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“My greatest concern was what to call it. I thought of calling it ’information,’ but the word was
overly used, so I decided to call it ’uncertainty.’ When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, ’You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechanics under that name, so it already has
a name. In the second place, and more important, no one really knows what entropy really is, so in a
debate you will always have the advantage.’”

C. E. Shannon
“It appears to be a quite general principle that, whenever there is a randomized way of doing some-
thing, then there is a nonrandomized way that delivers better performance but requires more thought.”

E. T. Jaynes
“The ideas I had about supernatural beings came to me the same way that my mathematical ideas did.
So I took them seriously. ”

J. F. Nash, Jr.
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In this Thesis we describe two types of two-player games with binary choices as a realiza-
tion of an Ising system with two spins. We do this for a particular symmetric game, namely
"snowdrift/chicken", and for a particular asymmetric game, the "battle of the sexes". By as-
sociating the energy of a spin configuration with a set of probabilities, through the Principle
of Maximum Entropy, and we express the games as correlated. In the normal Ising model,
these probabilities would describe the probabilities of achieving a final state, but here they
correspond to the probabilities with which the players receive a certain set of information
given by the correlating device, that they can act upon. While this correlation starts off as
externally imposed, we develop a way to include the players choice into new correlated
probabilities. We show that the payoffs that the players obtain by using their choice is al-
ways the same or better when compared to what it would be if they would always follow the
initial correlating device while it is in equilibrium, and that it allows for a better payoff than
the best uncorrelated solution, the mixed strategy equilibrium, when the initial correlating
device is out of equilibrium. Because these are the best payoffs that the players get after they
choose, we renormalize the initial correlating device to one that the players always follow.
We associate these new probabilities with the energies of a renormalized Ising model, that
effectively represents the final statistics of the game, allowing us to treat the problem with
standard tools from statistical physics.
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Chapter 1

Introduction

Alice and Bob met each other one day at a cafe in their street, and they fancied each other,
although their idea of what makes for good entertainment differed. Alice enjoys going to the
cinema, while Bob is crazy for dinossaur exhibitions. Alice told Bob that that night she was
going to watch the new Woody Allen movie in the neighborhood theater, and Bob told her
that he was going to the see the opening of the exposition of the biggest T-Rex skeleton ever
found, down at the Natural History Museum. They departed a bit sad that they couldn’t
manage to sync their agendas for that night, because they wished to spend some more time
together, but didn’t feel comfortable enough to ask the other one to change their plans. So
they both thought of surprising the other one by going into the other one’s activity, without
telling them. However, they still really wanted to go to their own activity, and they didn’t
want to mismatch with the other person, in case they had the same idea, so it was a risky
move. But they wanted very much to make a nice surprise to the other person. How can
they increase their chances of finding each other?

Fast-forward in time, Alice and Bob are now married and driving to visit Bob’s parents.
Alice doesn’t get well with her in-laws, so she is really grumpy. Bob cannot really under-
stand why Alice can’t make an effort to like them, so he’s also not in great spirits. The
weather is bad, the road is full of snow, and the mood is heavy inside the car. While they are
driving, they are forced to stop when they see a small fallen tree blocking the way. It’s freez-
ing cold, so none of them is especially keen to go. Bob first proposes that they both go out
of the car to move the tree. Alice doesn’t want to cooperate, so she is hellbent in deffecting.
"This is ridiculous. If you don’t want to help me, I will stay here too and we will both freeze
to death!", said Bob. "Good, then one day someone will find your bones and put them in
a museum like your beloved dinosaurs!", answered Alice angrily. They both sat quietly in
the car, expecting the other one to take an attitude. Considering it is only strictly necessary
one person to move the tree, that they have equal physical capacity to move it, and that they
refuse to talk to each other, how will they solve this situation?

The above are examples of so called coordination games. The first game is often called
Battle of the Sexes, and is an example of a game in which the players don’t have the same
interest in taking an action - they are asymmetric. The second game is known as Snowdrift,
or Chicken 1, and they have the win or lose the same if they choose the same thing - they are
symmetric. They are called coordination games because their best result comes if they coor-
dinate in a way that is impossible to achieve without communication. However, since the
formal formulation of these games assumes that the players don’t communicate, it becomes
quite a challenge to define a strategy that works for both players.

One of the ways to improve their chances of coordination is with a correlating device,
which improves their chances of matching their responses. This will be an external element
to the players that will give some information to each of the players about a possible out-
come, but the players don’t know what information was given to the other player, although
they know how it can relate with their own extra information.

Given this extra information, which we will define in more strict terms, the players can
act on it or not. They might have a better outcome if they choose carefully how to use this

1The backstory for this name involves cars going against each other; in order for them both not to die, one of
the drivers has to "chicken out", turning away from the collision path. They win the most when only one of them is
the "chicken", but they can never predict what the other one is going to do.
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new information.

The players only have two options to play in each game. We can then look at this game
configuration as a spin system, each action represented as a spin aligned "up" or "down",
and the correlations related with the Ising energy. This defines an initial energy landscape,
but it doesn’t account for the choice of the players as a reaction to the new information. We
want to find a new set of correlated probabilities that, on the game theory side, includes the
probabilities with which a player uses the new information and, on the spin side, defines
Ising energies (which are related with the actual probabilities of finding a certain final state)
that include the players’ best interest. If we can achieve this, we can use Statistical Physics
methods to describe this interaction with a renormalized energy landscape.

People have been looking at how these coordination games are played on networks, and
recent work has been done for asymmetric uncorrelated games (Broere et al., 2017), with
extensive numerical work. To extend this analysis to correlated games, we can use an Ising
model description and statistical physics tools to provide insight on how the numerical anal-
ysis relates with the microscopic behavior of the players, and for that we need to include the
actions of the players into the Ising model that describes it.

The structure of this thesis is as follows. In chapter 2, we firstly explain briefly the Ising
model. Secondly, we elaborate on the principle of maximum entropy, which allows us to
associate to the Ising energies a set of probabilities that can be used in game theory. Then, we
introduce in some detail the game theory concepts necessary to establish our problem, and
finally we describe more concretely how we will relate, through the principle of maximum
entropy, the Ising energies and the game-theoretical structure for our particular games.

In chapter 3, we describe how the players can improve their payoff by introducing proba-
bilities associated with how they use the information that they are given, that we will call the
probabilities to follow or to not follow that information. We show that we can renormalize the
probabilities to represent them as originating from Ising energies. Because the players rely
heavily on the predictability of the game, the choice through the probabilities is bounded by
equilibrium conditions, that delineate how much of a strong response they can have to the
external information. We study how we expect the payoffs to behave at the high and low
temperature limits.

In chapter 4, we do two case studies for the snowdrift game to illustrate what it means
to find the best payoff constricted to our equilibrium conditions, and we do a more succinct
analysis for the BoS game.

In chapter 5, we present the results for the best payoffs obtained with numerical methods
for several values of parameters, for both games.

Finally, in chapter 6 we put the developed work in context. We describe the problems
that it solves, what can be improved upon, and how it can be extended and applied. This
chapter can also be read before the rest of the work.

Throughout, we analyze the two games described above. In the appendices, we also ex-
plore how the players would do if they had different sets of extra information given initially,
and why it is necessary to introduce the probabilities of following as we do.
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Chapter 2

Theoretical Background

2.1 Ising Model

Statistical physics considers physical systems by the different states that they might be in.
To this states, it attributes probabilities of being in one of them, and an energy associated to
to each one.

Magnetism is the phenomenon that describes the attraction between certain materials,
especially iron 1, and a magnet 2, and the phenomenon of attraction or repulsion between
magnets.

The Ising model, developed by Ising’s professor Lenz in 1920, is a mathematical model
to describe ferromagnetism in statistical physics. This model uses the magnetic dipole mo-
ments of atomic spins, which can be described in a binary form as being either 1 or −1,
to form a lattice where spins are, respectively, either "up" or "down". If enough spins are
aligned in in a certain direction, there is a macroscopic magnetic field that is generated and
is responsible for the attraction that we see. What this model introduces is that this field
is generated by energy interactions between neighboring spins, such that, if enough spins
are aligned in a certain direction, all spins will align in that same direction and we are in
presence of a phase transition.

This phase transition is spontaneous under a certain temperature if there is no external
magnetic field (Stoof, Gubbels, and Dickerscheid, 2009), but if we have an external magnetic
field the spins will likely stay aligned with that magnetic field.

Let Λ be the collection of lattice sites, sk ∈ {−1, 1} the value of the spin on site k ∈ Λ. Let
s = (sk) be spin configuration of a system that contains the value of each spin in each site.
Then the energy of the configuration is given by (Huang, 1987)

H(s) = −∑
〈i,j〉

Jijsisj − µ ∑
j

hjsj, (2.1)

where 〈i, j〉 represents a sum over nearest neighbors, µ is the magnetic moment and hj is
the external magnetic field acting on lattice site j. If hj is positive, the spins want to align
up, if it is negative they want to align down, and if it is zero there is no prefered direction
3. The matrix Jij represents the interaction between spins. If Jij is positive the spins will
want to align with each other, creating a ferromagnetism; if it is negative, they will want to
anti-align, creating antiferromagnetism; and if it zero, they don’t interact.

The probability that the system is in one of those states is given by

Pβ(s) =
e−βH(s)

Zβ
, (2.2)

with Zβ called the partition function and defined by

Zβ = ∑
s

e−βH(s), (2.3)

1Iron is ferrum in Latin.
2Traditionally, the first rocks with magnetic properties were found in Magnesia, Northern Greece, and are

named after the region.
3The spontaneous phase transition would happen for this case.
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for β = 1
kBT , T the temperature and kB the Boltzman’s constant.

The partition function can be interpreted as the normalization constant of the probabili-
ties. It contains in itself all the statistical information about the system. The relation between
the probabilities and the energy configurations will become clearer when we describe one
way to achieve that relation through the principle of maximum entropy in the next section.

As we can see, because all the probabilities are normalized, we could have, in principle,
an overall constant energy common to all spin configurations in the system; we will refer to
this energy by E0.

Let us assume that our spin system only has two lattice sites. Let us also assume that
Jij = J and that µhj = µh = B. Here B represents the energy associated with a magnetic field,
and not a magnetic field itself. In this case, we can only have four energy configurations, the
result of combinations with each lattice site having its spin up or down:

H = −E01− J
(

1 −1
−1 1

)
− B

(
1 0
0 −1

)
, (2.4)

where Hµν is the energy associated with the two spins in state α and β, respectively.
The partition function of this system will be given by

Zβ = eβ(E0+J+B) + 2eβ(E0−J) + eβ(E0+J−B), (2.5)

where, inside the brackets in the exponents we find the energy associated with, respectively,
having both spins aligned up, having both spins anti-aligned, and having both spins aligned
down. The associated probabilities to be in each state are each exponential function divided
by this partition function.

Any symmetric matrix Eµν with {µ, ν} ∈ {↑, ↓}, and Eµν = E↑↓, can be decomposed as
eq. 2.4 using

E0 =
1
4 ∑

µ,ν
Eµν;

J = −(E0 − E12);
B = − (E0 + J − E11) = −2E0 + E12 + E11.

(2.6)

2.2 Principle of Maximum Entropy

2.2.1 Physical Motivation

The Principle of Maximum Entropy states that the probability distribution that best represents
a current state of knowledge about the system is that which maximizes the entropy. This
definition was proposed in Jaynes, 1957 and is a very ingenious way to bring together sta-
tistical physics and information theory, by stating that the former is a particular case of the
latter. The consequence of this insight is that, if we assume a reciprocal relation, we can treat
some statistical systems, not necessarily physical, with statistical physics’ formalism.

In the Shannon, 1948 the foundation for what would become known as information theory
is laid down. In it, Shannon postulates that the amount of choice, or uncertainty, associated
with a system for which we know the probabilities p of each event should have the following
form:

Ss(p1, p2, ..., pn) = −K
n

∑
i=1

pi ln pi. (2.7)

To arrive at this equation, he assumes three conditions:

• H should be continuous in pi;

• If all events are equiprobable, such that pi =
1
n and n is the number of events, then Ss

should increase monotonically with the number of events n;
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• If a choice is broken down in successive choices, then the original Ss should be the
weighted sum of each individual Ss.

The first condition is a mathematical convenience. The second condition states that, if
there are more elements to be chosen from, then it is natural that the amount of choice, and
therefore uncertainty, increases. The third condition implies that the final amount of choice
that a system has in the end must be independent from the process that made it so.

To this function Ss that describes the maximum amount of choice, or how disordered the
system is, or how much uncertainty we have on a certain state, Shannon called the entropy
of the system.

This formula of entropy has a striking resemblance with that which was already ubiqui-
tous in statistical physics, namely the Gibbs entropy SG:

SG = −kB

n

∑
i=1

pi ln pi, (2.8)

where pi is the probability associated with each microstate. If all microstates are equally likely
and there are Ω microstates in total, then the entropy is given by the famous Boltzamn’s
formula

SB = kB ln Ω. (2.9)

However, the statistical physics description of entropy in eq. 2.8 comes about from an
identification with thermodynamic concepts, namely the entropy described in the second law
of thermodynamics, which can be postulated in different ways but fundamentally demands
that (Casquilho and Teixeira, 2011)

• In an isolated system, entropy tends to increases:

∆S ≥ 0; (2.10)

• If the system is not isolated and there is an increase in the heat Q then

δQ ≤ TdS. (2.11)

Statistical physics has two postulates that allow the relation between the thermodynamic
and statistical to exist. They are:

• Ergodic Hypothesis: The time average, evaluated over a long enough time period, of a
physical variable of a thermodynamic system is equal to the ensemble average of that
variable in that same system, for the number of particles going to infinity;

• Indifference Principle: In an ensemble that represents an isolated system in thermo-
dynamic equilibrium, each possible state is uniformly distributed over all the accessi-
ble microstates.

With these postulates we start from the probability of reaching each microstate, associate
the energy of each microstate with how likely it is to reach it, and we assume that aver-
ages thus obtained coincide with the macroscopic measurements. In the statistical physics’
formalism, eq. 2.9’s identification as entropy comes as the end point, by realizing that the re-
sults from the established thermodynamic relations between entropy and other observables
(such as internal energy, pressure, volume, etc) are followed for that particular mathemat-
ical description. Hence that these predictions and experiments agree is only an a posteriori
realization, and is heavily dependent on the acceptance of the postulates.

The principle of maximum entropy casts a new light on the mathematical necessity of
defining Boltzman’s Principle as entropy, if the concept of thermodynamic entropy and the
amount of choice or uncertainty in the system are to be the same concept.

One of the postulates of statistical physics assumes a priori probabilities, and Jaynes pro-
posed that that was unnecessary and that the only thing that we could start off with was the
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measured values of the observables, which represented the average values of microscopic
unknown states, and from these try to know how much we do not know about the system.

Starting from the idea that Shannon’s entropy (eq. 2.7) represents the uncertainty associ-
ated with a system that has the same characteristics that a physics system should (positive,
increases with increasing uncertainty and is additive for different sources of uncertainty),
we should try to maximize it under the constraints of the average values. If this quantity is
maximized in this way, then it is guaranteed that no more information than that which we
have is being used.

Jaynes’ programme to try to bring the entropy definition to a starting point of the sta-
tistical physics formalism is as follows: firstly, it is necessary to demonstrate that the maxi-
mization of the entropy predicts a suitable probability distribution; secondly, it is enough to
use the previous step with the measured values of the physical variables and arrive at the
probability distributions predicted by the postulate that we want to make obsolete. Then we
can conclude that the Shannon’s entropy definition is equivalent to the Gibbs’s entropy.

We describe next the most important steps to arrive at this conclusion, expanding some
steps of the calculations in the original paper.

2.2.2 Maximum Entropy Estimates

Let us assume there is a variable x that can only assume discrete value xi = 1, 2, ..., n. We do
not know the initial probabilities pi, only the expectation value of the function f (x):

〈 f (x)〉 =
n

∑
i=1

pi f (xi). (2.12)

We also assume that all probabilities should add up to one:

n

∑
i=1

pi = 1. (2.13)

To find the probabilities pi, we try to find the maximum value of the entropy in eq. 2.7,
by using Lagrange multipliers. To use this, we add and subtract to the entropy expression
the right and left hand sides of eqs. 2.12 and 2.13, multiplied by a constant λi:

Ss = −K
n

∑
i=1

pi ln pi − λ′0

(
n

∑
i=1

pi − 1

)
− λ′1

(
n

∑
i=1

pi f (xi)− 〈 f (x)〉
)

. (2.14)

To find the probability distribution that maximizes H, we derive with relation with pi
and impose that it be zero:

∇p1,p2,...,pn Ss = −K
n

∑
i=1

(dpi ln pi + dpi)− λ′0
n

∑
i=1

dpi − λ′1

n

∑
i=1

dpi f (xi) = 0 (2.15)

⇔ (ln pi + 1) +
λ′0
K

+
λ′1
K

f (xi) = 0 (2.16)

⇔ ln pi = −λ0 − λ1 f (xi) (2.17)

⇔pi = e−λ0−λ1 f (xi), (2.18)

with λ0 =
(

λ′0
K + 1

)
and λ1 =

λ′1
K , which are the Lagrange Multipliers.

Substituting back this expression into eqs. 2.12 and 2.13 we find:
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n

∑
i=1

e−λ0−λ1 f (xi) = 1 (2.19)

⇔
n

∑
i=1

e−λ1 f (xi) = eλ0 (2.20)

⇔λ0 = ln
n

∑
i=1

e−λ1 f (xi) = ln Z(λ1); (2.21)

〈 f (x)〉 =
n

∑
i=1

e−λ0−λ1 f (xi) f (xi) (2.22)

= − 1
Z(λ1)

dZ(λ1)

dλ1
(2.23)

= −d ln Z(λ1)

dλ1
. (2.24)

Z(λ1) = ∑n
i=1 e−λ1 f (xi) is called the partition function and we can re-write probabilities as

pi =
e−λ1 f (xi)

Z(λ1)
. (2.25)

Plugging our newly found expression for the probabilities in the Shannon entropy ex-
pression we find

Smax =
1

Z(λ1)

n

∑
i=1

e−λ1 f (xi) (− ln Z(λ1)− λ1 f (xi)) (2.26)

= ln Z(λ1)− λ1
1

Z(λ1)

n

∑
i=1

e−λ1 f (xi) f (xi) (2.27)

= λ0 + λ1〈 f (x)〉. (2.28)

This can be generalized to any number of functions on the variable x and their averages
〈 fr(x)〉 as the new constraints:

〈 fr(x)〉 = ∑
i

pi fr(xi). (2.29)

Using these constraints, we find

Z(λ1, ..., λm) = ∑
i

e−(λ1 f1(xi)+λ2 f2(xi)+...+λm fm(xi). (2.30)

The probability distribution that maximizes entropy is given by

pi = e−(λ0+λ1 f1(xi)+...+λm fm(xi)) (2.31)

and we can rewrite the constraints as

λ0 = ln Z(λ1, ..., λm); (2.32)

〈 fr(x)〉 = −dZ(λ1, ..., λm)

dλr
. (2.33)

A general formula for the maximum entropy can then be found:

Smax = λ0 + λ1〈 f1(x)〉+ . . . + λm〈 fm(x)〉. (2.34)
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If the functions fr have other dependencies other than x, namely α1, α2, ..., then the aver-
age rate variation of that function with the parameter can also be calculated:

〈
∂ fr

∂αk

〉
= ∑

i
pi

∂ fr(xi)

∂αk
= (2.35)

∑
i

e−(λ1 f1(xi)+...+λm fm(xi))

Z(λ1, ..., λm)

∂ fr(xi)

∂e−(λ1 f1(xi)+...+λm fm(xi))

∂e−(λ1 f1(xi)+...+λm fm(xi))

∂αk
(2.36)

=
1

Z(λ1, ..., λm)
∑

i
e−(λ1 f1(xi)+...+λm fm(xi))

(
− 1

λre−(λ1 f1(xi)+...+λm fm(xi))

)
∂e−(λ1 f1(xi)+...+λm fm(xi))

∂αk

(2.37)

= − 1
λr

1
Z(λ1, ..., λm)

∂

∂αk
∑

i
e−(λ1 f1(xi)+...+λm fm(xi)) (2.38)

= − 1
λr

∂

∂αk
ln Z(λ1, ..., λm), (2.39)

where we used the linearity of the differentiation in the second-to-last line.

