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A B S T R A C T

Evolutionary Particle Swarm Optimization (EPSO) is a combination of Clas-
sic Particle Swarm Optimization and Evolutionary Algorithms. In this thesis
we recreate the original EPSO algorithm and analyze its performance. Further-
more we extend the algorithm with uniform recombination, another idea from
Evolutionary Algorithms. Finally we analyze why EPSO performs so well, and
whether our extension fixes the mistakes made by EPSO or not.



The motion of a flock of birds is one of nature’s delights.
Flocks and related synchronized group behaviors such as
schools of fish or herds of land animals are both beautiful

to watch and intriguing to contemplate.

— Craig W. Reynolds [15]
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1
I N T R O D U C T I O N

The flight of birds has fascinated humans since time immemorial, and will
most likely still fascinate humans for a long time to come. While some dreamt
of taking to the skies themselves, others preferred to stay grounded. With the
dawn of computer simulations, the flight of birds could be recreated digitally.
However, not all research went into the actual flight mechanics of the birds.
Research on the flocking behavior of birds [7] was an inspiration for particle
swarm optimization (PSO) [8]. In this thesis we will use the term ‘Classic PSO’
when referring to this PSO version by Kennedy.

An evolutionary algorithm (EA) usually consists of a population of solutions
that apply techniques borrowed from Darwinian evolutionary theories to solve
complex problems [5]. Such techniques can include mutation, reproduction, se-
lection and more. Reproduction is often categorized as either asexual or sex-
ual reproduction, generating new solutions from a single or multiple parents
respectively. Selection is based on the principles of natural selection, often a
tournament-style selection is applied to choose the best solution that gets to
survive to the next generation.

Evolutionary particle swarm optimization (EPSO) is a combination of PSO
and EAs that applies mutation and selection from EAs in addition to the Classic
PSO movement [10–12]. With these additions, a significant gain in performance
was observed. While the results gathered with this algorithm seem promising,
we fear the authors attributed the performance to the wrong aspects of their
algorithm. While mutation should improve the performance of Classic PSO, we
believe that other deviations of the Classic PSO algorithm are responsible for
their performance numbers.

Our goal is to examine the performance of EPSO through recreation and
expansion of the algorithm. We aim to extend EPSO with recombination from
Evolutionary Algorithms, and to test the impact of various EPSO aspects on
the performance of EPSO. Finally we are going to examine whether our own
expanded algorithm performs better than EPSO in various scenarios.





2
E V O L U T I O N A RY PA RT I C L E S WA R M O P T I M I Z AT I O N

Mutation is the motor of evolution. It is the source for the variation
of the genome. Therefore, never underestimate the power of mutation:

An EA without recombination can work,
whereas an EA without mutations will get stuck.

— H. G. Beyer [2]

EPSO is a combination of Classic PSO [8] and Evolutionary Algorithms [5].
EPSO combines these two by expanding Classic PSO with the mutation aspect
from Evolutionary Algorithms. To better understand EPSO and its inner work-
ings this chapter explains the different components of EPSO, showing where
mutation is applied and how it works exactly in this context. Furthermore, it
explains the difference between EPSO and Classic PSO and how we recreated
EPSO. Some variable names have been changed from the original papers to be
consistent with the rest of this thesis.

In EPSO each swarm contains:

• k ∈ Z+ number of particles.

• gbest, ~gbest: the global best found value ∈ R and the corresponding po-
sition vector with values ∈ R.

Each particle consists of:

• pbest, ~pbest: personal best encountered value ∈ R and the corresponding
position vector with values ∈ R.

• ~x: position vector with values ∈ R in the search space.

• ~v: velocity vector (inertia) with values ∈ R.

• wk
inertia,wk

memory,wk
cooperation ∈ R: strategic parameters (weights) for

inertia, memory and cooperation respectively.

At each evaluation in the algorithm the particles update their pbest if they have
found a better position. This value is then checked against the gbest of the
swarm, and that is updated if the value improves. If gbest is updated every
particle will learn this information in the next iteration.

