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Abstract

Climate change will affect volumes and timings of river discharges and will
therefore determine the distribution and amount of people experiencing floods
and droughts in the future. Therefore, the need for reliable hydrological
modeling increases in order to enhance water management and sustainable
water use in the future. Outputs of these large-scale hydrological models
have been compared with observations and it is seen that modeled output
is not limited to input forcing only, which leads to uncertainty of modeled
output. This research aims to fill the gap in existing literature by evaluating
the performance of two global land surface models (LSM) and two global
hydrological models (GHM) for actual evapotranspiration, soil moisture and
runoff across different climate zones of Australia. This contribution offers
an insight into the spatial performance distributions for different large-scale
hydrological models for those hydrological variables. Also, this research eval-
uates the multi-model ensemble median for performance. The performances
for the large-scale hydrological models are compared with performances from
the calibrated national model, AWRA-L, which serves as benchmark in this
research. For the evaluation of the large-scale hydrological models, the Tier-1
of the EU-funded EartH2Observe datasets have been used in this research.
Furthermore, the Kling-Gupta Efficiency index is used as statistical metric
for model performance.

For monthly runoff fields, W3RA performed best in the tropical climate zones
(KGE > 0.2 = 70%, KGE > 0.7 = 25% of all simulations). ORCHIDEE
obtained the worst scores for this climate zone (KGE > 0.2 = 0%). Both
W3RA and and HTESSEL simulations resulted in the best performances in
the arid climate zones (KGE > 0.2 = 50%), while ORCHIDEE performed
worst in this climate zone (KGE > 0.2 = 0%). For the temperate climate
zone, W3RA performed best (KGE > 0.2 = 40%, KGE > 0.7 = 5%) and
AWRA-L worst (KGE > 0.2 = 10%, KGE > 0.7 = 3%). In addition, for
runoff evaluation, there is no clear differentiation in performances for partic-
ular climate zones found between GHMs and LSMs. There were differences
in model performance between the large-scale hydrological models, but this
was not related to whether the model was a GHM or a LSM.

For monthly actual evapotranspiration simulations, the best performances
for the tropical climate zones are obtained by HTESSEL and ORCHIDEE



(KGEE??;‘;ZEL =0.76 ; KGE(T)EQZ?IZDEE = 0.71). The ensemble median ob-
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tained the lowest KGE values for this climate zone (KGFE g, compio—median =

—0.1). For the arid climate zones, PCR-GLOBWB performed best (KGE?;Z%?GLOBWB =

0.51), whereas ORCHIDEE simulations resulted in the lowest scores for this

climate zone (KGESZdCHIDEE = —0.28). HTESSEL performed best for the

temperate climate zones (K GE%}%;;%? = 0.47), whereas the lowest scores

for the temperate climate zones are obtained by AWRA-L (KGEguys =
0.21). For actual evapotranspiration, GHMs perform on average better in
arid climate zones (KGFEgpuys = 0.34 ; KGEpsys = —0.412), whereas land
surface models obtain on average higher scores in the tropical climate zones

After evaluating soil moisture fields, best performances are obtained by
Tropical

W3RA for the tropical climate zones (KGEy3p, = 0.42). HTESSEL per-
formed worst for this climate zone (Kicwﬁ’%;‘;g . = —0.95). The ensemble
median performed best for both the arid and the temperate climate zones
(mg;iimble—median = 0.67; mgfw?:riglie—median = 0.48), whereas AWRA-
L performed worst in the arid climate zone (KGE yyas_, = 0.002) and
W3RA in the temperate climate zones (KGE e = 0.04). After evalu-

ating soil moisture fields by large-scale hydrological models for performance,
this research found no spatial differentiation in model performance between
GHMs and LSMs. This research demonstrated that that the multi-model en-
semble median leads to satisfying results for the three evaluated hydrological
variables. However, it is not necessarily better than each individual model
for all climate zones.

In order to decrease parameter uncertainty and increase reliability, PCR-
GLOBWRB has been calibrated using streamflow observations from four catch-
ments in Australia. The effective parameters are K, J and StorCap
and the calibrated parameter set is f; = 1.0, f; = 1.0 and f, = 0.25.
The calibrated PCR-GLOBWB model has been validated against stream-
flow records from all other catchments in Australia. This research found
major improvements after validating the calibrated PCR-GLOBWB model
with the reference scenario for the all climate zones. Taking all climate
zones into account, the PCR-GLOBWB run with the default parameter set-
ting obtains for 20% of its simulations a KGE > 0.2. Calibration increased



this percentage with 15% to 35%. Also, calibration of PCR-GLOBWB
leads to an increase of 10% for simulations with KGE > 0.5. In addition,
this research demonstrated that performance improvements differ in magni-
tude between climate zones (Calibrated PCR — GLOBW B : KG Eyyopics >
0.2 = 45%, Reference PCR — GLOBWB : KGEopics > 0.2 = 10% ;
Calibrated PCR—GLOBW B : KGEy.;q > 0.2 = 15—20%, Reference PCR—
GLOBWB : KGE4iqq > 0.2 = 10% ; Calibrated PCR — GLOBWB
KGEiemperate > 0.2 = 35%, Reference PCR—GLOBW B : KGEemperate >
0.2 = 25%).

Still, after calibration, performances changed from really bad KGE to bad
KGE for some climate zones. This is mainly attributable either to bad model
structure, poor forcing dataset or the wrong selection of effective parameters
for this climate zone rather than the use of a sub-optimal combination of pa-
rameters in the PCR-GLOBWB model. Also, this research demonstrated
that the calibration of PCR-GLOBWB using streamflow data negatively
influences the performance for actual evapotranspiration fields by the cal-
ibrated PCR-GLOBWB model. Therefore, before calibrating a hydrological
model and applying it to a certain region, the purpose of the modeling needs
to be fully known. This research proved that global scale hydrological model-
ing could be a valuable source of knowledge for developing countries without
a fine resolution hydrological model. However, further research needs to be
carried out for both step-wise calibration to enhance applicability and for the
improvement of forcing data at 0.5° or at smaller spatial resolution in order
to enhance reliability of large-scale hydrological models.

Keywords: Physical Geography; Hydrology; Earth2Observe; Water Resources
Reanalysis; Global Hydrological Models and Land Surface Models; Parameteriza-
tion
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1 Introduction 1

1 Introduction

According to the UN comprehensive assessment of the Freshwater Resources
of the World (WMO, 1997), more than two-third of the global population
will experience water stress by the year of 2025. The increase of green-
house gas concentrations in the atmosphere will result in climate change and
this will affect volumes and timings of rivers discharges and groundwater
recharges (Arnell, 2004). In fact, the growing knowledge about the inter-
dependence of various earth systems has led to the need for integration of
those systems in global simulation models (Wilby & Dessai, 2010). As tem-
peratures will increase in the next decades, the atmospheres water holding
capacity will increase and therefore more extreme hydrological events are
likely to occur (Trenberth, 1999). Consequently, climate change will deter-
mine the amount and distribution of people experiencing droughts and floods
in the future. For this reason, the need for reliable large-scale hydrological
modeling is increasing in order to respond to these expected changes in the
global hydrological cycle and global water resources. In fact, there is a need
for water assessments on a regional/global scale to enhance water manage-
ment and sustainable water use in the future. This growing demand for
large-scale hydrological modeling has led to the EU-funded EartH2Observe
project (EartH2Observe, 2015). This project aimed to construct a consis-
tent 30-years water resources re-analysis dataset, which allows for enhanced
insights on both the existing pressures on water resources and on the full
extent of water availability globally.

There are two groups of hydrological models available: water balance mod-
els and land surface models. The major difference between these two model
groups is their approach for evapotranspiration calculation. Evapotranspi-
ration is the link between the energy balance and the water balance. Water
balance model operating at the contintental/global scale are often referred
as global hydrological models (GHMs).

On the one hand, water balance models are mostly conceptually-based dis-
tributed models and these models solely solve the terrestrial water balance
within a catchment. These models are forced with prescribed meteorological
conditions like temperature, precipitation and either net radiation or refer-
ence potential evapotranspiration as input (e.g. SWBM, PCR-GLOBWB)
(Orth & Seneviratne, 2015 ; van Beek & Bierkens, 2009). Reference poten-
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tial evapotranspiration can either be prescribed or calculated by the use of
temperature and day length (Hamon, 1961). Thereafter, crop factors convert
reference potential evapotranspiration into potential evapotranspiration.

On the other hand, Land surface models solve both the energy balance and
the terrestrial water balance. The land surface energy fluxes are calculated
by the use of temperature and vegetation cover from remote sensing (Wang
et al., 2006).

Different water balance models and large-scale land surface models have al-
ready been developed. For instance, PCR-GLOBWB (Sutanudjaja et al.,
2016 ; van Beek et al., 2011; Wada et al., 2014), LISFLOOD (Van Der Knijff
et al., 2010), SWBM (Orth and Seneviratne, 2013) and WaterGAP3 (Florke
et al., 2013; DIl et al., 2009) are the main global hydrological models (GHMSs)
and ORCHIDEE (Krinner et al., 2005 ; Ngo-Duc et al., 2007 ; dOrgeval et
al., 2008), JULES (Best et al., 2011; Clark et al., 2011), HTESSEL-CaMa
(Balsamo et al., 2009), SURFEX-TRIP (Decharme et al., 2010, 2013) are the
main global land surface models (LSMs). Next to that, the model W3RA is
a hybrid model between a water balance and a land surface model.

These large-scale hydrological models have been run extensively through-
out the last decades. Modeled output has been compared with available
data and it is proven that modeled output is not only limited to input forc-
ing (Sood & Smakhtin, 2015). So, for equal catchments, different models
may result in different outcomes, which leads to uncertainty in model pre-
diction. In fact, uncertainty arises from several factors including: input
data, parameters, model structure and observational errors (Kauffeldt et al.,
2016). Earlier studies have shown that uncertainty from model parameters
and model structure can be substantial (Haddeland et al., 2011 ; Walker et
al., 2003). Haddeland et al. (2011) found major differences in global /regional
water fluxes and storage terms for an ensemble of 11 large-scale hydrological
models, which used the same forcing dataset. Substantial differences were
especially found in the partitioning between evapotranspiration and runoff,
which caused major differences in runoff estimates by the large-scale hydro-
logical models. In addition, a model inter-comparison project (MIP) between
multiple land surface schemes has been carried out and demonstrated that
land surface model simulations of streamflow and land surface - atmosphere
fluxes hold large variability (Wood et al., 1998 ; Lohmann et al., 2004). Beck
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et al. (2016) evaluated streamflow simulations by 10 state-of-the-art large-
scale hydrological models and found substantial differences in model perfor-
mances for different hydro-climatic zones across the globe. Gudmundsson
(2012) found large differences in the performances of large-scale hydrological
models for different hydro-climatic zones, but demonstrated that, on aver-
age, the ensemble mean of model simulations outperformed most individual
models. Moreover, the research showed that the ensemble mean performed
consistently good for all hydro-climatic zones (Gudmundsson, 2012). In fact,
multiple studies and model intercomparison projects (MIP) have found that
the multi-model ensemble mean is generally superior to the results of any
individual model and as good or even better than the best model at each
point and time (Dirmeyer et al., 2006 ; Murphy et al., 2004). Still, little
research has been conducted in this area.

This research aims to fill this gap in the existing literature by evaluating sim-
ulations of large-scale hydrological models over different climate zones. As
such, this research is dedicated to obtain insights in how the spatial distribu-
tions of performances among different hydro-climatic zones are for different
large-scale hydrological models. In addition, this research aims to investigate
if the performances of the evaluated models could be related to whether these
models are land surface models or water balance models. Australia has been
selected for the evaluation of the large-scale hydrological models as it holds
many different hydro-climatic zones (Table 1, Fig. 1). In this research two
GHMs and two LSMs from the Tier-1 dataset of the Eart H20Observe project
(2015) will be evaluated for performance. In addition, the performance of
the multi-model ensemble median will be analyzed as well.
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Tab. 1: Climate codes descriptions for all climate zones in Australia based
on Képpens climate classification. The first letter of the climate
codes indicate the main climate group, which er A (tropical), B
(arid) and C (temperate). Also, the green, blue and red colors
correspond to tropical, arid and temperate climates respectively.

Climate codes Climate descriptions
Am Tropical monsoon climate
Aw Tropical wet-dry climate
Af Wet equatorial climate
BWh Tropical and subtropical desert climate
BSh Mid latitude steppe and desert climate
BSk Tropical and subtropical steppe climate
Cfa, Cwa Humid subtropical climate
Ctb Marine west coast climate
Csa, Csb Mediterranean climate
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Fig. 1: Spatial distribution of hydro-climatic zones in Australia, major drainage divisions and hydro-
logic reference stations for streamflow (BoM, 2015)

The selected Tier-1 EartH2Observe large-scale hydrological models for evalu-
ation are: PCR-GLOBWB (GHM), W3RA (GHM), HTESSEL-CaMa (LSM)
and ORCHIDEE (LSM). For the Tier-1 water resources re-analysis, these
models were all uncalibrated and at equal spatial resolution (0.5°). Thus,



1 Introduction 5

these large-scale hydrological models are suitable for direct comparison. In
order to put the results into perspective, a comparison between the per-
formances of the large-scale hydrological models and the national AWRA-L
model will be performed as well. So, the AWRA-L model serves as benchmark
for the evaluation of the large-scale hydrological models and is at 0.05° spatial
resolution. Also, AWRA-L is calibrated with streamflow observations from
Australia. The performance evaluation will be done for runoff, upper-layer
soil moisture and actual evapotranpiration.

