
Faculty of Science

Existence and regularity theorems for
onedimensional variational problems with

superlinear growth

Bachelor Thesis

Lotte Bruijnen

Mathematics

Supervisor:

Dr. Carolin Kreisbeck
Mathematical Institute

June 14, 2017



CONTENTS i

Contents

1 Introduction 1

2 Preliminaries 3

3 Existence of minimizers 6

4 Regularity of minimizers 9
4.1 The regular case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Partial regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 The Lavrentiev phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

A Appendix: theorems I

References II



1 INTRODUCTION 1

1 Introduction

In 1760, Euler first used the words ”calculus of variations” [1], but this branch of mathematics is much older.
In fact, the isoperimetric inequality, one of the oldest problems in mathematics, is a problem in the calculus of
variations. Many, however, date the birth of the calculus of variations to seventeenth century Europe, where
Galileo formulated the brachistochrone problem in 1638 [2]. It is the problem of finding a curve, connecting
two points A and B, on which a point of mass moves under the influence of gravity and without friction from
A to B.
But let us first take a step back, and look at what the calculus of variations entails. This branch has two
main ingredients: a function space X and a functional F : X → R. The goal then is to find a function u ∈ X
such that

F(u) ≤ F(ν),

either for all ν ∈ X, or only for those ν ∈ X such that ||u− ν||X < δ for some δ > 0. In the first case, u is a
global minimizer. In the second case, u is a local minimizer.
Let us now consider the brachistochrone problem again. We can take A as the origin and B = (b,−β) with
b, β > 0. Then the space of admissible functions is

{u ∈ C1 : u(0) = 0, u(b) = −β, and u(x) > 0 ∀x ∈ (0, b]}

and the functional is

F(u) =
1√
2g

∫ b

0

√
1 + u′2(x)

u(x)
dx.

[3], [2]
The functionals which we consider in this thesis are variational integrals, which means that they are of the
form

F(u) =

∫
I

F (x, u(x), u′(x))dx.

Here I = (a, b) is a bounded real interval, and the Lagrangian is a given function F : Ī × R × R → R,
F = F (x, z, p). Our goal will be to determine whether minimizers exist in the class Ck(Ī), for 2 ≤ k ≤ ∞.
We solve this using the direct method of the calculus of variations. This means that we split the problem
of finding a minimizer in two parts. First we enlarge the space of functions so that we can apply a general
existence theorem. Then we use regularity results to show that all minimizers have certain properties, which
ensures that they lie in the original space. [4]
The direct method is a ”modern” approach in the calculus of variations, and was mainly developed by Lorenzo
Tonelli (1885-1946) [1]. Before that, the prevalent approach had been what we may call the classical indirect
approach, which was based on the idea that every minimum problem has a solution (which we now know is
not always the case). [3]
This thesis begins with Tonelli’s Existence Theorem. This ensures that a minimizer exists in the class

C(α, β) := {u ∈ H1,m(I) : u(a) = α, u(b) = β}

(where α, β ∈ R), if the Lagrangian F satisfies certain conditions on continuity and convexity and has
polynomial (or superlinear) growth.
The space H1,m(I) is a Sobolev space, a vector space of functions which are differentiable in a weak sense.
Moreover, u, u′ ∈ Lm(I) for all u ∈ H1,m(I). So especially, Ck(Ī) ⊂ H1,m(I).
If we are lucky, full regularity holds. This means that any minimizer of F in C(α, β) is a Ck-function, where
k corresponds to the smoothness class of F . The minimizer will then also satisfy the Euler equation

d

dx
Fp(x, u(x), u′(x))− Fz(x, u(x), u′(x)) = 0. (1)

Any weak extremal C2-extremal of a variational integral F with C2-Lagrangian F necessarily satisfies this
equation. [3] In Chapter 4 we will look at regularity. In Section 4.1 we show that full regularity holds if the
Lagrangian F has polynomial growth and satisfies certain conditions on boundedness and convexity. These
conditions are stronger than the conditions in Tonelli’s Existence Theorem, so full regularity may not hold
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in every case.
Partial regularity may hold, however. A useful result for this is Tonelli’s Partial Regularity Theorem, de-
scribed in Section 4.2. This theorem tells us that if F is a smooth Lagrangian with strict convexity in p,
then any absolutely continuous minimizer has a (possibly infinite) classical derivative everywhere on Ī, and
is smooth almost everywhere. Using this theorem we can prove another result which says that if a smooth
Lagrangian satisfies certain conditions on boundedness and has superlinear growth, then any strong local
minimizer is smooth and satisfies the Euler equation (1).
The last section of Chapter 4 is about the Lavrentiev phenomenon. If a Lagrangian F exhibits the phe-
nomenon, it means that

inf{F(u) : u ∈ AC(I), u(a) = α, u(b) = β} < inf{F(u) : u ∈ Lip(I), u(a) = α, u(b) = β}.

We will discuss Manià’s example of a polynomial Lagrangian exhibiting the phenomenon. Furthermore, we
will give some remarks on the phenomenon. Especially, that we cannot carelessly substitute an admissible
space of functions with a dense one, since this may gave different values for the infimum. And we will explain
what is - and is not - the most reasonable extension of the problem

inf{F(u) : u ∈ Lip(I), u(a) = α, u(b) = β}. (2)

The first chapter after this introduction contains a number of definitions and preliminary results from the
analysis of variations. For example, it contains a more detailed definition of a Sobolev space.
At the very end of this thesis, there is an appendix with theorems we used in the thesis. For example, it
contains the Global Inverse Function Theorem used in Section 4.1.
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2 Preliminaries

This chapter contains a number of definitions and lemmas from the calculus of variations which we will use
in the rest of the thesis.
This chapter is based on [3].

Assume that F ∈ C1(U), where U is some open set in R × R × R containing the 1-graph {(x, u(x), u′(x)) :
x ∈ Ī}. Then F(ν) is defined for any ν ∈ C1(Ī) satisfying ||ν − u||C1(I) < δ for some sufficiently small δ > 0.
It follows that the function

Φ(ε) := F(u+ εφ)

is defined for any φ ∈ C1(Ī) and |ε| < ε0 where ε0 := δ/||φ||C(I). Moreover, Φ is a C1-function on (−ε0, ε0).
Furthermore,

Φ′(0) =

∫
I

Fz(x, u, u
′) · φ+ Fp(x, u, u

′) · φ′dx.

Now set
δF(u, φ) := Φ′(0).

We call δF(u, φ) the first variation of F at u in the direction of φ. Note that δF(u, φ) is a linear functional
of φ ∈ C1(Ī).

Definition 2.1 (Weak extremal). A function u ∈ C1(I) satisfying

δF(u, φ) =

∫
I

Fz(x, u, u
′) · φ(x) + Fp(x, u, u

′) · φ′(x)dx = 0 (3)

for all φ ∈ C∞c (I) is said to be a weak extremal of the functional F .

Note that if u ∈ C1(Ī), then (3) is equivalent to

δF(u, φ) = 0 for all φ ∈ C∞c (I).

Definition 2.2 (Weak minimizer). The function u ∈ C1(Ī) is a weak minimizer of F , if

F(u) ≤ F(u+ φ)

for all φ ∈ C∞c (I) with ||φ||C1(I) < δ, where 0 < δ � 1.

Naturally, any weak minimizer of F is a weak extremal of F .