In every iteration the EPSO algorithm executes the following 5 steps:

1. Replication: each particle in the current swarm is replicated r times, cre-
ating r sets of identical particles. In the original EPSO algorithm r = 1 is
used.
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2. Mutation: the weights of each replicated particle are mutated with:

∗wk
j = wk

j + τN(0, 1) (2.1)

In the beginning of the algorithm the strategic parameters of each particle
are randomly set between 0 and 1. In each iteration the mutation formula
changes the inertia, memory and coordination weight parameters j of
each particle k. ∗wk

j is the new strategic parameter for particle k. Where
τ is a Learning Dispersion parameter1 and N(0, 1) is a random number
from a Gaussian distribution with mean 0 and variance 1.

3. Reproduction (movement): for each particle k, offspring is generated with
movement similar to the Classic PSO formula:

∗~vk = wk
inertia ~vk

+ wk
memory (~pkbest − ~xk)

+ wk
cooperation (~gbest

′′ − ~xk)

(2.2)

∗~xk = ~xk +∗ ~vk (2.3)

∗~vk is the new velocity vector for particle k, and ∗~xk is the new position
vector of the particle k. ~pkbest is the location vector of the personal best
of the particle k. This movement is applied to both the original and the
mutated particles.

Instead of being attracted to the exact best-so-far point, the particles are
attracted to a “foggy best-so-far region” which is another deviation from
Classic PSO. This is done by introducing random noise to the best-so-far
point with:

~gbest
′′ = ~gbest + τ

′N(0, 1) (2.4)

~gbest
′′ is the mutated best-so-far point, also known as the best-so-far re-

gion. τ ′ is a noise dispersion parameter2, and N(0, 1) is another random
number from a normalized Gaussian distribution with mean 0 and vari-
ance 1.

4. Evaluation: the mutated and original particles are evaluated according to
their position vector in the search space and the test function used.

5. Selection: among the mutated and original particles, a stochastic tourna-
ment selection is played to select the particle that will survive to the next
generation. However since r = 1 is used the tournament is not stochastic,
there are only two particles in each tournament thus they must compete
with each other.

1 Discussed further in Section 2.2.
2 Discussed further in Section 2.2.
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The two main differences between EPSO and Classic PSO lie in step 2 and 3. In
the mutation step changing the learning parameters adds a level of randomness
to the movement the particles apply. By mutating one and keeping the other un-
changed there is more exploration of the target position. Mutating the strategic
parameters has proven to be a very effective exploration method [3]. Since all
strategic parameters can mutate, every vector in the movement calculation is
affected.

Another deviation from Classic PSO is observed in the movement step, par-
ticularly the “foggy best-so-far region”. This foggy attraction point for the best
found solution is essentially another introduction of randomness to the algo-
rithm. In theory this works much like the mutation of the strategic parameters,
however since it’s done for both the original and the mutated particles it en-
sures even more exploration of the search space.

2.1 recreating epso

In order to recreate EPSO we first built the basic PSO algorithm according to
the original paper by Kennedy & Eberhart [8]. After a basic proof of concept
was made that performed similarly to the PSO algorithm described in the EPSO
paper [12], it was extended to incorporate the EPSO adjustments. During the
recreation of EPSO the performance of the algorithm was monitored to stay
in line with the original EPSO results. The performance was monitored on the
Binary Schaffer, Rosenbrock and Sphere optimization functions as described in
Appendix A similarly to the EPSO papers.

In order to monitor performance and set up tests quickly, we created a graphi-
cal user interface (GUI) that could render graphs of swarm convergence quickly.
This allowed us to visualize results on the influence of different settings on
EPSO without exporting the data to analytics software first. Figure 2.1 shows
a screenshot of what our GUI looks like after a test run3. The right hand side
shows a graph of the 10 best swarms of the collection, while the left side shows
the settings and test progress. Note that the setting of Learning Dispersion has
a 1.e− prefix, this was added for improved readability, but needs to be kept
in mind while inputting settings for a test run. The GUI also allows for single-
swarm display, by selecting the index of the swarm below the graph. This is
useful to identify oddities in the results and to investigate those further. On
completion of a test run our program stores all the data points in a .csv file that
can then be analyzed with programs such as MATLAB [9] and R [19].