Due to the complexity of physically-based hydrological models, parameters
are often highly uncertain and tend to loose their physical meaning (Beven,
1993). Calibration, often referred as parameter optimization (Simunek et
al. 2012), is the process of optimizing unknown parameter values in order
to decrease models predictive uncertainty and to improve model accuracy.
In fact, the calibration of a hydrological model, where the parameters of a
generalized hydrological model is adjusted, leads to a better representation of
hydrological processes. In fact it reduces the models parameter uncertainty
and increases the models reliability. Various studies have been carried out to
demonstrate the importance of calibration on the performance of hydrological
models (Nijssen et al. 2003; Duan et al. 2006). After, the ”calibrated”
model needs to be validated in order to demonstrate that the model is able
to generate accurate simulations in different modeling circumstances. For
this reason, the effect of calibrating the PCR-GLOBWB model on runoff
estimates across various hydro-climatic zones of Australia will be examined
as well. The above stated problem definition leads to the following research
question, which is twofold:

e What is the performance of the four selected uncalibrated large-scale
hydrological models for different hydro-climatic zones in Australia after
evaluating runoff, soil moisture and actual evapotranspirtion simula-
tions and how do these models perform compared to both the upscaled
national hydrological model (AWRA-L) and the ensemble median?

e What is the performance of runoff estimates generated by the PCR-
GLOBWB model after calibrating and validating the model using Aus-
tralian observational streamflow data?
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2 Methodology

2.1 Model selection

As mentioned earlier, 2 land surface models and 2 global hydrological mod-
els will be evaluated. For this study, the uncalibrated large-scale model
simulations from tier-1 Earth20bserve dataset has been selected in order to
compare the performances of these large-scale models fairly. Furthermore,
the national AWRA-L model will be evaluated and serves as benchmark.
One should keep in mind that AWRA-L is a calibrated model and is forced
with a different dataset than the large-scale hydrological models (BAWAP
vs. WEFDEI). For this thesis, the models W3RA and PCR-GLOBWB are
used as global hydrological models and the models HTESSEL-CaMa and
ORCHIDEE as land surface models. The GHMs are originally developed
in order to simulate (sub)-surface water storages and fluxes, while LSMs fo-
cus more on the interactions between soil, water and atmosphere in climate
models (Bierkens, 2015). Both GHMs and LSMs solve the water balance.
However, LSMs solve both the water and the energy balance. This leads to
the potential to estimate hydrological partitioning more accurately. LSMs
generally have a more complex model structure and contain more parame-
ters than water balance models. As a result, due to their complexity and
large number of parameters, LSMs are often not calibrated. GHMs have
daily temporal resolution, whereas LSMs generally have sub-daily temporal
resolution. The main reason for this is that LSMs aims to capture the di-
urnal cycle of evapotranspiration processes. Spatial resolution is 0.5° for all
selected large-scale hydrological models. In general, LSMs include more soil
and snow layers than GHMs as these models are more complex (Beck et al.,
2016). The use of more soil layers in LSMs is due to parameterization of soil
processes (e.g. heat fluxes in soil layers (Liang et al., 1999)).

In the next subsection (Sect. 2.2), the different models used for perfor-
mance evaluation will be described. Sect. 2.3 explains the general model
inter-comparison framework. Sect. 2.4 is dedicated to the description of the
observational datasets, which will be used for the large-scale hydrological
model evaluation.
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2.2 Model description

Table 2 summarizes the major similarities and differences between model
characteristics of the selected Tier-1 GHMs and LSMs. This Table serves
as a reference for the next part of this thesis, where major features and
general concepts of the selected large- scale hydrological models are described
individually.

In the following subsections we will discuss the most important models in
more detail. We start with the PCR-GLOBWB global hydrological model,
followed by the W3RA model, whereafter the HTESSEL-CaMa model is
discussed. Then, the ORCHIDEE model is described, and finally the AWRA-

L model is explained.
2.2.1 PCR-GLOBWB

The first global hydrological model is the PCR-GLOBWB (PCRaster Global
Water Balance) global hydrological model. This model is built for regional
and global purposes and has been developed at the department of physical
geography of Utrecht University. The PCR-GLOBWB model represent the
terrestrial hydrology on a grid, which has currently a spatial resolution of
a 0.5°. The temporal resolution is daily. In fact, on each grid cell, the
model uses process-based equations in order to determine the soil moisture
storage in 2 soil layers. At the same time, the exchange of water between
land surface and atmosphere is calculated for each grid-cell. The exchange
of water between land surface and atmosphere is driven by processes like
for example precipitation, snow accumulation/melt and evapotranspiration.
Processes responsible for water exchange between the vertical soil layers are
percolation and capillary rise. PCR-GLOBWRB calculates river discharge
by means of accumulating runoff per grid cell, which is routed along the
drainage network. The equations for routing are based on the kinematic wave
approximation of the Saint-Venant equation with the momentum equation
based on Mannings equations. However, routing of river flow can be also be
calculated by the computationally efficient travel time approach (Deursen,
1995). PCR-GLOBWRB is forced with temperature and precipitation from
general circulation models. Potential evapotranspiration can either be forced
or calculated by temperature and day length (Hamon, 1961). The variability
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within a grid is processed by subdividing land cover in two classes: short and
tall vegetation classes, which relies on the GLCC dataset (USGS EROS Data
center 2002) Furthermore, PCR-GLOBWB developed a new version, which
also includes a water demand module and which introduces reservoirs and
irrigation areas (Sutanudjaja et al., 2014). However, this is not included in
the tier-1 EartH2Observe simulations. Moreover, for tier-1 EartH2Observe,
PCR-GLBOWB was not calibrated.

2.2.2 W3RA

The second global hydrological model is the W3RA model. In this model,
the landscape component of the AWRA (Australian Water Resources As-
sessment) system (AWRA-L) has been used as basis for the development
of the W3RA (World-Wide Water Resources Assessment) model (van Dijk,
2010a ; van Dijk, 2010b). The W3RA model is considered a hybrid model
between a lumped catchment model and a simplified grid based land sur-
face model. However, the model resembles more a global hydrological model
rather than a land surface model. The AWRA-L model is not detailed in its
description in order to make it applicable to regions where few ground obser-
vations are available, which is typical for Australia. Like PCR-GLOBWB,
AWRA-L distinguishes two hydrological response units (HRU), which are
deep-rooted tall forest and shallow rooted short vegetation. For each HRU,
the vertical processes are described by: net radiation balance; partitioning of
precipitation (van Dijk, 2001) and net precipitation (van Dijk, 2010c); water
balance of three unsaturated soil layers; transpiration (Yebra et al., 2013);
groundwater, surface and soil water evapotranspiration; vegetation canopy
dynamics; groundwater dynamics (van Dijk, 2010c); surface water body dy-
namics (van Dijk, 2001). For the latest version of the model (v5.0), AWRA-L
was calibrated against streamflow, actual evapotranspiration and soil mois-
ture (Viney et al., 2015). The original AWRA-L v1.0 model was modified
for the global application (W3RA), as the model lacked description of snow
processes. For this purpose, the HBV96 snow model was implemented (Lind-
strom et al., 1997). In this model, generated runoff propagates by means
of kinematic wave approximation and it uses a global routing scheme with
0.5° flow direction grid (Oki et al., 2001). Moreover, W3RA streamflow es-
timates do not take anthropogenic influences into account (i.e. reservoirs,
dams, abstraction). For the tier-1 EartH20bserve purpose, this model was
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not calibrated.
2.2.3 HTESSEL-CaMa

The third model is the HTESSEL-CaMa model. The first part consists of the
HTESSEL (Hydrology in the Tiled ECMWEF Scheme for Surface Exchanges
over Land), which is a land surface model. HTESSEL calculates the re-
sponse of the land surface due to atmospheric conditions. In fact, the surface
water and energy fluxes are calculated as well as the temporal evolution of
vegetation interception and snowpack conditions, soil moisture content and
soil temperature. These grid cell calculations have been done independently,
which means that there is no horizontal interaction between soil columns. For
the computation of water and energy transfer, the soil has been subdivided
into four layers. The Fourier law of diffusion is used for heat transfer in the
soil, whereas the vertical movement of water in the unsaturated zone is cap-
tured by Richards equation combined with Darcys law. A variable infiltration
rate, which incorporates sub-grid variability due to orographic differences,
has been used for the computation of surface flow (Balsamo et al., 2009).
Subsurface leaves the bottom soil layer as free drainage. The outcomes of
the HTESSEL land surface model (surface and subsurface runoff) serves as
input for the CaMa (Catchment-based Macro-scale) flood plain model. In
this model, all river networks globally have been subdivided into hydrolog-
ical units (discretized). This favors the efficient computation of flow at the
global scale (Yamazaki et al., 2009). The simulations of HTESSEL-CaMa
model were carried out at 0.5° by 0.5° spatial resolution. HTESSEL-CaMa
used the default parameter setting for the tier-1 EartH2Observe project.

2.2.4 ORCHIDEE

The last model we are going to test is the ORCHIDEE. ORCHIDEE (OR-
ganizing Carbon and Hydrology In Dynamic EcosystEms) is a land surface
model, which is part of the IPSL (Institute Pierre Simon Laplace) earth
system model. ORCHIDEE can run either coupled with the earth system
model (IPSL-CM5) or stand-alone offline. For the purpose of EartH2Observe,
ORCHIDEE works at three different scales: The model solves the energy
balance at 0.5° spatial resolution, which is determined by the forcing data;
The hydrological balance is solved separately at three different tiles on a
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grid box, which sizes depend on the vegetation distribution; The calculation
of river flows through basins, which are defined at 0.5° by 0.5° resolution.
A time-splitting procedure is used for the computation of partitioning be-
tween runoff and surface infiltrations, which allows a temporal resolution
of <30min. The ORCHIDEE model distinguishes 13 different vegetation
types, which are grouped in 3 ensembles (bare soil, grass/crops and trees).
Interception loss and transpiration values are calculated for each individual
vegetation type, whereas root uptake and through fall values are aggregated
per vegetation group. This leads to three calculations for the hydrological
balance at each tile on a grid box. The dataset provided by Reynolds et al.
(2000) defined three different soil types, which are used in ORCHIDEE. The
dominant soil type at a grid box is used for each tile. The river flow routing is
described by Hagemann and Dumenil (1997) and Miller et al. (1994). Tier-
1 EartH20bserve ORCHIDEE simulations were made by using the default
parameter setting.

2.2.5 AWRA-L

The performances for the large-scale hydrological models will be compared
with AWRA-L, which serves as benchmark in this research. The Bureau
of Meteorology and the Commonwealth Scientific and Industrial Research
Institute (CSIRO) have initiated the development of the Australian water
resources assessment modelling system (AWRAMS). This modelling system
consists of two parts: landscape modelling part (AWRA-L), which computes
landscape water balance surface fluxes; river modelling part (AWRA-R),
which aims to estimate river water balance fluxes. The simulations of these
models are used as key information source for products as Water in Aus-
tralia reports (WIA), climate briefings and national water accounts (NWA).
The AWRA-L modelling part has a 0.05°spatial resolution and is a one-
dimensional grid-based water balance model. The model represents ground-
water, soil and surface water stores. The temporal resolution of the AWRA-L
model is daily and the models outcomes are gridded estimates for evapotran-
spiration, runoff, deep drainage and soil moisture. Furthermore, the model
operates at regional to global scale and has a temporal range of modeled
data larger than 100 years (Hafeez et al., 2015). Vegetation is distinguished
as deep and shallow rooted vegetation and within each grid-cell the water bal-
ance for both types of vegetation is calculated separately. ET ., streamflow



2 Methodology 12

and catchment average soil moisture observational data have been used for
the calibration procedure of the most recent version of AWRA-L (AWRA-L
v5). Approximately 300 catchments were chosen for calibration and another
300 catchments were used for validation of the model. According to Frost et
al. (2015), these catchment needed to satisfy the following conditions: >50
km for decent catchment representation on a grid-cell; unregulated stream-
flow; no irrigation and land use impacts; sufficient record length of obser-
vational data (>10yrs length). The calibration procedure used an objective
function to optimize the statistical fit between modeled output and observa-
tions. Nash-Sutcliffe efficiency, correlation and monthly/daily bias were used
as metrics for optimization (Frost et al., 2015).

2.3 General model intercomparison framework
Earth20bserve

As mentioned before, two LSMs (ORCHIDEE and HTESSEL) and two GHMs
(W3RA and PCR-GLOBWB) will be evaluated for performance. In this re-
search, performance evaluation will be done for actual evapotranspiration,
soil moisture and runoff (Table 3) between 01-01-2001 and 31-12-2011 at
locations from available observational data (Sect. 2.4).

