. However, 

a dense sampling network is needed to make the early warning signal useful. Dakos et al. 

(2009) had better results when using spatial correlation as early warning signals compared to 

temporal indicators. Tirabassi et al. (2014) assessed the quality of different early warning 

indicators and found that distribution based indicators have a high value.  The coefficient of 

variation 𝐶𝑣 has been successfully used as early warning signal of critical shifts in population 

studies (Balbontıń et al., 2003; Drake and Griffen, 2010; Carpenter et al., 2011). 𝐶𝑣 as measure 

of spatial variation is expected to increase when nearing a critical shift. There was some 

success using spatial variation in the form of  the moving standard deviation index (MSDI) 

(using a 3x3 moving window on the third Landsat band) to remotely asses land degradation 

(Tanser and Palmer, 1999; Guo et al., 2004; Jafari et al., 2008; Xu et al., 2009). Karssenberg et 

al. (2017) suggest that direct evidence of transitions between states in semi-arid ecosystems 

can be provided using remote sensing data. 

 

Figure 2.2.1. Sequence of self-organizing vegetation patches towards a critical shift. Resource input 

can also be grazing pressure. Taken from Rietkerk et al., 2004. 
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2.3. Study area 
The study area is part of the Ebro basin located in the Aragón region in Spain (figure 2.3.1.). It 

is the northernmost semi-arid region in Europe as well as one the most arid regions of the 

Iberian Peninsula (Vicente-Serrano et al., 2012). The area experiences droughts that have 

increased in frequency in the last century (Vicente-Serrano and Cuadrat-Prats, 2006) Most of 

the south facing slopes below 1600 m were cultivated until 1970 (López-Moreno et al., 2011). 

By 1970 most were abandoned due to poor productivity and policy from the European 

Community (Vicente-Serrano et al., 2012). While the farming induced land degradation, land 

abandonment in these areas caused regrowth of shrubs and in some places induced 

afforestation (Vicente-Serrano et al., 2004). The dominant land uses are steppes and dry 

farming areas with herbaceous cultivations (Vicente-Serrano et al., 2006) (figure 2.2.1). Low 

vegetation cover is caused by the low water availability, poor soils and droughts (Vicente-

Serrano et al., 2004). The water deficit is mainly caused by a high potential evapotranspiration 

and the soils are low in nutrients and organic matter due to the lithology (Vicente-Serrano et 

al., 2012).  The lithology mostly consists of gypsum and carbonate deposits (Soriano et al., 

1994). The average annual precipitation is about 320 mm with most rainfall in spring and 

autumn (Agencia Estatal de Meteorología, 2016). In the summer the average temperature 

during the day surpasses 30 °C and during winters reaches 10 °C on average.  

 

Figure 2.3.1 Elevation (1) and land cover map (2) of the study area (in red) within Ebro basin, Spain. 

Taken from Vicente-Serrano et al., 2006. 
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3. Methods  

To determine if early warning signals of desertification can contribute to remotely mapping of 

land degradation remote sensing data from a dryland area in Europe, the Ebro basin, was used. 

Early warning signals were calculated using both temporal and spatial variation and then 

correlated to vegetation cover (figure 3.1.). Vegetation cover was used as a proxy for 

desertification because it is a good indicator and easier to assess using satellite images than 

other indicators of desertification such as erosion. (Nicholson et al., 1998; Symeonakis and 

Drake, 2004). To determine the influence of environmental factors on the early warning 

signals trends over time of variation and cover were combined and classified. Spatial variation 

was also calculated for the field transects to determine if early warning signals can also be 

measured in the field. 

 

 

 

 

 

 

 

 

 

Figure 3.1. Scheme of methodology 

3.1. Remote Sensing 

3.1.1 Satellite data 

The satellite data was obtained from the Landsat program which collects data in up to seven 

spectral bands between the visible light and thermal infrared. The program provides data from 

1975 to the present and is therefore suitable to assess slow processes as desertification. The 

spatial resolution of Landsat data is 30 meters, which is suitable for an assessment on a 

medium to small scale. The data set used by Vicente-Serrano et al. (2012) comprising 18 

processed cross-calibrated images of Landsat 5-TM and Landsat 7-ETM+ between 1984 and 

