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ABSTRACT

In this thesis, we investigate techniques for automatically extracting the most
informative subset of sentences, also known as extractive summarization. We
specifically focus on techniques using word embeddings to construct semantically
aware sentence representations.

The thesis is comprised of three studies. In the first study, we perform an ex-
perimental survey, comparing embedding-based extractive summarization meth-
ods with commonly used baselines. We find that the embedding-based methods
do not necessarily outperform common baselines. We also find that the strong
beginning-of-article heuristic (called LEAD) outperforms all other summarization
methods. In the second study, we substitute various sentence embeddings into
the non-embedding-based TextRank method, in order to evaluate the added value
of embeddings in this case. Although the new method does not outperform the
original TextRank method, it does perform on par with it using substantially less
preprocessing. In the third study, we propose a summarization method based on
a recurrent neural network (RNN) architecture, which is the only summarization
method that outperforms the LEAD baseline. This model is an adaptation of
the model by Cheng and Lapata (2016). In order to make the RNN training
more flexible, we further propose a semi-supervised training framework for this
RNN architecture by using unsupervised methods for pre- or co-training the RNN
summarizer.

The main contributions of this thesis are as follows. Firstly, our experimental
survey compares previously proposed embedding-based methods with common
baselines. Such a comparison has not been performed before. Secondly, we train
both a Dutch and English word2vec model on Blendle’s news article database. For
English, this model performs on par with the Google News vectors, even though
our model is much smaller. For Dutch, the model might even be best-performing
Dutch word2vec model due Blendle’s uniquely large and clean training set. Finally,
our proposed RNN-based semi-supervised framework is capable of learning and
combining the behavior of various extractive summarization methods.
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1
I NTRODUCT ION

At Blendle1, many articles from various news sources come in every day. An
editorial team is responsible for selecting articles from this daily news stream
that are worth reading. This set of picked articles is then ranked for every
user separately, in order to select a ‘bundle’ from the set that hopefully
matches the user’s interest. This personalized bundle of articles is then sent
to the user in a daily newsletter and shown on the personal timeline in the
Blendle app. See Figure 1 for an example of the presentation of an article
on Blendle’s platform.

In order to present an article as done in Figure 1, a representative ‘caption’
is needed. Until recently, all captions were written by the editorial team.
A problem with the current approach, however, follows from the size and
diversity of the set of ‘picked’ articles by the editorial team. Due to time
constraints, the editors are bound to pick certain types of articles that will
probably be read by a large number of users. Although this covers a lot of the
users, a bigger, more diverse set of articles for the personalization algorithm
to select from would enhance the user’s experience. This is why autopicks
(i.e. automatically picked articles) were recently introduced. Complementary
to the articles picked by the editors, a broader set of possibly interesting

Figure 1: Example of an article presentation from Blendle’s platform.

1 https://blendle.com/

1

https://blendle.com/
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articles is automatically selected. This set is then curated by the editors to
make sure that all automatically picked articles are of high quality.

As with the editorial picks, these autopicks must be presented to Blendle’s
users by accompanying every article with a caption containing the article’s
core information. Generating a caption containing the core information of an
article is very similar to the well-known problem of automatic summarization.

Abstractive summarization (i.e. generating newly formed sentences, cap-
turing the essence of a text) techniques are not (yet) capable of reliably
forming grammatical sentences; they are therefore not in the scope of the
current research. Another research direction in automatic summarization
aims to select the most informative subset of sentences from a text. This is
known as extractive summarization. By selecting sentences from the original
text, the correctness of the sentences themselves is ensured. Using extractive
summarization, the core information of any possibly interesting article could
be automatically extracted and used directly on the platform.

Besides the aforementioned use case of generating captions for autopicks,
extractive summarization of articles provides another opportunity to improve
Blendle’s editorial workflow. The same summarization algorithm could au-
tomatically highlight the most important sentences in order to improve the
reading experience and reading speed for the editorial team on any article.
An example of what a highlighted article could look like is shown in Figure 2.

In brief, the extraction of core information from articles — now done by
hand for a small subset of the articles — should be automated, in order to be
able to personalize for Blendle’s users from a much bigger set of articles. Ex-
tractive summarization could help by generating or suggesting captions for
articles, and by automatically highlighting articles to improve the editorial
workflow. In this thesis, we will specifically focus on extractive summariza-
tion techniques using sentence embeddings as their basis. As explained in
Chapter 2, sentence embeddings are unsupervisedly trained on large text
corpora to continuously represent the semantic information, thereby adding
semantic information for free. Since their popularization in 2013 (Mikolov
et al., 2013a), the unsupervised information added by embeddings changed
the whole NLP research field.

The objective for this thesis is to design, implement, and evaluate an
embedding-based algorithm for extractive summarization, in order to auto-
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Figure 2: Example of what a highlighted article could look like.

matically find the most important set of sentences in any article. To fulfill
this objective, this thesis addresses three research questions:

1. How do the current embedding-based extractive methods compare to
each other, and to commonly used non-embedding-based baselines?

2. Is it possible to improve the performance of existing non-embedding-
based methods by substituting embeddings?

3. Can a sequential model using unsupervised word embeddings improve
on the strong beginning-of-article heuristic?

The rest of this thesis is structured as follows. In Chapter 2, we discuss
relevant background of all components involved in extractive summarization.
In Chapter 3, we will focus on Research Question 1 by performing an experi-
mental survey comparing existing embedding-based methods and commonly
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used baselines. In Chapter 4, we discuss Research Question 2 by attempting
to increase the performance of a strong baseline method, TextRank, by sub-
stituting various sentence embeddings. In Chapter 5, we attempt to answer
Research Question 3, training recurrent neural networks for extractive sum-
marization. In Chapter 6, we discuss all research questions and results and
give a conclusion, also providing suggestions for further research.

The main contributions of this work are as follows. Firstly, we provide a thor-
ough comparison of previously proposed, embedding-based extractive sum-
marization methods against commonly used baselines. To our knowledge,
such a comparison has not been performed before. Secondly, we train both a
Dutch and English word2vec model on Blendle’s news article database. For
English, this model performs on par with the Google News vectors, even
though our model is much smaller. For Dutch, our model might even be
best-performing Dutch word2vec model due to Blendle’s uniquely large and
clean training set.2 Finally, we propose a RNN-based semi-supervised frame-
work capable of learning and combining the behavior of various extractive
summarization methods.

2 The Dutch Blendle word2vec model is shortly discussed in Appendix A.



2
GENERAL BACKGROUND

Extractive summarization techniques attempt to select the most informative
subset of sentences from a text given a length constraint, as mentioned in
Chapter 1. Extractive summarization tasks are either aimed at summarizing
single documents or clusters of related documents. These tasks are respec-
tively named single document summarization (SDS) and multi-document
summarization (MDS). Every extractive summarization algorithm consists of
4 basic components, which are schematically represented as a summarization
‘pipeline’ in Figure 3. This pipeline consists of a preprocessing, representa-
tion, and selection phase. Although evaluation is not a strictly necessary
phase for summarization, it could be considered part of the pipeline.

Figure 3: Schematic overview of the elements of an extractive summarization
method.

Summarization systems are usually also quite modular: in most cases, it
is possible to inject another sentence representation into a proposed sum-
marization method. In the sections that follow, a general overview of all
four summarization steps is given. For the sentence representation step, this
overview goes far beyond the representation techniques used in the current
field of extractive summarization, in order to give an accurate overview of
text representation in the entire NLP field. Note that for every step in the
summarization pipeline, the aim is to give an overview of that step exclusively;
no full summarization pipelines are discussed in this chapter. In this back-
ground, we do not discriminate between MDS and SDS methods, although
formally, only the latter is relevant to the goal of this thesis. Some important
complete summarization methods used later in this thesis are explained in
Chapters 3 and 4.

5
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2.1 preprocessing

As with many natural language processing problems, preprocessing is neces-
sary to facilitate sentence representation. Necessary preprocessing steps are
sentence boundary detection and tokenization in order to respectively find
sentence and word boundaries in the text. In Blendle’s preprocessing pipeline,
all text is already cleaned before these necessary steps. In many extractive
summarization methods, additional preprocessing is performed. Commonly
used preprocessing steps include stemming/lemmatization, stop word filter-
ing, and part-of-speech (POS) tag filtering. We will describe all of these
preprocessing steps below.

2.1.1 Cleaning

In Blendle’s article enrichment pipeline, which is used to extract features
from raw article text, articles are cleaned before further preprocessing is
applied. The cleaner removes Markdown and HTML tags if these are in the
content, and transforms rare punctuation (especially all different quotes) into
its default version.

2.1.2 Sentence boundary detection

Sentence boundary detection, also known as sentence splitting or sentence
tokenization, is the problem of deciding where sentences end. There is a
straightforward solution in many cases (i.e. in most cases, splitting after a
period or question/exclamation mark is the right decision). Ironically, how-
ever, this is not true for the last sentence: abbreviations, quotations including
punctuation, and many other situations make this task far from trivial. Al-
though sentence splitters can be trained unsupervisedly to learn exceptions,
no model is flawless. In Blendle’s pipeline, a standard, pre-trained1 sentence
splitter from the NLTK toolkit is used. For Dutch, the splitter has been
improved by appending a scraped list of abbreviations to the exception list.
This sentence splitter is used as preprocessing for all reproductions of sum-
marization methods described later in this thesis.

1 Separately pre-trained for German, English, and Dutch
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2.1.3 Tokenization

Word tokenization is the problem of splitting a sentence into separate word
tokens. While splitting on whitespace is an excellent heuristic, this approach
fails in many cases. Quotation marks should be interpreted as separate
tokens, for example, even though they are not whitespace-separated from the
words they mark. In our pipeline, we use the Pattern tokenizer2 developed
by the computational linguistics institute CLiPS in Antwerpen, which has
pre-trained models for all three languages currently on Blendle’s platform
(Dutch, English, and German). Although this tokenizer has been designed to
find both sentence and word boundaries, we only use the latter functionality.

2.1.4 Stemming/lemmatization

Stemming and lemmatization are different approaches to the problem of
reducing all different inflectional forms of a word to a common ‘base form’.
Stemming is a fast, but crude approach: it heuristically cuts off all affixes, not
considering the word’s context, or a vocabulary of known base forms. More
often than not, stems are incomplete words. Lemmatization, on the other
hand, is computationally more demanding, but generally achieves higher pre-
cision. Typically based on a large database, lemmatization is the process of
looking up the ‘lemma’ of a word (or word-POS tag combination). Using the
commonly used Porter stemmer, for example, the word ‘are’ would become
‘ar’, whereas using a lemmatizer, the result would become ‘be’.

Blendle’s pipeline contains the classic, heuristic Porter stemmer (with sep-
arate heuristics per language) provided in the NLTK toolkit. As this stemmer
is usually adopted in papers on extractive summarization, and stemming is
only used for reproducing earlier papers, this is the only stemming/lemmati-
zation method that is considered throughout this thesis.

2.1.5 Stop word & POS tag filtering

Both stop word and POS tag filtering are meant to filter out certain words
that might not be relevant to the task at hand. Stop word filtering filters
the most common, and thereby least informative words. This often includes

2 See https://www.clips.uantwerpen.be/pages/pattern-en

https://www.clips.uantwerpen.be/pages/pattern-en
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articles, inflections of ‘be’ and other common verbs, personal pronouns, etc.
Blendle’s stop word list contains 625 strings in total.

POS tag filtering is the more systematical filtering process of removing all
words that have a certain syntactical function. POS tagging is the NLP task
of labelling each word in a sentence with its type. Common types include
(singular and plural) nouns, verbs, adverbs etc. By filtering out all POS tags
except a few that might capture certain information useful for the task at
hand, textual data can be sanitized. This is a crude approach, however; a
lot of possibly important words could be excluded from further analysis.

Generally, this could be said about applying more than the necessary pre-
processing (i.e. sentence splitting & tokenization): if more preprocessing is
performed, more potentially important information could be removed from
the input.3 This is why we prefer to generally avoid additional preprocessing,
apart from sentence splitting and word tokenization. We would rather train
a model that is expressive enough to learn ignoring unimportant data, than
to remove it ourselves. This follows the current trend in NLP research, and
even machine learning research in general: already processing raw data by
preprocessing or even feature engineering, instead of directly training a model
usually leads to worse results.

2.2 text representation

The initial aim of text representation for extractive summarization was to
construct a similarity measure between sentences in the document. Many
sentence selection methods (especially graph-based methods; see Section 2.3)
rely on similarities between all sentences in a text.

2.2.1 Sentence similarities

Initially, simple word or phrase overlap between sentences were proposed
as similarity measures (Banerjee and Pedersen, 2003; Metzler et al., 2005;
Mihalcea and Tarau, 2004). Although these measures may correctly score
sentence similarity in some cases, they do not account for the fact that some
words are less informative than others. Sentence similarity measures based

3 Although POS tagging only adds information, POS tag filtering removes words from the
data.
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on term frequency-inverse document frequency (TF-IDF ) vectors solved this
issue to a certain extent (Erkan and Radev, 2004). TF-IDF is a simple,
but powerful representation of sentences, indicating the relative importance
of words in a sentence. Cosine similarity between TF-IDF vectors is still a
popular baseline measure for its simplicity, efficiency, and effectiveness.

