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Abstract

In this thesis we will summarise recent developments in tensor network methods and extend
results for entanglement entropy using cMERA in Lifshitz field theories. After a brief recounting
of the important aspects of entanglement entropy we will present a description of pertinent
tensor networks. This will include both matrix product states (MPS) and the multi-scale
entanglement renormalisation ansatz (MERA). We will recount previous area law results for
the entanglement entropy in these ansätze. Following this we will continue to discuss MERA and
in particular its continuous realisation (cMERA). Finally we apply this cMERA framework to
free field theories and extend known results to the case of field theories with anisotropic scaling,
that is, Lifshitz field theories. In particular we find a new result for the entanglement entropy
of fermionic theories with anisotropic scaling.
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Chapter 1

Introduction

Almost since the inception of quantum mechanics, the notion of entanglement in quantum
systems has been a source of interest. Initially there was some scepticism as evidenced by
Einstein-Podolsky-Rosen’s paradoxical thought experiment [1] which cast doubt on quantum
mechanics as a true description of reality. However almost 30 years later Bell famously put
forward a rebuttal [2] which would eventually allow entanglement to be verified as a physical
fact many years later. Since these beginnings the study of entanglement and its measure,
entanglement entropy, has simply grown and grown. One area of interest is the study of
entanglement entropy in many-body quantum mechanical systems. However, the study of
many-body physics is often hindered by the intractability of the associated calculations owing
to the fact that one will often be faced with an exponential scaling of variables with system
size. A way to overcome this problem is to make approximations. Often this comes in the guise
of mean-field theory or similar methods, however, in this thesis we examine tensor network
methods. In simple terms tensor networks are representations of many body states. The
methods which use these networks are several variational ansätze from which one can determine
the ground state of a system and properties thereof. The variational parameters are the tensors
themselves which comprise the network.

In recent years a wealth of material has been produced on the topic of tensor networks.
This can be attributed to the wide range of applications that physicists from disparate areas
have found and developed. It can be said that in 1992 White [3, 4] initiated this field with a
numerical method known by DMRG (Density Matrix Renormalization Group). Although some
numerical methods will be mentioned in this thesis the focus will be on analytic results arising
from these developments.

Since 1992 a wide variety of tensor networks (TN) have been developed for various different
contexts. The DMRG method may be seen diagrammatically via matrix product states (MPS)
and their manipulations. This class of TN is particularly suited to 1-dimensional quantum
spin systems. For large spin chains direct diagonalization methods for numerical calculations
quickly become intractable. DMRG allows for these calculations to become tractable by using
the framework of matrix product states to make enormous savings on memory and computation
time by reducing the number of relevant degrees of freedom in the problem.

Moreover, these MPS were generalized to higher dimensions. Projected Entangled Pair
States or PEPS are a class of 2D tensor networks which are essentially a 2 dimensional analogue
of matrix product states. [5] Although many of the higher dimensional tensor networks do not
share the numerical benefits of their lower dimensional counterparts they are of theoretical
interest.

For this thesis our primary focus is another class of tensor networks which have properties
that make them of special interest to the study of entanglement entropy for low dimensional
systems. These so called MERA networks are (d+ 1)-dimensional networks which are used to
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CHAPTER 1. INTRODUCTION

describe states on a d-dimensional lattice. The numerical benefits of these networks are found
in d = 1, 2 but higher dimensional MERA networks are also of interest. Our focus in this thesis
will be the theoretical implications of this Multi-scale Entanglement Renormalisation Ansatz.
It has been proposed that the network may be viewed as a discretisation of space-time. [6]

There are a number of properties which make the MERA network of particular interest to
us. Firstly, as a tensor network we should be able to extract numerical results which were not
so readily available or possible by previous methods. Moreover, the ansatz is suitable for the
study of scale invariant theories, that is, many body quantum systems at critical points. Using
a slightly modified version of the network the MERA is also a quantum circuit which unitarily
evolves an IR state to a UV state. Then, taking a broader view of the ansatz, the network de-
scribes a renormalization group flow from a ultraviolet state/theory to an infrared state/theory.
Then two aspects which we will examine in this thesis are more recent developments. It has
been conjectured that the MERA network yields a discrete form of Anti-de Sitter space-time. [6]
We will present this conjecture and a related proposal in which a continuous MERA framework
which may be used to study emergent space-time from quantum field theories [7, 8],

Later we will extend this cMERA proposal to Lifshitz field theories, often referred to as
theories with anisotropic scaling. That is, field theories in which the scaling of time and space
dimensions are not equal. In effect the modification we will see is that usual spatial derivative
term we find in the free field theories will be replaced by a higher derivative term. The number
of derivatives will be denoted by ν which is referred to as the dynamical critical exponent. The
reason we explore this avenue of research is to probe theories with long-range entanglement and
to determine properties of non-relativistic theories at quantum critical points. How a higher
derivative corresponds to longer range entanglement can be seen by examining the theory on a
lattice [9]. Moreover, by exploring this area we hope to find general results for various values of
the dynamical critical exponent such that one can say something meaningful about the nature
of entanglement for Lifshitz field theories. In recent years Lifshitz-type theories have become
of increased interest in the areas of gravitation [10,11], condensed matter theory [12] and fluid
dynamics [13,14].

The structure of the thesis is then as follows, in Chapter 2 we will give a brief introduction to
entanglement entropy. We will for the most part only introduce the key concepts that are of use
in the subsequent discussions. Following this, in Chapter 3, we will introduction the necessary
tools to understand tensor networks with an introduction to matrix product states, real space
renormalisation and finally a brief treatment of MERA. In Chapter 4, the proposal which
links entanglement renormalisation (MERA) and holography (AdS/CFT) will be introduced.
This proposal in itself is an exciting prospect as we see a connection between a real space
renormalisation technique originally intended for use in the field of condensed matter becoming
linked to the AdS/CFT correspondence in part due to the Ryu-Takayanagi proposal [15, 16].
We will in fact see a manifestation of the RT proposal in the scaling of entanglement entropy of
MERA in Chapter 3. In the final Chapter (5), we will reproduce and expand upon recent work
in the area of continuous MERA and Lifshitz scaling, yielding results for general dynamical
exponent in free field theories.
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Chapter 2

Entanglement Entropy

In this thesis the key quantity around which discussion will be focused is the entanglement
entropy of a quantum mechanical system. Entanglement itself is one of the basic phenomena of
quantum mechanics and the entanglement entropy is a measure of this phenomenon. We will
introduce the concept in this chapter in a relatively formal way but the ideas will be crucial
throughout the later chapters and will reappear throughout the discussions of tensor networks.

In the context of tensor networks there are several useful resources from Quantum Informa-
tion Theory [17,18], which give a more complete picture than will be presented here.

2.1 Entanglement in Quantum Mechanics

The phenomenon of entanglement is seen in the difference between the state spaces of classical
and quantum mechanical systems. If we have a system which comprises of multiple subsystems
one expects classically that the entire system will be describable by a direct sum of the individual
subspaces. In the mathematical description of a quantum mechanical system this is equivalent
to the state space or Hilbert space of the system being factorisable as a tensor product of the
individual Hilbert spaces. So if we have two subsystems A and A{, namely a subsystem A and
its complement, then the full space can be expressed as H = HA ⊗ HA{ . Or in terms of the
states:

|Ψ〉 = |ψ〉 ⊗ |φ〉 , (2.1)

where |ψ〉 ∈ HA and |φ〉 ∈ HA{ . This would correspond to subsystem A being in state |ψ〉 and
subsystem A{ being in state |φ〉. However in quantum mechanics this is not always true as the
tensor product space is comprised of all linear combinations of product states so if we have a
set of bases {|ψa〉}, {|φb〉} then a generic state will be expressed as:

|Ψ〉 =
∑
a,b

Mab |ψa〉 ⊗ |φb〉 ∈ H, (2.2)

but it may arise that no states |ψ〉, |φ〉 exist such that:∑
a,b

Mab |ψa〉 ⊗ |φb〉 = |ψ〉 ⊗ |φ〉 . (2.3)

In other words the state of the system is not in a product state but rather it is an entangled
state. A simple example of such a state is given by one of the Bell state describing a state of
two qubits1:

|β00〉 =
1√
2

(|00〉+ |11〉). (2.4)

1If one is unfamiliar with the notation or nomenclature of quantum information used here, further explanation
is given in the appendix.
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2.2. ENTANGLEMENT ENTROPY CHAPTER 2. ENTANGLEMENT ENTROPY

This particular state is not factorisable as the tensor product of two single qubit states.
Hence we say that it is entangled.

More concretely entanglement is the name given to a purely quantum mechanical correlation
between systems. Say in spontaneous pair production from the vacuum of spin-1

2
particles. By

spin conservation both are created with opposite spin. Then is one of the particles is observed
say as a spin up particle then the other particle is known to be in a spin down configuration. As
such there is a correlation between the particles even if they are separated in space. In a sense
it seems that the measurement of one particle affects the subsequent measurement outcome
of the other particle. This action at a distance concept was viewed with some scepticism
initially [1]. However through the work of Bell [2] entanglement has subsequently been verified
experimentally allowing for acceptance of this phenomenon as a fundamental aspect of quantum
mechanics.

Since these beginnings the study of entanglement has become an enormous topic of interest
in physics. Particularly in the fields of condensed matter and quantum information theory.
However these are not the only fields where it appears, it is also of interest in the areas of black
hole physics, and holography which this thesis will touch upon.

2.2 Entanglement Entropy

Given that entanglement appears in such a wide range of research it becomes essential to have
a quantitative measure for the amount of entanglement in a system or more accurately between
two subsystems. The relevant measure is the entanglement entropy.

Before defining the entanglement entropy we should remind ourselves of the relevant object
used to define the entropy, namely the (reduced) density matrix of a (sub-)system. The density
matrix is a necessary tool when there is some uncertainty about a given state. We say that the
state is thereby in a mixed state, or an ensemble of pure states. This can be due to the system
in question being in thermal equilibrium or indeed if we have a system comprised of several
entangled subsystems, in which case the subsystems must be treated as being in mixed states
regardless of the state of the larger system.

In mathematical terms for a pure state vector |ψ〉 the density matrix is defined as the linear
operator:

ρ = |ψ〉 〈ψ| . (2.5)

Using this definition quantum mechanics may be reformulated in terms of density operators
rather than states such that the Schrödinger equation becomes the von Neumann equation:

i~
∂ρ

∂t
= [H, ρ] . (2.6)

For a mixed state the density matrix is defined as a linear combination of pure state density
matrices in a similar sense to taking linear combinations of pure states to express a multiple
qubit state for example. So the density matrix is then:

ρ =
∑
k

pk |ψk〉 〈ψk| . (2.7)

The coefficients pk are classical probabilities of the system being in some k-th state. A state
is said to be pure if ρ2 = ρ.

The reason for using density matrices in the study of entanglement entropy is precisely due
to the presence of entanglement since it leaves a gap in the knowledge of a subsystem. For
example if one has an entangled system but has only experimental access to a subsystem then
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2.2. ENTANGLEMENT ENTROPY CHAPTER 2. ENTANGLEMENT ENTROPY

the information of the subsystem is incomplete due to the state space of the whole system being
non-factorisable.

Now to set up the definition of the entanglement entropy consider the system previously
described. We have a full system described by the density matrix ρ, but we are interested in a
subsystem A described by ρA. As before we can say that the whole system is HA⊗HA{ where
A{ is the complement of A as before. For example this could be a wire or spin chain of N sites
split in the middle with A being one half and A{ being the remainder but the discussion holds
in generality. Then the density matrix of A is defined by ρ where all the degrees of freedom in
A{ are traced out. This is expressed as:

ρA = TrA{(ρ). (2.8)

In other words we sum over the degrees of freedom which we know nothing about, leaving
us with only the information that can be known of the subsystem A. Even if ρ is a pure state
ρA can be mixed, this defines entanglement. If it is the case that there is no entanglement
between A and A{ then ρ factorises completely as ρA ⊗ ρA{ similar to when we looked at state
vectors.

To quantify the entanglement we define the entanglement entropy. This is known as the
von Neumann entropy which is the quantum mechanical version of classical Shannon entropy.
It is defined as:

S(ρ) = −Tr(ρ log ρ),

= −
N∑
k=1

pk log(pk), (2.9)

where pk are the eigenvalues of ρ and ρ is a matrix of dimension N×N . A pure state corresponds
to a density matrix with eigenvalue equal to 1 and hence has zero entanglement entropy. A
maximally mixed state corresponds to a density matrix with all eigenvalues equal to 1/N and
hence S(ρ) = logN .

A couple of useful relations are worth mentioning at this point as we will make use of them
in later discussions. The first is subadditivity of entanglement entropy. Given a system with
full density matrix ρ split into a subsystem and its complement as previously described the
entropies of the subsystems sum to be greater or equal to the entropy of the total system. That
is:

S(ρ) ≤ S(ρA) + S(ρA{). (2.10)

A way to understand this is if we consider the measure of entropy as a measure of our lack of
knowledge of a system then naturally one expects the whole system to contain more information
than the individual subsystems when examined separately.

Another relation of note is the Araki-Lieb inequality [19], which is in effect the full triangle
inequality:

|S(ρA)− S(ρB)| ≤ S(ρ) ≤ S(ρA) + S(ρA{), (2.11)

where A and B are different choices for splitting the system and A{ is again the complement
of A. One should note that the choice of subsystem is important as different subsystems will
not necessarily have the same entanglement with the remainder of the system for some given
ρ. Indeed they may be entirely different. The key point is that the entanglement is not an
inherent feature of a state but is dependent on the way in which we examine the parts of the
state.
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2.3. AREA LAWS CHAPTER 2. ENTANGLEMENT ENTROPY

2.3 Area Laws

If one takes a generic quantum mechanical state, the entanglement entropy of that state will be
proportional to the volume of the subsystem/subinterval one examines. This agrees with our
classical notion of entropy, the entropy of a system is proportional to the number of degrees of
freedom and hence the volume of the system at hand.

However, not all states share this property. An important class of states are those whose
entanglement entropy follows an area law. Essentially one finds that the entropy is proportional
to the boundary of the subsystem at hand. This phenomenon appears in lattice systems and in
continuous systems [20]. Indeed for MERA networks this aspect is characteristic of the tensor
network ansatz.

Suppose we have a d-dimensional quantum system. Then if we examine the entanglement
entropy of a region A of side length l, whether a hypercubic region of a lattice or a space-time,
if the system obeys an area law then we expect the entropy to behave as:

S(ρA) ∝ ld−1. (2.12)

So in effect the entropy is proportional to the boundary of the region in question as opposed
to the total number of degrees of freedom in the system. For a random quantum state in general
the entropy may scale with the volume of the region, meaning that as for classical entropy the
entanglement entropy will scale as an extensive quantity.

It has been found that the ground states of local, gapped Hamiltonians in many cases obey
this area law [21]. General criteria for when a state will or will not obey an area law is not
currently known but various examples have been shown. Regardless, local interactions are
evidently an important ingredient. As we will see this aspect will be a natural part of the
tensor networks which we will examine.

As we will see in later discussions an important exception to the area law are 1-dimensional
systems at critical points. In this scenario it has been found that a logarthimic correction to
the areal law manifests itself. If we naively consider (2.12) one may expect that the system will
exhibit:

S(ρA) ∝ l1−1 = constant. (2.13)

However, in actual fact what is found for 1-dimensional critical systems is the following2

S(ρA) ∝ log(l). (2.14)

In more generality the logarithmic violation is:

S(ρA) ∼ O(ld−1) log(l). (2.15)

More specific examples such as for a conformal field theories will be presented at a later point
where we will see that MPS and MERA states at critical points exhibit area laws.

2Often in this case we will still refer to the 1-dimensional log law as the area law.

7



Chapter 3

Tensor Networks

In this chapter we will introduce tensor network states with explanation of the notation and
diagrammatic representation of these states. Our main focus will be on a simple type of
tensor network namely a Matrix Product State (MPS), followed by tree tensor networks (TTN)
and later the Multiscale Entanglement Renormalisation Ansatz (MERA) which will be more
important to this thesis and will be given an expanded treatment in later chapters.

The field of tensor networks can be said to have been initiated by the work of White [3] where
the Density Matrix Renormalisation Group (DMRG) method was first proposed. Since then
however the field has expanded greatly [4] with a huge number of more recent developments.
Moreover, many different kinds of tensor networks have been proposed for use in different
situations [5, 6, 20, 22–35]. Initially these works were motivated by the difficulty in simulating
many-body quantum systems. The issue being that with a large number of constituent particles
the number of degrees of freedom in a system usually scales exponentially and as a result the
computational time and processing power required renders the problems intractable. However,
with tensor network states it is possible to reduce the number of necessary variables greatly
allowing for meaningful and accurate results to be found by reasonable means.

3.1 Diagrams and Notation

Before describing individual tensor networks it is first useful to understand the notation and
nomenclature used. The diagrammatic forms of tensor networks are represented using the
graphical tensor notation of Penrose, an excellent description of which is found in the book
Road to Reality [36], further discussion in various areas can be found elsewhere [37].