2009 was used (Table 3.1.1.). The processing and calculations on these images were done 

using the Google Earth Engine which provides the tools and public data needed to perform 

analysis and computations of satellite data  (Gorelick et al., 2017). 
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Table 3.1.1. Satellite images used to study desertification 

Date of acquisition Satellite Sensor 

1984-08-20 Landsat 5 TM 

1985-08-07 Landsat 5 TM 

1987-08-13 Landsat 5 TM 

1989-08-02 Landsat 5 TM 

1991-08-24 Landsat 5 TM 

1992-08-10 Landsat 5 TM 

1993-08-29 Landsat 5 TM 

1995-08-03 Landsat 5 TM 

1997-08-24 Landsat 5 TM 

1999-08-14 Landsat 5 TM 

2000-08-08 Landsat 7 ETM 

2001-07-26 Landsat 7 ETM 

2002-08-30 Landsat 7 ETM 

2004-08-27 Landsat 5 TM 

2005-08-14 Landsat 5 TM 

2006-08-01 Landsat 5 TM 

2007-08-04 Landsat 5 TM 

2008-08-06 Landsat 5 TM 

 

3.1.2 Relation between remotely sensed early warning signals and vegetation 

Two indicators for vegetation were used, the Normalized Difference Vegetation Index (NDVI 

and vegetation cover from a Spectral Mixture Analysis (SMA) performed by Vicente-Serrano 

et al. (2012). Both can be derived from remotely sensed data. The NDVI was calculated using: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
               [1]  

Where RED is the Red band and NIR is the Near infrared band of the satellite images. 

Vegetation cover obtained with the SMA instead of the NDVI may provide better result in 

drylands with patchy shrub vegetation (Elmore et al., 2000). The endmembers of the shrubs 

and the bare soil were used to calculate the vegetation cover using least squares (equation 

2.1 and 2.2). The sum of the fractions for vegetation cover and bare soil were assumed to be 

one for each pixel (Vicente-Serrano et al., 2012).  To ensure that the analysis is applied only 

on shrublands and bare soil, a mask made by Vicente-Serrano et al. (2012) was applied on the 

collection of images. This mask was based on a land cover map, the Spanish National Forestry 

Map, and the geological map of Aragón ( MAPA, 1978; MMA, 2006; SITAR, 2007) 

𝛲𝜆 = ∑ 𝐹𝑗

𝑛

𝑗=1

× 𝑃𝜆,𝑗 + 𝐸𝜆    [2.1] 

∑ 𝐹𝑗 = 0

𝑛

𝑗=1

                            [2.2] 
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Where Pλ is the reflectance of band λ, Fj is the percentage of the endmember j, Pλ,j is the reflectance of 

the endmember j in band 1, n is the number of endmembers, and Eλ is the residual error in band λ 

(Vicente-Serrano et al., 2012).  

The coefficient of variation 𝐶𝑣 was used as early warning signal. It was applied to both the 

NDVI and vegetation cover calculated using SMA.  

𝐶𝑣 =  
𝜎

𝜇
                                     [3] 

Where 𝜇 is the mean and 𝜎 the standard deviation of the set of values used to calculate the coefficient 

of variation 𝐶𝑣. 

The coefficient of variation was calculated both spatially and temporally. The spatial variation 

was calculated for each pixel and each image using a moving 5x5 square window with a stride 

of one (figure 3.1.1.). Smaller windows could amplify the differences within the moving 

window and increase noise (Lu and Batistella, 2005). The MSDI is calculated using the standard 

deviation of a 3x3 window on the third band to compare against 𝐶𝑣 as early warning signal.  

 

Figure 3.1.1. Square 5x5 moving window. Arrows indicate direction of movement. 

Temporal variation was calculated for each pixel using a moving window of 5 years. This 

includes the 4 previous and current year the variation is calculated for (figure 3.1.2.). This is 

done to be able to calculate an early warning signal for the current year. This produces 18 

maps of spatial variation one for each year. Fourteen maps of temporal variation were created 

for the years 1991-2008 as 1991 is the first year with 4 preceding images to use in the moving 

window.  