Tab. 3: Selected Earth20bserve output variables for performance evaluation

Long name Units Definition Positive direction
Total evapotranspiration kg+m™2 xs~1 Sum of all evapotranspiration sources, Downwards
averaged over the corresponding grid cell
Total runoff kgsm™2xs71 Average of all liquid water into gridcell

draining from the land surface

2 best of 5cm depth soil moisture or first layer -

Surface soil moisture kg+*m~

This research will evaluate both daily and monthly Tier-1 simulations from
the selected large-scale hydrological models as monthly simulations generally
tend to perform better than daily for large-scale hydrological models (Spruil
et al., 2000). For runoff, this is mainly due to the inability of the large-
scale hydrological models to capture extremes (e.g. peak flows) (Spruil et
al., 2000 ; Mutenyo et al., 2013). Therefore, minimum observational record
length is set to 2 years for the three hydrological variables in order to retrieve
meaningful performance statistics from the model simulations. Once these
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model performances are collected, a spatial distribution of performances over
the Australian continent will be made in order to investigate whether these
performances are related to the combination of model structure and climatic
conditions. As earlier studies demonstrated (Dirmeyer et al., 2006 ; Mur-
phy et al., 2004), the multi-model ensemble mean is generally superior to
each individual model and as good or even better than the best model at
each point and time. This statement will be analyzed as well, but for the
ensemble median instead of the ensemble mean as this excludes the severe
effect of outliers on the statistic (Rodda & Little, 2015). Outcomes for perfor-
mance evaluation of model simulations for actual evapotranspiration and soil
moisture should be analyzed with care, as grid-based average values will be
compared with point observations. Streamflow observations, in contrast, are
the integrated hydrologic response of a catchment. For this reason, results
obtained by evaluating streamflow simulations are more meaningful.

For AWRA-L, the evaluation period will be between 01-01-2005 and 31-12-
2010 due to data availability and results obtained serves as benchmark for the
performances of the large-scale hydrological models. As mentioned in section
2.2, the AWRA-L model is forced by BAWAP at 0.05° instead of WFDEI at
0.5°. Consequently, upscaling of the 0.05° resolution model outputs is needed
for direct comparison with the large-scale hydrological models.

2.3.1 Upscaling AWRA-L model

There are various upscaling procedures suggested in literature (Qin et al.,
2015), which are: Block kriging, Simple averaging, apparent thermal inertial
(ATI) and hydrologic model based methods. This research uses the simple
averaging method (Eq. 1).

n

£ a 1)

=1

B=

S|

Where a; represent all fine resolution grid-cells inside one coarse resolution
grid-cell. The major advantage of this re-sampling method is that this pro-
cedure is mass conservative. In contrast, the main interpolation methods are
not mass conservative. This means that for upscaling by simple averaging,
no mass in the system is lost. Upscaling by interpolation, in contrast, of-
ten leads to loss of mass in the system (Lagrava et al., 2012). As a result,
mass leaving the fine grids does not equal the mass entering the coarse grid.
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Therefore, the simple averaging method is preferred. Still, this method has
its own disadvantage as aggregation by simple averaging often leads to er-
rors and loss of information (Sablok & Aziz, 2008). Moreover, the nonlinear
relationship the soil moisture state and associated physics as well as the het-
erogeneous soil moisture fields has led to increased interest in the problems
associated with soil moisture aggregation (Crow & Wood, 2002). For this re-
search, this should be kept in mind when comparing soil moisture fields with
observations. Figure 2 illustrates the process of upscaling a fine resolution
grid to a coarse resolution grid.

Fig. 2: Upscaling process from a fine resolution grid to a coarse resolution grid. source: He et al., 2015

As mentioned in the introduction (Sect. 1), model calibration/validation is
an important step in order to adjust a generalized model to local/site spe-
cific processes and conditions in order to improve model accuracy and reduce
model predictive uncertainty. In the next subsection, the calibration/valida-
tion procedure will be explained.

2.3.2 Calibration and validation procedure

Brute-force calibration Hydrological model output uncertainty is caused
by input forcing, model parameters, model structure and observational er-
rors. Calibration of a hydrological model is an essential part of modeling
as it explores effects of different parameter combinations on model output.
Furthermore, calibration searches for the optimal parameter combination,
which reduces parameter uncertainty and increases reliability of the model.
The evaluation part for runoff of the uncalibrated PCR-GLOBWB model is
used as information source to tune parameters in the brute-force calibration
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procedure. The first step of this procedure is to identify parameters, which
possibly improve the model performance for runoff. For this part, we will look
at both the simulated and observed hydrographs. When these possible effec-
tive parameters are identified, a large number of runs will be simulated and
evaluated using an objective function. For this calibration step, four suitable
catchments will be selected and different streamflow runs for these catch-
ments will be compared with observational data. Calibration will be based
on monthly average streamflow simulations (m/d). The selected catchments
need to satisfy the following criteria for inclusion in this calibration step:

e Catchment area should be sufficiently large compared to models grid-
cell resolution (i.e. 0.5° resolution), to ensure catchment size is repre-
sentative for 0.5 °resolution (Beck et al., 2015); Shrestha et al., 2006)

e Inclusion of catchments located in different climate zones for the cal-
ibration step. This leads to better possibilities for regionalization of
model parameters to other catchments in Australia.

e The simulations for potential catchments have to perform sufficiently
(Tier-1 Earth20bserve performance, Sect. 3.1.1, based on a selected
statistical performance metric, Sect. 2.3.3) to ensure the model struc-
ture is able to represent the hydrological processes for that catchment.

e Sufficient observational data record length, > 3 years, is required in
order to obtain consistent and stable parameter values (Li et al., 2010).

Information regarding these criteria will be gathered from the evaluation of
the tier-1 EartH20bserve PCR-GLOBWB model run. Calibration of the
PCR-GLOBWB model will be done from 01-01-2001 till 31-01-2011.

Once these catchments are selected, multiple runs of the PCR-GLOBWB
model will be executed with different parameter combinations. This research
will perform a global calibration procedure, in which one parameter set is
sought for all catchments (Gaborit et al., 2015). Based on the concept of
equifinality (Beven & Binley, 1992), parameter combinations leading to sat-
isfying results are called behavorial parameter sets. Lu et al. (2014) and
Hamraz et al. (2015) defined behavorial parameter sets as the top 1% best
performing parameter combinations based on a likelihood function. This
study defines the behavorial range as the top 5% of best performing parame-
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ter combinations based on a predefined objective function due to the limited
amount of runs in the brute-force calibration procedure.

Validation After we have chosen the ”global” optimal parameter set for
the selected catchments, validation of the calibrated PCR-GLOBWB model
will be done for all other catchments. For the validation of the calibrated
PCR-GLOBWB model, we compare the performance of the calibrated PCR-
GLOBWB model with the uncalibrated PCR-GLOBWB model, which was
used for the EartH2Observe project. Also, performance of the calibrated
PCR-GLOBWB model will be tested against the performances of the bench-
mark AWRA-L model, and the ensemble median of the large-scale hydrolog-
ical models. Validation is essential as problems may emerge when testing the
calibrated model at other catchments with different hydrological conditions.
Often, performances obtained for these catchments are less satisfying com-
pared to the performances obtained from catchments used for the calibration
of the hydrological model. This problem is often referred to as a ”"regionaliza-
tion problem” as calibrated parameters for a certain hydrological situation
may not apply for other regions. Especially in this research, where many
catchments across different climate zones in Australia are included, unsatis-
fying results may arise. So, for this reason it is very important to validate
the calibrated model.

2.3.3 Functions and definitions for model evaluation

Performances of the selected large-scale hydrological models (Tier-1 model
output) for runoff and actual evapotranspiration will be quantified by the
Kling-Gupta Efficiency index (KGE). Moreover, the calibration of PCR-
GLOBWB will be performed using the KGE as objective function. Three
statistical metrics are combined , resulting in the KGE index (Eq. 5). These
metrics are bias (Eq. 2), Pearsons correlation coefficient (Eq. 3) and vari-
ablity ratio (Eq. 4).

n
imulated;
Bias = §  Simulated; )
Observed;
i=1

VL XE - (DX - n s VE - ()

Pearsons Correlation Coef ficient =
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Variability ratio = 7 (4)
Oo

Kling — Gupta Ef ficiency = 1 — \/(Correlation —1)? 4 (Bias — 1)? 4+ (Variability — 1)>  (5)

In fact, the KGE represents the Euclidian distance between the three statis-
tical measures and an ideal point in a 3-dimensional space. For the KGE, the
ideal point in the 3-dimensional space is (1, 1, 1). So, minimizing the the Eu-
clidian distance leads to higher KGE scores. The value for KGE ranges from
—00 to 1 where 1 means a perfect fit between model simulations and obser-
vations. This means, the higher the values for the three statistical measures,
the smaller the Euclidian distance and the better the KGE value (Eq. 5).
This study uses a modified KGE for soil moisture evaluation. Soil moisture is
calculated over different depths between models and measured over different
depths between different observational soil moisture networks. Also, the dif-
ferent networks have different sampling resolution and different uncertainties
(Sect. 2.4.3). Therefore, the bias term (Eq. 2) in the KGE equation (Eq.
5) is omitted. Now, the KGE value corresponds to the Euclidian distance
from an between the coordinates for correlation and variance ratio to an ideal
point (2-dimensional). The value for the modified KGE still ranges between
—oo and 1. For both the default KGE values as the modified KGE values, a
classification for performance is made in Table 4.

Tab. 4: Classification of KGE values for model evaluation

Classification KGE score

Very good KGE > 0.7
Good 0.5 < KGE < 0.7
Satisfying 0.2 < KGE < 0.5

Unsatisfying KGE <0.2

During the calibration of the PCR-GLOBWB model, several PCR-GLOBWB
runs will be evaluated for performance at the selected catchments (Sect.
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2.3.2). A function (Eq. 6) is defined to exclude the unproportional effect of
very bad performances for certain catchments:

Z?:l maz(0, KGE;)

n

KGE = (6)

Eq. 6 shows that for each calibration run, the average of the maximum value
between zero and the KGE value for certain catchments will be evaluated.
This is done as for some areas the model might perform very bad. However,
the difference between bad and very bad is not related to a sub-optimal
parameter set.

2.4 Observations

in this subsection, the observational datasets used for the evaluation of
the Tier-1 Earth2Observe large-scale hydrological models will be described.
Firstly, in section 2.4.1, we demonstrate which dataset is used for runoff
comparison. Then, in section 2.4.2, a description of the observational actual
evapotranspiration datatset is provided. Lastly, the soil moisture dataset will
be described in section 2.4.3.

2.4.1 Runoff

A previous study (Zhang et al., 2013) has collected data for runoff throughout
Australia. This datasets consists of runoff data from catchments and has been
used for calibration and validation of the AWRA-L model. This dataset is
made taking several criteria into account:

o Sufficient data record length (> 2 years)
e Covering recent times

e Good data quality, which means not too many observations far in the
past (where streamflow records are potentially of lower quality (Zhang
et al., 2013)).

e Catchments are larger than 50km? in size as the widely used input for
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meteorological forcing is at a 50km? resolution.

e Catchments need to be unimpaired /unregulated catchments as most
hydrological models simulate natural flow (Zhang et al., 2013). For the
Tier-1 Earth20bserve, this arguments holds as well as the majority
of the selected large-scale models for evaluation did not include an-
thropogenic influences (e.g. dams, reservoirs and lakes) in their model
(Sect. 2.2).

Having a good quality dataset for runoff from unimpaired catchments is ex-
tremely important for benchmarking hydrological models. This is important
as these hydrological models are used for water resources assessments on a
large-scale in Australia. This dataset is obtained by state water agencies
and quality checks were undertaken after. This has resulted in a dataset
consisting of 780 unregulated catchments across different climate zones of
Australia. For this research, no further selection for catchment suitability
has been undertaken for the following reasons:

e To cover substantial hydro-climatic zones with a substantial sample
size

e To avoid the steering of research in a certain direction for satisfying
results

e To investigate whether global modelling is applicable to all catchment
scales

The observational dataset consists of daily streamflow values at the catch-
ment outlet (mm/d). This value for runoff is the integrated response of
hydrological processes within the catchment. The Tier-1 EartH2Observe
datasets from the selected large-scale hydrological models hold runoff values
for each 0.5° grid (kg * m~2% s~1). The weighted average spatial aggregation
is used in order to come up with runoff estimates for large-scale hydrolog-
ical models at the outlet. For this approach, runoff estimates for grid-cells
corresponding to a certain catchment will be summed. After, this value is
divided by the number of corresponding grid-cells covering the catchment
to come up with a average runoff estimate. This process will be repeated
for each time-step. In literature, it is a general opinion that in most cases
this method provides closest estimates for runoff (Sauquet et al., 2000). Fig.
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3 shows the distribution of unimpaired catchments throughout Australia.
These catchments will be evaluated in this study.

l:l Catchments
|:| State boundaries

0 500 1,000 Kilometers
I |

Fig. 3: Spatial coverage of unimpaired catchment across Australia. Source: Zhang et al. 2013

2.4.2 Actual Evapotranspiration

Data for evapotranspiration is obtained by the Ozflux national ecosystem
research network. Ozflux uses micro-meteorological flux stations, which
uses the eddy-covariance statistical method to estimate the exchange of
water vapor, heat, carbon dioxide and methane between the land surface
and atmosphere. The data contains daily values for evapotranspiration in
MJxm=2%d™! for 18 fluxtowers. These values will be divided by the latent
heat of vaporation (2.45M Jxkg™'), because modeled data is in kgxm ™ 2xs~1.
Ozflux evapotranspiration observations are available between 01-01-2001 and
31-12-2011. As mentioned in section 2.3), a sufficient (> 2 years) dataset

record length is required for meaningful statistical performance analysis.
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2.4.3 Soil Moisture

This study uses soil moisture data equal to the dataset used in Holgate et al.
(2016). This dataset consists of soil moisture measurements starting from
01-01-2001 till 31-12-2014. Again, sufficient data record length was required
for statistical robustness. Soil moisture is measured by three networks, which
in turn use different measurement techniques. All three products delivered
their data in volumetric soil moisture fraction (m?3/m?).