Usually when we wish to express physics mathematical we make use of some compact,
abstract notation. For example, rather than representing a velocity by a direction and speed
we use the language of vector calculus. When we study manifolds in general relativity we use
compact index notation so that rather than manipulating large matrices we can write down
tensors such as:

gµν , Rσγαβ, Γµαβ. (3.1)

However, at some point even this notation becomes cumbersome. Instead we can represent
tensors by a graphical notation in which different tensors maybe denoted by different geometric
shapes and indices may be represented by lines (or legs) emanating from these shapes so that
the tensorial structure remains evident but the cumbersome notation is removed.

We continue with some simple examples. The metric tensor for example is usually written
as gµν in most situations. Moreover if we contract two metric tensors we know the result is a
delta function:

gabgbc = δac , (3.2)
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3.1. DIAGRAMS AND NOTATION CHAPTER 3. TENSOR NETWORKS

where the Einstein summation convention is used to contract over the repeated indices thus
simplifying the more complete expression:

d∑
b=0

gabgbc = δac , (3.3)

if we have (d+ 1)-dimensions. Using Penrose’s graphical tensor notation however this becomes
the simply a vertical line as shown below:

gab = , gab = , δ
a
b = ,

gabgbc = = = δac .

While this may not yet seem worthwhile the real benefit is seen from more complicated
products of tensors with several repeated indices. For example, say we have a rank (1,1) tensor
which we wish to contract with a vector. Usually we may write this as, say, Γαβvα. The graphical
version of this is shown below.

Γαβvα =
Γ

v

β

α
. (3.4)

If we like we can dream up more complicated products and find their graphical representation
quite readily and vice-versa. Take for instance:

∆αβγρΨab
αβΣcd

γ Πe
abΩdρ. (3.5)

This is already quite a nasty expression with only five tensors. If we have 10 or 20 tensors it
will become unwieldy to manage the indices as we will see shortly for MPS or MERA. So instead
this expression can be drawn as shown in the next figure. After contracting the repeated indices
we can see immediately from the figure that in the end we have a rank (2,0) tensor without
need for examining all of the indices to verify which are summed or not summed.

∆

Ψ

Π

Σ

Ω

= Φce . (3.6)

We will leave the discussion here and begin to apply this graphical notation to quantum
mechanical systems in order to build up tensor networks.
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3.2. MATRIX PRODUCT STATES CHAPTER 3. TENSOR NETWORKS

3.2 Matrix Product States

The key notion in constructing tensor networks comes from the usual representation of a quan-
tum state. For example, suppose we want to determine some properties of an N -site spin chain.
If we are only concerned for the moment with the spin then we can write the state as:

|Ψ〉 =
∑
i1...iN

ψi1...iN |i1 . . . iN〉 , (3.7)

where the summation variables run over all the possible spin states. In diagrammatic notation
the tensor in question is given as:

. . .. . .

Ψ

i1 i2 i3 iN−2iN−1iN

. (3.8)

Even if there are only 2 spin states, up/down, then the number of variables in the object
ψi1...iN is 2N . So for even quite small systems, say a 1-d wire with N = 50, we can have 1015

variables to worry about. Quickly then numerical work becomes intractable. The way around
this is to find a better representation of the state in question, specifically one in which it is
possible to systematically make an approximation to the state in question.

Since the state space of a quantum mechanical system will be a vector space we will view the
elements of the vector space and the linear operators which act on them as tensors of various
rank. So, for example, vectors (or |kets〉) are rank-(1,0) tensors and dual vectors (or 〈bras|) are
rank-(0,1) tensors. Then if indeed we have an N -site state then we can view it as a rank-(N ,0)
tensor. The network aspect of the tensor network state comes from our choice or ansatz of
the tensor in question. As you can see in the previous section, a tensor of particular rank may
have any number of digrammatic representations since there may be several tensors within the
network or graph which are contracted. Since this is the case ansatz solutions are proposed.

The first of these is the Matrix Product State. It is applied to 1 dimensional systems. If
the system in question has N -sites then the MPS for the state will be comprised of N tensors
of rank 3 1.

Take then the state above, described in the usual quantum mechanical notation. What we
would like to do is to decompose the ψi1...iN is 2N tensor into a network of N simpler objects. In
graphical form we can see the N leg ψ tensor in the figure. Below we see the MPS representation
of |Ψ〉 for the case of N = 10 with periodic boundary conditions.

Ψi1...i10 =
A A A A A A A A A A

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

. (3.9)

Notice that in the same way that the ψ tensor has N free legs so too does the MPS state,
where each free leg corresponds to a state vector index for the relevant lattice site. In all detail,
the mathematical expression for this MPS is:

|Ψ〉 =

χ∑
α1...αN=1

d∑
i1...iN=1

Ai1α1
α2

Ai2α2
α3

. . . AiN−1αN−1
αN

AiNαNα1
|i1i2 . . . iN〉 , (3.10)

usually the summation will be left implicit.

1For periodic boundary conditions, the boundary tensors will be of rank 2, with the rest of rank 3.
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3.2. MATRIX PRODUCT STATES CHAPTER 3. TENSOR NETWORKS

Ignoring the free indices the remaining indices are contracted in the same way as a matrix
product, hence the name. These contracted indices are known as bonds in tensor network
literature. While the physical indices, ik, run over the number of on site degrees of freedom,
the bond indices, αk, do not. Instead the run from 1 up to what is called the bond dimension.
If we may take the bond dimension, χ, as large as necessary then this ansatz is in fact a
representation for 1 dimensional systems [30, 38]. This however has a similar problem to the
usual representation since for an arbitrary state the bond dimension will scale exponentially
in the number of sites. It’s also worth noting that the MPS representation is not a unique
representation, there may be several MPS for a single state.

So at the moment it seems that we haven’t gained anything however there is a class of
states for which the bond dimension can be “small”2. One way of understanding what this
bond dimension can be is to consider how to obtain the MPS representation directly from a
given ψi1...iN . A procedure may be performed on an (N, 0) rank tensor whereby a Schmidt
decomposition is performed on the tensor N times, leaving one with an MPS.

The procedure begins by performing a singular value decomposition between the first index
of the large tensor and the remaining N − 1 indices. This process is iterated until we are left
with N matrices. The matrices which we obtain be this method will be of dimension χ×χ and
will be unitary.

As an example suppose we would like to split an N -site system into two pieces. So the full
Hilbert space, H, of the system is split into two subspaces, HA ⊗HB. The dimension of these
subspaces is then dm and dN−m respectively where d is the physical dimension, e.g. number
of spin states per site. If we propose that the Hilbert spaces have orthonormal bases |i〉 , |j〉
respectively then a state of the system may be expressed as:

|Ψ〉 =
∑
i,j

Ψij |i〉 |j〉 . (3.11)

The singular value decomposition of the matrix Ψ is given by:

Ψ = UsV †, (3.12)

where U and V are unitary matrices of dimensions m×m and (N−m)×(N−m) respectively.
The matrix s then is a diagonal matrix of dimension m × (N − m). All the entries of s are
non-negative real numbers, where s11 ≥ s22 ≥ · · · ≥ smm. They are known as the singular
values of Ψ. Replacing Ψ in the original expression we have:

|Ψ〉 =
∑
i,j

∑
k

UikskkV
∗
kj |i〉 |j〉 =

∑
k

skk |ak〉 |bk〉 , (3.13)

where |ak〉 and |bk〉 are the transformed bases according to:

|ak〉 =
m∑
i

Uik |i〉 ; |bk〉 =
N−m∑
j

V ∗kj |j〉 . (3.14)

The second form in the transformed bases is what is known as the Schimdt decomposition.
Pictorially, we can see the procedure below for the case of N = 4. One should understand here
which legs correspond to which indices. The i index corresponds to the left most leg in the
diagram. The j index corresponds to the remaining 3 legs which in the procedure are grouped
together as one index j running over all the values of i2, i3, i4. The k index corresponds to the

2The meaning of small here is not precise, it effectively means that the bond dimension won’t scale expo-
nentially in number of sites or will be a constant.
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bond between U , s and V †.

Ψ → V †sU . (3.15)

A way of understanding this is to consider the Schmidt decomposition as a superposition
of many states in which each term is comprised of a product of a basis state of A and a basis
state of B weighted by a value skk. At this point the benefit of an MPS can be demonstrated.
From the distribution of the values of skk we can have some clue to the entanglement between
the two systems as before. Suppose that there is one singular value s11 = 1, evidently this will
correspond to a product state |a1〉 |b1〉. One the other hand if all the singular values are equal,
skk = 1/

√
m, ∀k, then we have a maximally mixed state, an equal superposition of all basis

states. It is known that the distribution of these singular values decays exponentially for a
certain value of k much less than m. In fact for large matrices many of the singular values will
in fact be zero, particularly for the types of states which are of interest to us. Then we may
make an approximation at this point, by discarding the small or zero valued singular values we
can still retain much of the information about the state with a large reduction in the number
of variables.

|Ψ〉 → ˜|Ψ〉 =

χ<<m∑
k=1

skk |ak〉 |bk〉 . (3.16)

In the case of MPS the number of values which are kept is the bond dimension. So in fact
the number of variables is reduced from dN to poly(χ,N). So it becomes a much more efficient
representation. This decomposition is a central component of the DMRG method. Aside from
assisting in numerical methods another way of viewing this reduction in number of variables is
by considering the Hilbert space for a generic state. If the bond dimension is left unrestricted
then it will scale exponentially with the number of lattice sites and will in fact be equal to
the dimension of the full Hilbert space. This situation is sensible since an unrestricted bond
dimension allows the MPS to be a faithful representation of the original state so in fact the full
Hilbert space should remain [38]. In essence what is happening when the bond dimension is
restricted is that we are restricting ourselves to a subspace of the Hilbert space which contains
the states that are of interest to us, namely ground states of local gapped Hamiltonians. In
comparison to the full Hilbert space of such a Hamiltonian, the subspace containing these
states will in fact be small requiring a bond dimension which is not exponential in N but
rather may be constant. The appropriate value then of the bond dimension will depend on
the states which we aim to represent and the accuracy required to faithfully represent them.
By construction an MPS state supports local correlations, that is correlations which decay
exponentially, and lead to saturated entropy bounds at large scales. This is due to the nature
of the MPS being comprised of nearest neighbour interactions, which can be seen from the
structure of the network, since each tensor is linked only to its nearest neighbours.

A note should be made at this point, from the figure and previous discussion it may seem
that we have implied that all the matrices which make up an MPS are the same. However, in
generality an MPS may be made up of N distinct matrices. Although, in many of the discussions
that follow we will focus on states which have translation invariance or are at critical points.
In those cases the matrices are restricted to being identical [38].

Another point of interest is that this prescription of splitting a tensor with multiple indices
into several tensors each located at an individual site can be applied not only to states but also
to operators. Operators may be represented as matrix product operators. This is another key

12
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ingredient in the DMRG method. In that context a local Hamiltonian may be decomposed as a
sum of nearest neighbour terms. The interaction then on the state is equivalent to a contraction
of the MPS with the MPO. For further discussion on this point see [38].

Using the MPS representation we can readily demonstrate the area law violation of entan-
glement entropy for matrix product states mentioned in the previous chapter.

3.2.1 EE Bound for MPS

If we have a 1D system of size N described by an MPS, such that A[k]i ∈ Mχ×χ, and take
section of size L < N , then the entropy of this smaller block has 2 log2(χ) as an upper-bound
independent of the size L.

∀ |ψmps〉 : A[k]i ∈Mχ×χ∀ k, if ρL = Trs/∈L |ψmps〉 〈ψmps| ,

=⇒ S(ρL) ≤ 2 log2(χ)∀L.

Proof

In general we express an MPS as follows:

|ψ〉 =

χ∑
α1,...,αN=1

d∑
i1,...,iN=1

A[1]i1α1
A[2]i2α1α2

. . . A[N − 1]iN−1
αN−2αN−1

A[N ]iNαN−1
|i1 . . . iN〉 .

Now we split the state into three pieces, a region of length L and the remainder of the
system on either side of this region. Define the sections as below:

|ψl〉αm =

χ∑
α1,...,αm−1=1

d∑
i1,...,im=1

A[1]i1α1
A[2]i2α1α2

. . . A[m]imαm−1αm
|i1 . . . im〉 ,

|ψL〉αmαm+L
=

χ∑
αm+1,...,αm+L−1=1

d∑
im+1,...,im+L=1

A[m+ 1]im+1
αmαm+1

. . . A[m+ L]im+L
αm+L−1αm+L

|im+1 . . . im+L〉 ,

|ψr〉αm+L
=

χ∑
αm+L+1,...,αN=1

d∑
im+L+1,...,iN=1

A[m+ L+ 1]im+L+1
αm+Lαm+L+1

. . . A[N ]iNαN−1
|im+L+1 . . . iN〉 .

Now we may view the state |ψ〉 as follows:

|ψ〉 =

χ∑
αm,αm+L=1

|ψl〉αm |ψL〉αmαm+L
|ψr〉αm+L

.

At this point one would like to find the reduced density matrix of this state ρL which will
be more easily obtainable using the form above. By definition:

ρL = Trs 6∈L (|ψ〉 〈ψ|) ,

=
∑

αm,αm+L

α′m,α
′
m+L

α′′m,α
′′
m+L

〈
ψrα′′m+L

∣∣∣ 〈ψlα′′m∣∣ψlαm〉 ∣∣∣ψLαmαm+L

〉 ∣∣∣ψrαm+L

〉〈
ψrα′m+L

∣∣∣ 〈ψLα′mα′m+L

∣∣∣ 〈ψlα′m∣∣ψlα′′m〉 ∣∣∣ψrα′′m+L

〉
,

13
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=
∑

αm,αm+L

α′m,α
′
m+L

α′′m,α
′′
m+L

〈
ψrα′′m+L

∣∣∣ δα′′mαm ∣∣∣ψLαmαm+L

〉 ∣∣∣ψrαm+L

〉〈
ψrα′m+L

∣∣∣ 〈ψLα′mα′m+L

∣∣∣ δα′mα′′m ∣∣∣ψrα′′m+L

〉
,

=
∑
αm
αm+L

∣∣∣ψLαmαm+L

〉〈
ψLαmαm+L

∣∣∣ .
From this expected result the argument follows from the definition of the von Neumann

entropy. For some density matrix σ we have that S = Tr(−σ log2(σ)).
Naturally then σ will have a set of eigenvalues {λ1 . . . λR} where R = rank(σ). Therefore,

S(σ) = −
∑R

k=1 λk log(λk). The maximum value of this entropy will come from the maximally
mixed state which we know to have all eigenvalues equal,λk = 1

R
∀k, hence

Smax(σ) = −
R∑
k=1

1

R
log2(

1

R
) = log2(R).

Then finally for our ρL we have that: rank(ρL) = χ2, where χ is the bond dimension. Thus we
obtain the bound:

S(ρL) ≤ 2 log2(χ).

Some discussion of this result is of use. Notice that in addition to the expected logarithmic
term there is a factor of 2 multiplying the log. From the usual description of an area law one
expects to find |∂A| multiplying the logarithm, where |∂A| is the size of the boundary of the
region in question. From examination of the MPS we can reconcile both of these results. As
the MPS is 1-dimensional so the boundary of a region of the MPS must then be of 0-dimension
or a constant. By examining the diagram one can see that this corresponds to the number of
bonds at the boundary of the region which is in fact 2. If one wishes to isolate a subset of MPS
tensors from the remaining network, two bonds would have to be severed.

3.2.2 Examples of MPS states

At this point it is useful to see benefits of the matrix product state representation by way of
some simple concrete examples of states that one may know already.

GHZ State

The Greenberger-Horne-Zeilinger(GHZ) state in bra-ket notation is defined as:

|GHZ〉 ≡ 1√
2

(|000〉+ |111〉) , (3.17)

on 3 sites and likewise on N sites:

|GHZ〉 ≡ 1√
2

(|00 . . . 0〉+ |11 . . . 1〉) . (3.18)

Rather than having a tensor Ψi1i2...iN which contains 2N variables most of which are zero we can
represent this state exactly by constructing an MPS with χ = 2. The matrices which achieve
this are:

A0 =

(
1 0
0 0

)
, A1 =

(
0 0
0 1

)
, (3.19)

where we are using (3.10) to represent the state with the above matrices.

14



3.3. TREE RENORMALISATION CHAPTER 3. TENSOR NETWORKS

W State

Another state which is of interest for the study of entanglement is the W state defined on N
sites as:

|W 〉 ≡ |0 . . . 001〉+ |0 . . . 010〉+ |0 . . . 100〉+ . . . |10 . . . 00〉 , (3.20)

=
N∑
j=1

|000 . . . 01j0 . . . 0〉 . (3.21)

This can also be exactly represented by an MPS with χ = 2 defined by the matrices:

A0 =

(
1 0
0 1

)
, A1 =

(
0 1
0 0

)
. (3.22)

3.3 Tree Renormalisation

So far we have focused on a 1-dimensional tensor network for a 1-dimensional system, the
MPS, where each lattice site corresponds to a single tensor. This idea has been generalised
also to 2-dimensions via projected entangled pair states [5]. Now, while matrix product states
have many benefits as representations of quantum states we can construct tensor networks with
more complicated structures which have richer structure. In the same manner that MPS are the
tensor network structure for DMRG we can suppose other types of network structures which
by construction allow for numerical renormalisation directly.