Currently, the enormous number of sentence similarity measures could
generally be divided into two groups. The first group comprises measures
which are designed only with the task of similarity measurement in mind. At
SemEval4, a yearly event for evaluation of computational semantic analysis
systems, top-performing measures are built and tuned specifically for the
task of sentence similarity (Sultan et al., 2015), reaching the current state-
of-the-art performance on this specific yearly dataset. These methods (e.g.
the winning method of SemEval 2016 (Brychcın and Svoboda, 2016)) are
usually based on simple word alignment, in this case combined with TF-IDF
weights to control for word importance. Although achieving state-of-the-art
performance on the sentence similarity task, these methods are merely aimed
at this specific task, hence not providing a more generalized framework for
sentence semantics. The similarity measure does not necessarily lead to a
robust representation of a sentence. Besides, these tasks (e.g. the SemEval
sentence similarity task) tend to oversimplify reality as the datasets usually
consist of relatively short, syntactically simple sentences as compared to
real news corpora. Similarity between simpler sentences might be easier to
evaluate than similarity between longer, more complex sentences, hence the
SemEval task does not necessarily evaluate sentence representation in a real,
in our case news-related setting.

The second group of methods does not solely aim at the task of measur-
ing similarity, but on a more robust semantic representation of sentences per
se. These semantic representations are usually based on word-level seman-
tic representations. This group of more robust representations is discussed
below.

2.2.2 Building blocks: (sub)word embeddings

As sentences are constructed with words, this is an essential building block
for sentence embeddings, used for all sentence embedding papers discussed
in the next paragraph. The idea that similar words occur in similar con-

4 e.g. http://alt.qcri.org/semeval2014/task1/

http://alt.qcri.org/semeval2014/task1/
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Figure 4: Schematic representation of both the CBOW and skip-gram word2vec
model. Although the context words seem to be ordered in this figure,
position is disregarded during training; the context is treated as a bag of
words. Image adopted from the original paper (Mikolov et al., 2013a).

texts, coined the Distributional Hypothesis (Harris, 1954) has become the
dominant approach in semantic representation: distributed representations
of words have become the foundation of many modern solutions for NLP
problems. The simple idea of representing a word as a prediction of its con-
text, thereby yielding a continuous representation of a word embedded in a
vector space, turns out to be a very robust representation of a word’s mean-
ing. Various unsupervised methods towards continuous word embeddings are
available. The most popular and well-explored method is word2vec (Mikolov
et al., 2013a). It naturally captures linguistic relations such as (dis)similarity
and word analogies, both in the semantic and syntactic sense (Mikolov et al.,
2013b). As word2vec is the word representation method used throughout
this thesis, we will now discuss it in more detail.

Word2vec (Mikolov et al., 2013a) is developed by Google, and comprises two
different approaches for training word embeddings: the continuous bag-of-
words (CBOW ) approach and the skip-gram approach. Both are schemati-
cally represented in Figure 4. In short, the task of the CBOW model is to



2.2 text representation 11

Figure 5: Example of the target and context words for a sentence, with a window
size of 2. The window around the target word defines the set of context
words used for training the skip-gram model. Adopted from McCormick
(2016).

predict a word given its context, whereas for skip-gram, the task is to predict
which words are in the context given a target word. The context is defined
as the ‘window’ of words around a target word, where typical window sizes
are between 2 and 5 words. This is illustrated in Figure 5. Note that we do
not consider the word order of the context; as the context is a bag of words,
the task is merely to predict whether a word is in the context, disregarding
its position. As we will only use the skip-gram model throughout this thesis,
we will solely discuss this model from now on.

Note that word2vec is always trained on a large corpus of tokenized sen-
tences. For skip-gram, the general steps are as follows. First, we build
a vocabulary by passing over the corpus once, keeping all words that occur
more than n times. Then we initialize two random vectors of arbitrary dimen-
sionality (typically 300) for each word in the vocabulary: a ‘target’ vector
representing its meaning, and a ‘context’ vector to represent the separate
‘context meaning’ of a word. Combining all vectors in a matrix, we thus
have two |V|⇥ D matrices, where D is the number of dimensions, and |V|
is the number of words in the vocabulary. We name these matrices the em-
bedding matrix, containing the actual embeddings of each word, and the
context matrix, containing the ‘context embeddings’ of each word. The goal
is to train the initially random D-dimensional target vectors to predict their
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context, thereby representing the target word’s meaning. For every training
iteration, we now sample a target word wt from the corpus, estimate the
probabilities of the context words wc given the target word wt:

p(wc|wt) =
exp

⇣
u>wc vwt

⌘

Â
w2V

exp

⇣
u>w vwt

⌘
,

where V is the set of all words in the vocabulary, u vectors are from
the context matrix, and v vectors are from the embedding matrix. Hence
the estimation of the context word probability is simply the inner product
of a target vector and a context vector. Note that estimating these context
word probabilities requires computing the full probability distribution over the
vocabulary. A function that normalizes a set of predicted scores into a proba-
bility distribution, such as the function above, is typically called the softmax
function. After computing the context probabilities, we backpropagate the
prediction error through the target and context vectors using gradient de-
scent, in order to maximize the log probability over the set of context words
Cwt

Â
wc2Cwt

log p(wc|wt).

In every iteration, we backpropagate through |Cwt | words in the context
matrix and one word in the embedding matrix, such that the target word
predicts its context words. The complete objective of the skip-gram model
is to maximize the average log-probability over the set of all target words T

fobj(u, v) =
1

|T | Â
wt2T

Â
wc2Cwt

log p(wc|wt).

As the corpus usually contains hundreds of thousands of words, this approach
is very inefficient in practice, due to the fact that all word probabilities are
estimated in every iteration. To overcome this issue, Mikolov et al. (2013b)
introduced a loss function based on ‘negative sampling’, instead of comput-
ing the full distribution. Instead of computing the softmax over the whole
vocabulary, we sample a few words that do not occur in the current context
(usually ⇠5), and modify our maximization objective to be a binary classifi-
cation task that, using a sigmoid function, estimates whether a word belongs
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in the context or not. For every iteration, our more efficient maximization
objective now looks as follows:

fobj(u, v) = Â
wc2C


log s(u>wc vwt) + Â

wn2N
log s(�u>wn vwt)

�
,

where N is the set of negative samples. By backpropagating the predic-
tion error on the objective through the target, context and negative sample
vectors, we update the model in a similar way, while being much more effi-
cient. In the negative sampling case, we adjust one word in the embedding
matrix and |C|+ |N | words in the context matrix.

After many iterations, the embedding matrix consists of meaningful vector
representations for every word in the model vocabulary. This embedding
matrix is the final result of the model.

Other popular (but comparable) word embedding methods are GloVe and
FastText. GloVe (Pennington et al., 2014) is a count-based (as opposed
to prediction-based) method that counts word occurrences in a word’s con-
text. This naturally leads to a co-occurrence matrix, whose dimensionality
is reduced afterwards. FastText (Bojanowski et al., 2017) is a more recent
method based on word2vec, but taking into account sub-word, character-level
information. Instead of learning a representation for a word, fastText learns
a representation for all character n-grams in a word, thereby jointly optimiz-
ing semantic representations of character n-grams and full words. FastText
performs on par with state-of-the-art deep learning models on various text
classification tasks, at a fraction of the computational cost in both the train-
ing and inference phase (Joulin et al., 2017). This indicates the power of
incorporating character-level information in training.

2.2.3 Sentence embeddings

The problem of composing sentence representations from word representa-
tions is an active field of study. A simple method would be element-wise
vector addition or multiplication (Mitchell and Lapata, 2010). As Mikolov
et al. (2013b) also suggest, vector addition seems to represent some kind of
semantics for a sentence. Additive sentence embeddings represent a robust,
semantically aware sentence embedding baseline. IDF-reweighted additive
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sentence embeddings usually perform even better: in this case, every word
embedding is divided by the number of sentences it occurs in before all words
are summed.5 From a linguistics perspective, however, sentence composition
is a complex matter that probably requires more expressive models in order
to learn the meaning of word combinations. Various methods for learning
sentence embeddings have been proposed.

Paragraph Vector (Le and Mikolov, 2014) provides an unsupervised, word2vec-
like method that predicts vectors for pieces of text (e.g. sentences, para-
graphs, or documents) by predicting the words they contain6. For various
tasks, such as similarity/analogy tasks on document level and document
clustering, Paragraph Vector provides an efficient way of embedding. For
sentence similarity tasks, however, there seem to be more successful meth-
ods.

Auto-encoders are an intuitive approach towards semantic representations
of sentences: using some neural network architecture, auto-encoders are
trained unsupervisedly on reproducing the input sentence as output through
a bottleneck vector. This vector could be a robust and accurate represen-
tation of the semantic and syntactic information of a sentence. Hill et al.
(2016) proposed a sequential denoising auto-encoder (SDAE ), a recurrent
neural network (RNN) architecture to compress a corrupted (noisy) sequence
of words in word order by training it to reproduce the original, denoised, sen-
tence. Besides sequence-based RNN approaches, more auto-encoder archi-
tectures have been proposed for sentence representation. Socher et al. (2011)
proposed an unfolding recursive auto-encoder (RAE ), which is guided by a
binary syntactic tree of the sentence. It recursively combines (i.e. folds) word
vectors, thereby ultimately encoding the whole sentence. Then it decodes
(i.e. unfolds) the sentence vector using the same tree, thereby training the
folding and unfolding operation. Unfolding RAEs outperformed the former
state-of-the-art in paraphrase detection. Kågebäck et al. (2014), however,
found that word vector addition worked better in practice for MDS, although
this could be the result of using a dataset consisting of low quality text7.

Another encoder-decoder, but non-auto-encoder model used to produce
sentence embeddings is the Skip Thought model (Kiros et al., 2015). This

5 We will use this embedding technique in Chapter 4.
6 This concerns the distributed bag-of-words model (PV-DBOW), which is more efficient

during training and more popular for down-stream applications than the distributed mem-
ory model (PV-DM).

7 The Opinosis dataset (Ganesan et al., 2010), respectively.
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model encodes sentences using an RNN and is trained on predicting the
words in its surrounding sentences. In this sense, the approach exploits a
sentence-level Distributed Hypothesis: it constructs a distribution over the
words in the surrounding sentences given the current sentence. As both the
encoder and decoder consist of an LSTM network with a relatively large
number of hidden units, training and inference are slow.

FastSent (Hill et al., 2016) uses the same distributive sentence-level hy-
pothesis as Kiros et al. (2015), but proposes a much simpler additive model
to compose a sentence vector from its word vectors. The word vectors are
then trained with the objective to, when added together for a sentence, best
predict the separate words in the surrounding sentences by producing a soft-
max over the whole vocabulary.

A slightly different approach compared to FastSent is Siamese CBOW
(Kenter et al., 2016). Despite using the same signal, in this model, the
word vectors are averaged instead of summed. More importantly, instead
of training word vectors with the objective to predict the separate words
in the surrounding sentences, it minimizes the cosine similarity between the
averaged sentence vectors. Siamese CBOW and FastSent reach comparable
accuracies on sentence similarity tasks.

Pagliardini et al. (2017) propose a method based on the conceptual idea
of fastText which they call Sent2Vec. Instead of jointly optimizing words
and their character n-grams to predict surrounding words in the sentence, a
sentence’s word n-grams (unigrams only, or unigrams + bigrams) are jointly
optimized to predict its words. This small adaptation surprisingly yields
promising results; it reaches state-of-the-art results on many benchmark sen-
tence embedding tasks. As the model is trained on another text corpus how-
ever (i.e. the full English Wikipedia, as opposed to the Toronto Book Corpus
for FastSent and Siamese CBOW), it is hard to fairly compare performance
of this system.

Arora et al. (2017) propose a different, surprisingly simple unsupervised
approach for sentence embedding construction called the smooth inverse fre-
quency (SIF) embedding, which they propose as a new baseline for sentence
embeddings. Their approach is summarized in Algorithm 1.
Instead of using a neural approach, they start by computing a mean of all
words in the sentence, weighting every word based on its estimated proba-
bility (i.e. normalized frequency in some corpus), usually setting parameter
a = 10

3. This should be roughly comparable to the previously discussed
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Algorithm 1 SIF embedding algorithm by Arora et al. (2017)
Input: Word embeddings {vw : w 2 V}, a set of sentences (bag-of-words) S , parameter
a, and estimated probabilities {p(w) : w 2 V} of the words.
Output: Sentence embeddings {vs : s 2 S}.
1: for all sentences s 2 S do
2: vs  

1

|s|Â
w2s

a
a + p(w)

vw

3: end for
4: Compute the first principal component u of {vs : s 2 S}
5: for all sentences s 2 S do
6: vs  vs � uu>vs

7: end for

IDF-reweighting. After computing all means, the first principal component
is computed, and the projection of all sentence vectors on this first principal
component is removed. The authors claim that this common component
removal reduces the amount of syntactic information contained by the sen-
tence embeddings, thereby allowing the semantic information to be more
dominant in the vector’s direction.

In this thesis, not all the aforementioned sentence embedding methods
will be used; we limit ourselves to the use of simple methods such as (IDF-
reweighted) averages/sums of word vectors and the SIF embedding.

2.3 sentence selection

The general objective for sentence selection is to select maximally informative
sentences, without information overlap between the sentences, to maximize
the coverage of the original article by the summary. Although the number
of sentence selection methods is too large to provide a full overview, some
well-known methods which are commonly used as baselines are discussed
below.