 

Figure 3.1.2. 5 year moving window. Arrow indicates direction of movement.  
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Both spatial and temporal 𝐶𝑣 were correlated with vegetation cover and NDVI on a per pixel 

(location) basis based on the timeseries of the pixel (n=18). The overall correlation between 

these factors was also calculated using the 2008 image. Plots were made using a random 

sample of 79400 pixels from 2008 for the whole area. 

3.1.2 Temporal trends 

The temporal trend in the variables NDVI, cover, 𝐶𝑣 (temporal), 𝐶𝑣(spatial) was assessed by 

running a linear least squares regression. For the timeseries of every pixel the slope of the 

fitted line was calculated. The value for a pixel is calculated using the timeseries of that pixel 

from the multiple images in the dataset (figure 3.1.3.).  

 

Figure 3.1.3. Google Earth Engine reducer (Google, 2010). 

3.1.3 Classification of combined temporal trends of vegetation cover and variation 

To test if increased spatial variation indicates a system closer to collapse, the temporal trends 

in vegetation cover were combined with temporal trends in spatial and temporal 𝐶𝑣. Four 

different situations are possible when comparing temporal trends in vegetation cover and 𝐶𝑣. 

Two classes would have a negative relationship and two have a positive relationship over time 

between vegetation and 𝐶𝑣 (figure 3.1.4.).  

 
Figure 3.1.4. Four possible classes that are different regarding positive (+) and negative (-) temporal 

trends of vegetation cover (cov) and variation (Cv) over time. 

The values of the environmental factors slope (USGS, 2006), aspect, vegetation cover and 

height above nearest drainage (HAND (Nobre et al., 2011)) were compared to study the 

differences between the classes in figure 3.1.4. Boxplots were made using the values for the 

environmental factors and class extracted using the random sample mentioned above. 
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3.2. Field data 

3.2.1 Relation between early warning signals and vegetation in the field 

In the field vegetation cover was assessed. Vegetation cover can be inferred from transects 

using the line-intercept method, where the length of patches along the transect is measured 

(Kéfi et al., 2007). When the transect length that is covered with vegetation is divided by the 

total length the vegetation cover can be obtained. To assess vegetation cover in the field 24 

500m transects with an intercept distance of 20 cm from a field survey conducted by Pueyo 

et al. (2013) in the summer of 2010 were used. The transects were taken in 8 different 

locations in grazed and ungrazed conditions (figure 3.2.1). For this study field measurements 

were also taken and have been used to test some theories but were  not suitable for this study.  

The vegetation cover was compounded to cells of 10m. Spatial variation of vegetation cover 

was calculated using the coefficient of variation using a moving window along the transects of 

5 cells (50m). The correlation between spatial 𝐶𝑣 and vegetation cover was calculated.  

 

Figure 3.2.1. The 24 Transects (in the red circles) used to estimate vegetation cover. 

3.2.2 Comparing field surveyed to remotely sensed early warning signals 

The 24 transects were split in two creating 48 250 meter transects. Over these 250 meters the 

average vegetation cover and spatial variation were calculated. The location of these 48 points 

was used to extract the remotely sensed spatial 𝐶𝑣, MSDI and NDVI from a 2010 Landsat image 

(taken 25-04) separate from the dataset in table 3.1.1. The remotely sensed data was then 

compared and correlated with the field data.  
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4. Results 

4.1. Remote sensing 

4.1.1 Relations between remotely sensed early warning signals and vegetation 

The early warning signals spatial and temporal 𝐶𝑣 calculated using vegetation cover from the 

spectral mixture analysis were compared with the vegetation cover to asses their suitability 

as early warning signals of desertification. The descriptive statistics of the random sample 

taken from the 2008 satellite image are in Table 4.1.1. 

Table 4.1.1. Descriptive statistics of vegetation cover (fraction calculated using Spectral Mixture 

Analysis), NDVI, spatial and temporal 𝐶𝑣 (no units) (using cover) (n=79400). 

