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Abstract

The Agda programming language is most often used as a theorem
prover. Agda programs can also be compiled using the GHC back-
end, which translates an Agda program to a Haskell program that
can be compiled by the GHC compiler. Because the Agda program-
ming language has multiple features that are difficult to translate to
Haskell automatically, the GHC backend creates simple Haskell pro-
grams that may contain type errors. Coercions (using the Haskell
unsafeCoerce function) are then inserted to avoid these type errors.

This thesis changes the GHC backend so that it only inserts co-
ercions where necessary, by utilizing the type errors that GHC re-
ports and inserting coercions at those locations. To further lower
the number of needed coercions, the translation of Agda data types
is improved by retaining more type information in the generated
Haskell data types.
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1. Introduction

1.1. The Agda language

The Agda language is both an interactive system for developing constructive
proofs, and a programming language with dependent types. Agda is mostly
used as a theorem prover, where typechecking a program is more important
than running it.

The Agda compiler, Alonzo [1], can also generate executable programs. The
most used Agda backend, the GHC backend (formerly called MAlonzo), can be
used to generate Haskell code, which is then compiled by the GHC compiler.
However, the Agda language has some features that are hard to translate to
Haskell, such as dependent types. The GHC backend solves this by simplifying
the generated code, leaving out some parts of the Agda program such as type
information. The generated code has some problems, however.

1.2. Translating Agda to Haskell

An often-used data type in Agda is the natural number, which is recursively
defined as either zero, or the successor of a natural number:

Agdadata Nat : Set where
zero : Nat
succ : Nat → Nat

While this data type can be straightforwardly translated to Haskell (data Nat

= Zero | Succ Nat), not all Agda data types can be expressed in Haskell.
Instead, the backend creates very simple constructors, which do not assume
anything about its arguments by using parameters instead:

Haskelldata Nat a = Zero | Succ a

By keeping the data types very general, it becomes easier to translate more
advanced Agda features to Haskell. But while this data definition works, it
becomes tricky to translate functions, such as a function for addition:

Agda+ : Nat → Nat → Nat
zero + m = m
succ n + m = succ (n + m)

When translating this function to Haskell, its type should be Nat a → Nat a.
The problem lies in the recursion: the Succ constructor expects an expression of
type a, but n + m will have type Nat a. There is not enough type information
left to let the program pass the GHC typechecker.

To evade this limitation, the GHC backend opts to convince GHC that the
program is correct, by telling GHC that the types are equivalent:
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Haskell−− Function used by the backend
coerce :: a → b
coerce = unsafeCoerce

−− Generated function
plus n m

= case coerce n of
Zero → coerce m
Succ n’ → coerce Succ (coerce plus n’ m)

By inserting coercions before most Haskell expressions, Haskell’s type system is
essentially bypassed.

1.3. Contributions

The GHC backend of the Agda compiler generates well-typed Haskell programs
by inserting coercions. There are some problems with this approach, however.
Because coercions reduce the amount of type information, and thereby makes
it harder to optimize the program by inlining expressions, GHC may be unable
to optimize the program as much as it would be able to without the coercions.
The unnatural translation of data types also makes it harder to interface with
generated code from Haskell programs. To alleviate these problems, this thesis
makes the following contributions:

• In chapter 2, we give a brief overview of the Agda compiler, and how it
inserts coercions to generate Haskell programs.

• Rather than inserting coercions almost everywhere, we opt instead to in-
sert them only where necessary. To achieve this, GHC will be called as a
library, so that the backend can access the internal representation of the
Haskell code in GHC. Chapter 3 introduces error-based coercion insertion:
after the typechecking phase, coercions can be inserted at error locations,
after which the program can be typechecked again. This process can then
be repeated until there are just enough coercions for the program to be
well-typed.

• The data type translation can be improved, so that fewer coercions are
needed, without having to change the translation of functions and ex-
pressions (chapter 4). This is achieved by only translating parameters
in data definitions, and keep more type information in constructors. As
Haskell data definitions are essentially a subset of Agda’s data definitions
in terms of what they can express, data types that fall in that subset
should be translated directly to Haskell. Some data type features only
found in Agda, such as indices and levels, do not need to be present in
the Haskell data definition. Other features, such as type-level functions,
are very hard to translate to Haskell, and can be existentially quantified
inside data constructors.

• We compare the performance of these changes with the old backend (chap-
ter 5), to show how much of an impact the coercions have on both the
compile-time and run-time of generated Haskell programs.
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• Then, we give a brief outline of some related work on this topic (chapter
6), and conclude with some possible future work (chapter 7).
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2. The Agda compiler

When compiling an Agda program using the GHC backend, the compiler goes
through several stages before producing a Haskell program which GHC can
compile. In figure 2.1 we show a conceptual overview of how the compiler
translates an Agda program to an executable program.

Figure 2.1.: Structure of the Agda compiler

To compile an Agda program to an executable, the compiler goes through the
following stages:

• First, the Agda program is parsed and type-checked by the frontend of the
Agda compiler. The typechecker works on internal syntax, which contains
Agda terms with corresponding type information. This syntax is relatively
complicated, and generally too bulky to be used by a compiler backend.

• To simplify the code representation, the internal syntax terms are trans-
lated to the so-called treeless syntax. This representation simplifies the
syntax in several ways. Section 2.2 describes how this syntax is used.

• The GHC backend then takes the Treeless syntax, and transforms it to
Haskell code. Because the syntax of these two are quite similar, this
transformation is relatively straightforward. Section 2.3 gives a description
of the code generation.
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Agda
data Nat : Set where

zero : Nat

succ : Nat → Nat

_+_ : Nat → Nat → Nat

zero + m = m

succ n + m = succ (n + m)

data Vec (A : Set) : Nat → Set where

[] : Vec A zero

_::_ : {n : Nat} → A → Vec A n → Vec A (succ n)

vappend : {A : Set}{n m : Nat} → Vec A n → Vec A m → Vec A (n + m)

vappend [] ys = ys

vappend (x :: xs) ys = x :: vappend xs ys

Figure 2.2.: An example Agda program showing natural numbers with addition,
and vectors that can be combined

• While the previous step produces Haskell code, it did so without taking
the types into account. As such, the next step is to insert coercions in the
Haskell terms so that the program can pass the GHC typechecker. Section
2.4 describes how this is done.

• At this point, the compiler simply writes the Haskell files to disk, and calls
the Haskell compiler GHC to generate a binary.

2.1. Agda programs

The compilation steps used to compile an Agda program to a Haskell program
will be explained using a pair of running examples: addition of natural numbers,
and an append function for vectors, as shown in figure 2.2.

One of the most used data types in Agda is the natural number. However,
simple functions like additions are similar to those in other programming lan-
guages, like Haskell. Notably, natural numbers do not make use of depen-
dent types. Therefore, it should be possible to translate natural numbers, and
functions over them, without using coercions. When demonstrating dependent
types, a data type which is often used in Agda tutorials [10] is the Vec data
type for vectors. Vectors are similar to lists in Haskell, but differ in that they
are indexed by their length.

When writing a function which constructs such a data type, such as the
vappend function which appends two vectors, the length of the vector has to
be calculated in the type. In the type of vappend, this is done using the +

function. Such type-level functions are difficult to translate to Haskell, making
this a worthwhile example, even though it is more complex.
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data TTerm = TVar Int
| TPrim TPrim
| TDef QName
| TApp TTerm Args
| TLam TTerm
| TLit Literal
| TCon QName
| TLet TTerm TTerm
| TCase Int CaseType TTerm [TAlt]
| TErased
| ...

Figure 2.3.: Treeless syntax

Treeless syntax
Vec. + =
λ a b →
case a of

Vec.Nat.zero → b
Vec.Nat.succ c → Vec.Nat.succ (Vec. + c b)

Vec.vappend =
λ a b c d e →
case d of

Vec.Vec.[] → e
Vec.Vec. :: f g h →

Vec.Vec. :: (Vec. + f c) g (Vec.vappend f c h e)

Figure 2.4.: + and vappend functions in treeless syntax

2.2. Treeless Syntax

The next step of the compilation process is to transform the Agda program to
treeless syntax. One of the more important transformations done in this step is
simplifying Agda’s case trees, which are formed when with bindings are used, to
nested case statements. This step also removes the type information associated
in the terms, as most backends do not make use of the type information. Be-
cause this transformation eliminates these case trees, the syntax is called treeless
syntax.

An overview of the treeless syntax can be found in figure 2.3. The syntax
is similar to the λ-calculus, and uses de Bruijn indices to represent local vari-
ables (the innermost lambda binding is 1, the outer binding is 2, etc.). Let
bindings and case statements can be straightforwardly translated to Haskell.
The TErased construct is used as a dummy value for Agda terms which are not
needed in the run-time representation. Finally, TPrim values denote primitive
operations, such as integer addition and list concatenation.

This syntax is used by multiple backends of the Agda compiler, because it
is easier to work with than the internal syntax, the main difference being that
case expressions are simplified. Agda’s case trees, which are formed when with
bindings in Agda are used, are simplified to nested case statements, which can
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be directly translated to Haskell.