2.3.1 Maximal marginal relevance

A well-known, classic, unsupervised algorithm used for sentence selection is
the Maximal Marginal Relevance (MMR) algorithm (Carbonell and Goldstein,
1998). MMR is an algorithm that balances the trade-off between relevance
(or informativeness) and coverage, thereby incorporating diversity into the
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summary. Using a greedy approach selecting one sentence every iteration,
it picks the sentence from the article that is both relevant and dissimilar
from already picked sentences until a word maximum is reached. It is an
efficient method, as it only depends on the already picked sentences and the
candidate sentence’s own informativeness in every iteration.

2.3.2 Centroid-based: MEAD

Another selection method coined MEAD (Radev et al., 2004) is a centroid-
based algorithm. It assumes a semantic vector representation of every sen-
tence (TF-IDF in the original paper). It then clusters the sentences and
computes centroids for each cluster. Combining centroid-sentence cosine
similarities and other sentence features (i.e. length)8 to score all sentences
in each cluster, a subset of sentences of each cluster is then selected to form
a summary.

2.3.3 Graph-based: TextRank & LexRank

A popular class of sentence selection methods are graph-based methods.
Graph-based methods are usually based on Google’s famous PageRank al-
gorithm (Page et al., 1999), and are generally considered more flexible; while
centroid-based methods define a hard clustering on all sentences, the graph-
based approach allows sentences to be more or less connected to each other.
Both TextRank (Mihalcea and Tarau, 2004) and LexRank (Erkan and Radev,
2004) construct a graph, where the vertices represent sentences. They use
some sentence similarity measure9 to construct (weighted) edges between
sentences. Important sentences are expected to be central in the graph,
hence they are often being ‘recommended’ by other, similar sentences. By
iteratively scoring sentence importance by recommending edges in the graph,
the most important sentences attain higher scores at convergence. When
normalizing the edge weights of the graph to sum to 1, the iterative process
converges to the stationary distribution of the Markov chain of sentences.
The vertices with the highest probability represent the most important sen-

8 Although the weights for these parameters could be learned, Radev et al. chose to assign
equal weights instead.

9 Normalized word overlap for TextRank, and TF-IDF cosine similarities for LexRank.
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tences, and are selected for the summary. To assure diversity, LexRank
re-ranks the sentences using an MMR-related method before selection.

2.3.4 Greedy submodular optimization

Lin and Bilmes (2010, 2011) show that both informativeness and diversity
mentioned above are naturally modelled as monotone submodular functions.
Monotone submodular functions mathematically capture the sense of dimin-
ishing returns (i.e. the fact that the added value of an element to some set is
bigger than for its proper supersets). This naturally models the selection of
summary sentences, as the added value of a sentence should decrease when
the summary length increases. Maximizing monotone submodular functions
is unfortunately an NP-complete problem, but the greedy algorithm (i.e. Al-
gorithm 2) proposed in the 2010 paper approximates the maximum with
good guarantees.10

Algorithm 2 Greedy algorithm by Lin and Bilmes (2010)
Input: The set of all article sentences V, the scaling factor r, the budget constraint B,
and the monotone submodular function f (·).
Output: The set of summary sentences Gf .

1: G  ∆ . initialize the (initially empty) set of summary sentences G
2: U  V . initialize the set of candidate summary sentences U as V
3: while U 6= ∆ do

4: k argmaxl2U
f (G [ {l})� f (G)

(lengthl)r

5: if Â
i2G

[lengthi] + lengthk  B and f (G [ {l})� f (G) � 0 then

6: G  G [ {k}
7: end if
8: U  U \ {k}
9: end while

10: v⇤  argmaxv2V,lengthvB f ({v})
11: return Gf = argmaxS2{{v⇤},G} f (S)

The scaling factor r punishes longer sentences; r is usually set to 0.3. The
summary budget constraint B is usually set to 100 words. The algorithm
considers the sentence with the biggest added value to the summary at every
time step, and includes it in the summary if the added value is positive, and if

10 The value of the objective function maximized by the greedy approach is within
1� e

e
⇡

0.63 of the maximum value of the objective function for the problem.
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it does not violate the budget constraint. When all sentences are considered,
the algorithm returns either the resulting summary, or the best singleton
summary if its value surpasses the resulting summary’s value.

A mixture of various monotone submodular functions is also monotone
submodular, hence a mixture of various submodular objective functions can
also be maximized with guarantees using Algorithm 2. Two submodular func-
tions that together model informativeness and diversity can thus be greedily
maximized using the algorithm. In fact, Lin and Bilmes (2010) showed that
MMR (as mentioned above) is naturally modelled within their submodular
framework. In 2011, they proposed different objective functions for modelling
informativeness and diversity, surpassing state-of-the-art results on various
multi-document summarization datasets.

2.3.5 Supervised sentence classifiers: recurrent neural networks

Supervised approaches towards extractive summarization are rare. A recent,
very successful approach was proposed by Cheng and Lapata (2016). They
propose a deep learning approach by utilizing a recurrent neural network
(RNN) architecture to ‘read’ all sentences of a document, combined with
a single-layer convolutional neural network (CNN) to learn to encode words
into sentences. Although the authors propose both an abstractive and an
extractive approach, we will only consider the extractive approach given the
scope of the current research.

Cheng and Lapata essentially treat extractive summarization as a sentence
labeling task using an RNN architecture to both encode the document and
label the salience of every sentence. Sentence importance is learned from
a gold standard of hundreds of thousands of sentence-labeled news articles,
based on pairs of news articles and bullet point summaries from CNN and
DailyMail. This approach yields good results on the dataset itself, but also
appears to generalize well to the DUC-2002 dataset. For a more thorough
discussion on recurrent neural networks and their use for extractive summa-
rization, see Chapter 5.

2.4 evaluation: rouge

Rouge (Lin, 2004) is the most commonly used summary evaluation metric.
It attempts to evaluate the correspondence between an automatically gener-
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ated summary and one or more human reference summaries. Rouge was
originally only recall-oriented: it measured what fraction of a reference sum-
mary was captured by the system summary and thus how well the reference
summary was ‘covered’.

Determining what fraction of a reference summary is captured is not
straightforward, however. This is solved by Rouge-1 and Rouge-2, consid-
ering either unigrams or bigrams as the ‘atoms’ of the summary, respectively.
The original Rouge-N metric is hence based on recall-oriented n-gram co-
occurrence. For a set of reference summaries S and a system summary C,
the Rouge-N score is defined as

Rougen(S , C) =

Â
S2S

Â
gramn2S

Countmatch(gramn)

Â
S2S

Â
gramn2S

Count(gramn)
,

where n indicates the size of the n-gram, and Countmatch(gramn) is the
number of n-grams of the reference summary S covered by the system sum-
mary C. The metric divides the number of n-grams matching a reference
summary by the total number of n-grams in the reference summary, and av-
erages this over all reference summaries, thereby computing the coverage of
the reference summaries by the generated summary.

In more recent versions of Rouge, precision is also taken into account,
as a summary containing irrelevant information is undesirable. This means
that the percentage of the system summary which is also in the reference
summary influences the summary evaluation. In most cases, the harmonic
mean between the precision and recall is considered the fairest metric and is
called the F-score. We will use either recall or F-score for summary evaluation,
depending on the dataset.

Both Rouge-1 and Rouge-2 are reported in all system summary evalua-
tions against human-written summaries throughout this thesis. Rouge-1 is
generally considered the most important metric, as it is known to correlate
most strongly with human summary evaluation. It is also less biased by gram-
matically similar sentences. We therefore prefer Rouge-1 for its correlation
with human evaluation. We do not use Rouge’s built-in stemming or stop
word removal options, in order to keep the evaluation results transparent and
simple.
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Rouge-1 Rouge-2

Mean 48.84 21.84

SD 11.07 13.03

Table 1: The means and standard deviations Rouge F-scores between reference
summaries on the DUC-2002 dataset, for all articles with two reference
summaries.

2.4.1 Rouge shortcomings

Although Rouge is the most common summary evaluation method, it is
far from perfect. Note that the goal of summary evaluation is to measure
to what extent system summaries and (sets of) reference summaries contain
the same information. In order to approximate this, Rouge is a function of
N-gram overlap. The same information can be captured by different word
combinations, however. In this light, Rouge does not necessarily evaluate
the information coverage of a system summary, but merely the word coverage.

This weakness becomes clear when we compute the average Rouge F-
scores between reference summaries of the same article. Ideally, Rouge

scores between two reference summaries would be close to 100%, as the
meanings conveyed by both summaries should be similar. We compute
Rouge scores between reference summaries of the DUC-2002 dataset (de-
scribed in Section 3.2) for articles with two available reference summaries.11

Although Table 1 might also be influenced by the purely semantic difference
between reference summaries due to the inter-rater agreement, the fact that
the Rouge-1 score does not pass 50% is alarming. As it is the best measure
we have, however, we will still use it for all quantitative summary evaluations
throughout this thesis.

11 This is the case for 550 of the 567 articles; for 17 articles, there is only one reference
summary available.



3
STUDY 1 : A SURVEY OF EX I ST ING
EMBEDD ING -BASED SUMMAR IZAT ION METHODS

Although word embeddings are central to state-of-the-art models in almost
every subfield of NLP research, this trend has not fully reached the field of
extractive summarization yet. There have been some efforts to incorporate
word or sentence embeddings in extractive summarization methods, but ev-
ery paper aims at high performance on a different dataset, or uses a slightly
different evaluation measure. This makes comparison between these efforts
difficult. In this first study, we attempt to make an honest, thorough compar-
ison between various embedding-based, extractive summarization approaches
against some robust, commonly used baselines. In order to achieve this, we
implemented all reported algorithms. We made all implementations available
as an open-source project on GitHub.1 By evaluating all algorithms in the
same way, we aim to make the comparison as fair as possible.

The considered embedding-based extractive summarization methods are
aimed at the task of multi-document summarization (MDS). Although our
problem is not about document sets, but about single articles on Blendle’s
platform, we still consider some multi-document summarization datasets for
the comparison in this chapter, as the existing embedding-based algorithms
were designed for this task. Besides, the MDS task gives a better insight
in the ability of a summarization system to pick diverse sentences, as many
similar sentences might be available in a cluster of related articles. We
will consider two MDS datasets, which are both commonly used for MDS
evaluation2: the TAC-2008 and the Opinosis dataset. For single document
evaluation, we will use the DUC-2002 dataset. All datasets will be discussed
in Section 3.2.

To our knowledge, embedding-based extractive summarization methods
have never been compared to strong baselines or each other. Although the re-
production and comparison of earlier results is often overlooked, it has proven
to be very informative before, e.g. in the fields of neural language modelling

1 https://github.com/blendle/research-summarization
2 Note that the embedding-based summarization methods under consideration also use one

of these datasets for evaluation.
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(Melis et al., 2017) and information retrieval (Armstrong et al., 2009). In
this study, we attempt to provide a comparable review for embedding-based
extractive summarization.

Before arriving at the discussion of datasets and the final comparison, how-
ever, the different embedding-based methods and commonly used baselines
that we consider are first explained. Although the elements of each method
were already roughly explained in Chapter 2, the combination of elements
that each paper uses is described in more detail in the next section. TextRank,
a commonly used SDS baseline, is not described in this chapter; for an elab-
oration on TextRank, see Chapter 4.

3.1 embedding-based summarization methods & com-

mon baselines

3.1.1 The beginning-of-article baseline: LEAD

The most straightforward baseline considered in this thesis is the LEAD base-
line. This baseline simply selects the first n sentences of an article for a sum-
mary, given a length constraint; it ranks the sentences purely on their order.
Although this baseline is only applicable to SDS tasks,3 it is an undervalued
baseline in the field of extractive summarization, as we will see later in this
chapter.

3.1.2 Lin & Bilmes (2010, 2011): greedy submodular baselines

As discussed in Section 2.3.4, Lin and Bilmes (2010) proposed a greedy
algorithm to optimize a (mixture of) submodular objective functions. In
their original paper, they proposed a mixture of two submodular objective
functions, closely resembling the classical MMR approach (Carbonell and
Goldstein, 1998):

f obj(C) = Â
i2D\C

Â
j2C

sim(i, j)� l Â
i,j2C;i 6=j

sim(i, j),

where l is set to 4, sim(·, ·) corresponds to the cosine similarity between the
TF-IDF vectors, and D and C are the set of all sentences in the document

3 The LEAD baseline does not make sense for clusters of articles, given its sequential nature.
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and the set of summary sentences, respectively. This objective function thus
measures coverage by summing all sentence similarities between summary
sentences and the other sentences (also known as the graph cut function),
and punishes redundance by summing the within-summary sentence similari-
ties.

Using this mixture as the objective for the greedy algorithm surpassed
state-of-the-art results on multiple MDS datasets. In 2011, Lin and Bilmes
proposed another mixture of two functions, again combining measures for
coverage and diversity, and again surpassing the state-of-the-art on various
MDS datasets.4 They use the following coverage and diversity functions:

f coverage(C) = Â
i2D

min

⇢
Â
j2C

sim(i, j), aÂ
k2D

sim(i, k)
�

f diversity(C) =
K

Â
k=1

vuut Â
j2C\Pk

1

N Â
i2D

sim(i, j)

f obj(C) = f coverage(C) + l f diversity(C),

where the threshold value a =
5

N
, the number of sentence clusters5 K =

0.2N, P is the set of K-means clusters, and the weighting term l = 6.
As for the coverage function, we see that the previously used graph cut

function is replaced by a function that takes a minimum for every sentence
in the document. For every document sentence, the minimum is selected
from two values: the similarities between the summary sentences and the
current sentence, and the similarities between all sentences and the current
sentence. Since all similarities are positive, as long as a = 1, the second
term is always at least as large as the first term, since C ✓ D. By choosing
a < 1, the second term provides a threshold for the first term: if the current
document sentence is already represented in the summary well enough, it is
‘saturated’, and does not influence the score of newly added sentences. This
threshold thus already ensures that the selection of summary sentences is
not dominated by one cluster of highly similar sentences.