The usual first example of such a tensor network is known as a tree tensor network or
TTN. In much of the literature this is also known as real-space renormalisation or simply
coarse-graining. The essential idea is that the tensor network itself performs a coarse graining
procedure to the lattice of the quantum system. Then rather than a single tensor per site,
many tensors appear at different length scales. The key resources for understanding this section
comes from Vidal’s original papers introducing real-space renormalisation and MERA by this
method [33,35,39]. The presentation of TTN follows these references closely.

Real space renormalisation methods truncate the local Hilbert space of a block of sites to
reduce the number of effective degrees of freedom. Essentially the initial lattice is group into
contiguous blocks of sites which are mapped to an effective lattice containing fewer sites and
hence fewer degrees of freedom. We may then consider such a lattice in D spatial dimensions.
This may be a lattice of spin-1

2
fermions or whatsoever. If the original lattice is denoted by L

then we may express the Hilbert space of this lattice as the following tensor product of finite
vector spaces:

VL ≡
⊗
s∈L

Vs, (3.23)

where s are the sites on the lattice, Vs are the state spaces per site. A block of sites, B ⊂ L,
within the lattice may be defined in a similar manner as:

VB ≡
⊗
s∈B

Vs. (3.24)

The new effective lattice, L′, is obtained by mapping these coarse graining these blocks to
new sites, s′ ∈ L′. Specifically,

VL′ ≡
⊗
s′∈L′

V′s′ , (3.25)

where the effective state spaces, V′s′ , are subspaces of the block subspaces, V′s′ ⊆ VB. This
subspace is characterised by the mapping of an isometric tensor w,

w : V′s′ 7→ VB, w†w = I. (3.26)
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As a diagrammatic example we can see below a tree tensor network with a 3-to-1 coarse
graining or ternary scheme and one which is translation invariant, that is, all isometries are
identical.

(3.27)

As a more concrete example we can look at a 1-dimensional system of N sites subdivided
into blocks of three sites which will be coarse grained. Denoting the state space of each site by
V the isometry in this case is:

w : V′ 7→ V⊗3, w†w = IV′ , ww† ≡ P, P 2 = P,

w

w†
= . (3.28)

where V⊗3 is the state space of the block, P is a projection operator onto the subspace of V⊗3

preserved by the coarse graining procedure. V′ is the state space of the effective site and IV′ is
the identity operator on this space. This defines an effective lattice of N/3 sites, L′. Likewise,
if the Hamiltonian of the full lattice is given by H then an effective Hamiltonian can be defined
as:

H ′ = W †HW, W ≡ w⊗N/3. (3.29)

Moreover if it is the case that the Hamiltonian is expressible as the sum of interactions between
pairs of nearest neighbour sites then the effective Hamiltonian will also contain at most nearest
neighbour interactions. This is due to the fact that a local operator o with support on r sites
of L becomes a local operator o′ supported on r sites of L′ given by:

o 7→ o′ =
(
w†⊗r

)
ow⊗r. (3.30)

Most importantly the support of the operators will not expand, although it may shrink.
An important point explained by White [3] is the context of DMRG is that in order to

preserve the properties of the ground state the isometry w must retain the whole support of
the ground state reduced density matrix ρ on the three site block. By preserve the properties
of the ground state we mean that:

〈o′1o′2 . . . o′k〉Ψ′GS = 〈o1o2 . . . ok〉ΨGS , (3.31)

where |Ψ′GS〉 is the ground state of H ′.
The reduced density matrix ρ is defined as:

ρ ≡ TrBc |ΨGS〉 〈ΨGS| , (3.32)

where Bc denotes all sites not in the three site block. One may then write the density matrix
as its eigenvalue decomposition:

ρ =

χ∑
α=1

pα |Ψα〉 〈Ψα| ,
∑
α

pα = 1, p1 ≥ p2 ≥ · · · > 0. (3.33)
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Then the choice of w is determined by White’s Rule, which in effect is a choice of w such that
the projector defined previously corresponds to the whole support of ρ:

P = ww† =

χ∑
α=1

|Ψα〉 〈Ψα| . (3.34)

In particular this means that W † |ΨGS〉 = |Ψ′GS〉 and WW † |ΨGS〉 = |ΨGS〉. So in fact by a
quick inspection we see that:

〈ΨGS| o1o2 . . . ok |ΨGS〉 = 〈ΨGS|W †Wo1o2 . . . okWW † |ΨGS〉
= (〈ΨGS|W †)Wo1o2 . . . okW (W † |ΨGS〉) = 〈Ψ′GS| o′1o′2 . . . o′k |Ψ′GS〉 .

Then from this we can see that this entire process may be iterated many times, so that we
may have a series of increasingly coarse grained lattices in precisely the same manner as shown
in the figure of the TTN. At each successive layer we produce a smaller lattice which retains
the properties of the ground state. So if we denote the step or layer of coarse graining by τ
then we can say as above that:

〈o(τ+1)
1 o

(τ+1)
2 . . . o

(τ+1)
k 〉

Ψ
(τ+1)
GS

= 〈o(τ)
1 o

(τ)
2 . . . o

(τ)
k 〉Ψ(τ)

GS
. (3.35)

A reasonable question to ask at this point is: how well does the TTN scheme remove short
range degrees of freedom? If it is the case that they are not remove effectively then over
successive iterations of the TTN they may build up rendering the numerical benefits of the
procedure void. As a check we investigate the entanglement of the ground state. Suppose that
we have a reduced density matrix for a block of sites on the lattice. Then the rank of this
matrix, χ, will depend on the amount of entanglement between the block of sites and the rest
of the lattice. Taking the Schmidt decomposition of the ground state we have:

|ΨGS〉 =

χ∑
α=1

√
λα |Ψα〉 ⊗ |Φα〉 , (3.36)

where {|Φα〉} are an orthonormal set of states for the remainder of the lattice. Evidently
then if χ = 1 we have a product state and hence no entanglement between the block and the
remaining lattice. Evidently for any χ > 1 we have entanglement between the block and the
remaining lattice. Moreover the size of χ will directly correspond to the amount of entanglement
determined from the von Neumann entropy:

S(ρ) = −
χ∑
α=1

pα log(pα). (3.37)

The entropy is as usual maximized for a maximally mixed state where pα = 1/χ, which corre-
sponds to S(ρ) = log(χ). As a result, we always have that χ ≥ exp(S). For simplicity we take
χ ≈ exp(S) for the remaining discussion. Typically, in 1-dimension, for a block of sites of size l
the entanglement entropy increases with l until l is of the same order as the typical correlation
length of the system, ξ. At this point it saturates to some bound Smax unless the system is at
a quantum critical point, in which case the entropy exhibits a logarithmic divergence.

S(l) ≤ Smax, 1D non-critical (3.38)

S(l) ≈ c

3
log(l), 1D critical (3.39)

c in this context is the central charge of the conformal field theory which describes the system at
the critical point. More generally in D dimensions we usually find a boundary law as mentioned
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previously, S(l) ≈ αlD−13. The area law can tell us something of the scaling of χ. We wish to
find an expression for the effective dimension χ(τ) at a given layer. Noting that a single site on
an effective lattice under this TTN scheme supports 3τ sites on the underlying lattice or 3Dτ

sites in D dimensions then combining the above bounds with the relation between the entropy
and χ we find:

χ(τ) ≤ χmax ≈ eSmax , 1D non-critical (3.40)

χ(τ) ≈ lc/6 ≈ eτ , 1D critical (3.41)

χ(τ) ≈ eαl ≈ ee
√
τ

. 2D (3.42)

Then we can see that evidently a TTN doesn’t not remove short range degrees of freedom
effectively. In fact there is a build up of these degrees of freedom over the successive iterations of
the coarse graining procedure. In effect what is happening here is that starting from a state with
only short range entanglement rather than removing some of the associated degrees of freedom
they are in fact building up. More precisely the entanglement between sites is treated differently
depending on where the sites are located in a block. If the short range degrees of freedom are
entangled across the boundary between two blocks then they are not removed and as a result
hinder attempts to produce an renormalisation group flow from the original Hamiltonian to
the renormalised Hamiltonian. So for instance, two Hamiltonians which differ only in short
range details but which describe the same phase of a system will keep these distinguishing
features under renormalisation resulting in two different fixed points of the RG flow for the
same phase. In some cases in 1-dimension TTN are certainly still of interest but given this
RG issue we present another tensor network which will possess the benefits of the previously
discussed networks and resolve this issue: the multiscale entanglement renormalisation ansatz
(MERA).

3.4 MERA

Similarly to a tree tensor network the multiscale entanglement renormalisation ansatz tensor
network also incorporates a coarse graining or real space renormalisation scheme. However, in
addition to the isometries that we have already seen an additional type of tensor is built into
the structure of the network. In the literature these tensors are referred to as disentanglers.
These rank(2,2) tensors, unitary operators, are located at the boundary of the blocks on the
lattice, denoted by u. The purpose of these disentangling operators is to rearrange the degrees
of freedom which in the TTN case accumulate over successive coarse graining steps. By doing
this the issue is circumvented. Keeping the same notation as in the previous section:

u :Vs′1
⊗ Vs′2

→ Vs1 ⊗ Vs2 , (3.43)

uu† = u†u = I⊗2, (3.44)

u

u†
= , (3.45)

where I⊗2 is the identity on 2 sites as shown explicitly by the diagram.
Now a single renormalisation step4 is made up of two layers, first a row of disentanglers

operate at the boundaries between blocks. Following this intermediate disentangling step a row

3α here is a model dependent constant which grows with ξ.
4This is what is meant by entanglement renormalisation, a state after entanglement renormalisation has been

applied produces a MERA network.
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of isometries are applied to the resulting rearranged lattice sites thereby giving a renormalised
lattice. This procedure is repeated until the resultant lattice yields a product state. Throughout
the following discussion a layer or step of the MERA will refer to the combination of one row
of disentanglers and a row of isometries. It should be noted that the disentangling operators
do not leave individual blocks unentangled from the rest of the lattice, rather the entanglement
localised at the boundary is discarded such that long range correlations are preserved thereby
allowing for a well-defined renormalisation scheme. This defines the process of entanglement
renormalisation. One can show that with the disentanglers that the MERA reproduces the
logarithmic correction to the entanglement entropy for a 1D system and indeed also exhibits
an area law for higher dimensional systems. Another important feature of the MERA is that
correlations decay algebraically making the MERA a natural ansatz for critical states in 1D. The
following diagram exemplifies the difference between real space renormalisation and MERA:

. (3.46)

From a numerical point of view it has been found that the expectation values of local
observables may be computed efficiently, for example 2 site operators or 2 point correlation
functions. The efficiency of determining these values comes from the building blocks of the
network. In order to evaluate an expectation value in this context one must contract the
operator in question between two copies of the MERA. As a result many of the contractions
are simply unitaries or isometries contracted with their conjugates which by definition of the
tensors yield identity operators. In the end the contraction that is to be made is simplified
greatly and the relevant tensors that are contracted will be contained within the causal cone
of the operator. A defining property of the MERA is that the causal cone has a bounded
width5. Essentially this means that at each layer of coarse graining only a few tensors lie
within the causal cone of the operator, by few we mean ∼ O(1). One can see this clearly in
the accompanying figure.

As in the case of MPS and TTN the unitary tensors and isometric tensors need not be the
same for each layer or even each site. However, for the same reasons as before they will be the
same. We will look at translation invariant systems and in 1D in particular we will want to
examine critical points, that is scale invariant states. In these cases the tensors will be restricted
to being the same per site and per layer [42]. Indeed, this homogeneity of the network is a
key property of the interpretation of the MERA network as a discrete realisation of AdS space
which leads to the proposed AdS/MERA correspondence [6]. This will be discussed further in
a later chapter.

At this point we exemplify the tensors which make up the MERA, we begin with an example
of an isometry. Taking a binary scheme in this instance suppose we wish to coarse-grain a
system of 4 spin-1

2
particles arranged in a chain and denoted by [e1s1s2e2]. The aim of the

coarse graining will be to reduce the two middle spins into an effective site s′. Taking the state
of the system in the usual notation to be:

|ψ〉 =
1

3

(
2 |1001〉+

√
2 |0110〉 −

√
2 |1100〉+ |0100〉

)
. (3.47)

The procedure then to find the values of the components of w is to first determine the reduced

5One may take only this property as the definition of the ansatz. [40]
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Figure 3.1: A ternary MERA network. (a) Isometric and unitary tensors when contract with
their conjugates yield identities. (b) The process of determining an expectation value for some
2-site operator (c) The simplification of the contractions by using the properties of the tensors
and the causal cone’s bounded width. Figure originally appears in [41], we thank the author
for permission to reuse this figure.

density matrix of the subsystem [s1, s2] and write it in diagonal form:

ρ[s1,s2] = Tr[e1,e2]

[
ρ[e1,s1,s2,e2]

]
=

3∑
i=0

pi |ρi〉 〈ρi| , (3.48)

where p0 = p1 = 4
9
, p2 = 1

9
, p3 = 0 with eigenvectors:

|ρ0〉 =
2√
6
|10〉+

1√
3
|11〉 , |ρ1〉 = |00〉 ,

|ρ2〉 = − 1√
3
|10〉+

2√
6
|11〉 , |ρ3〉 = |01〉 .

(3.49)

Since one of the eigenvalues is zero the exact coarse graining can be achieved using a bond
dimension of 3 rather than 4, without losing any information of the state. Moreover, we can
find an approximate coarse graining by neglecting the next smallest eigenvalue. In that case
the entries of w with effective site dimension χ = 2 are:

w0
10 =

2√
6
, w0

11 =
1√
3
, w1

00 = 1. (3.50)

To retain the full information one needs the additional entries:

w2
10 = − 1√

3
, w2

11 =
2√
6
. (3.51)

We express the new coarse grained state as:

∣∣ψ′χ〉 =
1∑

k1,k3=0

χ−1∑
k2

ψ′k1k2k3 |k1k2k3〉 , (3.52)
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where

ψ′k1k2k3 =
1∑

k1,k2=0

wi2k1k2ψi1k1k2i3 . (3.53)

Explicitly this then yields the following effective state:∣∣ψ′χ=2

〉
=

4

3
√

6
|000〉 − 2

3
√

3
|100〉+

2

3
|111〉 , (3.54)∣∣ψ′χ=3

〉
=

4

3
√

6
|000〉 − 2

3
√

3
|100〉+

2

3
|111〉+

1

3
√

3
|020〉+

2

3
√

6
|120〉 . (3.55)

As an example of these disentangling tensors [43] we can consider the state of four spin-1
2

particles on a chain with an isometry w which coarse grains the middle two sites. Denoting the
sites by r1s1s2r2 we can say that the whole state is:

|ψ〉 =
1

2

(
|0〉r1 |1〉s1 + |1〉r1 |0〉s1

) (
|0〉r2 |1〉s2 + |1〉r2 |0〉s2

)
(3.56)

=
1

2
(|0101〉+ |0110〉+ |1001〉+ |1010〉) . (3.57)

Evidently the spins r and s are pairwise maximally entangled in Bell states as can be seen also
from the reduced density matrix:

ρs1s2 = Trr1r2ρ = Trr1r2 |ψ〉 〈ψ| (3.58)

=
1

4
(|00〉 〈00|+ |01〉 〈01|+ |10〉 〈10|+ |11〉 〈11|) . (3.59)

Simply coarse graining this state will either result in unacceptable errors from truncating
the bond dimension or force us to keep the full state space. To alleviate this issue we introduce
disentanglers operating on the pairs r1s1 and s2r2 defined as:

u =
1∑

i,j,a,b=0

uabij |a〉r |b〉s 〈i|r 〈j|s , (3.60)

where the only non-zero elements are:

u00
01 = u00

10 = u01
01 = −u01

10 =
1√
2
, (3.61)

u10
00 = u11

11 = 1. (3.62)

This unitary tensor effectively maps the Bell state to a state in the standard computational
basis, i.e.

u :
1√
2

(|0〉 |1〉+ |1〉 |0〉) 7→ |00〉 . (3.63)

So the state of four spins is mapped to |0000〉 which causes no issues under coarse-graining, the
reduced density matrix is simply:

ρs1s2 = |00〉 〈00| . (3.64)

As already hinted at the disentangling operation can be seen as a change of basis as above
or as a reversible reorganisation of degrees of freedom as a preparation for the coarse-graining
transformation.

So far we have only given an overview of the MERA scheme, if one wishes to make further
reading on numerical results and determining ground states using this ansatz then the works
of Evenbly and Vidal [27,31,39,44,45] contain a great many benchmark results.
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3.4.1 MERA Examples

To soldify the structure of MERA in one’s mind some examples are useful at this point. We
will take the same states as before to see the difference in MPS and MERA representations.