Ozflux The first network is Ozflux. As already mentioned, Ozflux is part of
a global network with >500 micro-meteorological stations where exchanges
of water vapor, energy and carbon are continuously measured. There are 37
stations in Australia with 30 currently active stations. Soil moisture pro-
files are measured by frequency domain reflectometers for every 30 minutes.
Provided soil moisture data are in volumetric units or fraction and the mea-
surements were performed over the upper 10cm topsoil. Soil moisture data
from these stations were made available for 22 of the 37 stations. Data from
these stations are used in this study

Oznet Oznet contains a network of measurement sites comprising an area
of 82000km? in the Murrumbidgee catchment in southeastern Australia. The
sites collect data for rainfall, soil moisture and soil temperature at 20 to 30
min time resolution. These measurement sites are operationally since 2001
and collected data primarily for the root-zone (up to 90 cm). After, topsoil
measurements were carried out as well (0-5cm). The initial stations carried
out their measurements using water content reflectometers. Temperature and
soil type information were used to convert these measurements to volumetric
water content. Later, other measurement techniques were used as well in
which volumetric moisture content is inferred from measured conductivity
and the dielectric constant. Oznet data from 48 stations were made available.
These are included in this research

CosmQOz The third soil moisture measurement network operational in Aus-
tralia is the CosmOz network. This network consists of cosmic ray sensors
operational at 2m above the ground where fast neutrons passing through
the earth atmosphere are counted (Hawdon et al., 2014). These cosmic ray
sensors are currently installed at nine locations throughout Australia. In
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fact, the probes count the neutrons in the soil and air above the soil. Soil
water content controls primarily the counting of the neutrons as hydrogen
atoms have a moderating effect on the fast neutron intensity. There is even
an inverse correlation between neutron intensity and water content (Zreda
et al., 2008). Neutron count is converted to soil moisture using a calibration
function (Desilets et al., 2010). Data from one CosmOz station is used in
this study.

One should keep in mind that Oznet and Ozflux measure soil moisture in
the topsoil (0-10cm), whereas CosmOz has a varying soil moisture depth
related to the wetness of the soil (Jackson et al., 2012). Moreover, Oznet
and Ozflux are point measurements, while CosmOz has a spatial range of
300m around the probe (Hawdon et al., 2014). Contrast exists between
sampling frequencies of the different soil moisture measurements. Oznet has
a temporal resolution of 20min, Ozflux 30min and CosmOz hourly. Lastly,
these measurement techniques are all accompanied by different error sources
and uncertainties, which inhibits absolute agreement between measurements
of these different sources (Brocca et al., 2009).
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3 Results

For the evaluation of Tier-1 Earth20bserve output for the selected models,
climate zones are grouped together based on the first letter for each climate
zone and on the colors in Table 1. Am, As and Aw represent tropical climate
zones. BWh, BSk, BSh represent arid climates. Cfa, Cfb, Csa, Csb and
Cwa are corresponds to temperate climate zones. The national AWRA-L
model serves as benchmark for the evaluation of the large-scale hydrologi-
cal models. This model is originally at 0.05°spatial resolution. However,
Tier-1 Earth20bserve simulations for runoff, actual evapotranspiration and
soil moisture are all at 0.5° spatial resolution. Therefore, for direct compari-
son with the large-scale hydrological models, AWRA-L has been upscaled to
0.5° resolution. Also, it is important to note that AWRA-L is a calibrated
model. For the classification of KGE values, Table 5 is used.

Tab. 5: Classification of KGE values for model evaluation

Classification KGE score

Very good KGE > 0.7
Good 0.5 < KGE < 0.7
Satisfying 0.2 < KGE < 0.5

Unsatisfying KGE < 0.2

3.1 Tier-1 EartH20bserve model evaluation

3.1.1 Runoff

Runoff fields at 0.5° spatial resolution from the Tier-1 Earth20bserve project
have been compared with streamflow observations. In general, monthly
runoff fields perform better than daily when compared to the observations,
see Table 6.
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Tab. 6: Average runoff KGE values for both time resolutions listed for several climate zones in Aus-
tralia. Comparisons have been made between observations and the large-scale hydrological
models, the AWRA-L model and the multi-model ensemble median.

Climate-zone PCR-GLOBWB HTESSEL ORCHIDEE AWRA-L Median

monthly daily monthly daily monthly daily monthly daily monthly daily monthly  daily

Am -0.03 -0.13 -0.05 -0.20 0.17 0.16 -0.63 -0.45 -0.52 -0.46 0.41 0.20
As 0.04 0.01 0.13 -0.01 0.21 0.25 -0.65 -0.51 0.17 0.14 0.46 0.33
Aw 0.22 -0.05 -0.09 -0.21 0.42 0.25 -0.69 -0.45 -0.57 -0.48 0.24 0.09
BWh -0.55 -0.60 -1.36 -1.47 -0.20 -0.34 -14.81 -15.36 -14.20 -13.84 -0.33 -0.46
BSh 0.10 -0.20 -0.83 -0.96 0.14 -0.10 -10.29 -10.64 -5.66 -5.50 -0.05 -0.20
BSk -9.52 -9.50 -10.57 -10.42 -3.43 -3.71 -391.97  -394.00 -373.38  -369.81 -3.54 -3.68
Cfa -0.61 -0.85 -1.63 -1.94 -0.21 -0.77 -5.41 -6.20 -3.32 -3.36 -0.29 -0.53
Cfb -0.50 -0.69 -1.63 -1.82 -0.12 -0.45 -4.90 -5.12 -12.05 -11.66 -0.39 -0.56
Csa -7.69 -8.69 -6.87 -7.01 -1.24 -1.84 -15.37 -21.54 -12.79 -12.83 -2.35 -2.93
Csb -2.91 -3.09 -4.38 -4.49 -0.38 -0.57 -5.65 -7.69 -19.43 -19.10 -0.94 -1.13
Cwa 0.18 0.00 0.03 -0.17 0.53 0.28 -2.21 -2.11 -0.17 -0.34 0.30 0.12

In order to make statements for each main climate group (i.e. tropical, arid
and temperate), the average monthly KGE for each main climate group is
calculated by taking the average of monthly KGE values for climate-zones
belonging to that climate group:

KGEiodel = 7ZKGEX’H (7>

N

where X corresponds with the main climate group and ¢ with the smaller
climate-zones belonging to that particular climate group. For example, the

KGE values for Aw, Am and As are summed and divided by three to obtain
the average KGE value corresponding with the tropical climate zones.

For the large-scale hydrological models, only HTESSEL performs satisfy-
ing 5 in the tropics (K GEZ?;CSQEL = 0.27). For the arid and temper-
ate climate group, all large-scale hydrological models perform unsatisfying
(KGE < 0.2). However, HTESSEL performs good for the Cwa climate zone

(KGE$%% s = 0.53) (Table 6).

Taking the ensemble median of the large-scale hydrological models leads to
better monthly runoff estimates in the tropical areas compared to each in-

dividual model (K GEZZizﬁzle_medwn = 0.37 (Table 6). For the other climate
zones, the ensemble median performs slightly worse than the best individual
model (HTESSEL). Still, average performances for the arid and temperate
climate zones (except Cwa for HTESSEL and ensemble median) are mainly
unsatisfying (Table. 5) for all large-scale hydrological models, the ensemble

median and the AWRA-L model. For the computation of average KGE values
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per climate zone, catchment area ("support”) is neglected. In this research,
performances for small catchments are equally important as performances
for larger catchments.

Very bad performances have severe influences on the average value for KGE.
Therefore, its interesting to explore the distribution of performances for each
large-scale hydrological model, the AWRA-L model and the ensemble me-
dian. Therefore, cumulative density plots (cdf’s) have been made for the
total monthly KGE distribution with all climate zones included (Fig. 4a)
and for each climate zone separately (Fig. 4b-d). These cumulative density
plots have been made from performances obtained from monthly streamflow
simulations. These plots have only been constructed for monthly runoff fields
as literature demonstrated that large-scale hydrological models generally per-
form better for monthly time resolution than for daily when compared with
observations (Table 6). As such, large-scale hydrological models are bet-
ter able to describe the hydrological processes occurring in a catchment for
monthly simulations than for daily simulations. Taking all performances for
all climate zones into account, results in 45% unsatisfactory performances
(Table 4) for HTESSEL and W3RA (Fig. 4a). For the ensemble median,
around 40% of the performances are unsatisfying. For PCR-GLOBWB, OR-
CHIDEE and AWRA-L, this value is 75%, 90% and 85% respectively. An-
other important aspect is that 10% of the performances are classified (Table
4) as very good for W3RA. This value equals 5% for both HTESSEL and the
ensemble median, <2% for both PCR-GLOBWB and AWRA-L and <1% for
ORCHIDEE.
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Fig. 4: Cumulative density plots for all climate zones together (a), tropical (b), arid (c) and temperate
(d) based on monthly runoff fields.

Tropical climate zone For catchments from the tropical areas, W3RA has
the biggest amount of high KGE scores for this climatic zone, with 25% very
good performances (Fig. 4b). For HTESSEL, 10% of the performances are
very good. The other large-scale hydrological models, AWRA-L and the en-
semble median have no very good performances for this climate zone (Fig.
4b). Furthermore, the ensemble median performs for 50% of the simulations
unsatisfactory, while 30% of HTESSEL and W3RA simulations scores unsat-
isfying. For the tropical climate zones, all performances are unsatisfying for
ORCHIDEE (Fig. 4b).

Arid climate zone Compared with the tropical climate zone, the large-scale
hydrological models have less very good performances for streamfow simula-
tions in the arid climate zone (Fig. 4c). For W3RA, 5-10% of the simulations
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for the evaluated catchments perform very good. This value is 0-5% for both
HTESSEL and the ensemble median. AWRA-L, PCR-GLOBWB and OR-
CHIDEE have no very good performances in the arid climate zone at all
(Fig. 4c). For both W3RA and HTESSEL, 50% of the performances in arid
climates are unsatisfying. PCR-GLOBWB performs unsatisfying for 90% of
the arid climate catchments. For the ensemble median, 80% of the evaluated
catchments obtain an unsatisfying score. AWRA-L and ORCHIDEE, have
only unsatisfying score for catchments situated in the arid climate zone (Fig.
4c).

Temperate climate zone For this climate zone, very good performances
are rare among all large-scale hydrological models with 5% for W3RA and the
ensemble median and <3% for PCR-GLOBWB, AWRA-L, ORCHIDEE and
HTESSEL (Fig. 4d). For HTESSEL, W3RA and the ensemble median, 60%
of their simulations performed unsatisfactory (Fig. 4d). PCR-GLOBWB
simulations resulted in 75% unsatisfying performances and both AWRA-L
and ORCHIDEE 90%.

Performance maps have been made for the best large-scale hydrological model,
the worst large-scale hydrological model, AWRA-L (benchmark) and the en-
semble median in order to provide the reader a visualization of the perfor-
mance distribution across Australia (Fig. 5a-d). The best model is here
based on having the most satisfying (KGE > 0.2) and the most very good
(KGE > 0.7) performances among all climate zones (fig. 4a). Based on the
above mentioned definition, HTESSEL is the best model and ORCHIDEE
the worst. The reader is referred to the Appendix for the monthly perfor-
mance maps of PCR-GLOBWB and HTESSEL and the daily performance
maps for all large-scale hydrological models (Fig. 15).
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Fig. 5: Performance maps based on KGE for monthly streamflow simulations for HTESSEL (a), OR-

CHIDEE (b), AWRA-L (c) and the multi-model ensemble median (d).
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This research found that all large scale models perform as good or even
better than AWRA-L after comparing runoff simulations with observations.
However, this may be due to the upscaling of the AWRA-L model, which
causes loss of information as modeled output is averaged (Sablok & Haziz,
2008). Especially the variability ratio from the Kling-Gupta Efficiency index
could be negatively affected by this aggregation process. Also, the very bad
performances for the arid climate zones may due to poor respresentation of
hydrological processes for these areas. One possible explanation for the bad
performances in the arid climate zone lies in the models poor representation
of partitioning the net precipitation into infiltration and runoff. Especially in
semi-arid /arid conditions, runoff generated by infiltration excess is dominant
and this process is poorly represented by the majority of the models except
for W3RA and AWRA-L (Table 2). In addition, Arnell (2000) found that the
runoff response in arid/semi-arid environment is very sensitive to alterations
in precipitation. As a result, uncertainties from precipitation fields are prop-
agated to larger uncertainties in simulations for runoff volumes ( Giintner &
Bronstert, 2003).