4 Specifically, on the DUC 2004-2007 MDS datasets.
5 In other words, every cluster contains 5 sentences on average; the clustering is a K-means

clustering based on TF-IDF vectors.
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The diversity function is now cluster-based. The function returns the sum
of the square root of the average similarity of all summary sentences per clus-
ter. Due to the square root function, the added value of a second summary
sentence from the same sentence cluster is naturally smaller, modelling the
diminishing returns property of summarization.

3.1.3 Kågebäck et al. (2014): enriching Lin & Bilmes (2011)

Although the algorithm of Lin and Bilmes (2011) performs well, it does
not benefit from the information word embeddings might add to the model.
Kågebäck et al. (2014) experimented with their summarization method, us-
ing different word embedding-based sentence embeddings instead of TF-IDF
vectors. The first, proposed sentence embedding is constructed using an
unfolding recursive auto-encoder (uRAE ), based on Socher et al. (2011).
This recursive (not to be confused with recurrent) neural network architec-
ture learns to ‘collapse’ word embeddings into a sentence embedding in an
unsupervised manner, by essentially learning the composition of words in a
binary syntactic tree. Kågebäck et al. also find that simply using additive
sentence embeddings yields better results on the Opinosis dataset (which is
discussed in Section 3.2) than using TF-IDF vectors or uRAE-based sentence
embeddings, however. We chose to reproduce their additive approach.

3.1.4 Kobayashi et al. (2015): proposing alternative objective functions

In the same framework proposed by Lin and Bilmes, Kobayashi et al. (2015)
take a somewhat more radical approach than Kågebäck et al. (2014). They
propose two entirely different objective functions: DocEmb and EmbDist.

DocEmb uses a slightly different angle in representing text; it simply sums
all words in a text, irrespective of sentence boundaries. The basic component
of the algorithm is a document embedding of the entire document. This
embedding is the sum of all word embeddings in the document. Using the
greedy algorithm of Lin and Bilmes, a similar additive embedding is computed
for every candidate summary, taking cosine similarity between the document
and summary embedding as the objective function:

f obj(C) =
vC · vD

kvCk kvDk
,
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where kvCk and kvDk are the summary and document vector, respectively.
This gives an intuitive notion of what a summary should be: the best sum-
mary is the one that is most similar to the original text.

Formally, however, DocEmb does not fit in the algorithm of Lin and Bilmes,
as this objective function is not submodular. The second objective function,
EmbDist, solves this issue. EmbDist is somewhat more complex: instead
of maximizing the distance between a document and summary vector, the
inverse average distance between every document sentence and its closest
summary sentence is now maximized6:

f obj(C) = �Â
s2D

N(s, C),

where N(s, C) indicates the distance between a document sentence and
the most similar sentence in the set of summary sentences C (excluding the
document sentence itself). The authors also tried this approach on word level
(i.e. minimizing the average distance between every word in the document
and the word’s closest summary word), but did not report the results. In our
final comparison, we report the results on both sentence and word level.

3.1.5 Yogatama et al. (2015): maximizing semantic volume

Instead of maximizing the coverage of the original text, while controlling the
redundance, Yogatama et al. (2015) propose another maximization objective.
The authors choose to maximize semantic volume: they select the subset of
sentences of which the convex hull in semantic sentence space is maximal.
This idea is illustrated in Figure 6. As this is NP-hard, Yogatama et al. use
a greedy hill-climbing algorithm to approximate maximal semantic volume
instead. As for sentence embeddings, the authors use singular value de-
composition on sentence bigram counts to obtain 600-dimensional sentence
embeddings; sentence embeddings are thus not built up from trained word
embeddings in this case.

We have not succeeded in reproducing the results of this paper; our —
to our knowledge — exact reproduction performs significantly worse than

6 Besides directly using the distances, they also proposed to transform the distances in
EmbDist to exponential or log scale. As we did not see any significant effect of this
transformation, we implemented EmbDist without transformation.
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Figure 6: The conceptual idea of maximizing the semantic volume, simplified to a
two-dimensional space. Sentences are represented as dots in the 2-D vec-
tor space. Given some length restriction, the optimal solution for these
7 sentences is the set indicated in red, spanning the largest semantic
volume. Adopted from Yogatama et al. (2015).

originally reported. We tried to contact the authors, but have not managed
to obtain the original code of the paper.

3.2 datasets & word2vec models

As mentioned above, we use three different datasets for the comparison, in
order to get a more generalized sense of the performance of all algorithms
considered in this chapter. We consider both MDS and SDS datasets. All of
them are commonly used for summarization evaluation. We consider DUC-
2002, TAC-2008 and Opinosis.

3.2.1 DUC-2002

DUC-2002 is a dataset that is commonly used for SDS. The dataset contains
a total of 567 news articles. All news articles are from respected American
news sources (e.g. Wall Street Journal, Financial Times). For every DUC
document, 1 (for 17 articles) or 2 (for 550 articles) human-written reference
summaries are available. The goal is to construct a summary with a maximum
of 100 words. For evaluation, gold-standard summaries of ⇠100 words are
included for each article. The average ROUGE-N F-score over the reference
summaries is the evaluation metric. As opposed to the other datasets, DUC-
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2002 comes with a version where sentences were already splitted, and meta-
data (i.e. author, document ID, newspaper etc.) is already removed from
the content. We used the ‘cleaner’ version of the dataset throughout this
thesis, as this sanitized content is closer to Blendle’s own data.

3.2.2 TAC-2008

TAC-2008, on the other hand, is a well-known MDS dataset. The TAC-
2008 dataset contains 48 clusters of 20 news articles each. Every cluster
contains articles on the same topic. Each of these clusters is separated into
two subclusters of 10 articles, where the second cluster provides a news
update over the first one. Only the non-update proportion of every cluster is
considered for the current comparison. For every document cluster, 4 human-
written, 100-word summaries were provided. As with DUC-2002, average
ROUGE-N F-scores are used to compute system summary quality.

3.2.3 Opinosis

The Opinosis dataset is a another kind of MDS dataset: it contains Amazon
product reviews instead of news articles. Although this is less relevant to
Blendle, it still gives an insight in the generalizability of the algorithms. It
contains 51 clusters of user reviews, where each cluster contains reviews for
a specific product. Every cluster is relatively small: it contains between 50-
575 sentences. For evaluation, every topic is accompanied with 4-5 short
reference summaries of about 3 sentences. This is significantly less than 100
words, which is why F-scores would be severely biased by the lack of precision
when producing 100-word summaries. This is why we chose to report recall
scores for this dataset instead.

3.2.4 Word2vec models

As the foundation for sentences throughout this whole thesis, two differ-
ent word2vec models were considered. Both word2vec models are trained
using the skip-gram architecture with negative sampling, as explained in Sec-
tion 2.2.



3.3 experiment 29

The first model is arguably the most common pre-trained vector model in
NLP literature: the Google News vector model7. This model is trained on
a part of Google’s News dataset, which contains about 100 billion words. It
contains 300-dimensional vectors for 3M words and phrases. Only the model
is public; the training data has not been published. The second model we con-
sider is trained on Blendle’s own news dataset. It contains 300-dimensional
vectors of the ⇠0.2M most frequent lower-cased words from the news corpus,
without punctuation. Although the training corpus is significantly smaller
(⇠277M words), the data only contains articles from high-quality US news-
papers. We trained this word2vec model using Gensim.8 As we will see later,
this results in a well-performing, small vector model.

3.3 experiment

As mentioned above, we tried to make the comparison as honest as possible.
As for the experimental conditions, this means:

• Every summarization method was allowed to select exactly enough
sentences to reach (and usually slightly overshoot) the 100 word limit;

• We used the same ROUGE settings for all different methods per dataset;9

• We report the results of every embedding-based model with both
Google’s and Blendle’s news vectors;

• All approaches using word2vec-based sentence embeddings are imple-
mented using IDF-reweighted word embedding sums,10 to make the
performance comparison between methods in this chapter not too de-
pendent on the exact form of a sentence embedding. This means
that every word embedding was first divided by the number of sen-

7 https://code.google.com/archive/p/word2vec/
8 https://radimrehurek.com/gensim/models/word2vec.html; we used the skip-gram

model with negative sampling, and trained it for 20 epochs. Minimum token count was
set to 10, the number of negative samples to 5, and the window size to 5.

9 We did not use the stemming or stop word removal option during ROUGE evaluation, and
considered only the first 100 words of every summary for evaluation.

10 Note that the IDF-reweighting is smooth: we add 1 to all document frequencies, as if
there is an extra document containing all words.

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/models/word2vec.html
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tences of the article (cluster) it occurs in, before word embeddings
were summed;11

• For the DUC-2002 and TAC-2008 datasets, we report F-scores, as
these are preferable for measuring performance (see Section 2.4). For
the Opinosis dataset, we report recall scores, as the 100-word system
summaries are usually longer than the reference summaries, resulting
in distorted F-scores due to variation in precision;

• In all evaluation tables throughout this thesis, we will report the best
score and all scores that are not significantly different from the best
score in boldface. In all cases, the difference between summarization
methods on Rouge measures is tested with a paired-samples permu-
tation test (Nichols and Holmes, 2002), randomly sampling 100,000
permutations for each test, as we cannot assume a normal distribution
of Rouge scores over all articles. We did not use the Wilcoxon signed-
rank test (Wilcoxon, 1945), as this test is known to underestimate the
significance of differences (Sanderson and Zobel, 2005; Smucker et al.,
2007). We assume scores to be significantly different if p < 0.05,
where we correct for the number of tests using the Holm-Bonferroni
method (Holm, 1979).

The performance of the following summarization systems are evaluated and
compared:

• Baselines:

– The LEAD baseline;

– LB-2010: the common MDS baseline by Lin and Bilmes (2010);

– LB-2011: another common MDS baseline by Lin and Bilmes
(2011);

– TextRank: a common SDS baseline by Mihalcea and Tarau (2004),
discussed in more detail in Chapter 4.

• Embedding-based methods:

– EmbDist (sent): the EmbDist algorithm on sentence level, as
used by Kobayashi et al. (2015);

11 This means that our implementation of method by Kågebäck et al. (2014) uses a slightly
more sophisticated sentence embedding, as we perform IDF-reweighting on the additive
sentence embedding used in the original paper.
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– EmbDist (word): the EmbDist algorithm on word level, as origi-
nally proposed (but not evaluated) by Kobayashi et al. (2015);

– DocEmb: the DocEmb algorithm by Kobayashi et al. (2015);

– Kågebäck: the algorithm by Kågebäck et al. (2014);

– LB-2010 (w2v): the submodular MMR-like summarization method
of Lin and Bilmes (2010), using IDF-reweighted additive sentence
embeddings instead of TF-IDF vectors.

3.4 results & discussion

The results of the comparison are shown in Table 2. We disregard the
Opinosis dataset for the rest of our analysis, as the large variance in paired
differences and the small number of document clusters causes the statistical
power to be too low: statistically, almost all methods perform equally well
on this dataset. We thus have one MDS and one SDS dataset to compare
the various methods.

Considering the TAC-2008 dataset, the best performance is achieved by
the submodular MMR method of Lin and Bilmes (2010), with comparable
results for TextRank, the method of Lin and Bilmes (2011), and the EmbDist
method on sentence level by Kobayashi et al. (2015). EmbDist only achieves
top performance with Blendle’s word2vec model. MSV (Yogatama et al.,
2015) performed much worse than reported in the original paper; the first
author did not respond to our request for the original research code when we
emailed about our findings.

On the DUC-2002 dataset, LEAD clearly achieves top performance. If
LEAD would not be considered, TextRank achieves the best result. TextRank’s
Rouge-1 performance is matched by DocEmb using either Google’s or
Blendle’s word2vec model. In general, we draw the following conclusions
based on the results.

Embedding-based methods do not necessarily perform well. The
considered non-word2vec baselines tend to outperform the embedding-based
methods overall. Moreover, the submodular MMR method of Lin and Bilmes
(2010) with word2vec embeddings instead of TF-IDF vectors is outperformed
by all other methods. This is interesting, as we apparently do not only add
free information, but also a lot of noise that distracts the selection method.
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DUC-2002 TAC-2008 Opinosis

Rouge-1 Rouge-2 Rouge-1 Rouge-2 Rouge-1 Rouge-2

G
oo

gl
e

w
2v

EmbDist (sent) 41.18 18.05 32.12 6.58 49.95 12.91

EmbDist (word) 42.17 17.65 28.29 4.78 43.28 7.40

DocEmb 43.85 18.86 31.09 5.79 53.42 14.98

Kågebäck 42.49 17.97 29.87 5.48 50.78 14.49

LB-2010 (w2v) 27.88 9.35 29.90 5.85 51.01 14.70

B
le

nd
le

w
2v

EmbDist (sent) 40.99 18.26 33.13 7.80 49.87 11.88

EmbDist (word) 42.12 17.48 29.84 5.80 41.92 7.33

DocEmb 43.70 18.65 30.89 5.92 51.28 12.19

Kågebäck 41.97 17.73 28.25 4.37 51.09 15.80

LB-2010 (w2v) 25.85 8.31 29.05 5.21 51.44 13.36

no
n-

w
2v

LB-2010 38.28 14.18 34.48 7.82 55.57 18.00

LB-2011 43.53 18.66 32.27 6.79 53.01 18.12

TextRank 44.49 20.25 33.50 8.53 49.13 14.60

MSV 40.58 16.58 26.66 3.48 51.47 13.89

LEAD 46.00 23.01 — — — —

Table 2: Rouge scores on the Opinosis, TAC-2008, and DUC-2002 datasets for
various algorithms. Results for both Google’s word2vec model and the
word2vec model trained on Blendle’s data are reported. Note that the
scores for TAC-2008 and DUC-2002 are Rouge F-measures, while the
scores on Opinosis are Rouge R-measures. For DUC-2002, the best scores
behind LEAD are italicized.