2.2.3 Application to Statistical Mechanics

What we just obtained is very similar to what we have in statistical mechanics. Supposing
that we have different states with energies Ei(α1, ...), where αi are parameters on which it
might depend, and we only know about the average energy 〈E〉. Then by maximizing the
eq. 2.7 with K = kB subject to this average we obtain a set of probabilities that can produce
the usual relations in statisitcal mechanics with λ1 = 1

kBT .

Hence, we conclude that both formulations are equivalent: instead of starting with prob-
abilities and arriving at a formula for the entropy that produces these relations, we start with
a formulation for the entropy and end up with the probabilities that produce these same re-
lations, relying on the already measured averages. In this new formalism the temperature
is nothing else than the Lagrange multiplier that guarantees the conservation of the aver-
age energy, and the partition function the Lagrange multiplier that preserves the sum of the
probabilities.

Given this duality, we can use the principle of maximum entropy formalism for any form
of generalized energy, because we are now free to interpret the temperature parameter, as
well as the partition function, and treat it with the relations known from statistical mechan-
ics, even if it isn’t such a system in rigor. We will use this to map the correlations that will
exist in game theory, which expressed as a set of probabilities, to the Ising spin system, in its
turn expressed as the interaction energies between the spins.

2.3 Game Theory

2.3.1 General Definitions

Game theory is a field in Mathematics that deals with the conflict and cooperation of dif-
ferent intelligent and rational agents in relation with each other. A game is defined by its
players, by the options that they can take at each game event, and how much they win given
their choice and the other player’s choices. We will now formalize these elements and other
key concepts, for which we follow the definitions and notation found in Fudenberg and Ti-
role, 1991.

A player i belongs to the finite set of players {1, 2, ..., I}. Each player has a pure-strategy
space Si, by which we mean the options of playing that are available to player i, and payoff
functions ui for each profile of strategies s = {s1, ..., sI}, with si ∈ Si. We will refer to all the
players that are not player i by −i.
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A two-player zero-sum game happens when ∑2
i=1 ui = 0, which means that every time

one of the players wins, the other looses. This is not a necessary situation, and in particular
will not be the situation that we will be dealing with.

A mixed strategy σi is a probability distribution over pure strategies for player i. These
probability distributions are statistically independent of those from the other players. The
payoffs for each player are the the payoffs of each pure strategy weighted by the mixed
strategy probability distribution. The space of mixed strategies is Σ and σi(si) is the proba-
bility that σi assigns to si

4. The payoff of player i under a certain mixed strategy distribution
is then given by

ui(σ) = ∑
s∈S

(
I

∏
j=1

σj(sj)

)
ui(s). (2.40)

Now we introduce the notation to represent what happens if we want to change the
action of player i while maintaining the actions of all the other players, denoted by −i, un-
changed. For that we denote s−i ∈ S−i the pure strategies for all players in the strategy
profile s except i and write

(s′i, s−i) = (s1, s2, ..., si−1, s′i, si+1, ..., sI) (2.41)

for the resulting pure strategy profile. Similarly, we have for the mixed strategy profiles
that

(σ′i , σ−i) = (σ1, σ2, ..., σi−1, σ′i , σi+1, ..., σI). (2.42)

It is important to note that the mixed strategies σi include the pure strategies si, because
the mixed strategies include degenerate distributions: a pure strategy is degenerate and
equal to zero for all pure strategies except for one, which happens with probability 1.

Nash Equilibrium We call the mixed strategy profile σ∗ a Nash equilibrium if for all play-
ers i

ui(σ
∗
i , σ∗−i) ≥ ui(si, σ∗−i) (2.43)

for all si ∈ Si. This means that following the mixed strategy profile σ∗ is always better
than choosing a certain pure strategy, considering the other players are still following that
strategy. Similarly, a pure strategy Nash equilibrium is called s∗ and must satisfy for all
players that

ui(s∗i , s∗−i) ≥ ui(si, s∗−i) (2.44)

for all si ∈ Si. This is called a strict equilibrium if the inequality becomes strict.

Nash equilibria are important because they are consistent predictions of how the game
will unfold, in the sense that if all players predict that a certain Nash equilibrium will occur
then no player has an incentive to deviate from that equilibrium. Another important char-
acteristic is that it is the only type of equilibrium that players can predict and expect that
their opponents will predict, just with the payoff information; each player is independently
dealing only with the basic information of the game and can still arrive at that equilibrium.
Nonetheless, there might be more than one Nash equilibrium in a game, and other factors
might need to be introduced to decide which one will be adopted, for example which of the
equilibria gives the best average payoff or, as a different option, is less risky (less variation
between possible outcomes).

4Since the mixed probabilities are independent among the players, we can define a space Σi of all the mixed
probabilities of player i, to which σi belongs
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2.3.2 Symmetric Games

A symmetric game is a game for which the payoffs are symmetric under player exchange. A
formal way to define these games is, according to Dasgupta and Maskin, 1986, given by

ui(si, s−i) = uπ(i)(sπ(i), sπ(−i)), (2.45)

where π(i) is any permutation of players. In this notation, s is the same strategy profile, so
this means that the payoffs are the same for all players if they keep to what they are playing.

For a game with two players i ∈ {1, 2}, with two pure strategies si ∈ {C, D}, a general
payoff matrix can be seen in table 2.1.

C D
C a, a b, c
D c, b d, d

TABLE 2.1: Symmetric game payoff. The payoffs have the form
ui(si, s−i), u−i(s−i, si), with s the strategy profile corresponding the row and

column.

We can calibrate the payoff matrix by subtracting d to all the payoffs and dividing by
a− d, and we end up with table 2.2.

C D
C 1, 1 s, t
D t, s 0, 0

TABLE 2.2: Symmetric game payoff after calibration. The payoffs have the
form ui(si, s−i), u−i(s−i, si), with s the strategy profile corresponding the row

and column. After the transformation, s = b−d
a−d and t = c−d

a−d .

According with the values of the parameters t and s, we can define four types of games,
with distinct types of Nash equilibria. We will treat the payoffs with the generic label i,
knowing that the payoffs are the same for each player. The pure Nash equilibria can be
easily assessed using eq. 2.44. For this 2x2 game, however, we calculate the mixed strategy
equilibrium by imposing that the payoff of each player be independent of the play of his
choice. From 2.43, we get two conditions:

{
ui(σ

∗
i , σ∗−i) ≥ ui(C, σ∗−i)

ui(σ
∗
i , σ∗−i) ≥ ui(D, σ∗−i).

(2.46)

If A is smaller or equal to B, than it contains B and all the values smaller than B. This
means that if C is also smaller or equal than B, then C has to be equal to A. With this we can
solve the previous system of inequalities, to obtain

ui(C, σ∗−i) = ui(D, σ∗−i) (2.47)
⇔σ∗−i(C)ui(C, C) + σ∗−i(D)ui(C, D) = σ∗−i(C)ui(C, C) + σ∗−i(D)ui(D, D). (2.48)

Assuming that in equilibrium the second player plays C with probability σ∗i (C) = Pi
C

and plays D with probability σ∗i (D) = 1− Pi
C, we have that player i has the same average

payoff by playing either C or D when
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P−i
C + (1− p)s = pt (2.49)

⇔P−i
C ui(C, C) + (1− P−i

C )ui(C, D) = P−i
C ui(C, C) + (1− P−i

C )ui(D, D) (2.50)

⇔P−i
C + (1− P−i

C )s = P−i
C t (2.51)

⇔P−i
C =

s
t + s− 1

, (2.52)

. We see that the equating of the payoffs of one player gives a condition on the probabil-
ity of the other player playing C. Because the players are symmetric, this will also be the
probability that player −i will predict for player i.

We can calculate the average payoffs of our mixed strategy, following eq. 2.40:

〈ui(σ
∗)〉 (2.53)

=ui(C, C)σ∗i (C)σ
∗
−i(C) + ui(C, D)σ∗i (C)σ

∗
−i(D) + ui(C, D)σ∗i (D)σ∗−i(C)

+ ui(D, D)σ∗i (D)σ∗−i(D) (2.54)

=

(
s

t + s− 1

)2
+ (s + t)

(
s

t + s− 1

)(
1− s

t + s− 1

)
(2.55)

=
st

t + s− 1
(2.56)

We now analize the aforementioned four games and their Nash equilibria.

Harmony Game This game is defined by having the parameters 0 ≤ s < 1 and 0 ≤ t < 1,
s.t. the parameters are always between the diagonal values (respectively, 1 and 0). In this
game, both players gain the most if they play C irregardless of what the other player plays,
which means that the highest payoff is always found for CC. The best payoff is at the pure
Nash equilibrium, which we can verify if we use eq. 2.44:

ui(C, C) ≥ ui(D, C). (2.57)

Looking at eqs. 2.52, the mixed strategy only exists if s + t > 1, and, given the values of
the parameters in this game, the best value of the payoff is for s = t = 1, giving a value of 1,
and we can conclude that this is not better than the pure Nash equilibrium.

Prisoner’s Dilemma This game has parameters −1 ≤ s < 0 and 1 ≤ t < 2, s.t. the
parameters are always outside of the interval defined by the diagonal parameters. If we
evaluate the Nash inequalities, we see that only one is true:

ui(D, D) ≥ ui(C, D). (2.58)

Here we do not have a mixed strategy, because the associated probabilities would be
negative.

Stag Hunt This game has parameters −1 < s < 0 and 0 < t < 1, s.t. the former parameter
is outside the diagonal interval but the latter is inside. In this case we can find two Nash
equilibria:

ui(C, C) ≥ ui(D, C); (2.59)
ui(D, D) ≥ ui(C, D). (2.60)

The first occurs because t < 1, so it is always good to play CC when comparing with the
neighboring options, and the second because s < 0, applying the same reasoning to DD.

How can the players agree on which equilibrium to choose? The Nash equilibrium in
DD is risk dominant, which means that it is the preferred action if the actions of the other
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player are very unpredictable. The equilibrium in CC is payoff dominant, because, if chosen,
is what offers the best payoff; nonetheless, it is the most risky because all other three options
represent a lower payoff.

Here again we cannot define a mixed strategy, due to the value of s being negative.

Snowdrift/Chicken This game has parameters 0 < s < 1 and 1 < t < 2, s.t. the former
parameter is inside the diagonal interval but the latter is outside (therefore it represents a
shift by one unit in the value of the parameters from the previous game).

This game has the following pure strategy Nash equilibria:

ui(C, D) ≥ ui(D, D); (2.61)
ui(D, C) ≥ ui(C, C). (2.62)

These Nash equilibria differ from those found in the previous game because they are off-
diagonal, and they are symmetric, which means that we can’t define a pure strategy in C or
D for each player, which in practice means that this information alone doesn’t allow them
to reach the equilibrium states. The best that they can do is play C a number of times, and
D another number of times; but since their payoffs for each play will also be different, the
percentage of times they play each should be predictable and stable, and this is where the
mixed equilibrium comes in.

Here we can always find a value for the mixed Nash equilibrium, with probabilities of
playing C for both players given by eq. 2.52. With this distribution, we get an equilibrium
in the game, that represents the best payoff that the players can obtain if this is the only
information they have on the game.

2.3.3 Asymmetric games

We follow the notation from the symmetric 2× 2 games to introduce the asymetric games.
We will only treat the two player, two play case. We define again the players as i, j ∈ {1, 2}
and now we define that, for each strategy profile s = s1, s2, we have a complementary strat-
egy profile s̄ = s̄1, s̄2, s.t. if si = C, then s̄i = D, and if si = D, then s̄i = C. The bar stands
symbolically for negation. The asymmetry condition in the payoffs can then be put as

ui(si, sj) = uj(s̄j, s̄i). (2.63)

The general payoff matrix for 2× 2 matrix of the games we are interested in has the form
of table 2.4.

C D
C a, b c, c
D c, c b, a

TABLE 2.3: Asymmetric game payoff. The payoffs have the form
ui(si, s−i), u−i(s−i, si), with s the strategy profile corresponding the row and

column.

Subtracting c to all the payoffs and renaming, we end up with the payoffs in table

C D
C 1, s 0, 0
D 0, 0 s, 1

TABLE 2.4: Asymmetric game payoff after calibration. The payoffs have the
form ui(si, s−i), u−i(s−i, si), with s the strategy profile corresponding the row

and column.. After the transformation, 1 = a− c, s = b− s = b− a + 1.

This game is commonly referred to as Battle of the Sexes, and we will work with s > 0.
Looking at the Nash equilibria, we see that it exists for CC and DD, but, despite them being
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diagonal, which would allow us to prescribe a pure strategy for each player, unlike the sym-
metric games here one of the players will do consistently worse than the other, which would
put two rational players out of equilibrium. We thus turn to a mixed strategy equilibrium,
for which we require that the two payoffs are the same for both choices of action, and they
will also be the same for both players.

For σ∗(s) the mixed strategy equilibrium profile, we have σ∗2 (C) = P2
C, σ∗2 (D) = 1− P2

C,
σ∗1 (C) = P1

C, σ∗1 (D) = 1 − P1
C. Equating the payoff of each of the players as a function

of the probability that the other player chooses a strategy, we use eq. 2.48 to calculate the
probabilities as functions of the parameters, and we get:

P2
C =

s
1 + s

; (2.64)

P1
C =

1
1 + s

. (2.65)

(2.66)

The average payoff that they obtain is, according to 2.54,

〈ui(σ
∗)〉 = s

1 + s
. (2.67)

We then see clearly why the "snowdrift" (SD) game, in the case of the symmetric games,
and the "battle of the sexes" (BoS) game are of special interest: the payoffs that they obtain
are very sensitive to what the players choose to play and what information they have on
what the other player is going to play; while in the first three symmetric games the equi-
librium can be found in pure strategies and they can never do better than that, here they
can change how much they win by iterating between pure strategies, which gives room for
improvement if they are given more information - this will come in the form of correlations.

2.3.4 Representation of the probabilities of final states

We can represent, based on the probabilities that a certain player plays something, the prob-
abilities with which a final state is achieved. In a pure Nash equilibrium, we just have that
a certain certain strategy profile will have probability one, while the others will have zero
probability. For the games that use a mixed strategy, we can have a probability distribution
over all the pure strategies, since the probabilities of the final states are just the products of
the the probabilities that each player chooses a play, as shown in tables 2.5 and 2.6 for the
mixed strategy equilibrium profile. These probabilities represent the final states because they
are the probabilities that give the players the best possible payoff with the information they have.

C D
C

( s
t+s−1

)2 ( s
t+s−1

) ( t−1
t+s−1

)
D

(
t−1

t+s−1

) ( s
t+s−1

) (
t−1

t+s−1

)2

TABLE 2.5: Probability distribution over strategy profiles (σ∗) for snowdrift
game in mixed strategy equilibrium.

C D

C
(

1
s+1

) ( s
s+1
) (

1
s+1

)2

D
( s

s+1
)2 ( s

s+1
) ( s

s+1
)

TABLE 2.6: Probability distribution over strategy profiles (σ∗) for battle of
the sexes game in mixed strategy equilibrium. The asymmetry of the game

shows in the fact that the off diagonal probabilities are not the same.
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2.3.5 Correlated Strategies

Until now we considered simultaneous games, where the players decide what each will play
simultaneously. We also considered that they do not talk to each other before making this
decision, that the only information that they have are the payoffs.

We will break one of these premises by assuming that they can have more information
about the game in the form of a correlation. A correlation is a set of probabilities attributed
to each profile of pure strategies. If they are correlated, the probabilities assigned to each
profile of pure strategies cannot be decomposed as a product of probabilities assigned to
each player’s pure strategy, which is what happens in a mixed strategy.

Usually the correlating device selects one strategy profile and informs each player, in-
dependently, what they should play. A very simple example is a traffic light: centrally it is
decided that one way will have green and the perpendicular way will have red, but each
way only sees either red or green; if they know what the rules of their correlating device
is, they can conclude that, if they have a green light, the other way will have red light with
probability one, although the inverse relation is not necessarily true.

Formally, a correlating device is define by Ω, the space with all possible outcomes from
the device; by p, the probability measure on the state space Ω; and by Hi, the information
partition of player i. If the true state is ω ∈ Ω, then player i knows that the true state is in
hi(ω) ∈ Hi. hi(ω) represents the outcomes that player i regards as possible if ω is the true
state. We will consider that ω ∈ hi(ω) and subsequently that hi(ω) = hi, which means that
the true state is always contained in the states that player i assumes are possible with the
available information, so that the player is never wrong in the weak sense that the player
never regards the true state as impossible.

With this information, the player must adapt his information to the information he re-
ceives from the correlating device. Since he only has available a certain information parti-
tion hi(ω), if he knows the correlating device he must infer what the probabilities are that a
certain state is the true state, by using Bayes’ Law 5:

p(ω|hi) =
p(ω)

p(hi)
(2.68)

and p(ω|hi) = 0 if ω /∈ hi.

We now define a strategy that uses this information structure. We will call s(ω) =
{s1(ω), ..., sI(ω)} 6 to the correlated strategy, and we will drop the reference to ω in the
notation. si maps the elements of hi in Hi to the pure strategies si in Si. The new strategies
are adapted to the information structure.

To be able to use these new strategies, we will require that they follow an expended Nash
equilibrium, that we will call correlated equilibrium:

Correlated Equilibrium The correlated strategy s∗ is a correlated equilibrium if for all
players i, all information sets hi and all pure strategies si

∑
{ω|hi(ω)=hi}

p(ω|hi)ui(s(ω)∗i , s(ω)∗−i) ≥ ∑
{ω|hi(ω)=hi}

p(ω|hi)ui(si, s(ω)∗−i). (2.69)

Thus, a strategy is an equilibrium if, given the a priori information, the payoff of each
players is maximized independently from the other players. Eq. 2.69 is a sum over all "true"
states that are possible given the players information, and it means that, weighted by the
probability that a state is actually the true state given the information that each player has,

5We will assume that use hi(ω) = hi . If this was not so, a player might think that a state that is not compatible
with the information he just received was the true state.

6Note that the correlated strategy is represented by a normal s, while the pure strategy is represented by a
mathematical s.
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and that the other players play what that eventual true state prescribes, then their best payoff
happens when they also play according with what that state prescribes.