3.1.2 Actual evapotranspiration

The Tier-1 actual evapotranspiration fields from the four selected large-scale
hydrological models have been evaluated for performance. The selected large-
scale hydrological models are all at 0.5° resolution. To put the results into
perspective, performances for the large-scale hydrological models will be
compared with AWRA-L. For direct comparison of performances between
the large-scale hydrological models and AWRA-L, AWRA-L actual evap-
otranspiration simulations have been upscaled (Sect. 2.3.1) from 0.05°to
0.5° resolution. Furthermore, note that AWRA-L is a calibrated model.

For actual evapotranspiration simulations, monthly time resolution simula-
tions are generally more reliable than daily ones (Table 7).
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Tab. 7: Average evapotranspiration KGE values classified per climate zone in Australia for daily and
monthly time resolutions for all global models, the AWRA-L model and the median of the
global models.

PCR-GLOBWB HTESSEL ORCHIDEE Median AWRA-L

Climate-Zone  monthly daily monthly daily —monthly daily monthly daily monthly daily monthly daily

Aw 0.57 0.45 0.37 0.22 0.76 0.59 0.71 0.45 -0.1 0.17 0.54 0.38

BSh 0.53 0.29 0.44 0.29 0.32 -0.079 0.4 -0.27 0.14 0.13 0.53 0.48
BSk 0.26 0.19 0.77 0.62 0.61 -0.41 -1.25 -1.15 0.48 0.29 0.021 -0.0038

BWh -0.3 -0.26 0.33 0.27 -0.51 -0.49 0.018 -0.28 0.58 0.3 -0.4 -0.41

Cfa 0.3 0.23 0.17 0.18 0.44 0.39 0.4 0.19 0.5 0.2668 0.014 0.073

Cfb 0.44 0.24 0.57 0.32 0.5 0.34 0.39 0.18 0.24 0.09 0.61 0.52

Like for runoff evaluation, we take the average of the KGE values based
on monthly simulations for each climate zone based on main climate group
(tropical, arid, temperate)(Table. 1) by using Eq. 7.

The LSMs have very good (Table 5) performances in the tropical regions
(KGEL et = 0.71 and KGE yymau,, = 0.76). However, for the arid
climate zones, both ORCHIDEE and HTESSEL (LSMs) perform unsatisfac-

tory (Table 5)(KGE jryssp, = 0.14 and KGE e ipps = —0.28) Con-

trary, PCR-GLOBWB (GHM) performs good (Table 5) in the arid climate
zones (KGE pegr_cropws = 0.51). W3RA has on average good scores for the
tropical areas , but lower compared to both ORCHIDEE and HTESSEL(KiGEYV;;gZTl =
0.54). All large-scale hydrological models perform on average satisfying (Ta-

Temperate Temperate

ble. 5) for the temperate climate zone (KGE 354 = 0.37; KGEpor_crosws =

Temperate Temperate

Compared with the national AWRA-L model, performances are comparable
or even better (KGEi%ﬁf?L = 0.54; KGEQ%A,L =0.05; KGE?;T};Z?E =
0.21). However, as mentioned earlier (Sect. 2.3.1), upscaling induces loss in
information (e.g. variability) and this relates to lower KGE values. The
ensemble median has satisfying performances in the arid and temperate cli-
mate zones (K GEgjfimble_medwn = 0.40 and K GEEZT:;%@_WMTL = 0.37),
but performs worse for the tropics than all other simulations (Table 7).

Fig. 6a-d visualizes the distribution of performances for the on average best
performing model (HTESSEL), the worst performing (ORCHIDEE), AWRA-
L and the multi-model ensemble median to give a general idea of how the
performances are spatially distributed across Australia. These figures clearly
show that both ORCHIDEE and HTESSEL perform better in the tropics
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(Fig. 6). AWRA-L has its highest scores in the temperate climates and
the ensemble median performs best in the arid climate zones (Fig. 6). The
remaining monthly performance maps for the other large-scale hydrological
models and performance maps for daily resolution are presented in the Ap-
pendix (Fig. 16). Also, daily time series figures for actual evapotranspiration
for the large-scale models, AWRA-L, the ensemble median and the observa-
tions are made for every observation site separately and are included in the
Appendix (Fig. 16, Fig. 17).

Bad performances in arid /semi-arid climate zones may be explained by dif-
ficulties in partitioning of net precipitation into infiltration and overland
flow in those climate zones. This could result in underestimation of infiltra-
tion excess overland flow and overestimation of actual evapotranspiration. A
possible explanation for the higher scores for the ensemble median could be
that the multi-model ensemble median reduces model structure uncertainty
(Ajami et al., 2007).
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Fig. 6: Performance maps for actual evapotranspiration simulations from the Tier-1 Earth20bserve

based on monthly KGE values for HTESSEL (a), ORCHIDEE (b), AWRA-L (c) and the multi-

model ensemble median (d)
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3.1.3 Soil Moisture - Bias

The Tier-1 EartH20bserve soil moisture estimates from the selected large-
scale hydrological models have been evaluated for performance across Aus-
tralia. The selected models from the Tier-1 Earth20Observe dataset for evalu-
ation are all at 0.5° spatial resolution. Again, AWRA-L serves as benchmark
for the performances of the large-scale hydrological models. This model is
originally at 0.05°, but is upscaled (Sect. 2.3.1) to 0.5°spatial resolution
for direct comparison with the large-scale hydrological models. In addition,
AWRA-L is a calibrated model. For the evaluation of soil moisture, the bias
term is excluded from the original KGE equation (Eq. 5) to overcome the
differences in measurement/modeled depths by the measurements and the
large-scale hydrological models (Sect. 2.4.3).

In general, monthly estimates for soil moisture give higher KGE scores for
all model types for most climate zones in Australia (Table 8). This is an
already known phenomenon in literature (Spruill et al., 2000).

Tab. 8: Average soil moisture KGE values for daily and monthly time resolutions is calculated for
each climate zone. For soil moisture evaluation, the bias term is omitted from the origianl
KGE equation (Eq. 5). Evaluation has been done for the large-scale hydrological models, the
AWRA-L model and the multi-model ensemble median. Due to data availability, AWRA-L has
less evaluated sites. As a result, Csa is not covered by AWRA-L.

PCR-GLOBWB HTESSEL ORCHIDEE Median AWRA-L
Climate-Zone  monthly daily monthly daily monthly daily monthly daily monthly daily monthly daily
Aw 0.42 0.36 -0.23 -0.29 -0.95 -0.64 -0.091 0.037 -0.65 -0.6 -0.047 -0.053
BSh 0.18 0.27 0.61 0.53 0.6 0.34 0.78 0.65 0.61 0.54 0.0051 -0.015
BSk 0.22 0.18 0.33 0.3 0.61 0.52 0.52 0.46 0.73 0.59 -0.0048 -0.03
Cfa 0.17 0.15 0.53 0.42 0.74 0.66 0.62 0.54 0.72 0.63 -0.017 -0.08
Cfb -0.18 0.17 0.46 0.34 0.38 0.31 0.53 0.4 0.58 0.37 -0.029 -0.1
Csa 0.12 0.54 -0.21 -1.01 0.037 -1.13 0.18 0.63 0.13 -0.065 X X

For the next analysis, KGE values from Table 8 are averaged for each main
climate group (Eq. 7) (Table 1. According to Table 4, W3RA has satisfy-

ing scores in the tropical and arid climate zones (K GEK/ZP ;;Zl = 0.42 and
KGE;;;%A = 0.20), while PCR-GLOBWB has good scores in the arid and

satisfying scores for the temperate climate zones (K GE?%C;_G rogwp = 0.47
; K GE@?Z}QT?EO swp = 0.26). However, PCR-GLOBWB performs unsat-

isfying in the tropical climate zone (KGEZ@”;?’GLOBWB = —0.23). HTES-
SEL performs in line with PCR-GLOBWB with good scores in the arid
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climate, satisfying scores in the temperate climate zones and unsatisfying
scores for the tropical climate zone (KGEg;dESSEL =0.61; KGE;?%Z;;L =

0.38 ; KGE e - = —0.95). Like PCR-GLOBWB and HTESSEL, OR-
CHIDEE has good scores in the arid climate zones, satisfying performances
in the temperate climate regions, but unsatisfying performances in the trop-
ical climate regimes (KGEaOT;dCHIDEE = 0.65 ; KGESE@Z%EE = 0.44 ;
> ~-5tropical

KGE,memipps = —0.091) (Table 8).

As mentioned in the general model inter-comparison framework (Sect. 2.3),
performances of the large-scale uncalibrated model runs are compared with
the calibrated AWRA-L model. However, AWRA-L performs unsatisfy-
ing in all climate zones (K GE%f‘%ffzzauempemw < 0.2) (Table 8). More-
over the spread of performances between the different climate zones is very
low. The ensemble median has unsatisfying performances in the tropics
(K GEove = —0.65), while performances are good and satisfying

Ensemble—median
arid

in the arid and the temperate climate zones respectively (K G Eg,, combie—median

0.67 ; KGEEZZZZE—medmn = 0.48). For the arid and temperate climate-

zones, the ensemble median performs as good or even better than each in-
dividual model. However, W3RA and ORCHIDEE perform better for the
tropical climate regions than the ensemble median (Table 8).
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Simulated vs Observed soil moisture for the upscaled AWRA-L model
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Fig. 7: Example of differences in variability between soil moisture observations and AWRA-L simula-
tions due to upscaling

Fig. 8a-d) illustrate the distribution of model performances for soil moisture
estimation throughout Australia. As with actual evapotranspiration evalua-
tion, performance distributions for the best and the worst large-scale hydro-
logical model, the AWRA-L model and the ensemble median are presented
here. KGE values in these Fig. 8a-d are based on monthly time resolution
analysis. The monthly time resolution performance maps for the other large-
scale hydrological models and all daily time resolution performance maps for
the large-scale hydrological models are given in the Appendix (Fig. 18, Fig.
18).

According to Table 8, AWRA-L performs unsatisfying for each climate zone.
As literature demonstrated (Sablok & Aziz, 2008), upscaling model outputs
leads to loss of information. Due to the variability and non-linearity of the
soil moisture state and associated physics, this effect could be severe for the
simulated AWRA-L variability of soil moisture fields. Fig. 7 illustrates the
possible effect of upscaling on the time evolution of soil moisture. Pearsons
correlation values are generally very good for the AWRA-L (Table 16), which
further underpins above mentioned statement.
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(b)

(a)

(d)

(c)
Fig. 8: Soil moisture monthly modified KGE values for ORCHIDEE (a), W3RA (b), AWRA-L (c) and

the ensemble median (d) are presented.
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3.2 Summary Earth20bserve Tier-1 evaluation

Table 9 summarizes the best and worst performing large-scale hydrological
for each main climate group (tropical, arid, temperate) for each evaluated
variable. Also, AWRA-L and the ensemble median are included in this com-
parison.

Tab. 9: Worst and best large-scale hydrological model performances for the Tier-1 Earth2Observe
dataset for runoff, soil moisture and actual evapotranspiration. KGE is used as performance
metric and for soil moisture evaluation, the bias between simulations and observations is ex-
cluded from the KGE equation (Eq. 5).

Best model ‘Worst model
Variable Tropical Arid Temperate Tropical Arid Temperate
Runoff W3RA W3RA/HTESSEL W3RA ORCHIDEE ORCHIDEE AWRA-L
Actual evapotranspiration HTESSEL/ORCHIDEE PCRGLOB-WB HTESSEL Ensemble Median ORCHIDEE ~AWRA-L
Soil moisture W3RA Ensemble median  Ensemble median HTESSEL AWRA-L W3RA

So, for the evaluation of runoff fields, W3RA performed best in the tropical
climate zones. ORCHIDEE obtained the worst scores for this climate zone.
W3RA and and HTESSEL simulations resulted in the best performances in
the arid climate zones, while ORCHIDEE performed worst in this climate
zone. For the temperate climate zone, W3RA performed best and AWRA-L
worst (Table 9). For actual evaporation, the best performances for the tropi-
cal climate zones are obtained by HTESSEL and ORCHIDEE. The ensemble
median obtained the lowest KGE values for this climate zone. For the arid
climate zone, PCR-GLOBWB performed best, whereas ORCHIDEE simula-
tions resulted in the lowest scores for this climate zone. HTESSEL performed
best for the temperate climate zones, whereas the lowest scores for the tem-
perate climate zones are obtained by AWRA-L (Table 9). After evaluating
soil moisture fields, best performances are obtained W3RA for the tropical
climate zones. HTESSEL performed worst for this climate zone. The ensem-
ble median performed best for both the arid and the temperate climate zones,
whereas AWRA-L performed worst in the arid climate zone and W3RA in
the temperate climate zones (Table 9).
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3.3 Calibration of PCR-GLOBWB

In section 3.1.1 we evaluated four large-scale hydrological models. The dif-
ferences found between simulations by the evaluated large-scale hydrological
models are related to model structure uncertainty, because input forcing and
observational data are equal for all large-scale hydrological models from the
Tier-1 Earth2Observe project.