It seems difficult to cope with this noise during sentence selection.

TF-IDF-based methods seem to perform well on MDS. This could be
explained by the fact that more sentences are available per problem in the
MDS setting. As the number of sentences in a problem grows, there are more
examples of which words are shared by sentences, and which words are unim-
portant due to their frequency. This results in a more accurate indication
of relations between sentences, as the inverse document frequencies become
more reliable. This also implies that the added information of word2vec, if
interpreted effectively, could especially help in an SDS setting, as TF-IDF is
less effective in that case due to the smaller number of sentences per problem.
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In general, TextRank appears to be a very robust baseline. It achieves
top performance on the MDS dataset, and is the best SDS method if we dis-
regard the LEAD baseline for now. As TextRank does consider diversity
during sentence selection, it seems that relevance is the more important fac-
tor. TextRank thus seems a robust unsupervised relevance ranker.

The Blendle and Google word2vec model achieve similar perfor-
mance. This is an interesting finding, as the Blendle model is trained on
much less data. The Blendle model is also much smaller in terms of vocab-
ulary. Although the corpus Google used is not public, we hypothesize that
the Blendle data is much cleaner, and the text is of higher quality. This
makes sense, as the English Blendle corpus consists of only high-quality US
newspaper articles.

LEAD is an undervalued SDS baseline. In other research, the LEAD
baseline is either outperformed, unmentioned, or even weakened.12 We un-
expectedly found, however, that the baseline consistently outperforms other
methods on the DUC-2002 dataset. This makes sense: news articles tend to
start with important information. Although the fact that LEAD outperforms
the other methods is an unexpected finding, it is also an important one: it
indicates that the sequential property of text should not be disregarded. The
use of sequential information and the challenge of outperforming LEAD are
the subject of Chapter 5.

While in theory embeddings only add information to the model for free by un-
supervisedly learning word meaning, it seems difficult to use this information
to improve summary quality. In order to improve our understanding of using
embeddings for extractive summarization, our next step is to look into en-
riching the well-performing13 TextRank algorithm with sentence embeddings.
In the next chapter, we will hence study the effect of sentence embeddings
on TextRank.

12 Some papers interpret the LEAD baseline as the first 3 sentences of every article (e.g.
Cheng and Lapata (2016)), which is an unfair disadvantage.

13 Although LEAD achieves better performance, this baseline is not easily integrated with
sentence embeddings. Improving over LEAD will be the subject of Chapter 5.
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STUDY 2 : ENR ICH ING TEXTRANK WITH WORD
EMBEDD INGS

In this second study, we further investigate the added value of using word2vec-
based sentence embeddings for extractive summarization. Instead of evaluat-
ing existing embedding-based methods, as done in Chapter 3, we will investi-
gate the added value of substitution of sentence embeddings into TextRank,
the best-performing SDS method behind the LEAD baseline. We will first
elaborate on the TextRank algorithm in Section 4.1. We will then discuss the
reproduction of TextRank’s original results in Section 4.21, the substitution
experiment in Section 4.3, and conclude the chapter with a discussion of the
results in Section 4.4.

4.1 the textrank algorithm

The TextRank algorithm (Mihalcea and Tarau, 2004), as shortly described
in Chapter 2, is a graph-based extractive summarization method achieving
good performance on the DUC-2002 single document summarization dataset.
It is a common SDS baseline. It is based on Google’s PageRank algorithm
(Page et al., 1999), which is visually represented in Figure 7. In the TextRank
case, the sentences in the text are the vertices in the graph. The weights
of the edges in the graph are defined as the similarity of its vertices (i.e.
sentences). The similarity measure used for TextRank is a fairly simple word
co-occurrence measure. Given two sentences Si and Sj, where a sentence
is defined as a set of the N words it contains: Si = {wi

1

, wi
2

, . . . , wi
N},

similarity between the two sentences is defined as length-normalized word
overlap:

similarity(Si, Sj) =
Si \ Sj

log (|Si|) + log (|Sj|)

1 Note that we used our final reproduction version for the comparison in Chapter 3; we
describe the complications that we encountered during our reproduction of TextRank in
this chapter.

34
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Figure 7: Static visual representation of the PageRank algorithm. The more arrows
are pointing to a node, the more important (i.e. bigger) it becomes. The
color of an arrow indicates its weight, which corresponds to the node
size. Note that in the TextRank case, all relations are symmetric.

The fully connected graph is initialized with the similarity-based weighted
edges, and initial vertex scores of 1. The vertices are then re-scored by
taking into account the scores of neighboring vertices, weighted by the edge
weight. The new score S(Vi) of vertex i becomes:

S(Vi) = (1� d) + d⇥ Â
Vj2In(Vi)

wji

Â
Vk2Out(Vj)

wjk
S(Vj),

where d is a constant damping factor, usually set to 0.85. In our case, the
indegree and outdegree of every node are always equal, as the similarity
measure is symmetric. This means that sentences ‘recommend’ each other
based on their similarity and their current scores. Graph re-scoring is repeated
until the scores in the graph converge2, which is usually after 20–30 iterations.
The algorithm then returns a sentence ranking (highest-scored sentences
first), of which the highest-ranked sentences are picked for a summary, given
the DUC word limit of 100 words.

2 In this case, the scores in a graph are defined to be converged if the value change over
one iteration for all nodes is under the convergence threshold of 0.0001.
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Rouge-1 Rouge-2

TextRank (raw words) 41.64 17.17

+ stemming & stop word removal 41.46 17.40

+ postag filtering 44.41 20.13

+ all preprocessing 44.49 20.25

Table 3: The performance of default TextRank in different preprocessing configu-
rations on the DUC-2002 dataset.

4.2 reproduction of textrank results

Using only the information provided in the paper, we could not exactly re-
produce the results of the TextRank algorithm for the DUC 2002 dataset,
even though our implementation of the algorithm was exactly as described
in the paper. After correspondence with the authors, it became clear that
additional preprocessing was performed. Besides the necessary sentence and
word tokenization steps, the authors also performed stemming, stop word re-
moval, and most importantly, POS-tag filtering: only adjectives, nouns, and
cardinal numbers were considered. Adding these preprocessing steps signifi-
cantly improved TextRank’s performance, as is shown in Table 3. We used
all preprocessing for comparison in the survey from Chapter 3.

Although still not on par with TextRank’s original performance, the re-
maining difference could have various causes. Firstly, we used Rouge ver-
sion 1.5.5, whereas Mihalcea and Tarau (2004) probably used version 1.4.2,
as it was the newest version of the software in 2004. It is known that older
versions of Rouge are easier to fool for several reasons (Sjöbergh, 2007).
Secondly, we used the POS-tagger and stemmer of Blendle’s preprocessing
pipeline, which might have slightly altered the final result. Finally, the origi-
nal TextRank paper might have used even more hidden tuning, as the original
authors indicated that they could not remember the complete procedure.

4.3 experiment

Using our reproduction of TextRank with additional preprocessing (stemming,
stop word filtering, POS tag filtering), we obtain a model that acts as a robust
summarization method, both on an SDS and MDS task (as seen in Chap-
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Rouge-1 Rouge-2

TextRank (raw words) 41.64 17.17

TextRank (complete) 44.49 20.25

G
oo

gl
e Additive 42.40 17.98

IDF-reweighted 44.40 20.05

SIF 42.43 17.99
B

le
nd

le Additive 42.82 18.19

IDF-reweighted 44.24 20.01

SIF 43.63 19.23

Table 4: The performance of default TextRank in different preprocessing config-
urations compared with word2vec-enriched TextRank on the DUC-2002
dataset, using Google’s and Blendle’s news vectors.

ter 3). Although this already is a nice result, it would be interesting to find
a way to make TextRank less dependent on preprocessing, while preserving
or even improving its performance. We hypothesize that the use of sentence
embeddings should make this possible: using cosine similarities between sen-
tence embeddings instead of normalized word overlap, we avoid additional
preprocessing, while keeping a robust similarity measure for TextRank.

We will attempt to enrich TextRank with three different forms of sentence
embeddings: a simple additive embedding, an IDF-reweighted additive em-
bedding, and the SIF embedding (as discussed in Section 2.2.3). For the SIF
embeddings, the first principal component and the word emission probabilities
were fitted on all sentences in Blendle’s English article base3. Each sentence
embedding form is evaluated with both Blendle’s own and Google’s word
embeddings. As with the original TextRank paper, the DUC-2002 dataset
is used for evaluation. Although more sophisticated embeddings could have
been used (Socher et al., 2011; Kenter et al., 2016), this set of embeddings
should already give an intuition about the effectiveness of using sentence
embeddings for TextRank.

The sentence selection and evaluation settings are adopted from the last
study: we allow every method to slightly overshoot the 100 word limit, and

3 In other words, it was fitted on the same dataset that was used for fitting the Blendle
word2vec model.
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report Rouge F-scores for evaluation, not using Rouge’s stemming or stop
word removal options. The results of the experiment are shown in Table 4.

4.4 results & discussion

In Table 4, we see that additive sentence embeddings already perform bet-
ter than TextRank without preprocessing, but are still outperformed by the
complete version of TextRank. SIF embeddings are also outperformed by
TextRank’s original similarity measure. Substitution of the IDF-reweighted
sentence embeddings of both the Google and the Blendle word2vec model
perform on par with TextRank’s original algorithm on both Rouge-1 and
Rouge-2 scores, however. This is an interesting result, as we do not use
any additional preprocessing to achieve this performance level, as opposed
to the original TextRank algorithm.

Also note that, similar to the results in Chapter 3, Blendle’s and Google’s
word2vec model perform quite similar, even though Blendle’s model is trained
on a significantly smaller dataset. As already mentioned in Chapter 3, this
suggests that the quality of Blendle’s training data is relatively high, and
makes our model an interesting one, especially for news-related tasks.

Even though the TextRank method using IDF-reweighted sentence em-
beddings does not outperform the original one, the DUC-2002 example in
Table 5 indicates that it is more capable of selecting important sentences
than the original TextRank in at least some cases. In this example, the
raw version of TextRank and the complete TextRank do not select the sen-
tence at position 1, which arguably contains the main message of the article.
The IDF-reweighted word2vec version of TextRank, however, succeeds in de-
tecting the importance of this sentence. This might be explained by the
fact that this sentence is semantically similar to other sentences, while us-
ing other words to convey the message. The embedding-based version of
TextRank would be able to detect the similarity between sentences, while
the original TextRank method would not. Note that the LEAD baseline also
captures a lot of central information by simply selecting the beginning of the
article. This again indicates that incorporating sequential information in a
summarization method is beneficial to its performance.
Although the substitution of word2vec-based embeddings into TextRank im-
proves the algorithm to some extent, the improvement is far from satisfactory.
How could we use the added information of word2vec-based embeddings ef-
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fectively for sentence selection? We hypothesize that only considering the
cosine similarity between embeddings is too limited. A model that goes
beyond this might be more effective. In the next chapter, we consider a com-
pletely different type of model, that is capable of interpreting all embedding
features separately, while also considering the sequential property of textual
data.
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Reference summaries:

Aspirin can be a significant factor in reducing the number of heart attacks. Taking a single aspirin every
other day could cut the risk of a heart attack in half. When used with a clot-dissolving drug given within
24 hours of a heart attack, the chance of a second heart attack is reduced from 13 percent to 8 percent.
Many doctors still are not using clot-dissolving drugs but it is felt that, in the future, their use will be
considered safe enough to allow paramedics to administer them to patients on the way to the hospital.
Using a clot dissolver and aspirin could save 25,000 lives a year.

A large study has shown that taking a single aspirin every other day could cut heart attack risk in half. This
was one of several reports that show doctors can prevent heart attacks as well as treat them. Doctor’s
also found that one aspirin and a single dose of clot dissolving given within 24 hours of heart attack
dramatically cut the risk of a second fatal heart attack. Other researchers determined that some heart
attack victims could be released from the hospital as soon as three days after their heart attacks. After
6 months, not one death was reported in the early discharge group.

TextRank (raw): sentence position 3, 6, 19

In the most recent report, doctors found that one aspirin tablet and a single dose of a clot-dissolving drug
given within 24 hours can dramatically cut the risk of a second fatal heart attack. ‘The real discovery
is that treatment for patients is going to reduce in-hospital mortality substantially’, says Richard Peto of
Oxford University, one of the study’s authors. ‘We have to know how to respond quickly, and we have
to have the courage to use these drugs in the absence of definitive diagnosis’, says Dr. Burton Sobel of
Washington University in St. Louis, a pioneer in the testing of the clot-dissolvers.