GHZ State

If we choose as the state (|0〉 + |1〉)/
√

2 as the top tensor of the MERA then using a ternary
scheme we may obtain the |GHZ〉 by the choice:

u = I, wijkl = δijkl . (3.65)

Given a little thought it should become clear that this will yield the required state. One may
also notice that given the choice of unitary tensors this proposed scheme is in effect a TTN
scheme since the disentanglers act trivially.

W State

To recover the W state here we propose the following binary scheme:

u = I, w00
0 = w10

1 = w01
1 = 1. (3.66)

Applying this scheme to a top tensor T ≡ |1〉 yields the W state, since this choice of top tensor
can be seen as in effect the ”trivial” W state. Applying the isometries above to any W state
will yield another W state on double the number of sites.

3.4.2 Properties of the MERA

In this subsection we make note of a few more aspects of the MERA which will be relevant in
the discussions which follow.

First we note that for a given initial finite lattice of N sites the MERA that arises from the
entanglement renormalisation procedure has a bounded depth. That is, after finite number of
renormalisation steps or layers the MERA produces a product state or terminates in a single
tensor which in the literature is referred to as the top tensor. Another piece of nomenclature
associated with MERA is the rank of a MERA network. This is the dimension of the dual
index of the top tensor and is usually denoted by χT . It is equivalent to the dimension of the
state space of the final effective site, given by the final ”arm” of the top tensor. For χT a
MERA represents a single pure state, usually the ground state. In this case strictly speaking
there is no dual index the MERA terminates at the top tensor. This would mean that in the
language of Penrose graphical tensro notation that the MERA is a rank(N, 0) tensor network.
For MERA rank greater than 1, this usually indicates a ground state degeneracy or represents
the ground state and χT − 1 lowest energy states. In this situation the MERA is a rank(N, 1)
network. Now, due to the exponential coarse graining of the original lattice the top tensor will
be reached in T = log(N) steps/layers. The base of the log will depend on the coarse-graining
scheme in question, usually 3-to-1 or 2-to-1.6 As for the numerical benefits, since the growth
of the network is logarithmic the number of tensors needed to construct the network will be of
order O(N) and as a result the memory required to store a MERA will be of order O(χ]legsN)
since the number of elements in each tensor is χ]legs.

So far the view we have taken of the MERA network is as a variational ansatz, where
the tensors themselves are the variational parameters. However, one may view the network in

6We refer to MERA networks incorporating these schemes as ternary and binary MERA respectively.
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another manner. One may view the network as a quantum circuit and in fact in some situations
this will be necessary. To view the network as such, a slight modification to the network but one
which does not affect its physical properties. For a brief introduction to quantum circuits the
reader should refer to the appendix, for an in depth and complete picture one should consult
Quantum Computation and Quantum Information [17]. In the renormalisation viewpoint of
MERA where the initial lattice is the starting point from which we evolve in some sense to an
effective lattice and eventually to a top tensor or product state we are viewing the MERA from
the bottom-up. In the quantum circuit view we ”evolve” in the opposite manner, we begin
with an initialised state say of N -qubits,

|Ψ0〉 = |00 . . . 0〉︸ ︷︷ ︸
N

, (3.67)

and the MERA is acts on this state giving the state which was the starting point of the
entanglement renormalisation. This is in effect a top-down view of the MERA network. One
should notice an issue with this viewpoint, previously we have stated that the MERA network
is a rank(N, 0) or rank(N, 1) network. However, for an N -qubit state a quantum circuit acting
on this state should be a unitary operator or equivalently a rank(N,N) network. As such we
make the modification mentioned previously. We know that quantum computations do not
destroy degrees of freedom, they simply modify qubits by flipping qubits or rearranging them
and so on, whereas in the MERA we have coarse-graining operations which do destroy degrees
of freedom. To reconcile this difference we must add more dual“legs”7 to make the MERA
network,M, a rank(N,N) network8. These additional “arms” are added to the isometries and
to the top tensor such that the resultant network is made entirely of unitary operators9. The
way that we do this is to give these tensors additional dual indices which are contracted with
|0〉 input vectors. In this way the isometries w and top tensor t become unitary gates in the
circuit. As an example we can see that the isometry w may be made of a unitary tensor v
contracted with constant |0〉 vectors,

w = wαβγσ |φα〉 |φβ〉 |φγ〉 〈φσ| = vαβγσρθ |φα〉 |φβ〉 |φγ〉 〈φσ| 〈φρ|0〉 〈φθ|0〉 , (3.68)

where we have that:
w†w = 〈0| 〈0| v†v |0〉 |0〉 = 〈0|0〉2 I = I, (3.69)

using the unitarity of v. With this modification we may view the MERA in a top-down fashion
as a quantum circuit. With this viewpoint the isometric tensors add new degrees of freedom
to the circuit and the disentangler entangle these new degrees of freedom until in principle we
have a state with entanglement at all length scales.

The notion of a past causal cone that was mentioned previously is more readily explained
in this quantum circuit picture. Given a MERA circuit suppose that we wish to trace a
computation of some site s on the final state/lattice L0. By direct inspection of the network
one can see that the number of wires and gates affecting the state is limited at all stages of the
computation. In fact for a ternary MERA the past causal cone has a bounded width of 2 sites
for a single site on a 1 dimensional lattice, this is true at all depths. The bounded width of the
causal cone, C, holds for arbitrary dimensions. To justify this consider a binary MERA and take
a time slice of the causal cone, C, at time τ . Suppose this time slice is formed by a (hyper)cube
of hd effective lattice sites, where h is the side length. By definition the disentangling operators

7“Arms” are equivalent to dual “legs”, this is a mixing of the nomenclature of tensor indices and graphical
notation.

8Remember that this is equivalently a unitary operator or a quantum circuit.
9These unitary operators/tensors are often referred to in this context as (quantum) gates, using the vocab-

ulary of quantum information.

23



3.4. MERA CHAPTER 3. TENSOR NETWORKS

Figure 3.2: Left: An example MERA with a subsystem A. Right: The relevant bonds from an
arbitrary region encompassing A. Figure originally from [46]

act only locally so as a worst case scenario, moving back up the network, they may expand the
causal cone by one lattice site in all directions. This gives after entangling a (hyper)cube of
(h + 2)d sites. Next the coarse-graining step is performed which for a binary MERA will take
block of 2d sites to one site. The worst case scenario here will be if the coarse-graining block
only intersects C at a single site at the corner of the (hyper)cube. As a result each edge of the
(h+2)d cube is reduced to (h+1) sites which must be split into 2, leaving a possible remainder.
As such the (hyper)cube is divided into:(⌈

h+ 1

2

⌉
+ 1

)d
(3.70)

blocks, with the 1 coming from the lone corner site. This expression gives us the number of
effective site on the τ + 1 lattice, Lτ+1. We should find that this evaluates to less than or equal
to hd for the C to shrink or reach a bounded width, though it may grow before this point. It is
readily verified that for h < 3 the cube size grows until settling on a value of h = 3. If h > 4,
the cube shrinks until reaching a size of h = 4. Since we the analysis was for a worst can the
causal cone can fluctuate but should never exceed h = 3 coming from below.

With all of these properties noted we can demonstrate the bound on entanglement entropy
for a MERA.

3.4.3 EE Bound for MERA

Now we present the behaviour of the Entanglement Entropy in a MERA tensor network. [46]
We find remarkably that in fact the area law proposed by Ryu-Takayanagi emerges in MERA
represented states. We will present a proof/argument given initally by Hauru which generalises
to arbitrary dimensional MERA. However the argument is most understandable for a 1 dimen-
sional state as we can us the language of Quantum Circuits in a reasonably straight forward
manner. One should refer to the Appendix for a primer on quantum circuits.

Our objective here is to determine a bound on the entropy SA for A ⊂ L. To begin we take
an arbitrary subset of the MERA network which contains the UV sites in A and we will denote
this by ΩA ∈M where M is the total network.

Now consider all the bonds crossing the boundary of ΩA, denoted by ∂ΩA
10. The initial

10The physical legs won’t be included in the boundary.
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argument will be to show that:

SA ≤
∑
s∈∂ΩA

Ss, (3.71)

where Ss is the measure of single site entanglement i.e. the EE of each bond s w.r.t. the rest
of the effective lattice. One can think of this as the measure of EE if one bond s is cut and the
rest of the lattice is traced out from the density matrix, ρs. In MPS states this is the strength
of the bonds between matrices in the MPS.

A couple of notes to make before continuing. Unitary transformations leave entropy un-
changed. In particular a disentangling gate/tensor will leave the eigenvalues of an input
state/density matrix unchanged. So, Sρin = Sρout . Then viewing the MERA network in the
quantum circuit interpretation we will have both disentangling and coarse-graining/isometric
tensors in the network as unitary gates. Thus for all MERA tensors S in = Sout.

Now we split the boundary, ∂ΩA, into two sets of bonds ∂Ωin
A and ∂Ωout

A , see figure. Moreover,
we consider ΩA as a single entropy preserving isometry as it is composed of unitary MERA
tensors which may be contracted to form a single operator, OA.

∂ΩA
contract−−−−−−−→

inner tensors
OA = (OA)β1β2β3β4α1α2

. (3.72)

Now we recall the triangle/Araki-Lieb inequality11:

|S(ρA)− S(ρB)| ≤ S(ρ) ≤ S(ρA) + S(ρAc), (3.73)

where the second inequality stems from sub-additivity.
Now using this relation and that OA preserves entropy we find, taking S(ρX) = SX :

SA − S∂ΩoutA
≤
∣∣∣SA − S∂ΩoutA

∣∣∣ ≤ SA∪∂ΩoutA
= S∂ΩinA

,

=⇒ SA ≤ S∂ΩoutA
+ S∂ΩinA

≤
∑

s∈∂ΩinA

Ss +
∑

s∈∂ΩoutA

Ss =
∑
s∈∂ΩA

Ss. �

Now we note that ΩA may be chosen to be minimal in the sense that the boundary, ∂ΩA,
gives the tightest possible bound on SA. This will be the bound for the scaling of the entan-
glement entropy as A grows. For this we will look at the binary MERA network for clarity of
discussion but the argument holds more generally.

Recall that for a Hilbert space of dimension χ the maximal EE is given by log2(χ) i.e. the
maximally mixed state. Then for each bond s ∈ ∂ΩA we have the bound Ss ≤ log2(χ). Hence,

SA ≤ |∂ΩA| log2(χ). (3.74)

So the question becomes a matter of determining ∂ΩA which in effect is the number of
bonds puncturing the boundary of the region. We begin by making the choice of ΩA = CA,
that is, to be the causal cone of the subsystem A. We mean here the causal cone in the MERA
sense. [(This needs a reference)]. The key property here of the causal cone is that for some
d-dimensional region A of size ld the causal cone CA will shrink with each layer of the MERA
until it reaches a size of 4d. This will occur after O(log2(l)) layers of the MERA since at that
point the region A will have been reduced to a single site and the causal cone starts to resemble
the a 1-site causal cone. Again this is for a binary MERA and can be checked by inspection of
the network.

For the d=1 case, CA has 2 wires/bonds at each layer to that the number of wires crossing
the boundary is:

|∂CA| ≈ 4 + 2 log2(l),

11B here denotes some other splitting of the system.
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=⇒ SA ≤ |∂CA| log2(χ) ∼ O(log2(l)).

So we’ve recovered the log(l) scaling of EE in 1D.

For d > 1 we have: CA at layer τ consists of the order of
(
l

2τ

)d−1
wires crossing the boundary.

This gives the following:

|∂CA| ≈ 4d +

log2(l)∑
τ=1

(
l

2τ

)d−1

,

= 4d + ld−1

[
(2d−1)log2(l) − 1

(2d−1)log2(l)(2d−1 − 1)

]
,

= 4d + ld−1

[
ld−1 − 1

ld−1(2d−1 − 1)

]
,

= 4d +
ld−1 − 1

2d−1 − 1
,

=⇒ SA ≤ |∂CA| log2(χ) ∼ O(ld−1), (3.75)

so evidently the MERA network ansatz reproduces area law behaviour of entanglement entropy.
This bound is usually saturated for the case of scale-invariant MERA.
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Chapter 4

AdS/MERA

In this chapter we present the interpretation first proposed by Swingle [6, 32] of the MERA
tensor network as a discretization of Anti-de Sitter spacetime. In this context the MERA that
is referred to is a scale invariant network of a 1 dimensional lattice and hence represents the
critical point of the associated lattice field theory. At the critical point the field theory flows
to a conformal field theory in the renormalisation group sense. As such the MERA becomes
analogous to the CFT. However in addition from the structure of the network Swingle proposed
the interpretation of the tensor network itself as a bulk geometry similar to an Anti-de Sitter
space time, Fig.(4.1). Since this proposal several other advances have been made, namely a
continuous version of the MERA network has been proposed [47]. This so called cMERA will
be the focus of the following chapter where we will describe the framework in some detail and
present several results obtained by these methods for bosonic and fermionic theories [8].

For the purpose of this discussion one should have some familiarity with the basics of the
AdS/CFT correspondence. At this point in time there are many sources to refer to [49–51] and
accessible lectures [52] but for the moment it should be sufficient to know that the AdS/CFT
correspondence1 is a proposal that certain quantum field theories which do not include gravity
are in fact dual to a gravitational theory in a higher dimensional curved “bulk” geometry. In
other words, d-dimensional QFT ↔ (d + 1)-dimensional bulk gravity theory. We will present
several results from holography in what follows, it will be made clear when this occurs.

Shortly after the initial proposal of a holographic correspondence it was seen that real
space renormalisation was important to the framework. [53] With the advent of entanglement
renormalisation it could be suggest that combining these two theories would be a promising
direction to explore. As usual we denote a subregion of our many-body quantum system by
A, which will be of linear size L. The degrees of freedom of the system will be partitioned
into groups/blocks spaced in log(r) with a measure of dr/r where r is the length scale of
study. As mentioned previously we expect that the measure of entropy from A at scale r
will be proportional to the size of the boundary ∂A in units of the coarse-grained scale r.
Infinitesimally we have that

dS(r) ∼
(
L

r

)d−1
dr

r
. (4.1)

Then to determine the entanglement entropy one integrates this expression from the ultraviolet
(UV) cut-off to the larger infrared (IR) cutoff which will either be to the point where the system
has been renormalised to be a product state or to a single point. In the MERA picture this
would be from the scale of the original lattice or the UV theory up to the top tensor where
the state has either been factorised or the MERA terminates at the top tensor, this would be
the IR theory. In the holographic picture this IR length is min(L, ξE) where ξE is the length

1Also referred to as holography or the gauge/gravity correspondence.
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Figure 4.1: A visualisation of a periodic MERA as a discrete AdS space. Figure from [48].

scale beyond which there is no entanglement. For d > 1 the result of this integral reproduces
an area/boundary law,

Sd>1 ∼
(
L

ε

)d−1

−
(

L

min(L, ξE)

)d−1

, (4.2)

and the logarithmic correction for d = 1,

Sd=1 ∼ log

(
min(L, ξE)

ε

)
, (4.3)

where ε is a UV cut-off to prevent the integral diverging.
Looking now towards the lattice, as mentioned the UV theory is associated with the original

lattice and after the entanglement renormalisation procedure we obtain the IR theory. In
between at each layer of the MERA2 we have an effective lattice at an effective length scale.As
before we label the layer by τ = 0, 1, 2, . . . , and the lattice spacing by a such that the different
length scales are related by:

log
(rτ
a

)
= τ log(2), (4.4)

such that τ = 0 corresponds to the original lattice length scale r0 = a. While in the quantum
circuit viewpoint −τ is taken to be ”computation time” here we view τ as parametrizing the
depth of an emergent dimension representing the renormalisation group scale. Then each site
in the network is viewed as a cell filling a higher dimensional ”bulk” geometry. This defines a
discrete geometry from the network itself and is in effective the insight put forward by Swingle.
It should be emphasised that in the subsequent calculations of entanglement entropy in this
framework that only tensor within the causal cone of a region A of the boundary will contribute
to the calculation as we argued in the calculation of the entropy bound for MERA. Moreover
the boundary of the causal cone is a minimal curve in the bulk geometry as it represents
the minimal number of sites which need to be traced out in calculating the reduced density
matrix of the region. Moreover numerically it has been shown that the entanglement entropy
is proportional to this minimal curve [54].

The claim then is that the discrete geometry that is produced by the network is in fact a

2The MERA in this case is a binary MERA.
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discrete Anti-de Sitter (AdS) space. The metric for smooth AdS in 2-dimensions is given by:

ds2 = R2

(
dr2 + dx2

r2

)
= R2

(
dw2 +

exp(−2w)

a2
dx2

)
, (4.5)

where R is a constant3 and w = log(r/a) where a is a cut-off for small r. A larger R corresponds
to a larger geometry and hence more entanglement since in the MERA picture a larger depth
would correspond to more layers as a result of the initial state being more entangled. Then in
the context of the lattice model R is linked to the strength of the disentanglers and hence the
entropy of local sites. In the holographic context R has been found to be proportional to the
central charge c at critical points. In order to make this connection between AdS and MERA
we can examine the length of two curves in either geometry, this is the comparison made by
Swingle.