3 Specifically the test on the Rosenbrock function discussed in Section 2.3.
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2.2 missing parameters

During the recreation of EPSO we noticed that not every part of the algorithm
is as well defined as it appears. While the description is sufficient for reading, it
is crucial to get every aspect exactly right in the process of recreation. In Chap-
ter 2 the “foggy best-so-far region” used in EPSO is explained. The mutation
formula uses a Learning Dispersion parameter τ that is never fully defined. An-
other parameter like this is the ‘Noise Dispersion’ used in step 3 of the EPSO
algorithm. This parameter was described as “τ ′ is a noise dispersion parameter,
usually small” [12]. These parameters were both unclear in their description,
and had to be explored to estimate their actual values.

In order to estimate Learning Dispersion the Sphere and Rosenbrock func-
tions was used to experiment with different values of τ. From the way Learning
Dispersion is used and described it was estimated that τ was somewhere in the
range of [0, 1]. Early testing showed that values above 0.5 provided significantly
worse results than lower values, thus testing was focused on values under 0.5.
These tests were concluded on a fixed 1000 iterations per parameter, with 20
particles per swarm and 500 swarms per test. For each test, the results of the
best swarm is used.

A similar approach was used for the Noise Dispersion parameter. However, it
was noted that the Noise Dispersion has a much higher tolerance for variation,
and the data on this was not as interesting. The conclusion for Noise Dispersion
is that the results get progressively worse the lower the value of τ ′, and any
value in the range of 0.05 to 0.75 provides decent results on both the Rosenbrock
and Sphere functions. For all following experiments, τ ′ was set to 0.75.
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2.3 rosenbrock function on learning dispersion
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Figure 2.2: The convergence of minima with different values for Learning Dispersion
on the Rosenbrock function. Note that the y-axis uses a logarithmic scale.

The minima found by the swarms on the Rosenbrock function did not differ
much as seen in Figure 2.2. However the difference in performance becomes
more obvious when looking at the means of the different functions. In Table 2.1
it is clearly visible that a Learning Dispersion of 1.e− 01 shows the best per-
formance, and should be used on all following experiments on the Rosenbrock
function.

τ Average Minimum

0.5 1 051.724 23.093

1.e− 01 143.920 20.645

1.e− 05 253.791 21.185

1.e− 10 261.507 24.080

1.e− 15 244.083 25.889

Table 2.1: The means and minima found with the different Learning Dispersion values
on the Rosenbrock function. Bold text is used to denote the best values.



2.4 sphere 9

2.4 sphere function on learning dispersion
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Figure 2.3: The convergence of minima with different values for Learning Dispersion
on the Sphere function. Note that the y-axis uses a logarithmic scale.

On the Sphere function the difference in minima is much larger, with 1.e− 01
showing a clear advantage over the other values in Figure 2.3. In Table 2.2 the
superiority of 1.e− 01 is visible as well, with the lowest minimum found and a
much lower mean value. Therefore 1.e− 01 should be used as the parameter in
the Sphere function as well.

τ Average Minimum

0.5 2.871 2.523e− 04

1.e− 01 0.194 7.467e− 06

1.e− 05 0.677 1.622e− 03

1.e− 10 1.159 1.046e− 03

1.e− 15 0.970 1.785e− 03

Table 2.2: The means and minima found with the different Learning Dispersion values
on the Sphere function. Bold text is used to denote the best values.

