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Abstract

While the inclusion of information theoretical concepts into (quantum)
physics has shown enormous success in recent years, the ontology of in-
formation remains puzzling. Therefore, this thesis aims to contribute to
the debate about the ontological status of information in physics. Most
of the recent debates have focused on syntactic information measures
and especially Shannon Information, a concept originally stemming from
Communication Theory. This thesis incorporates another syntactic in-
formation measure, the so far largely underrepresented notion of Algo-
rithmic Information or Kolmogorov Complexity, a concept often applied
in Computer Science. Shannon Information and Kolmogorov Complex-
ity are linked through Coding Theory and have similar characteristics.
Through the comparison of Shannon Information and Kolmogorov Com-
plexity a framework is developed which analyses the respective informa-
tion measures in relation to uncertainty and semantic information. In ad-
dition, this framework investigates whether information can be regarded
a material entity and examines to what extent information is conven-
tional. It turns out that in the classical case Shannon Information and
Kolmogorov Complexity are both abstract and highly conventional enti-
ties, which must not be confused with uncertainty and do not bear any
relations with semantic information. Virtually the same results are ob-
tained in the quantum case, save for the high degree of conventionality;
it is argued that Quantum Theory constrains the conventional choices of
those who wish to use either theory.
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Chapter 1

Introduction

“It is said that we live in an Age of Information, but it is an open
scandal that there is no theory, nor even definition, of information that

is both broad and precise enough to make such an assertion
meaningful.” [Goguen, 1997, p. 27]

– Goguen

WHILE attending the conference of the European Society of History
of Science (ESHS) in September 2016 in Prague and pondering

about a suitable topic for this master thesis, the initial impulse came
Frans van Lunteren’s talk, professor of History of the natural sciences in
Leiden. Van Lunteren suggested to compose a history of science textbook
for science students, following the narrative that different technological
advancements had enormous influence on scientific practice; think for
instance how the steam engine influenced thermodynamics or how the
universe is conceived as a ‘giant clock’ [van Lunteren, 2016].

Since the middle of the last century until today–so the claim–we are
largely influenced by information technology and especially the role of the
computer. And indeed, in our daily lives we are permanently surrounded
by the term ‘information’. What’s more, many academic disciplines are in
one way or another affected by some of the multitude concepts of ‘infor-
mation’, too. One of these academic disciplines is physics, where the new
areas of Quantum Information Theory (QIT) and Quantum Information
Science (QIS) offer one of the most exciting and rapidly growing areas of
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research in the field. Quite generally speaking, this thesis is concerned
with information in physics.

This chapter aims to illuminate the wide ambiguity around the term,
arguing that ‘information’ appears to refer to at least two quite distinct
concepts. Beginning with a quick glance in the online Oxford dictio-
nary1 provides us with two main entries, according to which informa-
tion is a mass noun defined as “[f]acts provided or learned about some-
thing or someone”, and “[w]hat is conveyed or represented by a particu-
lar arrangement or sequence of things.” While the first entry refers to a
subjective-epistemic notion, the second entails the syntactic-quantitative
and rather ‘objective’ concepts.2 In order for the main argument of this
paper to hold from the start, we have to identify that modern physics is
concerned with only the latter of these concepts. However, often these
two meanings of information are conflated; therefore, a short insight in
the begriffsgeschichte of information is provided for clarification and sub-
sequently concluded with the developments in the 20th century until to-
day.

Embarking from there, we’ll see that there are various notions of so
called syntactic information. In this thesis we’ll then pick out the ar-
guably two most prominent syntactic information measures, Shannon
Information and Kolmgorov Compelxity, and raise the question ‘What’s
the ontological status of information in physics?’. While Shannon Infor-
mation and its ‘quantum version’ have already gained a lot of attention
in the foundations of physics literature, only a few authors have philo-
sophically examined Kolmogorov Complexity and its extensions to the
quantum. On the one hand, contrasting both of these information mea-
sures yields a fruitful framework to examine Shannon Information from
a so far unusual angle. On the other hand, the analysis of Kolmogorov
Complexity allows this thesis to act as a starting point to close the ‘gap
of attention’ between the two information measures when it comes to the
ontological status of information in physics. Even though we begin to
analyze each notion individually, we are going to point out conceptual

1URL= https://en.oxforddictionaries.com/definition/information (01/06/2017)
2‘Objective’ in sense of intersubjective.
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connections between Shannon Information and Kolmogorov Complexity,
in order to shed light on the ontological status of information. We intro-
duce the exact main conceptual framework for settling the main research
question of this thesis at the end of the chapter. Before that, we start
with a short briefing on ontology.

1.1 A few words about Ontology

Before beginning with the main part of thesis, it is advisable to leave a
few words of clarification about how ‘ontological status’ ought to be un-
derstood here. Overall, ontology is the inquiry with the question of what
there is. Ontologists want to give a catalog of the world’s furniture and
ask for instance, whether there exist numbers; Platonists may answer
yes and Nominalists no. More generally, it is debated whether there exist
abstract entities (such as numbers) or concrete entities.

However, for the main analysis of this thesis, we want to eschew most
of these ontological debates and not digress from our actual topic by argu-
ing over the pitfalls of various ontological positions. First and foremost,
we are concerned with the metaontological question of categorizing the
proposed notions of syntactic information in physics according to their
ontological status. In other words, when examining the ontological status
of information, we want to step back from any ontological position such
as Platonism, Nominalism, or the question if ontology is solely a matter
of convention, as choosing one of these metaphysical positions deserves
an independent debate.

In order to meet the goal of this thesis–investigating the ontological
status of information in physics–it is crucial to point out some of these
basic ontological concepts and categories. This shall later allow us to
analyze the various ontological claims about information in physics we
are going to encounter and put them into perspective.
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Abstract vs Concrete Entities

Let’s start with the perhaps most basic and intuitive notion familiar from
our experience–that of concrete objects, like apples, chairs or tigers. What
all these things or objects have in common is that each of them is said to
be non-repeatable (not multi-examplifiable) [MacLeod and Rubenstein, 2017],
which means that they can’t be spatio-temporally located in more than
one place at a time. A single tiger, for instance, can’t be at the zoo in
Chicago and the Indian jungle at the same time; there can certainly be
two different tigers at different locations at the same time though, one in
Chicago and one in the tropical rainforest of Northeast India. Often these
(material) objects or things are referred to as individuals or particulars,3

which can be picked out from a certain class or category.

A diagnosis similar to the whereabouts of big cats and their catego-
rization as tigers–or generally about not multi-examplifiable particulars
and their resemblance–is one of the reasons why, historically, philoso-
phers adhered to the notion of universals, a class of mind-independent
entities, explaining the relations of qualitative identity among individu-
als [MacLeod and Rubenstein, 2017]. In contrast to particulars, univer-
sals are thought to be repeatable. Often universals account for the prop-
erties of objects, like the redness of apples or a tiger’s property of being
alive, striped and heavy. Holding the view that properties are in fact uni-
versals then allows us to conclude that the two tigers–the one in the zoo
and the other in the jungle–are instances or tokens of the ‘tiger’-type (i.e.,
if ‘tiger’ is recognized as a property itself, the property which character-
izes all tigers). In philosophical terms we might say that a tiger (object)
then instantiates various properties such as ‘stripeness’, ‘heaviness’, or
the property of being a tiger.

However, denying that universals exist and believing that properties
are merely particulars after all, is reflected in the so called trope theory.
According to trope theory, the existence of universals is rejected and the
world is held to consist (wholly or partly) of so called tropes, which are
abstract particulars [Maurin, 2016]. A trope is a particular instance of a

3Examples for non-material-, i.e. abstract particulars are e.g., ‘God’ or ‘souls’.
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property, e.g., the specific redness of an apple.
Regardless whether one follows trope theory or adheres to the ‘the

classical distinction’ of universals and particulars, the essential point
for this thesis is that an object can evidently be spatio-temporal located,
whereas its properties can’t be localized like ordinary objects. So while we
could certainly pet a tiger or eat an apple, we couldn’t do the same with
‘redness’, ‘aliveness’or the property that instantiates all tigers. Questions
about location (in our case at least),4 are thus only sensical for objects
which possess properties and not the properties themselves; properties
are abstracta.

1.2 Begriffsgeschichte

On the first page of his dissertation about the intellectual history and
etymology of information [Capurro, 1978], Rafael Capurro warns us that:

“The present everyday language term for information was
initially used in a naive or rather nonreflective sense, e.g. as
synonym for perception, knowledge, note, message, etc. At the
same time, at the beginning of the thirties [of the 20th cen-
tury], the word was annexed by telecommunications and by
exclusion of all qualitative or respectively semantic aspects,
which mark the everyday term of information, newly defined.
The definition of the notion of information in telecommunica-
tions collided with the everday meaning. The suspicion of mis-
guidance was confirmed, when the telecommunicational term
of information was put in contact with semantic- and even
pragmatic concerns.”, (p.1).5

In fact, regarding the ancestry of the term information, we discover that
only the epistemic notion has ‘Latin roots and Greek origins’, whereas the

4Some scholars might regard ‘events’ as yet another ontological category distinct
from objects or properties. Although events are usually not regarded as concrete, they
can be assigned with a spatio-temporal location.

5Own translation.
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non-semantic notion is largely influenced by its emergence in the context
of communication theory and computer science in the 20th century.

As Capurro points out, the term originates in the Latin forma, espe-
cially in the context of translations of philosophical works of Plato and
Aristotle, covering a plurality of meanings such as ειδoς/eidos (essence),
ιδεα/idea (idea), τυπoς/typos (type), µoρϕη/morphe (form) [Lyre, 1998],
[Capurro and Hjorland, 2003], [Adriaans, 2013]. In Antiquity, the Latin
informatio then had two fundamental meanings, i.e. i) “the action of
giving a form to something material” and ii) “the act of communicating
knowledge to another person” [Capurro, 2009]. In contrast to our con-
temporary understanding, the Latin term had thus an ontological and
epistemological meaning, which nevertheless were closely related. In
that regard, [Adriaans, 2013] e.g., points towards the important image of
molding wax, used by various authors from Antiquity to the Early mod-
ern period. The fact that wax can be manipulated to have different shapes
while keeping its volume and can be used to convey information–in sense
of communicating knowledge–made it a rich analogy.

In the Middle Ages the term ‘informatio’ gained another meaning in
pedagogical- and educational contexts. In the transition from the Middle
Ages to the Early Modern Period and with the emergence of the various
Latin-influenced European languages, the term was even further applied
in different areas, such as in legal matters. However, with a more wide-
spread use, under the influence of Empiricism and the decline of Scholas-
ticism, ‘informatio’ slowly lost its ontological meaning (i.e. forming mat-
ter), retaining only its epistemic sense of communication and education
[Capurro and Hjorland, 2003].

Developments in the 20th Century

Until the beginning of the 20th century, ‘information’ almost vanished
completely from philosophical discourse. With a gradually shifted mean-
ing towards views of knowledge in colloquial speech, information even-
tually became the abstract mass-noun we use today [Adriaans, 2013].6

6N.B. that ‘information’ isn’t a mass-noun in every language. Think of Italian or
German as a counter example.
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In this form then, the term was chosen by 20th-century researchers of
different scientific disciplines to adopt formal and ‘objective’ methods for
measuring information.7

Historically, one aspect of syntactic information emerged in the con-
text of communication theory in the Bell laboratories in the first half
of the 20th century. Based on the work of Harry Nyquist (1889-1976)
[Nyquist, 1924] and Ralph Hartley (1888-1970)[Hartley, 1928], Claude
Shannon (1916-2001), published A Mathematical Theory of Communi-
cation [Shannon, 1948], in which he derived a probability based mea-
sure of information H(X)–called Shannon Information or Shannon En-
tropy–nowadays finding use in many scientific areas. Yet, at the time of
the publication of his paper, allegedly Shannon himself struggled with
the nomenclature of his newly found concept:

“My greatest concern was what to call it. I thought of call-
ing it ‘information’, but the word was overly used, so I de-
cided to call it ‘uncertainty’. When I discussed it with John
von Neumann, he had a better idea. Von Neumann told me,
‘You should call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical mechan-
ics under that name, so it already has a name. In the second
place, and more important, nobody knows what entropy re-
ally is, so in a debate you will always have the advantage.”
[Tribus and McIrvine, 1971]

Whether the above protagonists indeed had such a conversation, is not
our main concern. But the anecdote demonstrates important issues about
the ambiguous terminology of H(X) pointed out by Capurro above.

In the early 1960s, Ray Solomonoff (1926-2009) [Solomonoff, 1964],
Andrey Kolmogorov (1903-1987) [Kolmogorov, 1965] and Gregory Chaitin
(born 1947) [Chaitin, 1966], independently developed the notion of yet

7As an often cited example see for instance, statistican and biologists Ronald Fisher’s
(1890-1962) [Fisher, 1925] notion of Fisher Information in context of likelihood es-
timations. Because lack of space of this thesis, Fisher’s measure of information
will not be dealt with here any further. For some introductory reading though, see
[Hilgevoord and Uffink, 1991].
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another information measure, called algorithmic information. In the
early 1960’s, Solomonoff was the first to articulate the basic ideas of algo-
rithmic information theory in the context of Artificial Intelligence (A.I.)
research, trying to formulate a general theory of inductive reasoning.8

However, at first Solomonoff ’s work regarding algorithmic information
related to inductive reasoning went widely unnoticed. Motivated by In-
formation Theory and problems of randomness, the approach by the great
Soviet mathematician Kolmogorov to close a conceptual gap with Shan-
non’s H(X) in respect to single sequences, gained wider attention. For
that reason, algorithmic information is today often referred to as Kol-
mogorov Complexity.9

Even though the notions of syntactic information were developed by
different and seemingly independent motivations, Chaitin (one of the ’in-
ventors/discoverers’ of algorithmic information) remarks

“Algorithmic information theory (AIT) is the result of putting
Shannon’s information theory and Turing’s computability the-
ory into a cocktail shaker and shaking vigorously.”10

Unfortunately though, vigorously mixing various (ambiguously defined)
concepts like uncertainty, entropy, probability, algorithmic, and seman-
tically based ‘information’, doesn’t help much in establishing conceptual
clarification in science. As we are concerned with ‘information in physics’,
it is time to look at what the physicists, the philosophers, and other schol-
ars thereof have to say about the matter.

8As a historical side note, it is interesting to point out that in 1956 Solomonoff was
one of the ten scholars of the Dartmouth Summer Study Group on A.I. (where, by the
way, the term A.I. was coined), which was co-organized by C.E. Shannon (For more
details see [Solomonoff, 1997] and [Vitanyi, 2010]).

9Only from 1968 onward did Kolmogorov start referring to Solomonoff ’s previous
work, stating that he had not been aware of his developments earlier [Vitanyi, 2010].
Of course, many others like Leonid Levin, Peter Gacs, Gregory Chaitin, etc. made im-
portant contributions, too.

10Quote retrieved from [https://www.cs.auckland.ac.nz/research/groups/CDMTCS/docs/ait.php]
(21/07/2017).
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1.3 Information in Physics

While nowadays Information Theory has its own established standing,
the usage of ‘information’ in physics is a more recent development and
has arisen as a widely recognized scientific field since the early 1990s.
Since the first developments of the computer in mid 20th century, the
number of transistors in dense integrated circuits almost doubled every
two years, an observation known as Moore’s Law. While the dimensions
of the components come ever closer to scales where quantum theory plays
a crucial role, the limits of communication systems are being investi-
gated by the effects of quantum mechanics on information transmission,
too [Lloyd, 2009]. Quantum computation and quantum cryptography are
only some of the new promising technological advances. Furthermore,
many lines of quantum information theoretic research hope to overcome
the puzzles of quantum mechanics and provide an entirely new founda-
tion for the field.

However, increasingly successful application of information to vari-
ous areas doesn’t prevent conceptual confusion about the fundamental
nature of information per se. As sketched out in the sections above, infor-
mation is a highly ambivalent term and mingling it with no less ambigu-
ous terms (like uncertainty, entropy, etc.) when brought in contact with
physics hasn’t proved helpful to untangle these conceptual confusions.
Below, some of the most prominent claims about the ontological status of
information in physics are presented.

Wheeler’s It from Bit–Informational Immaterialism?

‘It from bit’; probably one of the most notable slogans regarding informa-
tion in physics, was coined by John Archibald Wheeler (1911-2008). In
his own words, he claimed

“It from bit. Otherwise put, every it–every particle, every
field of force, even the spacetime continuum itself–derives its
function, its meaning, its very existence entirely–even if in
some contexts indirectly–from the apparatus-elicited answers
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to yes or no questions, binary choices, bits. It from bit sym-
bolizes the idea that every item of the physical world has at
bottom–at a very deep bottom, in most instances–an immate-
rial source and explanation; that what we call reality arises in
the last analysis from the posing of yes-no questions and the
registering of equipment-evoked responses; in short, that all
things physical are information-theoretic in origin and this is
a participatory universe.” [Wheeler, 1989, p.5]

According to this position, information is the most fundamental, yet ap-
parently immaterial, essence of the world. Information theoretic con-
siderations justify experimentally posed yes or no questions which ulti-
mately disclose the being of all material objects. In addition, forms of in-
formational immaterialism seem to appeal to a certain form of epistemic
uncertainty, as the posing of ‘yes or no questions’ is required.

While Wheeler’s position of a participatory universe appears radi-
cally different from most mainstream views, he is not the only scholar
proposing ideas in such a vein. Anton Zeilinger, one of the leading ex-
perimental physicists in the field of Quantum information, endorses a
similar view (see e.g. [Zeilinger, 2004]). Even more recently, various es-
says in the Foundational Questions Institute (FQXi) essay competition
[Aguirre et al., 2015], have argued in some way or another in favor of in-
formational immaterialism (see e.g., Giacomo Mauro D’Ariano’s It from
Quibit (pp.25-35)). Today informational immaterialism still appears to
remain a prominent position about the ontology of information in physics.

Landauer–Is Information Physical?

Another slogan we often encounter is ‘Information is physical’. Such a po-
sition was most notably represented by Rolf Landauer (see [Landauer, 1991]
and [Landauer, 1996]). Landauer comes to conclusions like:

“Information is inevitably inscribed in a physical medium.
It is not an abstract entity. It can be denoted by a hole in a
punched card, by the orientation of a nuclear spin, or by the
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pulses transmitted by a neuron. The quaint notion that in-
formation has an existence independent of its physical mani-
festation is still seriously advocated. This concept, very likely,
has its roots in the fact that we were aware of mental informa-
tion long before we realized that it, too, utilized real physical
degrees of freedom.” [Landauer, 1999, p.64].

On this view, information is not an abstract entity, dependent on a con-
crete physical medium. One often finds similar notions embraced in en-
gineer textbooks, where it is claimed that information is an entity that
‘flows’ in communication systems.

Timpson–Is Information Abstract?

In [Timpson, 2004], [Timpson, 2006], [Timpson, 2010], [Timpson, 2013]
Christopher Timpson has argued for information being an abstract entity.
As illustration, Timpson concludes that

“[i]nformationt, what is produced by a source, or what is trans-
mitted, is not a concrete thing or a stuff. It is not so, because,
as we have seen, what is produced/transmitted is a sequence
type and types are abstracta. They are not themselves part of
the contents of the material world, nor do they have a spatio-
temporal location.” [Timpson, 2006, p.27]11

On such a view ‘abstract’ has to be understood as non-concrete (or non-
material) as presented in the section about ontology above.

1.4 The Conceptual Framework of this The-
sis

After our brief examination of the ‘information-literature’, let us now de-
velop the framework of this thesis. Motivated by the sheer amount of

11Timpson’s notion of informationt can be understood as our notion of syntactic infor-
mation.
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the largely diverging interpretations of information in physics, we want
to deepen our understanding about the ontological status of Shannon In-
formation and Kolmogorov Complexity. In that regard it is helpful to
recapture, as Tim Maudlin expressed, that:

“Ontology is the most generic study of what exists. Evidence
for what exists, at least in the physical world, is provided solely
by empirical research. Hence the proper object of most meta-
physics is the careful analysis of our best scientific theories
(and especially of fundamental physical theories) with the goal
of determining what they imply about the constitution of the
physical world.” [Maudlin, 2007, p.104]

In order to find an answer to our main research question, we have to
analyze what information based theories in physics imply about the con-
stitution of (syntactic) information.

However, as we have seen, there’s large potential to confuse our exam-
ination of such theories before actually getting started, because the term
is highly overworked and has at least two different meanings. Addition-
ally, it’s not always clear which information measure is referred to and
what each formalism implies about the ontological status of information.
For avoiding the pitfalls of ambiguous terminology, we have to be aware
to be committed to the following two steps of analysis.

Step 1: Formal Introduction of Information Measures

At first, we have to clarify which kind of information measure we are
referring to, i.e. what we are actually talking about. The previous sec-
tions gave us an idea that we ought to be careful about ambiguous termi-
nology and a thus potentially arising confusion about the formalisms of
Shannon Information and Kolmogorov Complexity. For the purpose of our
following analysis of information in physics, we therefore have to provide
straight forward presentations of the in this thesis examined information
measures.
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Step 2: Analyzing Information Measures

Only after completing Step 1, with a clear layout of the different infor-
mation measures, we are able to proceed with Step 2 of our ontological
analysis. Such an analysis entails the following ingredients. On the one
hand, we examine whether the supposed semantic/syntactic distinction
indeed holds. On the other hand, the bearing to perceive Shannon Infor-
mation (as many do) as a measure of uncertainty, has to be investigated.
Then, we analyze to what extent information can be regarded as a con-
crete or abstract entity. Finally, we point out to what extent the different
information measures are conventional. The reason for pointing out con-
ventional elements, is that entirely conventional, so to speak ‘made up’
theories, can hardly qualify for an ontological (mind-) independent en-
tity in the catalog of the world’s furniture. After that, we’re poised to
work out the ontological status of the individual information measures
and compare them among each other.

1.5 Thesis Contribution & Organisation

This section briefly describes the arrangement of this thesis’ chapters
and how to approach it. The main contribution of this thesis is to com-
pare the notion of algorithmic information (Kolmogorov Complexity), so
far underrepresented in foundation of physics literature, with the much
more often analyzed Shannon Information. The purpose of such a com-
parison is to answer the main research question, i.e. to investigate the
ontological status of information in physics using a yet largely neglected
information measure. Note that answering this question doesn’t imply
to examine one of the many interesting information theoretical based ap-
proaches which try to explain (certain aspects about ) the constitution of
our world.

For so doing, we have to apply the just now developed framework. Ac-
cording to Step 1, we first need to have a clear notion of the different
information measures. The following chapter, Chapter 2: Measures of
Information in Communication, introduces the most important aspects
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of Shannon’s information measure. In the same vein, Chapter 3: Kol-
mogorov Complexity–The Algorithmic Approach, presents the formal fea-
tures of algorithmic information. In the following chapter, Chapter 4:
A (Surprising) Connection between H(X) and K(x) the formal connection
between the previously introduced information measures (Shannon In-
formation and Kolmogorov Complexity) is presented.

Thereafter, Step 2 of our framework requires the ‘ontological analysis’
of our information measures and their connection, hence the following
two chapters, Chapter 5: Interpretation of Information in the Classical
Case and Chapter 6: Interpreting Kolmogorov Complexity in the Classical
Case. Note that the latter also entails a comparison between Shannon
Information and Kolmogorov Complexity in the classical case.

After having covered the classical case, we repeat the above structure
for the quantum case. However, many of our insights from the classical
case can be used as an auxilliary basis for the quantum case. Instead of
the five chapters in the classical case, we only need two for the quantum
case. Based on Step 1, Chapter 7: Quantum Information Theory intro-
duces both Quantum Shannon Information and Quantum Kolmogorov
Complexity. Based on Step 2, Chapter 8: Quantum Information: What’s
the Ontology? analyses both these quantum information measures in re-
spect to their ontological status.

Finally, in Chapter 9: Results & Outlook, we conclude our thesis,
based on the findings of the previous chapters. Finally, the reader might
find useful additional information (in the semantic sense) in Chapter 10:
Appendix.
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Chapter 2

Measures of Information in
Communication

“The word ‘information’ has been given different meanings by various writers

in the general field of information theory. [...] It is hardly to be expected that a

single concept of information would satisfactorily account for the numerous

possible applications of this general field.” [Shannon, 1993, p.180]

–Shannon

IN the following chapter, we are presenting two classical information
measures that arose in the context of classical communication the-

ory–Hartley’s combinatorial approach and Shannon’s probabilistic ap-
proach. In foresight of the following chapters, we especially devote our
attention to the probabilistic approach.

2.1 A Communication Model

For a better understanding of Shannon’s information measure, it is in-
structive to familiarize oneself with a standard communication model.
Shannon [Shannon, 1948] suggested a communication system to consist
of five parts, as seen in Fig. (2.1). Of course, such a system was, as its
very name suggests, meant to implemented in context of communication.
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Figure 2.1: A communication model according to [Shannon, 1948]

1. S denotes the source. The information source produces a sequence
of a set letters {xi}, i.e. producing a message or a sequence of mes-
sages, which are to be communicated to the destination D.

2. T denotes the transmitter. The transmitter produces a signal, gen-
erated at S, to transmit in a suitable way for a channel CH (for
instance, differences in sound pressure could be changed into an
electric current).

3. CH denotes the channel. The channel is the medium to transmit
the signal from T to a receiver R.

4. R denotes the receiver. The receiver reconstructs the message from
the signal, hence performing the inverse operation of T .

5. D denotes the destination. The destination is the person or object
for whom the message is intended, reproducing a set of letters {yi}.

6. Furthermore, external disturbances have to be considered in case of
a non-noiseless channel.

Note however, that there are basically no restrictions on what counts as
a ‘source’ or any other part of the system. Such a model of a communica-
tion system doesn’t even require the involvement of (conscious) agents.
So we can, for instance, think of a communication system of two tin
cans connected by a wire (transmission of the signal over sound through
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the wire); two cellphones (transmission of the signal through electro-
magnetic waves); biological processes, where e.g. the DNA of reproducing
cells is contained in daughter cells (transmission through molecules; (...).

It is this wide range of generality which allows for the successful ap-
plication of H(X) in virtually every scientific area. For the remainder of
this thesis it is important to note that the above examples are exclusively
cases of noisy communication channels. In the following though, we are
not interested with the technical challenges to overcome noisy communi-
cation and only deal with the ideal noiseless case, if not stated otherwise.1

2.2 Hartley’s Information Measure–The Com-
binatorial Approach

Even though often neglected, it is instructive to first briefly introduce the
predecessor of Shannon’s information measure–Hartley’s combinatorial
approach. Let in the following X denote a set of characters of the source
S

X = {xi, i = 1, ..., n} , (2.1)

such that X can be, for instance, conceived as an alphabet like

Xabc = {a, b, c, ..., x, y, z} . (2.2)

For a sequence of length N, one can select each of the n letters, N times,
obtaining

W = nN (2.3)

as the number of possible sequences. As Hartley pointed out though
[Hartley, 1928], for a measure of information to be of practical value in a
context of engineering, it should be rather proportional to the number of
selections N , instead of the number of possible sequences W (2.3). Since
we usually measure magnitudes linearly, i.e. we ideally want informa-
tion to be an extensive quantity like mass or volume, we obtain Hartley’s

1N.B. a noiseless channel doesn’t automatically guarantee successful communication.
We shall deal with the so called ’success criteria’ in section (5.5).
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information measure

log2W = NHH , (2.4)

with HH = log2 n, (2.5)

by applying the logarithm.