2.3. Haskell code generation

The GHC backend uses the treeless syntax terms to directly generate Haskell
code. The Haskell-src-exts Haskell library is used to directly create the terms,
instead of having to pretty-print Haskell code.

Simple recursive datatypes, like natural numbers, have a straightforward
translation. All constructor arguments are not specified by their type, but
instead passed as an argument. The goal of the generated code is not to pass
the typechecker, but to generate code that will have the correct result when run.
The types can be unnecessarily general, as the next step will insert coercions to
guarantee that typechecking succeeds.

As an example, take the following definition of natural number and addition:

Agda
data Nat : Set where
zero : Nat
succ : Nat → Nat

+ : Nat → Nat → Nat
zero + m = m
succ n + m = succ (n + m)

The backend simply generates the corresponding Haskell data type with the
correct number of parameters, as follows:

Haskell
data Nat a = Zero

| Succ a

plus n m
= case n of

Zero → m
Succ n’ → Succ (plus n’ m)

This particular example will not compile as is, because the application of the
Succ constructor triggers infinite types, which are not allowed in Haskell.

This translation also works for dependent types. An often used example is
the vector append function:

Agda
data Vec (A : Set) : Nat → Set where

[] : Vec A zero
:: : {n : Nat} → A → Vec A n → Vec A (succ n)

vappend : {A : Set}{n m : Nat} → Vec A n → Vec A m → Vec A (n + m)
vappend [] ys = ys
vappend (x :: xs) ys = x :: vappend xs ys

This will generate the following Haskell code:
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Haskell
data Vec n x xs = VNil

| VCons n x xs

vappend a n m v1 v2 = vappend’ m v1 v2
vappend’ m v1 v2 = case v1 of

VNil → VNil
VCons n x xs → VCons (plus n m) x (vappend’ m xs v2)

Note that both implicit and explicit arguments are parameters to the Vec data
type, there is no difference in the generated Haskell code. The vappend’ func-
tion is called with only the used arguments. The backend handles type-level
computations in Agda by storing them at the value level instead.

To make it pass the GHC typechecker, the next step will be to insert coercions.

2.4. Adding coercions

The generated Haskell code will give the same results as the original Agda
program, but is not guaranteed to pass the typechecker. Even simple functions
such as plus fail to compile. When calling GHC to compile the plus function,
the following type errors occur:

Plus.hs:7:26:

Occurs check: cannot construct the infinite type: a ~ Nat a

Relevant bindings include

m :: Nat a (bound at temp.hs:4:8)

plus :: Nat t -> Nat a -> Nat a (bound at Plus.hs:4:1)

In the first argument of ‘Succ’, namely ‘(plus n’ m)’

In the expression: Succ (plus n’ m)

Plus.hs:7:31:

Occurs check: cannot construct the infinite type: t ~ Nat t

Relevant bindings include

n’ :: t (bound at temp.hs:7:14)

n :: Nat t (bound at temp.hs:4:6)

plus :: Nat t -> Nat a -> Nat a (bound at Plus.hs:4:1)

In the first argument of ‘plus’, namely ‘n’’

In the first argument of ‘Succ’, namely ‘(plus n’ m)’

While this is partly caused by the simplistic data type translation (which will
be improved in chapter 4), it is hard to do the translation in such a way so that
no type errors will occur. While simpler functions like plus and vappend might
possibly be translated correctly, doing so for more complicated functions with
dependent types is a lot harder.

To circumvent the Haskell typechecking requirement, the backend makes use
of the unsafeCoerce function:

Haskell{−# INLINE [1] coerce #−}
coerce :: a → b
coerce = unsafeCoerce
{−# RULES ”coerce−id” forall (x :: a) . coerce x = x #−}
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This function tricks the typechecker into seeing a term of type a to be whatever
type is needed. There are some optimizations for inlining that bypass coercions,
but it essentially enables the backend to avoid having incorrect types in the
generated code. However, because it is hard to know where the code fails to
typecheck, the backend chooses to insert these coercions around every term:

Haskell
plus n m

= case coerce n of
Zero → coerce m
Succ n’ → coerce Succ (coerce plus n’ m)

In this example, the coercions ensure that the Succ constructor does not trigger
any type errors. The vappend function is handled similarly:

Haskell
vappend a n m v1 v2 = vappend’ m v1 v2
vappend’ m v1 v2 = case coerce v1 of

VNil → coerce VNil
VCons n x xs → coerce VCons (coerce plus n m) x (coerce vappend’ m xs v2)

By adding a coercion at nearly every AST node, GHC struggles to optimize
the program. Even though the backend tries to inline coercions by using an
optimized version of unsafeCoerce, GHC has to be very pessimistic because it
has very little type information.

2.5. Implementation

The Agda compiler transforms every Agda definition into a corresponding Haskell
definition:

Haskelldefinition :: Definition → TCM [HS.Decl]

The TCM (Type Checking Monad) contains information about the typecheck-
ing phase of the compiler. There are two important kinds of definitions to be
handled: data types, and functions.

2.5.1. Data types

The translation of data types is handled by the following function:

Haskellcondecl :: QName → TCM (Nat, HS.ConDecl)

Even though Agda data definitions can be very complicated, the translation to
Haskell types is quite simple. The condecl function adds the number of parame-
ters to the arity of the data type, which results in the number of arguments the
Haskell data type takes. As seen in the translation of vectors in the previous
section, the translation of constructors does not distinguish between implicit
and explicit parameters, and simply makes everything a parameter, instead of
specifying the type of its arguments. The data type itself calculates the max-
imum number of arguments each constructor takes, and uses that as the arity
of the data type.
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2.5.2. Functions

The translation of functions, or more importantly, terms, can be divided into 3
stages:

• Translating an internal syntax term to a treeless syntax term;

• creating a Haskell expression,

• and inserting coercions at function applications

These steps are handled respectively by the following three functions:

Haskell
toTreeless :: QName → TCM (Maybe TTerm)
term :: T.TTerm → CC HS.Exp
hsCast :: HS.Exp → HS.Exp

The toTreeless function simplifies the terms somewhat, so that they are easier to
handle by the backend. The term function generates Haskell expressions based
on the treeless syntax. Because they are similar, this is fairly straightforward.
Lastly, the hsCast function is then called to insert coercions around every node
in the AST, particularly applications. Some care is taken to avoid applying
coercions twice to the same expression.

The coercions are inserted everywhere, with the sole exception of literal inte-
gers. However, as there is no type information tracked at this stage, propagated
values are still coerced.
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3. Error-based coercion insertion

While adding coercions solves the problem of getting the generated Haskell
code past the typechecker, several problems emerge from the use of unsafeCo-
erce. First of all, the Haskell code that is created in this way is very ’unnatural’.
The way data types are defined, together with the large number of function ar-
guments, makes interoperability with existing Haskell code very difficult. Gen-
erating more ’natural’ Haskell code would make it far easier to interact with,
both from Haskell and using foreign-function interfaces.

Another big problem of coercions is the performance impact. For normal
Haskell programs, GHC can do optimizations based on the types of the program,
such as inlining. However, because of the large number of coercions, there is
less type information to work with to optimize the program. Also, the extra
function applications make it harder to inline function calls. An attempt is
made to alleviate this by letting the coerce function be inlinable and making an
optimization rule for it, but this does not remedy the core problem. Coercions
are still a severe performance hit for the compiled Agda program, even though
most coercions can be omitted. As such, the best way to avoid the performance
hit of coercions is to reduce the number of coercions added to the program.

The main problem with reducing the number of coercions is to figure out
which coercions are necessary, and which ones are not. While it is possible to
produce better code for some programs, for example those using just simple
types like natural numbers and lists, it is hard to know where the translation
will fail to typecheck. This is because the input language, Agda, is quite big
compared to the complexity of the generated Haskell code. Knowing where the
translation will fail essentially requires a full-fletched typechecker for Haskell to
be implemented.

It is also possible, however, to make use of the existing GHC infrastructure
to locate the parts of the program that fail to typecheck. Because GHC exposes
its core functionality as a Haskell library, it can be interacted with directly from
the Agda compiler, so that the GHC typechecker can do most of the work.
Calling GHC as a library has the benefit of avoiding duplicate work, so that the
generated Haskell program has to be parsed only once, while enabling access to
type error information so that the Haskell AST that GHC exposes through a
Haskell library can be modified directly to insert coercions.

3.1. Removing or inserting coercions

The main goal of this thesis is to reduce the number of coercions that are used
in the generated Haskell code. There are two possible directions in reducing the
number of coercions.

The first possibility is to start with all coercions that might be needed, so
that the program is guaranteed to compile, and then remove the ones that
are not needed. This keeps the required changes to the Agda compiler simple,
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Figure 3.1.: Structure of the Agda compiler using error-based coercion insertion

as those coercions are already inserted in the current compiler. As such, the
compiler only needs to be extended with a further pass over the generated
Haskell code, without needing to change the existing stages of the compiler.
The main downside of this approach, however, is that it is difficult to know
which coercions can be eliminated.

In the GHC backend, Agda data types are translated to simplified Haskell
data types, that leave out most type information because fully translating de-
pendent types to Haskell is quite difficult. However, by using simpler types,
programs that use these data types require more coercions so that there are no
type mismatches. To know exactly at which points coercions are needed and at
which points they are not, the Haskell types need to be examined, and a type-
checker is needed to know which coercions can be omitted. Therefore, while
removing coercions might keep the earlier stages of the compilation process the
same, it complicates the last stage to the point of requiring another typechecker.