Definition 2.3 (Field of extremals). We say that u is embedded into a field of extremals of F , if there is a
simply connected domain Γ = {(x, c) : c ∈ I0, x ∈ I(c)} in R2, where I0 is a non-empty parameter set in R
and I(c) is an interval on the real axis, and a C1-diffeomorphism f : Γ → G of Γ onto a simply connected
domain G in R2 such that f is of the form

f(x, c) = (x, φ(x, c))

with φ′ = dy/dx ∈ C1(Γ) and satisfies

u(x) = φ(x, c0) for all x ∈ Ī

and for some c0 ∈ I0, where [a, b] ⊂ int I(c0). Furthermore, it is assumed that, for any c ∈ I0, the function
φ(·, c) is an extremal of F , i.e.

Fz(·, φ(·, c), φ′(·, c))− d

dx
Fp(·, φ(·, c), φ′(·, c)) = 0.

Lemma 2.4 (The fundamental lemma of calculus of variations). Suppose that f ∈ C0(I) satisfies∫
I

f(x)η(x)dx = 0 for all η ∈ C∞c (I). (4)

Then we have f(x) = 0 for all x ∈ I.
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Proof. Let x0 ∈ I and δ > 0 such that I = (x0 − δ, x0 + δ) ⊂ I, and let χ0 be the characteristic function of
I0. Since C∞c is dense in L2(I) with respect to the L2-norm, we infer from (4) that∫

I0

f(x)dx =

∫
I

f(x)χ(x0)dx = 0,

and therefore
1

2δ

∫ x0+δ

x0−δ
f(x)dx = 0.

Letting δ → 0 we obtain f(x0) = 0 for any x0 ∈ I.

Lemma 2.5 (DuBois-Reymond’s Lemma). Suppose that f ∈ L1(I) satisfies∫
I

f(x)η′(x)dx = 0 for al η ∈ C∞c . (5)

Then there is a constant c ∈ R such that f(x) = c a.e. on I.

Proof. Fix two Lebesgue points of x0, ξ ∈ I of fand set c := f(x0). Suppose that x0 < ξ (x0 − ε, ξ + ε) ⊂ I
for ε > 0. Define the piecewise linear function ζ ∈ C0

c (I), where

ζ(x) :=


1 if x ∈ [x0, ξ]

ε−1(x− x0 + ε) if x ∈ [x0 − ε, x0]
ε−1(ξ − x+ ε) if x ∈ [ξ, ξ + ε]

0 if x /∈ [x0 − ε, ξ + ε]

It follows that ∣∣∣∣∫
I

f(x)ζ ′(x)dx

∣∣∣∣ =

∣∣∣∣∣1ε
∫ x0

x0−ε
f(x)dx− 1

ε

∫ ξ+ε

ξ

f(x)dx

∣∣∣∣∣
≤ 1

ε

∣∣∣∣∫ x0

x0−ε
f(x)dx

∣∣∣∣+
1

ε

∣∣∣∣∣
∫ ξ+ε

ξ

f(x)dx

∣∣∣∣∣
≤ 2

ε

∣∣∣∣∫
I

f(x)dx

∣∣∣∣ = 0

because of (5). So ∫
I

f(x)ζ ′(x)dx = 0

which is equivalent to
1

ε

∫ x0

x0−ε
f(x)dx− 1

ε

∫ ξ+ε

ξ

f(x)dx = 0.

Letting ε → 0 we arrive at f(x0) = f(ξ), i.e. f(ξ) = c for any Lebesgue point ξ > x0. If ξ < x0 we reverse
the roles of x0 and ξ, and we obtain the same result. Thus we have f(ξ) = c for any Lebesgue point ξ of f .
Hence, f(x) = c a.e. on I.

Definition 2.6 (Weak derivative). We say that a function u ∈ Lp(I), 1 ≤ p ≤ ∞, has a function u ∈ Lq(I),
with 1 ≤ q ≤ ∞, as a weak derivative if∫

I

uφ′dx = −
∫
I

νφdx ∀φ ∈ C∞c (I). (6)

The weak derivative is denoted by u′.
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Definition 2.7 (Sobolev space). Let 1 ≤ p <∞. Let X be the linear subspace of Lp(I) for which

||u||H1,p(I) :=

(∫
I

(|u|p + |u′|p)dx
)1/p

<∞, (7)

i.e. all functions u in Lp(I) whose weak derivative u′ has a finite Lp-norm. Note that || · ||H1,p(I) is a norm.
The completion of X with respect to this norm is denoted by H1,p(I) and is referred to as a Sobolev space.
The space H1,1 is the space of absolutely continuous functions on I, and is also denoted by AC(I).
The space of Lipschitz functions on I is also a Sobolev space, namely H1,∞(I).

Theorem 2.8. Let u ∈ H1,1(a, b). Then, by possibly changing u on a set of measure zero, we have that u
is of class C0([a, b]), we have that u ∈ C0([a, b]), which is classically differentiable almost everywhere, and
its classical derivative [u′] coincides almost everywhere with the weak L1-derivative u′. Moreover, for all x,
y ∈ [a, b], the fundamental theorem of calculus holds:

u(x)− u(y) =

∫ x

y

u′(t)dt.
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3 Existence of minimizers

In this section, we will show that minimizers exist when the Lagrangian satisfies certain conditions on
continuity and convexity, and which has certain growth properties.
We will prove the main result (Tonelli’s Existence Theorem) using Tonelli’s Semicontinuity Theorem.
The proofs in this section are based on [3].

Theorem 3.1 (Tonelli’s Existence Theorem). Suppose that the Lagrangian F (x, z, p) satisfies the following
conditions:

1. F (x, z, p) and Fp(x, z, p) are continuous in (x, z, p);

2. F (x, z, p) is convex in p, i.e. Fpp(x, z, p) ≥ 0 for all (x, z, p) ∈ I × R× R;

3. F (x, z, p) has polynomial growth of order m, i.e. there are positive constants c0, c1, c2 and a constant
m > 1 such that

c0|p|m ≤ F (x, z, p) ≤ c1|p|m + c2 for all x, z, p.

Then there exists a minimizer of

F(u) :=

∫
I

F (x, u(x), u′(x))dx

in the class
C(α, β) := {u ∈ H1,m(I) : u(a) = α, u(b) = β}

where α, β are fixed constants in R.

In order to prove this, we first need to prove the following lemma.

Lemma 3.2 (Tonelli’s Semicontinuity Theorem). Let I be a bounded open interval in R and let F (x, z, p) be
a Lagrangian satisfying the following conditions:

1. F and Fp are continuous in (x, z, p);

2. F is non-negative or bounded below by an L1-function;

3. F is convex in p.

Then the functional

F(u) =

∫
I

F (x, u(x), u′(x))dx

is sequentially lower weakly continuous in H1,m(I) for all m ≥ 1, i.e. if {uk} converges weakly in H1,m(I)
to u, then

F(u) ≤ lim inf
k→∞

F(uk). (8)

Equivalently we can say that (8) holds if {uk} converges uniformly to u and the L1-norms of u′k are equi-
bounded.

First, we pass to a subsequence to ensure convergence almost everywhere. We use measurability results to
find a compact subset of I on which uniform convergence and continuity hold. We then use Lebesgue’s
Absolute Continuity Theorem, convexity and compactness to obtain a lower bound, from which the result
follows.

Proof of 3.2. It suffices to consider only the case m = 1, since if {uk} converges weakly to u in H1,m(I) for
some m ≥ 1, it also converges to u in H1,1(I).
Let {uk} be a sequence which converges weakly to u in H1,1(I). Passing to a subsequence we can assume
that {uk} converges to u in Lq for every q ≥ 1, hence almost everywhere. Assume now that F(u) is finite.
Because {uk} converges to u almost everywhere and uk are measurable, we can apply Egorov’s Theorem to
find K1 ⊂ I such that uk → u uniformly in K1.
Because u and u′ are measurable, we can apply Lusin’s Theorem to find a compact set K2 ⊂ I such that u
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and u′ are continuous in K2.
Now, let K = K1 ∩K2. Especially, K is compact. Then, by Lebesgue’s Absolute Continuity Theorem∫

K

F (x, u, u′)dx ≥
∫
I

F (x, u, u′)dx− ε

(if F(u) = +∞, we can assume that
∫
K
F (x, u, u′)dx > 1/ε).