An example. At a given source S, Alice decides to send Bob at destina-
tion D two messages produced of the set of letters Xabc (2.2) with length
N = 5, stating

m1 = h e l l o, and

m2 = k j x g z.

According to eq. (2.5) in the ideal case of not taking into account noise,
both of Alice’s messages contain

NHH(m1) = NHH(m2) = 5 · log2 26 ≈ 23.5 bit (2.6)

of information.2 By adding HH(m1) and HH(m2) we get approximately
47 bit of information and satisfy our intuitive notion to measure mag-
nitudes linearly. Note additionally that the content of the messages is
not relevant for the measure HH and deprived of ‘psychological consid-
erations’ [Hartley, 1928]. Both messages yield the same quantity of in-
formation. Following our claims in Chapter 1, we are only interested in
syntactic information anyway, not semantic information.

However, even though we don’t want to consider any potential mean-
ing conveyed in the messages, we shouldn’t neglect the different occur-
rences of letters. In the context of human communication, it doesn’t come
as a surprise for a person with the ability to understand English that
certain messages and letters appear more often than others.

2Note that the base of the logarithm is in principle arbitrary, but standardly chosen
to be two, because of the communication theoretic background of the Shannon theory.
The unit of H is measured in binary digits, i.e. bit (in case of base 10 logarithms, the
unit is called hartley, or nat when based on the natural logarithm). In the following,
′ log′denotes the logarithm to base two, if not stated otherwise.
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2.3 Shannon’s Information Measure–The prob-
abilistic approach

Let’s regard our exemplary messages m1and m2 from the section above
again. Human agents communicate in a certain language with specific
letter frequencies, effectively leading to a probability distribution of the
letters. In fact, the letters{k, j, x, g, z} found in m2 above are the least
used ones in English and one would expect to find much more messages
like m1 with much more frequently used letters.3 In contrast to Hartley,
Shannon noticed that by exploiting the statistical properties of an infor-
mation source4, one can find a function H(X), which always satisfies

NH(X) ≤ N log n. (2.7)

where the right hand side of the inequality denotes NHH , thus obtaining
a more efficient way to transmit messages than with HH . The basic idea
behind this discovery is that due to non-identically distributed (i.e. based
on a probability distribution P (X)) random variables, some sequences
will be so unlikely (called atypical), that they can be left aside from our
considerations from the start. Shannon’s information measure hence de-
termines how much a sequence can be compressed on average relative
to simply enumerating all possible sequences. In fact, Shannon could
demonstrate that H(X) turns out to be the optimal statistical compres-
sion for using minimal physical resources for transmitting information.
In general this result is known as Shannon’s noiseless coding theorem
[Shannon, 1948].

3Of course the frequencies and hence the effective probability distribution of the
letters change in different languages. For a detailed overview of letter frequencies in
English and German, see table 10.1 in the Appendix. For a more detailed and ’philo-
sophical’ analysis on how H(X) depends on the underlying probability distribution P
see Chapter 5.

4A classical information source can be modeled as a source that consists of a sequence
of random variables xi, where such variables are assumed to be independent and iden-
tically distributed (i.i.d.) [Nielsen and Chuang, 2000].
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2.3.1 Intuitive derivation of Shannon Information

In [Shannon, 1948], Shannon originally chose the approach to deriveH(X)

from a set of axioms. Since his derivation is far from straight forward and
bears some interesting puzzles, we shall discuss his approach to some ex-
tent at a later point. For a deeper understanding of H(X), it is instructive
to only start with an intuitive derivation [Brukner and Zeilinger, 2001],
[Timpson, 2013]. According to the Law of Large Numbers (LLN), the av-
erage of the outcomes obtained from a large number of trials N , ought to
be close to their expected value (for sufficiently large N ). One way of con-
ceiving an i.i.d. information source S is then in analogue to an urn model
(in which the balls are replaced). The different letters of the alphabet X
are represented by the balls in the urn, which are distributed according
to a probability distribution P (X).

Based on the LLN, we then might consider an urn model without re-
placement to depict the idea of considering only so called ε − typical se-
quences in the build up of our derivation of H(X).5 In that case, the
length of the sequence has to be equivalent with the numbers of balls N
in the urn. For demonstrating this, let’s assume that we have a ‘large’ se-
quence of length–for the sake of the argument N = 104–with the English
alphabet Xabcwith its according letter frequencies (found in table (10.1),
see Appendix), effectively giving us a probability distribution P (Xabc). For
the letter ‘z’ for instance, we obtain an probability of pz = 0.0007, so that
we get seven ‘z − balls’ out of a total of 104 balls (made up of the balls for
the rest of the letters). In such a model it is impossible to obtain an atyp-
ical sequence of thousand successive z’s, as there aren’t enough ‘z− balls’
in the urn to draw from. Ultimately, it is the LLN–by changing to an
urn model without replacement–which implicitly allows us to restrict the
number of ‘z − balls’ to only seven, as the average outcome should be ar-
bitrarily close to the expected value (i.e. with large N , the probability
distribution peaks around its mean value).

5N.B. one should take this ‘intuitive derivation’ with a grain of salt though, since an
urn without replacement violates the assumption that the outcomes are independent
from one another.
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For a message of length N , where N →∞,

Wtyp =
N !

Np(x1)!...Np(xn)!
(2.8)

then enumerates the number of equiprobable typical sequences. Applying
the Stirling approximation, we can simplify eq. (2.8) and obtain

Wtyp = 2NH(X), (2.9)

where

H(X) = −
n∑
i=1

p(xi) log2 p(xi) (2.10)

denotes the famous Shannon Information. The Shannon information
thus quantifies the number of ε − typical messages by 2NH(X) (2.9) from
a prearranged set of all possibilities 2N logn. Each typical message can be
encoded in a binary sequence by NH(X) bits. Note that the encoding of
each typical message into a binary sequence facilitates the transmission
with digital technology; in practice, we often use differences in voltages to
represent binary sequences. Generally speaking, the idea to achieve effi-
cient coding is to assign shorter codewords to more frequent letters. Such
a procedure may yield an optimal average encoding rate–H(X). Once an
encoded binary sequence reaches the receiver, it may be decoded for the
destination. We’ll go into a deeper analysis about coding in section (4.3).

Figure 2.2: The subset of typical sequences 2NH(X) ≤ 2N logn is replaced
with a binary code number of NH(X) bits. Usually the encoded message
is sent to the receiver.
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2.3.2 Some mathematical properties of H(X)

Let’s now discuss the most relevant mathematical properties of Shannon
Information. For that purpose it’s instructive to compare some of the
features of H(X) (2.10) with its historical predecessor, the Hartley Infor-
mation HH .

In the case of a binary source, i.e. a source with two outcomes (e.g.
‘1’and ‘0’), distributed according to probabilities p and (1 − p), H(X) be-
comes

Hbin(p) = −p log(p)− (1− p) log(1− p). (2.11)

Hbin(p) is plotted in figure (2.3); the horizontal axes the probability p of
one of the two outcomes and the vertical axes denotes the value of Hbinin
bits, where the maximum value describes the case of no compression at
all.

Figure 2.3: Binary entropy function for Hbin(p) = −p log(p)− (1−p) log(1−
p).

Analyzing the above figure, we can easily ’read off ’ that inequality
H(X) ≤ HH(X) (2.7) holds for the binary case. The function Hbin(p) ob-
tains its maximum valueHbin max(p) = 1 (in which case a sequence can’t be
compressed) under the condition that p and (1− p) are equivalent, which
for the binary alphabet is p = 1

2
. It is easy to show that in the case where

all the probabilities of the outcomes of the source are equivalent, Shan-
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non’s Information measure becomes equivalent to Hartley’s measure

Hmax(X) = HH . (2.12)

In other words, whenever the probabilities of the two outcomes are not
equivalent, they are smaller than HH , or otherwise equal.

In brevity, we can keep in mind, that in general H(X) has the follow-
ing properties

1. H(X) ≥ 0

2. H = 0, if any only if all pi equal zero, save but one having unity as
value.

3. H(X) reaches its maximum (and coincides with the Hartley mea-
sure HH = log n) when, for a given n, all the probabilities are equal
pi = 1

n
.6

4. H(X) is a continuous function.

5. H(X) only depends on the probability distribution P (X) of the set of
characters X of the information source S.

2.3.3 Joint-, Conditional- and Mutual Information

So far, we have only focused on the source as part of the communication
system. However, in communication we are not only concerned about
the set of characters X of the information source S, but also about the
communication channel CH and its capacity CCH , and the decoded set of
letters Y at the Destination D.

6Note that in the context of statistical mechanics we find a somewhat similar dis-
cussion around the maximum entropy principle [Uffink, 1995]. For the reader with a
background in physics, it might then be helpful to think of the somewhat analogous
case of Boltzmann- and Gibbs entropy. In the usual notation, the Boltzmann entropy is
given by SB = kB lnW, where kB denotes the Boltzmann constant and W the number of
possibilities of phase points in a phase space Ω (such that W ⊆ Ω).The Gibbs entropy
on the other hand is given by SG = −kB

∑
pi ln pi, where pi are the probabilities that a

system (i.e. a collection of particles) lies in a certain region of Ω.
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Figure 2.4: Diagram displaying Joint-H(X, Y ), Conditional-H(X|Y ), and
Mutual Information H(X : Y ) [Cover and Thomas, 2006].

In the following, we will introduce the notions of Joint, Conditional,
Mutual and relative Information. Their respective links are shown in
Fig. (2.4); a diagram for the various information measures in respect to
the correlated random variables X (the yellow and green area H(X)) and
Y (the blue and green area H(Y )).

Joint Information H(X,Y)

Until now, we have only dealt with one random variable X. However,
the notion of H(X) can easily be extended to a pair of random variables,
governed by a joint probability distribution p(x, y)

H(X, Y ) = −
∑
x

∑
y

p(x, y) log p(x, y). (2.13)

Expression (2.13) is called joint information. As illustrated in Fig. (2.4),
Joint information H(X, Y ) can be interpreted as the combination of H(X)

andH(Y ), thus containing the yellow, green and blue area. Note however,
that at first sight there is nothing surprisingly new in eq. (2.13), as (X, Y )

could be simply considered a single vector-valued random variable. Yet,
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the notion of Joint Information is a useful tool to get a grip on Conditional
and Mutual information.

Conditional Information

The conditional information, also called equivocation of X given Y , de-
scribes the average amount of information generated at source S but not
received at the destination D. With the so called chain rule, we can ex-
press such a relation as

H(X|Y ) = H(X, Y )−H(Y ), (2.14)

linking conditional information to joint information (2.13). Regarding
Fig. (2.4), H(X|Y ) is given by the yellow area.

In turn,
H(Y |X) = H(X, Y )−H(X) (2.15)

is the noise, i.e. the average amount of information received at D but not
generated at S. From Fig. (2.4) we can read off that the noise is depicted
by the blue area.

Formally H(X|Y ) is then defined as

H(X|Y ) =
∑

p(y)
(
−
∑

p(x|y) log p(x|y)
)
. (2.16)

Another noteworthy property of the conditional information is that

H(X|Y ) ≤ H(X), (2.17)

with equality if and only if X and Y are independent. We shall discuss
the implications of eq. (2.17) in connection with the claim ‘uncertainty
can’t increase’ at full length in a later chapter. In terms of Fig. (2.4),
statistical independence of X and Y would be given in the case, when
H(X) and H(Y ) had no overlap, hence not creating the green area.

33



Mutual Information

Mutual information on the other hand, is concerned with the question
how much a random variable X can convey about a random variable Y .
The mutual information is the relative information7 between the joint
distribution (2.13) and the product distribution p(x)p(y) and given by

H(X : Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.18)

In Fig. (2.4), we find Mutual information to be denoted by the green area.
In relation to the previous information measures, we find

H(X : Y ) = H(X)−H(X|Y ) (2.19)

where H(X|Y ) is the conditional entropy of X given Y . With the chain
rule (2.14) we obtain the following relation

H(X : Y ) = H(X) +H(Y )−H(X, Y ), (2.20)

with the joint entropy H(X, Y ) of X and Y , as defined above. Further-
more, we can easily extract from Fig. (2.4), that

H(X : Y ) = H(Y : X) (2.21)

the symmetry of mutual information holds.
Finally, we are able to to define the channel capacity as

CCH = sup
p(xi)

H(X : Y ), (2.22)

where the supremum is taken over all possible input distributions p(xi).

The Fidelity function

With our extended notions of information at hand (2.13, 2.16, 2.18), we
are able to shortly introduce the fidelity υ (P (X, Y )) as a measure of suc-
cessful communication. The fidelity is a function of the joint probability of

7N.B. so far we were only concerned with absolute measures of information.
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the source S and destination D and indicates the necessary resources to
communicate a message. In case of a continuous probability distribution
governing the source, Shannon [Shannon, 1948] suggested the fidelity to
be

υ (P (X, Y )) =

∫ ∫
p(x, y)ρ(x, y)dxdy, (2.23)

whereρ(x, y) denotes how desirable it is to receive y when x was sent.
However, Shannon didn’t specify the details of ρ(x, y), leaving the inter-
pretation of successful communication to us. We shall discuss these mat-
ters in Chapter 5.

2.4 Summary

We introduced the structure of communication systems and the most
common formal aspects of information measures stemming from commu-
nication theory. Even though Hartley’s combinatorial-approach is hardly
paid attention to today, it served as an insightful introduction to its suc-
cessor–the probabilistic-approach. The latter allowed us to introduce
Shannon’s noiseless coding theorem, which specifies the minimal resources
for noiseless communication. Instead of regarding all combinatorial pos-
sible messages, we only make allowance for probable, so called ε− typical
sequences, which are subsequently encoded into NH(X) bits. The Shan-
non InformationH(X) is a measure of the minimal resources (the average
number of bits per symbol) needed to reliably encode the output of an in-
formation source. Additionally, we introduced further formal repertoire
of Shannon’s theorem, for instance, specifying conditional information or
the channel capacity, some of which shall be discussed in Chapter 5.
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Chapter 3

Kolmogorov Complexity - The
Algorithmic Approach

“But what real meaning is there, for example, in asking how much
information is contained in “War and Peace”? Is it reasonable to include

this novel in the set of “possible novels,” or even to postulate some
probability distribution for this set? Or, on the other hand, must we

assume that the individual scenes in this book form a random sequence
with “stochastic relations” that damp out quite rapidly over a distance of

several pages?” [Kolmogorov, 1965, p.6]
– Kolmogorov

IN the previous chapter, we encountered Hartley’s combinatorial ap-
proach and Shannon’s statistical approach to measuring information.

However, in contrast to both of these information measures, which are
only sensible in context of an ensemble of messages, we focus on the al-
gorithmic approach to measure information of single sequences in this
section.

For different reasons and motivations, Algorithmic Information The-
ory (AIT), was at first independently articulated by various scholars in
the 1960s (see Chapter 1). Nowadays the algorithmic information mea-
sure is often referred to as Kolmogorov Complexity. In general, computa-
tional complexities (i.e. the analysis of algorithms), are either concerned
with determining the amount of time, storage and/or other resources to
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execute algorithms on computers. Kolmogorov Complexity on the other
hand, denotes the length l of the shortest program p that generates a
particular sequence x (on a Turing Machine)

K(x) := min l(p), (3.1)

measured in bits.

3.1 Intuitive derivation of Kolmogorov Com-
plexity

Let’s first look at a rather intuitive ‘derivation’ of Kolmogorov Complexity.
Introducing the algorithmic approach in his paper [Kolmogorov, 1965],
Kolmogorov wondered (see epigraph), about the information content of
individual sequences. His questions have to be conceived in contrast to
Shannon’s theory which (as we have seen in the previous sections) is ex-
plicitly not concerned with the meaning of single messages and only de-
pendents on a given probability distribution. In a sense, Kolmogorov’s
questions are related to the infinite monkey theorem. The theorem is
based on the idea, that after waiting long enough, a monkey randomly
hitting the keys of a typewriter, will with certainty reproduce any given
text.1 Intuitively however, it seems indeed puzzling that sequences with
clear patterns, such as novels like War and Peace for instance, should be
regarded as merely one of an arbitrary ensemble of sequences. The opti-
mality of Shannon’s noiseless coding theorem with respect to the average
message may be not optimal for individual cases at all.

For solving such a puzzling ‘uneasiness’, we need a method to deter-
mine the randomness of sequences. In the case of a random statistical
process such as coin tossing e.g., all the potentially produced sequences
happen to be equally likely. Regarding the following sequences2

1Of course, the ’monkey randomly hitting the typewriter’ is just an amusing way to
represent an i.i.d. information source. If real life monkeys were able to be trained to
typewrite, the messages would probably show patterns.

2Remember, the fact that the sequences are binary ones, doesn’t have to concern us.
As will be explained in a section on Coding Theory (4.1), we can in principle encode any
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x1 = 101010101010101010101010101010,

x2 = 110000010110100101100110011110,

both sequences have indeed the same probability p(x1) = p(x2) =
(

1
2

)30 to
occur. Ordinary information theory though, offers no solution for calling
strings of length N ‘more random’ than another. Hence, our inability to
compare individual sequences in respect of their randomness, is based on
the inherently statistical and probability based conception of Shannon
information. In order to overcome such an inability, we have to examine
single sequences.

Shifting our focus on individual strings, in fact allows us to introduce
a notion of randomness. Glancing at the sequences x1and x2, it should be
immediately apparent, that the former one is purely repetitive and can be
simply described as N times ′10′, with in our case N = 15. Following this
method of describing strings, we just discovered, that some strings can be
compressed considerably. In case of such a compression, we say that x1 is
a simple or regular sequence. However, for structureless sequences of the
kind like x2, i.e. strings without any patterns, such a form of compression
is not possible.3 Instead, we need a lot more effort to specify x2 and in the
worst case, the shortest description is just the sequence itself. In case of
no (noteworthy) compression, we call a string (Kolmogorov) random.4

However, we have to be careful about self-contradictory descriptions
like the Berry Paradox, where we define

“[t]he least natural number that cannot be described in fewer
than twenty words.” [Li and Vitanyi, 2008, p.1]

In case the described number exists, we have just described it in thirteen
words, contradicting its own definition. Therefore, we should be well ad-
vised to only accept descriptions that are explicit enough for giving us

given text (including War and Peace) into a binary code.
3N.b., it is possible, that string the x2might indeed have some patterns we are not

immediately aware of though. A more thoroughly discussion about the procedure of
deciding whether a string is in fact random, will follow in chapter 6.

4In fact, x2was generated by ‘randomly’tossing a coin 30 times
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instructions in order to construct the corresponding string in an unam-
biguous and purely mechanical manner [Mueller, 2007]. For doing so, it
has been proven very helpful to make use of computers (or rather the for-
mal notion of Turing Machines), conceiving the description of sequences
as algorithms which let a predefined computer halt and (within a finite
amount of time) put out some string. The usage of computers doesn’t
only force us to use the just stipulated precise descriptions or algorithms,
but also serves as a formal procedure to determine the randomness of a
string.

3.2 Turing Machines

For formalizing algorithmic information, it is instructive to first discuss
the underlying notion of Turing Machines (TM). Additionally, we have
to agree on the definition of a reference model for our computations of al-
gorithmic complexity. For that purpose, we shall especially have a closer
look at the subclass of the so called Universal Turing Machines (UTM).

In 1937, Alan Turing investigated what it means for a task to be com-
putable. He wondered whether the thoughts of a human (brain) could be
equally processed by an inanimate device. Formalizing the intuitive idea
about how humans usually try to solve a task, they tend to think, write,
think again, etc., Turing came up with an effective procedure, called algo-
rithm, to describe a set of instructions for such a device, nowadays called
Turing Machine.

The set up of a TM can be imagined to be constructed of three basic
mechanical components (see Fig. 3.1).

1. The first component is a two-way infinite tape divided into cells.
Each of those cells contains a symbol from a finite set of input sym-
bols Σ or the blank symbol b. For reasons of convenience, we in the
following assume that Σ only contains the symbols {0, 1}. In that
case, the input tape contains blank symbols b in each cell, save for
the finite number of cells that hold {0, 1}, i.e. the input symbols Σ.
Both Σ and b are contained in Γ , the complete set of tape symbols;
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Figure 3.1: Schematic Turing machine

Σ is always a subset of Γ .

2. The machine requires a read-write head for scanning the cells on
the tape. The read-write head is able to move to the left L and right
R along the tape to scan its successive cells, one at a time. At each
step, the TM is in one of the control states Q, including the initial
state q0 and the subset F of several halting states.

3. At last, a table of commands contains a set of transition rules, which
determine the action of the machine in the next cycle (in a way the
table can be regarded as ‘program’ of the TM). A cycle is defined
as the transition from one state of the machine into another, where
the TM can then take the following actions: moving its head to
the left or right, and erase or write in the scanned cell. If a given
input doesn’t yield a final or halting state, the TM may continue to
operate forever in the above described cycles. Each transition can
be described by the so called transition function δ, defined by the
next control state Q, a symbol (in Γ) being replaced from the tape,
and the direction in which the head moves (L or R).

While the above description focused on an actual physical implementa-
tion, we have to keep in mind that TMs don’t require to be ‘real’physical
objects, in fact they are mathematical models or abstract machines. For-
mally, the 7-tuple of the previously defined components

M = {Q,Σ,Γ, δ, q0, b,F} (3.2)
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then defines a TM [John E. Hopcroft and Ullman, 2001].

Let us now briefly discuss what a TM can and cannot do (for conve-
nience, we will in the following only regard TM’s that read the input tape
from left to right). According to the Church-Turing Thesis, every effective
computation can be carried out by a TM [Copeland, 2015].With the above
described principles, we are then able to compute all arithmetic and logi-
cal functions; all functions computable on a TM are recursive functions.

However, known as the Halting problem, it is generally not possible to
predict whether or not a given input will lead to a halting computation. In
other words, a function h(t, n) that would determine whether a machine
t halts on input n, is a non-recursive function (N.B. the computability of
recursive functions and the halting problem will be examined in Chapter
6 in context of the analysis of algorithmic information). Applied to real
programs and stated in less technical terms, there is no computer pro-
gram that examines the code for a program and determines whether that
program halts [Barker-Plummer, 2016].

Universal Turing Machines (UTM)

The above description allows us to extent the idea to Universal Turing
Machines (UTM), which are capable of simulating the behavior of any
other TM. Since TMs are constructed from three basic components (i.e.,
a tape, a read-write head, and a table of commands), the only way in
which the output any two TMs can differ, is in the initial configuration
of the tape, the internal state of the finite state control, and the table of
commands.The idea behind UTMs is to fix the table of commands and
the finite state control, such that the initial contents of the input tape
are left as the only variable. The universal machine then reads both the
description of the TM to be simulated as well as the input from such a
TMfrom its own tape.
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3.3 Formal presentation of K(x)

The Kolmogorov Complexity of a finite sequence x is defined as a function
from binary strings of arbitrary length to the natural numbers

K : {0, 1} → N. (3.3)

With the short introduction in the previous section about TMs, we can
now have a closer look at the formal details of Algorithmic Information
Theory. Instead of some arbitrary description method p, we now conceive
our description as an algorithm or program operating on a TM,

p(y) = x, (3.4)

which with input y, prints x and halts. Considering the preliminary no-
tion (3.1) we’ve introduced earlier, we now define Kolmogorov Complexity

KU(x) := min l(p) + l(y), (3.5)

where l(p) denotes the length of the program p, and l(y) the length of the
program y (both represented in bits) [Gruenwald and Vitanyi, 2008].

With the definition (3.5) above, we seemingly defined a non-unique
information measure though, as K(x) is both dependent on a certain pro-
gram language and a reference machine U . In the following paragraphs
(Invariance Theorem and Universality), we show that K(x) in fact repre-
sents an absolute and ‘objective’ information measure.

Invariance Theorem

We want to draw attention to the choice of a suited description method p
(3.4), which has to be encoded in a certain arbitrarily chosen program lan-
guage.5 However, the Invariance Theorem shows (see e.g.,[Devine, 2009])
that save for a constant O(1), K(x) does not depend on the used program
language , such that

5We’re going to deepen our understanding about Coding Theory in the following
Chapter. The notion of D is made precise in (4.4).
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K1(x) ≤ K2(x) +O(1), (3.6)

where K1(x) and K2(x) are Kolmogorov complexities, each formulated in
different program languages.6 In other words, changing from one pro-
gram language into another, only changes the value of Kolmogorov Com-
plexity (of sufficiently long sequences) up to a fixed constant O(1).

Universality

Next to the coding scheme (i.e. in fact the program language), K(x) also
depends on the UTM on which it is (arbitrarily) chosen to be calculated
on. In similar vein to the Invariance Theorem above though, it can be
demonstrated that (given the reference machine U),

KU(x) ≤ KA(x) + cA, (3.7)

where KU(x) and KA(x) denote the complexities calculated by different
UTMs [Cover and Thomas, 2006]. The constant cA on the other hand,
corresponds to the size of the program that will simulate one UTM on
another one. Even though, there exists an infinite number of UTMs, we
can choose a reference UTM ‘U ’ with a certain instruction set, such that
cA can be made (negligibly) small relative to the actual description of a
long string. Up to a constant cA, our choice of a specific reference machine
is irrelevant, such that we drop the subscript ‘U ’ from here on.

Complexities of Regular and Random Sequences

Let us now take a closer look at the complexity of regular and random
strings once again. Earlier, we explained the concept, that simple or reg-
ular strings display a certain pattern and can be compressed

K(x) = O(log2 n). (3.8)

6Standard programming languages for calculating K(x) on actual computers are for
instance, LISP or Java.
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However, as can be proven, the overwhelming majority of n-bit se-
quences are in fact random. Since there can’t be many strings having
unique a short description, the majority of strings will have to rely on
a long description (i.e. algorithm p). It is easy to see that for every
uniquely decodable code, there are no more than 2n strings for which x

can be described in n bits, because there a simply no more than 2n bi-
nary strings of length n [Gruenwald and Vitanyi, 2008]. This amounts to
2n−1 + 2n−2 + ... + 1 < 2n as the number of strings which can be at most
described by less than n bits. The fractions of strings with K(x) < n − k
is smaller than 2−k. Accordingly, programs whose description are for in-
stance only 10 bits shorter than the actual length n of the sequence (so a
n− 10 bit algorithm), can account for at most only for 2−10 or 1/1024 of all
the n-bit strings.