 

 

 

 

Plots were made, and the Pearson correlation was calculated (n=79400) to study this) 

relationship (figure 4.1.1.). Descriptive statistics are in table 4.1.1. NDVI and cover show a very 

linear relation and have a very high correlation coefficient (0.91). There was a strong to 

moderate negative correlation (-0.49) between cover and spatial 𝐶𝑣 and a moderate negative 

correlation (-0.35) between temporal 𝐶𝑣  and cover. The MSDI however shows a moderate 

positive correlation (0.29). All correlations were significant (p-value < 0.001). The Pearson 

correlation calculated on a per pixel (location) basis (n=18, i.e. 18 years) showed that spatially 

82% of the locations had a negative correlation between spatial 𝐶𝑣 and vegetation cover, while 

78% of the study area had a negative correlation between temporal 𝐶𝑣  and vegetation cover. 

 

Figure 4.1.1. Hexagon scatterplot (left) and correlation matrix (right) between vegetation cover, NDVI, 

temporal and spatial 𝐶𝑣 (using vegetation cover from the Spectral Mixture Analysis) (n=79400). 

 Cover NDVI Spatial 𝐶𝑣 Temporal 𝐶𝑣  MSDI 

Min 0.01 -0.022 0.077 0 0.033 

Mean 0.240 0.243 0.325 0.265 0.163 

Max 1 0.775 1.099 1.410 0.652 

Stdev 0.11 0.06 0.11 0.14 0.051 
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The Pearson correlation was also calculated for NDVI and the spatial 𝐶𝑣 and temporal 𝐶𝑣 

calculated from NDVI. There was a weak negative correlation (-0.13) between NDVI and spatial 

𝐶𝑣 and very weak correlation with temporal 𝐶𝑣 (0.06). However, all correlations were still 

significant (p-value < 0.001). The NDVI seems less suited to calculate spatial 𝐶𝑣 and temporal 

𝐶𝑣 due to the weak correlations. This result and the high correlation between cover and NDVI 

was the reason the subsequent maps were created using vegetation cover only. 

 

4.1.2 Temporal trends 

To study the spatial distribution of trends over time of cover, spatial 𝐶𝑣 and temporal 𝐶𝑣 a 

linear regression was run. The linear regression resulted in three maps showing the slope 

(negative or positive) of the fitted line. The map created of the vegetation cover over time 

shows that major part of the area had a decrease in vegetation cover. However, there are 

larger areas to the south of Zaragoza that showed a positive trend in vegetation cover. 

Figure 4.1.2. Slope of the line fitted to vegetation cover over time (1984-2008).  
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The map created of the spatial 𝐶𝑣 shows a very uniform trend, most of the area had a slight 

increase of spatial 𝐶𝑣 (Figure 4.1.3). There are some areas that had a small decrease. The map 

created of the temporal 𝐶𝑣 shows a more heterogenous image. Most of the pixels had an 

increase of temporal 𝐶𝑣, but there are a lot of pixels with an increase in temporal 𝐶𝑣 scattered 

through the area as well as pixels that did not increase or decrease.  

Figure 4.1.3. Slope of the line fitted to spatial 𝐶𝑣 (left) and temporal 𝐶𝑣(right) over time (1984-2008). 
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4.1.3 Classification of combined temporal trends of vegetation cover and variation 

To study the spatial relationship between the early warning signal spatial 𝐶𝑣 and vegetation 

cover their trends were combined to create four classes (figure 4.1.3.). Areas are spatially 

congregated. The first class has the largest area, shows a decrease in cover, increase of spatial 

𝐶𝑣 and is located mainly east and southeast of Zaragoza. The fourth, the second largest, has 

an increase in both vegetation cover and spatial 𝐶𝑣 and is mainly located south of Zaragoza. 

East of Zaragoza river small areas of green seem to follow the channels. South of Zaragoza the 

green areas seem to inhabit only one part of the slopes.  The other two classes with a decrease 

in spatial 𝐶𝑣 seem to be due to human influences of new buildings and cleared areas when 

visually inspecting these areas on recent high-resolution satellite images in Google Earth.  

 

 

Figure 4.1.4. Four classes of combined increasing (+) or decreasing (-) temporal trends of vegetation 

cover (cov) and spatial 𝐶𝑣. Percentages of the total area are indicated between brackets for each class. 
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The trends in vegetation cover and temporal 𝐶𝑣 over time were also combined to create four 

classes (figure 4.1.5.) In the spatial distribution of trends in vegetation cover and temporal 𝐶𝑣 

there is somewhat more variation (figure 4.1.4.). The first class with the largest area and a 

decline in vegetation cover and an increase in temporal 𝐶𝑣 dominates the area east of 

Zaragoza. Large parts south of Zaragoza had a decrease in vegetation cover with either an 

increase or decrease of temporal 𝐶𝑣. The third class with both a decrease in temporal 𝐶𝑣 and 

vegetation cover is scattered throughout the area but seems to be congregated in the most 

western part of the study area and southeast of Zaragoza.  