Since F convex in p, we obtain

F(uk) ≥
∫
K

F (x, uk, u
′
k)dx

≥
∫
K

F (x, ux, u
′)dx+

∫
K

Fp(x, uk, u
′)(u′k − u′)dx

=

∫
K

F (x, uk, u
′)dx+

∫
K

Fp(x, u, u
′)(u′k − u′)dx+

∫
K

[Fp(x, uk, u
′)− Fp(x, u, u′)](u′k − u′)dx.

Since u and u′ are continuous on K, both functions are bounded on K. Because Fp is continuous as well, it
follows that Fp(x, u(x), u′(x)) is bounded. Moreover, because uk → u uniformly on K, it follows that u′k → u′

uniformly on K with respect to the L1-norm. Hence,∫
K

Fp(x, u, u
′)(u′k − u′)dx→ 0 as k →∞.

Since u, uk ∈ H1,1(I), it follows that u′ is bounded in L1 and u′k are equibounded in L1. Therefore, u′k − u′
are equibounded in L1. Because Fp(x, z, p) is continuous and uk → u uniformly on K, it follows that
Fp(x, uk, u

′)− Fp(x, u, u′) converge uniformly to zero on K as k →∞. Therefore,∫
K

[Fp(x, uk, u
′)− Fp(x, u, u′)](u′k − u′)dx→ 0 as k →∞

and ∫
K

F (x, uk, u
′)dx→

∫
K

F (x, u, u′)dx as k →∞.

Thus,

lim inf
k→∞

F(uk) ≥ lim inf
k→∞

∫
K

F (x, uk, u
′
k)dx

≥ lim inf
k→∞

∫
K

F (x, uk, u
′)dx

= lim
k→∞

∫
K

F (x, uk, u
′)dx

=

∫
K

F (x, u, u′)dx

≥
∫
I

F (x, u, u′)dx− ε.

Since this holds for all ε and F satisfies the second condition, we have that

lim inf
k→∞

F(uk) ≥ F(u).

Now we can prove Tonelli’s Existence Theorem.

Proof of Theorem 3.1. Because F has polynomial growth, it follows that

F(u) ≥
∫
I

c0|u′(x)|mdx > 0
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for every u ∈ H1,m. So the functional F is bounded from below. Let {uk} be a minimizing sequence in
C(α, β). Because of polynomial growth, we have

F(uk) ≤
∫
I

c1|u′k(x)|m + c2dx <∞.

Because H1,m(I) is reflexive, and uk is equibounded in H1,m(I), it follows that (a subsequence of) {uk}
converges weakly in H1,m(I) to some function u ∈ H1,m(I). Lemma 3.2 then yields

F(u) ≤ lim inf
k→∞

F(uk).

Because {uk} converges weakly to u in H1,m(I), it also converges to u in H1,1(I). Passing to a subsequence
we can assume that {uk} converges to u in Lq for every q ≥ 1, hence almost everywhere. Especially,
α = limk→∞ uk(a) = u(a) and β = limk→∞ uk(b) = u(b), so u ∈ C(α, β).

The result also holds if the Lagrangian satisfies the more general condition of superlinear growth. The
minimizer will then be absolutely continuous. (For a proof of this, see for example [3]).
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4 Regularity of minimizers

This chapter is divided into three sections, which all have to do with regularity of minimizers. First, we will
look at the case that full regularity holds. Then, we look at a result from Tonelli for partial regularity, when
a minimizer is regular almost everywhere. Lastly, we discuss the Lavrentiev phenomenon, which shows us
that we cannot carelessly substitute an admissible space of functions with a dense one.

4.1 The regular case

In this section, we will show that full regularity holds for certain variational integrals of the form F(u) =∫
I
F (x, u(x), u′(x))dx. The Lagrangians of these integrals satisfy certain conditions on smoothness, bound-

edness and convexity. We will also show that the smoothness class of the minimizer is the same as the
smoothness class of the Lagrangian. We end with three examples.

Theorem 4.1. Let I = (a, b) be a bounded interval in R, and let F (x, z, p) be a Lagrangian of class C2

defined on Ī × R× R, N ≥ 1, satisfying the following conditions:

1. there are constants c0, c1 > 0 such that for all (x, z, p) ∈ Ī × R× R

c0|p|m ≤ F (x, z, p) ≤ c1(1 + |p|m); (9)

2. there is a function M(R) > 0 such that

|Fz(x, z, p)|+ |Fp(x, z, p)| ≤M(R)(1 + |p|m) (10)

for all (x, z, p) ∈ Ī × R× R with x2 + |z|2 ≤ R2;

3. for all (x, z, p) ∈ Ī × R× R we have
Fpp(x, z, p) > 0. (11)

Let
C(α, β) := {u ∈ H1,m(I) : u(a) = α, u(b) = β}

where α, β are fixed constants in R. Suppose that u is a local minimizer of the variational integral

F(u) :=

∫
I

F (x, u(x), u′(x))dx

in C(α, β). Then u belongs to C2(Ī) and satisfies the Euler equation

d

dx
Fp(x, u(x), u′(x))− Fz(x, u(x), u′(x)) = 0 on I.

First, we prove that u is a weak H1,m-extremal of F . Next, we prove that u is of class C1 using a global
inversion argument. Then, we show that u is of class C2 using the Implicit Function Theorem. Lastly, we
prove that the Euler equation holds.
The proof is an adaptation of proofs in [3] and [5].

Proof of Theorem 4.1. Step 1: u is a weak H1,m-extremal Because of (9)

− infty < c0

∫
I

|ν′(x)|mdxF(ν) ≤ c1
∫
I

1 + |ν′(x)|mdx <≤ ∞

for any ν ∈ C(α, β), so F(ν) is well-defined. Let φ ∈ Lip(I) such that |φ(x)| ≤ Q on I, and |φ′(x)| ≤ Q a.e.
on I for some Q > 0. Let 0 < ε0 ≤ 1, and let ε ∈ R such that |ε| < ε0. Using a generalized version of the
fundamental theorem of calculus, we have

x2 + (u(x) + εφ(x))2 ≤ b2 + (u(x) + εφ(x))2

≤ b2 + (u(x) +Q2)

≤ b2 + (

∫
I

u′(x)dx+Q2)2 <∞
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for all x ∈ Ī. So there exists R0 ∈ R such that

x2 + (u(x) + εφ(x))2 ≤ R2
0 for all x ∈ Ī . (12)

Moreover, we have that

|u′(x) + εφ′(x)|m ≤ (|u′(x)|+ |εφ′(x)|)m ≤ (|u′(x)|+Q)m a.e. on I.

So, by (10) we have that
Fz(x, u+ εφ, u′ + εφ′) + Fp(x, u+ εφ, u′ + εφ′)

is a.e. dominated by the positive L1-function

M(R0)[1 + (|u′(x)|+Q)m]. (13)

We have that∫
I

|Fz(x, u+ εφ, u′ + εφ′) + Fp(x, u+ εφ, u′ + εφ′)|dx ≤
∫
I

M(R0)[1 + (|u′(x)|+Q)m]dx <∞,

so Fz(x, u+εφ, u′+εφ′)+Fp(x, u+εφ, u′+εφ′) is integrable, which means that the function Φ(ε) := F(u+εφ)
is of class C1 on (−ε0, ε0). Since u is a local minimizer of F(ν) in C(α, β), it follows that Φ(0) ≤ Φ(ε) for
|ε| < ε0 if φ ∈ C∞c (I), whence Φ′(0) = 0 and therefore∫

I

Fz(x, u, u
′) · φ+ Fp(x, u, u

′) · φ′dx = 0 (14)

for all φ ∈ C∞c (I). The formula above is the formula for the first variation of F . Because it is equal to zero,
it follows that u ∈ AC(I) with u′ ∈ Lm(I) is a weak H1,m-extremal of F .