The curves we take, γ1 and γ2, are parametrized by:

γ1 = {x(t) = x0t, r(t) = r0|t ∈ [0, 1]} (4.6)

γ2 = {x(t) = x0 cos(πt), r(t) = x0 sin(πt)|t ∈ [0, 1]}. (4.7)

In the AdS geometry γ1 is a line at fixed depth r0 while γ2 is a geodesic connecting (x0, 0) to
(−x0, 0). To calculate the length of these curves we calculate directly from the formula for the
length of a parametrized curve:

|γ| =
∫ 1

0

dt
√
gµν γ̇µγ̇ν , (4.8)

where gµν is the AdS metric described above. The first calculation is straightforward:

|γ1| =
∫ 1

0

dt
√
gµν γ̇µγ̇ν ,

=

∫ 1

0

dt
√
gxxγ̇xγ̇x,

=

∫ 1

0

dt

√
R2

r2(t)
ẋ2(t),

=

∫ 1

0

dt

√
R2

r2
0

x2
0,

= R
x0

r0

. (4.9)

For the second curve we need to be more careful since in AdS geodesics are of infinite length
so we need to impose a cut-off for small r.

|γ2| =
∫ 1

0

dt
√
gµν γ̇µγ̇ν ,

=

∫ 1

0

dt
√
gxxγ̇xγ̇x + grrγ̇rγ̇r,

= 2

∫ 1
2

0

dt

√
R2

r2(t)
(−x0π sin(πt))2 +

R2

r2(t)
(x0π cos(πt))2,

= 2

∫ 1
2

0

dt

√
R2x2

0π
2

x2
0 sin2(πt)

(sin2(πt) + cos2(πt)),

3Usually this is referred to as the AdS radius.
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|γ2| = 2πR

∫ 1
2

0

dt
1

sin(πt)
, (4.10)

where we’ve taken the limits from 0 to 1/2 since the integral is symmetric. Next we use the
standard solution to this integral to find:

|γ2| =
2πR

π

[
− log

(
cos

(
πt

2

)
+ sin

(
πt

2

))]t= 1
2

t=0

. (4.11)

The upper limit yields zero since sin(π/4) = cos(π/4) and we note that log(cos(0)) = 0 so in
fact the only term of consequence comes from the lower limit which is log(sin(πt/2)) → ∞ as
t→ 0. It is at this point that a cut-off becomes necessary to regularise this infinity. To do this
suppose we shift the lower limit to a non-zero value α << 1. Then the integral evaluates to:

|γ2| = −2R log
(

sin
(πα

2

))
. (4.12)

Now we use that for small x << 1 sin(x) ≈ x we have that:

|γ2| = −2R log
(πα

2

)
. (4.13)

So the question at this point is: what is α? We know that α is small and hence close to the
boundary of the space so it should characterise r close to the boundary, that is, r(t) ≈ x0πt
using the small angle approximation. Moreover, the UV cut-off of r for the field theory is ε.
Thus, α = ε

x0π
. As a result we find that:

|γ2| = −2R log

(
π

2

ε

x0π

)
,

= 2R log

(
2x0

ε

)
,

= 2R log
(x0

a

)
, (4.14)

taking a = ε/2. Now we compare to similar curves through the discrete version of AdS , that
is the MERA network. The first curve will again be the straight line distance at fixed depth.
Using that R is the strength of a bond in the network, or equivalently the length per bond, we
have that the length of the curve in units of x0/a at the lattice scale, r = a, is R(x0/a). Then
the corresponding length at RG step w0 is given by:

|γ1| = R
(x0

a

)
e−w0 = R

(
x0

r0

)
, (4.15)

which agrees with the continuous result.
The lattice analogue of the geodesic curve is slightly more subtle. At the lattice scale

suppose we have again two points separated by a lattice distance x0/a. Then the minimal path
through the lattice connecting these points will be made up essentially of two paths, beginning
at the start and end point on the original lattice which extend into the network until they
meet at a depth where the renormalisation brings them together. The figure below shows the
concept more clearly:

L

, (4.16)
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As we know, any section of a lattice of size L will be coarse grained to a point in log(L) steps
by the MERA. Again taking R to be the length per bond we have that at a depth log(x0/a)
the two paths meet. Therefore the total length of the discrete geodesic will be:

|γ2| = 2R log
(x0

a

)
. (4.17)

This result then agrees with the continuous case.4 This result is the first evidence of an
AdS/MERA correspondence.

4.1 cMERA

At this point we would introduce the ideas involved in bringing MERA into the continuum.
This section follows closely the presentation of the introductory work [47] and the subsequent
work which is relevant to the following chapter [8].

In some sense it becomes natural to ask if we can apply MERA techniques to a quantum field
theory. In physics there is often the issue of dealing with many degrees of freedom, whether
in many-body physics or in relativistic QFT. In order to gain some insight into a problem
renormalisation group techniques are enployed to examine the problem at an appropriate length
scale. In the original formulation RG methods are applicable to quantum systems using the
quantum-to-classical mapping, which may fail in some cases. From this beginning Wilson’s
numerical renormalisation can be seen as an implementation of RG methods at the level of the
wave function.

The difference between the Wilson RG scheme and entanglement renormalisation (MERA,
tensor network methods) is that Wilson’s RG scheme is a fixed scheme while TN methods are in
general a variable RG scheme where the variational parameters are the tensors themselves [33].
While other tensor networks are similar in this regard it is the support for algebraically decaying
correlations and the agreement with entropy and area law results from holography in (1 + 1)-
dimensions that sets MERA apart from say tree tensor networks or matrix product states.

Before introducing continuous MERA methods it should be made clear which view of the
MERA we are taking. We take the quantum circuit viewpoint. In this context the MERA
is understood in a top-down manner. Starting from a simple fiducial state, |0〉 = |0〉⊗N for
example, of quantum spins the state is acted upon by a unitary operator:

U1 =

N/2⊗
j=1

uj, (4.18)

which entangles adjacent sites. This is followed by a scale transformation and renormalisation
so that the lattice spacing and number of spins are unchanged. We denote this step by R. It
is equivalent to the coarse-graining step we saw before but modified for the quantum circuit
picture. If the depth of the MERA is τ = T = log(N) then the output of the circuit is the
MERA state:

|ΨMERA〉 = UTRUT−1R . . .RU1 |0〉 . (4.19)

The question at this point is how to translate the scale transformation, (dis)entangling
operation and fiducial state to continuum analogues. We may first assume that we have some
quantum field theory with a given Hamiltonian. It will be necessary to enforce an ultra-violet
cut-off for the QFT, which will be denoted by:

Ultraviolet Cut-off: Λ =
1

a
, (4.20)

4Strictly speaking there will be other contributions to the discrete length that we’ve neglected to mentioned
but these will be O(1) so will be entirely dominated by the logarithm.
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where as before a is the lattice constant. The Hilbert space defined by the fields with such a
cut-off will be denoted by HΛ such that:

|Ψ(u)〉 ∈ HΛ, (4.21)

where u parametrizes the fields and represents the length scale of interest. This parameter is
taken such that the momentum k will be effectively cut-off as |k| ≤ Λ exp(u). In connection
to the discrete case, u effectively corresponds to the layer index τ . By reason of convention we
have that u runs over [−∞, 0], such that the UV and IR limits are given by:

u = uUV = 0, u = uIR → −∞. (4.22)

The states given at these limits are defined as:

|Ψ(uIR〉 ≡ |Ω〉 , Factorised reference state (unentangled),

|Ψ(uUV )〉 ≡ |Ψ〉 , Ground state of Hamiltonian (typically).
(4.23)

Importantly the IR state |Ω〉 is also defined by the fields as:(√
Mφ(x) +

i√
M
π(x)

)
|Ω〉 = 0, (4.24)

M2 = Λ2 +m2, (4.25)

with the properties:

〈Ω|φ(k)φ(k′) |Ω〉 =
1

2M
δd(k + k′), 〈Ω|π(k)π(k′) |Ω〉 =

M

2
δd(k + k′). (4.26)

If the IR state were chosen as the vacuum state then the resultant cMERA state |Ψ〉 only
contains particles with momenta below the UV cut-off Λ [47]. Moreover the IR state (4.24)
is unentangled since the entanglement entropy SA is vanishing for a subsystem A because all
modes for any x are decoupled from one another.

Now, as in the lattice implementation we can relate a state at any layer or length scale of
the MERA to the reference state by a unitary transformation as follows:

|Ψ(u)〉 = U(u, uIR) |Ω〉 , (4.27)

or similarly the in terms of the UV state as:

|Ψ〉 = U(0, u) |Ψ(u)〉 . (4.28)

Likewise an operator, O, can be defined at any cMERA scale u as:

O(u) ≡ U(0, u)−1 · O · U(0, u), (4.29)

which will be particularly useful in defining the Hamiltonian at different scales.
The form of this unitary operator that is presented in the literature [8, 47] is:

U(u1, u2) = P exp

[
−i
∫ u1

u2

K(u) + Ldu

]
. (4.30)

Evidently this expression calls for explanation. Firstly, K(u) and L are the continuum analogues
of the disentangling and coarse-graining transformations respectively. P denotes a path ordering
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Figure 4.2: Left: The MERA viewed as a quantum ciruit. Right: A similar schematic view of
the cMERA. Figure from [23].

such that operators are ordered from large to small values of u.5 Some comments on these
operators. The scale transformation acting on the IR state leaves it invariant since by definition
the IR state is unentangled so each spatial point is independent from any other point. The
entangling operator, K(u), is designed to generate entanglement but only for modes with wave
vectors |k| ≤ Λeu.

The expressions for these operators will be presented as necessary in the following presen-
tation. However for this point it is sufficient to say that both are integrals over local densities
which are combinations of the field operators, their adjoints and their derivatives of the specific
quantum field theory in question.

It will be useful in the following sections to utilise the interaction picture for these unitary
operators. This amounts to:

U(u1, u2) = e−iu1L · P exp

(
−i
∫ u1

u2

K̂(u)du

)
· eiu2L, (4.31)

where we’ve defined:
K̂(u) ≡ eiuL ·K(u) · e−iuL. (4.32)

4.1.1 Scalar Field Theory

The first example which we will consider is cMERA applied to a free relativistic massive scalar
field theory in (d+ 1)-dimensions. The Hamiltonian for this theory is given by:

H =
1

2

∫
ddk

[
π(k)π(−k) + ε2

kφ(k)φ(−k)
]
, (4.33)

where the fields satisfy the usual commutation relations and the dispersion relation is given by:

εk =
√
|k|2 +m2. (4.34)

5In some of the literature this is written as a time ordering, however since the time in question is not strictly
a time but rather a scale parameter or computational ”time” we will refer to it as path ordering.
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The scale transformation and disentangler in momentum space are given by [8] :

L =
i

2

∫
ddk [φ(−k)|k|π(k)− |k|π(−k)φ(k)] , (4.35)

K(u) =
1

2

∫
ddk [g(k, u) (φ(k)π(−k) + π(k)φ(−k))] . (4.36)

The function g(k, u) imposes the cut-off for the disentangling operator such that it only acts
at the correct length scale. Moreover it is a dimensionless function which is even (odd) in k for
bosons (fermions). In the literature it is parametrised as some even (odd) polynomial in k/Λ
with s-dependent coefficients all multiplied by a constant cut-off function. This would call for
the following functional form:

g(k, u) = γ(k/Λ, u) · Γ(|k|/Λ). (4.37)

However, in the examples which we will (re)derive it is sufficient to terminate the polynomial
function at lowest order of k/Λ thereby allowing us to use for bosons:

g(k, u) = χ(u) · Γ(|k|/Λ), (4.38)

where χ(u) is real-valued and Γ enacts the cut-off. For fermions g(k, u) will have a factor of
k/Λ multiplying χ(u) from the lowest order term in k. For the analytic results that follow a
sharp Heavyside function is taken for clarity. By using a cut-off function, the disentangler will
be only local up to factors of O(Λ−1), this can be avoided by taking the disentangler strictly
to be polynomial in k and to use smoothed operators6. This effectively defines the cMERA
ansatz to determine the ground state of the Hamiltonian.7 Now taking the interaction picture
we can determine that:

K̂(u) =
1

2

∫
ddkedu [g(k, u)φ(keu)π(−keu) + g(k, u)π(keu)φ(−keu)] ,

=
1

2

∫
ddk

[
g(ke−u, u) (φ(k)π(−k) + π(k)φ(−k))

]
,

(4.39)

where we have used the action of the scale transformation on the fields:

e−iuL · φ(k) · eiuL = e−
d
2
uφ(ke−u); e−iuL · π(k) · eiuL = e−

d
2
uπ(ke−u). (4.40)

Now we can apply the full unitary operator to the fields, yielding:

U(0, u)−1 · φ(k) · U(0, u) = e−f(k,u)e−
d
2
uφ(ke−u),

U(0, u)−1 · π(k) · U(0, u) = ef(k,u)e−
d
2
uπ(ke−u).

(4.41)

The function appearing, f(k, u), satisfies the equation:

∂f(k, u)

∂u
= g(ke−u, u), (4.42)

which is directly solved by the integral:

f(k, u) =

∫ u

0

g(ke−s, s)ds. (4.43)

6For a further discussion on this point please refer to the appendix of version 1 of [47]
7This will in fact produce the exact ground state.
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To determine the functional form of f(k, u) we apply the variational principle to minimize the
energy functional:

E = 〈Ψ|H |Ψ〉 ,
= 〈Ω|U †(0, uIR)HU(0, uIR) |Ω〉 ,
= 〈Ω|H(uIR) |Ω〉 ,

= 〈Ω| 1
2

∫
ddk e2f(k,uIR)e−uIRdπ(ke−uIR)π(−ke−uIR)

+ ε2
ke
−2f(k,uIR)e−uIRdφ(ke−uIR)φ(−ke−uIR) |Ω〉 ,

=

∫
ddk

1

4

[
e2f(k,uIR)M +

ε2
k

M
e−2f(k,uIR)

]
δd(0),

e = E/

∫
ddx =

∫
ddk

1

4

[
e2f(k,uIR)M +

ε2
k

M
e−2f(k,uIR)

]
. (4.44)

In the first lines we have used the operator and state scaling under cMERA (4.27),(4.29). Later
we have used the previous definition (4.24) and properties (4.26) of the IR state. In the final
line we exchange the d-dimensional delta function for a real space volume. Now we minimize
the energy density functional with respect to χ(u) for any value of u:

δe

δχ(u)
=

∫
ddk

[
e2f(k,uIR)M − ε2

k

M
e−2f(k,uIR)

]
Γ(|k|e−u/Λ) = 0, (4.45)

where the we have used that:
δf(k)

δχ(u)
= Γ(|k|e−u/Λ), (4.46)

by using the integral form of f(k, u) and so on. Since this holds for any value of u we find that:[
e2f(k,uIR)M − ε2

k

M
e−2f(k,uIR)

]
= 0,

⇒ f(k, uIR) =
1

2
log

εk
M
, (4.47)

for momenta below the cut-off. Next recall the integral solution of f(k, u) at the infrared limit:

f(k, uIR) =

∫ uIR

0

g(ke−s, s)ds,

=

∫ uIR

0

χ(s)Γ(|k|e−s/Λ)ds,

=

∫ uIR

0

χ(s)Θ(1− |k|e−s/Λ)ds,

⇒ f(k, uIR) =

∫ − log(Λ/|k|)

0

χ(s)ds. (4.48)

Now we combine these two expressions for f(k) and take the derivative with respect to k to
find that:

χ(u) =
1

2

(
|k|∂|k|εk
εk

)
||k|=Λeu . (4.49)

Notice that the actual form of the dispersion relation was not used in the steps to find this
expression and in fact the above expression holds for a general dispersion relation which allows
us to insert whatever relation is of interest. This function χ(u) will characterise the ground
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state of the field theory. For the free relativistic field theory we started with the function
evaluates to:

χ(u) =
1

2

(
|k|k
ε2
k

)
|k|=Λeu

,

=
1

2

(
Λ2e2u

Λ2e2u +m2

)
,

=
1

2

(
e2u

e2u + (m2/Λ2)

)
. (4.50)

Using this final expression we can readily integrate the expression to recover f(k, u) both above
and below the momentum cut-off:

f(k, u) =


1
4

log Λ2e2u+m2

Λ2+m2 , (|k| < Λeu)

1
4

log k2+m2

Λ2+m2 . (|k| > Λeu)

(4.51)

Since χ(u) characterises the ground state it is worth noting some limits of this function. For
example if we want to examine a scalar conformal field theory we can take the massless limit
thereby finding a constant value for the function:

χm=0 =
1

2
. (4.52)

This is interesting as it indicates that the full unitary transformation of K +L is equivalent to
a scale transformation or dilatation in the massless limit. For the massive case we find a similar
result in the UV region8 in which χ(u) ≈ 1

2
. However in the IR region we find that the function

approaches zero, indicating a trivial action of the unitary operator and thus the absence of a
mass gap.