The other direction, in which the number of coercions can be reduced, is to
start with no coercions and insert them when needed. This means that we start
with a Haskell program that might not compile, because there might be type
errors. Such a Haskell program can then be passed to the GHC compiler, which
can typecheck the program. Either the program compiles, in which case no
coercions are needed at all, or some type errors occur. GHC includes location
information when it reports the type errors, which means that coercions are
probably needed in those locations. This makes it possible to change the Haskell
code to include coercions at those locations, and repeat this process until all
type errors are fixed. However, when calling GHC from the command-line like
normal, there is one big downside to this approach: GHC needs to go over
the whole program each time it is called. When some type errors are fixed by
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inserting coercions, GHC needs to start over and parse and typecheck the whole
program again. Luckily, these downsides can be fixed by using the GHC Haskell
library, instead of calling GHC as a program.

3.2. GHC as a library

While GHC is typically invoked from the command-line, it is also possible to
call GHC directly from Haskell, using the exposed GHC library1. The Haskell
code generated by the backend currently undergoes the following steps:

1. Haskell code is generated

2. Coercions are added

3. Haskell source files are written to disk

4. GHC compiles the program

By delaying the coercions until they are needed to pass the typechecker, the
way coercions are added changes:

1. Haskell code is generated

2. Haskell source files are written to disk

3. GHC checks module dependencies and parses each module

4. GHC typechecks each module, and repeatedly inserts coercions at the
error locations until it passes the typechecker

Figure 3.2 outlines how the GHC library can be used to implement iterative
compilation based on type errors:

• The iterativeCompilation function uses the Ghc monad, which is es-
sentially a wrapper around IO with some added state. The load function
is used to attempt to compile the whole program. Any type errors are
ignored at this moment, as the important part here is the module graph,
which will be constructed even if the program contains type errors. After
sorting the modules based on their dependencies, and parsing each module
a single time, each module can be recompiled in order.

• The tryCompile function tries to typecheck the module. If there are any
type errors, a SourceError will be thrown as an Haskell exception, which
will be caught by the handleError function. If, instead, there are no more
type errors, then the module wil be loaded using the loadModule function,
which writes the compiled module to disk.

• The handleError function takes a parsed module and a thrown SourceEr-
ror. The SourceError can contain multiple type errors. Each type error
is then inspected for its location, and a coercion will be added in that
location using the insertCoercion function. When all current type errors
are fixed using coercions, the compileModule function is called again to
check for more type errors.

1https://wiki.haskell.org/GHC/As a library
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Haskell
iterativeCompilation :: IO ()
iterativeCompilation = runGhc (Just libdir) $ do

setTargets [”Main.hs”]
load LoadAllTargets
modGraph ← getModuleGraph
parsedMods ← mapM parseModule modGraph
mapM tryCompile parsedMods

tryCompile :: ParsedModule → Ghc ()
tryCompile p = do

t ← handleSourceError (handleError p) (typecheckModule p)
loadModule t
return ()

handleError :: ParsedModule → SourceError → Ghc ()
handleError p sourceError = do
let errors = srcErrMessages sourceError
p’ ← foldM insertCoercionsInModule p errors
tryCompile p’

insertCoercionsInModule :: ParsedModule → ErrMsg → ParsedModule

Figure 3.2.: Iterative compilation

• The insertCoercionsInModule function searches the current Haskell
module for expressions that match any of the error locations, and inserts a
coercion at that AST location. This is done using the ParsedModule type,
which holds an AST of the Haskell module, including location information.

3.3. Type errors

When the generated Haskell code is passed to the GHC typechecker, one or
more type errors can occur. We will illustrate how such type incorrect code is
produced in the following example. Because the GHC backend currently uses a
rather simplistic translation for data types, even simple types cause type errors.
For example, the Vec data type:

Agda
data Vec (A : Set) : Nat → Set where

[] : Vec A zero
:: : {n : Nat} → A → Vec A n → Vec A (succ n)

will generate the following Haskell data type:

Haskelldata Vec n x xs = VNil
| VCons n x xs

Note that all arguments to the constructor are taken as parameters to the data
type.

The translation of data types can be improved, as will be done in chapter
4, reducing the number of type errors that occur. However, some Agda data
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types, such as those containing type-level functions, cannot be straightforwardly
translated to Haskell types.

Even though the original Agda program has passed the typechecker, the Agda
types are not easily translated to Haskell, resulting in type errors when calling
the GHC typechecker on the generated Haskell code. But while the problem
lies in the data types, the type errors only occur when constructing values of
the data types. In other words, a type error manifests itself when a constructor
of a data type is used. One such type error that can occur is the infinite type
error, which occurs when a recursive data type is constructed. GHC does not
allow such infinite types:

Plus.hs:7:26:

Occurs check: cannot construct the infinite type: a ~ Nat a

Relevant bindings include

m :: Nat a (bound at temp.hs:4:8)

plus :: Nat t -> Nat a -> Nat a (bound at Plus.hs:4:1)

In the first argument of ‘Succ’, namely ‘(plus n’ m)’

In the expression: Succ (plus n’ m)

3.4. Haskell AST traversal

When typechecking a Haskell module, one or more type errors can occur. Each
type error holds location information in the form of a SrcSpan, which holds the
row and column numbers of the AST node at which the error occurs.

While it would be possible to change the Haskell source code directly, doing
so would require the source code to be parsed and loaded again, which would
slow down the compilation process. Instead, the Haskell AST, which is exposed
by the GHC library2, can be modified directly. Each AST node contains both
the Haskell expression itself, and the location of that expression in the Haskell
source code.

GHC can report multiple separate type errors in a single module. To achieve
good performance, the backend should aim to fix these errors in a single pass,
without going through the AST multiple times unless necessary.

Because AST nodes contain location information, it is possible to look only
at AST nodes that contain a type error. As such, the best approach is to walk
through the AST, and check each node against every type error.

Figure 3.3 shows how a coercion is inserted using location information. The
SrcSpan type holds information about the starting and ending locations of the
expression. When inserting a coercion, the location information of the outer
expression is not changed, even though adding a coercion would cause the row
number to change, for example. As a coerced expression should not cause
any more type errors, it is not a problem if the location information of nested
expressions are inconsistent.

Now that we have a list of error locations, the next step is to check each
expression in the current Haskell module. If the location information matches
of an expression matches the location information of any of the type errors, a
coercion is inserted around that expression.

2http://downloads.haskell.org/~ghc/7.10.3/docs/html/libraries/ghc-7.10.3/HsExpr.html
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Haskell−− GHC SrcLoc
data SrcSpan = ...
type Located e = L SrcSpan e

noLoc :: e → Located e

−− HsExpr
type LHsExpr = Located HsExpr

insertCoercion :: [SrcSpan] → LHsExpr → LHsExpr
insertCoercion errorLocs (L l e) = L l case e of

HsCase e’ matches | any errorInMatch matches → HsCase (coerce e’) matches
→ if l ‘elem‘ errorLocs then coerce e else e

Figure 3.3.: Inserting a coercion using location information

The insertCoercion function takes a list of error locations, and a Haskell
expression that potentially matches any of the error locations. If it does, then
a coercion is inserted. A special case is needed for case statements: a pattern
in a case statement may use a data constructor for its pattern matching, and
GHC reports the location of the whole case statement, instead of the part of
the pattern where the error occurs.

3.5. Inserting coercions

In the algorithm shown in the previous section, a way to insert a coercion based
on a type error is needed. The type error raised by GHC contains location
information, in the form of row and column numbers. It does not, sadly, point
to the AST node itself. Each node in the AST of the parsed Haskell code also
contains location information, so it is possible to traverse the AST until the
correct node is found. At that point, the expression can be changed into an
application of the coercion function.

haskell
coerce :: HsExpr → HsExpr
coerce (HsApp e1 e2) | e1 == HsVar ”coerce” → HsApp e1 (coerceApp e2)
coerce e = HsApp (HsVar ”coerce”) e

This only holds when the type error is fixable by surrounding it with a coercion,
though. For function application, the error location can be at the head of
the application, while the error actually occurs because of one of the applied
expressions.

While it is possible to find the argument that causes the expression, to avoid
inserting multiple coercions, this was not done for the sake of simplicity. Because
GHC does not report the correct source location on which to insert a coercion,
figuring this out would require implementing part of a typechecker, which this
thesis aimed to avoid. The alternative, to iteratively insert a coercion at each
argument until the correct argument is found, is deemed too expensive, as it
would require many extra iterations, especially because the code generator often
generates functions with many arguments.
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4. Haskell Data types

Even if coercions are only applied when necessary, there are still many places
in which coercions are needed because of the way the Haskell code is generated.
While dependent types are hard to translate without using coercions, simpler
datatypes which can be naturally defined in Haskell can be translated without
coercions by slightly modifying the Haskell code generation. In particular, the
translation of simple recursive data types can be improved to reduce the number
of coercions needed while only changing the definition of data types, without
having to change the way terms are translated.