2.5 learning dispersion conclusion

The average results on both the Rosenbrock and Sphere functions are greatly
improved when τ is set to 1.e− 01, compared to all other tested values. The min-
ima on the Rosenbrock function do not show such a large difference. However,
the algorithm shows a more robust performance on average. The algorithm
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shows improvement on the sphere function in both average and minimum re-
sults, thus we concluded that the Learning Dispersion parameter should be set
to 1.e− 01 for future experiments. On other problems the parameter could pos-
sibly be tweaked to improve problem-specific performance. However, one of
the main arguments for EPSO is that parameter tweaking should not be neces-
sary and therefore we concluded that in EPSO Learning Dispersion should be
set to 1.e− 01.



3
E X PA N D I N G E P S O

The core concept from Evolutionary Computation that EPSO incorporates is
particle ‘mutation’ from genetic algorithms. Mutation is common in genetic
algorithms, however there are other methods available for creating more ex-
ploration of the search space. Some genetic algorithms use crossover or ‘com-
bination’ to generate new solutions by combining existing ones. Some notable
crossovers include 1-point, 2-point and uniform crossover. 1-point crossover
takes 1 to k variables from parent p1 and k to n variables from parent p2.
with k being the crossover point either fixed or randomized, and n number of
variables in the solution vector. 2-point crossover works similarly, adding in a
second crossover point l giving the child solution 1 to k variables from p1, k to
l from p2 and l to n from p1 again [5].

Uniform crossover disposes of the crossover points for an even more random-
ized approach. The concept of 2 parents stays the same but it adds a variable
P1, the chance a specific variable is taken from p1. With P1 = 0.5 it essentially
becomes a coin toss to determine which parent gives which variable to the off-
spring. This uniform recombination of two parents disrupts the search space
more than 1-point and 2-point crossover [18]. This disruption results in more
exploration of the search space. An example of uniform crossover is shown
in Table 3.1. “With small populations, more disruptive crossover operators such as
uniform or n-point (n > 2) may yield better results because they help overcome the
limited information capacity of smaller populations and the tendency for more homo-
geneity.” [17]. With this in mind we selected uniform crossover with P1 set to
0.5 in our testing.

Index 0 1 2 3 4 5 6 7 8 9

Parent A

Parent B

P1 = 0.5 F F F T F T T T F T

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Child

Table 3.1: Uniform crossover
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3.1 applying crossover

To implement a crossover step into EPSO the following steps were introduced
between step 2 (mutation) and step 3 (movement) of EPSO to generate a child
solution:

1. Selection: select p1 parent by index, select p2 at random from the popula-
tion.

2. Parameters: Strategic parameters (weights) are copied from p1.

3. Crossover: Child’s position in the search space is determined by uniform
crossover on the parent solutions.

4. pbest: The combined solution is evaluated to generate a preliminary per-
sonal best value.

Selecting the first parent by index ensures that each particle will generate at
least one child. Combined with a random second parent more combinations
are explored than with two fixed parents. Because we know that each particle
will get at least one child, copying the strategic parameters can be done without
risking the loss of a useful parameter set. Uniform crossover is applied with
P1 = 0.5. The child is evaluated once for two reasons: to generate a pbest it
can use in future generations for movement and secondly update the gbest
if required. After generating a set of children, they are included in the rest
of the EPSO steps just as the mutated particles are. The only extra change to
EPSO is step 6 (selection): Instead of tournament selection with n = 2 over the
original and mutated particles, tournament selection with n = 3 is used over
the original, mutated and combined particles. So for each parent particle one
mutated particle and one child particle are evaluated and the best of the 3 stays
in the population for the next generation.

3.2 limiting particle speed

It was like watching spacecraft explore the Milky Way Galaxy
in order to find a target known to be in the Solar System.

— R. C. Eberhart & Y. Shi [4]

Because of the inertia used in Classic PSO, particles can gain ever increasing
speed at which they traverse the solution. This speed can cause the particles to
oscillate around certain points if no improvements to gbest and pbest are found.
This oscillation can cause the particles to get stuck in their search prematurely.
One solution to prevent oscillation from happening too early is to limit the
distance a particle can move over a certain parameter per iteration [14]. One is-
sue with such a speedlimit is that a speedlimit is a problem specific parameter
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and it would need tweaking for every test function. However, as Everhart and
Shi discussed [4] limiting the speed to the largest dimension of distance across
the solution space would make sense. Allowing a particle to explore multiples
of the search space in one step has no added benefit, and might hamper per-
formance. Therefore, when applying a speedlimit, we chose to limit the speed
to the width of the domain of each function. We used this speedlimit PSO to
compare with the other optimization algorithms because it showed greatly im-
proved performance in preliminary testing over Classic PSO without increasing
the computational cost.