It is easy to see why this is called an equilibrium: if the players have a better payoff by
playing something else while the rest of the players play as the correlating device tells them
to, then the system is not predictable by the information that we have until now. We have not
made any assumption about symmetry, so this concept can be used for both symmetric and
asymmetric games. If the equilibrium conditions are met, then the average payoff is given
by the average of the left-hand side of eq. 2.69 weighted by the information structures:

〈ui(σ
∗)〉 = ∑

hi

p(hi) ∑
{ω|hi}

p(ω|hi)ui(s(ω)∗i , s(ω)∗−i) (2.70)

= ∑
ω

p(ω)ui(s(ω)∗i , s(ω)∗−i) (2.71)

The mixed strategy profiles can be seen as a particular case of a correlated strategy, in
which the probabilities are indeed separable. Although the strategy can be seen as corre-
lated, the key difference is that the probabilities are not correlated. In this sense, we can use
notation that we just developed here to the probabilities in tables 2.5 and 2.6. It is easy to
see, since the mixed strategy is defined by having that the payoffs are the same when the
players change strategy, that the mixed equilibria correspond to an equality in ineq. 2.69 for
all possible conditions generated.

2.3.6 Traffic Lights: an example about information structure

Let us come back to the traffic light example to make these expressions more clear, exploring
a system that is more complicated than the models we will use, but more connected with
real life. Let’s call G to green, R to red and Y to yellow. The correlating device decides on
a pair of colors, for example YR, where each color is the information that each car receives,
and we call the traffic light the signaling device. The correlating device has a state space that
assigns a color to each of the perpendicular lanes, and so Ω = {GR, YR, RG, RY, RR}. There
is a probability measure p on these states, that is unknown to us, but in a different system it
could be exactly known; in this case, however, we can predict that the highest probabilities
are found for GR and RG, somewhat smaller probabilities for YR and RY and even smaller
for RR, and we also expect that the probabilities are symmetric under direction exchange
(p(GR) = p(RG)).

The first car arrives at a crossroad and sees a green light, so he has information h1(ω) =
GR, while the second car sees a red light and therefore has information h2(ω) = {GR, YR, RR},
which means that, if a car sees a green light, he is certain that the other car is seeing a red
light, but if he sees a red light he cannot say with certainty what the other car is seeing.
From the outside, we can tell that the "true" state is GR, but the players can only know cer-
tain states that make what they see possible; nonetheless, the true state is always within the
states they deem possible.

Let us say that the mapping from hi(ω) to the pure strategy space is that if a player sees
G he crosses the street (go), if he sees Y or R he doesn’t (nogo). Then si, si ∈ {go, nogo}. For
player 2, what the correlating signal tells him to do is s2 = nogo, but his set of options is
still s2 ∈ {go, nogo}. So, for player 2, for s2 = go and h2(ω) = {GR, YR, RR} the correlated
equilibrium is

p(GR)
p2(R)

u2(nogo, go) +
p(YR)
p2(R)

u2(nogo, nogo) +
p(RR)
p2(R)

u2(nogo, nogo) ≥

p(GR)
p2(R)

u2(go, go) +
p(YR)
p2(R)

u2(go, nogo) +
p(RR)
p2(R)

u2(go, nogo),

with p2(R) = p(GR) + p(YR) + p(RR). We don’t need to probe for s2 = nogo because then
s2 = s2 and we have a strict equality, which is naturally within the equilibrium conditions.

Likewse, for player 1 we would have
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p(GR)
p1(G)

u1(go, nogo) ≥ p(GR)
p1(G)

u1(nogo, nogo).

Since p1(G) = p(GR) the condition is that the payoff for player 1 when he goes while the
other stays has to be equal or higher compared with that of both staying where they are.

There are more equilibrium conditions, because there are more possible individual infor-
mation sets. The rest of the information sets would encode more inequalities; therefore, the
correlated system is only in equilibrium if all possible conditions are met.

2.4 Ising Model & Game Theory: Contact points

The games that we have seen so far present coordination problems. For the snowdrift, the
players are symmetrical and as such don’t have incentives to play something different than
each other, but would have a better payoff if they would. For the battle of the sexes, the
situation is opposite: the players have incentives to play different things, but would have
a better payoff if made the same choice. A way of helping these player coordinate is by
introducing correlations, that give them a better probability of ending up at the state that is
difficult to reach.

So, the players can even better if they have a correlating device. Since this device is
defined by a set of probabilities, we can treat our players as follows:

1. Associate each player with a particle with spin, and its spin state with what the player
chose to play, either "up" (+1) for C, or "down" (−1) for D;

2. Associate an Ising energy as given by eq. 2.4 to the system that contains the four pos-
sible states;

3. Use the principle of maximum entropy (PME) to convert the given energies (and their
average) into a probability set, which will be used as our correlation probabilities.

Very importantly, because we showed the equivalence between finding the probabilities
through the PME and just starting out with those probabilities in a statistical physics context,
this prescription can also be used in its inverse, meaning that we could just define a set of
probabilities, deduce what the corresponding energies are assuming the standard statistical
mechanics postulates, and map it onto a spin system. This rationale will be especially rele-
vant later when we introduce the autonomy of the players.

We should state the crucial but subtle difference between the correlations in the Ising
model and in game theory: while the probabilities in the Ising model represent the proba-
bilities of finding a certain final state, the probabilities of the correlating device represent the
probabilities that a certain final state is chosen, and that the information necessary to achieve
that state is communicated to the players. The probabilities of the correlating device do not
necessarily represent the final statistics of the game. Therefore, we need to find a way to
include the players choices in a probabilistic way, and we need to find a new correlating de-
vice that the players will always want to follow, and therefore represents the final statistics.
If this is achieved, these probabilities do correspond to Ising probabilities, and we would
have achieved our goal.

While we deal with symmetric systems, we will be concerned with the snowdrift game.
We set the initial energy matrix of this game as a function of the game’s parameters, as seen
in table 2.7.

C D
C −1 −t
D −t −(t− s)

TABLE 2.7: Hij for the snowdrift game.
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While the energies in this table are somewhat arbitrary, there are some important prop-
erties that it holds:

• If written as a matrix, due to its symmetry it can be decomposed as an Ising system as
in eq. 2.4 with E0 = − 1+3t−s

4 , J = − 1−t−s
4 and B = − 2−2t+2s

4 ;

• The energetic "cost" for one player to go from playing C to playing D is the same in
absolute value as the payoff cost: if the other player plays C it is 1− t, and if the other
player plays D it is s;

• The lowest energy states correspond to the Nash equilibrium states.

Using the PME gives the probability distribution corresponding to the correlating device
(CD) picking out one of the possible states, given the energy associated with each state, as
function of a temperature-like parameter, which we will refer to simply as temperature T = 1

β ,
described in the inverse units of those of our energy and corresponding to the inverse of
our Lagrange multiplier, which is β7. This temperature is characteristic of the system, and
both the players and the correlating device operate under the same temperature at a given
moment. Then we have, in practice, a continuum of correlation matrices for each set of
energy parameters (s, t), due to the continuous nature of the temperature, which ranges
between 0 and +∞.

The correlation matrix (CM) provided by the CD when the PME is applied through equa-
tion 2.25 to the energies in table 2.7 is shown in table 2.8.

C D
C eβ/ZB eβt/ZB
D eβt/ZB eβ(t−s)/ZB

TABLE 2.8: Correlation probabilities for snowdrift game, given the energies
of table 2.7.

The partition function is ZB = eβ + 2eβt + eβ(t−s).

Likewise, for the BoS game we define an energy matrix given in table 2.9, which can be
transformed into the set of correlated probabilities in table 2.10.

C D
C −s− 1 0
D 0 −s− 1

TABLE 2.9: Hij for the battle of the sexes game.

C D
C eβ(s+1)/ZS 1
D 1 eβ(s+1)/ZS

TABLE 2.10: Correlation probabilities for battle of the sexes game, given the
energies of table 2.9.

Here the partition function is the ZS = 2eβ(s+1) + 2.
Using the language of game theory, the space of states is Ω = {CC, CD, DC, DD} and

the one chosen by the correlating device will be ω with probabilities shown in table 2.8,

7In normal statistical physics, this unit normalization role is played by the Boltzman constant, which has units
JK−1, corresponding to the inverse of the units of E[J]

T[K] . In this situation, it is sufficient to absorb this function in the
"temperature" quantity
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which can be refered to as p(ω). This allows us to treat this as game theoretical system.
The correlating device tells them to play C or D; in the first case their information set it
hi = {CC, CD} and in the second hi = {DC, DD}. As such, we must define the correlated
equilibrium conditions, following eq. 2.69. We end up with

p(CC)
p1(C) u1(C, C) + p(CD)

p1(C) u1(C, D) ≥ p(CC)
p1(C) u1(D, C) + p(CD)

p1(C) u1(D, D);

p(DD)
p1(D)

u1(D, D) + p(DC)
p1(D)

u1(D, C) ≥ p(DD)
p1(D)

u1(C, C) + p(DC)
p1(D)

u1(C, D).

p(CC)
p2(C) u2(C, C) + p(DC)

p2(C) u2(D, C) ≥ p(CC)
p2(C) u2(C, D) + p(DC)

p2(C) u2(D, D);

p(CD)
p2(D)

u2(C, D) + p(DD)
p2(D)

u2(D, D) ≥ p(CD)
p2(D)

u2(C, C) + p(DD)
p2(D)

u2(D, C).

(2.72)

Here, p1(C) = p(CC) + p(CD), p1(D) = p(DC) + p(DD), p2(C) = p(CC) + p(DC) and
p2(D) = p(CD) + p(DD).

For SD, given the symmetry of the system, the equilibrium conditions for player 1 are
the same as for player 2, so we only have two conditions:

 p(CC) + p(CD)s ≥ p(CC)t

p(DC)t ≥ p(DC) + p(DD)s
(2.73)

⇔


eβ + eβts ≥ eβt

eβtt ≥ eβt + eβ(t−s)s
. (2.74)

The first line makes sure that, if a player is told to play C, that it indeed plays as told. The
second line does the same for when the player is told to play D. We will refer to these con-
ditions as the first correlated quilibrium condition and the second correlated quilibrium
condition.

For the BoS game, because there is some relation between the players, namely an asym-
metric one, we can still reduce the correlated equilibrium conditions from four to two, since
the first condition is the same as for the fourth and the second the same as the third:

 p(CC) ≥ p(CD)s

p(DD)s ≥ p(DC)
(2.75)

⇔

 eβ(s+1) ≥ s

eβ(s+1)s ≥ 1
. (2.76)

Here, the first condition stands for the first player playing C when it is told to and for the
second player playing D when it is told to, while the second condition represents the same
if we interchange C and D.

We must make sure that the inequalities in 2.74 and 2.76 are true, when we are analyzing
the respective game. If they are not, then one of the players might play something else while
the other sticks to the correlating device, which brings the system out of an equilibrium and
we stop being able to calculate an average payoff, and therefore the system won’t be statis-
tically predictable anymore.

As we will see, these specific equilibrium conditions only be stable up to a certain temper-
ature. Nonetheless, while it is stable, the payoffs are higher than that of the mixed strategy,
which is what they obtain if they don’t use the correlation matrix at all. When we introduce
the freedom for players to deviate from the correlating device, the temperature can be arbi-
trarily high. Give this freedom, we will see that the mixed strategy corresponds to having
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an infinitely high temperature.
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Chapter 3

Model to Improve Payoffs

We now arrive at the core of this thesis. The question that we are interested in answering is:
can the players have a better payoff than the mixed strategy payoff and than what they
get if they just follow the correlating device, while still using it?

We consider that we have a better payoff if the average payoff of a player using a set of
probabilities is higher than that found with a different set. In the cases that we will see, both
players will have the same average payoff, so we can compare the payoff of an individual
player. In the generalized case that each player has different average payoffs, we would
compare the sum of the averages of the payoffs of the two players.

3.1 Previous Approaches

If we want to use the correlating device and treat in the language of Ising spins that leads
to an energy Hµν, the apparently most natural way to introduce some player freedom is
by changing the magnetic field energy B. Using the spin description, the freedom of the
players would be encoded in some extra magnetic field that they would apply to their spin
particle. One way of achieving this is by allowing the players to make a decision, look at
the final state, and encode the players decision in some added or subtracted magnetic field
term corresponding to the final state, as shown in table 3.1, where B1 and B2 are parame-
ters that correspond, respectively, to players’ 1 and 2 final choices. Upon applying again
the maximization of entropy, we have a new correlation matrix, shown in table 3.2, where
Znew = eβ(1+B1+B2) + eβ(t+B1−B2) + eβ(t−B1+B2) + eβ(t−s−B1−B2).

C D
C −1− B1 − B2 −t− B1 + B2
D −t + B1 − B2 −t + s− B1 − B2

TABLE 3.1: Energy matrix with introduction of magnetic field parameter.

C D
C eβ(1+B1+B2)/Znew eβ(t+B1−B2)/Znew
D eβ(t−B1+B2)/Znew eβ(t−s−B1−B2)/Znew

TABLE 3.2: Probability matrix for energies of table 3.1.

This approach was initially developed in (insert mpampis reference). To obtain these new
energies we need to add B1 − B2 to J and B1 + B2 to B. If the two new magnetic energies are
the same, which makes sense in the case of symmetric games, then only the magnetic energy
is changed.

If these new probabilities take into account what the players want to play, it is by at-
tributing a plus sign to the parameter if they played C and a minus sign if they played D.
However, what they do exactly is changing the correlating device probabilities so that playing C
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is more likely than playing D, comparing with the initial correlations.

One problem with this introduction, for our purposes, is that the new magnetic field
parameters cannot be introduced independently by the players, meaning that the correlat-
ing device is not just used, but it has to be changed in the first place to arrive at this form.
This change in the correlating device either happens spontaneously, or because the players
informed it that they would like subject to this new set of probabilities. In the latter, the
players’ freedom is obviously compromised.

This is still an interesting problem on its own, and in appendix B we use the optimization
tools that we will develop shortly to optimize the payoffs of the players, looking at it as the
generalization of an initial correlating device. There we show that it is a better model than
the initial correlating device because the magnetic parameter allows for stability through
the whole range of temperatures, and it converges to the mixed strategy equilibrium in high
temperatures. The payoffs using this correlation will also be better or equal than the previous
one. We show in appendix A that this new correlating device is indeed only a quantitative
extension of the old one, for the particular case that the correlating device changes the like-
lihood of CC in relation to DD, but does not allow, in a strict sense, that the players deviate
from the original correlating device’s recommendation, as we would like them to.

3.2 Follow/Not Follow model

The overall goal is that the players can use the correlation matrix to have better payoffs than
those obtained if they just follow the original correlating device, or if they don’t use any
form of correlation. We must make clear what we mean by "follow".

We define the probability that a player i always plays according to what the correlating
device (CD) says, or the probability of following, by Pi

F. If this is in response to the CD telling
him to play C, we have Pi

FC
, and if it is in relation with D we have Pi

FD
. More precisely, it is the

probability that a player ends up playing something given that that was the instruction, or
Pi

FC
= Pi(playC|C) and Pi

FD
= Pi(playD|D). This is an approach that has two main important

and useful features: on the one hand, it is introduced independently by the players, while
the CD probabilities remain intact; on the other hand, it uses the correlations of the CD by
interacting with them, by reacting to its output.

Because there are only two options for the players to play, and not playing is not possi-
ble, we can also define the probabilities of not following a certain instruction, PNF, which
correspond to Pi

NFC
= Pi(playD|C) and Pi

NFD
= Pi(playC|D). Each one of these probabilities

is player-dependent, indicated by the label i.
If the original CD is within correlated equilibrium conditions, then we know that the

players will have an interest in playing according to the instructions, insofar as they only
have a binary choice: either PF = 0 or PF = 1, for both C and D.

Thus, we have in our hands the tools to work out the probability that a certain final
configuration will be achieved, by relating what information each player receives from the
CD with their response to it.

The reaction of each player to what they are told to play should be independent from the
reaction that they would have if they were told to play something else, to account for the
fact that that is the only information they have. Also, because the players choice must be
independent of each other, we impose that

Pi
FC

+ Pi
NFC

= 1; (3.1)

Pi
FD

+ Pi
NFD

= 1. (3.2)

Alternatively, we can have that

Pi
µ←µ′ = δµµ′P

i
Fµ′

+ (1− δµµ′)(1− Pi
Fµ′

), (3.3)
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with player i ∈ {1, 2} playing µ after the CD tells him to play µ′ ∈ {C, D}. Although the
player indices are redundant will prove themselves redundant, we leave them for clarity.

With this definition, we can say that the state in which they end up is a result of how they
act in relation to how they were told to play. A player ends up playing C, for example, if he
is either told to play C and does so, or is told to play D and does the opposite. This can be
represented by

Pi
µ = ∑

µ′∈{C,D}
Pi

µ←µ′ ∑
ν′∈{C,D}

p(µ′ν′). (3.4)

This equation considers the four possible "true" states, what they convey to player i and how
this player reacts to it. It is easy to see that if PFµ′

= 1, then Pi
µ←µ′ = δµµ′ , and equation 3.4

reduces to the probability that the CD suggests that player i plays µ. Thus, we can say that
this is a generalization of the original role of the correlating device, and we have a way to
introduce a probabilistic choice from the part of the players.

Because we only have tools to work with a correlating device in which the players always
follow, under correlated equilibrium, formally we have to treat the introduction of the new
probabilities as the creation of a new correlating device. In other words, whatever the correlat-
ing device is, it has to be able to tell us information about the final state of the system. If this
new correlating device is submited the follow/not follow probabilities again, it is always
followed.

The new renormalized probabilities of ending up in a certain state, which will have the
index R, of our new correlating device (CDR) can therefore be stated as follows 1:

pR(µν) = ∑
µ′ ,ν′∈{C,D}

C12
µ′ν′ p(µ

′ν′) = ∑
µ′ ,ν′∈{C,D}

P1
µ←µ′P

2
ν←ν′ p(µ

′ν′). (3.5)

Assuming the normalization of p(µν), which is guaranteed by the way it is generated
through the PME, we can show that the normalization in eqs. 3.1 and 3.2 proves that pR(µν)
is normalized:

∑
µ,ν

pR(µν) = ∑
µ,ν

∑
µ′ ,ν′

P1
µ←µ′P

2
ν←ν′ p(µ

′ν′)

= ∑
µ′ ,ν′

(P1
C←µ′ + P1

D←µ′)(P2
C←ν′ + P2

D←ν′)p(µ′ν′)

= ∑
µ′ ,ν′

(P1
Fµ′

+ P1
NFµ′

)︸ ︷︷ ︸
1

(P2
Fν′

+ P2
NFν′

)︸ ︷︷ ︸
1

p(µ′ν′)

⇔∑
µ,ν

pR(µν) = ∑
µ′ ,ν′

p(µ′ν′) = 1. (3.6)

This is a very nice result, because it indicates that we have found a transformation that
preserves the sum of certain elements. If we want to put this in matrix notation, we can
consider that the four probabilities are the components of a vectors,

~p = (p(CC), p(CD), p(DC), p(DD)) ; (3.7)

~pR =
(

pR(CC), pR(CD), pR(DC), pR(DD)
)

. (3.8)

The transformation that acts on the first set of probabilities to give the second is then
given by the following transformation matrix:

1The sum of 3.5 over ν gives 3.4.
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~~T =


P1

FC
P2

FC
P1

FC
P2

NFD
P1

NFD
P2

FC
P1

NFD
P2

NFD
P1

FC
P2

NFC
P1

FC
P2

FD
P1

NFD
P2

NFC
P1

NFD
P2

FD
P1

NFC
P2

FC
P1

NFC
P2

NFD
P1

FD
P2

FC
P1

FD
P2

NFD
P1

NFC
P2

NFC
P1

NFC
P2

FD
P1

FD
P2

NFC
P1

FD
P2

FD

 (3.9)

=

(
P1

FC
P1

NFD
P1

NFC
P1

FD

)
⊗
(

P2
FC

P2
NFD

P2
NFC

P2
FD

)
(3.10)

This matrix has the properties characteristic of transformation matrices that preserve the
sum of the elements, and it is called a stochastic matrix. This feature is explored in appendix
B.