For completely random sequences we then obtain a scaling of n+O(1),
where O(1) denotes a constant that accounts for the commands such as
print and halt. Yet, for technical reasons,7 we are from now only inter-
ested in the so-called prefix complexity, i.e. an information measure for
which the input to the associated TM results in a halting computation
that is prefix free.8

3.3.1 Joint, Conditional and Mutual Complexity

Analogue to the case of Shannon’s information measure, we are able to
construct a couple of information measures derived from the algorithmic
information content K(x). Since the ideas behind joint complexity, con-
ditional complexity and mutual complexities are in fact very similar to
section (2.3.3), the explanation will be somewhat shorter here. For a bet-
ter understanding the reader may go to the respective section regarding
H(X).

Nevertheless, we have to make some adjustments, to account for the

7The main reason is that the here defined prefix complexity, simplifies the compar-
ison with Shannon information in the following. Note that there exists a version of
Kolmogorov Complexity which doesn’t necessarily depend on prefix-free programs, but
such a version won’t be discussed here.

8We’ll discuss the notion of prefix free codes in the next chapter in detail.
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considerations made around Universality and the Invariance Theorem.
In analogue to [Gruenwald and Vitanyi, 2008], we introduce the follow-
ing notation; for an inequality within an additive constant, we write ‘<+’,
so that when f and g are functions from {0, 1}to R, ‘f(x) <+ g(x)’ means
f(x) < g(x) + c. In addition, ‘=+’ means f(x) = g(x) + c.

Joint Complexity

The joint complexityK(x, y), is defined as the size of the smallest program
of two sequences x and y, calculating them simultaneously, one has

K(x, y) ≤ K(x) +K(y) +O(1). (3.9)

In the case where equality holds (in fact ‘=+’), we call two strings algo-
rithmically independent, so that there is no algorithm p that is capable
of computing both x and y, shorter than stringing the programs which
individually compute x and y together. [Desurvire, 2009].

Conditional Complexity

Relative or conditional complexity K(x|y) of x given y, is defined to be the
size of the smallest program to calculate x from a minimal program for y

K(x|y) =+ K(x, y)−K(y). (3.10)

In the case where x and y are algorithmically independent (there is
no help from x to compute y) K(x|y) = K(x) and likewise K(y|x) = K(y).
With the notions of joint complexity and conditional complexity, we can
now introduce mutual complexity.

Mutual Information

Mutual complexity K(x : y) measures the commonality of x and y, i.e. it
ascribes a value to the extent to which knowing y helps one to calculate x

K(x : y) = K(x) +K(y)−K(x, y) =+ K(x)−K(x|y). (3.11)
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For two strings that are algorithmically independent, their mutual com-
plexity is virtually zero (or more precisely, as small as possible). Con-
sidering two arbitrary strings x and y of length N , knowing one of them
usually won’t help calculating the other. In most cases x and y will be
random to each other.

3.3.2 Uncomputability of K(x)

Let us now take a closer look at how to determine Kolmogorov Complex-
ity. As we have seen in (3.2), the Halting Problem states that certain
functions are not computable. Unfortunately, K(x) it is not a computable
function; given a string x it is impossible to find an algorithm which ex-
actly determines the shortest program p to compute x. Put differently,
K(x) does not fall into the class of recursive functions.

The full implications of the uncomputability will be discussed at a
later point (see section (6.1)). As the last formal aspect, we want to point
out that the uncomputability of K(x) doesn’t make it a completely useless
notion. For practical purposes K(x) can often be approximated.

Methods of Approximation

A simple procedure to approximate K(x) may follow these steps (given a
string x and a TM):

1. Let TM generate a lexicographic list of all input programs p. Such a
list may look like p : {0, 1} = {b, 0, 1, 00, 01, 10, 11, 000, 001, ...}, where
b denotes the blank symbol;

2. Let TM run all lexicographic ordered programs in parallel. In the
first cycle, TM runs the blank program b; in the second cycle b and
0; in the third b, 0, the successive program and so on. By computing
all programs in parallel, it is guaranteed that the TM won’t stop
with the procedure when a halting program is computed.

3. Let TM record a list of all halting programs;
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4. Let TM check for all of these halting programs, whether the result-
ing output string is x;

Eventually, the estimate of the Kolmogorov Complexity is given by the
shortest program that has resulted in putting out x.

3.4 Summary

Algorithmic information, often also referred to as Kolmogorov Complex-
ity K(x), is based on the idea that the descriptions of objects may dis-
play regularities and can be compressed. Such descriptions are always
conceived as sequences or strings x, and the more patterns there are, the
shorter these strings will be. In order to formalize the idea, these descrip-
tive sequences can be calculated by algorithms p operating on a universal
Turing machine UTM. K(x) is then defined as the length of the short-
est algorithm p, yielding x. In addition, the introduction of Kolmogorov
Complexity provides us with an intuitive notion of randomness. In fact,
most sequences are patternless and therefore random. However, because
of the Halting problem, we can’t always compute K(x) and thus know if
a sequence is in fact random or not.
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Chapter 4

A (surprising) connection
between H(X) and K(x)

““[...] when I did discover algorithmic probability, I realized that it was
the inverse of Huffman’s problem. He obtained a short code from

knowledge of probabilities. I obtained probabilities from knowledge of
short codes.” [Solomonoff, 1997, p. 76]

– Solomonoff

IN this chapter, we point out the formal connection between Shannon’s
Information measure and algorithmic information, i.e. Kolmogorov

Complexity. At first, such a connection perhaps seems surprising, as both
approaches are be based on different notions. Whereas Shannon’s Infor-
mation measure was originally developed in the context of communica-
tion theory and denotes the statistical compressibility of an ensemble of
possible messages (which is in addition often held for a degree of uncer-
tainty), Kolmogorov Complexity measures the minimal length of a pro-
gram operating on an UTM, generating a single string.

However, as we’ll see in the following, both approaches have a close
connection through Coding Theory. In addition, we examine the so called
Universal Probability and establish a connection betweenK(x) andH(X).
Thereafter, we will show yet another way (next to the intuitive and ax-
iomatic approaches) to derive Shannon’s information measure through

49



Coding Theory. In the end of this section, we will then demonstrate that∑
x

p(x)K(x) ≈ H(X) (4.1)

holds.

4.1 Coding Theory

For the following sections it is instructive to have a short introduction
to Coding Theory, as both Shannon’s theory and Kolmogorov Complexity
rely on prefix free coding.1

One of the fundamental concerns of Coding Theory is the search for ef-
ficient ways to represent a set of symbols X = {x1, x2, ..., xn}, put out by a
kind of source with the respective probability distribution P = {p1, p2, ..., pn},
in terms of another set of codewords C = {c1, c2, ..., cn}. For all practical
purposes, we require efficiency in coding, i.e. the idea of compressing in-
formation by assigning short descriptions to the most frequent outcomes
of X and longer descriptions to less frequent ones. For the reason of con-
venient storage and transmission, the code words of C are often composed
from a binary alphabet, according to standard notated as {0, 1}, such that

X → C. (4.2)

A well known example is Morse Coding, where the set of symbols X
is the standard English alphabet and the letter ‘e’, for instance–the most
frequent letter in the English alphabet (see Appendic (10.1))–is encoded
by a single dot • (one of the codewords of C).2 By following the method of
assigning longer codewords ci to less occurring letters (‘i’ e.g., is encoded
by ••) we obtain variable-length codewords,3 with the mean codeword
length

1The actual term is ‘prefix coding’, but ‘prefix free coding’ is more intuitive and in-
creasingly used nowadays.

2In the case of Morse Code{0, 1}are notated as {•,−}.
3For sake of brevity, we only deal with variable-length codewords in this section. Of

course one can also use fixed-length codes for coding.

50



L(X) =
∑
i

pili (4.3)

with probability pi and codeword length li.

However, while we achieved that every individual codeword is unique,
a sequence of such codewords is not necessarily unique either. Typically
though, we want an unambiguous procedure Df (the decoding function)
to decode an encoded message, such that

Df (ci) = xi. (4.4)

Considering for instance, the short Morse Code

• ••, (4.5)

we are faced with various non-unique possibilities for decoding that se-
quence. Without further specifications, we are unable to decide between
{e, e, e} , {e, i} , {i, e}and {s} as the ‘right’ decoded sequence.

The issues we are confronted with in our example, are not only con-
strained to Morse Code, but to a wider class of so called non-prefix (free)
codes. The problem of such codes is that we can’t specify where one code-
word ends and another one begins, i.e. some codewords are a prefix of
another codeword. Regarding Morse Code, the problem is circumvented
by introducing ‘/’ as the an extra sign [Desurvire, 2009], so that by adding
‘/’ to equation (4.5) we obtain e.g.,

•/ • •,

now being uniquely decodable as {e, i}.

However, by choosing the strategy of adding an extra symbol (merely
acting a space holder), we lose a lot of coding efficiency. In virtually every
context though, we want a highly efficient code–often solely based on two
symbols (as pointed out above). For avoiding the defects of inefficient and
non-prefix free codes, we have to optimize our coding efficiency.

There are several methods for optimizing codes (e.g., Shannon-Fano
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Figure 4.1: A binary code tree with seven code words.

Coding or Huffmann Coding). Roughly, the idea for finite codes is that
the optimality is governed by how closely the length of the set of code
words C relates to the probability distribution of the set of source words
[Li and Vitanyi, 2008]. For our purpose, the idea for efficient codes and
prefix free codes can be visualized in a code tree as seen in Fig. (4.1).
The pictured code tree is a binary one; starting from the so called ‘root’
(the beginning of the tree), one can choose to follow one of the ‘branches’
of the code tree, repeating the decision at every ‘node’, until reaching
a leaf. For uniquely generated codewords, one can consider codewords
generated at the nodes and the leaves (as in the case of Morse Code).
However, by choosing only leaves as possible options for the codewords,
we obtain unique and prefix free codewords.

For a binary tree as depicted above, with n leaves, for n codewords
C = {c1, c2, ..., cn} with various lengths li, the Kraft Inequality

n∑
i∈C

2−li ≤ 1 (4.6)

must hold.4 In the depicted code tree above (Fig. 4.1), we have seven
codewords; six codewords with l = 3 (where the length can also be deter-
mined by counting the number of branches one has to follow to arrive at

4For proving the Kraft Inequality, one has to sort the codewords by their length, such
that ln ≥ ln−1 ≥ ... ≥ l1. A binary tree may only have 2ln leaves, which number reduces
by 2ln−li for every codeword of length li, such that 2ln −

∑n
i=1

2ln

2li
≥ 0. Rewriting the last

expression we obtain eq. (4.6).
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a leaf) and one codeword with l = 2, such that 6 · 1
8

+ 1
4

= 1 and the Kraft
inequality holds.

For an efficient code (or optimal code), we have to reduce the mean
codeword length L(X) (4.3) as much as possible. We call a code complete,
if the addition of any new codeword to the set of codewords C yields a
non-uniquely decodable code. Substituting the summand of the Kraft
Inequality (4.6) with

pi = 2−li , (4.7)

results in
∑

i pi ≤ 1, with equality for complete codes. In regard to
Kolmogorov’s axioms of probability [Kolmogorov, 1933] (see also section
(5.1)), all the requirements of the axioms are met, so that we can now
interpret the pi as probabilities with respect to some probability distri-
bution P [Gruenwald and Vitanyi, 2004]. By remodeling (4.7) and taking
into account that li is an integer, we then obtain the following lower bound
restriction5

li ≥ − log2 pi, (4.8)

for the length of the codeword, based on the probability distribution P

of the codewords. Put differently, more frequent codewords should be
shorter than less frequent ones, i.e. ‘the leaf should be closer to the root’.

4.2 Universal Probability

In [Solomonoff, 1964], Solomonoff developed a quantitative formal the-
ory of induction based on UTMs and algorithmic complexity. For solving
problems regarding probabilistic models of induction he developed the
notion of algorithmic probability (also more commonly referred to as Uni-
versal Probability).6 So far, we introduced algorithmic complexity based

5Because the codeword lengths must be integers, the optimal condition li = − log pi
can merely be approximately satisfied in the general case. The codeword length then
has be chosen as the greater than but closest to li. Such code assignment is also known
as Shannon-Fano code [Desurvire, 2009].

6The basic idea of Solomonoff ’s idea is that nature follows some unknown computable
probability distribution.
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on the idea that simple or regular sequences can be described by a much
shorter algorithm than their actual length n. The majority of sequences
is random though, where finding such a short algorithm is impossible.
However, instead of starting with a given sequence x and asking how
much it can be compressed by finding an algorithm p describing it, we
can also begin ‘from the other end’, wondering which computable process
produces a string x in the first place. Formally, such a computable process
is based on a program p, which itself is a string of {0, 1} when regarded
as the input of a UTM.

For illustration of Solomonoff ’s concept, let’s assume that we’re gen-
erating some arbitrary sequences p of {0, 1} by e.g., noting the outcomes
from flipping a fair coin. Providing an UTM with our arbitrarily gener-
ated sequence p as input, may result in the machine to halt and put out
a particular sequence x. We now take all input sequences, i.e. programs
p, that uniquely produce the output sequence x of the UTM, and define
the algorithmic probability of x as

m(x) =
∑

p: U(p)=x

2−l(p) ≤ 1, (4.9)

where l(p) is the length of the input sequence (the program p). The right
hand side of equation (4.9) thus denotes the probability to obtain a se-
quence x (as output of a UTM) by a randomly generated program (of
length l(p)). Note that m(x) simply equals the left hand side the Kraft In-
equality (4.6) we’ve introduced in the section about Coding Theory (4.1)
in regard of uniquely decodable codes. However, as we are overall only
interested in prefix free complexity, there is only one sequence or program
p which generates our target sequence x, such that we don’t have to sum
over several programs. In addition, we demand p to be the shortest of all
such prefix free sequences. With (3.1), we can simply identify min l(p) as
the definition of K(x), such that

m(x) = 2−K(x) (4.10)

denotes the algorithmic- or universal probability [Vitanyi, 2012]. It’s im-
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portant to note, that m(x) merely represents a probability, not a probabil-
ity distribution. Even by summing over the algorithmic probabilities, we
only achieve

∑
xm(x) ≤ 1, denoting as so called semimeasure (instead of

a probability distribution with
∑

x p(x) = 1).
By solving for K(x), we then obtain

− log2m(x) = K(x), (4.11)

known as the Coding Theorem. The left hand side of the above result
(4.11) strikingly reminds us of the logarithmic part log p(xi) of Shannon’s
information measure H(X) (2.10). It is high time, that we turn to investi-
gate the relation between Shannon Information and said Coding Theory.

4.3 Linking Shannon Information with Cod-
ing

So far we haven’t explicitly pointed out how H(X) accounts for the encod-
ing of messages. Let’s recall Shannon’s Noiseless Coding Theorem; in a
nutshell it establishes the lower bound for compressing messages to such
a rate, at which in a perfect communication scenario (i.e. the case for a
noiseless channel) no information will be lost. H(X) thus describes the
most efficient way of coding the set of typical messages, as only commu-
nicating with an optimal code guarantees lossless communication with
minimal channel capacity CCH = supp(xi) H(X : Y ) (2.22).7

From the section about Coding Theory, we remember that the goal
for an optimal code is to find the lowest mean average code word length
L(X) =

∑
pili (4.3). We can thus conjecture that every non-optimal code

has
L(X) ≥ H(X). (4.12)

Since we assume the various probabilities pi of the individual codewords

7In our case of an ideal noiseless channelH(X : Y ) = H(X) holds, such that supH(X)
determines the at least required channel capacity CCH . Since H(X) is the optimal
encoding function, every other encoding is suboptimal and requires a greater channel
capacity.
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ci to be simply given, we only have to be concerned with finding the re-
spective minimal codeword lenghts li. By reformulating the Kraft In-
equality (see above), we obtained the lower bound restriction for the code-
word lengths li ≥ − log2 pi (4.8); plugging this restriction into L(X) and
assuming equality li = − log pi, we get

minL(X) = −
∑

pi log2 pi. (4.13)

With the inequality between L(X) and H(X) (4.12), we can conclude that
equality holds for

minL(X) = H(X),

min
∑

pili = −
∑

pi log2 pi, (4.14)

giving us Shannon’s information measure as minimal average codeword
length.8

4.4 Formal connection

As we have seen, Kolmogorov Complexity, which we originally introduced
as the shortest encoded description of an object, can also be introduced
on the basis of algorithmic probability. Vice versa, the probability based
notion of Shannon Information can also be understood as the minimal av-
erage codeword length. In addition, we already pointed out, that the Kol-
mogorov Complexity K(x) = − logm(x) (see (4.11)), based on the univer-
sal distribution m(x), strikingly looks like the logarithmic term ‘− log pi’
of H(X) (2.10). Since K(x) is the minimal individual description length,
we can wonder whether by multiplying K(x) (4.11) with the probability
distribution P (X) found in H(X), we can achieve

∑
p(x)K(x) ≈ H(X),

such that it equals the minimal average code word length.

8For a more rigorous derivation of H(X) as the minimal average codeword length
with the method of Lagrange multipliers, see Appendix (10.2).
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From (4.12) we can deduce∑
p(x)K(x) ≥ H(X). (4.15)

Furthermore, it can then be shown in a more formal manner that the
expected complexity

∑
p(x)K(x) is indeed asymptotically equal to H(X),

such that

0 ≤

(∑
x

P (x)K(x)−H(P )

)
≤ cp, (4.16)

with cp = K(P ) + O(1) (a constant which only depends on P ) and H(P ) =

−
∑

x P (x) logP (x), with the important condition that P is a computable
probability function. Since the exact proof would exceed the limits of this
thesis, we refer to [Cover and Thomas, 2006, §14.3] or [Li and Vitanyi, 2008,
Theorem 8.1.1].

Conditional, Joint and Mutual Information

In the chapters on Shannon Information and Kolmogorov Complexity, we
encountered the conditional, joint, and mutual information, respectively
complexity measures. Regarding these measures, Li and Vitanyi con-
clude that

“[f]or almost every Shannon theory notion there turns out to
be a Kolmogorov complexity theory notion that is equivalent
in the sense that the expectation of the latter is closely related
to the former.”[Li and Vitanyi, 2008, p. 603]

In fact, not only do H(X) and K(x) virtually obtain the same value for
very long sequences, but moreover, also each of their conditional, joint
and mutual versions do. In the following we decided to omit explicitly
showing the exact relations between conditional, joint and mutual infor-
mation/complexity since the additional benefits for the goal of this thesis
are marginal. The reader who might be interested beyond that, shall be
advised to look at [Gruenwald and Vitanyi, 2004], [Li and Vitanyi, 2008]
and [Harremoes and Topsoe, 2008].
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4.5 An example - Algorithmic entropy

Since the connection between K(x) and H(X) seems largely underrepre-
sented in physics so far, there aren’t many examples where applying the
above connection between weighed average of Kolmogorov Complexity
and Shannon Information goes beyond mere theoretical considerations
like eq. (4.16). One of the only areas of application in physics can be
found in relation to computation (approached by the insights of statisti-
cal mechanics and Thermodynamics). In such a context, we can indeed
find a few examples in [Zurek, 1989], [Li and Vitanyi, 1992] (and to some
extent [Bennett, 1982]) discussing the limits of Maxwell’s Demon.9 Be-
fore starting to illustrate one of said examples, a few important remarks
we have to keep in mind. Since the following example is based on statis-
tical mechanics and Thermodynamics, we will unavoidably be involved in
the discussions around entropy. In a sense, this is a rather unfortunate
choice (there aren’t better alternatives though), as ‘entropy’ is yet another
heavily overworked term in context of information theoretic talk (remem-
ber the quote in Chapter 1, where Shannon and von Neumann discussed
how to call H(X)). The exact relation between entropy and information
can’t be dealt with in a short section like this and deserves to be treated
in an independent thesis. One should therefore be very careful as taking
this section as the suggestion that ‘information is entropy’ or vice versa.

Derivation of the Sackur-Tetrode equation with K(x)

Let’s now consider a randomly distributed mono-atomic gas of N parti-
cles, contained in an isolated box with volume V at temperature T . Our
task is to find is to find a short algorithm that describes a classically
mono-atomic gas. The location of a single particle of such a gas shall be
determined with an accuracy of ∆V = ∆D

x , where D denotes the dimen-
sion of the box. Here ∆V is the cell volume and the process of localizing
a particle can be regarded as the analogue to coarse graining as classi-

9This section is partly based on a section of tutorial paper in ‘Foundations of Statis-
tical Mechanics and Thermodynamics’ (Utrecht University, academic year 2016/2017),
the author of this thesis wrote about the comparison of statistical and algorithmic en-
tropy.
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cally done in statistical mechanics. Encoding the location of each particle
scales with ∼ log2

V
∆V

, where V
∆V

denotes the number of cells (remember,
encoding an integer N with a binary code scales with log2N ). Moreover,
the location of each of the N particles has to be described by D integers,
giving us an additional ∼ log2(ND) term, such that

K ' N log2(
V

∆V
) +O(log2(ND)) +O(1). (4.17)

Because the term O(log2(ND)) poses only a small correction, it can be
incorporated as part of the constant O(1). In addition, considering the
indistinguishably of the N particles of the mono-atomic gas, we can even
further compress K, by supplying only the differences of the particles’ lo-
cation instead of their individual locations. Based on that Zurek demon-
strates [Zurek, 1989] that we get an extra 1

N
term in the logarithm K '

N log2( V
N∆V

) +O(1).

Moreover, a program is needed to encode the momentum of the indi-
vidual particles. As in the case just described for the coordinates, we ob-
tain a term log2

p
∆p

, where the expected value of p is (mkBT )
1
2 . The size of a

typical program to encode all the momentum components for one particle
is then given by D log2

(mkBT )
1
2

∆p
. Finally, putting our considerations about

the coordinates and momenta of the particles together, one obtains

K = N

(
log2

V

N∆V
+
D

2
log2

mkBT

(∆p)2

)
+O(1), (4.18)

which is formally identical to the Sackur-Tetrode equation10 expressing
the entropy of the gas.

4.6 Summary

At first sight conceptually different information measures, Shannon’s the-
ory and Kolmogorov Complexity, both offer notions of probability and cod-
ing based interpretations. The noiseless coding theorem allows us to con-
strue that Shannon Information is the optimal lower bound for coding

10For a detailed summary of the derivation of the Sackur-Tetrode equation in classical
context, see [Grimus, 2011].
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(i.e., the minimal average code word length). This code is entirely based
on the probabilistic characteristics PS of the source and doesn’t use any
features of the encoded object or message itself. Solomonoff ’s thoughts
about inductive inference then introduced us to algorithmic probability
and the Universal Probability m(x). By then solely describing the char-
acteristics of an (individual) object, we obtain a string x from which we
can construct a code that’s independent of PS but yields an optimal code-
word length too; we identified Kolmogorov Complexity K(x) as exactly
this kind of code. Any differences between those two encoding schemes
for a particular sequence x is then based on the different starting points
of those codes–exploiting the probabilistic behavior of the source versus
the patterns in x. The two code word lengths coincide, when we con-
sider a probability distribution that accounts for the regularities in x

[Li and Vitanyi, 2008]. As we’ve seen earlier, the universal probability
m(x) of x meets these requirements.
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Chapter 5

Interpreting Shannon
Information in the Classical
Case

“The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another

point. Frequently these messages have meaning [...]. These semantic
aspects of communication are irrelevant to the engineering problem.”

[Shannon, 1948, p. 410]
– Shannon

BEFORE looking at the information measures in the quantum case and
being able to examine the ontological status of information therein,

it is highly instructive to interpret the formal mathematical frameworks
of Shannon information (Chapter 2), Kolmogorov Complexity (Chapter 3)
and their formal relation (Chapter 4) in the classical case. As we shall
see later, many of these interpretations will help us to figure out the on-
tological status of information in the quantum case. This chapter begins
by analyzing Shannon Information in the classical case.
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5.1 Untangling Uncertainty

We start by examining the relationship of Shannon Information with un-
certainty. Understanding this relationship is crucial for our judgement of
the ontological status of Shannon information.

Next to the intuitive derivation (Chapter 2) and Shannon’s axiomatic
derivation,1 we can derive H(X) as a measure of uncertainty. Remember,
Shannon himself was in doubt whether his information measure should
be referred to as uncertainty. Intuitively, the link between uncertainty
and information might be conceived as ‘less uncertainty equals more in-
formation.’ Often it’s stated that a more concentrated probability distri-
bution PS(X) of the alphabet of the information source yields a better
prediction or ‘less surprise’ of the next letter. In addition, NH(X) can be
regarded as the number of yes or no questions one has to ask for revealing
which binary sequence was sent. A less concentrated probability distri-
bution yields a higher value of H(X) which translates into having to ask
more questions. Having to ask more questions can then be interpreted
as being more uncertain. However, before going too deep into these kind
of discussions, let’s first ask if Shannon information really equates with
uncertainty.

For our following analysis, we first require a more sophisticated notion
of uncertainty which makes it essential to be aware of the distinction be-
tween the concept of uncertainty in prediction and inference. While the
former is tightly related to the concept of probability, the latter is con-
nected to the idea of likelihood. In our everyday language, ‘probability’
and ‘likelihood’ are often almost used interchangeable.2 Whether we may
say “It is likely going to rain tomorrow” or “It is probably going to rain
tomorrow” won’t make much of a difference, unless one is utterly nitpick-
ing. In a formal sense though, the concepts of likelihood and probability
are fundamentally different concepts–H(X) can only be conceived as a
measure of uncertainty in prediction.

1For the sake of completeness, the interested reader is invited to consult the Ap-
pendix (10.3) in order to compare (Shannon’s) axiomatic derivation of H(X) with the
following uncertainty based derivation.

2At least this seems to be the case in English.
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Likelihood - Uncertainty in Inference

For reasons of illustration we are confronted with an urn experiment. We
don’t know anything about the content of the urn, i.e. we are clueless
about the number of balls (or if there are any) and their labeling. De-
spite the mysteriousness of the urn, we are brave enough to draw objects
from the urn and observe a certain number of outcomes. For clarity, we
assume that six red balls and four blue balls have been drawn (replacing
the balls and shaking the urn after each draw). Now we wonder with
what (un)certainty we can infer the underlying probability distribution
(i.e. the ratio between the balls in the urn) to be 0.6 (red balls) to 0.4 (blue
balls). Stepping aside from the urn example, the problem generally runs
down to our uncertainty about what can be inferred from a given sample.
An information measure concerned with inference is, for instance Fisher
Information [Fisher, 1925].