Step 2: u ∈ C1(Ī) Because u ∈ AC(I), we can find R1 such that

x2 + |u(x)|2 ≤ R2
1 for all x ∈ Ī . (15)

By virtue of (10), we have ∫
I

|Fz(x, u, u′)|dx ≤
∫
I

M(R1)(1 + |u′(x)|m)dx <∞. (16)

Therefore, Fz(·, u, u′) ∈ L1(I,R). An integration by parts leads to∫ b

a

Fz(x, u, u
′) · φ(x)dx =

[
φ(x) ·

∫ x

a

Fz(t, u, u
′)dt

]b
a

−
∫ b

a

(∫ x

a

Fz(t, u, u
′)dt

)
· φ′(x)dx

= −
∫ b

a

(∫ x

a

Fz(t, u, u
′)dt

)
· φ′(x)dx

for all φ ∈ C∞c (I). Combining this with (14), we get∫
I

[
Fp(x, u, u

′)−
∫ x

a

Fz(t, u, u
′)dt

]
· φ′(x)dx = 0

for all φ ∈ C∞c (I). Applying DuBois-Reymond’s Lemma, we get that there is some constant c ∈ R such that

Fp(x, u(x), u′(x)) = c+

∫ x

a

Fz(t, u(t), u′(t))dt a.e. on I. (17)

Define

π(x) := c+

∫ x

a

Fz(t, u(t), u′(t))dt.
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By (10) and (15), we have ∫
I

|Fp(x, u, u′)|dx ≤
∫
I

M(R1)(1 + |u′(x)|m)dx <∞,

Consider Ψ : Ī × R× R→ Ī × R× R, defined by

Ψ(x, z, p) := (x, z, Fp(x, z, p)).

Because Fpp > 0, we have that DΨ(x, z, p) 6= 0 for all (x, z, p) ∈ Ī ×R×R, so Ψ is injective and regular. By
the Global Inverse Function Theorem (see for example [6]), we have that Ψ : Ī ×R×R→ Ψ(Ī ×R×R) is a
C1-diffeomorphism. Moreover, Fpp > 0 implies that Fp(x, z, ·) is injective, and thus Ψ(Ī×R×R) = Ī×R×R.
Define:

σ(x) := (x, u(x), u′(x))

e(x) := (x, u(x), π(x)).

Then σ is defined almost everywhere on I, whereas e(x) is defined for all x ∈ Ī. Moreover,

Ψ(σ(x)) = e(x) a.e. on I. (18)

The image set e(Ī) lies in the range of Ψ, and e is continuous on Ī. Thus the function

(x, u(x), ν(x)) := Ψ−1(e(x)), x ∈ Ī ,

is well-defined and continuous.
On the other hand, (18) implies that

(x, u(x), u′(x)) = σ(x) = Ψ−1(e(x)) a.e. on I

and therefore
u′(x) = ν(x) a.e. on I.

By a generalization of the fundamental theorem of calculus, we have that

u(x) = u(a) +

∫ x

a

u′(t)dt = u(a) +

∫ x

a

ν(t)dt

and we obtain that u ∈ C1(Ī).

Step 3: u ∈ C2(Ī)

Because u ∈ C1(Ī), we get that

Fp(x, u(x), u′(x)) = π(x) for all x ∈ I.

Thus the mapping G : Ī × R→ R defined by

G(x, p) := Fp(x, u(x), p)− π(x) (19)

is of class C1(Ī × R), because F is of class C2. Using (11), we have

Gp(x, u
′(x)) = Fpp(x, u(x), u′(x)) > 0 for all x ∈ Ī . (20)

Since
G(x, u′(x)) = 0 for x ∈ Ī , (21)

it follows that u′ ∈ C1(Ī) by the Implicit Function Theorem. Therefore, u ∈ C2(Ī).
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Step 4: u satisfies the Euler equation

Since u ∈ C2(Ī), we can integrate (14) by parts. From this we get that∫
I

[
Fz(x, u, u

′)− d

dx
Fp(x, u, u

′)

]
· φ(x)dx = 0

for all φ ∈ C∞c (I). Applying the fundamental lemma of calculus of variations, we get that

Fz(x, u, u
′)− d

dx
Fp(x, u, u

′) = 0 on I.

Hence, u satisfies the Euler equation.

A corollary of this is that regularity also holds for higher smoothness classes, i.e. if F ∈ Ck, then also u ∈ Ck.

Corollary 4.2. If F (x, z, p) is a Lagrangian of class Ck(Ī × RR), 2 ≤ k ≤ ∞ which satisfies all conditions
of Theorem 4.1, then any local minimizer u ∈ C(α, β) is of class Ck.

Proof. We only have to revise step 3 of the proof of Theorem 4.1.
Let G : Ī × R → R as in (19). Because F ∈ Ck(Ī × R × R), it follows that G ∈ Ck−1(Ī × R). Because (20)
and (21) hold, it follows that u′ ∈ Ck−1(Ī) by the Implicit Function Theorem. Therefore, u ∈ Ck(Ī).

The following two examples will indicate that Fpp > 0 is necessary condition in 4.1. Both are taken from [3].

Example 4.3. Consider the variational integral

F(u) :=

∫ 1

0

(u′2 − 1)2dx.

Every Lipschitz function u0 in (0, 1) with the property that u′0 takes only the values 1 and -1 is a minimizer
of F in the class {u ∈ H1,4(0, 1) : u(0) = u0, u(1) = u1}. So especially, the function

u0(x) :=

{
x if 0 ≤ x ≤ 1

2
1− x if 1

2 ≤ x ≤ 1

is a minimizer of F . Clearly, u0 /∈ C2([0, ]).
In this case, F (x, z, p) = (p2 − 1)2, and therefore Fpp(x, z, p) = 12p2 − 4, so F does not satisfy Fpp > 0. 4

The next example shows that the Fpp ≥ 0 is not sufficient for regularity.

Example 4.4. Consider

F(u) :=

∫ 1

−1

u2(2x− u′)2dx.

A minimizer in {u ∈ H1,2(0, 1) : u(−1) = 0, u(1) = 1} is the function

u(x) :=

{
0 if − 1 ≤ x ≤ 0
x2 if 0 ≤ x ≤ 1

which is a C1([−1, 1])-function, but not of class C2.
In this case, F (x, z, p) = z2(2x− p)2, so Fpp(x, z, p) = 2z2 ≥ 0.

4

The Lagrangian in the last example satisfies all conditions of Tonelli’s Existence Theorem and Theorem 4.1,
so a minimizer exists in {u ∈ C∞([1, 2]) : u(1) = α, u(2) = β}.
This example is by yours truly.
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Example 4.5. Consider the variational integral

F(u) :=

∫ 2

1

(u′ − 1)2(x2 + 1)dx.

The Lagrangian F (x, z, p) = (p− 1)2(x2 + 1) is smooth on [1, 2]×R×R, because it is a polynomial. We have
for all (x, z, p) ∈ (1, 2)× R× R that

Fpp(x, z, p) = 2(x2 + 1) > 0.