TextRank (complete): sentence position 3, 4, 21, 22

In the most recent report, doctors found that one aspirin tablet and a single dose of a clot-dissolving
drug given within 24 hours can dramatically cut the risk of a second fatal heart attack. Without the
treatment, patients had a 13 percent chance of dying from a second heart attack within five weeks, the
researchers found. While most public attention has focused on this new ability to prevent heart attacks,
researchers have also made important progress in speeding the recovery of patients who survive heart
attacks. Researchers at the University of Michigan recently determined that some heart attack victims
can be released from the hospital as soon as three days after their heart attacks.

TextRank (IDF-reweighted Google/Blendle word2vec): sentence position 1, 3, 4, 21

A study of more than 22,000 male doctors had shown that taking a single aspirin every other day could
cut heart attack risk in half. In the most recent report, doctors found that one aspirin tablet and a single
dose of a clot-dissolving drug given within 24 hours can dramatically cut the risk of a second fatal heart
attack. Without the treatment, patients had a 13 percent chance of dying from a second heart attack
within five weeks, the researchers found. While most public attention has focused on this new ability to
prevent heart attacks, researchers have also made important progress in speeding the recovery of patients
who survive heart attacks.

LEAD: sentence position 0, 1, 2, 3

Aspirin sales jumped 41 percent for a few weeks earlier this year, not because of a rash of headaches. A
study of more than 22,000 male doctors had shown that taking a single aspirin every other day could cut
heart attack risk in half. The study was one of a series of recent reports showing for the first time that
doctors are able not only to treat heart attacks, but also to prevent them. In the most recent report,
doctors found that one aspirin tablet and a single dose of a clot-dissolving drug given within 24 hours can
dramatically cut the risk of a second fatal heart attack.

Table 5: System summaries for the raw version of TextRank, the complete version,
and the IDF-reweighted word2vec-based TextRank method on an article
from the DUC-2002 dataset. Sentence positions are reported for every
system summary. Reference summaries are also shown for comparison.
Note that both word2vec models result in the same summary in this case.
The LEAD baseline from Chapter 3 is also shown. For this article, the
embedding-based version of TextRank detects the importance of sentence
1, whereas the original TextRank does not.
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STUDY 3 : A NEW ALTERNAT IVE : RECURRENT
NEURAL NETWORKS

In this chapter, we investigate the utility of recurrent neural networks (RNNs)
for extractive single document summarization. We will first discuss the chal-
lenge of outperforming the LEAD baseline in Section 5.1. Then we will
explain how and why RNN architectures work, why they are a fit for the
current problem, and the model used for our experiments in Section 5.2. We
then discuss our experiments and their results in Section 5.4, and finally
discuss the outcomes in Section 5.5.

5.1 the challenge: outperforming lead

In Chapter 3, we already showed the strong performance of the simple LEAD
baseline on the DUC-2002 dataset. Allowing the LEAD baseline to slightly
overshoot the 100 word limit like all other methods,1 its SDS performance is
superior to all other reported results (including the results from Chapter 4),
as shown in Table 6.

This suggests that sentences close to the beginning of an article are more
likely to be important. None of the other previously mentioned methods

Rouge-1 Rouge-2

TextRank 44.49 20.25

TextRank IDF-reweighted (Google) 44.40 20.05

TextRank IDF-reweighted (Blendle) 44.24 20.01

LEAD 46.00 22.34

Table 6: ROUGE F-scores of best-performing TextRank methods and the LEAD

baseline on the DUC-2002 dataset. LEAD significantly outperforms all
other methods.

1 Note that many papers just use the first 3 sentences instead, which is an unfair LEAD

baseline.
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Figure 8: Normalized positional distribution of selected sentences per article. The
number indicates the absolute number of sentences falling in that bin.

used the position of a sentence as a ranking feature: they neglected the
sequential property of textual information. Unsurprisingly, when looking at
the normalized positions of the sentences that were picked for summaries
(visualized in Figure 8), we see a clear difference between the TextRank-based
methods2 and the LEAD baseline. Although all methods are more likely to
select the first sentence, the positional distribution after the first sentence is
roughly uniform for all methods except LEAD. In order to improve on LEAD,
learning from its successful positional distribution, we should use a method
that takes into account the sequential property of text, and is still able
to exploit sentence embeddings. In fact, learning from Study 2, we would
prefer a method that does not only use embeddings to compute similarities,
but considers all embedding features separately. Recurrent neural network
architectures exactly fit this description.

5.2 recurrent neural networks for summarization

5.2.1 RNN architectures: background

In order to explain the network architecture in Section 5.2.2, some back-
ground concepts should be discussed first. In this section, we discuss the ba-
sic RNN, the long short-term memory (LSTM) network, the encoder-decoder
architecture, and the use of attention mechanisms in recurrent architectures.
Every concept builds on the previous concepts. Some of the figures in this
section were adopted from Olah (2015), who wrote a great in-depth discus-
sion on RNNs and LSTM networks.

2 In fact, all previously mentioned methods have a distribution similar to that of TextRank.
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Figure 9: An ‘unrolled’ representation of a recurrent neural network. Note that all
cells share the same weights; only the input per time step is different,
and partly dependent on the previous step. Adopted from Olah (2015).

5.2.1.1 Basic RNN

The basic RNN structure is a simple one. Its internal structure is shown
in Figure 10. Traditionally, it is a 1-layer neural network with a nonlinear
activation (e.g. a tanh function). At each time step n of a sequence, it takes
the value of that time step (say, the nth word of a sentence) as its input. The
property that makes the network recurrent, is the fact that it does not only
take the nth input of the sequence, but also its own output of the previous
step as its input, as shown in Figure 9. This is a powerful dependency: it
allows the network to ‘carry’ information in its hidden state about previous
inputs, in order to incrementally ‘learn’ what the sentence means. If, for
example, we would want to classify the sentiment of the sentence ‘I tend not
to be happy ’, the network could learn to carry the information given by the
word not until it encounters the word happy, classifying the whole sentence
as negative.

Due to the recurrent property, backpropagation also goes backwards through
all time steps. This is usually called backpropagation through time (BPTT).

Figure 10: The internal structure of an RNN. Adopted from Olah (2015).
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Figure 11: The internal structure of an LSTM network. Adopted from Olah
(2015).

BPTT backpropagates through the whole sequence, summing the gradients
of the network weights of each step. Taking sentences as inputs, it is not
uncommon to have 20 time steps. Due to this ‘depth’ of the network, two
well-known problems arise: the vanishing gradient problem and the exploding
gradient problem. Although a full discussion of these problems is not in the
scope of this explanation, it arises from the fact that, due to the derivative of
the activation function, the time step gradients shrink or grow exponentially
through the time steps. This was already discovered by Hochreiter (1991).
Exponentially growing gradients are easily solvable by gradient clipping; ex-
ponentially shrinking gradients are a bigger issue. The result is that only the
last few time steps have a significant effect on the weight updates, thereby
losing the ability to learn long-range dependencies. The most commonly used
solution for this problem is the long short-term memory (LSTM) network.3

5.2.1.2 LSTM networks

LSTM networks (Hochreiter and Schmidhuber, 1997) inherit their recurrent
structure from simple RNNs, but have a far more complex internal structure.
This internal structure is represented in Figure 11. Although we will not
go over every operation of the internal structure, we will give a high-level
overview of its function. The structure is specifically designed to overcome
the problem of vanishing gradients, making it possible to learn long-term
dependencies. The most important difference is the fact that an LSTM

3 Gated recurrent units (Cho et al., 2014) are a more recent successful RNN architecture,
which is more efficient and performs similarly to LSTM networks. As LSTM networks
still appear to be more successful for excessively long-range dependencies (i.e. > 10 time
steps), we will solely focus on this architecture in this thesis.
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Figure 12: The encoder-decoder architecture. Adapted image from lecture.5

network maintains a cell state vector (i.e. the upper horizontal arrow running
through the cell in Figure 11). This cell state is relatively stable over various
time steps, and is influenced by the input and hidden state vectors through
a forget (⇥) and input (+) gate, which toge:ther decide what information
of the cell state is updated by what information of the previous hidden state
and input vectors. This updated cell state is then given as input to the next
time step. It is also used together with the hidden state to decide what the
‘normal’ RNN output should be.4 During training, the LSTM optimizes all
these internal operations (again using BPTT) in order to learn long-range
dependencies specific to the data that are useful for the task at hand.

5.2.1.3 The encoder-decoder architecture

Let us assume that the current task is to translate a German sentence into
an English one. In this case, the task is not just to return one output based
on the sequence of inputs, but an internally dependent sequence of outputs
instead. We could try to simply train the output of every time step to be
a word of the English sentence, but this does not work well in practice; as
the word order is different for both languages, information about the full
English sentence is needed before starting to translate. We would thus like

4 Note that the LSTM thus requires 3 inputs (previous cell state, previous hidden state,
and input vector) and creates two outputs (the new output/hidden state and the new cell
state).

5 http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf

http://cs224d.stanford.edu/lectures/CS224d-Lecture8.pdf
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to have a model that is trained to ‘encode’ the German sentence in such a
way that we can use its encoding to construct an English sentence with the
same meaning.

This is the idea behind the encoder-decoder architecture (Cho et al., 2014;
Sutskever et al., 2014), illustrated in Figure 12. It consists of two LSTM
networks (with completely separate weights); one network (the encoder) that
learns to encode the input sequence into a fixed-length vector, and one (the
decoder) that learns to generate a sequence of outputs based on the result
of the encoder. At every time step, the decoder receives its previous final
output6 and, as usual, its previous output state as input. It thus generates
the most likely sequence given the decoder’s weights, solely based on the
fixed-length encoding.

Note that although machine translation is a common application for the
encoder-decoder architecture, it is suitable for any task that has both a
sequential in- and output.7 This includes sequence labeling tasks, as we will
see later in this chapter.

5.2.1.4 Attention

Using the encoder-decoder model, it is now possible to construct an English
sentence from an encoded German sentence. As mentioned before, the de-
coder has very limited information for constructing a sentence; given the
fixed-length encoding of the German sentence, it generates the most likely
English sentence. Looking at Figure 12, this fixed-length vector is an obvious
bottleneck in the information transferred from the encoder to the decoder.

Attention mechanisms (Bahdanau et al., 2014) alleviate this problem by
allowing the decoder to attend to different inputs at each time step. A sep-
arate feedforward neural network assigns an attention weight to the encoder
outputs of each encoder time step, given the previous decoder output. These
weights are normalized, and the weighted average over the encoder outputs
concatenated to the decoder’s own previous output is the current decoder
input. This mechanism is called soft attention, as the decoder is allowed to
attend some encoder outputs more than others, besides its normal decoder
behavior of receiving its own previous final output as input. This model is
the current state-of-the-art model in the field of machine translation.

6 Note that the final output might be different from the decoder’s ‘raw’ output; usually, the
final output is a softmax over the time step’s raw output vector.

7 This is why the equivalent term for encoder-decoder model is sequence-to-sequence model.
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Figure 13: The extractive summarization architecture proposed by Cheng and La-
pata (2016). Image is an adapted version from the original paper.

5.2.1.5 RNNs for extractive summarization

Cheng and Lapata (2016) proposed an extractive summarization method8

based on the encoder-decoder model with attention as proposed by Bah-
danau et al. (2014). Their model is visualized in Figure 13. As opposed to
the machine translation example, this means that our RNN encoder is not a
sentence encoder reading words, but a document encoder reading sentences.
In order to obtain sentence embeddings from word embeddings, Cheng and
Lapata (2016) use a convolutional sentence encoder, which we will not ad-
dress; we use another, more simple and generic sentence representation in
our own model, which is discussed in Section 5.2.2. Given the sequence of
sentences, the task is now a sequence labeling task: for every sentence in
the sequence, the decoder predicts whether sentence should be included in
the summary. As shown in Figure 13, the label of the nth sentence sn is
predicted by a feedforward neural network f (·), taking the concatenation of
the current decoding output ¯hn and the corresponding encoding output hn

as the input9:

pn(yn = 1) = f (hn : hn).

This concatenation could be seen as a hard attention mechanism, fully at-
tending the corresponding encoding state instead of softly attending some

8 They actually proposed both an extractive and an abstractive method, but we will only
consider the extractive method; abstractive summarization is not the subject of this thesis.

9 Note that we use ‘:’ as the concatenation operator.
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encoding states. The next decoding state hn+1

is then calculated as fol-
lows10:

hn+1

= decoder(pnsn, hn).

This means that the decoder has access to the raw input sentence embedding
of the previous time step, multiplied by the estimated ‘pick probability’ of
that sentence.

The dataset used for training the model will later be described in Sec-
tion 5.3, as we used the same dataset for training our model.

5.2.2 Our architecture

Although the RNN model proposed by Cheng and Lapata (2016) is not easily
reproducible11, we propose a new model based on their model architecture.
The transformations to their model to get to our model architecture are
discussed below.

Firstly, the convolutional layer used in their model is only necessary to
provide word-level attention for abstractive summarization. As our method
is aimed at extractive summarization only, we use static sentence embeddings
instead of a convolutional network to construct sentence embeddings from
word embeddings; the input sentence embedding is simply the average of
all word embeddings in the sentence. Although this is a restriction of the
model, we expect that such a static sentence embedding already provides all
information for the RNN architecture to predict the sentence labels, while
being much simpler and faster to implement. It also simplifies our model
by isolating the RNN architecture as the only ‘learning’ component of the
model.