4
T E S T I N G E P S O E X PA N S I O N S

Since both the standard EPSO and the Combination algorithm are in essence
EPSO algorithms, EPSO is referred to as ’Evolution’ in the test results. To be
able to compare the different algorithms to each other, experiments were con-
ducted with a fixed number of evaluations for each test function. Basic PSO and
PSO with a speedlimit serve as the baseline number of evaluations, Evolution
requires twice as many evaluations and Combination requires three times the
number of evaluations. This is due to the mutation step in Evolution and Com-
bination and the evaluation of offspring in Combination. To select the cutoff
point for number of evaluations we looked at the convergence speed of the al-
gorithms, to show convergence but not let the algorithms compute forever. The
algorithms were limited to 1500 evaluations on the Schaffer F2 function and
3000 evaluations on the Schaffer F6 function. For the Rosenbrock and Sphere
functions each algorithm was limited to 150 000 evaluations. Each test was con-
ducted with 500 swarms per test function, and 20 particles per swarm.

4.1 optimization on the schaffer f2 function
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Figure 4.1: The convergence of the different methods on the Schaffer F2 function. Note
that the y-axis uses a logarithmic scale.

The results presented in Figure 4.1 and Table 4.1 show that in 1500 evaluations
all 4 methods manage to find the global optimum. The main difference can be
seen in the mean result, where Combination show superiority over all other



16 testing epso expansions

algorithms. Evolution manages to pull ahead of the traditional 2 methods as
well, yet performs worse than Combination.

Because every algorithm finds the global optimum the graphs plotted in Fig-
ure 4.1 are the swarms that reached the global optimum in the least amount
of iterations. The plot lines terminate where the swarms have reached 0. While
the traditional PSO algorithms find the global optimum faster than Evolution
and Combination they still perform worse on average.

Method Average Minimum

PSO 4.510e− 03 0

SpeedLimit 1.541e− 03 0

Evolution 2.697e− 05 0

Combination 1.949e− 08 0

Table 4.1: The means and minima found by the different optimization methods on the
Schaffer F2 function. Bold text is used to denote the best values.

4.2 optimization on the schaffer f6 function
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Figure 4.2: The convergence of the different methods on the Schaffer F6 function. Note
that the y-axis uses a logarithmic scale.

The results presented by Figure 4.2 and Table 4.2 show that Evolution finds
the best average result. However, the standard PSO and SpeedLimit algorithms
find the global optimum, while the more complex Evolution and Combination
do not. Combination and Evolution algorithms show similar results, and while
they do not manage to find the global optimum they still show robustness in
their average results.
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Method Average Minimum

PSO 1.021e− 02 0

SpeedLimit 9.113e− 03 0

Evolution 8.203e− 03 3.3e− 08

Combination 1.142e− 02 2.5e− 08

Table 4.2: The means and minima found by the different optimization methods on the
Schaffer F6 function. Bold text is used to denote the best values.

4.3 optimization on the rosenbrock function
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Figure 4.3: The convergence of the different methods on the Rosenbrock function. Note
that the y-axis uses a logarithmic scale.

The Rosenbrock function is where the Classic PSO algorithm really starts to
struggle. In Figure 4.3 and Table 4.3 the inferiority of Classic PSO is demon-
strated. SpeedLimit, Evolution and Combination are much closer together in
their results. The average result of PSO is particularly poor, showing that the
minimum encountered is more result of chance than performance. The results
of the Evolution and Combination methods do not differ much from each other
in Table 4.3. In Figure 4.3 the similarity of the convergence of the Evolution and
Combination algorithms is visible as well.
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Method Average Minimum

PSO 97 604.412 1 731.415

SpeedLimit 380.969 27.381

Evolution 47.276 12.799

Combination 38.265 11.910

Table 4.3: The means and minima found by the different optimization methods on the
Rosenbrock function. Bold text is used to denote the best values.