 

 

Figure 4.1.5. Four classes of combined increasing (+) or decreasing (-) temporal trends of vegetation 

cover (cov) and temporal 𝐶𝑣. Percentages of the total area are indicated between brackets for each 

class. 
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4.1.4 Environmental factors 

To study the influence of environmental factors on the spatial distribution of combined 

temporal trends in the early warning signal spatial 𝐶𝑣 and vegetation cover a boxplot was 

made for each factor and each class (figure 4.1.6.). Of all environmental factors, vegetation 

cover has the largest influence on the combined trends in 𝐶𝑣 and cover. Classes with a positive 

relationship between cover and spatial CV (classes 3 and 4) are found in areas with relatively 

high cover. Differences in mean and max slope can also be seen between the classes. 

Especially the class with a decrease in both cover and spatial 𝐶𝑣  (3) has a higher mean and 

max slope compared to the other classes. The classes with a positive relationship between 

cover and spatial 𝐶𝑣 (3 and 4) show a higher mean Aspect than the other two. The HAND 

values are similar in mean and min/max.  

 

Figure 4.1.6. Boxplots of the slope (degrees), aspect (from 0 (South) to 1 (North)), height above nearest 

drainage (HAND (m)) and vegetation cover (0-1) for four classes of temporal trends of spatial 𝐶𝑣. Each 

boxplot corresponds to one of the four classes in section 4.1.3. Cover (cov) and 𝐶𝑣 can either have an 

increasing (+) or decreasing temporal trend (–).  1. cov - 𝐶𝑣 + 2. cov + 𝐶𝑣 -  3. cov -  𝐶𝑣 -  4. cov + 𝐶𝑣 + . 

Boxplots were also made to study the influence of environmental factors on combined trends 

in temporal 𝐶𝑣 and vegetation cover.  Again, cover shows the largest differences between 

classes. The mean of classes with a positive relationship (3 and 4) between temporal 𝐶𝑣 and 

cover is considerably higher. Here the mean aspect and slope are lower for classes with a 

negative relationship between temporal 𝐶𝑣 and cover (1 and 2).  

 

Figure 4.1.7. Boxplots of the slope (degrees), aspect (from 0 (South) to 1 (North)), height above nearest 

drainage (HAND (m)) and vegetation cover (0-1) for four classes of temporal trends of temporal 𝐶𝑣. 

Each boxplot corresponds to one of the four classes in section 4.1.3. Cover (cov) and 𝐶𝑣 can either have 

an increasing (+) or decreasing temporal trend (–). 1. cov - 𝐶𝑣 + 2. cov + 𝐶𝑣 -  3. cov -  𝐶𝑣 -  4. cov + 𝐶𝑣 

+ 

 Slope   Aspect   HAND   Cover 

 Slope   Aspect   HAND   Cover 
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4.2. Field data 

4.2.1 Relations between early warning signals and vegetation in the field 

To determine if early warning signals could be measured in the field vegetation cover and 

spatial variation calculated from the field transects were used. There was a wide range in 

vegetation cover in these field measurements (table 4.2.1). 

Table 4.2.1. Descriptive statistics of vegetation cover (fraction) and 𝐶𝑣 (no unit) measured using 24 

500m field transects. (n=1104). 

 

 

 

 

A regression was run between spatial 𝐶𝑣 from a moving window over the transects and 

vegetation cover measured in the field. A negative correlation coefficient r of -0.46 was 

calculated (p-value 2E-60). The scatterplot (figure 4.2.1.) shows a higher concentration of 

points when nearing full cover and more spreading out in lower cover. 

 

Figure 4.2.1. Scatterplot between cover and spatial 𝐶𝑣 of the 2010 transects (n=1104). 
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4.2.2 Comparing field surveyed to remotely sensed early warning signals 

NDVI was compared against vegetation cover measured in the field to see if vegetation cover 

can be accurately measured using remote sensing. The insignificant correlation coefficient was 

0.11 (p-value 0.46). However, some outliers can be seen at the right of the scatterplot (figure 

4.2.2). 