Probability - Uncertainty in Prediction

Let’s regard our urn-example for a second time.3 Curious as we are, we
peeked inside the urn and saw that it was filled with red and blue balls
only. Before drawing a ball, we can then predict the outcome with a cer-
tain probability based on the ratio of the two colors. In the case of an
equal amount of red and blue balls, we are maximally uncertain about
which color we obtain from drawing one ball. In reverse, when it is known
that for instance, only a few red and a lot of blue balls are placed in the
urn, then we are fairly certain to draw a blue ball. In other words, in-
tuitively our uncertainty is high when the probability distribution about
the outcome is spread; our uncertainty is low when such a probability
distribution is concentrated. Instead of uncertainty we can then equally
well speak about the concentration of probability distributions.

Comparing the probability density functions p(x) and q(x) shown in
Fig. (5.1) for instance, we can intuitively tell that the former is more
concentrated than the latter, hence displaying less uncertainty. 4

3In fact, a very similar example can originally be found in
[Hilgevoord and Uffink, 1991] and [Uffink, 1991]

4However, to account for a formal definition of uncertainty is not a trivial task and
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Figure 5.1: Two probability distributions p(x) and q(x).

Uncertainty in communication scenarios

Now equipped with a notion of uncertainty in prediction, we can apply the
concept to the probability distribution of an information source. Often it’s
then very useful to think of the Shannon information H(X) not only as
‘statistical compressibility’ but also as a measure of uncertainty.

From now on we may regard the above filled urn as an information
source S emitting a sequence of red and blue balls. For an evenly dis-
tributed probability distribution, we are maximally uncertain to predict
what the next letter (in our case ‘ball’) might be. In case of an highly un-
even distributed probability distribution, our uncertainty about the next
outcome reduces. In the extreme case where the probability for a specific
outcome equals one, there is no uncertainty at all such that H(X) = 0.

With a decreased uncertainty about individual letters, we also ob-
tain a notion for the uncertainty of whole messages; being less uncertain
about the outcome of a specific message, means having to ask less yes
or no questions which sequence was sent.Instead of having to ask N yes

one has to overcome a series of challenges (e.g., how to determine the concentration of
a probability distribution with various ‘spikes’ or how to deal with conventional aspects
like scaling the graphs).
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or no questions, we now merely have to ask NH(X) questions to reveal
which sequence was sent.5 As explained earlier (compare Chapter 2), ap-
plying the LLN to unevenly distributed probability distribution, reduces
the average length of encoded messages, which requires less yes or no
questions such that the uncertainty is decreased.

Even though regarding Shannon Information as uncertainty seems to
be intuitively appealing and very useful in many practical applications,
we shall point out parts of Timpson’s deflationary view (cf.[Timpson, 2004],
[Timpson, 2013]) that in the following prohibits us to equate uncertainty
and Shannon information when it comes to ontology.

Uncertainty based derivation of H(X)

In his dissertation [Uffink, 1991], Jos Uffink defines a general class of
measures of uncertainty Ur(P, µ), where P is a probability distribution
and µ a background measure. Demanding that any uncertainty measure
Ur(P, µ) ought to be

1. invariant under permutations;

2. continuous; and

3. strictly Schur concave;

he concludes that

U(P, µ) = χ−1

(∑
µiφ(

pi
µi

)

)
, (5.1)

is the only expression which satisfies the above postulates (with χ being
a continuous decreasing function, φ a convex function, and pi probability
measures).

With two additional scaling conventions, Uffink demonstrates that

Hr(P, µ) = logUr(P, µ), (5.2)

5The strategy to reveal which binary sequence was sent, is to ask: ’Was the first letter
a 1?’ and itertate the question for all of the N letters of the sequence.
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with Ur(P, µ) being the result of the additional scaling conventions [Uffink, 1991].
For r = 0 we get

H0 = −
∑

pi log
pi
µi
, (5.3)

obtaining equivalence with Shannon’s information measure (2.10) when
µ denotes the counting measure, such that ∀i : µi = #i = 1.

Having arrived at expression (5.3), thus means that H(X) can be
derived as an uncertainty based measure. Notice though, that such a
derivation is not unique; equivalence with Shannon’s measure only holds
for r = 0, so that in any other case, i.e. r 6= 0, we obtain some other
measure of uncertainty. We can thus conclude that H(X) is merely one
of many possible measures of uncertainty and falls into Uffink’s general
expressions of type Ur.

In order to derive Shannon’s H(X) uniquely, yet another axiom is re-
quired (let’s call it updating requirement). Shannon requires that

“The uncertainty about y is never increased by knowledge of x.
It will be decreased unless x and y are independent events, in
which case it is not changed.”,

such that
Ur(P ) ≤ Ur(P∗), (5.4)

the updated uncertainty measure Ur(P ) (P denotes the ‘updated’ prob-
ability distribution due to our knowledge of x) is less than or equal to
the original one Ur(P∗). Since it can be shown that expression (5.4) only
holds for r = 0, we could then uniquely derive Shannon Information as a
measure of uncertainty. By applying the additional scaling conventions
(5.2) and (5.3) the updating requirement can be rewritten as

H(Y |X) ≤ H(Y ), (5.5)

(compare (2.17)).
Where Shannon’s requirement seems plausible in the beginning, the

uncertainty about one variable can in fact be increased by knowledge of
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the other. An example is provided by [Aczeel and Daroczy, 1975]: Orni-
tologists state the existence of white ravens, but of course the chances
of spotting the next raven being white are really small; let’s assume the
probability to find a white one is 0.01 vs 0.99 to find a black one. In other
words, our uncertainty about the color of the next raven is really small. In
addition, the ornitologists found out, that if a raven has a white mother,
the probability of the offspring being white is, let’s say 0.5. By learning
that a white raven mother has offspring, our uncertainty about the color
of the offspring (i.e. the conditional information measure for one event)
has increased; the probability distribution is less concentrated and has
changed from 0.01 vs 0.99 to 0.5 vs 0.5.6

Counter examples as the one above, show that Shannon’s justification
for the updating requirement isn’t sound, such that the requirement is
untenable as a further axiom to uniquely pick out H(X) as a measure
of uncertainty. It’s worthwhile to note that the raven example doesn’t
violate expression (5.5) though, for it merely holds on average. H(Y |X)

doesn’t display the information of one particular distribution, but instead
denotes the expected value of conditional information

H(Y |X) =
∑

p(x)
(
−
∑

p(x|y) log p(x|y)
)
.

As such, H(Y |X) doesn’t prohibit that the information of a conditional
distribution over x is increased by an observation y in an individual case.

After all, we then did not proceeded to derive H(X) as as a unique
measure. As we shall see in the next subsection, the latter part of this
diagnosis is very important for our following analysis.

6Uffink’s suggests the ‘keys in the pocket’ example, picked up by [Timpson, 2004],
where information about x may increase the uncertainty of x itself. With a high proba-
bility (so with little uncertainty) Uffink’s keys are in his pocket, but if he discovers that
they’re not, then the probability distribution of the location of the keys becomes spread
and the uncertainty of the whereabouts of the keys increase dramatically.
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5.2 One Formalism–Many Interpretations

We have to clarify which formalism of H(X) shall act as the basis for our
ontological analysis. Based on the previous chapters and sections we have
introduced the most important aspects for quantifying information, and
by so doing, we have encountered at least two different interpretations of
Shannon’s information measure:

1. In context of communication, H(X) is a measure of the statistical
compressibility of a source, specifying the number of ε − typical se-
quences 2NH(X)+ε from all possible sequences. Instead of all possible
messages (N log n bits), we merely have to encode each of the typical
sequences with NH(X) bits. According to Shannon’s noiseless Cod-
ing Theorem, such a compression is optimal, such that H(X) has
to be a lower bound for the the minimum average code word length
minL(X) eq. (4.3).

2. On the other hand, as pointed out in the former section about uncer-
tainty (5.1), H(X) displays a measure of uncertainty in prediction,
i.e. the lack of concentration of a probability distribution. On this
view, greater uncertainty yields a larger value of H(X) and thus
more yes or no questions which have to be asked in order to reveal
which sequence was indeed sent.

Originally, H(X) was introduced to solve the problem of communication,
i.e. to discover which minimal channel capacity is needed to transmit all
ε− typical 2NH(X)+ε messages from a pool of all possible 2N logn messages,
emitted by a specific source S. The Shannon Coding theorem then states
that H(X) uniquely specifies the optimal rate of transmission of informa-
tion. It is crucial to note that H(X) in the context of communication, is a
characterization of that specific source S, not any specific message. Such
characterization of the source in turn, is only dependent on the respective
probability distribution PS(X), which denotes the probabilities over the
set of possible output states X of the source.

On the other hand, we may conceive H(X) as a measure of uncer-
tainty. And indeed, as demonstrated earlier, H(X) is one special case
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among many measures of uncertainties, all generalized by Uffink’s Ur(P ).
For many purposes, it is then very useful to think of H(X) determining of
the number of yes or no questions we have to ask for revealing a message.

So which Interpretation do we analyze?

For our following analysis it is decisive to point out which of the above
interpretations we’re going to look at. Whereas Shannon’s Noiseless Cod-
ing Theorem states that H(X) is a unique information measure, we con-
cluded that the uncertainty based derivation of Shannon Information is
unable to pick out H(X) as a unique measure of uncertainty. The lat-
ter result thus stands at odds with Shannon’s Coding Theorem; H(X)

can’t be unique and non-unique at the same time! As a measure of Shan-
non information H(X) is distinct from H(X) as a measure of uncertainty.
Thinking about H(X) in terms of uncertainty is admittedly often very
useful, but it appears to be pure happenstance that the equations for
these different concepts coincide. In order to figure out the ontological
status of information we must resist the view to interpret H(X) as a mea-
sure of uncertainty. Instead we regard H(X) as denoting the amount of
Shannon Information an information source is able to produce.

5.3 No place for semantic elements

Let’s continue by disburden our chosen interpretation of Shannon infor-
mation from having anything to do with semantic information. After all,
we still want to retain the syntactic/semantic distinction of information in
physics we established in Chapter 1 (so far, we have merely claimed that
such a distinction exists). For so doing, we return to the question whether
labeled balls from an urn (or in fact sequences of such), count as informa-
tion. Clearly, one might answer such a question with “look, there is a
letter painted on this-and-that ball, that’s information!”. But we mustn’t
allow to ignore the semantic/syntactic distinction and relapse into think-
ing about information in physics in terms of meaning. For whatever his-
torical reason and only because of mere convention, we use the symbols
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‘{a, b, c, ...}’ for the letters ‘{a, b, c, ...}’ in English [Duwell, 2008].

In order to escape the drawbacks of ‘meaning’ and to avoid the con-
ventions of the English language, we can simply modify our urn example;
by exchanging the balls labeled with Latin letters Xabc with some other
set of balls labeled with an alphabet of 26 different ‘letters’, i.e. arbitrary
but distinguishable symbols. In fact, we could as well fill our urn with,
for instance, fruits and vegetables such that our new set of output states
is characterized by the alphabet7

XF&V = {Apple, Broccoli, Celery, ..., Zucchini} . (5.6)

Virtually any kinds of tokens can act as an alphabet and as long as the
new alphabet is still distributed to the prior probability distribution, the
value of H(X) remains unaffected. Changing the possible outcomes of
the information source–including the unusual case of fruit and vegeta-
bles–ought to make obvious that the remark about English letters and
(semantic) information were premature. Shannon’s formalism is silent
on the nature of possible output states and doesn’t depend on whether
these states are itself semantically relevant. As we’ve argued, virtually
any distinguishable tokens the information source is able to emit, suffice
to create a sequence/message. Claiming that all these possible kinds of
tokens are per se semantically relevant seems an untenable position. Af-
ter all, the nature of tokens the sequence consists of (e.g., the new set of
balls or any other arbitrary set of output states), doesn’t affect whether a
message is meaningful or not.

However, the above argument adumbrated that we can encode mes-
sages in multiple ways by using many different kinds of tokens, without
necessarily changing the value of (syntactic) information H(X). In gen-
eral, messages are quite independent of the tokens they’re transmitted
with, as long as these tokens follow a certain syntax that allows to encode
(and successfully decode) the messages. Since the relation of the tokens
is determined by what’s encoded, one could therefore wonder if H(X) se-

7Of course the initials of the fruits and vegetables don’t have to match with the En-
glish alphabet for the argument to hold.
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mantically accounts for such an encoded message. And surely, we can
encode something meaningful in, let’s say, a binary sequence. But try-
ing to establish a connection between semantic information and H(X) is
untenable, as Shannon Information only depends on the probability dis-
tribution of the source. How should a probability distribution give rise to
meaning? Such a probability distribution merely allows us to exploit cer-
tain (syntactical) regularities for optimal communication (i.e., only con-
sidering likely ε− typical), not to quantify anything meaningful.

5.4 A Two Way Strategy

The former section raised the issue that in principle all kinds of tokens
can be used to solve Shannon’s ‘fundamental problem of communication’.
Does it therefore make sense to equate all these kinds of tokens with
syntactic information? We’ve to take a closer look at the qualitative and
quantitative aspects of H(X) to answer this question.

Anew, we are confronted with an urn (filled with N = 104 balls) which
are distributed according to P (Xabc)–a probability distribution based on
the letter frequencies in English. In this case, the urn acts as the informa-
tion source, producing sequences of letters according to the drawn balls.
As explained in Chapter 2, we’re then able to calculate H(X) according
to (2.10)

NH(P (Xabc)) = −104 · (pa log pa + pb log pb + ...+ pz log pz) ,

for a message of length N = 104. While this calculation quantifies a value
for the amount of syntactic information measured in bits, it leaves us
quite clueless of what is actually produced at the source; does it in this
concrete case then make sense to speak of balls with letters on them as
pieces of information?

Let’s first look at the quantitative aspect. In general, from being able
to quantify phenomena or entities with a certain formalism, a clear spec-
ification of what’s in fact measured, doesn’t necessarily follow.8 Histori-

8For a more general treatment of these kind of problems, one might consider reading
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cally, we may for instance draw the comparison to electric current

I =
dQ
dt
, (5.7)

which is the flow of electric charge Q through a given surface over time
t. At the time of the ‘creation’ of the formalism the view of what was ac-
tually flowing around, was certainly different from today, where we usu-
ally think of discrete charged particles (electrons or ions mostly). With-
out further context, equation (5.7) doesn’t specify what’s actually flowing
around.

Considerations in the vein of the example above can be applied to the
Shannon formalism, which in turn make it essential to distinguish be-
tween quantity-information and type-information.9 Whereas the former
notion quantifies an amount of information (in the senses seen above),
only the latter (and for us much more interesting case) specifies what’s
actually ‘produced’ at the information source.

Quantity-Information

So while replacing the tokens used in communication doesn’t change the
quantity of H(X) if the underlying probability distribution remains in
fact the same, the value of Shannon information might change without
ever changing the tokens in the set up (i.e., in case the underlying prob-
ability distribution changes). This suggests that quantity information is
indeed quite independent of whatever tokens the source emits. Quantity
information shall then be described as:

Quantity Information is a function dependent on the probabil-
ity distribution of the source PS(X), which neither depends nor
quantifies which kind of tokens the source uses in a communi-
cation scenario.

[Frigg and Nguyen, 2016] as an introduction into the topic of scientific representation.
9To the authors knowledge, Timpson [Timpson, 2004] (see also his later writings)

in his deflationary view was the first to suggested a distinction between quantity and
pieces of information. Duwell [Duwell, 2008] later adopted this position and used the
terms ‘quantity-information’ and ‘type-information’.

72



Just like in the case in the case of the electric current I, we don’t think
of the quantity per se as something ‘physical’ or ‘concrete’; such quan-
tities or values are always abstracta. So while we can certainly spatio-
temporally locate things like apples, chairs, and tigers, we can’t do so with
quantities. Quantity information merely provides a quantitative mea-
sure of what is on average produced at the information source. Quantity
Information is hence an abstractum too.

Type-Information

What’s emitted by an information source on the other hand, are the to-
kens that the specific source is capable of producing tokens of. Consider-
ing Shannon’s quote in the epigraph of this chapter, we remember that
the ‘fundamental problem of communication’ is the reproduction of a mes-
sage (i.e., the output of a source) at the destination. As we’ve seen in the
former section, many different types of tokens suffice to communicate
messages; English letters, fruit and vegetables, smoke signals, sound,
etc.. These concrete tokens merely represent the means for sending the
multiply realizable message that is encoded according to certain (syntac-
tical) rules determined by the minimum average codeword length H(X),
such that they can be reproduced (i.e., decoded) at the destination.10

Based on similar insights Timpson, then defined Type Information as:

“Informationt is what is produced by an informationt source
that is required to be reproducible at the destination if the trans-
mission is to be counted a success.” [Timpson, 2013, p. 22]11

Note that Timpson’s definition doesn’t rely on any particular sequence of
tokens. What has to be identified to be reproducible is Type Information

10In fact, basically any every-day communication scenario involving digital technology
involves encoding of the original message into a set of different tokens. For instance,
while Alice and Bob are having a conversation on the phone, the message–an utterance
based on sound waves (the ’original’ tokens)–is converted into a binary electric signal,
which Bob’s telephone might successfully reproduce into the original message.

11Note that Timpson’s informationt can be understood as our concept of syntactic
information (although he appears to disagree with using ’syntactic’ in this context (see
fn. 25 [Timpson, 2013])).
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(a sequence type) which for each communication scenario, is based on a
sequence of certain kinds of tokens.

Emphasizing our Coding Interpretation we might slightly adjust Timp-
son’s quote by exchanging ‘produced’ and ‘reproducible’ by ‘encoded’ and
‘decodable’ respectively, and adding the role of tokens, such that our defi-
nition reads:

Information is what is encoded by some kind of tokens of an
information source that is required to be decodable at the des-
tination if the transmission is to be counted a success.

By then examining what is produced at the source–Type Information,
a particular kind of sequence types–we come to the conclusion (as the
coinage of the term already suggests) that this entity is an abstract type.12

Even though the source ‘spits out’ concrete tokens, these tokens are used
to generate a signal which encodes the Type Information created by the
source. What’s important is that the multi realizable sequence type can
be (according to some success criterion) reproduced at the destination.
Virtually any kind of distinguishable tokens suffice to encode and a de-
code a sequence. In other words, particular sequences of concrete tokens
then instantiate abstract type information, just like an apple or a cherry
might instantiate the abstract notion of redness.

5.5 To what Extent is Shannon Information
Conventional?

Having illuminated the distinction between Quantity- and Type Informa-
tion, one might has gotten suspicious about conventional elements here
and there, when, for instance, replacing labeled balls with fruits and veg-
etables. Does this conventional freedom bear on the ontological status
of information? In addition, it’s not obvious how, in the above defini-
tion of Type Information, to determine what actually counts as a success.

12In case one might have a different about the problem of universals and deny the
existence of universal types, one can probably tell a similar story with abstract tropes.
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Let us therefore first have a look at the conventional aspects of standard
probability theory. Thereafter, we have to examine the success criteria of
Shannon’s ‘fundamental problem of communication’ and our earlier given
definition of information.

The experimental set up

In Grundbegriffe der Wahrscheinlichkeitsrechnung [Kolmogorov, 1933],
Kolmogorov formulated an axiomatic system that enables us to deal with
probability distributions on discrete and continuous sets. In the stan-
dard formulation, a probability space is a triple (E,F , P ), where i)E is
a set, ii) a subset F (called σ-field) of E, and iii) the probability mea-
sure P . The point of departure in Kolmogorov’s system is a set of ele-
mentare Ereignisse (elementary events) in E, to which probabilities are
applied. Both probabilities and of events are assumed to be primitive
[Galavotti, 2005]. In the style of our urn-example in the discussion around
uncertainties (5.1), the elementary events in E can be taken as ‘drawing
a red ball’ and ‘drawing a blue ball’.13 Since we are only interested in
well-defined events, we regard the subset F of E, which is closed under
union, (denumerable) intersections and complements. Probability is then
introduced as a measure P on F which assigns a numerical value to each
subset Ai of F , in the sense that

1. (Non-Negativity)P (A) ≥ 1 for all A in F

2. (Finite additivity)P (∪iAi) =
∑

i P (Ai) if all Ai are mutually disjoint

3. (Normalization)P (E) = 1.

In order to apply Kolmogorov’s formalism to our present case, it is useful
to introduce the distinction between an experimental set-up and an ex-
periment Uffink used in [Uffink, 1991]. We assume that an experimental
set up is denoted by the triple < E,F , P >, such that any conceivable

13In his original paper, Kolmogorov actually used the example of toss-
ing a coin twice. The set of elementary elements then correspond to
{Heads−Heads, Heads− Tails , Tails−Heads , Tails− Tails}. Provided with a suffi-
cient amount of red and blue balls, the example can of course be easily transferred to
our urn-example.
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outcome counts as an elementary event. However, in an experiment we
only regard those events which we’re able to or choose to distinguish on a
trial. Hence, an experiment is an experimental set-up for which the kind
of trial is specified. For the formal description of an experiment, we then
have to specify the quadruple < E,F , P,X >, where X accounts for the
partition of E according our distinction of the outcomes.

With a certain interpretive flexibility we can conceive a communica-
tion scenario as an experiment; in particular we mean each time an in-
formation source ‘creates’ a token as output. Returning to our paradigm
example–the urn–drawing a ball from such is treated as the output of an
information source and can be perceived as an experiment. The conven-
tional element in such an experiment is then imported by choosing what
counts as a different outcome; i.e., how the partition X of the given ex-
periment looks like. For instance, do we treat the the following instances

{A,A,A,A, A,A,A,A,A , } (5.8)

all as outcomes of a ball with the letter ‘A’ or do we distinguish them any
further? Alternatively, for some reason, we could only be interested in
the occurrence of vowels and consonants, or merely distinguish between
fruits and vegetables, instead of each individual member of the alpha-
bet {Apple, Broccoli, ...}. In any case, choosing a partition X is completely
stipulated by the conventional choices of the user and influences the prob-
ability distribution of the source PS(X).

So while we can partition at will, the elementary events in E of a cer-
tain information source are fixed by the experimental set up < E,F , P >.
Yet, in section (2.1) we already pointed out that Shannon’s formalism ba-
sically doesn’t restrict as what counts as an information source. On these
grounds, we can ‘manipulate’ the elementary events by stipulating the
source. For instance, in our urn-example, the drawing of a red or blue
ball each counted as an elementary event. By stipulating a slightly ad-
justed source–let’s say we additionally consider a clock which tells us the
time at which a ball is drawn to be part of the source–we might get el-
ementary events like ‘red ball drawn at 12:37am’ or ‘blue ball drawn at
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midnight’. Our (arbitrary) adjustment of the source then in turn might
yield a completely different probability distribution PS(X).

Changing the probability distribution of the information source by
partitioning, means to change Quantity Information. Stipulating (an ad-
justed) information source, might change the respective probability dis-
tribution, hence also changing Quantity Information. Quantity Informa-
tion can then only in so far be regarded an ‘objective’ or intersubjective
information measure, as the experimental set up and the experiment are
somehow a priori fixed. However, in the classical case we’re not only able
to stipulate myriads of experimental set ups, but also experiments. Since
a natural fixation is missing, it appears to be almost entirely conventional
how either of them should be a priori fixed.

How does this finding influence our view of Type Information? Chang-
ing PS(X) of the source affects Type Information to the extent that now a
different set of (type) sequences is deemed to be producible by the source.
Hence, Type Information doesn’t remain unaffected and seem to be com-
pletely governed by the contingencies of the users who set up the commu-
nication system. Note though, that the above considerations don’t have
any bearing on the abstract nature of Quantity- and Type Information!

The Fidelity function

Reconsidering our definition of information, ‘to be counted as a success’
may import another conventional element in Shannon’s formalism. For
instance, how could we possibly know what’s encoded in a sequence of
1s and 0s without a prearranged, purely conventional agreement? What
determines if a transmission was successful? As Duwell [Duwell, 2008]
pointed out, Shannon’s original paper indeed doesn’t clarify a success cri-
terion. The only clue we’re offered in that regard, is the so called fidelity
function (2.23) we’ve already encountered in Chapter 2.14 As the name
suggests, the function ought to measure the fidelity, i.e. measuring the
rate of (or accuracy of) reproduction of a message.

14Notice that Shannon’s original paper isn’t simply used as a straw man here. As
far as the author is concerned, the subsequent information-theory-literature remained
largely silent on defining a success criterion too.
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Solely based on the fidelity function, Duwell could nevertheless iden-
tify three success criteria (unfortunately, without giving them clear names)
coming in different degrees of the same idea:

1. A one-on-one mapping of physical features of the tokens. This view
proposes that the alphabet of the source has to be exactly repro-
duced at the destination. In an everyday life communication sce-
nario, the sound spoken into a telephone A may be converted into
an electric signal and then at the destination (here telephone B) be
reproduced into sound again.15

2. A mapping which restricts certain physical characteristics. This no-
tion is similar to the above, except that we’re less strict with the
term exactly. So we might, based on convention, allow for the repro-
duction of different types of tokens at the source. Let’s suppose, we
want to send an email with the content: ‘HELLO’. According to the
former success criterion, only recreating an exact copy of our email
would count as success. In our case though, we might allow for the
reproduction of ‘HELLO’ at the source (but not ‘HEXXO’) . Even
though, the physical characteristics of what’s sent from the source
and what’s received at the destination are different in both cases
(i.e., the letters have different shapes), we might call a transmis-
sion successful only in certain cases. Hence, the success criterion
restricts which tokens of the type produced by the source are ad-
missible.

3. An arbitrarily chosen one-on-one mapping function not based on
any physical characteristics at all. On this view, we might treat in-
formation sources as producing an abstract sequence purely based
on the Shannon formalism, allowing a success condition dependent
on an arbitrary one-on-one function between source and destina-
tion. Such a success criterion might work without considering any

15Note that the example is an idealized everyday scenario, since a real setting is (to
some extent) always obscured by some external influences. The so created noise ham-
pers an exact recreation at the source, making it necessary to allow for a certain margin
of error. Usually, a distance measure that compares the tokens produced by the infor-
mation source and the tokens reproduced at the destination is used.
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physical characteristics that the source and destination share at all.
What counts, is a matter of convention.

Note that none of the success criteria above, acts as a ‘natural’ success
criterion. The functioning of Shannon’s theory doesn’t specify a preferred
success criterion so that choosing such, is completely conventional. Ac-
cording to the third success criterion for instance, we’re then allowed to
stipulate a communication system in which in comparison to the source,
totally different sequences of tokens can be reproduced.

Choosing the experimental set up, deciding which experiment to per-
form and determining what counts as a success, imports substantial con-
ventional elements into Shannon Information in the classical case. Note
though, that the import of conventional aspects neither changed our view
about the abstract nature of Quantity- nor Type information.

5.6 Conclusion

Our analysis in the previous sections has shown us that Shannon In-
formation can be interpreted in more than one way. We argued that
the interpretation of compressibility in context of communication and
the minimum average code word length are tightly interwoven. On the
other hand, we demonstrated that H(X) can also be interpreted as one
among many measures of uncertainty. However, the latter notion is at
odds with Shannon’s Noiseless Coding Theorem, which states the exis-
tence of a unique compressibility scheme. Thus, for the description of any
kind of communication systems (or likewise scenarios in nature), we only
regard the former non-uncertainty based notion.