4.4 optimization on the sphere function
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Figure 4.4: The convergence of the different methods on the Sphere function. Note that
the y-axis uses a logarithmic scale. The PSO graph line continues behind
the legend, but does not improve further.

On the Sphere function the largest difference between the 4 algorithms is visi-
ble. In Figure 4.4 and Table 4.4 the superiority of Evolution and Combination
is demonstrated. Again PSO suffers and the average result is much higher than
the other algorithms, demonstrating it is much less robust than the more com-
plex methods. Evolution shows the best average result, however Combination
is not far behind and shows a slightly improved minimum result. In Figure 4.3
the plot of Combination converges much faster than Evolution does, and with
a lower cutoff for maximum evaluations1 the Combination algorithm would
have significantly better results, however this comparison is moot with a fixed
number of evaluations.

1 60 000 iterations specifically.
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Method Average Minimum

PSO 88.938 5.026

SpeedLimit 7.845e− 01 3.422e− 04

Evolution 9.561e− 02 1.999e− 05

Combination 1.019e− 01 3.243e− 06

Table 4.4: The means and minima found by the different optimization methods on the
Sphere function. Bold text is used to denote the best values.





5
A N A LY Z I N G F O G G Y A P P R O A C H E S

During the development and testing of EPSO we noticed that the mutation of
the best-so-far point into a “foggy best-so-far region” impacted performance of
EPSO greatly. This quickly led to the hypothesis that EPSO might rely on this
“foggy best-so-far” too much, and might be less robust without it. Thus testing
was devised to measure the impact of this ‘fog’ on the algorithm results. It has
been shown that the PSO + Speedlimit algorithm performs equal or better on
all test functions in Chapter 3, therefore the results of the Classic PSO have
been omitted. The remaining 3 algorithms are tested on an equal amount of
evaluations, with 20 particles per swarm and 500 swarms per test function.

5.1 schaffer f2 without fog
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Figure 5.1: The convergence of different methods on the Schaffer F2 function with the
fog disabled. Note that the y-axis uses a logarithmic scale.

In the Schaffer F2 function the 3 algorithms do not show much difference in
average, minimum or convergence behaviour in Table 5.1 and Figure 5.1. This
shows that without the “foggy-best-so-far region” the addition of mutation and
combination does not improve the algorithm noticeably. In this test function the
Evolution and Combination algorithms show that without the fog they are not
much different from the Speedlimit algorithm, or from each other.
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Method Average Minimum

SpeedLimit 1.009e− 03 0

Evolution 5.949e− 04 0

Combination 2.678e− 03 0

Table 5.1: The means and minima found by the different optimization methods on the
Schaffer F2 function with the fog disabled. Bold text is used to denote the
best values.

5.2 schaffer f6 without fog
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Figure 5.2: The convergence of different methods on the Schaffer F6 function with the
fog disabled. Note that the y-axis uses a logarithmic scale.

Again the 3 compared methods do not show much difference in average result
in Table 5.2. Only in Figure 5.2 some difference in convergence is visible. This
suggests that the algorithms are very similar without the “foggy-best-so-far
region” on this function as well.

Method Average Minimum

SpeedLimit 9.265e− 03 0

Evolution 1.016e− 02 0

Combination 1.543e− 02 0

Table 5.2: The means and minima found by the different optimization methods on the
Schaffer F6 function with the fog disabled. Bold text is used to denote the
best values.
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5.3 rosenbrock without fog
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Figure 5.3: The convergence of different methods on the Rosenbrock function with the
fog disabled. Note that the y-axis uses a logarithmic scale.