Having found f(k, uIR) by variational methods (4.47) it is worth checking what this yields
for the expression (4.44) we had for the energy density. Inserting into the expression for the
energy we find:

e =

∫
ddk

1

4

[
e2f(k,uIR)M +

ε2
k

M
e−2f(k,uIR)

]
,

=

∫
ddk

1

4

[
εk
M
M +

ε2
k

M

M

εk

]
,

=

∫
ddk

1

4
[εk + εk] ,

=

∫
ddk

1

2
εk. (4.53)

This passes our sanity check since we have effectively recovered the energy density of an infinite
number of harmonic oscillators with dispersion relation εk in natural units.

4.1.2 An Emergent Metric

While one may make qualitative comparisons [6] between AdS space and the structure of
a MERA network it has been found that by applying continuous MERA techniques to free
field theories one may in effect produce an emergent metric for such an AdS space. The full

8We mean here that eu >> m/Λ.
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justification of this claim is found in the literature [8] wherein the metric element guu can be
expressed as:

guu(u) = 〈Φ(u)| K̂(u)2 |Φ(u)〉 − 〈Φ(u)| K̂(u) |Φ(u)〉2 , (4.54)

where |Φ(u)〉 ≡ eiuL |Ψ(u)〉. This expression is found by defining the Hilbert-Schmidt distance
between two cMERA states at infinitesimally different scales the result of this procedure may
then be expressed as the variance above.

For this thesis we take the result that if we consider the ground state of the free field theory
then the metric element corresonding to the holographic direction, guu, is related to the function
χ(u), which we are able to determine, as follows:

guu(u) = χ2(u). (4.55)

Thus by determining the function χ(u) via cMERA methods one determines the dual AdS
metric. The x component of the metric will be determined by the coarse graining procedure so
that we have:

ds2 = guudu
2 +

e2u

ε2
d~x2 + gttdt

2. (4.56)

Since we maintain the same coarse graining procedure throughout the cMERA discussions
the metric component remains fixed as above. As for the temporal component this will not
be relevant for the entanglement entropy calculations. However, if the entanglement entropy
is generalised such that the subsystem A is defined on a Lorentz boosted time slice then in
principle the gtt may be read off [8]. This is only mentioned for completeness as we will not
address this aspect further in this thesis.

Scalar Field

Then, continuining from (4.55) we can determine the metric and by extension the entanglement
entropy for a scalar field theory. In the previous section we determined χ(u)(4.50), thereby
giving use the metric element for the dual metric:

guu(u) = χ2(u) =
e4u

4 (e2u +m2/Λ2)2 . (4.57)

At the moment this is not quite what we expect for the metric of AdS space. To make the
connect more clear we introduce the coordinate change defined by:

e2u =
1

Λ2z2
− m2

Λ2
, (4.58)

where 0 < z < 1/m, which yields:

guudu
2 =

e4u

4
(

1
Λ2z2
− m2

Λ2 + m2

Λ2

)2 ·
4e−4u

Λ2z4

dz2

4z2
,

=
Λ4z4e4u

4
· 4e−4u

Λ2z4

dz2

4z2
,

=
dz2

4z2
. (4.59)

Recall that Λ = 1/ε to arrive at the metric:

ds2 =
dz2

4z2
+

(
1

z2
− m2

Λ2

)
dx2 + gttdt

2. (4.60)

The metric vanishes at z = 1/m which is consistent with the mass gap of the scalar field theory.
Moreover, taking the massless case we can see that a pure AdS metric is recovered.9

9Up to a small coordinate rescaling.
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Chapter 5

cMERA and Lifshitz Theories

5.1 Lifshitz Scaling

In this chapter we will extend the results discussed in the previous chapter to theories with
Lifshitz scaling. Up until now we have only studied situations in which local interactions are
the only interactions of consequence. However we are also interested in long range interactions.
One way to achieve this is to introduce Lifshitz scaling to the system at hand. This effectively
amounts to a skewing of the massless scale invariance which we have seen previously. Rather
than space-time transforming under rescaling in an equal way the scaling becomes skewed such
that time and space are scaled in a different manner. The Lifshitz scale invariance reads as:

t→ λνt, x→ λx. (5.1)

The variable ν1 is known as the dynamical critical exponent.
For a scalar field theory this scaling amounts to the following change to the general dispersion

relation seen previously (4.34):
εk =

√
k2ν +m2 (5.2)

The changes seen in fermionic theories will be introduced in the relevant section. For now
we will examine the entanglement entropy for a Lifshitz scalar field using cMERA methods.

5.2 Scalar Field

Much of this section is an expanded presentation to that found in recent work [55], further
results may be found in [56].

From [8] we have that the bulk metric from cMERAs of non-CFTs are given by:

ds2 = guudu
2 +

e2u

ε2
~dx

2
+ gttdt

2. (5.3)

Note that we used a rather than ε for the cut-off previously. For pure AdS we have guu = 1
and Poincaré coordinates z = ε · e−u , gtt = −ε · e−u. This yields:

ds2 =
1

z2

(
−dt2 + dz2 + ~dx

2
)
. (5.4)

Here z → 0 corresponds to the boundary of AdS space. The continuous limit is found by ε→ 0.

1In a great deal of literature this is denoted by z. Here we will use ν as z is used in several other situations
already.
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In [8] it is demonstrated that for free scalar fields with dispersion relation εk we can find
the metric element guu via the relation:

guu(u) = χ(u)2; χ =
1

2

(
|k|∂|k|εk
εk

)
|k|=Λeu

. (5.5)

This metric is supposed to be dual to the ground state of the field theory by conjecture.
Furthermore the cut-off of the field theory is identified as: Λ = 1

ε
.

For massive Lifshitz scalar fields we have the following dispersion relation where ν is the
dynamical exponent:

ε2(k) = k2ν +m2 → εk =
√
k2ν +m2. (5.6)

It should be noted that the dynamical exponent is often denoted by z [55] and there is
usually a factor of α2 = 1/c2 for ν = 1 in the field theory that has been set to one here for
convenience. In general [α] = mν/s.

Following the literature for simplicity we look at the (1+1) dimensional case but additional
x dimensions should be straightforward to realise conceptually. So evaluating χ(u) we find:

χ(u) =
ν

2

(
e2uν

e2uν +M2

)
, (5.7)

where M = m
Λν

= mεν . This is denoted as J in other sources [55].
We concern ourselves with the spatial part of the metric as we are interested in time slices of

AdS i.e. cMERA. In any case the time component is not necessary for Entanglement Entropy
for time-independent states naturally. Thus:

ds2 =
ν2

4

e4uν

(e2uν +M2)2du
2 +

e2u

ε2
dx2. (5.8)

Now we perform the coordinate transformation:

e2uν +M2 =
ε2

z2
,

notice that for zero mass and ν set to 1 we recover the same transformation as for pure AdS
seen already(4.58). Performing this transformation however gives the result:

ds2 =
1

4

dz2

z2
+

(
ε2

z2
−M2

) 1
ν dx2

ε2
. (5.9)

At this point it is useful to find the range of values which this z-coordinate may take. From
cMERA we know that u ∈ {0,−1, · · · −∞} and in particular: uUV = 0 and uIR = −∞.

From the coordinate transformation we can see that these values translate to:

zUV =
ε√

1 +M2
, zIR =

ε

M
. (5.10)

Notice that the geometry now has a cut-off due to the mass. If the mass is sent to zero then
zIR →∞.

− l
2

l
20

z

x

Geodesic Curve
z(x)
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Now Ryu-Takayanagi techniques are used in the minimization of geodesics to compute the
entanglement entropy. The geometric picture to have in mind is shown above.

The relevant metric from which we compute the geodesic length will then be:

ds2 =

(
1

4z2

dz2

dx2
+

(
ε2

z2
−M2

) 1
ν 1

ε2

)
dx2. (5.11)

By convention this is a dimensionless quantity as the EE which we computed by minimizing
the following pseudo-action:

S =

∫ l
2

− l
2

dx

√
1

4

z′2

z2
+

1

ε2

(
ε2

z2
−M2

) 1
ν

. (5.12)

Interpreting x as a ”time” we can say that the Lagrangian is

L =

√
1

4

z′2

z2
+

1

ε2

(
ε2

z2
−M2

) 1
ν

. (5.13)

Furthermore a pseudo-Hamiltonian may be constructed by the usual method:

H = pzz
′ − L , pz =

∂L
∂z′

=
1

4L
z′

z2
. (5.14)

This then yields the following expression for the Hamiltonian after some manipulations:

H(pz, z) =
1

4L
z′

z2
· z′ − L,

=
1

L

(
1

4

z′2

z2
− L2

)
,

=
1

L

(
1

4

z′2

z2
− 1

4

z′2

z2
− 1

ε2

(
ε2

z2
−M2

) 1
ν

)
,

=
1

L

(
− 1

ε2

(
ε2

z2
−M2

) 1
ν

)
.

(5.15)

Now notice that:

ε(1− 4p2
zz

2) = ε

(
1− 1

4

z′2

L2z4
z2

)
,

=
ε

L2

(
L2 − z′2

4z2

)
,

=
ε

L2

(
1

ε2

(
ε2

z2
−M2

) 1
ν

)
,

L2 =
1

ε(1− 4p2
zz

2)

(
ε2

z2
−M2

) 1
ν

,

L =
1

ε
√

(1− 4p2
zz

2)

(
ε2

z2
−M2

) 1
2ν

.

(5.16)

Inserting this form of the Lagrangian into the last expression for the Hamiltonian yields the
result:
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H = −1

ε

√
(1− 4p2

zz
2)

(
ε2

z2
−M2

) 1
ν

=: E. (5.17)

This is a constant of motion as H does not depend on x explicitly. We define this as the
quantity E, since it manifestly has dimension of inverse length and hence that of energy.

This step is unverified but apparently a rewriting of H = E gives the differential equation
for z:

dz

dx
=

√
4z2

ε2

1

ε2E2

(
ε2

z2
−M2

) 2
ν

− 4z2

ε2

(
ε2

z2
−M2

) 1
ν

. (5.18)

We now take dimensionless variables instead for clarity in the proceeding manipulations:

z̃ ≡ z

ε
, x̃ ≡ x

ε
, Ẽ ≡ ε · E. (5.19)

Replace these variable in the pseudo-action and the differential equation being sure to rescale
the limits appropriately. Dropping the tildes after yields:

S̃ =

∫ l
2ε

− l
2ε

dx

√
z′2

4z2
+

(
1

z2
−M2

) 1
ν

, (5.20)

and

dz

dx
=

√
4z2

E2

(
1

z2
−M2

) 2
ν

− 4z2

(
1

z2
−M2

) 1
ν

. (5.21)

The differential equation may then be taken into the following form:

dz

dx
=

2z

E

(
1

z2
−M2

) 1
ν √

1− q, (5.22)

where we’ve defined q ≡ E2
(

1
z2
−M2

)−1
ν .

Since 1− q ≥ 0 the turning point is given by: z∗ = 1√
E2ν+M2 and 0 = qUV ≤ q ≤ qIR =∞.

Moreover we can express the defining equation of q as z2 = qν

E2ν+M2qν
. Using this relation we

can change variables dz → dq to find:

4E

ν

∫
dx+ const. =

∫
dq

√
1− q

(
1 + qν

(
M
Eν

)2
) . (5.23)

The right-hand side cannot be solved in closed form for non-zero mass and ν 6= 1 so we look
at the massless case to find that:

− 2
√

1− q =
4Ex

ν
+ constant. (5.24)

From the geometric set up we have a symmetry about the holographic direction i.e. under
x→ −x. This fixes the constant to be zero. (This is the translation invariance of the problem
manifest.) Thus,

4(1− q) =

(
4Ex

ν

)2

.

Furthermore this gives us a suggestive equation, using q = z
2
νE2,(

z
1
ν

)2

+

(
2x

ν

)2

=
1

E2
, (5.25)
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and recalling a simple identity we can solve this using:

z(s) =
1

Eν
sinν(s),

x(s) = − ν

2E
cos(s).

(5.26)

Using the UV cut-off established we have x(0) = − l
2ε

= − ν
2E

. Hence E = νε
l

and z∗ = l
ε

for
ν = 1 or z∗ = l if we rescale back to the original variables. The angle of integration s runs over
0→ π but we can integrate twice over 0→ π

2
by symmetry if we prefer, which we do.

The massless pseudo-action is:

S̃m=0 =

∫ l
2ε

l
2ε

dx

√
z′2

4z2
+

1

z
2
ν

. (5.27)

Now we change variables to integrate over the angle instead of x.

dx

ds
=

ν

2E
sin(s),

z′ =
dz

ds
· ds
dx

=
( ν

Eν
sinν−1 cos(s)

)(2E

ν

1

sin(s)

)
,

=
2

Eν−1
cos(s) sinν−2(s),

z′2

4z2
+

1

z
2
ν

= E2 cos2(s)

sin4(s)
+

E2

sin2(s)
,√

z′2

4z2
+

1

z
2
ν

=
E

sin2(s)
,

dx =
ν

2E
sin(s)ds.

(5.28)

This leaves us with the result for the Entanglement Action:

S̃m=0 = 2 ·
∫ π

2

0

ds
ν

2E
sin(s)

E

sin2(s)
,

= ν

∫ π
2

α

ds

sin(s)
, (α→ 0). (5.29)

We’ve inserted α here which will be the dimensionless cut-off for the integral since this integral
is divergent at zero. However with the cut-off we can use the indefinite answer:

S̃m=0 = ν
[
− log

(
cos
(s

2

))
+ log

(
sin
(s

2

))]π
2

α
. (5.30)

The upper limit is manifestly zero so we only need to look at the lower limit. Note also that
log
(
cos
(
α
2

))
→ 0 as α→ 0. Therefore,

S̃m=0 = −ν log
(

sin
(α

2

))
≈ −ν log

(α
2

)
. (5.31)

Now we need to determine the value of α. It should be dimensionless and proportional to
the UV cut-off ε. Recall, zUV = ε. Equivalently, z̃UV = 1. We have an expression for this,
z̃ = 1

Eν
sinν(s). So then, 1 = 1

Eν
sinν(α) ≈ αν

Eν
. This gives:

α = E =
νε

l
. (5.32)
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The entanglement entropy is then:

SEE = −ν log
(νε

2l

)
= ν log

(
2l

νε

)
. (5.33)

Usually, we redefine the cut-off so that any constant factors in the argument of the log are
absorbed.

The final step here is to fix the normalisation of the action to obtain the correct value of
the entanglement entropy. Comparing to the ν = 1 case we find that:

SEE =
ν

3
log

(
l

νε

)
, (5.34)

having also redefined ε to absorb the factor of 2. One should notice that this is not the whole
story. The expression above will only be valid for “small” values of ν such that νε is not of
the same order as l. The result in full generality for a massless free scalar field has been found
recently [56] and is given by:

SEE =
ν

3
log

 l

νε
+

√(
l

νε

)2

+ 1

 . (5.35)

Expanding around large ν or equivalently, small l/νε one finds small deviations from a volume
law:

SEE =
l

νε

[
1− 1

6

(
l

νε

)2

+O
(
l

νε

)4
]
. (5.36)

For small ν one finds small deviations from an area law:

SEE =
ν

3

[
log

(
l

νε

)
+ log(2) +O

(νε
l

)2

+ . . .

]
. (5.37)

Now we tackle the massive case. Consider the relativistic case for ease of calculation i.e. ν = 1.
Our starting point will be the q integral of eqn (14).

4Ex+ c =

∫
dq

√
1− q

(
1 + q

(
M
E

)2
) . (5.38)

To solve this we begin by making the substitution: y =
√

1− q, to give

4Ex+ c = −2

∫
dy

1 + (1− y2)
(
M
E

)2 ,

= −2

∫
dy

a2 − b2y2
,

= −2

∫
1

a2

dy

1− b2

a2
y2
,

= −2

∫
1

ab

dω

1− ω2
,

= − 1

ab

∫
dω

[
1

1− ω
+

1

1 + ω

]
,

= − 1

ab
log

[
a+ by

a− by

]
,
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where we’ve made the following substitutions in various steps:

a =

√
1 +

M2

E2
, b =

M

E
,ω =

b

a
y.

Now we would like to massage this relation into a similarly suggestive equation as we found in
the massless case so that we may the parametrize z = z(s) and x = x(s).

4Ex+ c = − 1

ab
log

[
a+ by

a− by

]
,

−4abEx− abc = log

[
a+ by

a− by

]
,

e−abce−4abEx =

[
a+ by

a− by

]
.