Examining the Shannon formalism under these conditions, we first
argued that the semantic/syntactic distinction of information (introduced
in the Chapter 1) indeed holds. The Shannon formalism allows to char-
acterize different aspects of communication systems and doesn’t adhere
to any semantic properties. Thereafter, we opted for a further distinction
of Shannon’s syntactic information, namely Quantity- and Type Informa-
tion. Though for different reasons, both notions are abstract in respect
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to their ontological status; Quantity Information, because a calculation
based quantity is always something abstract and Type Information since
we identified it (based on a type/token distinction) as a universal. On our
view, Type Information can be encoded with concrete tokens, but mustn’t
be confused with them. The tokens only function as a mean to solve the
‘problem of communication’ and successfully reproduce the message at
the destination.

Analyzing the extent of conventionality featured in Shannon’s theory
showed that those who set up the communication system have the free-
dom to determine what qualifies as successful communication. Further-
more, there are no constraints which restrict what counts as a natural
information source and its respective outcome; it’s almost entirely con-
ventional. In the classical case, Shannon Information may then only be
useful once these conventional elements are somehow fixed.

Regarding the ontological status of Shannon Information in the classi-
cal case, we can conclude thatH(X) is a largely conventional and abstract
entity, independent of any notions of semantic Information.
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Chapter 6

Interpreting Kolmogorov
Complexity in the Classical
Case

“Our definition of the quantity of information has the advantage that it
refers to individual objects and not to objects treated as members of a

set of objects with a probability distribution given on it.”
[Li and Vitanyi, 2008, p. 603]

– Kolmogorov

IN the previous chapter we dealt with Shannon’s combinatorial ap-
proach which merely focuses on an ensemble of typical messages. Al-

gorithmic information in contrast, only pays attention to particular mes-
sages or objects. At first, one could get the impression that the algo-
rithmic approach is indeed concerned with a concrete entity. Is informa-
tion, given in this context, something concrete after all and hence at odds
with the abstract notion of Shannon Information? To answer this ques-
tion, let’s turn to a rigorous interpretation of the algorithmic information
measure (i.e. Kolmogorov Complexity) and examine to what extent its
ontological status is different from that of Shannon Information.
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6.1 Uncomputability, Unpredictability and Un-
certainty

In comparison to Shannon’s information measure, the algorithmic ap-
proach to measuring information, suffers much less from the deficits of
ambiguous terminology. As we’ve seen earlier, the definition (3.8) tells
us when a sequence is simple or not. However, as mentioned in section
(3.3.2), we generally can’t compute K(x). As a consequence, we can never
know if we’ve indeed found the shortest algorithm or whether a sequence
is random. So, in the context of the uncomputability of K(x) we are then
confronted with unpredictability. One may then equate ‘unpredictability’
with ‘uncertainty in prediction’ and conjecture that K(x) is a measure of
uncertainty. As we’ll show in the following though, unpredictability here
refers to our epistemic limitations about K(x), i.e. giving a prediction
about the length of the shortest program that describes x. Whether K(x)

itself is about uncertainty, i.e. if Kolmogorov Complexity is a measure of
uncertainty in prediction, is a different matter.

Uncertainty about K(x)

As Chaitin points out [Chaitin, 1975], [Chaitin, 1982], [Chaitin, 1986],
the limitation to compute K(x) is not a flaw in the definition, but a con-
sequence of Kurt Gödel’s (1931) closely related Incompleteness theorem.
Gödel’s proof is based on paradoxes as “This statement is false” or the
Berry paradox we’ve seen before (see end of section (3.1)). By rewrit-
ing the Berry paradox in terms made suitable for a computer program,1

Chaitin shows that in a formal system of complexity n, it is impossible to
prove that a particular binary string is of complexity > n + c (where c is
a constant independent of the regarded system).

An example for clarification. We assume to be confronted with the
task to determine the Kolmogorov Complexity of a very long binary se-
quence xexample with a given reference TM. So why is it, that we can’t

1Rewritten the paradox might look like “Find a series of binary digits that can
be proved to be of a complexity greater than the number of bits in this program.”
[Chaitin, 1975]
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compute K(xexample) and predict whether that sequence is random? From
our definition of randomness it follows that in general any shortest pro-
gram p (i.e. in fact K(x)) is necessarily random, for if it was not, we could
find a shorter program p∗ that in turn generates p, which in turn gener-
ates x. From our reflections in section (3.2) on the other hand, we know
that any TM can be ‘simulated’ through the input on a UTM. This input
has a certain complexity and can, according to Chaitin, be conceived as a
formal system of complexity n, such that it can’t prove the complexity of
strings larger than itself > n + c. If we then want to determine whether
the sequence xexample is random, where the complexity of the sequence is
> n + c, our reference TM of complexity n won’t halt. If our TM were
indeed to halt, it then either would have algorithmically produced a se-
quence larger than itself (meaning that xexample is in fact non random) or
proven the complexity of a sequence larger than itself. So for proving the
randomness of a given sequence, the complexity of the reference TM al-
ways has to be larger than that of the given sequence itself. This implies,
because K(x) is random, that we require a reference TM of greater com-
plexity for proving that a program is truly a minimal one for a particular
sequence x.

What the example has then shown us, is that we are uncertain about
the value of K(x), not whether K(x) denotes the upredictability or un-
certainty of some event. Once we have the necessary resources and our
reference TM halts, providing us with a value of K(x), we know to have
found the shortest program p which uniquely describes x–there is not any
kind of uncertainty left about K(x).

K(x) - Not a Measure of Uncertainty

Let’s for sake of completeness quickly examine the relation of measures of
uncertainty and K(x). The question if K(x) is a measure of uncertainty
(in prediction), might appear as an unusual one; denoting the shortest
length of an algorithm that generates a sequence doesn’t appear suitable
as a characterization of uncertainty. One of the motivations for the de-
velopment of algorithmic information was to escape the probability based
notion of Shannon Information. At first sight, probabilities–the very ba-
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sis to measure uncertainty–aren’t featured in the definition of K(x) (3.5)
at all.

However, when we introduced the notion of universal probability m(x)

in Chapter 4, we saw that Kolmogorov Complexity could equally well be
defined as − log2m(x) = K(x) (4.11). Does K(x) qualify as a measure of
uncertainty after all?

In order to classify as a measure of uncertainty, Uffink pointed out a
number of criteria (see section (5.1)), which K(x) fails to agree with. Re-
member, the basic of idea of a measure of uncertainty is to measuring the
concentration of a probability distribution. Regarding our definitions of
Kolmogorov Complexity, no such probability distribution is given in the
first place; K(x) is either defined as the shortest length of the program
that uniquely generates x or as the negative logarithm of the universal
probability m(x) (which denotes the probability to obtain the binary pro-
gram p by flipping a coin, for instance; compare section (4.2)). While the
former definition quite obviously offers no grounds to speak about the
concentration of a probability distribution, the latter doesn’t either. We
mustn’t confuse the universal probability m(x) with a probability distri-
bution!2 Uffink’s approach to determine uncertainty in prediction can
only be applied to probability distributions, not to single probabilities.
Hence, Kolmogorov Complexity is not a measure of uncertainty Ur(P, µ).

6.2 Hidden Semantics?

We now analyze to what extent algorithmic information suffers from se-
mantic backlashes, by examining the relation of random and meaningful
sequences. Arguably, one could construct the argument that non-random
sequences (sequences with patterns) have to entail meaning. And in fact,
regarding meaningful sequences seems to be one of the reasons to develop
the notion of Kolmogorov Complexity in the first place. For instance,
remember the epigraph of Chapter 4 about Tolstoy’s War and Peace, in

2In our context, one might regard
∑
xm(x) as such a ‘probability distribution’. Since∑

xm(x) ≤ 1 denotes only a semi measure, one possibly has to make further adaptations
to analyze m(x) with Uffink’s formalism at all.
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which Kolmogorov pondered how to determine a probability distribution
for such a ‘sequence’; should the entire novel be included in a set of all
possible novels and then merely be treated like any other ε − typical se-
quence in Shannon’s formalism?

Clearly, finding such a probability distribution is ‘challenging’ (to say
the least) and while it might be true that every meaningful sequence
xmeaning displays certain patterns,3 we mustn’t conclude that the formal-
ism of Kolmogorov Complexity assigns a value of semantic information
to any object or sequence x. Whether a sequence x is meaningful or not
doesn’t matter; without any extra assumptions, nothing in the definition
of K(x) indicates a relation with semantics. K(x) merely denotes the
length of an algorithm that uniquely generates x as the output of a TM.
Purely based on syntax–the structure of the symbols forming patterns
and redundancies–a given message might be compressed such that an
algorithm shorter than the message itself can be found that can produce
it. Considering the arrangements of (code-)words and their relation in a
sequence is purely syntactic, not semantic!

6.3 Repeating the two way strategy?

Key for the understanding of the ontological status of K(x), we’d like to
know whether Algorithmic Information is something ‘physically concrete’
or something abstract. At first, one could conjecture that by avoiding the
probability based ensemble view of Shannon Information and by instead
only regarding individual messages or objects, algorithmic information
is indeed something concrete. But then the term algorithmic suggests
that we actually deal with algorithms–an abstract set of rules determin-
ing a specific problem-solving activity. For avoiding the tension between
particular concrete objects and non-concrete computer programs, we can

3In order to be meaningful, a sequence like xmeaningful arguably has to be formulated
in a certain language. Languages have to follow certain rules and, as we’ve learned
earlier, they show patterns according to the probability distribution of their respective
alphabet. Additionally, there are ‘higher order patterns’ like, certain letters often follow
other letters (like ‘q’ and ‘u’) or certain words usually don’t follow certain words (‘the’
and ‘the’, e.g.). Instead of the assumption that every outcome of our information source
is independent of the previous one, one may regard Markov processes instead.
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repeat the ‘two way strategy’ from the previous chapter by yet again dis-
tinguishing between Quantity- and Type information.

Algorithmic Quantity Information

Just like in the case of Shannon Information, we can easily point out
that Quantity Information–this time the K(x)-version–merely quantifies
algorithmic information. The value of K(x) denotes the shortest length
of an algorithm generating a sequence x and nothing in this formalism
bears the characteristics of concrete objects. Even considering the defi-
nition based on the universal distribution m(x) (4.11) won’t change our
view. Remember, m(x) denotes the probability that a hypothetical ran-
dom process (with binary outcome) generates a program p which in turn
uniquely generates a sequence x on our chosen reference TM.

Quite analogue to the previous chapter, we may then describe Kolmogorov-
Complexity-based Quantity Information as

Quantity Information is a function dependent on the redun-
dancy (patterns) of a sequence x, which neither depends nor
quantifies which kind of tokens x is made of.

Once again, we can conclude that Quantity Information is an abstractum
and merely suffices to quantify algorithmic information.

Algorithmic Type Information

The question of ‘what is actually quantified?’ is a much more intriguing
one and it’s far from obvious that in the context of Kolmogorov Complex-
ity the term Type Information is appropriate. As stated in the epigraph by
Kolmogorov (see the beginning of this chapter), K(x) refers to individual
‘objects’ and not to members of a set determined by a probability distribu-
tion. If we perceive these individual objects as concrete particulars does
that imply that algorithmic information is something concrete?

Let’s first take a look at the ‘individual objects’. Certainly we can
spatio-temporally localize many of these objects; perhaps we regard the
redundancies of the atomic structure of a salt crystal or consider the char-
acteristics of a painting. These kind of objects are certainly concrete.
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However, note that the term ‘object’ has to be understood loosely here, in
the sense that we could also look at the patterns of things that are usu-
ally not considered objects. So we could e.g., as well use the formalism
of K(x) to examine certain patterns of the weather, sun eclipses or the
ordering of books in a shelf. While entities like ‘the weather’ or ‘a sun
eclipse’ might be difficult to conceive as an object, the patterns displayed
by these phenomena still bear on concreta. Basically, the formalism of
K(x) doesn’t come up with any kind of restrictions of usage at all. In
principle, we can examine whatever observable ‘object’ we like, as long as
some description method ensures to extract a binary sequence x from the
characteristics of that ‘object’ (more shall be said about such a procedure
in the next section). So while observable objects (or rather patterns) are
based on concrete particulars, we mustn’t commit the fallacy that algo-
rithmic information is concrete, too.

Remembering our insights from Coding Theory and repeating the ar-
gument based on the type/token distinction of the previous chapter, we
may argue to find the same algorithmic type information to be instanti-
ated in the characteristics of many different ‘objects’. Think, for instance,
about the golden ratio based on the sequence of the Fibonacci numbers
{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...}.4 Examples in nature where the golden ratio
can be found range from ‘objects’ like DNA molecules, snail shells, fruits
and vegetables (e.g, spiraling patterns in pineapples), hurricanes up to
spiral galaxies. In all these instances, certain characteristics of the ‘ob-
jects’ act as means to encode a certain universal sequence–an algorithmic
information type sequence.

Lastly, we can then describe Algorithmic Type Information as

Algorithmic Information is what is instantiated by the patterns
of some kind of objects or tokens, such that the description of
these patters can be uniquely generated by an algorithm.

Notice that this definition is (intentionally) of utmost generality and not
restricted to any special class of objects or tokens. According to our def-

4The golden ratio is the limit of the ratios of successive terms of the Fibonacci se-
quence.
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inition, Algorithmic Type Information is instantiated by the characteris-
tics/patterns of objects. On that view, the term type is appropriate, as
algorithmic information appears to be an abstract sequence which can be
multiply instantiated by the means of concrete tokens.

6.4 To what extent is Algorithmic Informa-
tion conventional?

Similarly to section (5.5) in the previous chapter, we analyze to what
extent Kolmogorov Complexity bears conventional elements. In the fol-
lowing, we begin by looking at the definition of randomness, the role of
choosing a specific reference machine and a certain program language.
Thereafter, we turn our attention to coarse graining and how to describe
objects. As we’ll see, it turns out that especially the latter notions have
enormous bearing on the conventionality of Algorithmic Information.

6.4.1 The Definition of Randomness

First a few words about the ‘exact definition of randomness’ in the context
of Kolmogorov Complexity. In the introductory chapter of Kolmogorov
Complexity, we have learned that the majority of sequences is in fact
random. However, so far we haven’t quantified a precise threshold for
when a sequence clearly counts as ‘random’, to actually jump to such a
conclusion. Chaitin, e.g., argues that

“The exact value of complexity below which a series is no longer
considered random remains somewhat arbitrary.” [Chaitin, 1975]

Choosing a certain value in order to determine the randomness of a se-
quence then may contain a degree of conventionality. So we could, for
instance, set the threshold for a sequence of length N to N

2
; every series

for which an algorithm of half its length (or below) can be found, might
then not be considered random. Yet, whether or not a given sequence is
indeed to a certain extent compressible, certainly doesn’t change our view
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about the ontological status of information. What’s at stake in this sub-
section is whether the definition of randomness is conventional, not that
of Kolmogorov Complexity. For the sake of this thesis, we thus shouldn’t
be bothered by the exact definition of randomness any further.

6.4.2 Universality & the Invariance Theorem

In Chapter 3, introducing the main formalism of algorithmic information,
we encountered the so called Universality and Invariance Theorem as
features of Kolmogorov Complexity. Both these features are concerned
with making choices that are crucial for the calculation of K(x)–choosing
a reference machine and a program language. To what extent are these
choices a matter of convention?

Choosing a reference machine

In the context of Kolmogorov Complexity, Universality is expressed as
KU(x) ≤ KA(x) + cA (3.7), describing that choosing a different reference
machine (denoted by the indices ‘U ’ and ‘A’), in order to calculate the
shortest program p that calculates x, merely yields an additional constant
cA. That is because any TM can in principle be ‘simulated’ by another
TM, where cA is the length of the program needed for such a simulation.

Admittedly, choosing a certain kind of UTM is then still purely ar-
bitrary and a choice of convention, but that doesn’t matter. Save for a
constant, the value of Kolmogorov Complexity is universal and hence in-
dependent of any kind of reference machine. Key for the value of K(x)

are the characteristics of x (for instance, if the sequence x shows ‘com-
pressible’ patterns), not the machine which it is calculated on.

It’s insightful to imagine a situation in which the contrary was the
case, i.e. Kolmgorov Complexity was dependent on a certain reference
machine. In that case incorporating TMs as an auxiliary tool wouldn’t
have been a clever move, because the initial intention of algorithmic in-
formation to measuring the information content of individual objects x
would now also depend on something other than x. Constructing such an
information measure would be completely arbitrary and hardly tenable
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for any scientific purpose. However, the very reason we use UTMs in
the first place, is it that we can benefit from the fact that they can sim-
ulate each other. Using TMs only acts as a mean to make the notion of
shortest algorithm p unambigious.

Choosing a language

Besides picking a reference machine, we also have to pick a certain pro-
gram language like Java, Lisp, etc., which can be conceived as an en-
coding scheme. Once again, we’re seemingly faced with a conventional
choice–which program language or encoding scheme shall we choose?

However, similarly to the case of Universality in the former subsec-
tion, the choice of a language certainly is conventional, but according to
the Invariance Theorem K1(x) ≤ K2(x) + O(1) (3.6), the choice doesn’t
affect the value of K(x) (save for a constant). Effectively, conceiving a
program language as a code, the shortest program p can be realized in
multiple ways (i.e. in multiple program languages). Once again, what
determines the value of K(x) are the characteristics of x itself, not the
‘external’ choice of a program language.

6.4.3 Coarse Graining & Description

In the case of Shannon Information, the experimental set up, the experi-
ment and the choice of a success criterion are contingent on the interests
of those who set up the communication system. Can we find similar con-
ventional elements in the formalism of Kolmogorov Complexity?

So far, we only regarded instances in which the (shortest) algorithm
p exactly describes the sequence x; all these instances have a fidelity
of one. That’s because by using the notion of prefix-free codes, we as-
sured that every program p is capable of uniquely generating only one
specific sequence x, on a deterministically operating UTM. So unless a
non-deterministic reference machine is used (for instance, a probabilistic
TM), a one-on-one mapping

pi → xi, (6.1)
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with i ∈ N , for all possible N descriptions, from a particular shortest
program to a specific sequence is ensured.5 Thus, whenever for instance,
a sequence

x1 = 101010101010101010101010101010,

has slightly changed (notice, the last digit has switched its value)

x1′ = 101010101010101010101010101011,

we don’t have to rely on the very same program p1 (that originally gen-
erated x1), to obtain the modified sequence x1′. Instead, we can try to
find the shortest program p1′ that precisely gives out x1′. In the context
of Kolmogorov Complexity, there’s no need to evoke a fidelity function or
any conventional success criteria like in the context of communication.
However, when considering that the above sequences are descriptions of
something (perhaps an object like a painting or a weather phenomenon),
we start to run into two major elements of convention quite similar those
ones the in the case of H(X) (choosing experimental set up and deciding
on a partition).

Coarse Graining

Let’s start with an example and assume that various scientists want to
characterize if the weather shows certain patters. Based on a month long
observation, a meteorologist writes down a ‘1’ for a rainy day and a‘0’ for
a day without any precipitation, obtaining e.g., sequence x1. However,
are there any non-conventional reasons for why to choose a such spe-
cific ‘resolution’? Why does a meteorologist choose ‘days’ as the preferred
time intervals; why not intervals of 17 hours or of 3 and a half days? For
instance, a climate scientist on the other hand, might rather not be in-
terested in the observation data of single days, but instead of long-term
observations over decades or centuries. Clearly, we expect the complexi-
ties of ‘objects’ (here the weather), to change when a different ‘resolution’

5Not considering only the shortest programs yields a surjection (instead of a bijection
like in the case of one-on-one mapping), i.e. for every sequence xi there’ll be multiple
programs to generate that sequence.
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is chosen.

Regarding the problem of resolution, statistical mechanics and ther-
modynamics are faced with similar discussions when it comes to coarse
graining (see e.g. [Denbigh and Denbigh, 1985, §3]). In short, coarse
graining is the rescaling of a phenomenon into cells or units close to the
uncertainty of our measurement (or our interest). In the context of statis-
tical mechanics, the cells of the phase space are coarse grained (compare
the example of algorithmic entropy in section (4.5)), so it is often argued,
according to human choice. Under the circumstances specific to the con-
text of statistical mechanics, i.e. trying to account for irreversibility for
instance, the question whether coarse graining is ’subjective’ remains dis-
puted.

What can we take over from this debate to our current case? Sta-
tistical mechanics ought to explain the purely phenomenological ’laws of
Thermodynamics’. As such, in converse Thermodynamics offers us con-
straints through empirical observations and provides statistical mechan-
ics a context to which coarse graining can be applied (the phase space of
a system).

The bare formalism of Kolmogorov Complexity on the other hand,
doesn’t come equipped with any constraints or a particular context it’s
supposed to be applied to. As pointed out in the previous section, the
scope of the formalism is virtually applicable to anything. Such a gener-
ality doesn’t offer any constraints; this means, that unless we’re offered
some kind of boundaries as in the case of statistical mechanics and Ther-
modynamics, that the coarse graining in the case of K(x) is completely
contingent on the user.

Returning to the example of our scientists, some may want to examine
the regularities of single raindrops, others the mean rainfall over the last
millenia. Depending on the chosen resolution, i.e. coarse graining, objects
can virtually have infinitely large complexity. One may then find very dif-
ferent Algorithmic Quantity Information values and different Type Infor-
mation sequences depending on the completely conventional stipulated
coarse graining of the user.

Kolmogorov himself seemed to be aware of these kind of troubles and
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suggested to prefer the notion of mutual complexity K(x : y) (3.11), in-
stead of the complexity of K(x) stating that

“Actually, it is most fruitful to discuss the quantity of in-
formation “conveyed by an object” (x) “about an object” (y) [...]
The real objects that we study are very (infinitely) complex,
but the relationships between two separate objects diminish
as the schemes used to describe them become simpler [own ital-
ics]. While a map yields a considerable amount of information
about a region of the earth’s surface, the microstructure of the
paper and the ink in the paper have no relation to the mi-
crostructure of the area shown on the map.” [Kolmogorov, 1965,
p. 6]

In the quote e.g., the map represents the object x which conveys some-
thing about object y (the surface of the earth). However, it’s not clear
which coarse-graining procedure ought to determine such ‘simpler schemes’
in order to describe the relation between the objects x and y.6 Shifting
the attention from a single object x to the relation between object x and
y, merely shifts the problem of coarse graining from single objects to the
relation of objects. The entirely conventional aspects of coarse graining
remain the same for K(x) and K(x : y) though.

Extracting Patterns–A Problem of Description

Another, not less important point of convention comes into play when
we ask how we obtained sequence x from an outside state of the world;
we’ve to know how to describe the patterns of objects (which we suspect to
instantiate Algorithmic Type Information) with ones and zeros. In other
words, we’re looking for a description method that extracts the patterns of
objects. But who or what determines which patterns to extract–what are
the sequences x1and x1′ (or in general, every kind of sequence) actually
descriptions of?

6Even though maps usually come equipped with a scale (a ratio of a distance on the
map to the corresponding distance on the earth’s surface), such that the coarse graining
is fixed, the choice of the scale is completely conventional.
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First we should note that we mustn’t commit the fallacy to think the
variable x in K(x) objectively represents an ‘object x’; instead x denotes
a sequence that merely describes that object. A description of something
is entirely different than that ‘something’ itself.7 So without a natural
description method specifying how to get from patterns of objects to a
sequence x describing these, we can’t apply Kolmogorov Complexity to
more than just somehow already given binary sequences. As remarked
in [Gruenwald and Vitanyi, 2008, p. 315], one may conclude that8

“algorithmic information misses “aboutness” (sic), and is there-
fore not really information.”

If we want to denote the complexity of objects, the problem runs down to
the absence of a ‘natural description method’. Since it’s extremely puz-
zling how a single mechanism could possibly account for the extraction
of certain patterns in a myriad of different kinds of objects, we instead
have to rely on a conventional method. Recall, in our examples about
the meteorologist and the climate scientist we simply imposed completely
conventional description methods (e.g.,‘1’ for rain, ‘0’ for no rain). Just be-
cause of some kind of conventions–solely considering if it was a rainy day,
not a cold one, for instance–the scientists were able to extract patterns
from the weather in the first place. Thus only after it’s agreed on how
to describe certain patterns, it might be useful to perceive objects as in-
stantiating Algorithmic Type Information. Without further conventional
contextualization, K(x) may only provide an information measure of an
a priori given binary string x, independent of any object or outside state
of the world.

6.5 Relation between H(X) and K(x)

For the framework of this thesis it’s a crucial aspect to point out the re-
lation between different notions of syntactic information. Let’s begin to

7N.B. that Kolmogorov in the quote above as well as in the epigraph, seemingly fails
to recognize the distinction between ’object’ and ’sequence’.

8The statement emerged in context of a workshop, with many participants being
contributors to the handbook in which the reference was published in.
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compare our so far made results of Shannon Information and Kolmogorov
Complexity in the classical case.

The Semantic/Syntactic Distinction

In the introduction (Chapter 1), we claimed that the term information
refers to at least two different concepts, semantic information and syn-
tactic information. As we have seen in section (5.3) and (6.2), neither
Shannon Information nor Kolmogorov Complexity bear any formal rela-
tion to semantic information. Nevertheless, for special purposes one may
link either of the formalisms–in one way or another–to semantic infor-
mation. For instance, when we think of communication in an every day
sense, we usually want to convey something meaningful, i.e. a form of
semantic information. It’s not prohibited to use Shannon’s formalism to
formally describe a communication system in which such every day com-
munication takes place. In the same vein, one may analyze meaningful
texts and their patterns with the help of Kolmogorov Complexity.

Various interpretations

At first, we encountered at least two different interpretations of Shannon
Information–H(X) as a measure of uncertainty and H(X) as the opti-
mal statistical compression rate of messages emitted by an information
source. Based on the groundwork of [Uffink, 1991] and [Timpson, 2013],
we demonstrated (in a lengthy but necessary treatment) that only the lat-
ter notion of H(X) is adequate for our analysis. After all, we continued to
just examine the communication based interpretation of H(X).

Kolmogorov Complexity on the contrary, only offers one interpretation
from the beginning. K(x) denotes the length of the shortest program p

that generates the sequence x. Even though one might regard the length
of such a program as dependent on the universal probability m(x), we
aren’t faced with an (entirely) new interpretation of K(x) after all. The
notion of universal probability merely establishes a connection between
the length of programs and probabilities; based on the Kraft inequality
(4.6) one can deduce the probability m(x) that a random process might
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exactly generate the algorithm p that generates the sequence x.