The fact that this transformation can be expressed as eq. 3.10 reflects that we want the
decisions of each player to be independent from one another. There is no extra correlation
inserted in this transformation, as we will demonstrate shortly.

3.2.1 Follow/Not Follow Probabilities

We now need a form for PF and PNF. To achieve that, we will again use PME on a set of
energies that reflects their choice. Thus, each type of reaction will have an energy associated:
either −Bi

µ if they follow µ, or +Bi
µ if they do not follow:

Bi
µ←µ′ = −δµµ′B

i
µ + (1− δµµ′)Bi

µ, (3.11)

With this, we have the following probabilities:

Pi
Fµ

=
eβBi

µ

Zi
µ

, Pi
NFµ

=
e−βBi

µ

Zi
µ

, (3.12)

where Zi
µ = eβBi

µ + e−βBi
µ . These equations obey eq. 3.3, and, being defined in terms of

probabilities, we can work easily with them and the original probabilities of the CD in tables
2.8 and 2.10.

We can rewrite eq. 3.3 using eqs. 3.12 and 3.11:

Pi
µ←µ′ =

δµµ′ e
βBi

µ′ + (1− δµµ′)e
−βBi

µ′

Zi
µ′

(3.13)

=
e
−βBi

µ←µ′

Zi
µ′

, (3.14)

such that

∑
µ

e
−βBi

µ←µ′ = e
−βBi

C←µ′ + e
−βBi

D←µ′ = Zi
µ′ (3.15)

We called the new probability parameters Bi
µ but this must not be confused with the B

definition in eq. 2.6.

By transforming our probabilities p(ω) into pR(ω), we end up with a set of new proba-
bilities to which we can attribute a set of new energies HR

µν for which, if applied the PME,
yield the exact same probabilities.

This we can express as
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pR(µν) =
e−βHR

µν

ZR
. (3.16)

Using eq. 3.5, we can find what our renormalized Ising energies are:

HR
µν =− 1

β
ln
(

ZR pR(µν)
)

(3.17)

=− 1
β

ln

∑
µ′ ,ν′

P1
µ←µ′P

2
ν←ν′ p(µ

′ν′)

− 1
β

ln (ZR) (3.18)

=− 1
β

ln
(

P1
µ←CP2

ν←C p(CC) + P1
µ←CP2

ν←D p(CD) + P1
µ←DP2

ν←C p(DC) (3.19)

+P1
µ←DP2

ν←D p(DD)
)
− 1

β
ln (ZR) .

Introducing eq. 3.14 and a generalized version of the correlation probabilities, for which
we will relate with the energies εµν, with associated partition function Zε, we get a simplified
version of our renormalized energies:

HR
µν =− 1

β
ln
(

ZR
Zε

)
− 1

β
ln

 e−β
(

B1
µ←C+B2

ν←C+εCC

)
Z1

CZ2
C

+
e−β

(
B1

µ←C+B2
ν←D+εCD

)
Z1

CZ2
D

+

e−β
(

B1
µ←D+B2

ν←C+εDC

)
Z1

DZ2
C

+
e−β

(
B1

µ←D+B2
ν←D+εDD

)
Z1

DZ2
D

 (3.20)

=− 1
β

ln

(
ZR

ZεZ1
CZ1

DZ2
CZ2

D

)

− 1
β

ln
(

Z1
DZ2

De−β
(

B1
µ←C+B2

ν←C+εCC

)
+ Z1

DZ2
Ce−β

(
B1

µ←C+B2
ν←D+εCD

)
+

Z1
CZ2

De−β
(

B1
µ←D+B2

ν←C+εDC

)
+ Z1

CZ2
Ce−β

(
B1

µ←D+B2
ν←D+εDD

))
. (3.21)

(3.22)

We can absorb the first term in eq. 3.22 by imposing that

ZR = ZεZ1
CZ1

DZ2
CZ2

D, (3.23)

and we can rewrite everything in a more compact notation:

HR
µν = − 1

β
ln

∑
µ′ν′

Z1
µ̄′Z

2
ν̄′ e
−β
(

B1
µ←µ′+B2

ν←ν′+εµ′ν′
) . (3.24)

Here the bar indicates the oposite play, so that C̄ = D and D̄ = C.
We should verify independently that 3.23 is indeed the partition function associated with

HR
µν. Plugging eq. 3.24 in eqs. 3.6 and 3.16, we have
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∑
µν

e−βHR
µν

ZR
= 1⇔ ZR = ∑

µν

e−βHR
µν (3.25)

⇔ ZR =∑
µν

∑
µ′ν′

Z1
µ̄′Z

2
ν̄′ e
−β
(

B1
µ←µ′+B2

ν←ν′+εµ′ν′
)

= ∑
µ′ν′

Z1
µ̄′Z

2
ν̄′ e
−βεµ′ν′ ∑

µ

e
−βB1

µ←µ′

︸ ︷︷ ︸
Z1

µ′

∑
ν

e−βB2
ν←ν′︸ ︷︷ ︸

Z2
ν′

= ∑
µ′ν′

Z1
µ̄′Z

2
ν̄′Z

1
µ′Z

2
ν′ e
−βεµ′ν′ . (3.26)

Because there are only two values for µ′ and ν′, Z1
µ̄′

Z2
ν̄′

Z1
µ′Z

2
ν′ becomes independent of

the indices and equal to Z1
CZ2

CZ1
DZ2

D. Introducing this result in eq. 3.26, we get

ZR = Z1
CZ2

CZ1
DZ2

D ∑
µ′ν′

e−βεµ′ν′ = Z1
CZ2

CZ1
DZ2

DZε. (3.27)

In the last step we use the definition of the partition function as generated directly by the set
of energies εµν through PME.

We then see that the partition function that we obtained by imposing that the constant
term vanish in eq. 3.23 is indeed the partition function of our new set of energies.

3.2.2 Follow/Not Follow for several CDs

In what follows we analyze several particular cases of εµν, to which we make correspond the
set of probabilities pε(ω). We will analyze firstly pε(ω) = p0(ω) = 1

4 , which corresponds
to εµν = C0. This energy distribution is equivalent to having an energy distribution that,
when represented as an Ising energy, is simply H0

µν = E0. This is a particular case of an
uncorrelated energy distribution.

Next, we study a more general set of uncorrelated probabilities (and energies), for which
pε(ω) = pUn(µν) = P1

0 (µ)P2
0 (ν). In this case, the starting point is a separable set of proba-

bilities, also described as a mixed strategy. The particular cases of interest will be the mixed
strategy equilibria σ∗ that we found for the SD game and the BoS game. We will connect
these with the high temperature limits.

Finally, we will analyze what happens for pε(ω) = p(ω) as defined in tables 2.8 and 2.10,
as particular cases of truly correlated sets of energies. Here we will study the effect on the
final probabilities and payoffs when the players have a choice on top of a correlated set of
probabilities. We will see the extremely correlated case of low temperature.

Equal initial energy for all states For p0(ω) = 1
4 , the probability that a player plays in a

certain way becomes, from eq. 3.4,

Pi
µ =

1
2 ∑

µ′
Pi

µ←µ′ =
1
2

(
Pi

Fµ
+ Pi

NFµ̄

)
=

1
2

(
1 + Pi

Fµ
− Pi

Fµ̄

)
(3.28)

since the sum over ν′ is just 1
2 .

In eq. 3.28 we see that a homogeneous initial energy distribution still allows for a differ-
ent final probability distribution.

Using this, we can get a simple expression for the new energies:
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HR0
µν =− 1

β
ln

1
4 ∑

µ′ ,ν′
P1

µ←µ′P
2
ν←ν′

− 1
β

ln (ZR) (3.29)

=− 1
β

ln
(

P1
µP2

ν

)
− 1

β
ln (ZR) (3.30)

=− 1
β

ln
(

P1
µ

)
− 1

β
ln
(

P2
ν

)
− 1

β
ln (ZR) (3.31)

For each particular state we find
HR0

CC = − 1
β

(
ln
(

P1
C
)
+ ln

(
P2

C
)
+ ln (ZR)

)
HR0

CD = − 1
β

(
ln
(

P1
C
)
+ ln

(
P2

D
)
+ ln (ZR)

)
HR0

DC = − 1
β

(
ln
(

P1
D
)
+ ln

(
P2

C
)
+ ln (ZR)

)
HR0

DD = − 1
β

(
ln
(

P1
D
)
+ ln

(
P2

D
)
+ ln (ZR)

) . (3.32)

We see here that in this case the energies add up and are the energies for the uncorrelated
game, which is best solved with a mixed stratey. Thus, the best payoff at these energies has
to correspond to the mixed strategy equilibrium.

Uncorrelated initial energies For pUn(µν) = P1
0 (µ)P2

0 (ν), we can again calculate the prob-
ability that a player chooses a certain play:

Pi
µ = ∑

µ′
Pi

µ←µ′ ∑
ν′

Pi
0(µ
′)Pj

0(ν
′) = ∑

ν′
Pj

0(ν
′)︸ ︷︷ ︸

1

∑
µ′

Pi
µ←µ′P

i
0(µ
′) = ∑

µ′
Pi

µ←µ′P
i
0(µ
′). (3.33)

In this way, the renormalized probability distribution is also separable:

pRUn(µν) = ∑
µ′ ,ν′

P1
µ←µ′P

2
ν←ν′ p

Un(µ′ν′) (3.34)

=∑
µ′

P1
µ←µ′P

1
0 (µ
′)∑

ν′
P2

ν←ν′P
2
0 (ν
′) (3.35)

=P1
µP2

ν . (3.36)

Because the uncorrelated structure is the same, we obtain the renormalized energies with
3.31.

This same result can represent the mixed strategy solutions for the SD and BoS games.
Since the players have the highest payoff when they play those probabilities with probability
one (in other words, they always follow the mixed strategy), pRUn = pUn. This distribution also
prescribes the same probability for both players under the same choice, due to the intrinsic
symmetry of the game. This means that the renormalized probabilities are symmetric, which
should also extend to the probabilities of following and not following. This will be useful
as guideline for what form the probabilities should have in a limit when, starting from a
correlated initial system, the parameter temperature allows for the initial probabilities to
become uncorrelated.

Correlated initial energies For p(ω) we cannot separate the probabilities of playing C
or D in a nice form as before. The form of the probability of a player playing something
and of each of the new correlated probabilities are given, respectively, by eqs. 3.4 and 3.5.
These are already in an irreducible form. Now, we can’t use the separable structure for the
renormalized energies, and we get
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pR(µν) = ∑
µ′ ,ν′

P1
µ←µ′P

2
ν←ν′ p(µ

′ν′) (3.37)

6= ∑
µ′ ,ν′

P1
µ←µ′ p(µ

′ν′) ∑
α′ ,β′

P2
α←α′ p(α

′β′). (3.38)

We then see that this uncorrelated transformation preserves the correlation properties of the orig-
inal correlation matrix.

Because of the temperature, we have a continuum of correlation matrices and follow/not
follow probabilities, and therefore renormalized probabilities. Our question then becomes:
how can the players use their uncorrelated free choice, in order to get a better payoff?

The average payoff function that the players will want to maximize is calculated with the
new renormalized probabilities, applied to 2.71.

In our SD game, this is simply

〈uR
i (s
∗
SD)〉 = pR(CC) + pR(CD)s + pR(DC)t, (3.39)

while for the BoS it is

〈uR
1 (s
∗
BoS)〉 = pR(CC) + pR(DD)s (3.40)

and

〈uR
2 (s
∗
BoS)〉 = pR(CC)s + pR(DD). (3.41)

Hence we see the need for the renormalization: we need to find a new set of correlated
probabilities that the players always follow in order to have predictable statistics for the pay-
off. The renormalization does not change the relation of the probabilities with one another,
which makes that, for the SD, pR(CD) = pR(DC), and in the case of the BoS game, the
payoffs of both players will be the same 2.

The new set of correlated conditions is given by the eqs. ?? for the SD by substituting by
the renormalized probabilities, pR(CC) + pR(CD)s ≥ pR(CC)t

pR(DC)t ≥ pR(DC) + pR(DD)s,
(3.42)

while for the BoS they are given by the eqs. ??, also by susbtituting by its respective normal-
ized probabilities,  pR(CC) ≥ pR(CD)s

pR(DD)s ≥ pR(DC)
. (3.43)

3.3 Temperature Limits

One of the features of this model, as has been stated before, is that it has a dependence on
a temperature parameter, which conveys an infinite amount of possible correlation matri-
ces. This temperature is imposed by the correlating device, that uses it to decide what the
initial average energy of the system is. By playing with the follow/not follow probabilities,
the players can change the average energy by changing the probabilities that preserve said
average, by trying evaluating what set of probabilities gives them a better average payoff.

2The fact that our transformation preserves the symmetry of the probabilities comes from the fact that it does
not introduce any permutations between them.
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We now analyze what happens at the two most important temperature limits: when T → ∞
and T → 03.

3.3.1 High Temperature

When the temperature is high, the initial correlation probabilities converge to an homoge-
neous uncorrelated system, since limβ→0 eβHij = 1. This means that the players lose any
information that they might have got from the CD. At this point, the introduction of the
follow/not follow probabilities should predict what we already know that happens for this
system: the players will want to play according with the mixed strategy equilibrium. This
means that we want to equate eq. 3.28 with the mixed strategy probabilities that we found
before for the symmetric and asymmetric games.

Snowdrift

From 2.52, we impose that the renormalized probabilities at high temperature correspond to
the mixed strategy equilibrium profile given for this game in table 2.5:

lim
β→0

pR(µν) =
1
4

(
1 + P1

Fµ
− P1

Fµ̄

) (
1 + P2

Fν
− P2

Fν̄

)
(3.44)

⇒ lim
β→0

pR(CC) =
1
4

(
1 + P1

FC
− P1

FD

) (
1 + P2

FC
− P2

FD

)
=

(
s

s + t− 1

)2
; (3.45)

lim
β→0

pR(DD) =
1
4

(
1 + P1

FD
− P1

FC

) (
1 + P2

FD
− P2

FC

)
=

(
t− 1

s + t− 1

)2
; (3.46)

lim
β→0

pR(CD) =
1
4

(
1 + P1

FC
− P1

FD

) (
1 + P2

FD
− P2

FC

)
=

(
s

s + t− 1

)(
t− 1

s + t− 1

)
(3.47)

= lim
β→0

pR(DC) =
1
4

(
1 + P1

FD
− P1

FC

) (
1 + P2

FC
− P2

FD

)
; (3.48)

If this is the best result that the players can get with a homogeneous distribution, then to
achieve it, in our formalism, we see that we must have P1

FC
− P1

FD
= P2

FC
− P2

FD
. To maintain

the symmetry in between the players, we impose that

P1
Fµ

= P2
Fµ

. (3.49)

Although this choice is not unique, it does solve the condition and it makes sense from the
point of view that, in the original game, the players should be completely interchangeable.
We will assume this relation from now on.

To find the values of Pi
FC

and Pi
FD

that give the payoffs of the mixed equilibrium, we use
eq. 2.52 with eq. 3.28, and we get:

Pi
FC

=
2s

s + t− 1
+ Pi

FD
− 1. (3.50)

There is a continuous range of values of follow C and D that give the mixed equilibrium
payoff. However, the convergence to this payoff starting from lower temperatures should

3The fact that the follow/not follow probabilities can still range from 0 to 1 for any value of the temperature is
due to a temperature-dependent component of Bi

µ. This temperature-dependent component allows for a compo-
nent in the probability that is independent from it.
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be continuous and this will inform us about a specific set of values for this probabilities that
will be of interest to us.

Battle of the Sexes

For the BoS game we use eqs. 2.65 and 2.64 to obtain
From 2.52, similarly to the symmetric game, we want the renormalized probabilities at

high temperature to correspond to the mixed strategy equilibrium, given for this game in
table 2.6:

The high temperature effect on the correlations of the symmetric came are the same as
for the uncorrelated:

lim
β→0

pR(µν) =
1
4

(
1 + P1

Fµ
− P1

Fµ̄

) (
1 + P2

Fν
− P2

Fν̄

)
(3.51)

⇒ lim
β→0

pR(CC) =
1
4

(
1 + P1

FC
− P1

FD

) (
1 + P2

FC
− P2

FD

)
=

(
1

s + 1

)(
s

s + 1

)
; (3.52)

lim
β→0

pR(DD) =
1
4

(
1 + P1

FD
− P1

FC

) (
1 + P2

FD
− P2

FC

)
=

(
s

s + 1

)(
1

s + 1

)
; (3.53)

lim
β→0

pR(CD) =
1
4

(
1 + P1

FC
− P1

FD

) (
1 + P2

FD
− P2

FC

)
(

1
s + 1

)2
(3.54)

lim
β→0

pR(DC) =
1
4

(
1 + P1

FD
− P1

FC

) (
1 + P2

FC
− P2

FD

)
=

(
s

s + 1

)2
; (3.55)

To get a consistent result we see that we must have P1
FC
− P1

FD
= P2

FD
− P2

FC
and P2

FC
−

P2
FD

= P1
FD
− P1

FC
. We choose from symmetry arguments that P1

FC
= P2

FD
and P1

FD
= P2

FC
,

noting once again that this is not a necessary choice, but we will keep it from now on.
We obtain the values of Pi

FC
and Pi

FD
that give the payoffs of the mixed equilibrium of this

game, we use eq. eqs. 2.65 and 2.64 with eq. 3.28, and we get:

P1
FC

=
2

s + 1
+ P1

FD
− 1 (3.56)

and

P2
FC

=
2s

s + 1
+ P2

FD
− 1. (3.57)

Again, there is a continuous range of values of follow C and D that arrive at the mixed
equilibrium payoff, but we will find a specific set of probabilities compatible with it being
the convergence limit at high temperatures.

3.3.2 Low Temperature

Snowdrift

Let us look at the shape that the renormalized probabilities of SD take for very low temper-
atures, or when β→ ∞. Because the exponential terms become very large, we will calculate
the limits by dropping in turns the terms with lowest coefficient, which converge to infinity
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slower. The limits that we are about to calculate rely on the fact that t > 1 and s > 0. Be-
cause all the renormalized probabilities in this limit depend on the original probabilities in
this same limit, we first calculate these.

lim
β→∞

p(CC) = lim
β→∞

eβ

eβ + 2eβt + eβ(t−s)
= lim

β→∞

eβ

2eβt

= lim
β→∞

1
2

eβ(1−t) = 0; (3.58)

lim
β→∞

p(DD) = lim
β→∞

eβ(t−s)

eβ + 2eβt + eβ(t−s)
= lim

β→∞

eβ(t−s)

2eβt

= lim
β→∞

1
2

eβ(−s) = 0; (3.59)

lim
β→∞

p(CD) = lim
β→∞

eβt

eβ + 2eβt + eβ(t−s)
= lim

β→∞

eβt

2eβt =
1
2

(3.60)

= lim
β→∞

p(DC); (3.61)

We see that in the renormalized probabilities only the terms that depend on p(CD) and
p(DC) remain.

lim
β→∞

pR(CC) = lim
β→∞

(P1
FC

P2
NFD

p(CD) + P1
NFD

P2
FC

p(DC)) =
1
2
(P1

FC
P2

NFD
+ P1

NFD
P2

FC
); (3.62)

lim
β→∞

pR(DD) = lim
β→∞

(P1
NFC

P2
FD

p(CD) + P1
FD

P2
NFC

p(DC)) =
1
2
(P1

NFC
P2

FD
+ P1

FD
P2

NFC
);

(3.63)

lim
β→∞

pR(CD) = lim
β→∞

(P1
FC

P2
FD

p(CD) + P1
NFD

P2
NFC

p(DC)) =
1
2
(P1

FC
P2

FD
+ P1

NFD
P2

NFC
) (3.64)

= lim
β→∞

pR(DC), (3.65)

where we assume in this context that Pi are always in this limit. Because of the symmetry of
the game, we can drop the player indices.