 

Figure 4.2.2. Scatterplot between cover from the 24 transects and remotely sensed NDVI. Lecina points 

in red circle. 

These outliers were given a closer visual inspection. All the outliers were near the village of 

Lecina. The points used to extract these outlier values were within 30 meters of a cultivated 

field (figure 4.2.3). This means a Landsat pixel includes the cultivated field in the reflectance 

of these points and are therefore not reliable. The regression was run again without these 

points and the correlation coefficient was 0.25 (p-value 0.11).  

Table 4.2.2. Descriptive statistics of vegetation cover (fraction) and 𝐶𝑣 measured using 24 500m field 

transects and remotely sensed spatial 𝐶𝑣, NDVI and MSDI (no units) without the Lecina points. (n=42). 

 NDVI Field Cover Remote 𝐶𝑣 Field 𝐶𝑣 MSDI 

Min 0.11 0.24 0.07 0.15 0.05 

Mean 0.16 0.54 0.23 0.24 0.15 

Max 0.26 0.83 0.48 0.41 0.30 

Stdev 0.04 0.15 0.11 0.06 0.06 

 

 

Figure 4.2.3. Points near Lecina used to extract values from the satellite image. 
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To study the relationship between remotely sensed spatial 𝐶𝑣 and vegetation cover measured 

in the field they were compared and correlated without the Lecina points (figure 4.2.4.). There 

was no significant correlation 0.007 (p-value 0.96). Part of the points in the scatterplot seem 

to form a negative trendline, but there are a lot of points with low spatial 𝐶𝑣 values. 

 

Figure 4.2.4. Scatterplot between cover measured at the transects and remotely sensed spatial 𝐶𝑣. 

To compare spatial 𝐶𝑣 against MSDI as an early warning signal a regression was run between 

remotely sensed MSDI and cover measured in the field. There was a moderate positive 

correlation of 0.41 (p-value 0.003), while spatial 𝐶𝑣 did not have a significant correlation. The 

MSDI scatterplot was more linear and elongated. 

 

Figure 4.2.5. Scatterplot between cover measured at the transects and remotely sensed MSDI. 
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Remotely sensed early warning signals were compared against early warning signals measured 

in the field. Remotely sensed spatial 𝐶𝑣was plotted and correlated against spatial 𝐶𝑣 measured 

in the field and the correlation found was 0.47 (p-value 0.03). So, while remotely sensed 

spatial 𝐶𝑣 and vegetation cover measured in the field showed no correlation there was a 

correlation between field measured and remotely sensed spatial 𝐶𝑣. 

 

Figure 4.2.6. Scatterplot between spatial 𝐶𝑣 from the transects and remotely sensed spatial 𝐶𝑣. 
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5. Discussion & conclusion 
Early warning signals of desertification were calculated using vegetation cover derived from 

SMA and NDVI. Spatial and temporal 𝐶𝑣were used as early warning signals. Trends over time 

were calculated for these early warning signals and vegetation cover. A classification between 

four classes for spatial 𝐶𝑣 and four classes for temporal 𝐶𝑣 could be made by combining these 

trends with vegetation cover. Spatial 𝐶𝑣was also calculated for 24 transects measuring 

vegetation cover in the field. The remotely sensed spatial 𝐶𝑣 and vegetation cover were then 

compared to spatial 𝐶𝑣 and vegetation cover measured in the field. 

The most important result is that remotely sensed spatial 𝐶𝑣has a moderate to strong (-0.49) 

negative correlation with vegetation cover calculated using SMA. This means it could possibly 

be used as an early warning signal for a critical shift from vegetated to a bare state, because 

vegetation cover can be used as a proxy for ecosystem health (Vicente-Serrano et al., 2012). 