Physical domain

Let’s start comparing the physical domain, i.e. those features in nature
each of the information measures can be applied to. While Shannon Infor-
mation is restricted to communication systems, the notion of Kolmogorov
Complextiy can in principle be used to describe any kind of object.

Regarding Shannon Information, note that ‘communication systems’
are not as restrictive as they might first appear to be. Shannon’s theory
is neither limited to the actual scenario of Alice and Bob communicating,
nor to a ‘natural’ or any other specific kind of communication system. As
pointed out in section (2.1), there are only a few constraints as what may
count as parts of a communication system. Basically, all that’s required
is a source with a probability distribution over some kind of output states
that have to correlate (according to a completely conventional success cri-
terion) to some states at the destination.9 Since ‘source’ and ‘destination’
can be understood with utmost generality, the scope of Shannon’s theory
is almost endless.

As argued above, the formalism of Kolmogorov Complexity doesn’t
come equipped with any kind of boundaries to what it can be applied
to–given a description method, essentially all kinds of ‘objects’ may be
analyzed in regards of Algorithmic Information.Whereas H(X) has to be
applied to the wider sense of communication systems, K(x) is even less
restricted, only having to look at whatever kind of object, with no need
to adhere to probability distributions. Note in addition, that like in the
case of Shannon Information, the term ‘object’ should be understood with
utmost generality, such that the term may also refer to an order of things
or systems like hurricanes or the solar system.

Overall, both the notions of H(X) and K(x) can be applied to a seem-
ingly endless physical domain.

9Note that the measurement apparatus/experimenter can be regarded as destination
too.
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The Type/Token Distinction

As we have seen, Timpson’s ‘two way strategy’ [Timpson, 2004] to differ-
entiate between Quantity- and Type Information in the case of Shannon
Information, could also be successfully applied toK(x). Based on an argu-
ment of scientific representation, we identified that Quantity Information
merely quantifies Type Information. While Shannon- and Kolmogorov
Quantity Information are abstracta for the reason that quantities can’t be
spatio-temporally located, we had to develop more elaborate arguments
for the respective notions of Type Information.

One explanation why we could identify the abstract notion of Type
Information featured in Shannon Information as well as in Kolmogorov
Complexity lies in an overarching theme. Our starting point for the com-
parison of Shannon information and Kolmogorov Complexity in Chapter
4 was the introduction of Coding theory. As has become evident through-
out this thesis, both Shannon information and Kolmogorov Complexity
crucially depend on the insights of coding. Whereas Shannon Information
denotes the optimal rate for the minimum average codeword length for a
pool of messages, Kolmogorov Complexity determines the minimal ‘code-
word length’ of an individual message. Both information measures rely
on the insights of Coding Theory and represent different strategies to op-
timize coding–a probability based and an individually based approach. At
the end of Chapter 4, we even showed that asymptotically, expected Kol-
mogorov Complexity equals Shannon Information

∑
p(x)K(X) = H(X)

(4.16).

The reason why we can conclude that Type Information is an abstract
notion in both cases, is that our here regarded syntactic information mea-
sures are bridged by Coding Theory. The multi-realizability of messages
allows us to successfully apply the type/token distinction to both cases!
Messages are an abstract notion encoded by the means of tokens. In
the case of Shannon Information we concluded that virtually all kind of
tokens (emitted from a source) suffice to encode messages. In the case
of Kolmogorov Complexity, we argued that virtually all kinds of ‘objects’
suffice to encode messages.
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Conventionality

The classical-case analysis revealed that both information measures are
entirely user dependent in the following sense: In the case of H(X) the
set up of the experiment (the communication system) is completely up
to the user. Additionally, the ‘choice of the experiment’ requires a certain
partition, i.e. we may partition the outcome of the source according to our
interests. Lastly, because of the lack of a natural success criterion, the
user has to evoke some conventional success criterion. Altogether, both
Shannon Quantity Information and Shannon Type Information are then
merely stipulated by human choice.10 In a similar fashion, Algorithmic
Quantity Information and Algorithmic Type Information almost entirely
depend on the description method and the subsequently stipulated coarse
graining, conventionally chosen by the users.

Save for the success criterion,11 the conventional elements in Shannon
Information and Kolmogorov Complexity show in fact great resemblance.
In the case of H(X), the set up of the experiments matches the choice of
a description method we encountered in context of K(x). Each procedure
ensures to pick out the tokens we might apply the respective formalisms
to; the elementary events (the outcomes of the source) in context of com-
munication systems and the kinds of patterns we extract from objects
when considering the complexity of such. In addition, we can then for
each information measure choose a ‘resolution of the tokens’. Regarding
Shannon Information, we have to choose a certain partition in order to de-
cide based on which characterstics of the tokens we want to distinguish
them (i.e.,‘perform our experiment’ on). For instance, do we differentiate
between different fonts and styles of the letter ‘A’ (5.8) as possible out-
comes of our source, or do they all count as instances of ‘A’?. Quite similar,
we have to decide on our coarse graining in the case of K(x). Consider-
ing our weather-example, one might agree to describe (the patterns of)
rain and no rain with ‘1’ and ‘0’. However, without a fixed coarse grain-

10To be clear, such a stipulation won’t change either notion of Type Information to be
a concrete entity though.

11Remember a success criterion isn’t required in the case of K(x), since (on a deter-
ministic TM) ‘successful’ is guaranteed by the usage of prefix free codes (i.e. programs).
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ing–here stipulating a certain time interval (perhaps minutes, hours or
days)–it won’t be possible to unambiguously extract a string of ones and
zeros from the weather. As upshot of this, we conclude that for quasi
similar reasons, Shannon Information and Kolmogorov Complexity are
highly conventional.

A few remarks. Of course the import of conventions doesn’t imply that
the here regarded syntactic information measures are completely useless.
The formalism of Shannon Information is ‘objective’ (in the sense that it’s
intersubjective) once the set up of the experiment, the experiment and
the success criteria are agreed on, such that the probability distribution
of the outcomes of the information source is fixed. For practical applica-
tion we can often agree on these criteria. In a classical communication
scenario with two English speakers e.g., we can calculate the channel
capacity based on the probability distribution over the letters. Without
Shannon’s formalism, much of modern telecommunications wouldn’t be
successful. In the same vein, we can use K(x) once we fixed the the is-
sues concerning how to extract patterns and describe them. The notion
of Kolmogorov Complexity helps us for instance, to compress otherwise
large data files.

6.6 Conclusion

Kolmogorov Complexity

Our analysis of Kolmogorov Complexity has shown that we might be
never able to predict the exact value of K(x) for a certain sequence x.
Such an unpredictability is not a defect of the formalism, but a result of
the Halting Problem of TMs. Motivated by the discussions about uncer-
tainty in the case of Shannon Information, we argued that K(x) isn’t a
measure of uncertainty. Thereafter, we could demonstrate that Algorith-
mic Information is indeed solely a measure of syntactic information and
doesn’t bear on notions of semantic information. We could then demon-
strate that the notions between Quantity- and Type Information of Chap-
ter 5 could be translated to the current case. For different reasons, both
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notions are abstract; the former since quantities are always abstract, the
later based on a type/token distinction. Eventually we illuminated that
Algorithmic Information lacks a natural ‘description method’ and thus
bears on conventional elements stipulated by the user. Additionally, fur-
ther conventional elements are imported by the degree of coarse graining.

We conclude that Algorithmic Information is an abstract and largely
conventional entity, which is independent from any notions of semantic
information.

The relation of H(X) and K(x)

Comparing H(X) and K(x) showed strong similarities between both in-
formation measures. As claimed in the introduction, neither Shannon
Information nor Kolmogorov Complexity bear any relation with seman-
tic information. Both formalisms eventually allowed us to pick out one
unique interpretation. As we’ve seen, each of these interpretations can
be applied to a virtually endless amount of communication systems or
objects respectively. The main insight from the framework (comparing
H(X) and K(x)) of this thesis thus far, is that both information mea-
sures are linked through Coding Theory and are in one way or another
concerned with encoding. Ultimately, we could come to the same result
regarding Quantity- and Type Information–all these notions of syntactic
information are abstract. Abstract messages or sequences can be gener-
alized by a great variety of tokens. However, in both cases such a gen-
erality comes with the price of not having natural constraints; no nat-
ural experimental set up, experiment, and success criterion in the case
of Shannon’s theory and (quite similar) no natural description method
and coarse graining that extract the patterns of objects. As a result, both
information measures are in the classical case at the bottom highly con-
ventional. In both cases, the absence of natural constraints has to be
fixed by the users of the theory.
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Chapter 7

Quantum Information theory

“Many classical quantities, e.g the Shannon entropy, have been successfully

generalized to quantum information and have become useful and powerful tools

to understand and further develop quantum information theory. In the case of

Kolmogorov complexity, though, the way to do so is not

straightforward.”[Mora et al., 2006, p.2]

– Mora et al.

QUANTUM mechanics is regarded as our most successful scientific the-
ory. It describes systems at what is thought to be their most funda-

mental level. Since the point when incorporating information theoretic
aspects gained momentum in physics (beginning of the early 1990s, see
Chapter 1), the ‘quantum world’ has been one of the largest domains of
its employment. Often the broad catch-all term Quantum Information is
used to embrace every aspect of information processing related to Quan-
tum mechanics.

However, in order to prevent us from falling into confusions about
terminology we suggest (based on [Nielsen and Chuang, 2000]) to dis-
tinguish between Quantum Information Theory (QIT) and what may be
called Quantum Information Science (QIS). Whereas the latter encom-
passes a wide range of applications such as quantum teleportation and
the no-cloning theorem, quantum computation, quantum cryptography,
quantum error correction, etc., QIT investigates much more elementary
quantum tasks. For the purpose of this thesis, we can then largely es-
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chew the applications of QIS and turn our analysis to QIT instead.1 De-
spite having refined our object of study, we’re still faced with a seemingly
obscure subject; as Nielsen and Chuang state

“quantum information theory may look like a disordered zoo
to the beginner, [...] because the subject is under develop-
ment, and it’s not yet clear how all the pieces fit together.”
[Nielsen and Chuang, 2000, p. 51]

This chapter shall provide a brief introduction to QIT, in order to make
the ‘disordered zoo’ look like an ordered one. Keeping the order of the
previous chapters, we start with the formal details of Quantum Shannon
Information in section (7.2), followed by Quantum Kolmogorov Complex-
ity in section (7.3). But first, we will provide some preliminaries of QIT.

7.1 Basic Quantum Information Theory

The difference between the classical descriptions of the world and Quan-
tum mechanics results from the different properties of classical and quan-
tum states. Classical bits, i.e. distinguishable Boolean states 1 and 0, are
generally macroscopic systems (for instance, a wire carrying a binary sig-
nal ). In quantum mechanics the classical Boolean states 1 and 0 can only
be represented by reliably distinguishable microscopic quantum states or
qubits |0〉 and |1〉.2 These states are called computational basis states and
correspond to the analogues of 1 and 0 in the classical case. Indeed, in
the quantum case, a distinction with zero probability of error can only
be achieved with orthogonal quantum states, e.g. horizontal and vertical
photon polarizations: |0〉 =↔ and |1〉 =l (see next paragraph for a more
detailed example). However, in contrast to classical mechanics, qubits
can also be in states of superposition, mathematically represented as a
complex linear combination of two orthogonal quantum states |0〉 and |1〉

1Remember, the applications of information theory to quantum mechanics, i.e. QIS,
are largely successful and rather uncontroversial, whereas the claims about the nature
of (quantum) information itself are multitude.

2’Qubit’ is taken to be the basic unit of quantum information. The term is constructed
from ‘quantum’ and the classical ‘bit’, used in Information Theory.
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Figure 7.1: Bloch sphere representing the state |ψ〉 = cos
(
θ
2

)
|0〉 +

eiϕ sin
(
θ
2

)
|1〉, where 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π.

(for photons e.g., we can find other polarizations such as l=
√

1
2
(|0〉+ |1〉)

or �=
√

1
2
(|0〉+ i |1〉)). Generalized, a qubit can be written as

|ψ〉 = α |0〉+ β |1〉 , (7.1)

where α and β are complex numbers such that |α|2 + |β|2 = 1 . For the dif-
ferent values of the pair α and β there are continuously many states |ψ〉
a qubit may have. This fact can be visualized in a Bloch sphere Fig. (7.1),
where any point on the surface of the sphere represents a pure state. This
picture leads to the idea that qubits may represent infinitely more infor-
mation than classical bits, with their two state space (a bit, represented
by a fair coin, may only have head or tails as outcome, represented by |0〉
and |1〉 in the Bloch sphere).
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Figure 7.2: Polarized light propagating in z-direction. The arrows repre-
sent the electric field ~E, oscillating in a plane orthogonal to z.

Polarized light as an example of single qubits.

Let’s, for reasons of illustration, regard an example of a practical realiza-
tion of qubits. In the following, we are using Bub’s ‘standard example’
of polarized light found in [Bub, 2016]. In general we treat light as an
electromagnetic wave, generated by the oscillation of electric ~E and mag-
netic ~B fields in a plane orthogonal in respect to the waves direction of
propagation. As seen in Fig. (7.2), light can be polarized according to the
direction in which ~E oscillates. Light can then, for instance, be linearly
polarized (i.e. when the direction of the oscillating ~E along a fixed di-
rection, e.g. denoted by ‘↔’ ) or circularly polarized (i.e. when ~E rotates
during the oscillation, above denoted by ‘�’, for instance ).

Optical devices, such as polarizing filters, analyzers, and beamsplit-
ters, can be used to transmit only certain components of ~E depending
on an angle θ, which denotes the angle of the optical axis of the polariz-
ing filter to the x axis. So for instance, the analyzer transmits only the
component of ~E oscillating in the θ direction

~Eθ = ~E cos θ, (7.2)
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accordingly blocking the orthogonal component

~Eθ+π
2

= ~E sin θ. (7.3)

With the insights gained from equations (7.2) and (7.3), and one of the
optical devices mentioned above, we are able to prepare single photons in
a particular state of polarization.

Moreover, we are now able to practically set up a two-state quantum or
qubit system. With a beamsplitter, for instance, an optical device which
splits incoming light beams in a ‘horizontally’ and ‘vertically’ polarized
component, and with an additionally installed photon detector for each
beam, we can create a binary-type measurement situation. By applying
the Born rule, we find that the probabilities for a single polarized photon
for leaving the beamsplitter (with the angle θ between the optical axis of
the beamsplitter and the polarization of the photon) are

p0 = cos2 θ, (7.4)

p1 = sin2 θ. (7.5)

In our case, the subscripts of 0 and 1 shall display that the observables in
our set up are associated with binary outcomes.

Entangled states

As we have seen, every quantum state of a system A can be written as

|ψ〉A =
∑

ci |ai〉 , (7.6)

with respect to an arbitrary set of orthonormal states |ai〉 (a basis). In or-
der to describe two or more qubit systems (let’s consider two quantum
systems A and B), one takes the tensor product of the corresponding
Hilbert spaces HA ⊗HB. A general pure state of the compound system
AB is then given by

|Ψ〉AB =
∑

cij |ai〉 |bj〉 , (7.7)
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where |ai〉 ∈ HA is a basis in HA and |bj〉 ∈ HB is a basis in HB. Such
a state |Ψ〉ABis called separable, if it can be expressed as a product state
|ψ〉A |φ〉B. In case that the coefficients cij are such that |Ψ〉AB can’t be
expressed as such a product state, then we call the state entangled.

7.2 Quantum Shannon Theory

Let’s now turn to the equivalent of Shannon’s classical information mea-
sure in quantum mechanics.3 Even though quantum information might
appear to be fundamentally different than classical information, we can
nevertheless find a quite similar framework for the quantum case. The
basic idea behind quantum Shannon information is to extend the no-
tion of compressibility to a probabilistically behaving source of qubits.
In that respect, Schumacher’s [Schumacher, 1995] is a great conceptual
breakthrough of QIT, proving the Quantum noiseless coding theorem–the
equivalent of Shannon’s noiseless coding theorem.

Just like in the classical setting, a quantum communication system
consists of a quantum signal source SQM , a transmitter, a channel CQM
with a quantum signal, a receiver RQM , and a destination DQM (for com-
parison see section (2.1)). In the first instance, a particular quantum
source A,4 can be thought of as a black box emitting a sequence of quan-
tum systems or signal states (which may be orthogonal or non-orthogonal).
Such an emitted string of qubits of length N , then looks like 5

ρ⊗N = ρ⊗ ...⊗ ρ, (7.8)

where ρ describes the density operator

ρ =
∑
i

piρi, (7.9)

3More (formally) detailed introductions to the topic can be found in [Bub, 2007] and
[Nielsen and Chuang, 2000].

4From here on we call our particular quantum sources, respectively destinations ′A′
and ′B′, in accordance with Alice and Bob, the usually chosen names in the communica-
tion context.

5For signal states being prepared in pure states, such a sequence may (more intu-
itively) look like |ψ1〉 |ψ1〉 |ψ0〉 ... |ψ1〉 |ψ0〉 |ψ0〉.
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with ρi = |ψi〉 〈ψi| and
∑

i pi = 1.
Similar to the classical case, we now may wonder how much a N -letter

quantum message like (7.8) can be compressed. A simple strategy would
be to compress a sequence like (7.8) according to the classical H(X). How-
ever, taking into account the quantum features of the tokens used in QIT,
the optimal compression was found by Schumacher to be

dimH =2N(S(ρ)+O(1)), (7.10)

where O(1) can be shown to be ‘ε’, analogous to the considerations of ε-
typical messages in context of Shannon’s information measure. In the
quantum case nearly all sufficiently long messages have support on a
typical subspace with dimension 2NS(ρ), achieving high fidelity by only
encoding this typical subspace.6 In (intuitive) analogy to our example in
the previous section, we can then compress a message consisting of N
photon states to a number of Wtyp = NS(ρ) photons. Here S(ρ) denotes
the von Neumann entropy

S(ρ) = −Trρ log ρ = −
n∑
i=1

λi log λi, (7.11)

where ρ is a density operator on a n-dimensional Hilbert space Hn and λi
the corresponding eigenvalues. In fact, in case of pure states, interpreting
the eigenvalues λi of the density operator ρ as probabilities pi, leads to
H(X) and S(ρ) being formally equivalent.

Let’s for a comparison regard some basic properties of S(ρ) [Nielsen and Chuang, 2000]:

1. The von Neumann entropy is non-negative and zero iff the state is
pure.

2. On a n-dimensional HilbertspaceHn, S(ρ) takes its maximum value
log n for maximally mixed ρ.

3. The Triangle inequality S(ρAB) ≥ |S(ρA)− S(ρB)| contrasts with the

6A second subspace will have a vanishingly small weight of ρ⊗N as the length
N → ∞. This subspace may be seen in analogy to the atypical messages in classical
Information Theory.
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classical analogueH(X, Y ) ≥ H(X), H(Y ), (compare (2.13)). Whereas
in the classical case a bipartite system exceeds the amount of infor-
mation contained in either part, this doesn’t hold in the quantum
case. When a composite system AB is in a pure state, then it follows
from the first property S(ρAB), that S(ρA) = S(ρB) (being nonzero if
the state is entangled). We can’t infer how the state was prepared
by observing the two subsystems A and B separately, instead infor-
mation is encoded in nonlocal quantum correlations.

4. S(ρ) satisfies the inequality S(ρ) ≤
∑

i piS(ρi) +H(pi).

Despite some formal similarities between H(X) and S(ρ) (the first two
properties), we have to consider some new features (property 3, for in-
stance), stemming from the different nature of quantum sources. In the
following we will depict how different alphabets of the quantum source
affect the encoding of information.

Pure orthogonal states

First, we may regard S(ρ) as describing an ensemble notion in the quan-
tum realm as an extension of Gibb’s classical notion of entropy. In that
case, A is thought of as emitting a sequence drawn of the ensemble or al-
phabet E = {|ψi〉 , pi} of pure states distributed according to the probabili-
ties pi, where ρi = |ψi〉 〈ψi|. However, only in the special case when the sig-
nal states |ψi〉 are orthogonal to one another and hence distinguishable,
the von Neumann entropy will equal Shannon’s measure H(A) = S(ρ). In
other words, a qubit encodes exactly one bit and the sequence might as
well have been send classically.

Pure non-orthogonal states

The much more interesting ‘quantum case’ on the other hand, occurs
when the signal states are no longer orthogonal and hence not distin-
guishable. How does this affect the relation between H(X) and S(ρ)?
The indistinguishability of the non-orthogonal states mirrors the limited
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amount of accessible information [Schumacher, 1995] when we are deal-
ing with quantum information. In order to determine how much informa-
tion content we can indeed access, we’ve to consider the mutual informa-
tion H(X : Y ) (2.18), quantifying how much having received Y helps us to
infer about X. In general, the maximum of such accessible information is
given by the maximum over all possible measurement schemes (POVM)

Acc(E) = maxH(X : Y ). (7.12)

A significant theorem by Holevo, the so called Holevo Bound, provides an
upper bound for maxH(X : Y ) on quantum channels

H(X : Y ) ≤ S(ρ)−
∑
i

piS(ρi)︸ ︷︷ ︸
≡χ(E)

, (7.13)

where χ(E) is the so called Holevo Information (sometimes also referred
to as Holevo Chi). With the fourth property of S(ρ), we then obtain

H(X : Y ) ≤ S(ρ)−
∑
i

piS(ρi) ≤ H(X). (7.14)

Before analyzing the important implications of this expression, let us
have a quick a look at another possibility of encoding quantum sequences.

Mixed states

The following quantum communication scheme is sometimes referred to
as ‘entanglement notion’. In this case, the letters are drawn from the
ensemble E = {ρi, pi}, such that our quantum source A contains mixed
states.

Once again though, we need to differ between orthogonal and non-
orthogonal states. If the letters are drawn from an ensemble where the
mixed states are mutually orthogonal, such that

Trρiρj = δij, (7.15)
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then these states are also perfectly distinguishable. In that case we can
essentially conceive the messages as classical and the possible compres-
sion reduces to H(X) qubits per letter once again. We could then, e.g., ex-
tend our Hilbert spaceHA of our mixed states to the larger spaceHA⊗HB,
creating the composite system AB (with the ‘auxiliary’ system B) and
choose a purification7 of each ρi, namely a pure state |ψ〉AB, such that

TrB (|ψ〉AB 〈ψ|AB) = (ρi)A. (7.16)

These pure states |ψ〉AB are mutually orthogonal, such that the updated
alphabet {|ψ〉AB , pi} can be compressed according to the classical case
H(X) again.8 Since ρi are non-orthogonal S(ρi) 6= 0, the third property of
the von Neumann entropy, tells us that the states are entangled–that’s
why one might call it entanglement notion. In case where a message
is transmitted with non-orthogonal mixed states, it’s impossible to com-
press such a message with S(ρ), but only with the Holevo Information

χ(E) = S(ρ)−
∑
i

piS(ρi). (7.17)

Holevo-, Accessible- and Specification Information

Reconsidering the inequalities (7.14), we have to take a closer look at the
concept of Holevo-, accessible and specification information again (the lat-
ter term is coined by [Timpson, 2013]). Overall, we can regard the Holevo
Information χ(E) (7.17) as a generalization of the von Neumann entropy
and therefore also of Shannon’s H(X). For pure states we obtain equal-
ity χ(E) = S(ρ), since S(ρi) = 0 for pure states; for orthogonal states we
have seen H(X) = S(ρ), so in this case χ(E) = H(X). For non-orthogonal
mixed states, none of these equalities holds. Because of that, it is fruit-
ful to analyze inequality (7.14) again. With the definition of accessible
information (7.12), the Holevo bound (7.13) and the Holevo Information

7Purification describes the case that every mixed state ρi acting on a finite-
dimensional Hilbert space can be regarded as the reduced state of some pure state of a
larger Hilbert space.

8While decoding the state, we can perform the partial trace TrB by neglecting sub-
system B, and so reconstruct the original message.
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(7.17), we obtain
Acc(E) ≤ χ(E) ≤ H(X). (7.18)

The unique features of quantum states, i.e. being possibly mixed or
non-orthogonal and thus not always being perfectly distinguishable, then
forces us to differentiate between (the already introduced) accessible in-
formation Acc(E) and specification information. Whereas the former de-
scribes the amount of information encoded into sequences of qubits that
can also be retrieved from such a message again (in a perfect scenario),
the latter enumerates the amount which is necessary for specifying qubit
sequences.

In a classical context, the amount of specification information never
exceeds the amount of accessible information, in fact, they always coin-
cide; a typical bit-strings of {1, 0} are (disregarding noise) always com-
pletely accessible and the information how to specify them, is given by
NH(X). This explains why we didn’t have to bother about the distinc-
tion between accessible information and specification information when
introducing classical information theory in the previous chapters.

However, as we have seen above, the situation is tremendously dif-
ferent in the quantum case. Here equality Acc(E) = H(X) merely holds
iff orthogonal quantum states are used for transmission. This can either
be achieved for orthogonal states in system A, or for the ‘entanglement
notion’ with a larger system AB, where the subsystem transmits mixed
orthogonal states. So just in the special case when orthogonal states are
sent can we achieve that (like in the classical case) the amounts of spec-
ification information and accessible information coincide. In general, we
therefore can’t encode more than one single classical bit into each qubit.

In all other cases, the Holevo information will bound the accessible
information from above (that’s essentially what the Holevo bound (7.13)
conveys), such that also

Acc(E) < H(X) (7.19)

holds. In other words, in principle it won’t be possible to distinguish
non-orthogonal states perfectly and hence in a communication scenario
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decoding at the destination won’t yield an unambiguous message so that
H(X) 6= χ(E). In converse, that means that an arbitrarily large amount
of classical information can be encoded in one qubit, without being able
to access it though.

7.3 Quantum Kolmogorov Complexity

With some delay in comparison to Shannon’s formalism, the notions of
Kolmogorov Complexity are slowly transferred into the quantum realm.
The main idea of Quantum Kolmogorov Complexity is to denote some
measure of complexity of an individual quantum state |ψ〉. Contrary to
the classical case, a quantum state can be in superposition, such that e.g.,

|ψ〉 =
1√
2
|001〉+ |11010〉 , (7.20)

compare the general case (7.6). The complexity C(|ψi〉) of the quantum
state is then defined as the shortest program that describes that state on
a universal quantum computer (universal quantum TM) that defines |ψ〉.

However, doing so is not straightforward and requires some further
scrutiny. First we have to fix a basic notion of (universal) Quantum
Turing Machines (QTMs). Note that defining a QTM doesn’t coincide
with overcoming the technical obstacles of actually constructing a work-
ing quantum computer (as stated above, such an undertaking belongs to
the category of QIS). Only after the section on QTMs we’re ready to de-
vote our attention to the different approaches in order to define Quantum
Kolmogorov Complexity.