Moreover,
(p+ 1)2(x2 + 1) ≤ 5(p+ 1)2 ≤ 10(p2 + 1)

and
(p+ 1)2(x2 + 1) ≥ 2(p+ 1)2 = 2p2 + 4p+ 1 ≥ 2p2 + 5 ≥ 2p2.

So F has polynomial growth of degree 2. We can thus apply Tonelli’s Existence Theorem, which ensures that
a minimizer u of F exists in the class C(α, β) := {u ∈ H1,2((1, 2)) : u(1) = α, u(2) = β}.
Because F also satisfies

|Fz(x, z, p)|+ |Fp(x, z, p)| = |Fp(x, z, p)| = |2(p+ 1)(x2 + 1)| ≤ 10|p+ 1| ≤ 20(p2 + 1)

for all (x, z, p) ∈ [1, 2] × R × R. So F also satisfies (10) for M(R) = 20. Hence, F satisfies all conditions
of Theorem 4.1. Because F ∈ C∞([1, 2] × R × R), we can apply Corollary 4.2, from which follows that any
minimizer u ∈ C(α, β) is smooth.

4

4.2 Partial regularity

Although full regularity may not hold, we may have partial regularity. This means that regularity holds almost
everywhere. Tonelli’s Partial Regularity Theorem tells us that partial regularity holds if the Lagrangian is
smooth and satisfies certain conditions on growth and convexity. We will prove this theorem using two
lemmas. Afterwards, we will prove a consequence of Tonelli’s Partial Regularity Theorem.
The proofs in this section are based on [3] and [5].

Theorem 4.6 (Tonelli’s Partial Regularity Theorem). Let F (x, z, p) be a smooth Lagrangian of satisfying
Fpp(x, z, p) > 0 for every (x, z, p) ∈ Ī ×R×R, and suppose that u ∈ AC(I) is a strong local minimizer of the
functional

F(u) =

∫ b

a

F (x, u(x), u′(x))dx (22)

in the class
C(α, β) := {u ∈ AC(I) : u(a) = α, u(b) = β}, (23)

for some α, β ∈ R. Then u has a (possibly infinite) classical derivative [u′(x)] at each point of [a, b], and
[u′] : [a, b] → R ∪ {+∞,−∞} is continuous. Moreover, the singular set E := {x ∈ [a, b] : [u′(x)] = ±∞} is
closed and has measure zero. Finally, u is of class C∞ outside of E.

To prove this theorem, we need the following two lemmas:

Lemma 4.7. Let F (x, z, p) be a smooth Lagrangian satisfying Fpp > 0. Moreover, let A ⊂ R2 be a bounded
open set, and let M > 0 and δ > 0. Then there exists ε > 0 such that, if (x0, u0) ∈ A, |α| ≤ M , |β| ≤ M ,
the solution u(x;α, β) of the Euler equation

− d

dx
Fp(x, u, u

′) + Fz(x, u, u
′) = 0 (24)

satisfying the initial conditions

u(x0;α, β) = u0 + α, u′(x0;α, β) = β (25)

exists for |x− x0| < ε and is unique. Moreover, we have
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1. u and u′ are C1-functions of x, α, β in the set

S := {(x, α, β) : |x− x0| < ε, |α| ≤M, |β| ≤M} (26)

2. on the set S we have
|u′(x : α, β)− β| < δ (27)

∂u

∂α
(x;α, β) > 0, sign

∂u

∂β
(x;α, β) = sign(x− x0). (28)

Proof. Because Fpp > 0, solving (24) is equivalent to solving

u′′ = f(x, u, u′) (29)

where f(x, z, p) := (Fz − Fpx − pFpz)/Fpp.
Because F is smooth, f is continuous in I ×R×R. Because u is a solution of the Euler equation, u ∈ C1, so
(29) is a continuous, explicit first-order differential equation. We can thus apply Peano’s Existence Theorem,
from which follows that there exists a solution u(x) on (x0)− ε, x0 + ε) for some ε > 0. It also follows that u
and u′ are C1-functions of x, α, β. Since

∂u

∂α
(x0;α, β) = 1,

∂u

∂β
= 0,

∂u′

∂β
(x0;α, β) = 1

it follows that we can choose ε sufficiently small so that the second condition also holds.

Lemma 4.8. Let m, ρ and M1 be three positive constants. Then there exists ε > 0 such that if (x0, x1) ⊂ [a, b],
0 < x1−x0 < ε, |u0| ≤ m, and |(u1−u0)/(x1−x0)| < M1, then there exists a unique solution ũ ∈ C2([x0, x1])
of the Euler equation (24) satisfying ũ(x0) = u0, ũ(x1) = u1, and max[x0,x1] |ũ(x)− u0| < ρ. Moreover, ũ is
the unique minimizer of

F(u; (x0, x1)) :=

∫ x1

x0

F (x, u, u′)dx (30)

over the set A := {u ∈ H1,1((x0, x1)) : u(x0) = u0, u(x1) = u1,max[x0,x1] |ũ(x)− u0| < ρ}.

Proof. Let σ := m+ ρ, A = (a, b)× (−σ, σ), M > max(M1, 2ρ), and let 0 < δ < M −M1. Let ε > 0 be as in
Lemma 4.7, and suppose in addition that 3Mε < ρ. Integrating (27) for x ∈ [x0, x1], we get that

δ(x− x0) ≥
∫ x

x0

|u′(t;α, β)− β|dt = |u(x;α, β)− u0 − α− β(x− x0)|.

So,
|u(x;α, β)− u0 − α− β(x− x0)| ≤ δ(x− x0). (31)

Therefore, observing that by assumption

u0 −M1(x− x0) ≤ u1 ≤ u0 +M1(x− x0),

we get that
u(x1; 0,M)− u0 −M(x1 − x0) ≥ −δ(x1 − x0)

So

u(x1, 0,M) ≥ u0 +M(x1 − x0)− δ(x1 − x0)

= u0 +M1(x1 − x0) + (M −M1 − δ)(x1 − x0) > u1,

and by a similar argument,

u(x1; 0,−M) ≤ u0 −M1(x1 − x0)− (M −M1 − δ)(x1 − x0) < u1.
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Because x1 − x0 > 0, we have by Lemma 4.7 that ∂u
∂β (x1; 0, β) > 0 for β ∈ [−M,M ]. So there is a unique

β0 ∈ [−M,M ] such that u(x1; 0, β0) = u1. Now define

ũ(x) := u(x; 0, β0).

Setting x = x1, α = 0, β = β0 in (31), we obtain

|u1 − u0 − β0(x1 − x0)| ≤ δ(x1 − x0),

and thus

|β0| −
∣∣∣∣u1 − u0

x1 − x0

∣∣∣∣ ≤ ∣∣∣∣u1 − u0

x1 − x0

∣∣∣∣ ≤ δ.
So, we get,

|β0| ≤ δ +

∣∣∣∣u1 − u0

x1 − x0

∣∣∣∣ ≤ δ +M1. (32)

Therefore, again by (31), we have for x ∈ [x0, x1] that

|ũ(x)− u0| ≤ (δ + |β0|)(x− x0)

≤ (2δ +M1)(x− x0)

< (2δ +M1)ε

< (2(M −M1) +M1)ε

< (2(M −M1) +M)ε

< 3Mε

< ρ.

Now suppose that ν ∈ C2([x0, x1]) is also a solution of the Euler equation satisfying ν(x0) = u0, ν(x1) = u1,
and max[x0,x1] |ν(x)− u0| < ρ. Then we have for some x̄ ∈ (x0, x1)

ν′(x̄) =
u1 − u0

x1 − x0

and (x̄, ν(x̄)) ∈ A. Applying Lemma 4.7 and in particular (27) with (x̄, ν(x̄)) replacing (x0, u0), and ν′(x̄)
replacing β, we deduce for x ∈ [x0, x1] that∣∣∣∣ν′(x)− u1 − u0

x1 − x0

∣∣∣∣ ≤ δ.
In particular,

|ν′(x0)| ≤ δ +

∣∣∣∣u1 − u0

x1 − x0

∣∣∣∣
< δ +M1

< M.