The payoff of this game, given by eq. 3.39, reads as follows:

lim
β→∞
〈uR

i 〉 = PFC PNFD +
s + t

2
(

PFC PFD + PNFD PNFC

)
(3.66)

= PFC

(
1− PFD

)
+

s + t
2
(

PFC PFD +
(
1− PFD

) (
1− PFC

))
. (3.67)

There are four limiting cases in this formula, corresponding to the PFC and PFD being 0 or
1.

PFC = PFD = 0:

lim
β→∞
〈ui〉 =

s + t
2

(3.68)

PFC = PFD = 1:

lim
β→∞
〈ui〉 =

s + t
2

(3.69)

PFC = 1, PFD = 0:
lim

β→∞
〈ui〉 = 1 (3.70)
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PFC = 0, PFD = 1:
lim

β→∞
〈ui〉 = 0 (3.71)

We see that, if s + t < 2, the best payoff is found in the limits where they always follow
or never follow. If s + t ≤ 2, then the best value is found when the players always follow C,
but never follow D. However, this is outside of the first condition of equilibrium, as given
by the first equation in 3.42, which would require that t ≤ 1.

However, it is a good guess that, for s < 2 − t, the payoff increases along the line of
PFC = 1, while PFD decreases until the equilibrium line is met, or along the line of PFD = 0,
while PFC increases. The first equilibrium condition, from 3.42, in the low temperature limit,
is

PFC (1− PFD ) +
(

PFC PFD +
(
1− PFD

) (
1− PFC

)) s
2
≥ PFC (1− PFD )t. (3.72)

Solving for the equality we get

PFC

(
1− PFD

)
(t− 1)− s

2
(
1− 2PFD

)
=
(
1− PFD

) s
2

. (3.73)

For PFC = 1, the solution is given by

PFD =
2t− 2

2t + s− 2
. (3.74)

We can also find a solution along the line of PFD = 0, for which

PFC =
s

2t + s− 2
. (3.75)

The same payoff is obtained by plugging either pair of PFC and PFD in eq. 3.67:

lim
β→∞
〈uR

i 〉 =
t(t + s− 1)
2t + s− 2

(3.76)

To help us visualize these points in the plots of later sections in the PFC − PFD plane, we
calculate the line that connects them:

PFC = PFD +
s

2t + s− 2
(3.77)

Battle of the Sexes

We follow the same calculations here as for the SD, changing however the correlating device
probabilities that we refer to, as the equilibrium condition.

We first calculate the limits when β→ ∞ for the correting device probabilities:

lim
β→∞

p(CC) = lim
β→∞

eβ(1+s)

2eβ(1+s) + 1
= 1/2 = lim

β→∞
p(DD); (3.78)

lim
β→∞

p(CD) = lim
β→∞

1
2eβ(1+s) + 1

= 0 = lim
β→∞

p(DC). (3.79)

Here we see that only the terms in the renormalized probabilities that depend on the
diagonal initial probabilities will be represented.
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lim
β→∞

pR(CC) = lim
β→∞

(P1
FC

P2
FC

p(CC) + P1
NFD

P2
NFD

p(DD)) =
1
2
(P1

FC
P2

FC
+ P1

NFD
P2

NFD
); (3.80)

lim
β→∞

pR(DD) = lim
β→∞

(P1
NFC

P2
NFC

p(CC) + P1
FD

P2
FD

p(DD)) =
1
2
(P1

NFC
P2

NFC
+ P1

FD
P2

FD
); (3.81)

lim
β→∞

pR(CD) = lim
β→∞

(P1
FC

P2
NFC

p(CC) + P1
NFD

P2
FD

p(DD)) =
1
2
(P1

FC
P2

NFC
+ P1

NFD
P2

FD
); (3.82)

lim
β→∞

pR(DC) = lim
β→∞

(P1
NFC

P2
FC

p(CC) + P1
FD

P2
NFD

p(DD)) =
1
2
(P1

NFC
P2

FC
+ P1

FD
P2

NFD
); (3.83)

where we assume in this context that Pi are always in this limit. Looking at the asymmetry
of the game, we can rewrite the probabilities of player 2 as a function of those of player 1.
Because the probabilities p(CC) and p(DD) are the same, we see that pR(CC) will still be
equal to pR(DD), even outside of this limit, as we can see in the first two equations above.
This indicates the more general feature that the payoffs of both players will be the same.

Since the average payoffs, given by eqs. 3.40 and 3.41, only depend on pR(CC) and
pR(DD), we only need to look further at these two:

lim
β→∞

pR(CC) =
1
2
(P1

FC
P1

FD
+ P1

NFD
P1

NFC
); (3.84)

lim
β→∞

pR(DD) =
1
2
(P1

NFC
P1

NFD
+ P1

FD
P1

FC
), (3.85)

which are indeed equal to each other.
The payoff of the players is then, as a function of the follow and not follow probabilities

of player 1,

lim
β→∞
〈uR

i 〉 =
1
2
(1 + s)

(
P1

FC
P1

FD
+ P1

NFC
P1

NFD

)
=

1
2
(1 + s)

(
2P1

FC
P1

FD
+ 1− P1

FD
− P1

FC

)
. (3.86)

Here the best value of the payoff is simply

lim
β→∞
〈uR

i 〉 =
1
2
(1 + s), (3.87)

which happens when

P1
FC

=
P1

FD

2P1
FD
− 1

. (3.88)

In our domain for the probabilities, this condition is only met when player one always fol-
lows (P1

FC
= P1

FD
= 1) or never follows (P1

FC
= P1

FD
= 0); these are exactly the same conditions

one would obtain for player 2 given that now we are working with P1
Fµ

= P2
Fµ̄

, resulting in
the same payoff.

We can see that the best payoff here happens in the same way for always follow or never
follow because of the symmetry in the energy landscape: since changing these two pro-
files corresponds to changing pR(CC) with pR(DD), the payoffs are the same because these
probabilities equal to each other, as were in the original CD.

Thus, contrary to the SD game, here we don’t run into the equilibrium conditions at zero
temperature. However, as we will see, they will be important for higher temperatures.
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Equilibrium Conditions

4.1 Equal probability of following C and D for Snowdrift

We will start by studying a simple set of renormalized probabilities: the probability of fol-
lowing C is the same as the probability of following D. Here, we will pay special attention
to the cases where either the players always follow both C and D, or they never follow
any of the recommendations. If the players always follow, it means that their renormal-
ized probabilities become equal to the original, pRF = p(ω). If they never follow, then
pRNF (µν) = p(νµ).

As a toy model, we do this analysis on the SD game, which will help us look at what
happens when we give more freedom to the follow/not follow probabilities. Because of
the symmetry of the players, we drop the player indices. In this simplified model we will
see how we will work with the system in a correlated equilibrium, which will be a neces-
sary condition if we then want to vary the follow/not follow probabilities to obtain the best
payoff. In this section we don’t look at the BoS game, but a similar reasoning would apply.

The equilibrium conditions depend heavily on the relation between the value of the pa-
rameters s + 1 and t. If s + 1 = t, then the first equation becomes pR(CD) ≥ pR(CC), and
the second pR(DC) ≥ pR(DD). Then we can distinguish between s + 1 > t and s + 1 < t, as
these cases will give more or less weight to either the left- or right-hand sides of the equa-
tions. We will look at this situation for t = 1.2, due to the fact that for this value the critial
features happen for low temperatures.

In fig. 4.1 we see the left and right hand sides of the conditions in eqs. 3.42, what we
have labeled the first and second condition. Through the rest of this thesis, we will use the
analysis that follows, for these two conditions (naturally considering the game in question).
In that figure, and the remaining ones of the same form, the color scheme is as follows: we
compare blue with orange (first condition) and green with red (second condition), and for
the conditions to be met, blue should be above orange and green above red. In the first row,
for s > t− 1, we see that after a certain temperature the second condition is broken. Since
we have to have both conditions being met at the same time, this means that after a certain
temperature we can no longer establish a correlated equilibrium for those values of PF.

When s = t− 1, in the second row of the figure, we have the conditions being met for
the whole temperature distribution. We also see that in this situation the plots are the same
for always follow or always not follow: this happens because pRNF (CC) = p(DD), and for
these parameters, p(CC) = p(DD). In the third row, s < t − 1, we see that it is the first
condition that starts to be broken a sufficiently high temperature.

If we look at fig. 4.2, we see that, away from the limiting values of PFC , the condition that
was broken only up to a certain temperature is now broken for all temperatures, indicating
that we can never find a correlated equilibrium away from the extreme values of PFC if PFC =
PFD .

We can gather this information in a more compact way by calculating the solutions for
PF at the equality of the conditions. Solving analytically in Mathematica, we see that each
condition will have two solutions. Some parts of these solutions won’t have real values
in the domain of PF, and so don’t represent a change in equilibrium. The real parts of these
solutions are not conflicting in the PF domain, so we define a unique real solution P∗F1st

(s, t, T)
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for the first condition, and P∗F2nd
(s, t, T) for the second condition, formed by branches. These

branches represent the regions in PF where each one of those solutions is real.

Definition 1. P∗F1st
(s, t, T) is the real valued solution of the first equilibrium condition of the SD

game, given by pR(CC) + pR(CD)s = pR(CC), in the interval [0, 1], when PFC = PFD .

Definition 2. P∗F2nd
(s, t, T) is the real valued solution of the second equilibrium condition of the SD

game given by pR(DC)t = pR(DC) + pR(DD)s in the interval [0, 1], when PFC = PFD .

All the plots that we will present of these solutions correspond to the analytic forms
obtained by Mathematica. We exclude the introduction of the full form for shortness.

Fig. 4.3 gives more insight into the regions for which the equilibrium is stable, by show-
ing the plots of P∗F1st

and P∗F2nd
as a function of T. For s < t− 1, only the solutions of the first

condition indicate a change in stability, which means that it is always stable under regarding
the second condition; between the upper curve and PF = 1 and PF = 0 the first condition is
stable as well, and so the game can be played with PF in these regions. This is compatible
with the reading of figs. 4.1 and 4.2. Also compatible are the results for s > t− 1, in which
only the second condition is broken and there is a small range of values between the the
upper curve and PF = 1 and between PF = 0 and the lower curve that allow for a correlated
equilibrium and that correspond to the region where the second condition is met; here the
first condition is always met.

Looking at this system, where they follow C and D with the same probability, we see
that, for a given temperature, there won’t be always a chance to play something that doesn’t
bring the system out of equilibrium; for that the probabilities that they follow C will have to
be different than t follow D , as we are about to see 1.

4.2 Different probabilities of following C and D

If we allow PFC to be different from PFD , we find values that the players could adopt for all
the temperature range. We will analyze in detail some specific values for the SD game, and
once more drop the player indices in some length. After that, we do a shorter analysis for
BoS.

4.2.1 Snowdrift

Following the analysis in the previous case, we want to see what happens for different pa-
rameters s and t, but now for PFC different than PFD . We investigate how the two sides of
the inequalities of the equilibrium conditions in 3.42 behave, to get a sense of where the
equilibrium breaks.

Then we equate both sides of the equilibrium conditions and we see that the curves that
we get span over a bigger range of temperatures than before. Similarly to when PFC = PFD ,
there will be two solutions for each condition, and only the branches that are inside of the
domain and are real valued represent changes in the equilibrium.

Definition 3. P∗FC1st
(PFD , s, t, T) is the real valued solution of the first equilibrium condition of the

SD game, given by pR(CC) + pR(CD)s = pR(CC), in the interval [0, 1].

Definition 4. P∗FC2nd
(PFD , s, t, T) is the real valued solution of the second equilibrium condition of

the SD game given by pR(DC)t = pR(DC) + pR(DD)s in the interval [0, 1], when PFC = PFD .

We will see how these functions behave depending on value of the parameters s and t;
we will do a detailed analysis for particular examples of s > t− 1, s < t− 1; for the former
we use s = 0.5 and t = 1.6, and for the latter we use s = 0.5 and t = 1.2. We change the case
study for s < t− 1 in relation to the previous section because the visualization is more clear,
however the conclusions are fully extendable. In the s > t− 1 case, the results can be looked
at back to back.

1The fact that the maximum allowed temperature in these conditions is limited is compatible with the mixed
strategy limit that we want to arrive at: in high temperatures, we want the probabilities of playing each C or D to
be different.
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s > t− 1

In figs. 4.4 to 4.10 we can see the left- and right-hand sides of the equilibrium conditions for
increasing values of PFC , changing with the values of PFD for a certain temperature range.
Throughout this range, the first condition is true for most of the values of PFC and PFD , being
broken only when high PFC low PFD , at the same time.

The second condition is only true for low temperatures, if at all. While PFC is small, the
second condition is only true for equally small values of PFD , and the first condition is always
true. For high PFC , the first condition can be broken for low PFC , but as this variable increases,
only the second condition becomes breakable. These results are better summarized in fig.
4.11, where we can see the solutions P∗FC1st

and P∗FC2nd
as a function of temperature, for several

values of PFD . Comparing with the previous figures, we see that the equilibrium is stable
above the green line an bellow the yellow line.

Comparing fig. 4.3b with fig. 4.11, we see that they are consistent, for PFD = PFC : when
the probability of following C is the same as that of following D, there is only equilibrium
for values very close to either 0 or 1, and this equilibrium is only found for a limited range
of temperatures, always broken at the second condition.

In fig. 4.12 we depict P∗FC1st
and P∗FC2nd

as a function of PFD , for several temperatures, on
top of the payoff function for the same parameters, given by 3.39.

The equilibrium region is bounded from bellow by P∗FC1st
and from above by P∗FC2nd

. The
payoff values are higher for high PFC and low PFD , and decrease until they reach the mini-
mum for high PFD and low PFC . Knowing this, it is expected that the higher payoffs inside
the equilibrium are coincident with P∗FC1st

; especially, we expect this behaviour for low tem-
peratures, because in this case s < 2− t, in accordance with the discussion in 3.3.2.

Because this will a characteristic feature of the parameters, we look now at the point
where P∗FC1st

= P∗FC2nd
.

Definition 5. P∗FD
(s, t, T) is the solution of P∗FC1st

= P∗FC2nd
for PFD .

Definition 6. P∗FC
(s, t, T) is the value of P∗FC1st

(P∗FD
, s, t, T).

In this case, we see in figure 4.12 that P∗FC
> P∗FD

, and that this point seems to be along
the line of the mixed strategy solution, given by eq. 3.50 and represented in gray, a fact that
is independent from the temperature. Because of this, we note something interesting along
P∗FC2nd

: its two extremes change, as the temperature increases, from being in PFC = 0 and
PFD = 1, to PFD = 0 and PFD = 1 and subsequently to PFD = 0 and PFC = 1.

As the temperature increases, we see that both P∗FC1st
and P∗FC2nd

approach the mixed
strategy equilibrium, so they also approach each other. What we are interested in knowing
now is what values of PFC and PFD give the highest payoff for a given temperature, inside the
interval bounded by the equality solutions of the conditions. As a final consistency remark,
we see that only for low temperatures the PFC = PFD line (in blue) is inside the equilibrium
condition, and only at very low or very high PF values, always crossing P∗FC2nd

when it stops
being stable, just as in fig. 4.3b.

s < t− 1

We will now explore what happens for s = 0.5 and t = 1.6, as an example of s < t − 1.
In figs. 4.13 to 4.19 we can see, similarly to the previous analysis, the left- and right-hand
sides of the equilibrium conditions. Unlike the previous case, it is the first condition that is
broken when we have PFC very close to PFD . This is more clear in fig. 4.20, where we can see
P∗FC1nd

and P∗FC2nd
as a function of temperature. Again we see that the equilibrium is bounded

from bellow by P∗FC1st
and from above by P∗FC2nd

. This result is qualitatively compatible with
fig. ??, although the specific values of the parameters are not the same, which makes for a
stronger claim that this relation in the parameters has universal characteristics.

In fig. 4.21 we see P∗FC2nd
and P∗FC1nd

plotted as a function of PFD , for several temperatures,
on top of the payoff, given by 3.39 for the same parameters and temperatures.
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Contrary to the previous situation, now we have that P∗FC
< P∗FD

, but also on top of the
mixed strategy line. This means that it will be P∗FC1nd

changing characteristics as temperature
increases: while it starts by having its extremes in PFC = 1 and PFD = 0, the latter eventually
crosses to PFD = 0 and the former crosses to PFD = 1, which means that the PFC = PFD line
is now out of the equilibrium interval. This is consistent with having the stability along this
line breaking the second equilibrium condition, for finite temperature, at different tempera-
tures depending on if the values are closer to PF = 0 or PF = 1, as we see in fig. ??. Because
P∗FC1nd

corresponds to higher payoffs, this change in the location of its edges will be represen-
tative of a change of where to find the maximum payoff. Because in this particular case s > 2 + t,
we expect the maximum value of the payoff in low temperatures to be in always follow or
never follow; in fact, looking at fig. 4.21a, we see that the off-diagonal corners represent a
very high payoff.

4.2.2 Battle of the Sexes

For the BoS game, we define the solutions at the equalities of the equilibrium conditions in
eq. 3.43.

Definition 7. P∗BoS
FC1st

(PFD , s, t, T) is the real valued solution of the first equilibrium condition of the
BoS game, given by pR(CC) = pR(CD)s, in the interval [0, 1].

Definition 8. P∗BoS
FC2nd

(PFD , s, t, T) is the real valued solution of the first equilibrium condition of the
BoS game, given by pR(DD)s = pR(DC)s, in the interval [0, 1].

Definition 9. P∗BoS
FD

(s, t, T) is the solution of P∗BoS
FC1st

= P∗BoS
FC2nd

for PFD .

Definition 10. P∗BoS
FC

(s, t, T) is the value of P∗FC1st
(P∗BoS

FD
, s, t, T).