7.3.1 Quantum Turing Machines

As we have seen in Chapter 3, the definition of Kolmogorov Complex-
ity crucially depends on UTMs. One of the main problems of defining
Kolmogorov Complexity for the quantum case, is how to implement (uni-
versal)QTMs. The main difference to the classical case is that ourQTM
will be able to produce and act on linear superpositions of classical con-
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figurations.
In 1985 Deutsch [Deutsch, 1985] suggested the first model of a QTM

based on an even earlier proposal by Feynman [Feynman, 1982]. Our
presentation in contrast largely relies on [Bernstein and Vazirani, 1997]
(and secondary literature there upon, e.g. [Mueller, 2007], [Benatti, 2009]),
who refined the theory in more detail.9 Accordingly, the composition of a
QTM is very much alike to classical TMs, containing:

1. An internal control unit CQTM with the associated Hilbert spaceHC ,
which is linearly spanned by the orthonormal control states q ∈ Q

describing the state of the control unit.

2. An input/output tape TQTM, with the associated Hilbert spaceHT ,10

where σ denotes the content of the tape cells.

3. A read/write head HQTM, with Hilbert space HH , where k describes
the position of the head.

Every QTM can then be described by means of a Hilbert space

HQTM = HT ⊗HC ⊗HH , (7.21)

with the configuration basis vectors|σ, q, k〉 providing an orthonormal ba-
sis.11 Just like its classical pendant (3.2), a QTM can be defined as a
7-tuple12

MQM = {Q,Σ,Γ, δ, q0, b,F} , (7.22)

9For the more interested reader, a more detailed treatment of QTM can then be
found in the just named sources.

10For reasons of convenience, we consider a special class of QTMs, with their tape
TQTM consisting of two different tracks, an input track I and an output track O, such
that HT = HI ⊗HO.

11The states of the respective Hilbert spaces are |ΨC〉 =
∑|Q|
i=1 ci |qi〉 ,with

∑
|ci|2 = 1;

|ΨT 〉 =
∑
σ∈

∑Z tσ |σ〉; and |ΨH〉 =
∑
k∈Z hk |k〉 ,with

∑
|ki|2 = 1.

12Note that in [Bernstein&Vaziriani Def.3.2] a QTM is originally defined as MQM =
{Q,Σ, δ}. However, in order to remain consistent with our defintion of classical TMs
given earlier, we added Γ, q0, b, and F to define MQM . Conceptually, the original defini-
tion of MQM isn’t altered though, we just used a different notation here. Γ, q0, b, and F
can simply be thought of as being included in the triplet{Q,Σ, δ}.
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where the variables are analogous to the classical case, in the sense that
the set of states Q and the set of type symbols Γ are each replaced by
a Hilbert space, such that b corresponds to a zero-vector and the initial
states q0 are either pure or mixed states. In addition, we can define the
Quantum transition function

δ = Q×Σ → C̃Q×Σ×{L,R}, (7.23)

where
∑

expresses the input symbols and C̃ expresses the set of complex
numbers which are efficiently computable.

Comparing the set up of a QTM to a classical TM, we note that the
quantum transition function resembles the probabilistic transition func-
tion in the classical case.13 Instead of having a single classical successor
state, a probabilistic transition function chooses between a set of avail-
able successor states according to a probability distribution. In a similar
fashion, the quantum δ assigns amplitudes instead of classical probabili-
ties.

7.3.2 Approaches to define Quantum Complexity

Contrary to the quite straightforward definition of Kolmogorov Complex-
ity in the classical setting, the quantum case (so far) doesn’t allow for
a smooth and straightforward application of algorithmic information.14

The main question is how to account for the quantum setting; should
we consider a classical or quantum reference machine? Should the in-
put/output tape of such be classical or quantum? Faced with a sheer
infinite amount of indistinguishable qubit strings, do we allow for small
errors? Answering these questions in different ways and applying sim-
ple combinatorics explains why we are faced with many different ap-

13We can find such a ’probabilistic transition function’ in so called Probabilistic Tur-
ing Machines PTM, which is a non-deterministic TM that chooses the successor state
according to a probability distribution.

14One may argue though, that the absence of a clear formalism for Kolmogorov Com-
plexity in the Quantum case is due to the recentness of the approach. Perhaps the future
holds a simple and straight forward solution.
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proaches.15 For an overview of these different approaches see Appendix
(10.4). As of now, it is still an open problem how all these approaches
relate to one another. A few words about how this affects the goal of the
current thesis will follow in the next chapter.

However, in the following we adapt the version of Quantum complex-
ity brought forward by [Berthiaume et al., 2001], as presented in [Benatti et al., 2006],
[Mueller, 2007], [Mueller and Rogers, 2008] and [Benatti, 2009]. Among
the reasons for choosing this options is that we want our results to be
as general as possible and allow for classical and quantum in- and out-
puts for ourQTM. Such aQTMwill naturally produce superpositions of
qubit strings of different length, called indeterminate or variable length
qubit strings (like e.g, seen in expression (7.20)) [Mueller, 2007]. Let
Hk(C{0,1})⊗k be the Hilbert space of k qubits (k ∈ N0), withC{0,1}written
for C2, as indication that we fix |0〉 and |1〉as the computational basis vec-
tors. The Hilbert space containing variable length qubit strings of length
k is then denoted by

H{0,1} ⊕∞k=0 Hk, (7.24)

with H≤n ⊕nk=0 Hk being a subspace of H{0,1}.

Defining length

We can then define the length l(σ) of a qubit string σ ∈ T +
1 (H{0,1}) as

l(σ) min
{
n ∈ N0 | σ ∈ T +

1 (H≤n)
}
, (7.25)

with T +
1 (H) denoting the density operators (i.e. positive trace-class op-

erators with trace 1). Moreover, we can define the ‘average length’ l(σ)

as
l(σ)Tr(σΛ), (7.26)

where Λ denotes the unbounded self-adjoint length operator Λ |x〉 l(x) |x〉
for all classical strings x ∈ {0, 1}. The idea to define the average length
Quantum Complexities is due to [Rogers and Vedral, 2008], who argue

15The following summary is partly based on [Mueller, 2007]; the following definitions
of the quantum algorithmic information measures then might slightly diverge from
their original formulation (not conceptually though).
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that it’s correlated to the average energy of the input. In addition, Mueller
[Mueller, 2007] argues that the thereof derived average-based notion of
Quantum Complexity has the advantage of accounting for applications
in statistical mechanics.

However, as we have seen earlier, there exist an infinite amount of
qubit strings of indefinite length that aren’t perfectly distinguishable,
such that determining the exact length is unfeasible. Like in the pre-
vious attempts to define Quantum Complexity, this infinite amount of
strings motivates us to allow for small errors. Basically, this can be done
in two ways. First, we can allow for a certain tolerance δ > 0, using ei-
ther fidelity or trace distance.16 Second, we can provide our QTM with
a parameter k ∈ N and demand an accuracy of the output to k digits.
As pointed out in [Mueller, 2007], the second procedure is analogues to a
classical algorithm that calculates π = 3.14... to the kth digit.

Quantum Complexities

With two different notions of length (7.25) and (7.26), and two options
to account for errors we obtain no less than four possible definitions of
Quantum Complexity

QCδ
U min {l(σ) : ‖ρ− U(σ)‖Tr < δ} , (7.27)

QCδ
U min

{
l(σ) : ‖ρ− U(σ, k)‖Tr < δ

}
, (7.28)

QCU min

{
l(σ) : ‖ρ− U(σ, k)‖Tr <

1

k
for every k ∈ N

}
, (7.29)

QCU min

{
l(σ) : ‖ρ− U(σ, k)‖Tr <

1

k
for every k ∈ N

}
. (7.30)

16Instead of the fidelity, as originally used in [Berthiaume et al., 2001], the trace dis-
tance is used in the following presentation.
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Let us add a few remarks. As described in [Benatti, 2009, §9], the exact
specification 1

k
isn’t important as long as f(k) is a computable function

such that f(k) → 0 for k → ∞. Furthermore, the choice of the code C for
encoding of the variables σ and k is irrelevant (up to some constant), as
long as the variables can both be computably decoded from C(σ, k).

Quantum Invariance Theorem

Analogously to the classical case, we can formulate the Invariance Theo-
rem (3.6) for the quantum case (given U is our reference machine)

QCU(ρ) ≤ QCM(ρ) + cM , (7.31)

for every quibit string ρ.17 Choosing a different reference machine U will
change the value of QC(ρ) only up to a constant.

Quantum Kraft Inequality

Additionally, Mueller and Rogers [Mueller and Rogers, 2008] showed that
there exists a quantum version of the Kraft inequality (4.6), holding for
arbitrary prefix-free Hilbert spaces (even if they don’t posses an orthonor-
mal basis of length eigenstates). Such a quantum version then reads as∑

i∈I

2−l(ei) ≤
∑
i∈I

2−l(ei) ≤ Tr
(
2−ΛP(H)

)
≤ 1, (7.32)

where {|ei〉}i∈I ⊂ H{0,1} is a prefix-free orthonormal system, spanning in
the Hilbert space H ⊂ H{0,1}, with equality for the three left terms if and
only if every |ei〉 is a length eigenstate.

Quantum Complexity of Classical Strings

At last, it can be demonstrated that quantum Kolmogorov Complexity
‘extends’ classical complexity in a similar way as von Neumann entropy
generalizes Shannon entropy [Mueller, 2007], such that

17Essentially the same relation can be shown for QCδU (7.27). Whether the Invariance
Theorem holds for the averagle length cases (7.29) and (7.30) is
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QC(|x〉) + c = K(x), (7.33)

with some constant c ∈ N and where K(x) denotes the classical Kol-
mogorov Complexity (3.5) of a classical sequence x ∈ {0, 1}. We then ob-
tain relation (7.33) by choosing the (classical) reference machine of K(x)

to be a reversible one. Since every reversible TM is also a (special case
of a) QTM, we can then apply the Quantum Invariance Theorem (7.31)
such that the above relation follows [Mueller, 2007].

7.4 Quantum Brudno theorem

Much like we’ve already seen in chapter 4, we can establish a connec-
tion between Quantum Shannon Information and Quantum Algorithmic
Information. In contrast to the classical case, where the different in-
formation measures are ‘directly’ related, the Quantum Brudno theorem
connects the quantum entropy rate s (of an ergodic quantum spin chain)
to the qubit complexity 1

n
QC(ρ).18 The notion of entropy- or complexity

rates is often useful to compare sequences of different lengths. In gen-
eral, the entropy rate of a (stochastic process) is defined as the limit of
the joint information measure (2.13)

h(Xi) = lim
n→∞

H(X1, X2, ..., Xn)

n
. (7.34)

Note that in case of a Bernoulli type information source, the entropy rate
will coincide with H(X). Next to h(X), we can also define a complexity
rate as

k(x) = lim
n→∞

1

n
K(x(n)), (7.35)

where K(x) is our well-known Kolmogorov Complexity (3.5) and x(n) de-
notes the first n digits of an infinite binary sequence x. Conjectured
by Zvonkin and Levin [Zvonkin and Levin, 1970] and proved by Brudno

18The reader may cautiosly interpret the term ‘entropy’ appearing in this subsection
as our notion of (syntactic) information.
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[Brudno, 1982], it can be shown that

k(x) = h(X)

for almost all sequences, where h(X) is supposed to denote the entropy
rate of a binary ergodic source and k(x) the algorithmic complexity rate of
trajectories in the phase space. Recently it was shown in [Benatti et al., 2006],
that the classical result can be adapted to the quantum case. Defining the
entropy rate of a quantum information source as

s(Ψ) = lim
n→∞

1

n
S(ρ(n)), (7.36)

where S denotes the von Neumann entropy (7.11) and Ψ a state of an
ergodic quantum source (A∞, Ψ). The Quantum Brudno Theorem then
states that the quantum complexity rates are constrained by an upper
and lower bound,19 such that

1

n
QCδ(q) ∈ (s− δ(4 + δ)s, s+ δ), (7.37)

1

n
QC(q) ∈ (s− δ, s+ δ), (7.38)

where s denotes the entropy rate of the quantum source and δ a certain
tolerance. The Quantum Brudno Theorem hence provides the link to re-
late our quantum notions of Shannon Information and Kolmogorov Com-
plexity.

7.5 Summary

At the beginning of the chapter we suggested to distinguish between
Quantum Information Science (QIS) and Quantum Information Theory
(QIT). While the former gives rise to many new potential applications,
the latter is crucial for our analysis of different notions of information in
respect to their ontology.

19The lower bounds are given by 1
nQC

δ(q) > s − δ(4 + δ)s and 1
nQC(q) > s − δ; the

upper bounds are given by 1
nQC

δ(q) < s+ δ and 1
nQC(q)

119



In the case of Quantum Shannon Information, we have seen that the
same concepts of the classical case have been applied to the quantum case.
Instead of a classical communication system, we’re faced with a quantum
communication system, i.e. we replaced a classical source, emitting clas-
sical states with a quantum source, emitting quantum states. Due to the
fact that quantum states have features that classical states can’t have
(e.g., being mixed or in superposition), we introduced the so called Holevo
Information χ(E) (7.17) as new compression rate. Nevertheless, we can
at most encode one classical bit for one qubit.

However, faced with a large number of different approaches in the
quantum case, Quantum Complexities are still very much in the spirit
of classical case, such that the main concepts haven’t changed. Basically,
the goal is to find the shortest program that generates a qubit string on
a quantum computer. We introduced the notion of a universal Quantum
Turing Machine, ‘translated’ the classical concept of length to the quan-
tum case and derived a number of Quantum Complexities (7.27)-(7.30).
Subsequently we could show that many of the characteristics of classi-
cal Kolmogorov Complexity, like the Invariance Theorem or the Kraft
Inequality, have in fact quantum analogues.

At last, we demonstrated that the notions of quantum Kolmogorov
Complexity rates coincide with the von Neumann entropy rate of ergodic
quantum information sources.
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Chapter 8

Interpreting Quantum
Information

“Quantum information is a new concept with no classical analog, and it is

important to distinguish it from the state identity. [...] In more formal terms,

we would aim to formulate and interpret quantum physics in a way that has a

concept of information as a primary fundamental ingredient.”[Jozsa, 2004, p.

79]

– Josza

IN the previous chapters, we have laid the foundation to finally answer
the question of What’s the ontological status of information in physics?

First, introducing the mathematical formalism of Shannon information
and Kolmogorov Complexity helped us interpreting each of the respec-
tive information measures in the classical case and lay the foundation
of this chapter. As we shall argue in the following, much of our anal-
ysis from the classical case can be applied to quantum information as
well.1 To do so, we briefly characterize Quantum Shannon Information
and Quantum Kolmogorov Complexity and point out the most important
differences to the classical case. Analogously to the previous chapters, we
then continue by dismissing any relation with uncertainty and semantic
information, and apply the type/token distinction. Thereafter, we ana-

1Since the lion share of work has been done in chapter 5 and 6 already, both quantum
Shannon information and quantum Kolmogorov Complexity are treated in the same
chapter.
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lyze to what extent the notions of quantum information are conventional.
Finally, we draw a conclusion to what degree both quantum information
measures are compatible.

8.1 A few words about Quantum Shannon In-
formation

The difference between classical Shannon Information and Quantum Shan-
non Information emerges due to the different properties of classical and
quantum states; only orthogonal quantum states are reliably distinguish-
able with zero probability, for instance. The aim of Quantum Informa-
tion Theory is then to determine the optimal rate at which quantum se-
quences can be communicated, considering the statistical characteristics
of a communication system with quantum properties. As we have seen
in section (7.2), for encoding a qubit sequence of length N , we require
a Hilbert space with minimum dimension 2N . According to the Schu-
macher coding theorem [Schumacher, 1995], very much alike to the clas-
sical case, Quantum Shannon Information characterizes the best rate of
compression solely based on the given quantum and statistical properties
of the system. If ρ denotes the average density operator of a quantum
source, we then only need NS(ρ) qubits (in case the sequence consists
only of pure states) to specify our quantum message with high fidelity in
a 2NS(ρ)-dimensional space.

The Relation of Classical and Quantum

While the concept behind Quantum Shannon Information is based on the
insights of classical Information Theory, various scholars have come to
different conclusions about the relation between the classical and quan-
tum concepts. Some scholars embrace the view (e.g., compare Richard
Josza’s statement in the epigraph) that because quantum information
displays many new features that are unlike to the classical case, an en-
tirely new concept is needed. On the other hand, one might conclude that
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‘quantum information doesn’t exist’ (compare to [Duwell, 2003])2 and ar-
gue that Quantum Information is merely a ‘synonym for an old concept’,
in the sense that Quantum Information is basically Shannon’s classical
theory operating with quantum states.

In this thesis we sympathize with the reverse position, namely that
classical information should instead be regarded as a subcategory of quan-
tum information;3 Shannon Information is a special case of Quantum In-
formation, operating with (classical) orthogonal states. Our view is cor-
roborated by our findings of the previous chapter, where we saw that the
classical Shannon Information H(X) is equal to the Holevo Information
χ(E) (7.17) iff orthogonal states are used to encode Shannon Type Infor-
mation. In all the other cases where the states aren’t orthogonal, χ(E)

has to be chosen as the generalized information measure.4

Although the notion of Quantum Information in a communication set-
ting is ultimately based on Holevo Information–and one might claim to
have, as Josza claimed, a new concept after all–our extensive analysis of
the classical case shall tremendously help us to understand the nature
of Quantum Shannon Information. As it turns out, we can essentially
repeat our arguments about Quantity and Type Information in the fol-
lowing sections.

Quantity and Type Information

The notion of Quantity Information in the quantum case is dealt with
quickly; we then may use the exact same description of Shannon Quan-
tity Information of section (5.4). In other words, it’s irrelevant for Quan-
tity Information whether the tokens of the regarded communication sys-

2As pointed out in [Duwell, 2008], the author has since then stepped back from his
view.

3Of course this view is not entirely new. Jeffrey Bub, for instance, also holds such
a position [Bub, 2007], [Bub, 2012]. As well see in section (8.5.1) though, the differ-
ence in dependence on conventional elements in the classical and quantum case might
raise some questions about the view that Quantum Information is a generalization of
Shannon Information

4Of course one can also use the von Neumann entropy S(ρ), as long as one doesn’t
use mixed non-orthogonal states. As seen in χ(E) = S(ρ) −

∑
i piS(ρi) (7.17), the von

Neumann entropy is a special case of χ(E) and obtained when
∑
i piS(ρi) = 0.
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tem are classical or bear any extra quantum properties. After all, the
Shannon Quantity Information remains an abstract entity in the quan-
tum case too.

But what about Type Information, don’t the properties of ‘quantum
tokens’ render our original analysis useless? Not at all! Even though
we could only partially introduce the admittedly intriguing features of
Quantum Shannon Information (‘entanglement’, ‘teleportation’, etc., to
only drop a few key words), these features don’t affect our previous ar-
gument drawn in the classical case. The Schumacher coding theorem as-
sures that Quantum Information is still an optimal compression scheme
for coding. As such, we’re now entitled to use ‘quantum tokens’ to en-
code our messages. So instead of classical tokens (or orthogonal states)
we use qubits to generate a sequence which encodes our Quantum Type
Information. One may then choose from a variety of ‘quantum tokens’
to instantiate a certain sequence type–e.g., polarized photons (as seen in
the example of previous chapter), the spin of electrons, etc.. Despite often
not being able to identify which sequence was sent (see section (7.2)), the
basic argument from the notions of Coding Theory doesn’t change; the
multi realizability of types still allows us to constitute Type Information
in multiple ways by the means of tokens. We thus conclude that Quantum
Type Information is an abstract entity too.

8.2 A few words about Quantum Complexity

Let’s start this section with a disclaimer. Among the fairly recently es-
tablished field of Quantum Information Theory, Quantum Complexity
is among the even more recent developments. The rest of the analysis
should therefore be taken with the grain of salt that the notion of Quan-
tum Complexity is more prone to changes than any other notions of well
established theories.
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The Relation of Classical and Quantum

Like in the case of Shannon Information, the properties of qubit strings
forced us to adapt Kolmogorov Complexity to the quantum case. Most no-
tably we had to introduce the notion of universal QTM and explain how
to account for indeterminate qubit strings. So instead of determining the
shortest program p to generate a classical bit string x consisting of {0, 1},
the target of Quantum Complexity are uncountably many qubit strings
like |x〉 = 1√

2
|001〉+ |11010〉. Since we lack the resources to calculate each

qubit string |x〉 with infinite precision, we had to grant the description of
the state a certain margin of error.

However, we don’t have to conceive Quantum Complexity as an en-
tirely new information measure. Aside from using the same basic idea,
we’ve seen that QC(|x〉) + c = K(x) (7.33) holds, such that the notions of
Quantum Kolmogorov Complexity coincide with classical K(x) for classi-
cal strings. Since this view suggests that QC(|x〉) can ‘handle’ both clas-
sical and qubit strings (whereas K(x) can merely handle the former), we
therefore might regard Quantum Complexity as a generalization of clas-
sical Kolmogorov Complexity.

Quantity and Type Information

Just like in the case of Quantum Shannon Information, we can essen-
tially use the same description of Quantity Information for Quantum
Complexity (save for replacing ‘sequence x’ with ‘state |x〉’). Switching
from classical to quantum strings doesn’t change the way we regard Quan-
tity Information. Algorithmic Quantity Information remains an abstract
entity in the quantum case.

In the same vein, our original argument about the abstractness of
Algorithmic Type Information doesn’t suddenly change because we con-
sider qubit strings |x〉 instead of classical strings x. While the tokens such
strings are composed of certainly have changed (and especially their re-
spective properties), the main argument about the encoding of Algorith-
mic Type Information in such sequences hasn’t. In the quantum case, Al-
gorithmic Type Information is instantiated by multiple realizable qubit
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strings; Quantum Algorithmic Type Information remains an abstractum.

8.3 Quantum Information As a Measure of
Uncertainty?

In this section we argue that neither Quantum Shannon Information nor
Quantum Complexity are suitable as measures of uncertainty. In both
cases, the arguments basically work as already seen in Chapter 5 and
Chapter 6.

Quantum Shannon Information

The ‘easiest’ argument against Quantum Shannon Information as a mea-
sure of uncertainty is to simply copy our argumentation of the classical
case: There exists a whole class of measures of uncertainty Ur(P, µ) (5.1)
and only for r = 0 (and taking the logarithm) we might obtain H(X).

However, failing to find an additional axiom to pick out H(X) as a unique
uncertainty measure, leads to a non-tolerable discrepancy with H(X) as
a uniquely derived information measure.

Note that at first, it is questionable whether or not our new quantum
formalism falls into Ur(P, µ) for any value of r, in order to qualify as a
measure of uncertainty. But even if our new formalism would fall into
the class of Ur(P, µ), it actually doesn’t matter since that doesn’t provide
us with a plausible uniqueness requirement. The classical argument thus
still holds.

Quantum Complexity

Quantum Complexity doesn’t qualify as a measure of uncertainty either.
Quantum Complexity isn’t based on what’s key to Uffink’s concept of
Ur(P, µ), i.e. being based on the notion of probability distributions. In
other words, we won’t be able to find a value for r to pick out Quantum
Complexity.
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8.4 Semantics in Quantum Information?

In Chapter 5 and Chapter 6 we argued that in the classical case, neither
Shannon Information nor Kolmogorov Complexity are concerned with
any aspects of semantic information. Essentially, the very same argu-
ments of either information measure in the classical case, can be repeated
in the quantum case.

No Semantics in Quantum Shannon Information

Our original argument against semantic information in the Shannon for-
malism was based on two observations. First, virtually any type of tokens
can be used for transmitting a message in a communication system. The
somewhat exotic example of an alphabet consisting of fruit and vegeta-
bles was supposed to illustrate that the tokens themselves are mean-
ingless. Second, we argued that what’s encoded in a sequence might be
meaningful, but that H(X) has no means to denote any value for measur-
ing semantic information content.

Turning to the quantum case, we argued that the Schumacher cod-
ing theorem is very much in the same vein as Shannon’s coding theorem,
describing the minimal resources needed to transmit quantum informa-
tion. Instead of classical tokens, quantum information is based on a se-
quence of quantum states (or string of qubits). The source SQM either
emits single pure states or quantum states which are parts of larger en-
tangled systems. However, by exchanging classical states with quantum
states, the original arguments from the classical case aren’t altered at all!
Whether the tokens for transmitting messages are concrete letters, elec-
tronic impulses, fruits and vegetables or quantum states, doesn’t matter.
Admittedly, quantum states have some features which won’t come along
with classical objects (superposition, for instance), but none of these fea-
tures plausibly account for semantics.

Similarly, replacing ‘classical’ tokens with quantum tokens, doesn’t es-
tablish a connection to semantic information. The formalism of Quantum
Shannon Information isn’t suitable to measuring meaning either.
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No Semantics in Quantum Kolmogorov Complexity

Like in the case of Quantum Shannon Information, the ‘transition’ of Kol-
mogorov Complexity to the quantum case doesn’t change our original ar-
guments against semantic elements. Our notions of quantum complexi-
ties don’t allow to quantify semantic information either. Analogously to
ordinary Kolmogorov Complexity, the syntactic features of a string may
allow us to find a short algorithm operating on a QTM to generate that
string. The major differences to the classical case are the inclusion of
quantum sequences and QTMs as reference machine. But the quantum
characteristics of strings or reference machines are inept to account for
semantic information. Quantum complexity hence isn’t related to seman-
tic information.

8.5 Is Quantum Information conventional?

So far, basically all of our conclusions from Chapter 5 and 6 also hold for
the notions of Quantum Information. As we’ll argue in the following, the
main differences (relevant for the ontological status of information) be-
tween classical and Quantum Information are manifested by a different
degree of conventionality. Remember, previously we argued that Shan-
non Information and Kolmogorov Complexity are almost completely stip-
ulated by those who set up a communication system or determine how to
extract the patterns. To quite an extent, Quantum Theory constrains us
in our completely conventional choices.

8.5.1 Quantum Shannon information

To avoid the completely conventional elements of the classical case, we
have to find criteria that fix the experimental set up and the experiment,
and provide a ‘natural’ success criterion.
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Quantum Fidelity

Whereas the success criteria of classical Shannon Theory (see section
(5.5)) offer us no clue on how to constrain what counts as successful
communication, the situation is different for quantum communication.
The relation between the theoretical insights of Quantum Theory and
the corresponding experimental procedures allow us to exploit the quan-
tum properties of the states emitted by the source, to find ‘natural con-
straints’. These constraints are ‘natural’ in the sense that they’re dictated
by the predictions of Quantum Theory. Rejecting these constraints would
be rejecting the empirical success of Quantum Theory.