Since, as we have seen, there exists a unique β0 ∈ [−M,M ] such that the solution of the Euler equation with
initial values u(x0) = u0, u′(x0) = β0 has value u1 at x1, we deduce that ν′(x0) = β0, and thus ν = ũ.
To show that ũ minimizes F(u; (x0, x1)) in A, we consider the one-parameter family of solutions {u(·;α, β0) :
|α| ≤M}. By (31) and (32) we have for x ∈ [x0, x1]

u(x;M,β0)− u0 ≥M + (β0 − δ)(x− x0) > M − (2δ −M1)ε > 2ρ− ρ = ρ

and
u(x;−M,β0)− u0 ≤ −M + (β0 + δ)(x− x0) < −M + (2δ +M)ε < −2ρ+ ρ = ρ.

Since ∂u
∂α (x;α, β0) > 0, it follows that ũ is embedded in a field of extremals that simply covers the region

[x0, x1]× [u0 − ρ, u0 + ρ]. Since Fpp > 0, it follows from the Weierstrass formula that

F(u; (x0, x1)) ≥ F(ũ; (x0, x1))

for all u ∈ A, with equality if and only if u = ũ.
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Now we can prove Tonelli’s Partial Regularity Theorem.
The main ideas of the proof are the following. If at some point the difference quotients of u are equibounded,
we can use lemma 4.8 to find a solution ũ of the Euler equation in a small neighbourhood of such a point. Since
ũ can be embedded in a field of extremals, and α(x) (such that u(x) = u(x;α(x),M) in this neighbourhood)
depends continuously on x, ũ is a minimizer of F in such a small interval and coincides with u; in particular
u is regular in a neighbourhood of our point. Since u is almost everywhere differentiable in the classical sense,
we then infer that the difference quotients are almost everywhere bounded. Hence, u is regular in an open
set Ω0, and E := [a, b]− Ω0 has measure zero.

Proof of Theorem 4.6. Because u is a strong local minimizer in C(α, β), there exists a constant δ1 > 0 such
that F(u) ≤ F(ν) for all ν ∈ C with max[a,b] |u(x)− ν(x)| ≤ δ1. Let x̄ ∈ [a, b] such that

M(x̄) := lim inf
x→x̄

∣∣∣∣u(x)− u(x̄)

x− x̄

∣∣∣∣ <∞. (33)

Suppose that x̄ 6= b. Take x̄1 > x̄ with x̄1− x̄ sufficiently small so that max[x̄,x̄1] |u(x)−u(x̄)| < δ1/2. Choose
M1 > M(x̄). By (33), we can apply Lemma 4.8 with x0 = x̄, u0 = u(x̄), ρ = δ1/2, u1 = u(x1), where
x1 ∈ (x̄, x̄1) satisfies

x1 − x̄ < ε,

∣∣∣∣u(x1)− u(x̄)

x1 − x̄

∣∣∣∣ < M1.

Let ũ be the corresponding solution of the Euler equation, and let û ∈ AC(I) be defined as

û(x) :=

{
ũ(x) if x ∈ [x̄, x1]
u(x) otherwise.

Then

max
[a,b]
|û(x)− u(x)| = max

[x̄,x1]
|ũ(x)− u(x)|

≤ max
[x̄,x1]

|ũ(x)− u(x̄)|+ max
[x̄,x1]

|u(x̄)− u(x)|

< δ1/2 + δ1/2 = δ1,

and so
F(û)−F(u) = F(ũ; (x̄, x1))−F(u; (x̄, x1)) ≥ 0.

Since ũ is the unique minimizer of F(·; (x̄1, x1)) with ũ(x̄) = u(x̄), ũ(x1) = u(x1), and max[x̄,x1] |ũ(x)−ũ(x̄)| <
δ1/2, it follows that ũ = u in [x̄, x1], and hence that u ∈ C2([x̄, x1]).
Now suppose x̄ 6= a. Take x̄0 < x̄ with x̄ − x̄0 sufficiently small so that max[x̄0,x̄] |u(x) − u(x̄)| < δ1/2.
Choose M1 > M(x̄). By (33) we can apply Lemma 4.8 with x1 = x̄, u1 = u(x̄), ρ = δ1/2, u0 = u(x0) where
x0 ∈ (x̄0, x̄) satisfies

x̄− x0 < ε,

∣∣∣∣u(x̄)− u(x0)

x̄− x0

∣∣∣∣ < M1.

Let ũ be the corresponding solution of the Euler equation, and let û ∈ AC(I) be defined as

û(x) :=

{
ũ(x) if x ∈ [x0, x̄]
u(x) otherwise.

Then max[a,b] |û(x)− u(x)| < δ1, and so

F(û)−F(u) = F(ũ; (x0, x̄))−F(u; (x0, x̄)) ≥ 0.

Since ũ is the unique minimizer of F(·, (x0, x̄)) with ũ(x̄) = u(x̄), ũ(x0) = u(x0), and max[x0,x̄] < δ1/2, it
follows that ũ = u in [x0, x̄] and hence that u ∈ C2([x0, x̄]).
Let U be a neighbourhood of the 1-graph of u on [x0, x̄]. Then there is a constant c ∈ R such that we can
write

Fp(x, u(x), u′(x)) = π(x) for all x ∈ I
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where

π(x) :=

∫ x

a

Fz(t, u(t), u′(t))dt+ c.

(This follows from the equation of a weak extremal and DuBois-Reymond’s Lemma. An explicit computation
can be found in the proof in the previous section.) Because u ∈ C2[x0, x̄] and F is smooth, it follows that
the mapping G : [x0, x̄]× R→ R defined by

G(x, p) := Fp(x, u(x), p)− π(x)

is of class C∞([x0, x̄]× R) and satisfies

detGp(x, u
′(x)) 6= 0 for all x ∈ [x0, x̄].

Since Gp(x, u
′(x)) = Fpp(x, u(x), u′(x)) for all x ∈ [x0, x̄]. Since p = u′(x), x ∈ [x0, x̄], is a solution of the

equation G(x, p) = 0 the Implicit Function Theorem yields u′ ∈ C∞([x0, x̄]).
Since u is differentiable almost everywhere in [a, b] it follows that

Ω0 := {x ∈ [a, b] : M(x) ≤ ∞}

is an open subset of [a, b] of full measure, and that u ∈ C∞(Ω0).
It remains to show that the classical derivative [u′(x)] of u exists everywhere, and is a continuous function
with values in R ∪ {±∞}. It suffices to consider points x2 in E := [a, b] \ Ω0.
Let x2 ∈ E, so that M(x2) =∞. Suppose that (x2) ∈ (a, b). By an appropriate reflection of the variables x
and/or u we can suppose without loss of generality that there exist points yj → x2, yj < x2 with

lim
j→∞

u(x2)− u(yj)

x2 − yj
= +∞.

Let M > 0, δ > 0 be arbitrary and apply Lemma 4.7 with u0 = u(x2). The solutions {u(·;α,M) : |α| ≤M}
of the Euler equation form a field of extremals simply covering some neighbourhood of (x2, u0) in R2. Thus,
for |x − x2| sufficiently small there exists a unique α(x) with |α(x)| ≤ M such that u(x) = u(x;α(x),M),
and by the Implicit Function Theorem and (28) α depends continuously on x. Clearly, α(x2) = 0.

Claim 1. α(x) is non-decreasing near x2.