In fig. 4.22 we see P∗BoS
FC1st

and P∗BoS
FC2nd

represented as function of temperature, over the
payoff function for the same parameters. For s < 1, we see that P∗BoS

FC
> P∗BoS

FD
; for s = 1, we

have that P∗BoS
FC

= P∗BoS
FD

, and for s = 1, P∗BoS
FC

= P∗BoS
FD

. The always follow or never follow
corners will represent the low temperature best payoffs (pink line), while the correlated
equilibrium curves converge to the mixed strategy equilibrium (gray). In the cases where
s 6= 1, the always follow and never follow corners become out of equilibrium.
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FIGURE 4.1: LHS and RHS of first and second equilibium conditions, given
by eq. 3.42, at extreme values of PF and t = 1.2. In the first collumn:PFC =
PFD = 0; in the second column: PFC = PFD = 1. (A) and (B): s = 0.5; (C) and
(D): s = 0.2; (E) and (F): s = 0.1. In blue: LHS of 1st condition; in orange:
RHS of 1st condition. In green: LHS of 2nd condition; in red: RHS of 2nd
condition. The first condition holds when blue is above orange, while the
second one holds when green is above red. For (A) and (B), which represents
s > t− 1, only the second condition stops being met for a certain temperature,
that changes according with the value of PF. For (C) and (D), or s = t− 1, the
conditions are met for all temperatures. For (E) and (F), that has s < t − 1,
it is the first condition that stops being met for a certain temperature, also

varying with PF.
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FIGURE 4.2: LHS and RHS of first and second equilibrium conditions, given
by eq. 3.42, at intermediate values of PF and t = 1.2. In the first column:
PFC = PFD = 0.3; in the second column: PFC = PFD = 0.7. (A) and (B): s = 0.5;
(C) and (D): s = 0.2. In blue: LHS of 1st condition; in orange: RHS of 1st
condition. In green: LHS of 2nd condition; in red: RHS of 2nd condition. The
first condition holds when blue is above orange, while the second one holds
when green is above red. For (A) and (B), which represents s > t− 1, the first
condition is always met, and the second is always broken, throughout the
temperature range. For (C) and (D), it is the second condition that is always

met instead, whereas the first is always broken.
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FIGURE 4.3: P∗F1st
(orange) and P∗F2nd

(green) for (A) s = 0.1 and t = 1.2 and for
(B) s = 0.5 and t = 1.2, for SD game. For s > t− 1, only the second condition
has real solutions, while for s < t− 1, only the first condition has solutions.
The stability region is between the lines and upper curve and PF = 1, and

between the lower curve and PF = 0.
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FIGURE 4.4: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.5: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.1 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.6: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.3 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.7: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.5 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.8: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.7 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.9: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.9 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.10: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 1 and several values of PFD , for s = 0.5 and t = 1.2. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue
is above orange, while the second one holds when green is above red. Only
in (a) the two conditions are met up to a certain temperature; after that the

second condition is broken.
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FIGURE 4.11: P∗F1st
(orange) and P∗F2nd

(green) as functions of temperature, for
the SD game at s = 0.5 and t = 1.2. The solutions are plotted for increasing
values of PFD . The correlation is in equilibrium above the green curve and
bellow the yellow curve. The solutions of PFC that are outside this interval do

not represent stability changes.
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FIGURE 4.12: P∗F1st
(orange) and P∗F2nd

, for s = 0.5 and t = 1.2, as functions
of temperature, and payoff for the same parameters in the density plot. The
pink line connects the low temperature limit point given by eq. 3.77 and the

gray line marks the mixed strategy equilibrium from eq. 3.50.
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FIGURE 4.13: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0 and several values of PFD , for s = 0.5 and t = 1.6. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue is

above orange, while the second one holds when green is above red.
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FIGURE 4.14: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.1 and several values of PFD , for s = 0.5 and t = 1.6. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue is

above orange, while the second one holds when green is above red.
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FIGURE 4.15: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.3 and several values of PFD , for s = 0.5 and t = 1.6. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue is

above orange, while the second one holds when green is above red.
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FIGURE 4.16: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 0.5 and several values of PFD , for s = 0.5 and t = 1.6. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue is

above orange, while the second one holds when green is above red.
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FIGURE 4.17: LHS and RHS of first and second equilibium conditions for
PFC = 0.7 and several values of PFD , for s = 0.5 and t = 1.6. In blue: LHS
1st condition; in orange: RHS 1st condition. In green: LHS 2nd condition; in
red: RHS 2nd condition. The first condition holds when blue is above orange,

while the second one holds when green is above red.
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FIGURE 4.18: LHS and RHS of first and second equilibium conditions for
PFC = 0.9 and several values of PFD , for s = 0.5 and t = 1.6. In blue: LHS
1st condition; in orange: RHS 1st condition. In green: LHS 2nd condition; in
red: RHS 2nd condition. The first condition holds when blue is above orange,

while the second one holds when green is above red.
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FIGURE 4.19: LHS and RHS of first and second equilibium conditions given
by 3.42 for PFC = 1 and several values of PFD , for s = 0.5 and t = 1.6. In
blue: LHS 1st condition; in orange: RHS 1st condition. In green: LHS 2nd
condition; in red: RHS 2nd condition. The first condition holds when blue is

above orange, while the second one holds when green is above red.
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FIGURE 4.20: P∗F1st
(orange) and P∗F2nd

(green) as functions of temperature, for
the SD game at s = 0.5 and t = 1.6. The solutions are plotted for increasing
values of PFD . The correlation is in equilibrium above the green curve and
bellow the yellow curve. The solutions of PFC that are outside this interval do

not represent stability changes.
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FIGURE 4.21: P∗F1st
(orange) and P∗F2nd

, for s = 0.5 and t = 1.2, as fucntions
of temperature, and payoff for the same parameters in the density plot. The
pink line connects the low temperature limit point, at PFC = PFD , and the gray

line marks the mixed strategy equilibrium from eq. 3.50.
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FIGURE 4.22: P∗BoS
FC1st

(orange) and P∗BoS
FC2nd

(green), for s = 0.5 and t = 1.6, as
a fucntion of temperature, and payoff for the same parameters in the density
plot. The pink line is given by PFC = PFD , connecting the low temperature
limits, and the gray line marks the mixed strategy equilibrium from eq. 3.50.
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Chapter 5

Optimal Payoffs

In this section we present the results obtained by maximizing the payoff as a function of
PFC and PFD , between the domain of these variables and within the applicable equilibrium
conditions, and for both the SD and BoS games.

5.1 Optimization Method

We are interested in studying how the maximum payoff behaves in the top-right corner of
the PFC − PFC parameter space, and on the bottom-left corner. These are regions of interest
because this is where the equilibrium region is.

After setting what the criteria are for checking if a certain set of correlated probabilities
is stable, we are now concerned with finding out what are the probabilities of following C
and D that optimize the average payoffs of the players. We can use Lagrange multipliers to
find out how the payoff surface behaves between the first and second condition equalities,
or we could use numerical methods. For practical reasons, we chose the latter.

We want to find the values of PFC and PFD , as a function of temperature, and also to know
what that payoff is. We will find that payoff bounded by the solutions P∗FC1st

and P∗FC2nd
.

Looking at figs. 4.12 and 4.21, we expect the maximum to be either around the right-
upper corner, or the left-lower one.

To study what happens in each of these regions, we used Mathematica’s function FindMaximum,
which finds local maxima around inserted initial coordinates, in this case in PFC and PFD , and
restricted it to the P∗FC1st

and P∗FC2nd
solutions, and the domain of the probability variables 1.

The color scheme we use to represent our findings is as follows: the doted curves rep-
resent the payoffs that the players would obtain if they would never follow, in blue, or if
they would always follow, in red. The full curves represent the results found for the best
payoff by the simulation: blue in the lower-left corner, associated with lower probabilities
of following, and orange in the upper-right corner, representing the best payoffs when there
is a high chance of following. The grey line represents the payoff for the mixed strategy
(given by eq. 2.56 for SD game and eq. 2.67 for BoS game) and the pink line represents our
calculated payoffs for low temperatures (given by eq. 3.68 if s ≥ 2− t or eq. 3.76 if s < 2− t
for the SD game, and by 3.87 for the BoS game 2. We also present the values in the PFC − PFD
space where these values of the maxima were found; if they are of a color different than blue
or orange, they correspond to values found at lower temperatures.

We present the results for both corners to be able to study how the system behaves. This
should not be confused with finding two optimal payoffs: if the payoffs are different in both
corners, the optimal payoff overall will be found at the corner with the best payoff.

1Starting at high temperature at either one of the corners, we updated the initial conditions to match the solu-
tions found for the previous temperature for faster and more reliable convergence. Because sometimes the location
of the maxima changed completely below a certain temperature, we often had to evaluate the maxima distinctively
for higher and lower temperatures.

2The line at low temperatures is just connecting the two points in the intersection with the domain of PFC and
PFD , where we are actually expected to find the best payoff at low temperature. This line in itself has no meaning.
For the high temperature limits, however, we find the same payoff solution across the whole gray line.
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FIGURE 5.1: Parameter space for SD game. The full lines represent the re-
gions where there is a change in the relation between the maximum payoffs
and the payoffs for always follow/never follow. The dotted lines represent
potential reagions of interest. The black bullet points represent the position

in this parameter space of the cases that we are going to look at.

5.2 Snowdrift

The solutions for the best payoff in the SD game can be divided in the parameter space
s− t as in fig. 5.1. In this figure, the full lines represent the regions across which there is a
change in the equilibrium behaviour, while nothing is expected to change across the doted
lines, although we will look at these regions to check our predictions. Across the red line
we expect a change in the behaviour regarding the location of the maxima (closer to always
follow or to never follow), and across the green line we expect a change in the location of the
low temperature maxima (coinciding with the always follow or coinciding with the limit of
the equilibrium condition).

5.2.1 s < t− 1

We are in the situation analyzed in section 4.2.1, so it helps to have that topology in mind, but
here we get to see the results for a wider range of parameters. The results are presented in
figs. 5.2. If s < 2− t, optimal payoff at lower temperature is always better than if the players
always follow, or never follow. However, if s > 2− t, the best payoff at low temperatures is
found on always follow or never follow. In both cases, the payoff is independent from the
corner we are looking at, but that changes immediately for higher temperatures.

The characteristic feature of s < t− 1 is that, after initially the best payoff being indepen-
dent from the corner that we are looking at, immediately after that the best payoff is found
at the lower corner (blue line). If we increase temperature, the best payoff crosses over to
the upper corner (orange). The solution crosses from PFD = 0 to PFD = 0, and from PFC = 1
to PFD = 1. This is done in a continuous way, which means that at the point where this
crossover happens, both corners have the same payoff. It is also interesting to notice that,
because P∗FD

< P∗FC
, the location of the best payoff has the same behaviour as P∗FC1st

at the
limits of the variables.

Because this condition crosses the the diagonal line, this justifies that after a certain tem-
perature the best payoff starts being smaller than the always follow and never follow pay-
offs, but this is still the best payoff inside the equilibrium conditions.

This means that the best payoff is associated with the first equilibrium condition, which
has a similar movement in the these parameters across the temperature. All of the payoff
plots, at the high temperature values, seem to converge to the mixed strategy solution. So,
using the correlations by carefully following or not following, the players can still have better
payoffs than if they just played with an uncorrelated game, obtaining the mixed strategy.
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5.2.2 s = t− 1

For s = t− 1, P∗FC
= P∗FD

, which means that the payoffs for always follow and never follow
are always stable. There is an added symmetry for this set of parameters, such that the
payoff surfaced is "leveled", and the payoffs are symmetric relative to the diagonal line,
PFC = 1− PFD .

The results are found in fig. 5.4, and because of this symmetry the results for both corners
are overlapping. Despite the always follow and never follow being stable, we see that that
the best payoff is always better than that for s < 2− t (t = 1.2), and the best payoffs are
always equal or better compared with the corner payoffs for s > 2 − t (t = 1.5). In t =
1.5, s = 0.5 we are in the special case of s = 2− t, and the payoff is the same at both the
equilibrium condition and the corners, which is why we see the value of PFD changing for
low temperatures in fig. 5.4d. Note that, because the pairs of probabilities associated with
the best payoffs are always found for PFC = 1 and PFD = 0, we can conclude that the best
payoffs come associated with the first condition, because only P∗FC1st

intersects with these
lines.

We also see that all of the maximum payoffs seem to approach the mixed strategy solu-
tion. However, while for t = 1.2 the value of PFD and a fucntion of temperature seems to
decrease, for t = 1.7 the PFD is equal to 1 until a certain temperature, until it moves very fast
towards P∗FC1st

, and converges to the mixed equilibrium as this curve does.

5.2.3 s > t− 1

Now we are in the situation analyzed in section 4.2.1. If we look at figs. 5.5 to 5.10, we see
that the best payoff always happens at the upper-right corner, and for PFC = 1. This is Due
to the fact that now playing C is always a more advantageous, because the payoffs are better.
Because P∗FC

> P∗FD
.

When s < 2− t, as in fig. 5.5, the maximum payoff at low temperatures is above the
always or never follow payoffs, as is characteristic of this combination of parameters. In this
particular figure we see the optimal payoffs that correspond to the discussion in 4.2.1.

When s > 2− t, the payoffs at low temperature are always coincident with always follow,
and from a certain point on they move away from those values, although still for PFC = 1
and progressively converge to the mixed strategy. The convergence to the mixed strategy
can be for increasing values of PFD , for example in fig. 5.6b, but it can also happen for
decreasing values of PFD , as in fig. 5.6b. The difference resides in the fact that, depending
on the parameters, the intersection of P∗FC1st

with PFC = 1 can cross the mixed strategy line,
before it starts converging back to it.

5.2.4 Summary

After analyzing how the best payoff behaves for different s and t parameters and tempera-
tures, and what values of PFC and PFD generate it, we can make a summary of this behaviour
across the parameter regions:

• s < t− 1: the best payoff starts off corresponding to PFD = 0 and then moves to be at
PFC = 0; after a certain temperature, it jumps to PFC = 1, although the change in the
value of the payoff itself is continuous; finally, the best payoff is found at PFD = 1.

• s = t− 1: The best payoff corresponds to PFC = 1 or PFD = 0; the value of the payoff is
the same in these two lines.

• s > t− 1: the best payoff is always found at PFC = 1.

• s > 2− t: the best payoff coincides with always and never follow for low temperatures.
The range of the temperatures for which this happens seems to increase with t.

• s < 2− t: the best payoff never coincides with always follow and/or never follow;
instead, it is always associated with the first equilibrium condition.
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It is worth mentioning that the fact that the independent calculation of the best payoffs
using numerical simulation agrees with our predictions for low and high temperature con-
firms the consistency of our approach.

It is also remarkable that the best payoffs are always found for an extreme value of either
PFC or PFD , and associated with the first equilibrium condition. This allows us to study the
evolution of the payoff as a function of only one parameter, for the whole temperature in
s ≥ t− 1 and for big intervals of the temperature at a time for < t− 1.

5.2.5 Battle of the Sexes

Now we study how the best payoff behaves for an asymmetric game.
Given that the probabilities pR(CC) and pR(DD) are the same for the BoS game, we

expect that the payoffs of the two players are the same, and that they are also symmetric
in relation with P1

FC
and P2

PD
. This is what we see indeed when we look for the maximum

payoff.
We see that the payoffs for P1

FC
= P1

FD
= 0 are the same as those for P1

FC
= P1

FD
= 1. We

also see that the maximum payoff found closer to any of these regions is the same as the
one found on the other one. Furthermore, we have that, if s = 1, the best payoff coincides
with the payoff at the always follow or never follow corners. When s 6= 1, the best payoff
is smaller than on the corners after a certain temperature. When s < 1, the touching point
of the two solutions for the equality of the conditions is bellow the line of P1

FC
= P1

FD
, so

eventually this line stops being inside of the equilibrium; the best payoff here is associated
with the first condition. When s > 1, the touching point is above that line, and, although the
behaviour of the maximum payoff is very similar to that of s < 1, the maximum are actually
found associated with the second equilibrium condition; this indicated that the maximum
payoff should be around P1

FC
= P1

FD
= 1. Similarly to the SD game, we always find the

best values of the payoff at extreme values of P1
FC

or P1
FD

. Also as in the symmetric game,
the low temperature payoffs coincide with the theoretical predictions, namely that it is at
P1

FC
= P1

FD
= 1 or P1

FC
= P1

FD
= 0, and the high temperature payoffs coincide with the mixed

strategy calculated for the BoS game.
In 5.11 we present the numerical results for a number of selected representative values

of s. We see that the low temperature limits are met, and that in high temperature the best
payoffs converge to the mixed strategy. For s < 1 and s > 1, the best strategy is to follow the
CD up to a temperature, and when this strats being unstable, we can still find a better payoff
than to fall into the mixed strategy. For s < 1, the best payoffs are associated with P∗BoS

2nd , so
that they are found for PFC = 1 and PFD = 0. For s > 1, the best payoffs are associated with
P∗BoS

1st instead, so that they are found for PFD = 1 and PFC = 0. For s = 1, the best payoff is
found when the players follow what the bank tells them to do.
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FIGURE 5.2: Average payoffs (first collumn) and values of PFC and PFD where
the best payoffs were found (right collumn), for s < t− 1, in the SD game.
In the first collum, the pink line represents the limit in low temeprature, the
gray line is the mixed strategy solution, the dotted blue line is the payoff for
PFC = PFD = 0, the dotted red line is the payoff for PFC = PFD = 1, the full
blue line is maximum payoff in the lower-left corner, and the orange full line
is the maximum payoff in the upper-right corner. In the second column, the
pink line connects the values of PFC and PFD where the maximum payoff at
low temperatures is obtained, the gray line represents PFC and PFD for the
mixed strategy; the red and orange points represent, respectively, where the
maximum payoffs (represented in the left plot by the orange line) were found
in that first quadrant for low and high temperature; the green and blue points
represent, respectively, where the maximum payoffs (represented in the left
plot by the blue line) were found in that third quadrant for low and high

temperatures.
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FIGURE 5.3: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s < t − 1, in the SD game. In the first column, the pink line represents the
limit in low temperature, the gray line is the mixed strategy solution, the dot-
ted blue line is the payoff for PFC = PFD = 0, the dotted red line is the payoff
for PFC = PFD = 1, the full blue line is maximum payoff in the lower-left cor-
ner, and the orange full line is the maximum payoff in the upper-right corner.
In the second column, the pink line connects the values of PFC and PFD where
the maximum payoff at low temperatures is obtained, the gray line repre-
sents PFC and PFD for the mixed strategy, the red and orange points represent,
respectively, where the maximum payoffs (represented in the left plot by the
orange line) were found in that first quadrant for low and high temperature,
the green and blue points represent, respectively, where the maximum pay-
offs (represented in the left plot by the blue line) were found in that third

quadrant for low and high temperatures.
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FIGURE 5.4: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s = t − 1, in the SD game. In the first column, the pink line represents the
limit in low temperature, the gray line is the mixed strategy solution, the dot-
ted blue line is the payoff for PFC = PFD = 0, the dotted red line is the payoff
for PFC = PFD = 1, the full blue line is maximum payoff in the lower-left
corner, and the orange full line is the maximum payoff in the upper-right
corner; these lines are overlapping because they have the same values. In the
second column, the pink line connects the values of PFC and PFD where the
maximum payoff at low temperatures is obtained, the gray line represents
PFC and PFD for the mixed strategy, the red and orange points represent, re-
spectively, where the maximum payoffs (represented in the left plot by the
orange line) were found in that first quadrant for low and high temperature,
the green and blue points represent, respectively, where the maximum pay-
offs (represented in the left plot by the blue line) were found in that third