Large-scale hydrological models have a large number of parameters, which
could contain uncertainty. In order to decrease the parameter uncertainty
and increase the reliability of model predictions, calibration and validation of
the large-scale hydrological model is an essential step to improve the ability to
represent the real world processes more accurately. This section is dedicated
to the calibration/validation of PCR-GLOBWB.

Four catchments have been selected based on several criteria, which are men-
tioned in section 2.3.2. For the selection of catchments for PCR-GLOBWB
calibration, a minimum requirement of KGFE > —0.5 is set for the Tier-1
uncalibrated PCR-GLOBWB run to ensure that the model structure is rep-
resenting the hydrological processes sufficiently. We argue that very low KGE
for the values for the uncalibrated PCR-GLOBWB run are due to either a
poor forcing dataset or a poor model structure instead of bad parameteri-
zation of the hydrological model (Sect. 2.3.2) Catchment characteristics for
the selected catchments are listed in Fig. 10.

Tab. 10: Catchment characteristics of the selected catchments used for calibration of the PCR-
GLOBWB model

Name Area (km?) Min elevation (m) Max elevation (m) Climate-zone Mean P (mm) Mean ET,(mm)
Clarence River 16953 12 1560 Cfb/Cfa 1057 1408
De Grey River 53323 22 654 BWh 393 1769
Gregory River 11291 120 432 BSh 501 1753
Roper River 43476 12 439 Aw/Bsh 878 2111

The selected catchments for calibration are distributed over different climate
zones in order to minimize the effect of parameterization of the model for pro-
cesses related to a certain climate zone. As such, this decreases the effect of
the "regionalization problem”, where parameters sets for certain catchments
may not be representative for other catchments. Criteria for the catchment
selection are given in section 2.3.2. The catchments are located in tropical
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(Aw), semi-arid (Bsh), arid (Bwh) and temperate climate zones (Ctb).

For the calibration of PCR-GLOBWB, monthly streamflow data from these
four catchments in Australia are used. The monthly simulated and observed
hydrographs of a subset of catchments are used to infer the parameters,
which might positively influence the performance of PCR-GLOBWB simu-
lations. These are called effective parameters. The monthly simulated vs.
observed hydrographs are used for information regarding the selection of ef-
fective hydrological model parameters. These hydrographs are shown in Fig.
9. Based on these hydrographs, StorCap, K, and J are the selected effec-
tive parameters for the brute-force calibration procedure. Table 11 describes
multiplication factors for the parameters used in the calibration process.

Tab. 11: Parameters used for calibration of PCR-GLOBWB model

Parameter Long name Units Multiplier values
StorCap Storage capacity m3 0.75, 1.00, 1.25
J Base flow recession coefficient — s7! -0.5, 0, 0.5, 1.0
Koot Saturated conductivity m/s -0.25, 0, 0.25

StorCap is storage capacity [m?], Ky is the saturated conductivity [m/s]
and J represents the recession coefficient [s7!]. As mentioned earlier, we de-
fine for these parameter multipliers the min/max values and the increments.
After, all possible parameter combinations are made within a script and these
parameter sets are used as input for several PCR-GLOBWB runs. The KGE
will be used as objective function as it tests the temporal agreement, vari-
ability and the absolute difference between simulations and observations (Eq.
5).

Table 12 provides all parameter combinations with their corresponding KGE
values. Run016 is the reference run and this parameter set has been used
for the EartH2Observe project. This reference scenario has been evaluated
for performance in section 3.1.1 of this thesis. For the calculation of the
average KGE value for each run among the four catchments, we decided to
take KGE values above 0 into account only (Eq. 6). In our opinion, runs
with very bad KGE values for catchments are related to bad model structure
or poor forcing data for those areas rather than wrong parameterization.



3 Results 40

Therefore, no differentiation between bad and very bad performances for
certain catchments in different runs has been made. To exclude this effect,
Eq 6 is used, which is described in section 2.3.3 of this thesis. This research
uses a global calibration procedure, in which one parameter set is sought for
all climate zones (Sect. 2.3.2). Therefore, for each PCR-GLOBWB run, the
average of the KGE value for the selected catchments will be calculated.

As seen in Table 12, run010 has the best performance among these catch-
ments with a KGE value of 0.165. The average KGE value for the run with
the default parameter set is 0.052. As mentioned in section 2.3.2, the range
of behavioral sets is defined as the top 5% of average KGE performances for
parameter combinations. Based on the average KGE column (Table 12), the
top 5% equals 0.1487. As a result, the parameter combination of run000 is
considered behavioral as well.

It is interesting to see how the change in parameter affects average KGE
value among these catchments. Therefore, Fig 10 is made, where KGE val-
ues for all runs for each parameter are shown. A parameter is identifiable
when the average of the objective function (KGE) for all runs changes as
parameters increase or decrease. According to Fig 10, the PCR-GLOBWB
model improves by a decrease in the prefactor value for Ksat. The recession
coefficient prefactor, J, shows a large spread among all runs and is therefore
non-identifiable. The prefactor for the storage capacity parameter (StorCap)
is well identified as generally lower values lead to higher KGE values for all
runs. However, as indicated in Table 12, run010 with prefactor value 1.0
for storage capacity has the highest KGE value. This is also visible in Fig
10. Therefore, the run with f; = 1.0, f, = —0.25 and f; = 1.0 (run010)
is chosen as the calibrated run based on average KGE for the four cho-
sen catchments across Australia. The ranges of behavorial parameters is:
StorCap|0.75 — 1.00], Ksut[—0.25] and StorCap[0.0] (Table 12). If we look at
Table 12, the higher average KGE values are found for f, = —0.25, f; = 0.75.
In fact, for these four selected catchments, there is a bias for PCR-GLOBWB
model performance when using these parameter prefactors. This is also vis-
ible in Fig. 10. However the highest value for average KGE is generated by
run010 and this run will be validated in the next section (Sect. 3.4.1). So,
based on this global calibration strategy, PCR-GLOBWB needs an higher
recession coefficient and a lower Ksat. Firstly, this means that after a storm
event, the model needs to simulate a prolonged decline in streamflow. Sec-
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ondly, a lower multiplier for K,,; means that, during and after a rainfall
event, less infiltration due to less percolation occurs and this results in more
generated runoff in the model (saturation excess overland flow).
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Fig. 9: In fig a-d monthly simulated vs. observed runoff for the 4 biggest catchments in Australia are
shown.
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Tab. 12: Parameter combinations for calibration of the PCR-GLOBWB model for catchments in Aus-
tralia based on monthly streamflow simulations. The optimal parameter combination is indi-
cated in green and the default parameter setting in blue.

Run number Ksat J Storcap average monthly KGE

run000 -0.25  -0.5 0.75 0.155
run001 -0.25  -0.5 1.0 0.103
run002 -0.25  -0.5 1.25 0
run003 -0.25 0 0.75 0.124
run004 -0.25 0 1.0 0.126
run005 -0.25 0 1.25 0
run006 -0.25 0.5 0.75 0.129
run007 -0.25 0.5 1.0 0.146
run008 -0.25 0.5 1.25 0
run009 -0.25 1.0 0.75 0.127
-0.25 1.0 1.0
run011 -0.25 1.0 1.25 0
run012 0 -0.5 0.75 0.113
run013 0 -0.5 1.0 0.028
run014 0 -0.5 1.25 0
run015 0 0 0.75 0.099
run016 0 0 1.0 0.052
run017 0 0 1.25 0
run018 0 0.5 0.75 0.099
run019 0 0.5 1.0 0.078
run020 0 0.5 1.25 0
run021 0 1.0 0.75 0.104
run022 0 1.0 1.0 0.105
run023 0 1.0 1.25 0
run024 0.25 -0.5 0.75 0.098
run025 0.25 -0.5 1.0 0.0085
run026 0.25 -0.5 1.25 0
run027 0.25 0 0.75 0.106
run028 0.25 0 1.0 0.036
run029 0.25 0 1.25 0
run030 0.25 0.5 0.75 0.115
run031 0.25 0.5 1.0 0.058
run032 0.25 0.5 1.25 0
run033 0.25 1.0 0.75 0.137
run034 0.25 1.0 1.0 0.093
run035 0.25 1.0 1.25 0.003

In Table 12, KGE values are averaged over the different catchments and the
parameter set with the maximum average value is chosen as the calibrated
parameter set. Table 13 shows the KGE values for each run and for each
catchment individually. Local optimal runs are indicated in bold and these
runs have the highest KGE value among all runs for that certain catch-
ment. Table 13 shows that run010, which is the calibrated run based on
the global calibration procedure, is also a local optimal run for the Clarence
river catchment, which is located in both the temperate and semi-arid climate
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zone (Table 3). By calibrating PCR-GLOBWB, minor improvements have
been achieved for De Grey catchment, which is situated in the arid climate
zone. Therefore, bad performances for this catchment are either related to
a wrong selection of effective parameters for this climate-zone or caused by
poor forcing data or model structure rather than a sub-optimal parameter
combination for the selected effective parameters.

Tab. 13: KGE performances for monthly streamflow simulations for the reference run together with
PCR-GLOBWRB runs with different parameter settings. Local optimal runs are indicated in

bold
Catchment names | Roper river De Grey river Clarence river Gregory river

Run ID

run016 (reference) -0.308 -0.499 0.151 0.0584
run000 0.0267 -0.441 0.121 0.471
run001 -0.282 -0.595 0.0981 0.314
run002 -0.497 -0.700 -0.172 -0.0489
run003 -0.263 -0.344 0.137 0.357
run004 -0.200 -0.567 0.174 0.330
run005 -0.524 -0.701 -0.122 -0.0466
run006 -0.449 -0.253 0.126 0.390
run007 -0.158 -0.532 0.242 0.343
run008 -0.566 -0.702 -0.0709 -0.0417
run009 -0.474 -0.231 0.102 0.407
run010 -0.0754 -0.529 0.283 0.377
run011 -0.567 -0.701 -0.0385 -0.0299
run012 -0.105 -0.411 0.169 0.282
run013 -0.417 -0.534 0.0588 0.0304
run014 -0.498 -0.630 -0.198 -0.349
run015 -0.126 -0.311 0.174 0.224
run017 -0.535 -0.631 -0.126 -0.338
run018 -0.304 -0.234 0.141 0.256
run019 -0.219 -0.484 0.231 0.0800
run020 -0.557 -0.644 -0.0606 -0.339
run021 -0.370 -0.214 0.0878 0.314
run022 -0.0824 -0.507 0.277 0.142
run023 -0.519 -0.655 -0.0226 -0.340
run024 -0.344 -0.468 0.210 0.181
run025 -0.449 -0.548 0.0339 -0.114
run026 -0.493 -0.634 -0.180 -0.397
run027 -0.150 -0.400 0.194 0.230
run028 -0.360 -0.518 0.143 -0.0584
run029 -0.512 -0.633 -0.0973 -0.386
run030 0.0690 -0.331 0.116 0.274
run031 -0.256 -0.495 0.230 -0.0120
run032 -0.514 -0.646 -0.0268 -0.395
run033 0.175 -0.309 0.00859 0.365
run034 -0.0883 -0.506 0.280 0.0924
run035 -0.452 -0.652 0.0118 -0.378
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Calibration prefactors
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Fig. 10: KGE values for all combinations of calibration prefactors based on monthly runoff fields.