Secondly, we slightly altered the fixed attention mechanism. Instead of
multiplying the raw sentence embedding of the previous time step with the
pick probability of that sentence, we choose to concatenate the pick proba-
bility with the sentence embedding. The decoder output is now calculated
as follows:

hn+1

= decoder(pn : sn, hn).

10 Note that for simplicity, the LSTM cell state is omitted from both sides of this equation.
11 Although the authors published their code on GitHub, the procedure in that code did not

match the paper. The authors did not respond to questions about this via email.
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This is more similar to the original attentional approach by Bahdanau et al.
(2014): the pick prediction is the final output of the decoder at that time
step, which should thus be given as input to the next decoding time step.
Besides, this provides the decoder with more information: instead of multi-
plying the pick probability, we provide it explicitly, thereby giving the decoder
the opportunity to learn the relation between these terms itself. Note that
we still have a look-back into the corresponding encoding output, directly
through the attentional feedforward neural network, exactly like Cheng and
Lapata. Besides the aforementioned benefit of look-back, this fixed atten-
tion mechanism also provides a powerful backpropagation path directly from
the label to the corresponding encoding state, thus bypassing the standard
BPTT path. This allows the model to also adjust its encoder weights based
on the output provided by the corresponding encoder state, besides the ‘nor-
mal’ path through the final hidden state of the encoder.

For more details on layer sizes, hyperparameter settings, and prevention of
overfitting, see Section 5.4.1. Compared to the aforementioned methods in
this thesis, this is the first type of model that is able to utilize the sequential
property of text, and separately interpret the 300 features of the embedding
space. This gives our model the possibility of only paying attention to some
combination of input features, depending on the sentence embeddings it has
seen up to that embedding.

5.3 dataset

Since we train our RNN architecture in a supervised manner, we need a la-
beled dataset that is large enough to optimize the large number of parameters
in our model. We use the DailyMail dataset by Cheng and Lapata (2016),
which contains 216483 articles12. All articles and their corresponding bullet
point summaries provided by DailyMail were retrieved from the DailyMail
website. Each article is already split into sentences and tokenized, and every
sentence is labeled as 0 (should not be extracted), 1 (should be extracted), or
2 (might be extracted). For our task, all 2-labels are interpreted as 0-labels,
essentially making the task a single-label sequence labeling task, predicting
for every sentence whether the sentence should be included in the summary
or not. On average, about 1/3 of all sentences has a 1-label. As expected,

12 Split into 193986 training, 12147 validation, and 10350 test articles.
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Figure 14: Normalized positional distribution of 1-labels in a random sample of
10000 articles from the DailyMail dataset. The number indicates the
the probability of a sentence to occur in that position (of 20 position
bins).

the positional distribution of 1-labeled sentences is skewed towards the be-
ginning of articles, as shown in Figure 14. We expect our RNN model to
learn a similar positional distribution.

It is important to note that not all articles were labeled manually; Cheng
and Lapata (2016) designed and fitted a rule-based system to automatically
label all sentences based on the unigram and bigram overlap between the
article sentences and the Dailymail summaries, the sequential position of the
sentences in the document, and the number of entities in the sentence. The
weights of the rules were fitted on a subset of 9000 documents that were
labeled manually. On a left-out test set of 216 labeled documents, the rule-
based sentence labeler reached an accuracy of 85%.13 Despite the fact that
not all labels in the dataset were assigned manually, we will still refer to them
as the true labels later in this chapter.

For evaluation, we use ROUGE F-scores on the DUC-2002 dataset which we
also used in our previous studies.

5.4 experiment & results

5.4.1 General settings (hyperparameters, layer sizes, etc.)

In this section, we mention some general settings that are the same for all
model versions discussed in Sections 5.4.2–5.4.3.

All versions of the RNN model were trained on an NVidia K80 GPU on the
Google Cloud Platform. To build the model, we used PyTorch14, a relatively

13 Note that this means that the upper bound of accuracy of any sentence extractor on the
full set is also expected to be around 85%.

14 pytorch.org

pytorch.org
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Layer Size

Input (= embedding) 300

Encoder hidden state 500

Decoder hidden state 500

Encoder cell state 500

Decoder cell state 500

Attention hidden layer 500

Table 7: An overview of layer sizes in the RNN model.

new, actively developed, open-source deep learning framework in Python
written by Facebook. This framework provides more readable syntax than
TensorFlow, especially for variable-length sequential data. It is also heavily
optimized for use on GPUs. The code for our model is available on GitHub15.

We tested all RNN model versions with both the Blendle and the Google
word2vec model as its basis. Training was stopped when the loss decrease
on the validation set was less than .01, taking the last epoch with a larger
loss decrease as the final model. This means that unless stated otherwise, all
models were run for 1 epoch; in almost all cases, training for longer than 1
epoch only led to overfitting. As our model uses the predicted previous label
as input for its next label prediction, the error in prediction may incremen-
tally increase, especially at the start of training. To control for this, we used
teacher forcing: with a probability of 0.5, the real label was given as input
to the next time step, instead of the predicted label. While the cell state
and hidden state of the LSTM encoder at the beginning of every sequence
(i.e. document) are initialized with zero matrices the first time, these initial
states are also trained. The attention network was instantiated as a feedfor-
ward neural network with one hidden layer followed by a rectified linear unit
(ReLU) activation layer (Nair and Hinton, 2010). All models were trained
stochastically (i.e. with a batch size of 1) with Adam (Kingma and Ba, 2014),
setting the initial learning rate to 10

�3. To prevent overfitting, the input
dropout probability (Srivastava et al., 2014) was set to 0.3. Layer sizes are
summarized in Table 7.

15 https://github.com/blendle/research-summarization

https://github.com/blendle/research-summarization
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Rouge-1 Rouge-2

TextRank 44.49 20.25

TextRank IDF-reweighted (Google) 44.40 20.05

TextRank IDF-reweighted (Blendle) 44.24 20.01

LEAD 46.00 22.34

RNN (normal training; Google) 46.56 22.75

RNN (normal training; Blendle) 46.85 23.01

Table 8: ROUGE F-scores of the first RNN-based model and the strongest SDS
baselines on the DUC-2002 dataset.

5.4.2 Run 1: Normal training

Using the model with the settings discussed in Section 5.4.1, we trained
the model for 1 epoch16 with both the Blendle and the Google word2vec
model. The relation between training loss and training accuracy and the loss
over training iterations is shown in Figure 15. The performance evaluation
against the best TextRank-based models and the LEAD baseline is shown in
Table 8. The Blendle RNN model achieves the best performance on both the
Rouge-1 and Rouge-2 scores. Its Rouge-1 score is significantly better
than the LEAD baseline.

Based on Figure 16, we conclude that both the Google- and Blendle-
word2vec-based RNN model learned the positional distribution of the training
data shown in Figure 8, and thus learns from the sequential property of

Figure 15: Plot of the relation between mean and loss (left) and the loss over
training iterations (right) for the first, normal training run with the
Blendle word2vec model. Run on the Google model is very comparable.
Data points are means over every 1000 iterations.

16 After 1 epoch, the model already appeared to start overfitting.
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Figure 16: Normalized positional distribution of selected sentences per article
for the normally trained RNN models, with the LEAD baseline and
TextRank for reference. The number indicates the absolute number of
sentences falling in that bin.

the text data. This also means that the positional distribution is heavily
skewed towards the beginning of article. We might interpret our model as
an alternative for LEAD, that learns what sentences to ‘skip’ based on the
predicted labels and the other sentences in the document. This indeed seems
to be an accurate description of what the RNN models do. Table 9 shows
example summaries for TextRank, the LEAD baseline, and both RNN models.
As seen in many articles, the first sentence of the example article contains
important information. TextRank fails to select this sentence, whereas both
LEAD and the RNN rankers include it in the summary. Both RNNs, however,
seem to exclude unimportant sentences at the beginning of the example
article, thereby saving space for more important sentences that appear later
in the article.17 This might be a (partial) explanation for the performance
improvement over the LEAD baseline.

As both the RNN rankers and TextRank-based methods achieve good
scores on DUC-2002, we hypothesize that both these methods select a dif-
ferent, but interesting set of sentences. In order to make our RNN ranker
deviate from LEAD even further, we now try to combine the TextRank result
and the LEAD result into one ranker, without compromising the performance.

17 Note that the selected sentences by the RNN rankers later on in the example article are
not always informative; the Blendle word2vec-based ranker seems to do a better job than
the Google word2vec-based ranker in this case.
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Reference summaries:

In Kuwait, with the sound of gunfire, artillery and military jets streaming overhead, the entire foreign
community is staying indoors. The crisis began on July 17 when Saddam accused the Kuwaitis of trying
to wreck his debt-ridden economy with oil overproduction and of stealing Iraqi oil from a border oil field.
He also demanded that Kuwait turn over the Gulf island of Bubiyan and forgive multi-billion dollar loans
incurred by Iraq during its 1980-1988 war with Iran. The invasion came a day after talks between Iraq
and Kuwait collapsed. Today’s fighting sent oil prices surging in international markets.

Iraqi troops, led by the elite Republican Guard invaded Kuwait early today as Iraq claimed it was responding
to the request from ‘the interim government of free Kuwait’ to defend the revolution and the Kuwaiti
people. Kuwaiti forces failed in their attempt to repel the invaders with heavy artillery. The rattle of
automatic weapons and explosions in rapid succession rudely awakened residents. The British Embassy
was hit by shellfire and the Sheraton and Hilton hotels evacuated their residents. Prime Minister Sheik
Saad al-Abdullah al-Sabah appealed on Kuwaiti radio Arab support. Today’s fighting quickly sent oil
prices surging in international markets.

TextRank (complete): sentence position 16, 21, 25, 26, 30

Iraq has an estimated 1 million troops — including reservists — among its 16 million people, compared
to 20,300 troops in Kuwait. Saddam had threatened military action against Kuwait and the United Arab
Emirates for exceeding their cartel production quotas and driving crude prices down. The crisis began July
17 when Saddam accused Kuwait of trying to wreck the debt-ridden Iraqi economy with oil overproduction
and began massing troops on Kuwait’s border. He also accused Kuwait of stealing $2.4 billion in oil drilled
from the border oil field, Rumailah. Iraq borrowed $10 billion to $20 billion from Kuwait wants that debt
forgiven.

LEAD: sentence position 0, 1, 2, 3, 4, 5, 6, 7, 8

The British Embassy was hit by shellfire and the Sheraton and Hilton hotels evacuated their clientele,
sources said. Swiss charge d’affaires Franco Bessoni said on French radio that the palace was taken after
bombardment by Iraqi MiG jet fighters. ‘You can see black smoke over there . . . No one dares to go out.
You can hear gunfire. The entire foreign community is staying indoors’, he said. ‘It’s chaos, military jets
are flying over all the time’, Kathy McGregor, a Canadian, said by telephone at about midday. She said
she could still hear artillery fire. The air space over Kuwait was closed, with airliners turned away.

Google word2vec-based RNN: sentence position 0, 1, 6, 19, 20

The British Embassy was hit by shellfire and the Sheraton and Hilton hotels evacuated their clientele,
sources said. Swiss charge d’affaires Franco Bessoni said on French radio that the palace was taken
after bombardment by Iraqi MiG jet fighters. ‘It’s chaos, military jets are flying over all the time’, Kathy
McGregor, a Canadian, said by telephone at about midday. The price of North Sea Brent crude for
September delivery was quoted early today at $22.30 a barrel against Wednesday’s London close of
$20.40. Iraq, the world’s second-largest oil producer, had demanded higher oil prices at last month’s
OPEC oil cartel meeting in Geneva.

Blendle word2vec-based RNN: sentence position 0, 1, 6, 11, 14

The British Embassy was hit by shellfire and the Sheraton and Hilton hotels evacuated their clientele,
sources said. Swiss charge d’affaires Franco Bessoni said on French radio that the palace was taken
after bombardment by Iraqi MiG jet fighters. ‘It’s chaos, military jets are flying over all the time’, Kathy
McGregor, a Canadian, said by telephone at about midday. It said its troops — no numbers were given
— were in Kuwait to defend the revolution and the Kuwaiti people. Kuwaiti forces had engaged the Iraqi
invaders with heavy artillery in their failed attempt to repulse them, Kuwaiti officials said earlier.

Table 9: System summaries for the complete version of TextRank, the first RNN
ranker (both the Google en Blendle word2vec version), and the LEAD

baseline on an article from the DUC-2002 dataset. Reference summaries
are also shown for comparison. The RNN rankers seem to learn which
sentences to skip when reading the article.



5.4 experiment & results 55

5.4.3 Run 2–6: Co-/pre-training with TextRank labels

In an attempt to combine the strengths of both TextRank and our first
RNN ranker, we combine the training of an RNN model on the true Daily-
Mail labels with training on unsupervised TextRank labels. This allows for
semi-supervised18 training of an RNN ranker, thereby deviating from the au-
tomatically assigned DailyMail labels as the only source for training. This
semi-supervised approach is a new contribution to the field of extractive sum-
marization, giving endless possibilities of combining the behavior of several
powerful summarization systems into one recurrent neural network. In this
thesis, we only use TextRank for unsupervised label production, but note that
any ranker (or combination of rankers) could be used for this unsupervised
signal.