Spatial 𝐶𝑣 also had a stronger negative correlation than the positive correlation (0.29) of MSDI 

with vegetation cover. This expected negative correlation between 𝐶𝑣 (spatial and temporal) 

and vegetation cover exists in about 80% of the study area. Xu et al. (2009) had a comparable 

success ratio  of 90% using MSDI over the whole Ordos plateau in China.  Tanser and Palmer 

(1999) had moderate to strong correlation between their measure of spatial variance MSDI 

and NDVI. However out of their five plots in South Africa three had a negative correlation and 

two had a positive correlation. The unpredictability of the relation between vegetation cover 

and MSDI makes it less useful than Spatial 𝐶𝑣as an early warning signal.  Jafari et al. (2008) 

measured MSDI near watering holes in South Australia and concluded that spatial variance 

was significantly lower the further away from the degraded areas, which is in line with this 

study. Guo et al.  (2004) also found significantly higher MSDI in grazed areas. Both Jafari et al. 

(2008) and Guo et al.  (2004) did not calculate correlations.  While NDVI is strongly correlated 

to vegetation cover (0.91) its correlation with spatial 𝐶𝑣was much weaker (-0.19). This could 

be due to the higher effectiveness of using spectral mixture analysis in regions with patchy 

shrub vegetation such as the study area (Elmore et al., 2000). 

Spatial 𝐶𝑣 is for both the NDVI and SMA better correlated than temporal 𝐶𝑣. Guttal and 

Jayaprakash (2009) also found in model studies that spatial variation was more reliable than 

temporal variation. This might be due to a heterogenous environment where temporal 

variation as an indicator for a critical shift is less suitable (Dakos et al., 2009). Temporal 𝐶𝑣 as 

it is calculated per pixel does not have the smoothing effect spatial 𝐶𝑣 has due to its moving 

window. Together with patchy shrub vegetation this will result in a highly heterogenous early 

warning signal from one pixel to the next. This will make it harder to locate larger areas in 

danger of a critical shift. So, while both spatial and temporal 𝐶𝑣 can be used as an early warning 

signal of desertification, spatial 𝐶𝑣 is better suited. 
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The four classes of different combined trends over time between spatial and temporal 𝐶𝑣 and 

vegetation cover seem to differ between different areas. This could be due to differences in 

environmental factors. Especially cover, slope and aspect (in that order) show differences in 

mean between classes.  Cover and slope also differ in maximum values between classes. This 

could at least in part explain the spatial distribution of combined trends in vegetation cover 

and spatial and temporal 𝐶𝑣. Vicente-Serrano et al (2012) only looked at trends in vegetation 

cover but concluded that decreases in vegetation cover occurred in areas with low water 

availability and already low vegetation cover. It would be expected that spatial 𝐶𝑣would 

increase in areas with lower water availability as these areas are more at risk of a critical shift. 

While areas with higher water availability would have a decrease in spatial 𝐶𝑣. This seems to 

be the case. 

In field data the same significant moderate to strong negative correlation (-0.46) between 

spatial 𝐶𝑣 and vegetation cover was found. Spatial 𝐶𝑣 was generally higher in areas that had 

grazing which is expected due to the higher pressure on the ecosystem. This means early 

warning signals of desertification can be measured in the field. It would be useful if a remotely 

sensed early warning signal of desertification would correlate to field measurements of 

vegetation cover to remotely map desertification. Due to the low overlap between the remote 

sensing cover data and the field data NDVI was used to compare. There was no significant 

correlation between remotely sensed spatial 𝐶𝑣 and vegetation cover in the field. This could 

be due to the use of NDVI which showed no significant correlation with vegetation cover 

measured in the field. MSDI did have a correlation with cover measured in the field (0.47). 

However, there was a moderate to strong correlation (0.46) between remotely sensed spatial 

𝐶𝑣 and spatial 𝐶𝑣 measured in the field. So early warning signals in the field are comparable 

to remotely sensed early warning signals.  

The use of Google Earth Engine made it possible to analyse and process large quantities of 

satellite and secondary data. It would be relatively easy to apply the techniques described in 

this thesis to different areas or even on a global scale. This would make it possible to monitor 

other dryland areas for spatial variation as an early warning signal. Testing if the correlation 

found between with spatial 𝐶𝑣and vegetation cover in the Ebro basin are the same elsewhere. 

An increase in drought episodes along the Mediterranean basin and the related increased 

stress on vegetation warrants an early warning system that covers larger areas (Gouveia et al., 

2017).  
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