3.4 Validation

3.4.1 Runoff

After run010 has been chosen as the calibrated run, validation of the PCR-
GLOBWB model with this parameter set is needed for all other catchments.
To validate this calibration scenario, performances of the monthly simulated
discharge time series of the PCR-GLOBWB model is evaluated for all other
unimpaired catchments in Australia. Fig. 11 corresponds with KGE values
for monthly time resolution for catchments in Australia using the reference
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run (Fig. 11a) and the calibrated run (Fig. 11b). Validation of the calibrated
PCR-GLOBWB model is performed for all catchments except the ones used
for calibration. If we compare Fig. 11b with the reference run as shown in
Fig. 11a, it is easy to see major improvements for catchments in the tropical,
subtropical and the arid climate zones.
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Fig. 11: Validation of monthly simulated runoff by comparison of KGE values between of the reference
PCR-GLOBWB model (a) and the calibrated PCR-GLOBWB model (b) for catchments in
Australia

In Fig. 12, a scatterplot for catchment KGE values between the uncalibrated
PCR-GLOBWB model run and the calibrated PCR-GLOBWB model run is
shown. This plot excludes the very bad performances (KGE < 0), as these
performances are to a large extent due to poor representation of hydrological
processes or unreliable forcing data. If points on this plot are close to the 1:1
line, no substantial improvements have been made by calibrating the model.
However, points are predominantly located under the 1:1 line, which proves
the success and importance calibrating PCR-GLOBWB (Fig. 12).
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Fig. 12: Scatterplot of KGE value pairs between uncalibrated and calibrated PCR-GLOBWB model
runs for catchments in Australia

Cumulative distribution functions have been made for performances from
all catchments and for performances per climate zone (fig. 13a-d). In Fig.
13a, overall improvements have been achieved for streamflow simulations by
calibrating the PCR-GLOBWB model. The calibrated PCR-GLOBWB run
leads to a decrease of unsatisfying simulations compared to the default pa-
rameter setting. There are fewer really bad performing simulations compared
to the reference uncalibrated run. Taking all climate zones into account, the
reference run has 80% unsatisfying performances, while the calibrated run has
65% unsatisfying performances. Moreover, the calibrated PCR-GLOBWB
model has a comparable amount of good (0.5 < KGFE < 0.7) and very good
(KGE > 0.7) performing simulations as the ensemble median.

Tropical For the tropical climate zones, the calibrated PCR-GLOBWB
model performs unsatisfactory for 55% of its simulations compared to 90%
for the default parameter setting (Fig. 13). The ensemble median has unsat-
isfying results for 55% of its simulations as well. Furthermore, none of the
simulations from the uncalibrated PCR-GLOBWB model could be classified
as good performing, while 15-20% of the calibrated PCR-GLOBWB simula-
tions are good performing for this climate zone (Fig. 13b). The amount of
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good performing streamflow simulations for the calibrated PCR-GLOBWB
run is even higher than the ensemble median (<10%).

Arid According to Fig 13c, the performances have improved after cali-
brating the PCR-GLOBWB model. 80-85% of the simulations performed
unsatisifying compared to 90% for the reference run. There were no good
performing simulations for the reference PR-GLOBWB run, whereas the cal-
ibrated run has approximately 5%. Still, for this climate zone, the ensemble
median performs slightly better than the calibrated PCR-GLOBWB model.

Temperate For the temperate climate zone, performance improvements
have been achieved by calibrating the PCR-GLOBWB model as well. Ac-
cording to Fig. 13d, the calibrated model has 10% less unsatisfying stream-
flow simulations for this climate zone (65% instead of 75%). Furthermore, the
calibrated PCR-GLOBWB model has a 10% increase in good performing sim-
ulations compared to the uncalibrated PCR-GLOBWB model (15% instead
of 5%). Compared to the ensemble median, the calibrated PCR-GLOBWB
model has 5% more unsatisfying simulations. However, calibration of the
PCR-GLOBWB had led to an equal amount of good performing simulations
(fig 13d). This climate zone experienced a global improvement, despite its
mixed uncalibrated performance run (Tier-1 Earth2Observe, Sect. 3.1.1).
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Fig. 13: Cumulative density plots for all climate zones (a), tropical (b), arid (c) and temperate (d).

Improvements for the calibrated PCR-GLOBWB simulations for temper-
ate climate zone catchments compared to the reference run seems logical as
run010 is the local optimal run for the Clarence river catchment, which is
situated in the temperate climate zone. Furthermore, improvements made
for the tropical areas is explained by a higher KGE value for the Roper
river catchment (Aw/BSh) for run010 compared to the reference run. Im-
provements in model performance after calibrating PCR-GLOBWB for the
arid climates are less pronounced, which could be explained by the fact that
run010 has equally bad performance for De Grey River catchment (BWh
climate-zone) as the reference run. Fig. 11 visualizes the KGE values for
both the uncalibrated and the calibrated PCR-GLOBWB model through-
out Australia. This map complements the CDF curves (Fig. 13b-d) for the
different climate zones, as improvements are made primarily in the tropical
and the temperate climate zones. In Table 14, averages for each climate zone
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have been calculated. These averages are compared with the reference run
(run016). As expected, the calibrated PCR-GLOBWB model performs bet-
ter in climate zones for which the model is calibrated. As mentioned in the
calibration subsection (Sect. 2.3.2), four sufficiently performing catchments
(KGE > —0.5) have been chosen from tropical, sub-tropical, arid climate
zones and temperate climate zones. Improvements have been made for all
climate zones, which were used for calibration of PCR-GLOBWB (Aw, Cfb,
BWh and Bsh, local improvement). Also, performances for other climate
zones improved, which is a global improvement. However, many improve-
ments have been made from "very bad” to "bad”. So, one could assume
that weak performances in those areas are due to poor representation of
hydrological processes or unreliable forcing data.

Tab. 14: Reference vs. calibration scenario KGE monthly values for runoff across different climate
zones in Australia.

Climate zone Reference PCR-GLOBWB (run016) Calibrated PCR-GLOBWB (run010)

Am -0.05 0.23
As 0.13 0.31
Aw -0.09 0.18
BWh -1.36 -0.84
BSk -10.57 -8.32
BSh -0.83 -0.42
Cfa -1.63 -0.68
Ctb -1.63 -1.14
Csa -6.87 -6.45
Csb -4.38 -4.28
Cwa 0.03 0.24

3.4.2 Actual evapotranspiration

Taking a look at the influence of PCR-GLOBWRB calibration using stream-
flow observations (run010) from Australia on the performance of actual evap-
otranspiration simulations, it is possible to point out a decrease in perfor-
mance (Table 15). The calibrated PCR-GLOBWB model still simulates the
temporal evolution of actual evapotranspiration, but systematically overes-
timates the actual evapotranspiration quantitities. As a result, KGE values
are lower for all sites. This could be partly explained by a lower prefactor
for saturated conductivity, fr = —0.25 (Fig. 10, Table 12). A lower prefac-
tor for f; leads to less percolation, which increases the soils ability to hold
water, which increases actual evapotranspiration. However, storage capac-
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ity is decreased, but this has less effect on actual evapotranpsiration than
the lower prefactor for saturated conductivity in run010. Fig. 14a-d shows
the actual evapotranspiration time series for two Ozflux sites to illustrate
the overestimation of actual evapotranspiration by run010, which is the cal-
ibrated PCR-GLOBWRB for streamflow. Fig. 14a and Fig. 14c demonstrate
that run010 is able to simulate the temporal dynamics of actual evapotranspi-
ration for these Ozflux sites. However, run010 systematically overestimates
actual evapotranspiration for these two sites. This leads to a bias between
the observations and the actual evapotranspiration field for run010 and this
translates into the lower KGE values than for the default parameter setting.

Concluding, the calibration of a hydrological model for a certain hydrological
variable goes at the expense of the model performance for other hydrological
variables. Therefore, before calibrating a hydrological model, it is important
to keep the purpose of modeling in mind.

Tab. 15: Validation for actual evapotranspiration for the calibrated PCR-GLOBWB model (run010)
reference model (run016) and another behavorial parameter set (run000)

Climate-Zone Monthly Monthly KGE Monthly Monthly KGE
correlation run010 run010 correlation run016 run016
Aw -0.058 -1.47 0.54 0.42
Bsh 0.52 -1.03 0.56 0.54
Bsk 0.88 0.30 0.89 0.77
Aw 0.45 -1.53 0.59 0.16
Cfb 0.66 -1.48 0.97 0.78
Aw 0.32 -0.88 0.75 0.40
Aw 0.10 -1.068 0.78 0.45
Aw 0.32 -2.10 0.99 0.43
Cfb 0.53 -0.59 0.89 0.63
Cfa 0.59 -1.25 0.91 0.17
Bsh 0.62 -0.36 0.77 0.70
Bwh 0.61 -1.50 0.73 0.33
Cftb 0.62 -2.72 0.97 0.12
Cfb 0.41 -0.28 0.73 0.64

Cfb 0.79 0.31 0.97 0.40




3 Results

92

total monthly ET for run010 at Ozf-DaP

160 — 120 — . Totalvmonthly ET for' run01§ at Ozf'-DaP .
140
100
120
80
< 100
§ 5
g 80 £ o0
§ 60 &
u 40
20
20
20
oS ® ® © ) oS ® ® o o
A P P P 0 e o e 2 0P ge® P 0 0 o
D R R o R DR T R R ol SR
time Time
() (b)
160 total monthly ET for run010 at Ozf-Dar 80 Total monthly ET for run016 at Ozf-Dar
“—
70
60
50

ET [mm/month]

ET (mm/d)
S
8

30
20
10
o5 S\ o5 1
e’)‘eg c’l'eg 07’00% (‘10““ “’L“Q% c”'ee% (\10@ &“@ 07’0\} c"@} o"'eo (.100 <\"°“B c"“ee 0,‘_009 (.'qug 07'“““ c.@&“ (\10\} L’l“\}
Woo® »oo® woo® W0 W o® woo® W0 W o® D

time

(c)

Fig. 14: Actual evapotranspiration simulations for the calibrated PCR-GLOBWB at Ozfux site Daly
River Pasture (a) and Ozflux site Daly river Uncleared (c) and PCR-GLOBWB run using

Time

(d)

default parameter setting for Ozfux site Daly river Pasture (b) and Daly river Uncleared (d).

(b).



4 Discussion 53

4 Discussion

The Earth20Observe project aimed to make a 30 year water resources re-
analysis to insights in the full extent of water availability and the existing
pressures t the regional/global scale. In fact, there is a need for large-scale
hydrological modeling in order to make water resources assessments on a re-
gional to global scale for to enhance water management, sustainable water
use and in order to respond to natural hazards in the future. This thesis
has evaluated four uncalibrated global hydrological models: PCR-GLOBWB
(GHM), W3RA (GHM), HTESSEL (LSM) and ORCHIDEE (LSM) for per-
formance. The large scales models are all at 0.5° spatial resolution. In this
research, the national AWRA-L model is used as benchmark for the perfor-
mances of the large-scale hydrological models. AWRA-L is a calibrated model
and at 0.05° spatial resolution and is upscaled to 0.5° for direct comparison
with the large-scale hydrological models. Performance evaluation has been
done for runoff, actual evapotranspiration and soil moisture. This research
used the Kling-Gupta Efficiency index as statistical metric to quantify the
reliability of model simulations. For soil moisture, the bias is excluded from
the original Kling-Gupta Efficiency equation as the large-scale hydrological
models and the observations modeled /measured soil moisture over different
depths.

One of the major findings were that monthly simulations by large-scale hy-
drological models are more reliable than daily simulations. This is observed
for all three hydrological variables and confirmed in literature (Spruill et al.,
2000). For runoff simulations, according to Mutenyo et al. (2013) and Spruill
et al. (2000), monthly simulations are generally better than daily ones due
to the inability of the large-scale hydrological models to capture peak flows.

A second important finding is that this research demonstrated that the en-
semble median of the large-scale hydrological models performed best in trop-
ical regions, whereas ORCHIDEE performed worst in the tropical climate
zones. Both W3RA and HTESSEL performed best in the arid climate zone.
ORCHIDEE performed worst in this climate-zone. Earlier research (Beck et
al., 2016) found that the ORCHIDEE model performed best in cold regions
of the globe, which are not present in Australia, whereas it underestimated
runoff for the other climate zones. For the temperate climate zones, W3RA
performed best for runoff simulations, while the AWRA-L model performed
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worst for runoff for the temperate climate regions.

For actual evapotranspiration, best performances in the tropical climate
zones were obtained by both HTESSEL and ORCHIDEE, whereas the ensem-
ble median performed worst in these climatic regimes. for the arid regions,
PCR-GLOBWB obtained the highest scores after evaluating actual evapo-
transpiration simulations, while ORCHIDEE performed worst for the arid
regions. The temperate climate zones are best represented by the HTES-
SEL, and the worst performances for these climatic regimes are obtained by
AWRA-L. Schellekens et al. (2017) demonstrated that ORCHIDEE tend to
overestimate actual evapotranspiration in high-ET climate zones and these
climate zones mainly occupy the Australian continent. Based on earlier re-
search (Beck et al., 2016 ; Schellekens et al., 2017) and this research, OR-
CHIDEE seems to have difficulties in modeling water limited environments.

For soil moisture, W3RA performed best in the tropical climate zones, while
HTESSEL simulations resulted in the worst performances for the tropical
areas. For both the arid and the temperate climate zones, the ensemble
median obtained the best results. AWRA-L performed worst for the arid
climate zones and W3RA performed worst for the temperate climate zones.
This research demonstrated that performances for GHMs (PCR-GLOBWB
and W3RA) are better in arid climate zones than LSMs after evaluating
actual evapotranspiration fields. However, for both runoff and soil moisture
fields, differences in performances between the large-scale hydrological models
were clearly visible, but not related to whether a model was a GHM or a LSM.