We performed semi-supervised training of the RNN model in different ways.
We discriminate between pre-training and co-training: pre-training denotes
training on TextRank labels only before training on true labels, while co-
training denotes using either TextRank or true labels randomly per article,
given a predefined ratio. The TextRank labels were constructed by label-
ing the highest ranked 1/3 of the sentences with a 1-label. We evaluate
the performance19 of all different semi-supervised models on the DUC-2002
dataset.

Figure 17: Plot of the relation between mean and loss (left) and the loss over
training iterations (right) on the TextRank pre-training with the Blendle
model. Google pre-training is very comparable. Data points are means
over every 1000 iterations.

18 Even though the RNN is only trained with labeled data, we use the term semi-supervised
because we use an unsupervised method to construct ‘mock’ labels.

19 Again on both the Blendle and the Google model.
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Rouge-1 Rouge-2

LEAD 46.00 22.34

B
le

nd
le

Normal training only 46.85 23.01

Co-training only (0.5) 46.06 22.18

Pre-training only 43.46 19.01

+ normal 46.79 22.97

+ co-training (0.5) 44.22 20.07

+ co-training (0.25) 46.27 22.57
G

oo
gl

e

Normal training only 46.56 22.75

Co-training only (0.5) 45.56 21.46

Pre-training only 44.15 19.77

+ normal 46.39 22.70

+ co-training (0.5) 45.11 20.90

+ co-training (0.25) 45.73 21.79

Table 10: Rouge F-scores on all different RNN model versions and the LEAD

baseline.

These models include:

• Pre-training only

• Pre-training, then 1 normal epoch

• Pre-training, then co-training (TextRank label probability: 0.5)

• Pre-training, then co-training (TextRank label probability: 0.25)

• Co-training only (TextRank label probability: 0.5)

Pre-training converged after 2 epochs on the Blendle model and 3 epochs on
the Google model. The relation between pre-training loss and pre-training
accuracy and the loss over pre-training iterations is shown in Figure 1720.
Aside from pre-training, all training converged after 1 epoch. The evaluation
results on DUC-2002 are shown in Table 10; a visualization of all ranker
distributions is given in Figure 18.

Let us first consider the ranking results directly after pre-training on the
TextRank labels (i.e. the ‘pre-training only’ rankers). In Figure 18, we

20 We only visualize the loss during pre-training, as the loss and accuracy on co-training are
a random mix on TextRank and normal labels.
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Figure 18: Normalized positional distribution of selected sentences per article for
the all RNN models (both Google and Blendle), with the LEAD baseline
and TextRank for reference. The number indicates the absolute number
of sentences falling in that bin. Marked distributions achieve the best
performance on DUC-2002 (see Table 10).

see that both the Blendle- and Google-based pre-trained RNN learn a po-
sitional distribution on the DUC-2002 data comparable to that of the actual
TextRank ranker. The performance on Rouge-1 and Rouge-2 of the
Google-word2vec-based RNN even is on par with the TextRank result. We
conclude that the RNN is sufficiently capable of learning the TextRank be-
havior.

Considering the co-training only result, we indeed see that this RNN
learned a positional distribution that is between the normally trained RNN
ranker and the pre-training only ranker. This is exactly what we expect, as
it is trained on a combination of both labels. The co-training only ranker
performs significantly worse than the best ranker, however. The only success-
ful21 model using co-training is an RNN using the Blendle word2vec model
that was first pre-trained on TextRank labels, and co-trained for 1 epoch
afterwards, with a TextRank label probability of just 0.25.

When focusing on Rouge-1 scores22 in Table 10, we see that the Blendle
ranker from our first run still obtains the highest score. It is now matched

21 With successful, we mean that it performs on par with the best model.
22 We focus on Rouge-1 scores since these are known to correlate most strongly with

human summary evaluation, as we mentioned in Section 2.4.
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by several pre- and co-trained rankers, which are slightly less skewed towards
the beginning of articles than the normally trained rankers. It becomes clear,
however, that a strongly skewed distribution is beneficial; the best rankers of
the set are the rankers of which the positional distribution is most similar to
LEAD.

5.5 discussion

We conclude that RNN rankers are most successful in using information
from sentence embeddings for extractive summarization, and the only type
of ranker considered in this thesis that is capable of beating the simple but
strong LEAD baseline. They do so by combining a sequential interpretation
of the data with a per-feature interpretation of the embeddings. Although
the ranker purely based on the true labels achieved the best performance, a
ranker that deviates stronger from LEAD might be preferable: we want a
ranker that finds the most relevant sentences throughout the whole article,
even though some bias towards the beginning seems to be justifiable.

We further conclude that the Blendle word2vec model again proves to be
a small, but effective model for representing words and sentences, making it
an interesting alternative for the Google News vectors in the news domain.
As we used a static sentence embedding, we can also conclude that the RNN
architecture is able to extract relevant information from the static sentence
vectors, without using a jointly trained sentence encoder. As opposed to the
architecture by Cheng and Lapata (2016), which also contains a convolutional
sentence encoder, the RNN architecture is the only ‘learning’ component of
our model.

Finally, we attempted to combine training on true labels with training on
labels constructed by an unsupervised SDS technique. To our knowledge, this
is the first time that unsupervised and supervised summarization techniques
were combined this way. Although pre-training on TextRank proves that
RNNs indeed learn from unsupervised labels, the possibilities of this semi-
supervised framework are endless.



6
D I SCUSS ION AND CONCLUS ION

The objective of this thesis was to design, implement, and evaluate an
embedding-based algorithm for extractive summarization, in order to auto-
matically find the most important set of sentences in any article. We aimed
at an algorithm using word2vec-based sentence embeddings for representing
sentences, as word2vec (Mikolov et al., 2013b) carries unsupervised semantic
word information into the model. In order to achieve this, we first compared
current state-of-the-art embedding-based extractive summarization method
against each other and strong non-embedding-based baseline methods. Then
we tried enriching a robust SDS algorithm from this first study, TextRank
(Mihalcea and Tarau, 2004), with various forms of sentence embeddings.
Although this had the positive effect of eliminating the need for additional
preprocessing steps used by the original algorithm without losing performance,
it did not outperform TextRank. Finally, we used a sequential model that is
able to flexibly interpret sentence embeddings, inspired by the strong LEAD
baseline and the RNN-based model by Cheng and Lapata (2016). This model
outperformed LEAD, but also appears to be capable of approximating the be-
havior of other summarization methods. By introducing pre- and co-training
on unsupervised summarization methods (TextRank, in our case), we pro-
vided a framework for semi-supervised extractive summarization, capable of
learning ‘ensembles’ of methods. Our final proposed method, however, is
the normally trained RNN model using the Blendle word2vec model for its
sentence embeddings, as it achieves the highest performance of all models
evaluated in this thesis. Although this RNN and its underlying word2vec
model are only trained for summarization of English articles, training the
model for Dutch articles is feasible given Blendle’s data. This feasibility is
discussed in Appendix A. Throughout this thesis, the word2vec model trained
on Blendle’s data proved to be as effective as the much larger Google News
word2vec model, arguably due to the quality of the text sources. It could be
an interesting alternative for the Google News model, especially in the news
domain.
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6.1 discussion of research questions

We stated three main research questions in Chapter 1. We will summarize
the answers to these questions below.

RQ1: How do the current embedding-based extractive methods com-
pare to each other and commonly used non-embedding-based base-
lines?
While in theory, embeddings only add information to the model for free
by unsupervisedly learning word meaning on large word corpora, it seems
difficult to use this information to improve summary quality. Previously pro-
posed embedding-based methods tend to perform worse than strong, non-
embedding-based (i.e. based on TF-IDF or even word overlap) baselines on
both MDS and SDS datasets. Especially TextRank (Mihalcea and Tarau,
2004), simply using word overlap, performs well on single document summa-
rization, which is the main goal of this thesis. All methods, however, are
outperformed by the simple, but very effective LEAD baseline on the SDS
task.

RQ2: Is it possible to improve the performance of existing non-
embedding-based methods by substituting embeddings?
Using the well-performing TextRank from the first question, we tried to in-
corporate various forms of word2vec-based sentence embeddings. We did so
by using the cosine similarity between the sentence embeddings as the edge
weights in the graph, instead of the originally used normalized word overlap.
IDF-reweighted sums of word embeddings in the sentence performed on par
with the original TextRank algorithm, without applying the additional pre-
processing steps used in the original paper (i.e. POS tag filtering, stemming,
stop word filtering). Although this does not improve the performance of the
original method, the lack of additional preprocessing could be seen as an
enhancement.

RQ3: Can a sequential model using unsupervised word embeddings
improve on the strong beginning-of-article heuristic?
We proposed a recurrent neural network (RNN) model with an encoder-
decoder architecture and fixed attention, inspired by Cheng and Lapata
(2016). This model makes use of the sequential property of text, just like the
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beginning-of-article heuristic (also known as the LEAD baseline), while also
interpreting the sentence embeddings more flexibly than all previous mod-
els. This model outperforms the LEAD baseline, but still shows a positional
distribution similar to that of LEAD. In order weaken this bias towards the
beginning of articles, we propose to pre-, or even co-train our RNN model
with other, unsupervised labels, such as TextRank. Although this pre-trained
model does not outperform our first RNN model, it does perform on par with
it, while being less biased towards the beginning of articles.

6.2 future directions

We would like to point out several interesting directions for further research.
First and foremost, an obvious direction is to further investigate the fi-

nal semi-supervised RNN-based framework. It would be interesting to study
the capabilities of the RNN model to approximate other summarization al-
gorithms, but also to find a set of complementing summarization methods
that could be used as an ensemble approximated by the RNN.

A second direction would be to try various RNN-based architectures, as
there is still a lot of room for exploration.1 A thorough evaluation of the
effect of a bidirectional encoder/decoder and the use of soft instead of hard
attention would be good places to start. It would also be interesting to
evaluate the performance of a much simpler LSTM model, not incorporating
the encoder-decoder architecture.

1 Due to time constraints, there was no more tuning of model architecture and hyperpa-
rameters involved than described in this paper.
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A
FEAS IB I L I TY OF RNN -BASED SUMMAR IZAT ION ON
DUTCH BLENDLE ART ICLES

Although the RNN ranker is the best-performing SDS method found in this
thesis, it is only trained for English. As most of Blendle’s articles are Dutch,
a Dutch RNN ranker would be desirable. In this chapter, we will briefly argue
why training a Dutch RNN ranker is theoretically feasible given Blendle’s own
data.

In order to show the feasibility of training a Dutch RNN ranker, we need
to show that both the RNN ranker and a well-performing, unsupervised
word2vec model can be trained using Blendle’s data. The construction of
a dataset for training the RNN is discussed in Section A.1 and the Dutch
Blendle word2vec model is addressed in Section A.2.

a.1 dataset construction

As mentioned in Chapter 5, the dataset constructed by Cheng and Lapata
(2016) contains ⇠200k DailyMail articles, where a small set is manually
labeled, labeling most of the dataset automatically using the summaries pro-
vided by DailyMail. As for Blendle, the database contains ⇠2.1M Dutch arti-
cles, ⇠57.5M sentences, or ⇠708.3M words, probably making it the largest
high-quality1 text corpus for Dutch. Every article text contains metadata
about the type of content, dividing an article into a title, intro, paragraphs
etc. Article intros usually provide a rough summary of the article, making
them comparable to the DailyMail summaries. Some examples of Dutch
article intros are shown in Table 11. About 0.4M articles (⇡17.8% of all
articles) contain an intro that is longer than 5 words.2 This arguably makes
the set of article-intro pairs from the Blendle data a Dutch equivalent to the
English dataset of Cheng and Lapata (2016).

1 Not considering Twitter corpora, for example
2 This is a heuristic cut-off to exclude non-summary intros.
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Voor het eerst in zes jaar wijzen alle signalen bij het Amerikaanse beurshuis Morgan
Stanley erop dat het tijd is om Europese aandelen te kopen.

Autojournalist Fleur Baxmeier geeft gas in nieuwe auto’s. Deze week: Porsche
911 Targa.

Tieners kunnen vaak nog zonder problemen zelfstandig alcohol of sigaretten kopen.

Na een keurmerk voor eieren en vlees moet er ook een Beter Leven Keurmerk
komen voor zuivel.

Twee maanden na de opening is er nog altijd geen actie op het Leeuwarder
stadsstrand. Heb toch een beetje geduld met ons, vragen de eigenaren.

De eredivisie is dit seizoen ongemeen spannend. PSV en Ajax spelen 20 maart
tegen elkaar. De titelkandidaten beoordeeld op acht factoren. Conclusie: PSV is
in het voordeel.

Table 11: Some ramdomly sampled article intros.

a.2 word2vec model

The ⇠57.5M high-quality Dutch sentences in the Blendle database are a
unique source for training a Dutch word2vec model. We trained a word2vec
skip-gram model using the same settings as the English word2vec model used
throughout this thesis. Given the fact that the English Blendle word2vec
model performed on par with Google’s word2vec model, we hypothesize that
the Dutch word2vec model should also perform well as foundation for the
RNN ranking model. It might even be the best-performing Dutch word2vec
model due its uniquely large and clean training source. This model will be
publicly available on GitHub3 in order to facilitate evaluating this claim.

As it seems possible to construct both a summarization dataset and a word2vec
model comparable to that of Cheng and Lapata (2016), we conclude that
it is feasible to train a well-performing RNN summarizer for Blendle’s Dutch
articles.

3 https://github.com/blendle/research-summarization

https://github.com/blendle/research-summarization
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