Basic recursive data types, such as the natural numbers as defined in section
2.3, can be expressed in Haskell naturally without using any coercions. However,
because the backend translates data types in a general manner, the types in the
generated Haskell code are not accepted by GHC. Take the example of adding
two natural numbers:

Haskell
data Nat a = Zero

| Succ a

plus n m
= case n of

Zero → m
Succ n’ → Succ (plus n’ m)

Running GHC on these programs produces errors about infinite types, as
shown in figure 4.1. By adding coercions, replacing Succ (plus n’ m) by
coerce Succ (plus (coerce n’) m), it is possible to compile the program,
which is what the current GHC backend does. However, these coercions are not
needed at all if the Nat datatype is translated in the more natural way:

Plus.hs:25:22:

Occurs check: cannot construct the infinite type: a0 = Nat a0

In the return type of a call of ‘plus’

In the first argument of ‘Succ’, namely ‘(plus n’ m)’

In the expression: Succ (plus n’ m)

Plus.hs:25:27:

Occurs check: cannot construct the infinite type: t0 = Nat t0

In the first argument of ‘plus’, namely n’

In the first argument of ‘Succ’, namely ‘(plus n’ m)’

In the expression: Succ (plus n’ m)

Figure 4.1.: GHC does not like infinite types
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Haskelldata Nat = Zero
| Succ Nat

The types in the program will change slightly, but the plus function does not
have to change at all. Note, however, that this translation only works on simple
recursive data types without arguments. But because the terms do not have to
change, this translation can be mixed seamlessly with the current translation,
all the while letting GHC figure out which coercions are still needed.

4.1. A better generated data type

The translation of data types will be improved in several stages. Throughout
these stages, we will use a running example to show how each stage influences
the data type for a slightly more complicated data type:

Agdadata Vec {a} (A : Set a) : N → Set a where
[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (succ n)

This type is similar to the vector type seen in chapter 2: there is a constructor
for the empty vector, and a constructor to cons an element to a vector. As
before, a natural number is taken as an index, which is included in the type of
the vector. This version of the type, however, also takes a level as parameter
(the {a} parameter). This level parameter is then used as an argument of the
next parameter (Set a).

While this version of the vector type looks slightly different from the one
without the Set a, it should behave identically. However, for the sake of the
data type translation, this requires some extra work in the translation for it to
actually translate to the same Haskell data type.

The current translation looks like this:

Haskelldata Vec0 n x xs = VNil | VCons n x xs

To improve the generated data type, we will make the following three improve-
ments, which will be more extensively discussed in the following sections:

1. Type paramaters in Agda data type declarations are mapped to type pa-
rameters in the generated Haskell declarations, but in contrast to the
previous translation, these are the only parameters of the generated dec-
laration.

Haskelldata Vec1 a set a = VNil | forall n xs. VCons n set a xs

2. When a constructor argument is a known Haskell type, the type is filled
in, instead of passing it as a parameter.

Haskelldata Vec2 a set a = VNil | VCons Nat set a (Vec a set a)

3. Remove any parameters that correspond to Agda levels, and remove level
indirection when using them.

Haskelldata Vec3 a = VNil | VCons Nat a (Vec a)

While the original type Vec0 needs many coercions to compile a function that
uses vectors, the final type Vec3 can often be used without needing any coercions
at all. The following subsections will explain these steps in more detail.

22



4.1.1. Parameters

The Agda programming language, like most statically typed functional pro-
gramming languages, supports polymorphic data types. These data types take
one or more parameters, which are then used by their constructors. One simple
example of a polymorphic data type is the list type:

Agda
data List (A : Set) : Set where

nil : List A
cons : A → List A → List A

Here, the A parameter is used to be able to create a list of any type A.
When Agda is asked to compile this data type to Haskell, however, it will not

use parameters in the same way. In the current translation, instead of using
Agda parameters as Haskell parameters, all constructor arguments are handled
as if they were parameters. So in this case, the A and List A arguments of the
cons constructor are taken as parameters by the list datatype:

Haskelldata List a l = Nil | Cons a l

The main upside of this approach is that the translation is very simple: con-
structors do not define what type their arguments should be, and blindly take
arguments of any type that are passed as parameters.

Even though the Agda compiler knows that the second argument to cons
should be of type List A, it does not specify this in the constructor. This
makes the translation straightforward, as the compiler does not have to worry
about which arguments can be specified and which ones need to be passed as
a parameter. Also, because the GHC typechecker can infer these types for
us, constructors with ample type information are not needed to compile the
program, as type inference, combined with added coercions, means that the
exact argument types of constructors can be left for GHC to infer.

However, if the goal is to retain more type information at the Haskell level,
this causes some problems. Because all constructor arguments are passed as
parameters, filling in some arguments with their known type would mean that
the parameters would be ignored. If the goal is to fill in as much constructor
arguments as possible, then it makes sense to change the mechanism of passing
type information through parameters.

Some constructor arguments are difficult to fill in, especially when dependent
types are used. With dependent types, functions can be called inside a type,
and arbitrary calculations can be required just to know the exact type. While
type-level functions can be expressed in Haskell, this is not something that can
easily be done in general.

To make it easier for constructor arguments to be filled in, the argument
variables should be local to the constructors, instead of being passed as param-
eters. This can be done by quantifying over those variables, using existential
quantification:

Haskelldata List a = Nil | forall l. Cons a l

This change moves the l parameter to inside the Cons constructor. Now, the
Haskell definition matches the Agda definition in the number of parameters.
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This also makes it easier to change the type of constructor arguments, without
needing to change other data types which use lists in their constructors.

For the vector example, the number of parameters changes more drastically.
Recall the definition of Vec:

Agdadata Vec {a} (A : Set a) : N → Set a where
[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (succ n)

Using the old method, there are 3 parameters: the indexed natural number n,
the prepended element x, and the vector that is being consed to, xs:

Haskelldata Vec0 n x xs = VNil | VCons n x xs

Note that this ignores the {a} parameter. By following the parameters that are
used in the Agda definition, the resulting Haskell data type gets two parameters:

Haskelldata Vec1 a set a = VNil | forall n xs. VCons n set a xs

Note that the old translation did not include these level parameters, as it took
all constructor arguments as parameters, and ignored the parameters in the
Agda definition.

The first parameter is not used in the Haskell definition, and will be erased
in the third step. In this example, it is clear that the n has type N, and xs is a
vector. These will be filled in in the second step.

4.1.2. Known types

Now that the data types have the correct number of parameters, it is possible
to improve the types of the constructors. Often, the types in a constructor are
of a known type, which is always the same. Even vectors, which are indexed by
their length, have two fixed parameters, because indices are not translated to
parameters. So for the cons constructor, the recursive case can be filled in in
the constructor argument:

Haskelldata Vec1 a set a = VNil | forall n xs. VCons n set a xs
data Vec2 a set a = VNil | VCons Nat set a (Vec a set a)

Notice that the natural number is also trivial to fill in, as it is fixed and has
zero parameters.

For vectors, filling in the constructors means that no quantified variables are
left. However, in general, this is not always the case. For dependent types,
the exact type that is used in the constructor may depend on a type-level com-
putation, which is not translated to Haskell, and has to be left open with an
existentially quantified variable.

4.1.3. Levels

The last step is to remove level indirection. Levels are often used in Agda, but
are a feature that is important for the typechecker, but not for executing the
program. Because of this, level indirection can be safely removed, reducing the
number of parameters that many data types take.

In the case of vectors, this reduces the number of parameters to just one:
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Agda
data Vec {a} (A : Set a) : N → Set a where

[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (succ n)

data Vec (A : Set) : N → Set where
[] : Vec A zero
:: : ∀ {n} (x : A) (xs : Vec A n) → Vec A (succ n)

Figure 4.2.: Vector definitions with and without levels

Haskelldata Vec2 a set a = VNil | VCons Nat set a (Vec a set a)
data Vec3 a = VNil | VCons Nat a (Vec a)

This last data definition does not mention levels. In particular, this means that
the inclusion of levels make no difference for the runtime representation. As
such, both data types in figure 4.2 are equivalent.
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5. Benchmarks

To benchmark the changes made to the Agda compiler backend, it is useful to
distinguish several versions of the compiler:

• The old backend The old Agda backend, which inserts a coercion at
every location where it might be needed. This is the base case, upon
which we hope to improve.

• Stage 1: GHC-lib The first stage uses GHC as a library to generate
Haskell code, while mimicking the insertion of coercions at the same loca-
tions that the old backend did. While it might seem that this stage works
the same as the old backend, it is important to measure any changes in
performance that are caused by calling GHC as a library.

• Stage 2: Error-based coercion insertion The second stage uses the
error-based insertion of coercions to reduce the number of coercions in-
serted to only those that are needed, while disabling any changes to how
data types are translated to Haskell.

• Stage 3: Improved data types The final stage combines the error-
based coercion insertion with the improvements in data type translation,
and is meant to give the best results. However, as not all data types can
be fully translated, especially those containing dependent types, this may
not give the best results in all instances. As the changes in data types
add more type information, this can cause some extra coercions, as an
increase in type information also increases the number of locations where
a coercion might be needed.