Proof. Suppose that there exist sequences aj → x2, bj → x2, cj → x2 with aj < bj < cj and α(aj) = α(cj) 6=
α(bj). Then for large enough j the solution νj(x) := u(x;α(aj),M), aj ≤ x ≤ cj satisfies νj(aj) = u(aj),
νj(bj) 6= u(bj), νj(cj) = u(cj) and max[aj ,cj ] |u(x)− νj(x)| ≤ δ1. Since νj is embedded in a field of extremals
and Fpp > 0, the Weierstrass formula gives∫ cj

aj

F (x, u, u′)dx >

∫ cj

aj

F (x, νj , ν
′
j)dx

contradicting our hypothesis that u is a strong relative minimizer.
Thus α is either non-decreasing or non-increasing near x2. The latter possibility is excluded, however, by
noting that by integrating (27) we get

|u(yj ;α(yj),M)− u(x2)− α(yj)−M(yj − x2)| ≤ δ(yj − x2)

and hence
α(yj)

x2 − yj
≤ δ +M − u(x2)− u(yj)

x2 − yj
.

It follows that α(yj) < 0 for j sufficiently large. This contradicts limj→∞ α(yj) = α(x2) = 0, however. �
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Now, let xj → x2, zj → x2 with xj > zj . Then, for large enough j,

u(xj)− u(zj)

xj − zj
=
u(xj ;α(xj),M)− u(zj ;α(zj),M)

xj − zj

≥ u(xj ;α(zj),M)− u(zj ;α(zj),M)

xj − zj
= u′(wj ;α(zj),M)

≥M − δ

where xj ≥ wj ≥ zj and we have used (27). Since M and δ are arbitrary, we have

lim
j→∞

u(xj)− u(zj)

xj − zj
=∞. (34)

In particular the classical derivative [u′(x2)] exists and equals +∞. A similar argument applies if x2 = a or
x2 = b. We thus have shown that [u′(x)] exists for all x ∈ [a, b]. The continuity of [u′(x)] is obvious if x ∈ Ω0,
and follows from (34) otherwise.

As a consequence of Tonelli’s Partial Regularity Theorem, we have the following theorem:

Theorem 4.9. Suppose that F (x, z, p) is a smooth Lagrangian with superlinear growth, i.e.

lim
|p|→∞

F (x, z, p)

|p|
=∞

with Fpp > 0. Let u ∈ AC(I) be a strong local minimizer of the functional

F(u) =

∫
I

F (x, u, u′)dx

with respect to its own boundary values, and suppose either that

Fz(·, u, u′) ∈ L1(I) (35)

or that
Fx(·, u, u′) ∈ L1(I). (36)

Then u is smooth and satisfies both the Euler equation

− d

dx
Fp(x, u, u

′) + Fz(x, u, u
′) = 0 (37)

and
d

dx
[F (x, u, u′)− u′(x)Fp(x, u, u

′)] = Fx(x, u, u′). (38)

Proof. Let Ω1 be a maximal interval in Ω0 := [a, b] \E, where E is the singular set of u. By Theorem 4.6, u
is smooth and satisfies (37), and thus DuBois-Reymond’s equation, i.e. there is c ∈ R such that

Fp(x, u(x), u′(x)) = c+

∫ x

a

Fz(t, u(t), u′(t))dt. (39)

Using (39), we get that

d

dx
[F (x, u, u′)− u′(x)Fp(x, u, u

′)] = Fx(x, u, u′) + u′(x)Fz(x, u, u
′) + u′′(x)Fp(x, u, u

′)− u′(x) · d
dx
Fp(x, u, u

′)− u′′(x)Fp(x, u, u
′)

= Fx(x, u, u′) + u′(x)Fz(x, u, u
′)− u′(x) · d

dx
Fp(x, u, u

′)

= Fx(x, u, u′) + u′(x)Fz(x, u, u
′)− u′(x)Fz(x, u, u

′)

= Fx(x, u, u′).
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So, u satisfies (38).
The first case: Fz(·, u, u′) ∈ L1(a, b)
Suppose that (35) holds. If we integrate (37) we get for x ∈ Ω1 that

− Fp(x, u(x), u′(x)) +

∫ x

a

Fz(t, u(t), u′(t))dt+ c = 0

for some c ∈ R and x ∈ Ω1. Therefore,

|Fp(x, u(x), u′(x))| = |
∫ x

a

Fz(t, u(t), u′(t))dt+ c|

≤
∫ x

a

|Fz(t, u(t), u′(t))|dt+ |c| <∞.

Hence,
|Fp(x, u(x), u′(x))| ≤ c1 (40)

for some constant c1 ∈ R.
We claim that

|Fp(x, z, p)| → ∞ (41)

as |p| → ∞, uniformly in x ∈ [a, b] and u in a compact subset of R. Therefore, from (40) we see that u′ is
bounded in Ω1, and thus Ω1 = [a, b].
Let us now prove that (41) holds.
By the convexity of F (x, z, p) in p we have that

F (x, z, 0) ≥ F (x, z, p)− pFp(x, z, p);

hence, for p 6= 0,
p

|p|
Fp(x, z, p) ≥

F (x, z, p)

|p|
− F (x, z, 0)

|p|
.

Therefore, for fixed x, z we deduce that

lim
p→+∞

Fp(x, z, p) = +∞ lim
p→−∞

Fp(x, z, p) = −∞

because F has superlinear growth. Since Fp is increasing in p, we also have, for example, for p ≥M that

Fp(x, z, p) ≥ Fp(x, z,M).

From this we deduce that the limit in (41) is uniform in (x, z) in a compact set; otherwise there would
exist a convergent sequence (xj , zj) and a sequence pj → ∞ such that lim infj→∞ Fp(xj , zj , pj) < ∞, in
contradiction to

lim inf
j→∞

Fp(xj , zj , pj) ≥ lim inf
j→∞

Fp(xj , zj ,M) ≥ Fp(x, z,M)

for all M .
The case that p→ −∞ follows from a similar argument.

The second case: Fx(·, u, u′) ∈ L1(a, b)
Suppose that (36) holds. By integrating (38), we get for x ∈ Ω1 that

F (x, u, u′)− u′(x)Fp(x, u, u
′) =

∫ x

a

Fx(t, u(t), u′(t))dt+ c,

for some c ∈ R. So especially,

|F (x, u, u′)− u′(x)Fp(x, u, u
′)| = |

∫ x

a

Fx(t, u(t), u′(t))dt+ c|

≤
∫ x

a

|Fx(t, u(t), u′(t))|dt+ |c| <∞.
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Hence,
|u′(x)Fp(x, u, u

′)− F (x, u, u′)| ≤ c2 (42)

for some constant c2 ∈ R.
We claim that

pFp(x, z, p)− F (x, z, p)→∞ (43)

as |p| → ∞, uniformly in x ∈ [a, b] and u in a compact subset of R. Therefore from (42) we see that u′ is
bounded in Ω1, and thus Ω1 = [a, b].
Let us now prove that 43 holds.
By convexity in p, we have that

F (x, u, 1) ≥ F (x, z, p)− (p− 1)Fp(x, z, p),

and hence

pFp(x, z, p)− F (x, z, p) ≥ F (x, z, p)

p

p

p− 1
− F (x, z, p)

p

p− 1
,

provided that p > 1. Therefore, for fixed x, u we have

lim
p→∞

pFp(x, z, p)− F (x, z, p) =∞

because F has superlinear growth. Since pFp − F is increasing in p, we also have, for example, for p ≥ M
that

pFp(x, z, p)− F (x, z, p) ≥MFp(x, z,M)− F (x, z,M).