quadrant for low and high temperatures.
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FIGURE 5.5: Average payoffs as a function of temperature in (A) and values
of PFC and PFD where the best payoffs were found in (B), for s > t − 1 and
s < 2− t, in the case of s = 0.5 and t = 1.2, in the SD game. In the left fig-
ure, the pink line represents the limit in low temperature, the gray line is the
mixed strategy solution, the dotted blue line is the payoff for PFC = PFD = 0,
the dotted red line is the payoff for PFC = PFD = 1, the full blue line is maxi-
mum payoff in the lower-left corner, and the orange full line is the maximum
payoff in the upper-right corner. In the right figure, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.6: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s < t− 1, in particular for s = 0.9, in the SD game. In the first column, the
pink line represents the limit in low temperature, the gray line is the mixed
strategy solution, the dotted blue line is the payoff for PFC = PFD = 0, the
dotted red line is the payoff for PFC = PFD = 1, the full blue line is maximum
payoff in the lower-left corner, and the orange full line is the maximum pay-
off in the upper-right corner. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.7: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s = 1, in particular for 1 < s < t, in the SD game. In the first column, the
pink line represents the limit in low temperature, the gray line is the mixed
strategy solution, the dotted blue line is the payoff for PFC = PFD = 0, the
dotted red line is the payoff for PFC = PFD = 1, the full blue line is maximum
payoff in the lower-left corner, and the orange full line is the maximum pay-
off in the upper-right corner. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.8: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s < t− 1, in particular for 1 < s < t, in the SD game. In the first column, the
pink line represents the limit in low temperature, the gray line is the mixed
strategy solution, the dotted blue line is the payoff for PFC = PFD = 0, the
dotted red line is the payoff for PFC = PFD = 1, the full blue line is maximum
payoff in the lower-left corner, and the orange full line is the maximum pay-
off in the upper-right corner. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.9: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s < t − 1, in particular for s = t, in the SD game. In the first column, the
pink line represents the limit in low temperature, the gray line is the mixed
strategy solution, the dotted blue line is the payoff for PFC = PFD = 0, the
dotted red line is the payoff for PFC = PFD = 1, the full blue line is maximum
payoff in the lower-left corner, and the orange full line is the maximum pay-
off in the upper-right corner. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.10: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), for
s < t − 1, in particular for s > t, in the SD game. In the first column, the
pink line represents the limit in low temperature, the gray line is the mixed
strategy solution, the dotted blue line is the payoff for PFC = PFD = 0, the
dotted red line is the payoff for PFC = PFD = 1, the full blue line is maximum
payoff in the lower-left corner, and the orange full line is the maximum pay-
off in the upper-right corner. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the red
and orange points represent, respectively, where the maximum payoffs (rep-
resented in the left plot by the orange line) were found in that first quadrant
for low and high temperature, the green and blue points represent, respec-
tively, where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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FIGURE 5.11: Average payoffs as a function of temperature (left column) and
values of PFC and PFD where the best payoffs were found (right column), in
the BoS game, for different values of s. In the first column, the pink line
represents the limit in low temperature, the gray line is the mixed strategy
solution, the dotted blue line is the payoff for PFC = PFD = 0, the dotted red
line is the payoff for PFC = PFD = 1, the full blue line is maximum payoff in
the lower-left corner, and the orange full line is the maximum payoff in the
upper-right corner; the values corresponding to the two quadrants are over-
lapping, so we only see one line. In the second column, the pink line connects
the values of PFC and PFD where the maximum payoff at low temperatures is
obtained, the gray line represents PFC and PFD for the mixed strategy, the or-
ange points represent where the maximum payoffs (represented in the left
plot by the orange line) were found in that first quadrant, the blue points rep-
resent where the maximum payoffs (represented in the left plot by the blue

line) were found in that third quadrant for low and high temperatures.
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Chapter 6

Previous and Further Outlook

The beginning of this project had in view the use of the improvement of the players payoff
through the use of the new set of probabilities 3.2, with the goal of extending these energies
to be used in a network where several players would play against each other, and could do
better because they had a modified set of energies.

Initially we procured to calculate the best payoff for two players, in an analogous way
to the mixed strategy, by equating the payoff if they were told to play C by a correlating device
with the payoff if they were told to play D, weighted by the probabilities generated from the
upgraded energies. This had been done for the extreme limits of T → 0 and T → ∞ and we
extended the previous results for the whole temperature range. The idea was to check that
they had better payoffs under this condition for these new energies than they did with the
initial energies, or without correlations (mixed strategy). This approach relied on the idea
that it was the players themselves who changed these probabilities, and they therefore had
no reason to play against them.

Expanding on the idea that this should be more connected with the concept of correlated
strategies from game theory, we introduced the correlated equilibrium conditions. In this
view, both the initial and the updated set of probabilities are seen as correlating devices,
which tell the players externally what they should play. Then, we can analyze both sets of
probabilities at the same level, and the players can still choose not to follow the result given
by the instructions of the correlating device, similarly for the initial one or the updated. Like
this, the new probabilities have exactly the same role as the initial ones, and we apply to them
equilibrium conditions, that guarantee that the players always follow what it tells them to
(in order to obtain average payoffs given by the probability distribution of the correlating
device). While for the initial CD we can’t have a stable solution at all temperatures, the
inclusion of the B parameter in the updated energies allows for an equilibrium in which they
always follow what they are told, for a range of values of B depending on the temperature,
and within this interval they can choose the value of B that gives them a better payoff. We
learn at this stage that it is not necessary to impose a mixed-strategy like condition to obtain
the best payoff, and that the way that we were introducing it before required that they were
at a correlated equilibrium, because it required that they always followed, which wasn’t
necessarily true.

At this point we knew how to make sure how to construct a set of probabilities that the
players could always follow - but would they? What was their role in choosing those param-
eters for the new energies, if they were still just following? Was this just a different kind of
CD that they were following, or was this new CD really representative of how they wanted
to react to the information they received from the initial CD? What if we didn’t classified
the CDs simply as stable or unstable, and allowed the players to not follow sometimes, and
follow other times? We find out that, indeed, these new energies could not be representative
of their own choice to act upon their information, but that they could rather be seen as a
better way to perhaps introduce an initial matrix, still liable to be followed or not. We go on
to develop the formalism that we describe in this thesis, which has embeded from start to
finish the idea that, while we will always have to describe the game as an external CD in re-
lation to the players, we want to find the one CD, for a certain temperature and parameters,
that the players will always want to follow. By allowing the players to not follow the initial
information in a controlled way, we can create a new correlating device that is in equilibrium
and for which the probability of following is 1. The implication from the point of view of the
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Ising model is that the whole interaction energy will have to change in order to achieve this,
not only the part associated with the external magnetic field.

We introduce the follow/not follow ideas as they were understood by the end of this the-
sis, and calculate the best correlating device possible under these conditions starting from
the initial correlating device, for the whole range of temperatures and parameters, and cre-
ate a taxonomy according to these.

Naturally, much is still left to do. Just for this formalism with two players, we can im-
prove on the taxonomy by finding an analytic form for the maximum payoffs, for example
with Lagrange multipliers constrained to the domain of PF and the equilibrium conditions,
to understand better how the payoffs change with the following probabilities. We can also
calculate the probabilities that a player has of playing C or D in the renormalized probabili-
ties, and try to work on a simplified formalism, where these might correspond to the mixed
strategy probabilities given by some renormalized payoffs1. To extend it further we can ap-
ply the follow/not follow mechanism to a bigger range of initial CDs, be it by introducing
the parameter B as initially, or by changing its anatomy completely.

On an exploratory level, we might want to see the theoretical connections between our
formalism and stochastic games, which impose small perturbations on the payoff through a
stochastic transformation, which can evolve to a Markov equilibrium (Fudenberg and Tirole,
1991). Since we also use stochastic transformations to change our payoffs, although not for
small transformations, these concepts might shed some light on further development. If we
want to work with small perturbations, we might also want to analyze how they scale us-
ing a renormalization-group flow (Stoof, Gubbels, and Dickerscheid, 2009), that, if properly
defined, should converge to the follow/not follow probabilities that we found 2.

Next, we are still looking to find out how these ideas scale for more players, and if the
maxima that we found are the same when there are more games being played at the same
time. It should depend on if the game is symmetric or asymmetric, and in this case against
what type of players they are playing. If we then want to study this in the context of a
network, we have to check if all the games in the network are simultaneous (the network is
already formed), or sequential (there are more players being added at any time step), and
how their follow/not follow probabilities change with that. As a first toy model, we might
want to study the statistical physics for the probabilities that we just found, without caring
for the network structure; this will probably be a good approximation for symmetric games
in a formed network, probably not so much for asymmetric.

Last but not least, it would be interesting to check how well our model would describe
real games being played. We could see how well our model compares with simulations of
games on several types of networks. Eventually, we could even do real life experiments in
a sociology context to check how well people do when playing such games and are given
the initial probabilities, by comparing how often they followed or not with the theoretical
results that we found.

1Since trying to find a mixed strategy for the players was the initial approach, realizing this idea means that we
have gone full circle. This realization also eliminates virtually the correlations, being possibly a better approach for
the network implementation. One has for the SD that PR

C = pR(CC) + pR(CD) = s′
t′+s′−1 and 〈uR

i 〉 =
s′ t′

s′+t′−1 , while

for the BoS that PR1

C = 1
1+s′ .

2The idea of using the RG-flow was first introduced when we didn’t know if our follow/not follow probabil-
ities would renormalize properly. However, this idea might still be of use since it seems that the payoff changes
along a constant line of either PFC or PFD for large intervals of temperature, allowing us to track the flow in the
variable that changes in temperature. If we want to look at a renormalization in "time", although we could achieve
renormalization in one step, in principle we might be able to break it down in smaller steps to study it in this
context.
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Chapter 7

Conclusion

In this thesis we developed a new method to study correlated games inspired by the Ising
model. Because we wanted to study how the players react to what a correlating device tells
them to do, we developed a way to introduce the players choices in a statistical manner, de-
veloping a renormalized correlating device that represents the final statistics of the game. By
defining a continuum of correlation matrices, we observed how the system behaves while
the correlations start inside a correlated equilibrium and then break this equilibrium, and
how the players react at a range of temperatures and parameters, for symmetric and asym-
metric games. We found that if the initial correlation is stable the players can sometimes
do better than to always follow, and when the initial correlation is not stable they can still
use the initial correlations to create a new stable set of probabilities, that gives them a better
payoff than the mixed strategy equilibrium.

By finding the probabilities of a new correlating device, we can effectively map these
games onto an Ising model, which is related with the actual statistics of the game. This
will hopefully be useful for the study of correlated games on networks, by comparing the
results of numerics with the statical physics predictions, giving insight about the microscopic
behaviour.

As for Bob and Alice? We hope they can find a suitable correlating device and use these
methods to solve their arguments.
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Appendix A

Generalization of Initial
Correlating Device for Snowdrift

A.1 Snowdrift

A.1.1 Pure and Mixed equilibria

We want to study how the correlated equilibrium conditions given by 2.74 act on the corre-
lations given by table 3.2.

Since the players are symmetric, we assume that B1 = B2. Our correlation matrix is then

TABLE A.1

C D
C eβ(1+2B)/Znew eβ(t)/Znew
D eβ(t)/Znew eβ(t−s−2B)/Znew

where ZZnew = eβ(1+2B) + 2eβ(t) + eβ(t−s−2B).
The conditions for this correlation game to be in correlated equilibrium are

eβ(1+2B) + eβts
eβ(1+2B) + eβt

≥ eβ(1+2B)t
eβ(1+2B) + eβt

(A.1)

and

eβtt
eβt + eβ(t−s−2B)

≥ eβt + eβ(t−s−2B)s
eβt + eβ(t−s−2B)

. (A.2)

It is reasonable to assume that the magnetic field has a temperature dependency, so we
will describe the magnetic field as B

T .
In fig. A.1 we can see what happens as B

T increases: in the first place the equilibrium is
broken by the second condition, which means that the players will want to choose to play C
if told to play D above a certain temperature, while they will always want to play C if told
so; as it becomes big enough, the situation is reversed and the players will want to play D if
told to play C and will want to play D if told accordingly.

What we verify is the following: if B
T is bellow the coefficient of 1

T that corresponds to the

mixed strategy solutions, namely 1
2 ln

(
s

(t−1)

)
, then eq. A.1 is always true, while eq. A.2 is

only met bellow a certain temperature; the reverse is true if B
T is above that value. If we are at

exactly that value then both conditions are met for all temperatures. We will now elaborate
further on these conclusions .

The solution of equality for equation A.1 is

B
T

=
t− 1
2T

+
1
2

ln
(

s
(t− 1)

)
. (A.3)
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FIGURE A.1: Equilibrium conditions for s = 1.4 and t = 1.2. If the system
is in correlated equilibrium the LHS is higher than the RHS for each condi-
tion. In figure a) we have a B/T that is smaller than than 1

2
s

(t−1) , the mixed
strategy slope, which in this case is 0.972955, and we see that at a certain tem-
perature the RHS of the second condition, which means that the stability is
broken, but not on the first condition. In figure b) we are at exactly the mixed
strategy slope, and at both sides of each equation only meet at infinity. In
figure c) the slope is higher than that of the mixed strategy and it is the first

equation that brings instability from a certain temperature.

and for equation A.2 is

B
T

= − s
2T

+
1
2

ln
(

s
(t− 1)

)
(A.4)

If we plot both of these equations (fig. A.2) we see that these are the equations of two
hyperbolas, with vertical asymptote corresponding to T = 0 and with horizontal asymptote
B
T = 1

2 ln
(

s
(t−1)

)
. One of the solutions approaches this asymptote from below (correspond-

ing to the break of equilibrium in the second condition) and one from above (breaking the
equilibrium in the first condition), both converging in the mixed strategy coefficient. Further
we will refer to these two curves as, respectivelly, the lower and upper curves.

We can then talk of an equilibrium interval: for each value of the temperature there
is a range in B

T from which the players can choose any value and end up at a correlated
equilibrium. It is interesting to note that the high temperature limit of the equilibrium lines
is the mixed strategy value, since the mixed strategy solution is the solution that we found
when we looked for the high temperature solution. This indicates that for high temperatures
this uncorrelated solution is the only solution for the system, and in the absolute limit we
recover that the probability for every strategy is 1

2 ×
1
2 .

Now we must answer the following question: given a certain temperature, what are the
values of B

T the yield the highest payoff inside the stability interval?
In fig. A.3 we see, first of all, that the maximum payoff is, in any of the cases, higher than

the mixed strategy payoff, which justifies the use of the correlated equilibrium by the players
(find a better way to argue for this). Secondly, we notice that the point where we find this
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FIGURE A.2: Equilibrium range for t = 1.2, and several values of s. Below
the blue line and above the orange line the players can choose any value of
B
T and be in a correlated equilibrium. The green line corresponds to the slope

of the mixed strategy, for which borht equilibrium lines converge.

maximum can change depending on the parameters: for a) it is on the higher equilibrium
limit in B

T , by truncation; for b) and c) it is inside the interval; and for d) it is, again by
truncation, in the lower equilibrium limit in B

T .
We can inspect the maximum value of the function for varying values of s and T, keeping

t constant as a control parameter, which we can do because the changes in the system only
take place as the relative value between s and t changes, as we will find out later on.

In figure A.4 we see how B
T changes along the temperature, for the same vales of s as in

A.3 and some more. For T = 3 we find the maximum where we saw it was, but we also see
that the place where we expect to find it is not constant long the temperature.

This is mirrored in what we can see in fig. A.5, from a different perspective. Most of
the payoff curves have a region on the left side, then it changes abruptly to a different curve
with a different slope, and then it changes again to a more linear form (find a better way of
describing this). Comparing what happens when the vertical lines cross the payoff curves in
this figure with the payoff curves along temperature in fig. A.4 allows us to see what these
different regions are. Let’s take for example the the vertical line corresponding to s = 1.0:
for low temperatures it crosses on the middle part, and for higher temperatures it crosses in
the left part, which means that the left part corresponds to having the limit by truncation in
the upper B

T curve, the middle part has the maximum inside the equilibrium interval, and
the left part has the maximum by truncation in the lower curve (which we can see by seeing
the vertical line of s = 1.3).

Since the payoff is an analytical function, we thus expect that the maxima inside the
interval corresponds to a zero in the derivative. The expression of the derivative is

∂〈ui〉
∂ B

T
=

2e
2B+s+t

T

(
(s + t− 2)

(
−e

4B+s+1
T

)
+ 2e

2B+1
T + (s + t)et/T

)
(

2e
2B+s+t

T + e
4B+s+1

T + et/T
)2 (A.5)
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FIGURE A.3: Payoff as given by equation (insert equation) for t = 1.2 and
T = 3 and several values of s. The veritical lines define are the equilibrium
boundaries for the specific parameters, while the dashed line corresponds to

the mixed strategy payoff.

The values of this derivative are plotted in fig. A.6 for the values of B
T of fig. A.5. As ex-

pected, the middle region corresponds a zero derivative. For low temperatures, the function
never leaves the middle region after a certain value of s, which means the maximum will
always go asymptotically towards one of the curves, but never reach it.

There are four formal solutions in B
T that correspond to eq. A.5 being zero, however, most

of them have imaginary parts. The only solution that contains strictly real values is:

B
T sol

= log


√√√√√ e−

s+1
T

(√
e1/T

(
(s2 + 2s(t− 1) + (t− 2)t) e

s+t
T + e1/T

)
+ e1/T

)
s + t− 2

 (A.6)

(show that this derivative=0 corresponds to a maximum for this solution)
When the above solution is real, it corresponds to a maximum in the payoff. If this

maximum is outside the equilibrium interval, then the maximum we are interested in corre-
sponds to one of the limit curves. When the solution has an imaginary part, then the solution
is in one of the equilibrium curves as well.

T → ∞

To see what happens to eq. A.6 on the high temperature limit, we can perform a series
expansion in 1

T around zero, which gives

lim
T→∞

B
T sol

≈ t− 2− s
4T

+
1
2

log
(

s + t
s + t− 2

)
(A.7)

This equation has a very similar form to eqs. A.1 and A.2. In fact, both are equations of
hyperbolas and the horizontal asymptote is given by the logarithmic term. Since the coef-
ficient is the same, the asymptote will be the same if the argument of the logarithms is the
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same, or s
t−1 = s+t

s+t−2 . The solution for this equality is, given the restriction in our parame-
ters, s = t, so we conclude the following: if s > t, the asymptote of limT→∞

B
T sol is smaller

than that of the equilibrium conditions, meaning that eventually the maximum payoff will
cross the lower equilibrium condition, at which point it will become the solution; if s = t,
we are guaranteed that the maximum payoff is always inside the equilibrium conditions; if
s < t, the asymptote is bigger than that of the equilibrium curves, and the maximum will
cross the higher equilibrium curve.

T → 0

When the temperature gets very small, we can drop the exponential expressions with lower
coefficients of 1

T :

lim
T→0

B
T sol

≈ log


√√√√√ e−

s+1
T

(√
e1/T

(
(s2 + 2s(t− 1) + (t− 2)t) e

s+t
T

)
+ e1/T

)
s + t− 2



≈ log


√√√√√ e−

s+1
T

(√
(s2 + 2s(t− 1) + (t− 2)t) e

s+t+1
T + e1/T

)
s + t− 2



= log


√√√√√

(s2 + 2s(t− 1) + (t− 2)t) e
t−1−s

T + e−s/T

s + t− 2



≈ log


√√√√√

(s + t− 2)(t + s)e
t−1−s

T

s + t− 2


=

1
4

log

(
(t + s)e

t−1−s
T

s + t− 2

)

=
t− 1− s

4T
+

1
4

log
(

t + s
s + t− 2

)
(A.8)

where in the fourth line we used that limT→0 e−s/T = 0 because s > 0.
Here we see that one of three things can happen:

• s < t− 1:the coefficient of 1/T is positive, and since the temperature is very small B/T
diverges to +∞, and B will have a constant positive value for absolute zero;

• s = t− 1: the coefficient of 1/T is zero and B/T has a constant value that corresponds
to 1

4 log
(

2s+1
2s−1

)
, while B will be zero for absolute zero; also, the horizontal asymptote

in the equilibrium conditions is B/T = 0;

• s > t− 1: the coeficient of 1/T is negative, so that B/T diverges to +∞, while B will
be a negative constant for absolute zero.