The difference in scales between gridded estimates for the large-scale hydro-
logical models and the point observations could be a potential source for
discrepancies between model simulations and observations. This holds espe-
cially for the comparison of soil moisture and actual evapotranspiration as
streamflow observations are the integrated response of hydrological processes
over a certain area. For soil moisture, which has a high spatiotemporal vari-
ability and which responds non-linear to associated physics (Brocca et al.,
2010), this issue has been partly overcome by removing the bias. As a re-
sult, comparisons are based on soil moisture dynamics rather than absolute
values (Orth et al., 2015) and earlier research found that these soil moisture
dynamics are representative for a larger area around a certain measurement
point (Mittelbach & Seneviratne, 2012). For comparison with the large-scale
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hydrological models, the AWRA-L has been upscaled. According to (Sablok
& Aziz, 2008), upscaling leads to loss of information. In fact, the variability
ratio between simulations and observations, which is evaluated by the KGE,
is primarily affected by averaging of modeled output fields (Wainwright &
Mulligan, 2012). In this research, low KGE (-bias) values have been found af-
ter evaluation of soil moisture fields by AWRA-L. However, high correlation
values are obtained by AWRA-L for the same locations, which underpins
this statement. Important to note, AWRA-L has been forced with a dif-
ferent dataset than the large-scale hydrological models. AWRA-L is forced
with BAWAP at 0.05° resolution, while the large scale hydrological models
are forced by WFDEI at 0.5° resolution.

In order to reduce parameter uncertainty and increase reliability of runoff
fields, PCR-GLOBWB has been calibrated using four catchments in Aus-
tralia. This research used a global calibration strategy, in which one param-
eter set is sought for multiple climate zones. Ky, J and StorCap have been
chosen as effective parameters and the calibrated parameter set is f, = —0.25,
fi = 1.0 and f; = 1.0. To test whether PCR-GLOBWB is succesfully cali-
brated, validation has been carried out for all other catchments in Australia.

The calibration of PCR-GLOBWB has led to an increase in model perfor-
mance for all climate zones. First of all, in the tropical climate zone, only 55%
instead of 90% of the simulations performed unsatisfactory, which is equally
good as the ensemble median. Furthermore, 15-20% of the simulations per-
formed good in this climate zone instead of none for the default parameter
setting and this percentage is even higher than the ensemble median. The
improvements for the arid climate zone was less pronounced, but the PCR-
GLOBWB model obtained 10% less unsatisfying simulations compared to the
uncalibrated run. For the temperate climate zone, the amount of unsatisfying
performances reduced with 10% by calibrating PCR-GLOBWRB. Also, an in-
crease of 10% for good performances compared with default PCRGLOB-WB
run in this climate zone are achieved by calibrating PCR-GLOBWB model.

In this research, during calibration of PCR-GLOBWB, a bias in PCR-GLOBWB
model performance was found for f, = —0.25 and f, = 0.75. In fact, the
parameter prefactor f; = 0.75 has been identified, but f; = 1.0 is used for
calibration as we investigated only the highest average KGE among the four
selected catchments. Therefore, it is important to note that the parameter
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prefactor combination f; = —0.5, f = —0.25, f; = 0.75 could have led to
increased reliability of PCR-GLOBWB runoff fields due to the equifinality
principle, where multiple parameter combinations could lead to satisfying
results. Also, minor improvements have been made for the arid climate zone.
During calibration of PCR-GLOBWB, all model runs for the catchment lo-
cated in the arid climate showed equally bad performance. So, for this climate
zone, the bad performances are either related to a wrong selection of effective
parameters or related to a poor model structure or poor forcing data rather
than having a sub-optimal parameter combination for the selected effective
parameters. According to Weedon et al. (2014), the combination of sub-grid
variability neglection in the forcing of the models and rain gauges located
in valleys only leads to substantial underestimation of rainfall in mountain-
ous regions. So, improvements in forcing data at 0.5° but preferably at finer
resolution could be valuable in order to enhance reliability of large-scale hy-
drological models (Weiland et al. 2015). Also, improvements in large-scale
hydrological model performance can be achieved by using different forcing
datasets (Lopez et al., 2017 ; Mizukami et al. 2013). Often, local calibra-
tion leads to better performances than global calibration (Gaborit, 2015), the
global calibration method used in this research is promising as this technique
imposes spatial consistency to the parameters, which enhances the model’s
applicability for multiple climate zones. Moreover, the global calibration pro-

duces a better temporal robustness (changing climate) than local calibration
(Gaborit, 2015).

Furthermore, the selected calibrated parameter set in this study could be a
local optimum as this research used the brute-force calibration technique, in
which the parameter space is not visited completely during calibration. Pos-
sible improvements can be achieved by using the Shuffled Complex Evolution
(SCE) global optimization algorithm, where a global optimum can reliably
be found (Vrugt et al., 2003). Multiple studies have proven that the SCE
global optimization algorithm is efficient, effective and consistent in finding
the optimal model parameters for a hydrological model (Hogue et al., 2000
; Boyle et al., 2000 ; Sorooshian et al., 1993). However, for complex hydro-
logical models and for large areas, this algorithm is still computationally too
intensive (Sharma et al., 2006). However, a parallel version of this algorithm
managed to reduce the computation time required for automatic calibration
of SWAT (Swayne et al., 2006), which is promising for further research.
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Both for future water management purposes and to cope with natural haz-
ards (droughts, floods) in the future, it is very important to gain insight
in how models perform over different climate zones. This research aimed
to fill this gap in the existing literature. This research demonstrated that
large-scale hydrological models perform equally good er even better than the
upscaled AWRA-L model, which served as benchmark. Also, this research
showed that the calibration of PCR-GLOBWRB has led to a substantial in-
crease in the reliability of runoff fields. As a result, this research might have
implications for developing countries, where a national modeling systems is
absent. These countries rely on large-scale hydrological modeling and benefit
from these evaluation studies. However, it is important to keep the purpose
of modeling in mind before applying a certain large-scale hydrological model
for a specific climate zone. In a flood prone region, reliable streamflow pre-
dictions are of paramount importance, whereas in a farming area reliable
actual evapotranspiration simulations are more important for implementing
potential irrigation measures. This is also related to the variable selection
for calibration of a hydrological model for a specific area as this research
demonstrated that the calibration of a large-scale hydrological model for a
certain hydrological variable goes at the expense of model performance for
other hydrological variables. This thesis focused on gauged catchments only.
However, step-wise calibration of the PCR-GLOBWB model to for example
satellite products as GLEAM actual evapotranspiration and ESA CCI soil
moisture is very valuable for ungauged catchments as it opens the possibility
to improve reliability of streamflow simulations without having streamflow
observations to calibrate the model. Step-wise calibration is promising as it
enhances the applicability of large-scale hydrological models for areas, where
data records are absent. Step-wise calibration procedure has been done in
earlier researches (Sutanudjaja et al., 2014 ; Lopez et al., 2017). So, based
on this research, large-scale hydrological models, especially after calibration
and validation, could be a valuable source for developing countries without
a national hydrological model. Moreover, the global calibration approach
used in this study is promising as it produces spatial consistency of param-
eters and temporal robustness, which enhances applicability and parameter
stability of calibrated hydrological models.
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5 Conclusion

This thesis aimed to evaluate Tier-1 EartH2Observe runoff, soil moisture
and actual evapotranspiration simulations for four uncalibrated large-scale
hydrological models in Australia. Based on this research, several conclusions
can be drawn:

e For actual evapotranspiration fields, GHMs (especially PCR-GLOBWB)
performed better in arid climate zones, whereas the LSMs obtrained
higher scores in the tropical areas. For runoff and soil moisture simu-
lations, differences in model performance was clearly visible, but this
was not related to whether the model was a GHM or a LSM.

e The ensemble median performed as good or slighlty worse than the
best large-scale hydrological after evaluating runoff, actual evapotran-
spiration and soil moisture simulations.

e The evaluated large-scale hydrological models performed similar or even
better than the calibrated benchmark model, AWRA-L, for each eval-
uated hydrological variable. However, the upscaling procedure has led
to detoriation of AWRA-L simulations.

e Validation of the calibrated PCR-GLOBWB model has led to model
improvements for all climate zones compared to the reference scenario.
Moreover, the calibrated PCR-GLOBWB values were for some climate
zones higher than the multi-model ensemble median for that particular
climate zone.

e this research proved that global scale hydrological model could be a
valuable source of knowledge for developing countries without a fine
resolution hydrological model. However, it is important to consider
the purpose of modeling before calibrating and applying a large-scale
hydrological model for a certain area as calibration of the large-scale
hydrological model decreases model performance for other hydrological
variables.

e performances for certain climate zones changed from very bad to bad by
calibrating PCR-GLOBWB, which implies that insufficient simulations
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for those climate zones are due to poor model structure or poor forcing
datasets instead of wrong model parameterization.

e Therefore, improvements in the forcing data globally at 0.5° or prefer-
ably at smaller scales is valuable in order to enhance reliability of large-
scale hydrological models.

e Also, more research needs to be carried out for step-wise calibration
in order to enhance the applicability of large-scale hydrological models.
This is especially valuable for developing countries, where observational
data is often lacking.

e The effect of other calibration techniques for PCR-GLOBWB should be
investigated (e.g. the parallel SCE-UA global optimization algorithm:
Swayne et al., 2006) The SCE-UA algorithm ensures to find a global
optimum reliably and this parallel version reduced the computation
time needed for the automatic calibration of complex models.
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A.1 Runoff

A.1.1 Additional performance maps monthly simulations
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Fig. 15: Additional streamflow performance maps for PCR-GLOBWB (a) and W3RA (b). These
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performance maps are based on monthly simulations.

(b)



73

A Figures and Tables

A.1.2 Performance maps daily simulations
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Fig. 15: Streamflow performance maps for PCR-GLOBWB (a), HTESSEL (b), ORCHIDEE (c),
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A.2 Actual evapotranspiration

A.2.1 Additional performance maps monthly simulations
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Fig. 16: Performance maps for actual evapotranspiration for monthly estimates for PCR-GLOBWB(a)
and W3RA (b).
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A.3 Performance maps daily simulations
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Fig. 16: Performance maps for large-scale hydrological models (PCR-GLOBWB (a), HTESSEL (b),
ORCHIDEE (c), W3RA (d), AWRA-L (e) and the ensemble median (f) for daily resolution

actual evapotranspiration estimates.
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A.3.1 Actual evapotranspiration time series
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Fig. 16: Time series for modeled daily estimates of actual evapotranspiration, observed daily actual
evapotranspiration, and the ensemble median of the large-scale hydrological models. These
timeseries are generated for Ozflux sites located in the tropical climate-zones.
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Fig. 17: Time series for modeled daily estimates of actual evapotranspiration, observed daily actual
evapotranspiration, and the ensemble median of the large-scale hydrological models. These
time series are generated for Ozflux sites located in the arid climate zones.
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Fig. 17: Time series for modeled daily estimates of actual evapotranspiration, observed daily actual
evapotranspiration, and the ensemble median of the large-scale hydrological models. These
timeseries are generated for Ozflux sites located in the temperate climate-zones.
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A.4 Soil moisture

A.4.1 Additional performance maps monthly simulations
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Fig. 18: Additional soil moisture performance maps for PCR-GLOBWB (a) and HTESSEL (b). These
performance maps are based on monthly simulations.
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Fig. 18: Soil moisture performance maps for PCR-GLOBWB (a), W3RA (b), ORCHIDEE (c), HT-
ESSEL (d), AWRA (e) and the ensemble median (e). These performance maps are based on

daily simulations.
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A.4.2 Performance maps daily simulations

B Suplementary Tables

Tab. 16: Pearsons correlation values for soil moisture simulations by the AWRA-L model. These val-
ues are based on monthly time resolution performance evaluation.

Site-Code Climate-Zone | Pearsons monthly Correlation
M1 Cfb 0.60
M2 Cfb 0.69
M3 Cfa 0.80
M4 Cfa 0.83
M5 Bsk 0.87
M6 Bsk 0.85
M7 Bsk 0.79
Y1 Bsk 0.89
Y2 Bsk 0.92
Y3 Bsk 0.90
Y4 Bsk 0.90
Y5 Bsk 0.91
Y6 Bsk 0.64
Y7 Bsk 0.87
Y8 Bsk 0.92
Y9 Bsk 0.89
Y10 Bsk 0.86
Y11 Bsk 0.89
Y12 Bsk 0.90
Y13 Bsk 0.77
K1 Cfa 0.73
K2 Cfa 0.81
K3 Cfa 0.79
K4 Cfa 0.82
K5 Cfa 0.81
K6 Cfa 0.78
K7 Cfa 0.77
K8 Cfa 0.82
K10 Cfa 0.71
K11 Cfa 0.81
K12 Cfa 0.82
K13 Cfa 0.86
K14 Cfa 0.85
Al Cfb 0.78
A2 Cfb 0.87
A3 Cfb 0.86
A4 Cfb 0.87
A5 Ctb 0.80
Site06 Bsh 0.99
Adelaide River Cfb 0.87
Alice Springs Mulga Cfb 0.93
Daly Pasture Aw 0.94
Daly Uncleared Aw 0.94
Dry River Aw 0.94
Fogg Dam Aw 0.09
Howard Springs Aw 0.92
Sturt Plains Bsh 0.88
Wallaby Creek Ctb 0.44
Daly Regrowth Aw 0.96
Otway Cfb 0.88