Figure 5.1 shows a comparison of these different versions.

5.1. Metrics

The changes to the Agda compiler aim to improve the code generation, which
allows GHC to better optimize the generated code and produce a faster program.
However, there is a potential trade-off between compile-time and run-time: to
reduce the number of needed coercions, GHC needs to be run multiple times.

Compiler version How GHC is called Coercions inserted Better datatypes
Old backend Normal compilation All No
Stage 1 As a library All No
Stage 2 As a library Where needed No
Stage 3 As a library Where needed Yes

Figure 5.1.: Comparison of compiler versions
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Each eliminated coercion hopefully speeds up the generated program, but might
take extra time to compile because of repeated work in the GHC compiler.

To show the impact of the changes made to the backend, the following stat-
ictics are gathered:

• Number of coercions The central metric to measure is the number of
coercions. While other metrics are important in their direct impacts on
the compilation of Agda programs, it is important to know how many
coercions are needed, as it shows how close the Haskell types are to the
Agda types. The larger the number of coercions that can be eliminated,
the better the type information is so that GHC can compile and optimize
the program.

• Number of iterations Another important metric for error-based coer-
cion insertion is the number of iterations. Generally, Haskell expressions
that are independent of each other can be coerced in the same itera-
tion. This includes different functions that do not call each other, and let
bindings that can be calculated independently. However, when a Haskell
module has deeply nested code, each nested expression may cause another
type error, which is only detected when the expressions that are nested
within are correctly coerced and typed. Each nested layer thus requires
the backend to start a new iteration, which calls on GHC to typecheck
the module again.

• Runtime Error-based insertion of coercions is a trade-off in multiple ways.
By reducing the number of coercions used, the runtime of the compiled
program is hoped to be lower, as the improved type information allows for
more optimization opportunities.

• Compile time The reduced runtime comes at the cost of a potentially
higher compile time. While the final GHC compilation may be faster, as
fewer coercions means more complete type information to work with, this
comes at the cost of extra time taken to insert coercions at error locations,
and potentially multiple iterations for which typechecking must be done
again in GHC.

To measure these trade-offs, the new backend will be compared using the
compiler test suite and the Agda standard library.

5.2. Compiler test suite

To test whether the reduction in the number of coercions improves the per-
formance of the Agda compiler, a collection of executable Agda programs is
needed. By testing programs that can be executed, one can not only compare
the number of coercions and compile-time, but also the runtime of the programs
in relation to the number of coercions.

As Agda is not often used to create executable programs, but instead typi-
cally used as a theorem prover, it is difficult to find such a collection of Agda
programs. Luckily, to test the Agda compiler itself, there is a test suite of exe-
cutable Agda programs that can be used for benchmarking purposes1. The test

1https://github.com/agda/agda/tree/master/test/Compiler
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suite consists of 60 testcases, and each testcase is a simple Agda program that
can be compiled and executed.

For example, the Sort testcase generates the numbers 1200 down to 1, and
then sorts it using a simple insertion sort:

Agda
insert : Nat → List Nat → List Nat

insert x [] = x :: []

insert x (y :: xs) = if x < y then x :: y :: xs else (y :: insert x xs)

sort : List Nat → List Nat

sort [] = []

sort (x :: xs) = insert x (sort xs)

...

main : IO Unit

main = mapM! printNat (sort (downFrom 1200))

Notice that even though sorting numbers could be done by just using datatypes
for lists and numbers, the testcase uses the IO monad to map a print function
over the list of sorted numbers, which results in a slightly more complicated
generated program than might seem at first glance.

While this particular testcase specifically tests the runtime performance of
the generated Haskell code, some of the testcases test Agda language features
instead, and are more geared towards the earlier compiler phases such as type-
checking. However, such tests are still useful when comparing the number of
coercions, even when the runtime of the program might be very low.

5.3. Standard library

One downside of the Agda compiler test suite is that most of the testcases are
small programs. They generally test some self-contained piece of code, without
making use of the Agda standard library.

The Agda standard library itself2 is helpful for testing the compiler improve-
ments. While the standard library is not a single executable in itself, and as
such cannot be used to compare runtime performance, it is very helpful for
comparing the number of coercions and compile time, as the original backend
inserts more than 23000 coercions to compile the whole standard library.

Most of the standard library is already tested in one of the testcases, which
tries to cover a large part of the standard library by using several parts of it:

Agdamain = run (putStrLn ”Hello World!”) >>
DivMod.main >>
HelloWorld.main >>
HelloWorldPrim.main >>
ShowNat.main >>
TrustMe.main >>
Vec.main >>
dimensions.main

2https://github.com/agda/agda-stdlib
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However, just knowing that the whole of the standard library needs fewer co-
ercions is not very useful. A more fine-grained approach is important here.
Because the Agda standard library is already split into many Agda modules,
and each corresponding compiled Haskell module has coercions inserted in turn,
test results can be gathered for each individual module.

5.3.1. A more specific compile-time measurement

One additional upside to comparing by module is that some metrics can be more
closely compared. Specifically, when the compile time is measured for the other
test cases, it is measured for the whole compilation process, which includes the
backend steps to typecheck generated Haskell code and insert coercions, but
also the earlier compiler stages like the parsing and typechecking of the Agda
program code.

Because the standard library is measured for each module individually, it is
possible to limit the time measurement to only include the phase where GHC is
repeatedly called through the GHC library API, and coercions are inserted at
the reported error locations.

Note that this not just excludes the parsing and typechecking of the compiled
Agda program, but also the parsing of the generated Haskell code. The Haskell
code is always parsed only once, into a Haskell AST that is exposed by the GHC
library, which is subsequently modified by the error-based coercion insertion
until it compiles without type errors.

5.4. Results

Both the test suite and the standard library have been tested according to the
metrics defined in section 5.1. As these consist of 60 tests and 99 modules
respectively, we will not discuss each testcase or module separately. The full
results can be found in the appendix. Some representative testcases are selected
to show the general trends for each metric. After that, some problematic test
cases will be explained in more detail.

5.4.1. Number of coercions and iterations

On average, the testcases used 77.8 coercions for the first stage. This was
reduced to 2.2 coercions per testcase by using coercions only where needed, and
was reduced further to just 0.8 coercions by improving the types that were used.
Figure 5.2 also shows this reduction.

In fact, because many of the testcases are quite small in terms of code size, it
was found that most of the test cases did not need any coercions at all. Indeed,
47 of 60 testcases did not need any coercions at all, even without changing the
data types used. The following test cases are examples of these:

Test case #coe stage 1 #coe stage 2 #coe stage 3
Arith 66 0 0
CompileNumbers 105 0 0
Records 78 0 0
Sort 88 0 0
String 69 0 0
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Figure 5.2.: Average number of coercions per testcase/module

These tables show the number of coercions that are inserted in each stage.
If multiple iterations are required, the number of extra iterations is also shown
between braces. As the generated Haskell code does not need any coercions
in these testcases, the code is accepted on the first pass, and no additional
iterations are required.

Other testcases have their required number of coercions lowered, but not
eliminated entirely. The third stage, which uses improved data types, further
reduces the number of coercions in some cases, while in other cases it makes
no difference. In some rare cases, changing the data types even increases the
number of coercions required, as an increased amount of type information can
cause more type errors. However, the data type translation can be further
improved, leading to further reductions in the number of coercions left over.

Test case #coe stage 1 #coe stage 2 #coe stage 3
Coind 81 4 (1) 1 (1)
Issue2123 72 0 3 (1)
FlexibleInterpreter 92 24 (2) 24 (2)
Forcing 182 26 (4) 0
VaryingClauseArity 72 8 (2) 8 (2)
VecReverse 163 29 (4) 0

The number of iterations required for the second and third stages loosely follow
the number of coercions; testcases that require many coercions also use more
iterations to insert those coercions. Iterations are primarily required in deeply
nested code, and as such are not directly a result of the length of the code.

For the standard library, the same pattern arises, as stage 2 eliminates most
coercions. The total number of coercions needed was reduced from 23099 to
989. Improved types also help to further reduce the number of coercions in the
modules that still require many coercions. This reduced the total number of
coercions to just 584.
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Figure 5.3.: Average compile-time per testcase/module

Test case stage 1 stage 2 stage 3
Algebra 2747 0 77 (1)
Algebra.RingSolver.Lemmas 2083 228 0
Data.Colist 436 47 (3) 70 (3)
Relation.Binary 965 0 25 (1)
Relation.Binary.List.StrictLex 287 26 (3) 19 (2)

While the third stage actually re-introduces some coercions in some cases, fewer
coercions are re-introduced than eliminated.

5.4.2. Compile time

To measure compilation times, it is important to compare only the changes in
where coercions are used and how data types are changed, while taking into
account the changes that are caused because of the way GHC is called. As
such, the three stages are not only compared between themselves, but also to
the old GHC backend.

Figure 5.3 shows a comparison of compilation times of 13 of the 14 executable
testcases. The VecReverseIrr test is excluded, as the runtime of that test case
is severely increased from 37 milliseconds to 26 seconds. This problematic test
case will be discussed in section 5.5.1.