By translation invariance i.e. x→ −x we have as before that c = 0 and hence e−abc = 1. Then
solving for y we find that:

y =
a

b

(
e−4abEx − 1

e−4abEx + 1

)
. (5.39)

Now for the moment let us label the bracketed fraction by e and recall the definition of q in
terms of y and z. Then we perform some algebra:

1− y2 = q = E2

(
1

z2
−M2

)−1

,

1− a2

b2
e2 = E2

(
1

z2
−M2

)−1

,

E2 =
1

z2

b2 − a2e2

b2
−M2 (b2 − a2e2)

b2
,

1

z2
=

E2b2

b2 − a2e2
+M2,

z2 =
b2 − a2e2

E2b2 +M2b2 −M2a2e2
,

z2 =
M2(1− e2) + e2E2

M2E2(1− e2) +M4(1− e2)
,

z2 =
1

E2 +M2
− e2

(1− e2)

E2

M2
E2 +M2,

z2 =
1

a2E2
− 1

a2b2E2
sinh2(2abEx).

This final line is the suggestive form we were aiming to find. The combination of e2

1−e2 is found

to be equal to sinh2(2abEx) by liberal use of trigonometric identities. Other than this the
remainder of the manipulation is achieved by substituting different combinations of the the
energy and mass. As a consistency check one can set b = 0 and a = 1 to recover the massless

case, one can easily verify that lima→1 limb→0
sinh2(2abEx)

a2b2
= 4E2x2. Likewise for the following

parametrizations.
From this form we propose the parametrization:

z(s) =
1

aE
sin(s) , x(s) = − 1

2abE
arcsinh[b cos(s)]. (5.40)
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Proceeding in the same manner as previously we obtain the Entanglement Action:

SEE =
1

3

∫ l
2ε

− l
2ε

dx

√
z′2

4z2
+

(
1

z2
−M2

)
,

= 2× a

4b
× 1

3

∫ π
2

0

ds
1

sin(s)

√
cos2(s)(1 + b2 cos2(s)) + 4 sin2(s)(1−M2 sin2(s))

1 + b2 cos2(s)
.

(5.41)

The result of this integral is not immediately obvious so first we can look at the UV-
behaviour of the parameters to determine the values of s = α and E. Being sure to keep track
of rescaling that has been done we recall that zUV = 1√

1+M2 and using the parametrization we
have for small s:

1√
1 +M2

=
1

aE
α,

α =
aE√

1 +M2
=

√
E2 +M2

1 +M2
.

Similarly for the space direction:

xUV =
lA
2ε

=
1

2abE
arcsinh(b),

arcsinh

(
M

E

)
=
lAM

Eε

√
E2 +M2,

M

E
= sinh

[
NAM

√
1 +

M2

E2

]
,

where we used that: lA = NAε, M = mε so NAM = M
ε
lA.

Solving then for E is not possible without some approximations. However there are two
physical regimes depending on whether the correlation length is larger or smaller than the
subsystem size lA. These were initially proposed by Casini-Huerta [57] and Cardy-Calabrese [58]
respectively.

First the Casini-Huerta regime. Here ξ � lA � ε. Moreover, NAM = lAm = lA/ξ � 1.
Then M � 1 as we have NA � 1. Given this information we know that we can expand sinh(x)
around small x giving:

M

E
≈ NAM

√
1 +

M2

E2
, (5.42)

taking M
E

= x we have:

x2 = (NAM)2(1 + x2),

=
(NAM)2

1− (NAM)2
� 1,

M

E
≈ NAM,

E ≈ 1

NA

.

This also implies that M � E so we have for α:

α =

√
E2 +M2

1 +M2
≈ E. (5.43)
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Finally we see that b� 1 and a ≈ 1.
Now for the Cardy-Calabrese regime. Here lA � ξ � ε so we have that NAM = lA/ξ � 1

and M � 1 Here since NAM is large we cannot make the expansion as before and indeed cannot
take new information from the x(s) expression so we look to the z(s) expression instead. In
the bulk near the IR we have z(s) = NA sin(s) so that at the halfway point of the curve namely
when deepest into the bulk geometry z∗ = NA. However we previously found that zIR = 1/M
so since in this regime NAM � 1 ,M � 1 this implies that z∗ � zIR. Meaning that the curve
does not extend ”too far” into the bulk geometry.

From the definition of q we have q∗ = 1
1−(NAM)2

.

5.3 Dirac Field

Having addressed the case of a free scalar field we now turn our attention to the case of a free
fermionic theory. First we proceed in a similar fashion as before 4.1 for the ν = 1 case. The
theory is described by the following Dirac Hamiltonian in (1 + 1)-dimensions:

H =

∫
dx
[
−iψ̄γx∂xψ +mψ̄ψ

]
,

=

∫
dx

[
−i
(
ψ†1 ψ†2

)( 0 1
−1 0

)(
∂xψ1

∂xψ2

)
+m

(
ψ†1 ψ†2

)(1 0
0 −1

)(
ψ1

ψ2

)]
,

=

∫
dx
[
−i(ψ†1∂xψ2 − ψ†2∂xψ1) +m(ψ†1ψ1 − ψ†2ψ2)

]
, (5.44)

with ψ̄ = ψ†γt, γt = σ3 and γx = iσ2. Now our aim is to find the exact Bogoliubov angle which
will eventually give us χ(s) necessary to obtain the metric element guu. First then we Fourier
transform this Hamiltonian:

H =

∫
dx
[
−i(ψ†1∂xψ2 − ψ†2∂xψ1) +m(ψ†1ψ1 − ψ†2ψ2)

]
,

=

∫
dx

∫
dk1

∫
dk2 − i

(
ψ†1(k1)e−ik1x∂x(ψ2(k2)e−ik2x)− ψ†2(k2)eik2x∂x(ψ1(k1)eik1x)

)
+m

(
ψ†1(k1)ψ1(k1)ei(k1−k1)x − ψ†2(k2)ψ2(k2)ei(k2−k2)x)

)
,

=

∫
dx

∫
dk1

∫
dk2 − i

(
−ik2ψ

†
1(k1)ψ2(k2)e−i(k1+k2)x − (ik1)ψ†2(k2)ψ1(k1)ei(k1+k2)x

)
+m

(
ψ†1(k1)ψ1(k1)ei(k1−k1)x − ψ†2(k2)ψ2(k2)ei(k2−k2)x)

)
,

=

∫
dk
[
k(ψ†1(k)ψ2(k) + ψ†2(k)ψ1(k)) +m(ψ†1(k)ψ1(k)− ψ†2(k)ψ2(k))

]
. (5.45)

Our next step is to introduce new fields ψ̂α which are general Bogoliubov transformations of
the original fields. These are in fact the fields under the action of the cMERA operator [47].
As such the momenta are rescaled also as we have the action of both K(s) and L. These
transformed fields are given by:

ψ̂1(k, s) = cos(f(k, s))e−
s
2ψ1(e−sk)− sin(f(k, s))e−

s
2ψ2(e−sk), (5.46)

ψ̂2(k, s) = cos(f(k, s))e−
s
2ψ2(e−sk) + sin(f(k, s))e−

s
2ψ1(e−sk), (5.47)

where f(k, s) is the Bogoliubov angle. Replacing the fields in the Hamiltonian we obtain after
some algebra:

H(s) =

∫
dk
[
k(ψ̂†1(k, s)ψ̂2(k, s) + ψ̂†2(k, s)ψ̂1(k, s)) +m(ψ̂†1(k, s)ψ̂1(k, s)− ψ̂†2(k, s)ψ̂2(k, s))

]
,
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=

∫
dk e−s

[
2k(sin(2f(k, s)) cos(2f(k, s))) +m(cos2(2f(k, s))− sin2(2f(k, s)))

]
×
[
ψ†1(e−sk)ψ1(e−sk)− ψ†2(e−sk)ψ2(e−sk)

]
+ e−s

[
k(cos2(2f(k, s))− sin2(2f(k, s))))− 2m(sin(2f(k, s)) cos(2f(k, s)))

]
×
[
ψ†1(e−sk)ψ2(e−sk) + ψ†2(e−sk)ψ1(e−sk)

]
,

=

∫
dk e−s [k sin(2f(k, s)) +m cos(2f(k, s))]

[
ψ†1(e−sk)ψ1(e−sk)− ψ†2(e−sk)ψ2(e−sk)

]
+ e−s [k cos(2f(k, s))−m sin(2f(k, s))]

[
ψ†1(e−sk)ψ2(e−sk)− ψ1(e−sk)ψ†2(e−sk)

]
.

(5.48)

Now we find the energy functional,E[χ], by evaluating the inner product:

E[χ] = lim
sξ→−∞

〈Ω|H(sξ) |Ω〉 . (5.49)

We note at this point the nature of the ground state. Namely that ψ1 is the annihilator of
particles and ψ†2 is the annihilator of anti-particles, ψ1(x) |Ω〉 = 0 = ψ†2(x) |Ω〉. With this in
mind and defining f(k) = limsξ→−∞ f(k, sξ) we obtain:

E[χ] = −
∫
dkδ(e−sk − e−sk) [k sin(2f(k)) +m cos(2f(k))] e−s, (5.50)

coming from the second term in the Hamiltonian. Noting that δ(αx) = δ(x)
|α| and replacing the

δ-function at zero by an infinite space integral we have:

e[χ] = E[χ]/(

∫
dx) = −

∫
dk

2π
[k sin(2f(k)) +m cos(2f(k))] . (5.51)

Before varying this functional with respect to χ recall the relation between f(k, s) and χ(s).

∂

∂s
f(k, s) = g(e−sk, s),

g

(
k

Λ
, s

)
= χ(s)

k

Λ
Γ

(
|k|
Λ

)
,

δ

δχ(s)
f(k) = e−s

k

Λ
Γ

(
e−s
|k|
Λ

)
.

One may also notice the difference here between g(k, u) for bosons and g(k, u) for fermions -
the additional factor of k/Λ from the lowest order polynomial term in k. Now we may take the
variational derivative:

δ

δχ(s)

E[χ]∫
dx

=
δe[χ]

δχ(s)
=

∫
dk

2π
[k cos(2f(k))−m sin(2f(k))] 2

δf(k)

δχ(s)
,

δe[χ]

δχ(s)
=

∫
dk

2π
[k cos(2f(k))−m sin(2f(k))] 2e−s

k

Λ
Γ

(
e−s
|k|
Λ

)
= 0, ∀s ∈ (−∞, 0].

(5.52)

Hence, we have the requirement that:

[k cos(2f(k))−m sin(2f(k))] = 0,∀k < Λ.

47



5.3. DIRAC FIELD CHAPTER 5. CMERA AND LIFSHITZ THEORIES

Solving easily for f(k) one finds that:

f(k) =
1

2
arctan

(
k

m

)
,

which by use of an identity may be expressed as:

f(k) =
1

2
arcsin

[
k√

k2 +m2

]
,∀k < Λ. (5.53)

This result is compared with the following:

f(k) = lim
sξ→−∞

∫ sξ

0

g(e−ωk, ω)dω = −
∫ ∞

0

χ(− ln z)
k

Λ
Θ(1− z|k|/Λ)dz = − k

Λ

∫ Λ/|k|

1

χ(− ln z)dz,

where in the second equality we inserted the minimal form of g with the choice of a hard cut-off
function. In addition the change of variables z = e−ω is made. Now setting both forms of f(k)
equal to one another we find:∫ Λ/|k|

1

χ(− ln z)dz = − Λ

2|k|
arcsin

[
k√

k2 +m2

]
. (5.54)

Then taking a derivative with respect to k on both sides we find the result:

χ(s) = κ2 d

dκ

1

2κ
arcsin

[
κ√

κ2 + (m/Λ)2

]
κ=es

, (5.55)

where we’ve used the dimensionless variable κ = k/Λ. As found in [8], eqn (123), we find then:

χ(s) =
1

2

[
− arcsin

Λes√
Λ2e2s +m2

+
mΛes

Λ2e2s +m2

]
. (5.56)

For the massless case one immediately can see the result:

χ(s) = −1

2
arcsin

(
Λes

Λes

)
,

= −1

2
arcsin(+1) = −π

4

(5.57)

Inserting this expression into the relation to the metric element yields a dual metric which is
pure AdS2.

As before it is worth making a sanity check for the energy density (5.51) in the massless case
using the Bogoliubov angle (5.53) determine by variational method. Putting these together,
one finds:

e[χ] = −
∫

dk

2π

[
k sin

(
2

1

2
arcsin

[
k√
k2

])]
,

=

∫
dk

2π

[
−k
[
k√
k2

]]
,

=

∫
dk

2π
(−k). (5.58)

2Up to a scaling of the real space as seen in the case of the scalar field.
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5.4 Lifshitz Dirac I

A fermionic theory with anisotropic scaling will have the following Lagrangian in (1 + 1)-
dimensions:

LLifshitz = ψ̄
(
~γti∂t + ~αγx(i∂x)ν − µα2

)
ψ. (5.59)

Some explanation is required of the variables now appearing in the Lagrangian. Firstly, we
reintroduce the constants that would normally be set to one to make the dimensionality of
terms more manifest. The α which appears is a skewed inverse speed of light. For ν = 1,
α = 1/c, and in general α has units of mν/s. Similarly, µ is the skewed mass which in general
has units of kg/m2ν−2. If ν = 1 then we recover the units we usually have that are often set to
one, as in the previous section. One might expect only the derivative to be exponentiated in
the second term however, in order to preserve hermiticity the i must also be exponentiated. In
this way one may repeatedly integrate by parts ν times to recover the original theory. Keeping
the same matrix conventions as before, this yields the Fourier transformed Hamiltonian:

H =

∫
dk
[
−~α(−k)ν(ψ†1(k)ψ2(k) + ψ†2(k)ψ1(k)) + µα2(ψ†1(k)ψ1(k)− ψ†2(k)ψ2(k))

]
. (5.60)

Following precisely the same steps as in Section (5.3) using this Hamiltonian one will find for
the Bogoliubov angle:

f(k) =
1

2
arcsin

[
−~(−k)ν√

(−~)2(−k)2ν + α2µ2

]
,∀k < Λ. (5.61)

From this we find that χ(s) is given by:

χ(s) =
k2

2

∂

∂k

1

k
arcsin

[
−~(−k)ν√

(−~)2(−k)2ν + α2µ2

]
k=Λes

. (5.62)

Evaluating this we obtain the following:

χ(s) = −1

2
arcsin

[
−~(−Λes)ν√

(−~)2(−Λes)2ν + α2µ2

]
− 1

2

~µαν(−Λes)ν

((−~)2(−Λes)2ν + α2µ2)
. (5.63)

The massless case is easily checked, the second term is zero and the first yields:

χ(s) = −1

2
arcsin

[
−~(−Λes)ν√
(−~)2(−Λes)2ν

]
,

= −1

2
arcsin[+1] = −π

4
,

which indeed is the result mentioned in the literature [8]. It would seen then that after turning
the crank to find the entanglement entropy by Ryu-Takayanagi methods3 the result for a Dirac
theory and a Lifshitz Dirac theory have no difference in entanglement up to a normalisation
factor. However, it is suspected by the author that not only are even/odd values of ν different
but also odd values yield theories with zero entanglement entropy.

3By which we mean, from χ calculating a geodesic length through the bulk geometry and so on as we
performed in Section (5.2) for the scalar field.
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5.5 Lifshitz Dirac II

We repeat the steps of the previous section with the standard γ matrix basis. Our expectation
is that by changing basis we in effect redefined our fields as combinations of the original fields.
This may be considered as a rotation of the field components which may in turn affect the
Bogoliubov angle that we aim to find and which determines the function χ. So our conventions
are now as follows:

LLifshitz = ψ̄
(
~γti∂t + ~αγx(i∂x)ν − µα2

)
ψ, (5.64)

H = −
∫
dx ψ̄

(
~αγx(i∂x)ν − µα2

)
ψ, (5.65)

γt =

(
0 1
1 0

)
, γx =

(
0 −1
1 0

)
, ψ̄ = ψ†γt. (5.66)

The remaining conventions apply, for the definition of ψ̄ and so forth. From this point we
expand in detail the Hamiltonian to find:

H = −
∫
dx
[
~αψ̄γx(i∂x)νψ − µα2ψ̄ψ

]
,

= −
∫
dx

[
~α
(
ψ†1 ψ†2

)(1 0
0 −1

)(
(i∂x)

νψ1

(i∂x)
νψ2

)
− µα2

(
ψ†1 ψ†2

)(0 1
1 0

)(
ψ1

ψ2

)]
,

= −
∫
dx
[
~α(ψ†1(i∂x)

νψ1 − ψ†2(i∂x)
νψ2)− µα2(ψ†1ψ2 + ψ†2ψ1)

]
,

= −
∫
dx
[
~α(ψ†1(i∂x)

νψ1 − ψ†2(i∂x)
νψ2)− µα2(ψ†1ψ2 + ψ†2ψ1)

]
. (5.67)

Now as before we Fourier transform the fields to obtain:

H = −
∫
dk
[
~α(−k)ν

[
ψ†1(k)ψ1(k)− ψ†2(k)ψ2(k)

]
− µα2

[
ψ†1(k)ψ2(k) + ψ†2(k)ψ1(k)

]]
. (5.68)

Next we perform a general Bogoliubov transformation in the same vein as [47], using the same
transformation as in equations (5.46) and (5.47). After some algebra we find:

H = −
∫
dk e−s

~α(−k)ν
[
cos(2f(k, s))[ψ†1(k̃)ψ1(k̃)− ψ†2(k̃)ψ2(k̃)]− sin(2f(k, s))[ψ†1(k̃)ψ2(k̃) + ψ†2(k̃)ψ1(k̃)]

]
,

− µα2
[
cos(2f(k, s))[ψ†1(k̃)ψ2(k̃) + ψ†2(k̃)ψ1(k̃)] + sin(2f(k, s))[ψ†1(k̃)ψ1(k̃)− ψ†2(k̃)ψ2(k̃)]

]
,

where e−sk = k̃ for brevity of presentation. Bringing similar terms together we have the final
form we need to determine the Bogoliubov angle f(k):

H = −
∫
dk e−s

[
[~α(−k)ν cos(2f(k, s))− µα2 sin(2f(k, s))][ψ†1(k̃)ψ1(k̃)− ψ†2(k̃)ψ2(k̃)]

]
−
[
[~α(−k)ν sin(2f(k, s)) + µα2 cos(2f(k, s))][ψ†1(k̃)ψ2(k̃)− ψ†2(k̃)ψ1(k̃)]

]
. (5.69)

From this we determine the energy functional from 〈Ω|H |Ω〉 keeping in mind the action of
the field operators on the unentangled IR state |Ω〉 as in equation (5.49) and the paragraph
thereafter.