On the Rosenbrock function the differences between the 3 algorithms become
more pronounced in Figure 5.3. The SpeedLimit function still performs as
solidly as it did before, while the Evolution algorithm struggles to reach an
optimum. Combination manages to show a superior best result in Table 5.3
even compared to previous testing, however the average result is still worse
than with the “foggy-best-so-far region” implemented. This shows that both
the Evolution and Combination algorithms rely on fog to some extent and that
they are much less robust without it.

Method Average Minimum

SpeedLimit 266.374 28.817

Evolution 146 280.0 13 085.08

Combination 22 016.69 0.353

Table 5.3: The means and minima found by the different optimization methods on the
Rosenbrock function with the fog disabled. Bold text is used to denote the
best values.
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5.4 sphere without fog
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Figure 5.4: The convergence of different methods on the Sphere function with the fog
disabled. Note that the y-axis uses a logarithmic scale.

Unsurprisingly the SpeedLimit algorithm is still very robust in this testing,
showing the best average result in Table 5.4. Combination shows clear supe-
riority in finding the optimum, with an average result close to the minimum
found by Evolution. The Evolution method without the “foggy-best-so-far re-
gion” is much less robust than the original, visible in Figure 5.4, hinting that
the algorithm was relying too much on the randomness introduced there. While
the Combination algorithm also shows worse results in this comparison, it is
still capable of finding the global optimum.

Method Average Minimum

SpeedLimit 0.784 3.422e− 04

Evolution 347 711 34 396

Combination 34 379 0

Table 5.4: The means and minima found by the different optimization methods on the
Sphere function with the fog disabled. Bold text is used to denote the best
values.

5.5 analysis conclusion

From the tables and graphs in the previous sections we can conclude that
without the “foggy-best-so-far region” Evolution performs significantly worse
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overall. The Evolution algorithm still performs better on average than Classic
PSO on the Rosenbrock function, yet it performs worse than Classic PSO on
the Sphere function. This shows that the mutation of strategic parameters is
not a ‘catch-all’ solution for every problem. While the mutation works well in
combination with the randomness from a “foggy-best-so-far region”, it does
not improve results that much without the fog. Furthermore, it is also shown
that the Combination algorithm suffers a heavy performance decrease as well.
However, it shows more robustness than the Evolution algorithm does. This in-
dicates that the Combination approach might generally be a better one than the
Mutation approach from Evolution. Tweaking parameters such as the Learning
Dispersion might have influence on these results, however one of the key sell-
ing points of EPSO is the lack of need for parameter tweaking. This could be
investigated, but it is left for future work.





6
C O N C L U S I O N & D I S C U S S I O N

In this thesis we have successfully extended the EPSO algorithm as described
in [12] and [11] with uniform crossover as per our initial plan. Recreation of
EPSO took more effort than was estimated because of the unknown variables
present in the EPSO algorithm. Fortunately, these were estimated after testing
the semi-complete algorithm on these variables. We extended EPSO by utiliz-
ing techniques from Evolutionary Algorithms in order to make EPSO more ro-
bust, and we succeeded in applying these techniques. The resulting algorithm
showed improved results over the original, reaching better optima on average
in an equal number of evaluations.

Furthermore we analyzed EPSO to examine the impact of the “foggy best-
so-far region” on the results of the algorithm. With these tests we showed that
EPSO relies on this fog factor more than it should, and we believe that EPSO
attributes its success to the wrong parts of its mechanism. The original EPSO
papers claim that their success lies in the application of mutation, however
disabling the fog clearly shows that the fog is the main contributor to their
results.

Finally we saw that our Combination algorithm also performed worse on av-
erage without this fog enabled, however the minima found were still impressive.
This shows that our expansion with recombination is not the perfect answer ei-
ther, and more research could to be done to make an expansion on Classic PSO
that does not rely on the “foggy best-so-far region” for robust results. While
relying on this fog is not inherently bad, it is not what these algorithms have
set out to use.