From this we deduce that the limit in (43) is uniform in (x, z) in a compact set; otherwise there would exist a
convergent sequence (xj , zj) and a sequence pj →∞ such that lim infj→∞ pjFp(xj , zj , pj)−F (xj , zj , pj) <∞,
in contradiction to

lim inf
j→∞

pjFp(xj , zj , pj)− F (xj , zj , pj) ≥ lim inf
j→∞

MFp(xj , zj ,M)− F (xj , zj ,M) ≥MFp(x, z,M)− F (x, z,M)

for all M .

4.3 The Lavrentiev phenomenon

A Lagrangian F exhibits the Lavrentiev phenomenon if the infimum taken over the set of absolutely continuous
functions is strictly lower than the the infimum over the Lipschitz functions. More specifically, if

inf{F(u) : u ∈ AC(I), u(a) = α, u(b) = β} < inf{F(u) : u ∈ Lip(I), u(a) = α, u(b) = β}.

It is clear that the phenomenon does not occur whenever a minimizer u is regular on [a, b]. On the other
hand, if the Lavrentiev phenomenon does occur, then the singular set E := {x ∈ [a, b] : [u′(x)] = ±∞} of u
is nonempty (since otherwise, the minimizer would be regular).

An important example of a case where the Lavrentiev phenomenon occurs is Manià’s Example.
The computations here are based on [1].

Example 4.10 (Manià’s Example). Consider the variational integral

F(u) :=

∫ 1

0

(u3 − x)2u′6dx. (44)

Obviously, u(x) = x1/3 is a minimizer of F(u) in the class

C(0, 1) := {u ∈ H1,1(0, 1) : u(0) = 0, u(1) = 1}

as we have F(u) ≥ 0 for all u ∈ C(0, 1) and F(x1/3) = 0. The function x1/3 is also a minimizer of F in the
class C(0, 1) ∩ C1(0, 1).
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Let û ∈ C(0, 1) ∩ Lip(0, 1), and consider the function 1
2x

1/3. By regularity of û, there exists a ∈ (0, 1) such

that û(x) ≤ x1/3/2 for every x ∈ [0, a] and û(a) = 1
2a

1/3.
Hence,

(û3(x)− x)2ξ6 ≥ ((x1/3/2)3 − x)2ξ6 =
72

82
x2ξ6 (45)

for any x ∈ [0, a] and ξ ∈ R. Using the Hölder inequality, we see that

a1/3

2
= û(a) =

∫ a

0

x1/3

x1/3
·û′(x)dx ≤

(∫ a

0

x−2/5dx

)5/6

·
(∫ a

0

x2 · û′6(x)dx

)1/6

=
55/6

35/6
a1/2·

(∫ a

0

x2 · û′6dx
)1/6

(46)
Using (45) and (46) we obtain that

F(û) ≥
∫ a

0

(û3(x)− x)2û′6(x)dx

≥ 72

82

∫ a

0

x2û′6dx

≥ 72

82
· 35

55
· 1

26
· 1

a
> 0.

So for any u ∈ C(0, 1) ∩ C1(0, 1), we have F(u) > 0. Hence,

0 = inf
C(0,1)

F < inf
C(0,1)∩Lip(0,1)

F . (47)

4

Figure 1: A plot of x1/3, 1
2x

1/3 and û. Here, we use û(x) = x.

Note that the strict inequality still holds if we replace Lip(0, 1) by C1(0, 1), because a continuously differen-
tiable function is especially a Lipschitz function.
Equation (47) shows that x1/3 cannot be approximated in energy by functions in C(0, 1)∩Lip(0, 1), i.e. there
is no sequence {uk} in C(0, 1) ∩ Lip(0, 1) such that

lim
k→∞

F(uk)→ F(x1/3).

It also shows us that by extending the functional in (44) from the class C(0, 1)∩Lip(0, 1) to all of C(0, 1), we
have picked some semicontinuous extension of F which is not the best extension, i.e. the largest semicontinuous
extension F̄ of F . The largest extension is given by

F̄(u) = inf{lim inf
k→∞

F(uk) : uk ∈ C(0, 1) ∩ Lip(0, 1), uk ⇒ u on [0, 1]},
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where ’uk ⇒ u on [0, 1]’ means that {uk} converges uniformly to u on [0, 1].
The situation changes rather drastically if we do not require that the approximating sequence {uk} satisfies
the boundary conditions uk(0) = 0, uk(1) = 1. In that case u(x) = x1/3 can be approximated by functions
uk ∈ Lip(0, 1), defined by

uk(x) :=

{
x1/3 if 1

n ≤ x ≤ 1
n−1/3 if 0 ≤ x ≤ 1

n .

Note that {uk} converges uniformly to u on [0, 1], and F(uk)→ F(u).
By taking uk = u we can approximate u by uk ∈ C(0, 1) ∩ C1(0, 1) such that uk ⇒ u on [0, 1] and F(uk)→
F(u).
From these considerations follows that the most reasonable generalization of the problem

inf{F(u) : u ∈ C(0, 1) ∩ Lip(0, 1)} (48)

is in general not the problem
inf{F(u) : u ∈ C(0, 1)},

but the problem
inf{F̄ : u ∈ C(0, 1)}. (49)

The problem (49) is the relaxed minimum problem associated with (48), and the functional F̄ is the relaxed
functional associated with F . In general, we have F(u) ≤ F̄(u).



A APPENDIX: THEOREMS I

A Appendix: theorems

This appendix is a list of results (without proofs) which we used in the thesis.

From [7]:

Theorem A.1 (Egorov’s Theorem). Assume µ(A) < ∞. Let {un} be a sequence of measurable functions
on A that converges pointwise on A to the real-valued function u. Then for each ε > 0, there is a closed set
B ⊂ E for which un → u uniformly on B and µ(A \B) < ε.

From [7]:

Theorem A.2 (Lusin’s Theorem). Let u be a real-valued measurable function on A. Then for each ε > 0
there is a continuous function ν on R and a closed set B ⊂ A for which u = ν on B and µ(A \B) < ε.

From [6]:

Theorem A.3 (Global Inverse Function Theorem). Let U be open in Rn and let Ψ ∈ C1(U,Rn). Then
V = Ψ(U) is open in Rn and Ψ : U → V is a C1-diffeomorphism if and only if Ψ is injective and regular on
U .

From [6]:

Theorem A.4 (Implicit Function Theorem). Let k ∈ [1,∞]. Let W be open in R × R and f ∈ Ck(W ).
Assume

(x0, y0) ∈W, f(x0, y0) = 0,
d

dx
f(x0, y0) 6= 0.

Then there exist open neighbourhoods U of x0 and V of y0 in R such that for every y ∈ V there exists a unique
x ∈ U with f(x, y) = 0. In this way we obtain a Ck-mapping ψ : V → U with Ψ(y) = x and f(x, y) = 0,
which is uniquely determined by these properties.

From [8]:

Theorem A.5 (Peano’s Existence Theorem). Let A be an open subset of R×R with f : A→ R a continuous
function and y′(x) = f(x, y(x)) a continuous, explicit first-order differential equation defined on A, then
every initial value problem y(x0) = y0 for f with (x0, y0) ∈ A has a local solution z : J → R where J is a
neighbourhood of x0 in R, such that z′(x) = f(x, z(x)) for all x ∈ J .

From [9]:

Theorem A.6 (Hölder’s inequality). Assume that u ∈ Lp(µ) and ν ∈ Lq(µ) where p, q ∈ (1,∞) are
conjugate numbers: 1

p + 1
q = 1. Then uν ∈ L1(µ), and the following inequality holds:∣∣∣∣∫ uνdµ

∣∣∣∣ ≤ ∫ |uν|dµ ≤ ||u||p · ||ν||q.
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