E[χ] = −
∫
dk e−s(−1)[~α(−k)ν cos(2f(k))− µα2 sin(2f(k))]δ(e−sk − e−sk),
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=

∫
dx

∫
dk

2π
[~α(−k)ν cos(2f(k))− µα2 sin(2f(k))]. (5.70)

Taking the functional derivative as previously shown yields:

δe[χ]

δχ(s)
=

∫
dk

2π
[−~α(−k)ν sin(2f(k))− µα2 cos(2f(k))]2e−s

k

Λ
Γ

(
e−s
|k|
Λ

)
= 0,∀s ∈ (−∞, 0].

This gives the following expression for the angle f(k):

f(k) =
1

2
arctan

[
µα

−~(−k)ν

]
. (5.71)

Using a couple of identities we can express this as:

f(k) =
1

2
arctan

[
~(−k)ν

µα

]
∓ π

4
,

=
1

2
arcsin

[
~(−k)ν√

(−~)2(−k)2ν + µ2α2

]
∓ π

4
. (5.72)

where we take the minus for ν even and plus for ν odd, not by choice but by conditions required
by the identities used. It remains to find χ(s) which will be given by:

χ(s) = f(k)− k∂kf(k)|k=Λes ,

= ∓π
4

+
1

2
arcsin

(
~(−k)ν√

(−~)2(−k)2ν + µ2α2

)
− 1

2

~νµα(−k)ν

((−~)2(−k)2ν + µ2α2)
|k=Λes , (5.73)

= ∓π
4

+
1

2
arcsin

(
~√

(−~)2 +M(s, ν)2

)
− 1

2

~νM(s, ν)

((−~)2 +M(s, ν)2)
, (5.74)

where we’ve defined M(s, ν) := µα
(−Λes)ν

.

For M(s, ν) = 0 we find two results:

χ(s) =

{
π
2
, ν odd,

0, ν even.
(5.75)

So for the entropy we find that we recover the log correction for odd values of nu but no
entanglement for even value. While this may come as a surprising, even counter-intuitive, result
recent result using numerical field theoretic methods seems to confirm this prediction [59]. So
while further physical explanation is necessary we currently have evidence from alternative
methods which seem to repeat the same prediction.

For the massive case we can look at the ν = 1 = ~ = α case as a sanity check to find:

χ(s) =
π

4
− 1

2
arcsin

(
k√

k2 +m2

)
+

1

2

mk

(k2 +m2)
|k=Λes , (5.76)

which up to the constant factor of π
4

is precisely the result obtained in [8]. It would seem
that the effect of choosing the standard basis is that the Bogoliubov angle has been shifted by
π
4
. With the energy density and Bogoliubov angle determined we can perform a check on the

ground state energy density. In the massless case, combining (5.70) and (5.72) gives for ν odd:

e[χ] = E[χ]/(

∫
dx) =

∫
dk

2π
[~α(−k)ν cos(π)], (5.77)
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=

∫
dk

2π
[~αkν ], (5.78)

and for ν even:

e[χ] =

∫
dk

2π
[~α(−k)ν cos(0)], (5.79)

=

∫
dk

2π
[~αkν ]. (5.80)

To compare to Section(5.4) where according to4 [47] the energy is given by:

E[χ]/(

∫
dx) = −

∫
dk

2π
[~α(−k)ν sin(2f(k)) + µα2 cos(2f(k))], (5.81)

and
f(k) =

π

4
∀k, ν. (5.82)

Then in the massless case we have:

e[χ] = −
∫

dk

2π
[~α(−k)ν sin

(π
2

)
] = −

∫
dk

2π
[~α(−k)ν ] =

∫
dk

2π
~αkν ∀ ν. (5.83)

Thus we have an agreement between the two approaches, at least at the level of the ground
state. However, interestingly the deviation in Bogoliubov angle and hence the function χ leads
to a difference in entanglement entropy for both approaches when we proceed to calculate the
entanglement entropy using Ryu-Takayanagi. At this point we can only say with certainty that
the result (5.75) is a prediction for anisotrpic fermionic theories.

A question remains as to why precisely the function χ differs due to a different choice of
γ-matrix. We put forward that a possible explanation to this point is that the unentangled
reference state |Ω〉 is not the same in both cases. As such the nature of the entanglement in the
resultant UV limit of the cMERA state |Ψ〉 is different. If the choice of γ-matrices is considered
as a redefinition of the spinor components then the definition of the reference state changes
with either choice. The confirmation of the result by field theoretic methods and a further
explanation of the above question remain as paths for future study.

4See the appendix of version 1, equation (51)
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Chapter 6

Conclusion

Here we make some concluding remarks regarding the MERA, cMERA techniques and the main
result of the previous chapter.

Evidently as outlined as a numerical technique MERA is effective in simulating 1-dimensional
systems. While some tensor networks are more numerically efficient the MERA posesses valu-
able properties which make it particularly useful in acting as an analogue to 1-dimensional
systems. The entanglement entropy bound for MERA which reproduces the known entropy
bounds for scale invariant systems is of special interest. While MPS states have a similar
entropy bound, the bound of MERA can be enveloped into the overarching Ryu-Takayanagi
proposal. We can view the bound as a minimisation of geodesics in the bulk or network dimen-
sion.

Now taking this idea in mind the study of MERA can be extended from a numerical proce-
dure to an intermediary theory which can connect seemingly disparate areas of physics. This in
itself warrants a deep study of the ansatz as it would be of great benefit to understand further
how a discrete space can be generated from a many-body quantum system and if entanglement
itself builds space-time [31,52].

If we move past the big question of if entanglement builds space-time we can use cMERA
techniques to study field theories. In this thesis we have examined free field theories both
scalar and fermionic in the cMERA framework. In this examination we focused of course on
entanglement entropy. Moreover, we extended previous work to those theories with Lifshitz
scaling. In doing so we have produced a validation of cMERA techniques applied to these
theories. Questions remain regarding the final result. One expects that the result may be
verified using purely field theoretic methods, as mentioned at the moment numerical evidence
[59] supports our prediction but a full explanation is still required. We would propose this
as promising path for future inquiry. Some ignorance remains as to why this result does not
manifest itself using alternate conventions as appear in the literature.

There is a huge number of possibilities for future research in the area of MERA and
AdS/MERA. There are proposals for the study of AdS black holes using finite temperature
MERA [60]. As we have hinted at there is some speculation in the area of quantum gravity.
Perhaps a more immediate case for further study is the use of MERA and cMERA techniques
in the classification of quantum many-body systems by their emergent bulk geometries. Specif-
ically for the cMERA framework itself it would be interesting to examine the results generated
by more general disentangling operators. In our treatment we used perhaps the most straight-
forward form of the disentangler K̂, that is one with only s-wave momentum dependence.
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Appendix A

Quantum Information

A.1 Qubits

A qubit is a two dimensional Hilbert space H2 ' C2 where the qubit values take the form:

|φ〉 = c0 |0〉+ c1 |1〉 , (A.1)

where {|0〉 , |1〉} is an orthonormal set called the standard computational basis, c0, c1 ∈ C and
|c0|2 + |c1|2 = 1. Physically these qubits could correspond to spin up/down states in a spin
basis.

For larger systems of say n qubits, or indeed n particles which we describe using the com-
putational or a related basis, the corresponding Hilbert space is given by the tensor product of
individual 2-dimensional Hilbert spaces:

n⊗
i=1

H2 = H2 ⊗H2 · · · ⊗ H2 = H2n. (A.2)

Then for example we have the states:

|φ1〉 = |0〉 ⊗ |0〉 = |00〉 ,

|φ2〉 =
1√
2

(|0〉+ |1〉)⊗ |0〉 =
1√
2

(|00〉+ |10〉), (A.3)

|φ3〉 =
1√
2

(|00〉+ |11〉) 6= |A〉 ⊗ |B〉 ,

which are all in the Hilbert space H2·2 of 2-qubit states. Moreover the first two are examples
of separable/product states and the third is a non-separable or entangled state. The meaning
of this statement will be explain at length later.

A.2 Quantum Gates

Operations on these qubit bases are regarded as quantum logic operations in analogy with
classical computation logic operations. In this context the operations are given by unitary op-
erations acting on the qubit Hilbert space. Being unitary all the operations are thus reversible.

Now we give some examples of the unitary operators or quantum gates which act on such
states.

Phase Flip (Ẑ) gate which we can define by its operation on single qubits.

Ẑ |0〉 = |0〉 ,
Ẑ |1〉 = − |1〉 .

(A.4)
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In circuit diagram notation this is: Z . In matrix notation this is σz.

Bit Flip (X̂) gate

X̂ |0〉 = |1〉 ,
X̂ |1〉 = |0〉 .

(A.5)

In circuit diagram notation this is: X . In matrix notation this is σx.

Hadamard (Rotation) (Ĥ) gate

Ĥ |0〉 =
1√
2

(|0〉+ |1〉),

Ĥ |1〉 =
1√
2

(|0〉 − |1〉).
(A.6)

In circuit diagram notation this is: H . In matrix notation this is 1√
2
(σx +σz). At this

point we can also describe gates which act on several qubits at once. CNOT gate. In classical
computation this may be called an XOR (exclusive OR) operation. It acts on two qubits using
the first as control-qubit and the second as the registry qubit.

CNOT |00〉 = |00〉 ,
CNOT |01〉 = |01〉 ,
CNOT |10〉 = |11〉 ,
CNOT |11〉 = |10〉 .

(A.7)

There is some more notation to keep in mind for this gate. While acting on 2 qubits they
may not need to be adjacent so we denote the relevant qubits for a particular CNOT -gate by
using a pair of indices like so: CNOTij. The meaning of this is to say that the control qubit
is the ith qubit of the circuit and the target/registry qubit is the jth qubit. For the defining
example above we would denote the gate by CNOT12 and use the diagram below:

•

A.3 Quantum Circuits

Using the simple examples that we have so far we can construct our first quantum circuit
which will give us a method of translating a 2-qubit computational basis {|00〉 , |01〉 , |10〉 , |11〉}
to another 2-qubit basis called the Bell basis: {|β00〉 , |β01〉 , |β10〉 , |β11〉}, where:

|β00〉 =
1√
2

(|00〉+ |11〉),

|β01〉 =
1√
2

(|01〉+ |10〉),

|β10〉 =
1√
2

(|00〉 − |11〉),

|β11〉 =
1√
2

(|01〉 − |10〉).
(A.8)

So the circuits to translate between these bases are:

|0〉 H •

|0〉

= |β00〉 ,

|0〉 H •

|0〉 Z

= |β10〉 ,
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|0〉 H •

|0〉 X

= |β01〉 ,

|0〉 H • Z

|0〉 X

= |β11〉 .

The right-hand side of these circuits denote a total output of the Bell states not one single
leg giving a Bell state. Moreover, we have implicitly taken that a single qubit (Â) gate operates
as a two qubit gate as: (Â⊗ Î) = Â1. So in fact the above circuits may be also expressed as:

|β00〉 = CNOT12(Ĥ ⊗ Î) |00〉 = CNOT12Ĥ1 |00〉 ,
|β10〉 = (Î⊗ Ẑ)CNOT12(Ĥ ⊗ Î) |00〉 = Ẑ2CNOT12Ĥ1 |00〉 ,
|β01〉 = (Î⊗ X̂)CNOT12(Ĥ ⊗ Î) |00〉 = X̂2CNOT12Ĥ1 |00〉 ,
|β11〉 = (Ẑ ⊗ Î)(Î⊗ X̂)CNOT12(Ĥ ⊗ Î) |00〉 = Ẑ1X̂2CNOT12Ĥ1 |00〉 .

(A.9)

We can take the other computational basis states as inputs and find the Bell states in a similar
fashion. The above circuits we refer to as the Bell state generator. For simplicity of the
realisation of such a circuit we tend to want to use the same inputs states, say light of a certain
polarization, so in the end we can modify only the end of the circuit rather than having a
different circuit for every input.

A.4 States and Representations

We note that the basis states for the qubits in the quantum information context reside in a
state space called the Hilbert space, H. We should note here some defining properties of the
state space before we go on to give properties of the states.

• The state space is a vector space over the field C.

• It has an inner product which we denote by 〈·|·〉

• This inner product induces a norm and metric on the space.

• In the infinite dimensional case the space is also complete.

So in particular we use |v〉 to denote a vector/state in the Hilbert space and then 〈v| denotes
the adjoint of this vector/state.

Norm: If we take two states, |φi〉 , |φj〉, such that 〈φi|φj〉 = δij then we define the norm as:

〈φi|φi〉
1
2 = norm(φi) ∈ C,

where norm(φi) = 1 for a normalized state.
Metric: A metric, ρ(·, ·), on a space is defined by the following properties:

• ρ(|φ〉 , |ψ〉) = 0, ⇐⇒ |φ〉 = |ψ〉,

• ρ(|φ〉 , |ψ〉) = ρ(|ψ〉 , |φ〉),

• ρ(|φ〉 , |ξ〉) ≤ ρ(|ψ〉 , |φ〉) + ρ(|φ〉 , |ξ〉),
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where |φ〉 , |ψ〉 , |ξ〉 ∈ H. Then for the metric to be induced by the norm we should find that:

ρ(|φ〉 , |ψ〉) = || |φ〉 − |ψ〉 ||.

Representations: We should try to be more precise in what we mean by the states we
denote by the kets above. Suppose we have a Hilbert space H with a basis given by B =
{|φi〉}i≥1. Suppose also we have that |ψ〉 ∈ H. Then using the completeness relation for a basis

set:
∑

i≥1 |φi〉 〈φi| = Î we have that:

|ψ〉 =
∑
i≥1

|φi〉 〈φi| |ψ〉 ,

=
∑
i≥1

|φi〉 ciψ, (A.10)

=
∑
i≥1

ciψ |φi〉 ,

where ciψ are complex numbers corresponding to the inner products of the basis states with the
state in question. So in particular the state |ψ〉 is expressed as a superposition of basis states.
This is what we mean by a state in our Hilbert space. For example, with the computational
basis we have the following data:

B = {|0〉 , |1〉}, |ψ〉 ∈ H,

|ψ〉 =
1∑
i=0

ci |i〉 , (A.11)

= c0 |0〉+ c1 |1〉 .

Likewise if we look at the Hilbert space of two qubit states we have:

B ={|00〉 , |01〉 , |10〉 , |11〉},

|ψ〉 =
1∑

i,j=0

cij |ij〉 ,

=c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 ,

OR:

BBell ={|β00〉 , |β01〉 , |β10〉 , |β11〉},

|ψ〉 =
1∑

i,j=0

bij |βij〉 ,

=b00 |β00〉+ b01 |β01〉+ b10 |β10〉+ b11 |β11〉 .
(A.12)

We can see more clearly here that the Bell states form a basis as we can see from their
expressions given previously that they may be written as a superposition of the computational
basis states and most importantly they are mutually orthogonal states so they span the entire
Hilbert space. Moreover we note that the two qubit Hilbert space is given by the tensor product
of two 1-qubit Hilbert spaces. What we mean by this is that for two vector spaces U and V
the tensor product of these two spaces is a vector space,W = U ⊗ V , of dimension (dimU ·
dimV). Taking the bases of these spaces to be BU = {|u1〉 , |u2〉 . . . } and BV = {|v1〉 , |v2〉 . . . }
respectively, then the basis of W is BW = {|u1v1〉 , |u1v2〉 . . . }, where |uivj〉 = |ui〉 ⊗ |vj〉. You
can check this quickly for the above examples.
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