Characterization of the maximum payoff B/T depending on the parameters

In the subsections above we saw that the behavior of the curve of B/T(T) that corresponds
to the maximum payoff inside the correlated equilibrium changes characteristics, either re-
garding the limits to very high or very low temperature, at s = t − 1 and at s = t. One
relation has not yet been considered: eq. A.6 becomes imaginary if the denominator inside
the square root is negative, or if s < 2− t. At this point, there is not a maximum inside the
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equilibrium and, because it belongs to the region of s < t, the maximum always happens at
the higher equilibrium curve. As the horizontal asymptote at T → ∞ becomes increasingly
higher, the max payoff curve crosses the upper equilibrium curve at increasingly lower tem-
peratures, until the asymptote becomes infinite, which only meets the upper curve at T = 0,
which, because it is its vertical asymptote, means in practice that the maximum is always at
that equilibrium curve.

The fact that, at s = 2 − t, the maximum at zero temperature changes from being in
the limit condition to being inside the interval is rather interesting. At this temperature,
without a magnetic field, the correlation matrix becomes equiprobable in the (C,D) and (D,C)
strategies, and the corresponding average payoff is s+t

2 , as we saw when we defined our
basis correlation matrix. If we add a magnetic field, this is only the payoff if the arguments
of the exponential functions corresponding to (C,C) and (D,D) are smaller than those of the
off-diagonal, or in the cases of 1 + 2B < t or t − s − 2B < t. If one of those cases doesn’t
happen, we are back in a pure strategy solution in the diagonal, which, as we saw in the
beginning, are not Nash equilibria. If we sill have a small temperature, there will be values
of B/T big and small enough that permit, respectively, one of the previous conditions not
to be respected, but within these values the payoff is nearly independent from the magnetic
field, and corresponds to s+t

2
1. Nonetheless, this is only profitable if s+t

2 > 1, which is the
next best payoff, corresponding to a pure strategy. Because of this, our stability conditions
guarantee that, if s < 2− t, the best payoff is not 1, but something slightly smaller, coinciding
with the stability condition. In fig. A.8 we can see where the maximum payoffs can be found
for several parameters at T = 0.001, illustrating what has just been described.

We are then able to define six different profiles for the maximum payoff curve, that are
portrayed in fig. A.7. The configuration of its types according with the temperature limits
are as described in table ??.

1Despite the limits of B/T in eq. A.8 predicting a maximum for a very large or very small value of B at small
temperatures, this almost only relates to the sign of the majority of the values that we can adopt, as the matrix will
decay very quicly to the off-diagonal values
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FIGURE A.4: Magnetic field corresponding to maximum payoff, for t = 1.2
and several values of s, depending on T. Depending on the value of s, the
maximum payoff is either inside the interval of equilibrium, or corresponds
to a truncation. For a), b) and c) below a certain temperature the maximum
happens inside the interval, tending asymptotically to the lower curve, and
above it happens at the higher curve; for d) the maximum is always inside
the interval; finally for e) the limit happens at the lower curve above a certain
temperature, and below it happens inside, but tending asymptoticaly to the

same curve.
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in A.5, the vertical lines correspond to the values of s that are represented in
fig. A.4, namely to a) until e), from left to right. The curves for T = 0.1 and
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A.1. Snowdrift 87

1 2 3 4 5
T

-2

-1

1

2
B/T

a) s=0.2

1 2 3 4 5
T

-2

-1

1

2
B/T

b) s=0.5

1 2 3 4 5
T

-2

-1

1

2
B/T

c) s=0.7

1 2 3 4 5
T

-2

-1

1

2
B/T

d) s=1.2

B/T w/ max payoff

Equilibrium limit condition 1

Equilibrium limit condition 2

1 2 3 4 5
T

-2

-1

1

2
B/T

e) s=1.7

1 2 3 4 5
T

-2

-1

1

2
B/T

f) s=2.0

FIGURE A.7: Magnetic field corresponding to maximum payoff, for t = 1.7
and several values of s, depending on T. These plots represent the typical
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FIGURE A.8: Payoff at T = 0.001 for t = 1.7 and three different values of s.
The vertical lines correspond to the stability limits. The flat line corresponds
to the s+t

2 , and throughout the a big range of B/T the payoff is independent
from it. If it drops from this values, it goes either to 0 or 1, which are the
payoffs of the pure strategies (D,D) and (C,C). As expected, for s < 2− t the
best payoff allowed is at the limit, and not at 1, whereas in the other cases the

best payoff is inside the interval.
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Appendix B

Transformation matrix for the
probabililities

In this appendix we explore the relation between the initial and final sets of probabilities
for each state, and how it depends on that transforms one in other, and the need for the
follow/not follow probabilities. We justify why we chose to move from the approach in
appendix A into the model that is explored in the main body of this thesis.

B.1 Transformation matrix for simple exponential probabili-
ties

The initial correlation matrix is given in table 2.8. We can decide that the probabilities of
finding the final states are just imposed by a change in the magnetic field of the Ising system,
such that we end with the probabilities described in table 3.2.

We will express these probabilities as vectors, each row representing the state to which
we map the corresponding probability that that state is chosen (this probability is calculated
by conserving the average of the energies that we attribute at each state, cf PME).

We want a matrix that transforms the probability vector
eβ/ZB
eβt/ZB
eβt/ZB

eβ(t−s)/ZB

 (B.1)

with ZB = eβ + 2eβt + eβ(t−s) into the probability vector
eβ(1+B1+B2)/Znew
eβ(t+B1−B2)/Znew
eβ(t−B1+B2)/Znew

eβ(t−s−B1−B2)/Znew

 (B.2)

with Znew = eβ(1+B1+B2) + eβ(t+B1−B2) + eβ(t−B1+B2) + eβ(t−s−B1−B2).
This transformation should preserve that the elements of the vectors sum to 1.
Ideally, this transformation would come about by the action of two uncorrelated prob-

abilities that depend each on B1 and B2, respectively. In the players interpretation, each
of these probabilities would account for the chance with which a player would choose to
play by the initial or the final set of probabilities, already having in mind that these sets of
probabilities act in practice as correlating devices.

The probability that player i chooses to play by the old matrix, given that he was told
to play µ by that same matrix, is PNFµ,i: player i does Not Follow the new matrix if told to play
µ, implying that he plays ν. With probability PFµ,i(Bi) the same player chooses to follow
the new matrix, and for normalization we impose that PFµ,i(Bi) = 1− PNFµ,i(Bi), with µ, ν ∈
{C, D} and i, j ∈ {1, 2}. Admittedly, this is a different interpretation of the follow/not follow
probabilities than the one that appears in section ??.
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If the transformation from one probability to another should come about by the use of
these uncorrelated probabilities, we should have

pnew(µν) =P1
Fµ

P2
Fν

pB(µν) + P1
Fµ

P2
NFµ

pB(µµ) (B.3)

+ P1
NFν

P2
Fν

pB(νν) + P1
NFν

P2
NFµ

p0(νµ) (B.4)

since there are only two values for both µ, ν and i, j, and, due to the symmetry of the players
for the SD game, pnew(µν) = pnew(νµ), with ν 6= µ.

If this ansatz holds, we are allowed to write a transformation matrix as in eq. 3.9.
Since the probabilities that we want to transform depend exponentially on the variables

that we want our transformation to depend on, namely B1 and B2, we can linearize the sys-
tem, by Taylor expanding both the probabilities that we want to achieve, and the transition
probabilities.

The linearization of the new probabilities is

pnew(µν)(B1, B2) =

=pnew(µν)(0, 0) +
∂pnew(µν)(B1, B2)

∂B1

∣∣∣∣
B1,B2=0

B1 +
∂pnew(µν)(B1, B2)

∂B2

∣∣∣∣
B1,B2=0

B2 +O(B2
1) +O(B2

2) +O(B1B2)

=p0(µν) +
∂pnew(µν)(B1, B2)

∂B1

∣∣∣∣
B1,B2=0

B1 +
∂pnew(µν)(B1, B2)

∂B2

∣∣∣∣
B1,B2=0

B2 +O(B2
1) +O(B2

2) +O(B1B2)

We can then expand our transformation matrix in terms of the first order expansions of
the individual player’s probabilities:

P1
FC

= 1− C1B1 P1
NFC

= C′1B1 P2
FC

= 1− C2B2 P2
NFC

= C′2B2

P1
FD

= 1− D1B1 P1
NFD

= D′1B1 P2
FD

= 1− D2B2 P2
NFD

= D′2B2

We choose that the zeroth order term in the NF probabilities is zero because the zeroth
order expansion of the new probabilities should be exactly the old matrix (when the magnetic
fields are zero we have our old matrix), which is allowed by this configuration. We choose
to have the constants different in F and NF (for example C1 and C′1) for two reasons: the first
is that, although the full probabilities of Follow and Not Follow should sum to one, there
is no reason to assume that that has to happen at any arbitrary point in the truncation of
the expansion, instead of the sum limit; the second is that, if this is not so, the generated
matrices will have linearly dependent terms that yield the system unsolvable, as we will
have a chance to see.

The transformation matrix with these probabilities becomes
(1− B1C1)(1− B2C2) B2(1− B1C1)D′2 B1(1− B2C2)D′1 B1B2D′1D′2

B2(1− B1C1)C′2 (1− B1C1)(1− B2D2) B1B2C′2D′1 B1(1− B2D2)D′1
B1(1− B2C2)C′1 B1B2C′1D′2 (1− B2C− 2)(1− B1D1) B2(1− B1D1)D′2

B1B2C′1C′2 B1C′1(1− B2D2) B2C′2(1− B1D1) (1− B1D1)(1− B2D2)

 =

= 1 +


−C1 0 D′1 0

0 −C1 0 D′1
C′1 0 −D1 0
0 C′1 0 −D1

 B1 +


−C2 D′2 0 0
C′2 −D2 0 0
0 0 −C2 D′2
0 0 C′2 −D2

 B2

+


C1C2 −C1D′2 −D′1C2 D′1D′2
C1C′2 C1D2 D′1C′2 −D′1D2
−C′1C2 C′1D′2 D1C2 D1D′2
C′1C′2 −C′1D2 −D1C′2 D1D2

 B1B2

We see in the matrices associated with the linear coefficients that, if the prime con-
stants were the same as those without prime, there would be linearly dependent rows (and
columns) and for that we need to assume they are different.

The expansion of the New probabilities vector is as follows:
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eβ(1+B1+B2)/Znew
eβ(t+B1−B2)/Znew
eβ(t−B1+B2)/Znew

eβ(t−s−B1−B2)/Znew

 ≈


eβ/Zold
eβt/Zold
eβt/Zold

eβ(t−s)/ZB

+



2β(eβs+1)eβ(s−t+1)

(eβ(s−t+1)+2eβs+1)
2

2βeβs(eβs+1)

(eβ(s−t+1)+2eβs+1)
2

− 2βeβt(eβt+eβ)

(e−β(s−t)+2eβt+eβ)
2

− 2β(eβt+eβ)eβ(s−t)

(eβ(s−t+1)+2eβs+1)
2


B1 +



2β(eβs+1)eβ(s−t+1)

(eβ(s−t+1)+2eβs+1)
2

− 2βeβt(eβt+eβ)

(e−β(s−t)+2eβt+eβ)
2

2βeβs(eβs+1)

(eβ(s−t+1)+2eβs+1)
2

− 2β(eβt+eβ)eβ(s−t)

(eβ(s−t+1)+2eβs+1)
2


B2

We are then left to solve the following two systems, corresponding to the linear expan-
sions in B1 and B2:



2β(eβs+1)eβ(s−t+1)

(eβ(s−t+1)+2eβs+1)
2

2βeβs(eβs+1)

(eβ(s−t+1)+2eβs+1)
2

− 2βeβt(eβt+eβ)

(e−β(s−t)+2eβt+eβ)
2

− 2β(eβt+eβ)eβ(s−t)

(eβ(s−t+1)+2eβs+1)
2


=


−C1 0 D′1 0

0 −C1 0 D′1
C′1 0 −D1 0
0 C′1 0 −D1




eβ/Zold
eβt/Zold
eβt/Zold

eβ(t−s)/Zold





2β(eβs+1)eβ(s−t+1)

(eβ(s−t+1)+2eβs+1)
2

− 2βeβt(eβt+eβ)

(e−β(s−t)+2eβt+eβ)
2

2βeβs(eβs+1)

(eβ(s−t+1)+2eβs+1)
2

− 2β(eβt+eβ)eβ(s−t)

(eβ(s−t+1)+2eβs+1)
2


=


−C2 D′2 0 0
C′2 −D2 0 0
0 0 −C2 D′2
0 0 C′2 −D2




eβ/Zold
eβt/Zold
eβt/Zold

eβ(t−s)/Zold



Solving these we get the following values:

C1 = − 2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt D1 =
2β(eβt+eβ)

eβ(t−s)+2eβt+eβ C2 = − 2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt D2 =
2β(eβt+eβ)

eβ(t−s)+2eβt+eβ

C′1 = 0 D′1 = 0 C′2 = 0 D′2 = 0

As expected, because of the symmetry of the players, the coefficients for the same play
and different player are the same. Interestingly enough, up to the linear order we have that
the transformation matrices are diagonal, since the prime coefficients are zero, which means
that the probability of Not Following the new matrix is zero. Could this be the case at all
orders?

For that, we will start from the simplest transformation matrix that we know yields the
desired new probabilities vector from the initial ones:

eβ(B1+B2) ZB
ZNew

0 0 0
0 eβ(B1−B2) ZB

ZNew
0 0

0 0 eβ(−B1+B2) ZB
ZNew

0
0 0 0 eβ(−B1−B2) ZB

ZNew

 (B.5)

To compare with the previous results, we Taylor-expand this matrix up to linear order, to
obtain
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1+



2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt 0 0 0

0
2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt 0 0

0 0 − 2β(eβt+eβ)
eβ(t−s)+2eβt+eβ 0

0 0 0 − 2β(eβt+eβ)
eβ(t−s)+2eβt+eβ


B1

+



2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt 0 0 0

0 − 2β(eβt+eβ)
eβ(t−s)+2eβt+eβ 0 0

0 0
2β(eβs+1)eβt

2eβ(s+t)+eβs+β+eβt 0

0 0 0 − 2β(eβt+eβ)
eβ(t−s)+2eβt+eβ


B2.

This is exactly the same result as we obtained with the initial method. We can then infer
that that transformation resumms to eq. B.5.

This has several implications. First of all, it seems that these are not probability distri-
butions, as they don’t add up to one in any form. Second, it seems that they cannot be
separated in a multiplicative fashion (which would be required for uncorrelated probabili-
ties) between terms that only depend on B1 and B2; this can be done with the numerator, but
for the denominator we would have to have that

eβ(1+B1+B2) + eβ(t+B1−B2) + eβ(t−B1+B2) + eβ(t−s−B1−B2)

=
(

aeβ + beβt + ceβt + deβ(t−s)
) (

eeβB1 + f e−βB1
) (

geβB2 + he−βB2
)

,

which would require that aeg = b f g = beh = c f h = 1 and all other products are zero, a
system that doesn’t have a solution.

If we were working still in our first "mixed strategy" payoff, this would not be a problem
because the partial payoffs, that cancel out the partition function (as do the payoffs at the
equilibrium conditions), are equal to the full payoff, and we wouldn’t need normalization.
However, since this is not the case, any other full average payoffs need a normalized proba-
bility distribution. And the partition function carries the information of the other available
states, so the probabilities without it are meaningless.

With this model we are basically saying that, if the initial correlating device makes a
choice, then it would have made the same choice with the final set of probabilities. We can
think of it in two ways:

1. If the CD draws from a correlation matrix in equilibrium, then if we change the mag-
netic field smoothly inside the correlated region, for the same temperature, there is no
reason that the players would play differently than what the CD just told them to (be-
cause it is still a correlated equilibrium). However, in practice they would pretend that
they were told to play what they were in fact told to play, but with the probability dis-
tribution that includes the magnetic field that maximizes their payoff, and they would
calculate everything using that assumption. This is would be a possible working inter-
pretation, but in reality we would just be hiding the fact that the drawing would have
to happen directly from the final matrix if they want to claim their full prize. 1 2

1To obtain our new probabilities we had to maximize the entropy of the new energy distributions, which means
that we tampered with the original energies and now we have a new average energy that is being conserved; hence
they have a different payoff.

2Since the relation is one-to-one, it is indifferent whether the drawing is directly from the final matrix, or
whether it was drawn from the first but they have the same playing information and use the final set of proba-
bilities.
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2. If the plays are seen as spin states, then when the bank tells the players to play some-
thing they are sent to one of the basis states, and our diagonal (unitary) transformation
matrix only changes the "length" of the basis vector, not the assigned state.

B.2 General conservation of L1 integral

When we talk about wanting to preserve the sum of the probabilities, we say more formally
that we want to preserve the integral of an operator in L1, which is the space where a length
is defined by the sum of the coordinates in each dimension, instead of the square root of the
sum of the squares (this would be measured in L2.

One of the ways to preserve this sum is by using a generalized permutation matrix. One
of these matrices has this form:

a
b
c
d

 =


a
a0

0 0 0
0 b

b0
0 0

0 0 c
c0

0
0 0 0 d

d0




a0
b0
c0
d0

 , (B.6)

which is the form of eq. B.5.
Another way is by using Stochastic matrices, which are matrices for which the rows

or columns sum to 1 and which are used to describe Markov chains, or, in other words,
processes that only depend on the previous step. If we want to preserve a sum that is not
necessarily 1, these transformation matrices still work:

a
b
c
d

 =


A0 A1 A2 A3
B0 B1 B2 B3
C0 C1 C2 C3
D0 D1 D2 D3




a0
b0
c0
d0

 , (B.7)

a + b + c + d =(A0 + B0 + C0 + D0)a0

+(A1 + B1 + C1 + D1)b0

+(A2 + B2 + C2 + D2)c0

+(A3 + B3 + C3 + D3)d0. (B.8)

If the columns add up to one, we have a stochastic left matrix, and the previous condition
amounts to having the sum of the vector elements preserved.

There are more general conditions that preserve the sum for a non-stochastic option
(Krengel and Lin, 1987), but the stochastic transformation that we described above is pre-
cisely of the kind that we see in eq. 3.9 under the assumption of eq. 3.3. We see then why
that is the right transformation that we want to use in order to arrive at the final correlation
probability: it is completely independent of the values of the original correlation probabili-
ties, and applying it again assumes the result of the first application, so we are confident that
the players have converged at the best probabilities. This logic might also have important
implications if we want to look at our system as a succession of decisions in time; in our
case, we conclude that the game has converged in one time step. However, when we go to
networks, we might want to change this in case we want to work with sequential games by
adding links at already formed networks.
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