There is a clear increase in compilation time when GHC is called as a library,
as the compilation times of all three stages are higher than those of the old GHC
backend. This is possibly due to differences in compiler arguments or the dif-
ferent linking style. The way the current implementation uses the GHC library,
all modules are compiled at least twice. This is because all modules have to be
loaded before being able to insert coercions by modifying the syntax tree.
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Figure 5.4.: Average run-time per testcase

Test case Old stage 1 stage 2 stage 3
Arith 1.67s 2.78s 2.61s 2.8s
Coind 1.85s 2.75s 2.22s 2.53s
CompileCatchAll 1.71s 2.71s 2.93s 3.05s
Records 1.87s 2.82s 2.68s 2.92s
Sort 1.98s 3.02s 3.57s 3.25s
VecReverse 2.61s 3.69s 2.72s 3.55s
VecReverseIrr 1.93s 3.16s 2.95s 3.13s
As error-based coercion insertion requires each module to be typechecked

for each iteration, the second stage is slower than the first stage, in which all
coercions are inserted beforehand and as such no extra iterations are required.

The third stage varies in compile-time compared to the second stage. This is
because the difference in types may result in coercions in different locations, and
as such influences the time taken to compile the program. In some instances,
the third stage is faster than the first stage, because even though no extra
iterations are needed, the increased amount of type information can simplify
the typechecking process, speeding up the compilation.

5.4.3. Runtime

Because Agda is most often used as a theorem prover, there are relatively few
executable Agda programs. This is also the case for the compiler testsuite:
most testcases have no notable running time when executed, taking roughly
one millisecond to complete. As such, those testcases have been excluded from
the results. Still, 14 of the testcases are useful to compare the running time of
compiled Agda programs.
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Test case Old stage 1 stage 2 stage 3
PrimSeq 165ms 164ms 163ms 179ms
Sort 24ms 25ms 25ms 27ms
VecReverse 313ms 316ms 319ms 341ms
VecReverseIrr 38ms 37ms 26189ms 26174ms

As figure 5.4 shows, there is little difference in runtime in most cases. There
are small differences between the old backend and the first stage, which are
caused by slight differences in GHC compiler arguments. However, neither the
old backend nor the first stage is consistently faster than the other.

Removing most coercions, as is done in the second stage, has barely any
impact on the runtime. This has not resulted in the performance improvements
that were a goal of this thesis. Coercions are designed to have little impact
on the runtime, by using rewrite rules that attempt to erase coercions during
compilation. The improved types, however, cause most testcases to run slightly
slower.

5.5. Problematic test cases

5.5.1. VecReverseIrr

One very problematic test case is VecReverseIrr. While it takes only about
37 milliseconds to run in the first stage, with all coercions left intact, reducing
the number of coercions used increases the runtime to over 26 seconds, a 700x
increase.

This testcase first reverses a long vector and then sums its contents:

Agda
data Vec (A : Set) : Nat → Set where

[] : Vec A 0

_::_ : ∀ ..{n} → A → Vec A n → Vec A (suc n)

foldl : ∀ {A} {B : Nat → Set}

→ (∀ ..{n} → B n → A → B (suc n))

→ B 0 → ∀ ..{n} → Vec A n → B n

foldl {B = B} f z (x :: xs) = foldl {B = λ n → B (suc n)} f (f z x) xs

foldl f z [] = z

reverse : ∀ {A} ..{n} → Vec A n → Vec A n

reverse = foldl {B = Vec _} (λ xs x → x :: xs) []

downFrom : ∀ n → Vec Nat n

downFrom zero = []

downFrom (suc n) = n :: downFrom n

main : IO Unit

main = printNat (sum (reverse (downFrom 100000)))

The important part is the foldl function, which generates the following Haskell
code if all coercions (stage 1) are inserted:
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Haskell
foldl a b f b0 n vec = foldl f b0 vec
foldl’ f b0 vec = case coe vec of

VNil → coe b0
VCons x xs
→ coe foldl’ (λ → coe f erased) (coe f erased b0 x) xs

While the first stage inserts 5 coercions in this example, the second stage elim-
inates all of those.

The last coercion in this code fragment is the cause of this big increase in
runtime. The call (f z x), which recurses over the vector, is translated to
(coe f erased b0 x). The program still compiles correctly when the coercion is
removed, but the resulting program behaves differently, as the recursive call is
used directly instead of lazily. Because the laziness is removed in this case, the
direction of the fold operation is changed, causing it to use much more memory
and runtime.

As Haskell programs are evaluated lazily, whereas Agda programs are evalu-
ated in normal order, it is not straightforward to decide on laziness in the gen-
erated Haskell code. There are some solutions to automatically decide where to
use laziness, such as the AUTOBAHN system [12], which uses genetic algorithms to
infer strictness annotations. Other approaches, such as using profiling to decide
on the locations in which to be lazy [4], may also be useful to improve runtime
performance.

5.5.2. BooleanAlgebra.Expression

The BooleanAlgebra.Expression3 module in the Agda standard library is
problematic in stage 2, as it takes 56 extra iterations, just to insert 99 coer-
cions. The culprit is the lift function, which creates a very large, nested Agda
record, as shown in figure 5.5. Each ... in the figure denotes another solve
expression, like the one shown for ∨-comm.

While such a record can be compiled perfectly fine in Agda, it becomes prob-
lematic when compiled to Haskell. The Agda compiler translated these records
into one big expression, with large nested function applications. If this expres-
sion compiles without coercions, as is the case in the third stage, then it is
compiled efficiently.

However, because this expression needs coercions as to type-check correctly in
the second stage, GHC only finds the outermost type error in any one iteration.
As a result, after 4 iterations of inserting multiple coercions at once, the backend
then spends 52 more iterations, inserting only a single coercion each time.

To avoid this problem, there are two solutions. Either the code generation
has to be changed to avoid translating records to nested expressions, or the
programmer should avoid nesting large expressions in records, opting to move
those expressions to their own top-level functions.

3http://www.cse.chalmers.se/~nad/listings/lib/Algebra.Props.BooleanAlgebra.Expression.html
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Agda
isBooleanAlgebra = record

{ isDistributiveLattice = record

{ isLattice = record

{ isEquivalence = PW.isEquivalence isEquivalence

; ∨−comm = λ _ _ → ext λ i →
solve i 2 (λ x y → x or y , y or x)

(∨−comm _ _) _ _

; ∨−assoc = ...

; ∨−cong = ...

; ∧−comm = ...

; ∧−assoc = ...

; ∧−cong = ...

; absorptive = ...

}

; ∨−∧−distribr = ...

}

; ∨−complementr = ...

; ∧−complementr = ...

; ¬−cong = ...

}

Figure 5.5.: Part of the lift function
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6. Related work

6.1. Searching for Type-Error Messages

The error-based coercion insertion described in chapter 3 is not a novel approach.
In the SEMINAL system [7], error messages in the Caml language are improved
by searching for similar expressions that are type-correct. This is done by
treating the compiler as a black box, and searching for some interesting errors.
The system then tries to replace some expressions, in the hope of producing
well-typed modifications.

The approach taken by the SEMINAL system is very similar to our approach,
in that it takes an ill-typed input AST, modifies some locations and then uses
a typechecker to see if the changed program is well-typed. Some more sophis-
ticated search methods are also tried [8], in particular some methods to handle
multiple errors in a better way by selecting the most important ones. These
extensions could also be applied to our error-based coercion insertion.

6.2. Partial types

The idea of assigning types to a partially typed language is not new. Soft
typing [3] is a generalization of static and dynamic type systems, using static
type information to check well-typed parts of the program, which also helps
with generating more efficient code. In dynamic parts of the code, runtime
checks are injected to check for type errors at runtime. Coercions resemble
these checks, and while they are inserted for a different reason, both coercions
and run-time checks are similar in that it is necessary to limit their number as
much as possible.

While soft typing is a general framework, this idea has also been applied to
functional languages in the form of Gradual typing [11]. The λ-calculus can be
extended to allow optional type annotations, creating type-safe programs in the
case of fully-annotated terms. Similar to the types shown in section 2.4, each
term is assigned a type which may be partially unknown. However, similar to
the soft types mentioned earlier, the source language may contain errors which
have to be caught at run-time, while the GHC backend has to add coercions in
those places.

6.3. Dependent Types in Haskell

For simple, Haskell-like types, the coercion can just be left out. But for more
complicated Agda constructs, for example dependent types and type-level func-
tions, Haskell has no direct alternative. As such, a translation is needed to
describe or embed these constructs. However, as opposed to the recursive data
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types shown before, translating dependent types to Haskell requires a different
translation of both types and terms.

Section 6.3.1 will introduce type-level functions, which allow functions to be
lifted to the type level. To allow terms to access type-level information in
Haskell, singletons are needed, which are described in section 6.3.2.

6.3.1. Type-level computations

The translation of Agda terms to Haskell terms loses all type-level computations,
because they are not needed during runtime execution, only for compile-time
type safety. However, in the effort of restoring types in the generated Haskell
code, it might be beneficial to encode Agda’s type-level computations in Haskell
types. An example of such a computation occurs when defining the vector
append function vappend, as defined before in figure 2.2. The result type of
this function sums the lengths of the two input vectors. However, the current
translation omits the calculation altogether.