6.1 future work

As with every project, there are a few stones here that could be turned over
in the future. The short exploration of the Noise Dispersion parameter in Sec-
tion 2.2 is one such example. While testing has taken place, more tests could
be done to examine what is happening in more detail. Especially since the de-
pendency of EPSO on the “foggy best-so-far region” is so immense, it is to be
expected that further exploration of the Noise Dispersion parameter could give
more insight.

More exploration on the Learning Dispersion parameter could be beneficial
to the understanding of details of the EPSO algorithm. It could be interesting
to see how much the parameter still influences EPSO even with the “foggy
best-so-far region” disabled.
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In the replication step of EPSO r = 1 is used, however having more mutated
particles could prove beneficial to the exploration of the search space. While
creating more particles would inherently create more evaluations, the benefits
could outweigh the costs. For instance the Combination algorithm requires 3
times as many evaluations per iteration as the classic PSO does, changing r to
2 for EPSO would result in the same number of evaluations. Since the cloned
particles are mutated individually they would explore more of the search space,
and might improve performance enough to justify the increase in evaluations.

The crossover from the Combination algorithm is another aspect that could
be explored in more detail. While uniform crossover is chosen because of its
disruptive nature, 1-point or 2-point crossover could still prove very useful for
certain test functions. It could be interesting to include the ‘opposites’ of each
produced child, i.e. create a second child with the parameters from p1 and p2
that were unused by the first child. Creating more children would require more
evaluations, and cause an increase in computing cost. Crossovers with more
than 2 parents could also be explored, combining any number of particles to
create offspring.

The focus of this thesis has been on recreating and expanding the EPSO algo-
rithm, however the created Combination algorithm is not explored outside of
the test functions yet. More time could be spent to apply the Combination algo-
rithm on other complex problems. A basis for this could be applying the algo-
rithm to NP-complete problems such as the knapsack or the traveling salesman
problem [6]. Applying the Combination algorithm to real-world optimization
problems could very well be a thesis on its own.



Part I

A P P E N D I X





A
T E S T F U N C T I O N S

A common practice when creating optimization algorithms is to apply test func-
tions for optimization to evaluate performance. These functions are often hard
to solve without looking at the formula itself, simulating optimization on a
problem with unknown constraints. For testing the EPSO algorithm we will
use two variants of the Schaffer’s function [13], the Rosenbrock function [16]
and a Sphere function.

Schaffer’s function F2
1:

f(~x) = 0.5+
sin2

(
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2
2
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Schaffer’s function F6
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Rosenbrock’s function:

f(~x) =
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i=1

(
100

(
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2
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)2
+ (xi − 1)

2
)

(A.3)

Sphere function:

f(~x) =

n∑
i=1

x2i (A.4)

These functions provide a variety between extremely complex surfaces and rela-
tively simple ones. In Table A.1 the domain of each of the test functions and the
number of dimensions used is shown. The domain is later used to initialize the
particles during testing. Figure A.1 shows a 3-dimensional plot of each test func-
tion using only 2 dimensions as input. For each of these functions lower values
are better, with the global optimum being 0 for each function. The difficulty
of the Schaffer functions is visible when looking at the graphs in Figure A.1.
The Rosenbrock and Sphere functions seem less complicated visually, however
using them on a tuple of 30 variables at once makes them quite complex.

1 Sometimes referred to as ‘Modified Schaffer’s function #2’.
2 Often referred to as just ‘Schaffer’s function’.
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Function n Domain

Schaffer F2 2 [−100, 100]n

Schaffer F6 2 [−100, 100]n

Rosenbrock 30 [−15, 15]n

Sphere 30 [−25, 25]n

Table A.1: Parameters used in the test functions.

(a) Schaffer F2 (b) Schaffer F6

(c) Rosenbrock (d) Sphere

Figure A.1: Three-dimensional plots of the test functions with n = 2 and domains set
to illustrate the curves of the functions. Plots generated with MATLAB [9]
code by Ali R. Alroomi [1]. The domain of each plot is set to illustrate the
surface of the function, note that the Rosenbrock function is rotated 90◦.
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