Duwell [Duwell, 2008] advocates that the so called entanglement fi-
delity–a special case of ‘regular’ quantum fidelity–is suitable to show that
for quantum communication to be successful, the (quantum) states repro-
duced at the source have to some extent behave like the states emitted
from the quantum information source. Based on Uhlmann’s transition
probability formula [Uhlmann, 1976], Josza [Jozsa, 1994] proposed a fi-
delity for mixed quantum states to be

F (ρ1, ρ2) =
(

Tr(
√
ρ1ρ2
√
ρ1)

1
2

)2

, (8.1)

where ρ1 and ρ2 denote the density matrices of two quantum states re-
spectively. A helpful interpretation of the above expression can be found
in [Nielsen and Chuang, 2000, §9.2]: The square-root quantum fidelity,
equals the square-root fidelity5

√
F (ρ1, ρ2) = min

{Em}

√
F (pm, qm) (8.2)

of the probability distributions induced by the best discriminating mea-
surement between the states ρ1 and ρ2. The probability distributions for

5In [Miszczak et al., 2008] it is pointed out that the definition/notation of quantum
fidelity F is slightly ambiguous (remember the quote in the introduction of Chapter
7, in which Quantum Information Theory is compared to a ’disordered zoo’). The
presentation of quantum fidelity in [Duwell, 2008] for instance, basically relies on
[Nielsen and Chuang, 2000, §9.2]. However, the definition of Nielsen and Chuang
slightly diverges from the original ones given in [Uhlmann, 1976] and [Jozsa, 1994]. In
[Nielsen and Chuang, 2000] the quantum fidelity is defined as

√
F instead of eq. (8.1),

which is based on Uhlmann’s and Josza’s publication.
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these states are pm = Tr(ρ1Em) and qm = Tr(ρ2Em) corresponding to a
POVM measurement {Em}. The fidelity is bounded between 0 and 1, ob-
taining the maximum value when the distributions are identical. Based
on Uhlmann’s theorem, the fidelity is the maximum overlap of all pos-
sible purifications of the two states ρ1 and ρ2.6 According to expression
(8.2), squaring the overlap provides us with the probability that the two
compared purified systems pass a test whether they are the same or not
[Duwell, 2008].

Since the purification involves the entanglement of our original sys-
tem A with an auxiliary system B, it is useful to define the notion of
entanglement fidelity F (ρ,∆), where quantum system AB is prepared in
state ρ and ∆ denotes a quantum operation, a process that may describe
the transmission in a quantum communication scenario. Based on eq.
(8.1), the entanglement fidelity provides us with a measure of how well
the entanglement is preserved and can then be used as a success cri-
terion. By choosing a particular δ, we can fix the bound of acceptable
fidelity ≥ 1− δ. Based on the above insights it’s guaranteed that a length
N pure state ρ (a sequence such as |ψ1〉 |ψ1〉 |ψ0〉 ... |ψ1〉 |ψ0〉 |ψ0〉) will have a
probability ≥ 1− δ to be obtained in a measurement in the computational
basis at the destination.

Overall, ensuring that the entanglement fidelity is high, not only yields
a preservation of local behavior of the systems that compose a sequence,
but also preserves any entanglement present. Unlike in the classical
case, quantum theory hence offers an entanglement based constraint for
a success criterion. We conclude that choosing a success criterion is no
longer largely conventional.

The experimental set up and the experiment

The argumentation above already partially illuminated that QIT sets
boundaries on possible quantum communication systems and the tokens
used in a communication scenario. In contrast to classical Shannon In-

6When the states are pure, an overlap is considered to be
√
F (ρ1, ρ2) =(√

〈ρ1 | ρ2〉 〈ρ2 | ρ1〉
) 1

2

= (|〈ρ1 | ρ2〉|)
1
2 . For ’purifications’ see (7.16).
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formation, we can no longer use any kind of tokens to encode informa-
tion, we have to rely on ‘quantum tokens’. Regarding the experiment, we
can of course still conventionally decide how to partition the outcomes of
the source. However, we can no longer stipulate any kind of elementary
events by the choice of an experimental set up. A quantum information
source ought to emit the quantum tokens that can (at the most basic
level) be described as density operators on a Hilbert space and ‘behave’
according to quantum theory; the choice of the experiment is fixed to the
extent that the finest possible outcomes have to be describable by quan-
tum theory. What elementary events can be identified within the states
produced by a quantum information source is hence no longer completely
dependent on the user.

However, as Duwell recently pointed out [Duwell, 2017], the constraints
set by Quantum Theory might have a bearing on our view that Quantum
information is in fact a generalization of classical Shannon Information
(as advocated earlier). Since the latter is completely free of any con-
straints (whereas Quantum Information is not), we might encounter the
situation where the transfer of Shannon Information doesn’t entail the
transfer of the quantum analogue. It appears therefore puzzling whether
the quantum version can indeed be regarded as a generalization of the
classical one.

8.5.2 Quantum Kolmogorov Complexity

Let’s now investigate to what extent Quantum Complexity suffers from
absence of an effective description method. In the classical case, K(x)

only displays an intersubjective measure of algorithmic information as
far as the sequence x under scrutiny is somehow a priori given. But
in order to determine the complexity of objects an effective description
method is needed. On top of this, such a description method requires a
certain coarse graining to be unambiguous; overall a seemingly hopeless
task in the classical case.

In the case of Quantum Kolmogorov Complexity however, we seem to
be much more restricted in the first place. The introduction of QC(|x〉)
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was intended as a measure of the descriptions of quantum states only
and thus doesn’t have to account for descriptions of classical macroscopic
‘objects’ like apples, paintings or the weather.

Description Method & Coarse Graining

Much more important, quantum theory provides us with a successful
rigid formalism that allows us to describe quantum states. Basically, a
light version of this formalism has been presented in the previous chap-
ter, where we saw the general notion of a quantum states (see eq. (7.6))
and provided polarized light as an example of single qubits. So unlike the
classical case, where we are completely clueless of how to extract patterns
from the myriad of possible macroscopic objects, the insights of quantum
theory force us to refer to quantum states in a certain predefined way.
We can then no longer fine grain at will, like in the continuous classical
case. At the most fundamental level we’re limited by the precision of our
measurement apparatus and Heisenberg’s uncertainty principle–we can’t
choose ‘finer’ elementary events. However, unlike the classical case, the
stipulation of a computational basis seems to affect Quantum Algorith-
mic Information to some degree. While the Quantum Brudno Theorem
(see section (7.4)) ensures that QC is upper and lower bounded, thus con-
straining Quantity Information, the effects on Type Information are yet
unsolved. Note in addition, that we’re in principle still able to stipulate
whatever kind of coarse graining we deem reasonable, save for that at a
larger scale the described object might no longer be practically conceiv-
able as a quantum state.

So, in other words, by adhering to the already given framework of
quantum theory, we have to–to some extent–rely less on some of the con-
ventional context-dependent choices of the classical case. By restricting
our description to ‘quantum tokens’ and setting a lower bound for our ‘res-
olution’, quantum theory dismantles a good portion of the conventional
elements of classical Kolmogorov Complexity. Of course quantum theory
in itself is not free from featuring some arbitrary conventions–but in the
end no scientific theory is! To some extent virtually every scientific the-
ory has to rely on conventions (e.g., how do we set up a coordinate system,
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etc.). But these kinds of conventions were not part of our worries about
conventionality anyway. Initially we were concerned about how to estab-
lish a successful description method that may extract patterns from all
kinds of (macroscopic) objects, moreover specifying which degree of coarse
graining ought to be appropriate. On the other hand, Quantum Theory
is a well established theory, corroborated by enormous empirical success
and as such it offers us a stable framework (one that is absent in the clas-
sical case) to rely on. Rejecting the description method of quantum theory
would therefore amount to rejecting one of our most successful scientific
theories over the reasons of some conventions.

8.6 Conclusion

In the end of chapter 6, we compared classical Shannon information with
Kolmogorov Complexity and concluded that they are compatible with re-
spect to their ontological status. Can we come to a similar conclusion for
the quantum case?

Quantum Shannon Information

As the analysis in the previous sections has shown, the only major aspect
in regard to the ontological status of information that has changed in re-
spect to the classical case is conventionality. Admittedly, Quantum Infor-
mation has many other ‘new’ properties that classical Shannon Informa-
tion doesn’t have, but as explained in the cases of Quantity and Type In-
formation, uncertainty, and the semantic/syntactic distinction, they have
no effect on our already earlier made arguments. So similarly to the
the classical case, Quantum Shannon Information characterizes the com-
pressibility of a quantum information source that emits quantum tokens
according to a certain probability distribution. On this view, Quantum
Quantity and Type Information both remain abstracta that obey the se-
mantic/syntactic distinction and don’t suffice as a measure of uncertainty.

Regarding the degree of conventionality, Quantum Shannon Informa-
tion can no longer be largely stipulated by human choice–to some degree
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quantum theory fixes the experimental set up and sets a lower bound
of fine graining. However, how to account for the conventionality of the
partitioning still remains an open topic.

Quantum Kolmogorov Complexity

Quite analogously to Quantum Shannon Information, our analysis has
shown that the main difference regarding the ontological status of QC in
respect to the classical case is once again ‘conventionality’. Neither the
introduction of QTMs nor the examination of qubit strings (instead of
regular strings) has shifted our views about the abstractness of Quan-
tity and Type Information, Kolmogorov Complexity as a measure of un-
certainty, and the relation of semantic information with QC. Quantum
theory fixes some of our initial concerns about the user dependent con-
tingencies. However, while our fine graining is to some extent restricted,
quantum theory has us to conventionally choose an orientation of our
computational basis and doesn’t resolve the conventional issues around
coarse graining.

The Relation of the Information Measures

Lastly, a few words about the relation between Quantum Shannon Infor-
mation and Quantum Kolmogorov Complexity. At the end of Chapter 6
we concluded that the classical notions of Shannon Information and Kol-
mogorov Complexity are compatible in the sense that neither of the two
infringe the semantic/syntactic distinction nor ought to be conceived as
a measure of uncertainty. Both information measures turned out to be
abstract entities. In addition, both notions of information are connected
through Coding Theory and each substantially depends on the contingen-
cies of the user.

In respect to the quantum case, only the latter two aspects have changed
notably. First, instead of the intuitive appealing connection that the ex-
pected Kolmogorov Complexity asymptotically equals Shannon Informa-
tion, we presented a quantum version of the Brudno Theorem in section
(7.4). Second, we argued that the insights of quantum theory affect the
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large degree of conventionality of the classical case.
Note, whereas the above aspects are certainly different in respect to

the classical case, they don’t dramatically change the compatibility of the
ontological statuses of the quantum information measures. Both Quan-
tum Shannon Information and Quantum Kolmogorov Complexity, appear
to be generalizations of their respective classical versions. Even though
the precise connection of how they’re formally related has changed in re-
gard to the classical case, they are both still related! Additionally, while
being almost completely conventional in the classical case, both are to
some extent less dependent on the stipulations of the user in the quan-
tum case; the experimental set up and the extraction of patterns (both
responsible for picking out the tokens we examine), are much more re-
stricted by having to pick out ‘quantum tokens’. In the case of Quantum
Kolmogorov Complexity we are then additionally confronted with stip-
ulating a computational basis, which due to the Quantum Brudno The-
orem though, doesn’t appear to have a large effect on the value of QC.
Lastly, the subjectivity of partitioning and coarse graining seem to re-
main unresolved in either case. Quite remarkably, the extent the degrees
of conventionality the here compared information measures go hand in
hand–in the classical case both are largely conventional, in the quantum
context much less so.
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Chapter 9

Results & Outlook

WE started this thesis with the observation that we appear to live in
an Information Age, but that the absence of a theoretical under-

pinning of ‘information’ is somewhat scandalizing. One feature of said
Information Age is the application of information theoretical aspects into
modern (quantum) physics. Even though physics quite successfully incor-
porates so called ‘measures of syntactic information’, each in fact having
their own rigorous theoretical underpinning, we are still faced with a
‘scandalizing’ huge variety of claims about the ontological status of infor-
mation in physics.

In this thesis we were able to partially reduce ‘the scandal’ by show-
ing that the arguably two most prominent syntactic information mea-
sures–Shannon InformationH(X) and Kolmogorov ComplexityK(x)–have
quasi matching ontological statuses. Our analysis has shown that in
the classical case, each information measure is independent of seman-
tic information and shouldn’t be regarded as a measure of uncertainty.
Furthermore, H(X) and K(x) are related through the insights of Coding
Theory and each notion of information ought to be conceived as an ab-
stract entity. Based on a type/token distinction, we showed that concrete
tokens instantiate abstract Type Information. However, in the classical
case both information measures suffer from a lack of natural constraints
that determine what the tokens actually instantiate. As a result, Shan-
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non Information and Kolmogorov Complexity have to almost entirely rely
on the conventional stipulations of the users.

Regarding the quantum case, we could demonstrate that our results
about the semantic/syntactic distinction, uncertainty, and abstractness
remain unaltered; the arguments from the classical case could virtually
be copied. Due to the ‘natural constraints’ of quantum theory though,
the degree of conventionality has to some extent decreased in respect
to the classical case. The users can no longer arbitrarily stipulate any
kind elementary events of a communication system or extract patterns
from all kinds of ‘objects’ which are thought to instantiate one of the re-
spective Type Information kinds. The choice of partitioning and coarse
graining–and in the case of QC additionally the choice of a computational
basis–seem to remain a substantial factor of convention though.

A few remarks. Reconsidering the claims about the ontological sta-
tus of information in physics, it’s neither the abstract nature of H(X)

nor K(x) which stops us from conceiving such information measures as
‘physical’. In case we don’t equate ‘physical’ with ‘material’ but with ‘de-
scribable by the means of physics’, we might deem a lot of abstract enti-
ties (e.g., entropy or heat) as being ‘physical’. Instead of the abstractness
then, the crux lies in the large degree of conventionality of information
in physics. Since in the classical case Shannon Information and Kol-
mogorov Complexity are almost completely conventional, they offer no
grounds to be regarded as being part as an independent entity in the cat-
alog of the world’s furniture. Regarding the respective quantum notions
however, the case might look different as the conventional choices by the
users are in part replaced with the ‘natural constraints’ of quantum the-
ory. To what extent such a replacement suffices to point out either notion
of quantum information as ‘independent of us’ remains an open question
and ought to be the direction of further research.
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Chapter 10

Appendix

10.1 Letter frequencies

letter frq [%] letter frq [%]
e 12.02 y 2.11
t 9.10 w 2.09
a 8.12 g 2.03
o 7.68 p 1.82
i 7.31 b 1.49
n 6.95 v 1.11
s 6.28 k 0.69
r 6.02 x 0.17
h 5.92 q 0.11
d 4.32 j 0.10
l 3.98 z 0.07
u 2.88 ä n.d.
c 2.71 ö n.d.
m 2.61 ü n.d.
f 2.30 ß n.d.

letter frq [%] letter frq [%]
e 16.93 b 1.96
n 10.53 w 1.78
i 8.02 f 1.49
r 6.89 k 1.32
s 6.42 z 1.21
t 5.79 v 0.84
a 5.58 p 0.67
h 4.98 ü 0.65
d 4.98 ä 0.54
u 3.83 ß 0.37
l 3.60 ö 0.30
c 3.16 j 0.24
g 3.02 y 0.05
m 2.55 x 0.05
o 2.24 q 0.02

Table 10.1: Letter frequencies in English and German.

10.2 H(X) from L(X)

Let us now derive the Shannon information measure from considerations
of Coding theory according to [Lyre, 1998]. We want to minimize the
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mean codeword length L(X) (4.3) over all idealized codes C, such that

H(P ) = min
C

∑
i

pili. (10.1)

Hence, we identify (10.1) as the function f , which ought to be minimized

f(li) =
∑
i

pili =! min . (10.2)

Moreover, we obtain our constraint g due to the Kraft inequality (4.6)

g(li) =
∑
i

2−li − 1 = 0, (10.3)

such that, with the help of the method of Lagrange multipliers we get

L(li, λ) = f(li) + λg(li). (10.4)

Deriving to li and λ, yields

∂L(li, λ)

∂li
= pi − λ · log 2 · 2−li = 0 (10.5)

and
∂L(li, λ)

∂λ
= g(li) = 0. (10.6)

Adding (10.5) and (10.6) yields

∑
i

pi − λ log 2 ·
∑
i

2−li = 0. (10.7)

With the side conditions (10.5) and (10.6) we solve for

λ =
1

log 2
(10.8)

and eventually get
li = − log pi (10.9)
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as the value to minimize the mean code word length L(X) (10.1). Plug-
ging in our result, we indeed obtain

min
C

∑
i

pili = −
∑
i

pi log pi. (10.10)

10.3 Shannon’s axiomatic derivation

In his original paper [Shannon, 1948], Shannon presented the following
postulates for arriving at his information measure H(X).

“Suppose we have a set of possible events whose proba-
bilities of occurrence are p1, p2, ..., pn. These probabilities are
known but that is all we know concerning which event will oc-
cur. Can we find a measure of how much “choice” is involved
in the selection of the event or of how uncertain we are of the
outcome? If there is such a measure, say H(p1, p2, ..., pn), it is
reasonable to require of it the following properties:

1. H should be continuous in the pi.

2. If all the pi are equal, pi = 1/n , then H should be a mono-
tonic increasing function of n. With equally likely events there
is more choice, or uncertainty, when there are more possible
events.

3. If a choice be broken down into two successive choices,
the original H should be the weighted sum of the individual
values of H. The meaning of this is illustrated in Fig. (10.1).
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Figure 10.1: Decomposition of choice from three possibilities.

At the left we have three possibilities p1 = 1
2

, p2 = 1
3

, p3 = 1
6

. On the right we first choose between two possibilities each
with probability 12 , and if the second occurs make another
choice with probabilities 23 , 13 . The final results have the
same probabilities as before. We require, in this special case,
that
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1

3
,
1

6
) = H(

1

2
,
1

2
) +

1

2
H(

2

3
,
1

3
)

The coefficient 1
2

is the weighing factor introduced because
this second choice only occurs half the time.” [Shannon, 1948,
p. 392]

Whereas the first two postulates are formulated as exact rules, the third
requirement is only delivered in form of an example. In absence of a com-
pletely rigorous proof, Shannon stated that the assumptions for proving
the uniqueness of H(X) wouldn’t be necessary for his present theory. He
concludes that

“[t]he real justification of these definitions, however, will reside
in their implications.”, (ibid. p. 393).

Lastly Shannon then presented his famous uniqueness theorem, stating
that H = −K

∑n
i=1 pi log pi is the only H satisfying the above assumptions.
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Other axiomatic derivations

The not yet exactly formulated third requirement, soon led to many sets
of postulates (in fact axiomatic systems), all having Shannon’s informa-
tion measure as unique solution [Aczeel and Daroczy, 1975]. Faddeev
could demonstrate that

“If the expression Hn(p1, ..., pn) for pi ≥ 0,
∑

i pi = 1and n ≥ 2 satisfies
the conditions:

1. H2(p, 1− p) is a continuous positive function of p;

2. for all n, Hn(p1, ..., pn) is a symmetrical, (i.e. permutation invariant)
function of p1, ..., pn;

3. for all n ≥ 2,

Hn(p1, ..., pn) = Hn−1(p1 +p2, p3, ..., pn)+(p1 +p2)H2

(
p1

p1 + p2

,
p2

p1 + p2

)
;

then Hnhas the form

Hn = −K
n∑
i=1

pi log pi

for some positive constant K.” [Hilgevoord and Uffink, 1991]

However, as pointed out in [Uffink, 1991, §1.6.3], while such axiomatic
systems uniquely derive (2.10), it doesn’t follow that they are automati-
cally free from further concerns. Faddeev’s axiomatic system for instance,
is not free of such problems, too. While the first two requirements are
quite straight forward and are pretty much in accordance with Shannon’s
formulation (or can e.g., otherwise easily ‘read off ’ from fig. 2.3) the third
axiom needs some further scrutiny. Faddeev’s third axiom, also known as
recursion requirement, generalizes Shannon’s idea that H(X) should be
the weighted sum of the individual values ofH(X), once a choice is broken
down into two successive choices. According to Uffink, the problems with
Faddeev’s third axiom are i) conventional aspects, ii) divergence when
the number of possible outcomes is unbounded, and iii) when Shannon’s
information measure is generalized to continuous probability functions.

143



As pointed out earlier though, we can find other sets of postulates,
some of which don’t rely on the recursion requirement. However, these
sets of postulates don’t characterize Shannon’s relative information mea-
sure in a unique way. The notion of a relative information measure is
on the other hand crucial to account for continuous probability density
functions. Whether one wishes to derive Shannon’s information measure
for the discrete and the continuous case, depends to some extent on one’s
requirements for the postulate system. For sake of completeness it is
therefore instructive to take a closer look at iii) in the following subsec-
tion.

The relative information measure for continuous probability dis-
tributions

It is often argued that Shannon’s information measure doesn’t have a
natural extension to the continuous case. When (2.10) is generalized to a
continuous probability density function p(x), x ∈ R, we obtain

H(P ) = −
∫
p(x) log p(x) dx (10.11)

as an analogue (which was already suggested by Shannon himself). Yet
the continuous case (10.11) has a couple of differing properties from its
discrete counterpart (2.10). First of all, expression (10.11) may take neg-
ative values. Moreover, Uffink demonstrates [Uffink, 1991] that (10.11)
depends on the (arbitrary) labeling of the outcomes.

In order to circumvent the above mentioned problems by the transi-
tion of the discrete case (2.10) of the absolute information measure to the
continuous case, Uffink [Uffink, 1991], [Uffink, 1995] suggests to intro-
duce a ‘background measure’ µ. With the positive weights µ(xi) deter-
mined by the background measure, we obtain the relative information
measure

H(P, µ) = −
∑

pi log
pi
µi
. (10.12)

First note, that by choosing the counting measure (i.e. if ∀i : µ(xi) =
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1), the relative information measure (10.12) becomes equivalent to the
absolute information measure (2.10) again. For a continuous probability
function P , we can rewrite the relative information measure with respect
to a background measure µas

H(P, µ) = −
∫
∂P

∂µ
(x) log

∂P

∂µ
(x)dµ(x) (10.13)

By now choosing µ to be the Lebesgue measure λ, expression (10.13)
reduces to

H(P, λ) = −
∫
p(x) log p(x) dx, (10.14)

hence effectively being equivalent with (10.11) [Uffink, 1995].
In order to define Shannon Information for continuous probability dis-

tributions, we seemingly should replace the concept of absolute informa-
tion with that of relative information. Depending on how desirable we
deem the successful derivation of the continuous case, we therefore might
have to reject Faddeev’s third axiom (which can only account for the ab-
solute case). Overall the choice of an axiomatic system to derive H(X)

remains a delicate matter.

10.4 Approaches to Quantum Complexity

• On of the first approaches is due to Svozil [Svozil, 1996, §5]. Svozil
defines the algorithmic complexity

H(s) = min
C(p)=s

l(p), (10.15)

of a vector s ∈ H in some Hilbert space H as the length of the
shortest program p running on a quantum computer C as refer-
ence machine. For reasons of maintaining the convergence of the
Kraft inequality, Svozils approach is restricted to purely classical
prefix-free programs as input; in case where quibits were allowed,
the Kraft inequality would diverge (that said, the output is allowed
to be quantum though). However, because the number of classical
binary strings is finite, this definition has the disadvantage to not
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be able to account for the infinitely many states of s ∈ H.

• In [Vitanyi, 2001], Vitanyi provided a similar definition (classical
input, yet quantum output), but circumventing Svozil’s problems by
allowing errors and non-perfect results. This way, Vitany circum-
vents the disadvantages of Svozil’s account and now being able to
account for the infinitely many states s ∈ H within a certain margin
of error. On this view, the output Q(p) of the quantum computer Q
with input p, doesn’t have to be exactly equivalent with the analyzed
state |x〉. That’s why Vitanyi’s defintion of the quantum algorithmic
information measure

K (|x〉) = min
{
l(p) +

⌈
− log ‖〈z|x〉‖2⌉ : Q(p) = |z〉

}
(10.16)

introduces the ’penalty term’
⌈
− log ‖〈z|x〉‖2⌉. The former expression

is based on the fidelity ‖〈x|z〉‖2which measures how ’close’ the vec-
tors |x〉and |z〉are. If Q(p) and |z〉 differ too much, then the penalty
term becomes so large, that the shortest program has to be found
with another argument than p.

• Gacs [Gacs, 2001] on the other hand, has introduced an approach
based on universal probability (4.10) and seems to be influenced
by Levin’s concept of a universal semicomputable (semi)measures.1

Gacs showed that taking a universal semicomputable density ma-
trix µ (basically the quantum analog to a classical probability dis-
tribution) can be used to derive a form of quantum complexity as
the negative logarithm of µ. It is a striking feature of his two infor-
mation measures (depending on the order of taking the logarithm)

H = − log 〈ψ|µ |ψ〉 (10.17)

H = −〈ψ| (log µ) |ψ〉 , (10.18)

1Levin’s Coding theorem is about such ’semimeasures’, so that ’probability distri-
butions’ p defined on strings may sum to less than one

∑
x∈{0,1} p(x) ≤ 1. We call a

semimeasure ’semicomputable’ if there’s a monotonically increasing, computable se-
quence of functions converging to it (cf. [Mueller, 2007]).
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that they come without reference to any model of neither classical
nor quantum computation. Overall, Gacs then establishes the con-
nection to quantum complexity by demonstrating that (10.17) and
(10.18) are the lower and upper bounds of Vitanyi’s K (|x〉) (10.16)
respectively.

• The first purely quantum based approach (i.e. when considering
a quantum reference machine and quantum in- and output strings)
was developed by Berthiaume, van Dam and Laplante[Berthiaume et al., 2001].
Their defintion reads as

QCα(|ψ〉) = min {l(|ϕ〉) | 〈ψ|U(|ϕ〉) |ψ〉 ≥ α} , (10.19)

where U is a universal quantum computer and the complexity of
|ψ〉 is defined as the shortest quantum input |ϕ〉 which produces |ψ〉
to some fidelity greater than α. If α = 1, then U(|ϕ〉) is equal to
|ψ〉, whereas for α < 1 a certain degree of inaccuracy is allowed
for. A slightly modified version of this approach is the basis for our
presentation in Chapter 7.

• Yet another approach is due to by Mora and Briegel [Mora and Briegel, 2004]
(see also [Mora and Briegel, 2005]), where they relate the complex-
ity to the shortest classical description of some quantum curcuit C
that prepares the state. A quantum circuit can be regarded as a
sequence of elementary operations characterizing a quantum state,
where the complexity of a state refers to the circuit itself. Once a
complete gate basis B and a code Ω are fixed, and a circuit CB,εthat
prepares |ϕ〉with precision ε,2 then

KΩ,B,ε
Net (|ϕ〉) = min

CB,ε∈C̃B,ε
KΩ,B,ε

Net (|ϕ〉) (10.20)

defines the quantum algorithmic complexity, according to this ap-
proach.

2Determining the precision here, can be understood as referring to two states |ϕ〉and
|ψ〉 as ε-distinguishable if ‖〈ϕ|ψ〉‖2≤ 1− ε
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