To do this calculation at the type level, the plus function has to be lifted to
the type level. This can be done in Haskell using type families. Given a normal
function, a corresponding type family can be defined which is usable at the type
level:

Haskell
plus :: Nat → Nat → Nat
plus Zero m = m
plus (Succ n) m = Succ (plus n m)

type family Plus (n :: Nat) (m :: Nat) :: Nat
type instance Plus ’Zero m = m
type instance Plus (’Succ n) m = ’Succ (Plus n m)

When used together with singletons, many Agda terms can be translated to
Haskell terms. One such example is the vappend function, which adds the
length of two lists at the type level:

Haskell
vappend :: Vec a n → Vec a m → Vec a (Plus n m)
vappend VNil v2 = v2
vappend (VCons h t) v2 = VCons h (vappend t v2)

6.3.2. Singletons

In Agda, dependent types can use values at the type level. This feature is
missing from Haskell, as it does not support dependent types. They can be
simulated, though, with data type promotion. Take for example the natural
numbers datatype:

Haskell
data Nat = Zero | Succ Nat

The (DataKinds) extension allows for the promotion of constructors to types,
and promotes types to kinds. Which means that for this datatype, Nat can be
used as a kind, and ’Zero denotes the type corresponding to the constructor
Zero.
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However, by promoting values to types, we lose the value-level information.
To use values at both the value and type level, singleton types are used, types
with only one non-⊥ value [5]. Because there is only one way to construct a
value of a singleton type, both the term and the type hold the same information.
It is similar to a phantom type, but with the possibility of pattern matching on
it at the value level.

An example is the singleton type for the Nat datatype defined earlier:

Haskelldata SNat :: Nat → ∗ where
SZero :: SNat ’Zero
SSucc :: ∀(n :: Nat). SNat n → SNat (’Succ n)

This allows for type-safe functions on dependent types, for example vreplicate:

Haskelldata Vec :: ∗ → Nat → ∗ where
VNil :: Vec a ’Zero
VCons :: a → Vec a n → Vec a (’Succ n)

vreplicate :: SNat n → a → Vec a n
vreplicate SZero = VNil
vreplicate (SSucc m) a = VCons a (vreplicate m a)

The singleton SNat n is used to construct the type Vec a n, but also used to
pattern-match on.

6.4. Other compilers and backends

6.4.1. The Epic backend

The Agda compiler also has a backend which translates Agda to Epic. The Epic
programming language [6] is similar to Haskell, but differs in that it is strict,
and that it is especially created to be used as a backend for dependently typed
languages. Type annotations can be used in Epic programs, but they are not
checked or used while compiling, easing the translation of dependent types.

Epic code is compiled down to the C programming language, and has mul-
tiple optimisations in the translation process. Because the target language is
not a functional language, several optimisations are necessary to ensure good
performance. These optimisations include erasure of unneeded arguments, sim-
plification of constructors when there is only a single way to return a value, and
an efficient implementation of primitive data like natural numbers. The backend
does not use such optimisations internally, but relies on GHC to perform them.

6.4.2. Idris

Idris [2] is a different dependently typed programming language, which is in-
fluenced by Haskell. It is different from Agda, however, in that it is primarily
a general-purpose compiled language, whereas Agda is more geared towards
theorem-proving than general-purpose features like I/O.

An important feature of Idris is its phase distinction. While some program-
ming languages separate types from terms, and erase those types before ex-
ecution, Idris also separates compile time and run time terms. Convention-
ally, types are automatically compile time terms. With dependent types in the
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mix, however, this separation is harder, because terms might be used in types.
Therefore, the Idris compiler tries to prove that some values are unused during
run-time, so that it can erase those terms.

6.4.3. Coq

The Coq proof assistant [9] features an extraction mechanism which is able to
turn Coq proofs and functions into runnable programs. There is a distinction
between Coq programs and proofs. Coq programs are declared in Set, and are
mostly simply typed. Proofs, on the other hand, are declared in the logical
Prop, and can be extracted so that the program can be run.

Coq can generate ML programs during extraction, but also allows for other
languages like Scheme and Haskell. Because the generated code might not
type-check, a type-checker checks the generated code, and adds coercions at the
points where the code does not type-check.
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7. Conclusion

7.1. Summary

By changing the GHC backend of the Agda compiler, the goal of this thesis
is to reduce the number of coercions used in the generated Haskell program.
Because most coercions that were initially placed are not needed to compile the
generated programs, GHC can be used to find locations where coercions are
really needed. This results in a large reduction in the number of coercions used.

Even though the lower number of coercions does not lead to improvements in
compile- or run-time, improvements in the generated Haskell code by the Agda
compiler make it easier to interface with compiled Agda programs from Haskell.

7.2. Future work

7.2.1. Better Haskell code generation

By limiting the number of locations in Haskell expressions that coercions are
inserted, the generated Haskell code is improved, in the way that it more closely
follows the Agda code of the to be compiled Agda program. This thesis has made
a deliberate attempt to avoid modifying the way that the code generation works,
and instead opted to work with what is currently in place. The changes to data
types are similar, in that they only change data type definitions, while keeping
the structure of Haskell expressions the same.

While this approach helps make these changes easier to implement without
adding more complexity, it also has a major shortcoming. As the code generation
of Agda’s GHC compiler backend has been originally implemented with the idea
that coercions are used everywhere, the generated code works well under the
assumption that every expression is coerced. However, when removing some of
those coercions, that assumption falls away, and some problems arise.

As the approach of error-based coercion insertion uses type error locations
to insert coercions, deeply nested expressions are troublesome as each type er-
ror only shows itself when the expressions nested below are well-typed. This
problem can be alleviated by changing the Haskell code generation, so that
nested expressions are instead translated using let-bindings, or creating sepa-
rate functions for deeply nested expressions, or some other mechanism to make
the generated Haskell program easier to compile.

Another aspect that can be improved by changing Haskell code generation
is the translation of dependent types. While most coercions are eliminated
using error-based coercion insertion, there are still instances where coercions
are needed. Many of these are needed when dependent types are used, as they
are not directly translatable to Haskell. By extending the translation to handle
dependent types better, many if not all coercions that are as of yet needed can
be eliminated.
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7.2.2. Haskell interoperability

As the Agda compiler can compile to a Haskell program, it is possible to use
functions defined in Agda from within a Haskell program. The Haskell code
that the compiler outputs using the GHC backend code generation, however,
is difficult to work with. The code examples so far in this thesis have had
their variable names changed, and several noisy parts left out, as to improve
readability. To demonstrate this, see for example the foldr1 function from the
standard library:

Haskell
name286 = ”Data.Vec.foldr\8321”
d286 v0 v1 v2 v3 v4 = du286 v3 v4
du286 v0 v1

= case v1 of
C22 v2 v3 v4
→ case v4 of

C14 → v3
C22 v5 v6 v7 → v0 v3 (du286 v0 v4)
→ MAlonzo.RTE.mazUnreachableError

→ MAlonzo.RTE.mazUnreachableError

There are several problems with this generated Haskell code:

• The function (d286) takes 5 arguments (v0 to v4), but immediately drops
3 of them, and calls another function which just takes the required ar-
guments (du286). This clutters the types of the functions, and makes it
harder to call them from a non-generated Haskell program. These unused
arguments could be removed during the code generation, instead opting
to just use the arguments that are really used.

• The function name (d286) is cryptic, and does not resemble the origi-
nal Agda function name (foldr1). The name is given as a separate string
variable, and uses the unicode escape sequence for any non-ascii symbols
(which are used very often in most Agda code). While Haskell does not
support arbitrary unicode symbols in function names, having the gen-
erated names be closer to the original Agda function names would ease
interoperability from Haskell programs. While the programmer can use
Pragma annotations to change the names of compiled functions, gener-
ating better default names would ease the use of Agda functions from
Haskell.

• Similarly, the constructor names for vectors in this example are C14 and
C22. It would be better to name them something closer to their original
Agda definition, like VNil and VCons.

• Lastly, the code generation inserts statements to denote parts of the pro-
gram that should be unreachable. While this could be useful to debug a
compiler error, having these statements inserted during code generation
just increases code length, without doing anything useful. In this example,
the checks are entirely superfluous, as vectors have only two constructors,
meaning that these statements are unreachable.
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7.2.3. GHC as a library

By using GHC as a library instead of a separate program, we can gain access
to the internal GHC representation of a parsed Haskell program. This allows
coercions to be inserted without requiring a restart of the GHC compilation
process. However, in the current implementation of the error-based coercion
insertion, each Haskell file is still compiled at least twice, which leads to an
increase in compilation time.

It is unclear whether this is a defect of the usage of the GHC library, or
that it is a shortcoming of the GHC API. As the GHC library exposes GHC
internals, and is poorly documented, it is difficult to work with. Stil, improving
the interface with GHC could remove the increase in compilation time, bringing
the compile-times of the three stages in line with the original backend.
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A. Full results

A.1. Number of coercions
Test case stage 1 stage 2 stage 3

Arith 66 0 0

BuiltinInt 89 0 0

CaseOnCase 90 0 0

CatchAllVarArity 94 0 0

Coind 81 4 (1) 1 (1)

CompareNat 90 0 0

CompileAsPattern 82 0 0

CompileCatchAll 75 0 0

CompileNumbers 105 0 0

CompiledRecord 71 0 0

CompilingCoinduction 40 0 0

CompilingQNamePats 86 0 0

CopatternRecord 80 0 0

CopatternStreamSized 91 6 (1) 2 (2)

EraseRefl 72 0 0

FlexibleInterpreter 92 24 (2) 24 (2)

Floats 101 0 0

FloatsUHCFails 79 0 0

Forcing 182 26 (4) 0

Forcing2 79 0 0

Forcing3 84 0 0

Forcing4 120 8 (2) 0

HelloWorld 59 0 0

IdentitySmashing 67 2 (1) 0

InlineRecursive 64 0 0

Irrelevant 62 0 0

Issue1441 62 0 0

Issue1486 60 0 0

Issue1496 58 0 0

Issue1624 72 0 0

Issue1632 70 0 1 (1)

Issue1664 86 0 0

Issue1855 61 0 0

Issue2123 72 0 3 (1)

Issue2218 86 0 0

Issue2222 61 0 0

Issue326 60 0 0

Issue561 61 0 0

Issue727 65 4 (2) 4 (2)

Issue728 68 0 0

Literals 64 0 0

ModuleArgs 60 0 0

ModuleReexport 71 0 0

Mutual 91 5 (2) 0

NoRecordConstructor 77 0 0

PrimSeq 75 0 0

PrintBool 82 5 (1) 5 (1)

QNameOrder 65 0 0

Records 78 0 0

Sort 88 0 0

StaticPatternLambda 73 0 0

String 69 0 0

StringPattern 64 0 0

TrailingImplicits 64 0 0

UniversePolymorphicIO 10 0 0

UnusedArguments 78 0 0

VaryingClauseArity 72 8 (2) 8 (2)

VecReverse 163 29 (4) 0

VecReverseIrr 80 4 (1) 0

WfRec 103 5 (1) 0
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A.2. Coercions in standard library
Test case stage 1 stage 2 stage 3

Agda.Builtin.Bool 1 0 0

Agda.Builtin.Char 1 0 0

Agda.Builtin.Coinduction 1 0 0

Agda.Builtin.IO 1 0 0

Agda.Builtin.List 1 0 0

Agda.Builtin.Nat 1 0 0

Agda.Builtin.String 1 0 0

Agda.Primitive 1 0 0

Algebra 2747 0 77 (1)

Algebra.Operations 827 0 0

Algebra.Properties.AbelianGroup 161 0 0

Algebra.Properties.BooleanAlgebra 1578 0 0

Algebra.Properties.BooleanAlgebra.Expression 805 99 (56) 22 (1)

Algebra.Properties.DistributiveLattice 182 0 0

Algebra.Properties.Group 185 0 0

Algebra.Properties.Lattice 334 0 0

Algebra.Properties.Ring 450 0 0

Algebra.RingSolver 3058 0 (4) 8 (2)

Algebra.RingSolver.AlmostCommutativeRing 764 0 15 (1)

Algebra.RingSolver.Lemmas 2083 228 0

Algebra.Structures 1337 0 31 (1)

AllStdLib 12 1 (1) 0

Category.Applicative.Indexed 54 0 3 (1)

Category.Functor 5 0 1 (1)

Category.Monad.Identity 3 0 0

Category.Monad.Indexed 162 1 (1) 4 (1)

Data.Bool 2 0 0

Data.Bool.Base 31 0 0

Data.Bool.Properties 639 144 (1) 0

Data.BoundedVec.Inefficient 20 4 (1) 0

Data.Char 10 0 0

Data.Char.Base 1 0 0

Data.Colist 436 47 (3) 70 (3)

Data.Conat 47 11 (2) 23 (2)

Data.Digit 98 5 (1) 10 (1)

Data.Empty 1 0 0

Data.Fin 170 40 (3) 2 (1)

Data.Fin.Dec 154 23 (2) 0

Data.Fin.Subset 30 4 (2) 0

Data.Fin.Subset.Properties 165 21 (3) 1 (1)

Data.Integer.Base 67 0 0

Data.List.Any 122 11 (1) 14 (2)

Data.List.Base 207 2 (1) 3 (1)

Data.List.NonEmpty 164 16 (3) 17 (3)

Data.Maybe.Base 30 0 0

Data.Nat 72 6 (1) 0

Data.Nat.Base 84 1 (1) 0

Data.Nat.DivMod 52 0 0

Data.Nat.Properties 676 28 (2) 0

Data.Nat.Show 9 2 (1) 2 (1)

Data.Plus 34 11 (1) 6 (2)

Data.Product 35 0 1 (1)

Data.Sign 19 0 0

Data.String 15 0 0

Data.String.Base 8 0 0

Data.Sum 16 0 0

Data.Vec 214 38 (3) 10 (1)

Data.Vec.Equality 58 12 (2) 0

Data.Vec.NZ45Zary 92 25 (2) 14 (2)

Data.Vec.Properties 194 45 (3) 11 (2)

DivMod 20 2 (1) 0

Foreign.Haskell 1 0 0

Function 20 0 0

Function.Bijection 110 0 3 (1)

Function.Equality 76 0 2 (1)

Function.Equivalence 44 0 2 (1)

Function.Injection 19 0 2 (1)

Function.Inverse 186 0 5 (1)

Function.LeftInverse 172 0 3 (1)

Function.Related 317 62 (5) 53 (1)

Function.Surjection 82 0 4 (1)

HelloWorld 4 1 (1) 0

HelloWorldPrim 4 0 0

Induction 5 0 0

Induction.WellFounded 8 0 0

IO 99 8 (2) 8 (2)

IO.Primitive 1 0 0

Level 4 0 0

Qdimensions 246 5 (1) 5 (1)

Relation.Binary 965 0 25 (1)

Relation.Binary.Consequences 59 0 1 (1)

Relation.Binary.Consequences.Core 6 0 4

Relation.Binary.Core 20 0 4 (1)

Relation.Binary.Indexed.Core 22 0 4 (1)

Relation.Binary.Lattice 933 0 26 (1)

Relation.Binary.List.Pointwise 143 21 (2) 48 (2)

Relation.Binary.List.StrictLex 287 26 (3) 19 (2)

Relation.Binary.On 121 0 0

Relation.Binary.PreorderReasoning 23 0 1 (1)

Relation.Binary.PropositionalEquality 31 0 0

Relation.Binary.PropositionalEquality.Core 4 0 0

Relation.Binary.Reflection 56 4 (1) 4 (1)

Relation.Binary.Vec.Pointwise 147 23 (2) 4 (1)

Relation.Nullary 1 0 0

Relation.Nullary.Decidable 34 0 0

Relation.Nullary.Negation 33 0 0

ShowNat 4 1 (1) 0

TrustMe 11 1 (1) 0

Vec 54 10 (1) 12 (2)
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A.3. Compile times
Test case Old stage 1 stage 2 stage 3

Arith 1.67s 2.78s 2.61s 2.8s

BuiltinInt 1.83s 2.81s 2.9s 2.76s

CaseOnCase 1.77s 2.91s 2.83s 2.74s

CatchAllVarArity 1.68s 2.88s 2.71s 2.73s

Coind 1.85s 2.75s 2.22s 2.53s

CompareNat 1.96s 3s 2.93s 3.08s

CompileAsPattern 1.74s 2.99s 2.91s 3.14s

CompileCatchAll 1.71s 2.71s 2.93s 3.05s

CompileNumbers 1.88s 3.08s 3.01s 3.71s

CompiledRecord 1.69s 2.92s 2.7s 4.43s

CompilingCoinduction 1.29s 1.96s 1.94s 2.1s

CompilingQNamePats 2.21s 3.43s 3.46s 4.96s

CopatternRecord 1.67s 2.76s 2.95s 3.88s

CopatternStreamSized 1.95s 3.24s 2.71s 2.97s

EraseRefl 1.81s 2.89s 3.04s 4.17s

FlexibleInterpreter 1.87s 3.23s 2.48s 2.99s

Floats 2.2s 3.76s 3.42s 4.29s

FloatsUHCFails 1.9s 3.16s 2.85s 4.08s

Forcing 2.07s 3.5s 2.24s 3.29s

Forcing2s 1.77s 2.84s 2.91s 2.8s

Forcing3s 1.76s 3.02s 2.93s 2.95s

Forcing4s 1.95s 3.45s 2.31s 3.91s

HelloWorld 1.67s 2.83s 2.8s 2.87s

IdentitySmashing 1.72s 3.29s 2.29s 3.15s

InlineRecursive 1.78s 2.76s 2.8s 2.93s

Irrelevant 1.65s 2.74s 2.75s 2.96s

Issue1441s 1.82s 2.8s 2.67s 2.81s

Issue1486s 1.77s 3.16s 2.96s 3.08s

Issue1496s 1.65s 2.79s 2.89s 3.08s

Issue1624s 1.69s 2.99s 2.9s 3.16s

Issue1632s 1.66s 3.02s 2.81s 2.98s

Issue1664s 2.26s 3.88s 3.93s 4.32s

Issue1855s 1.69s 2.91s 2.8s 3.06s

Issue2123s 1.75s 2.94s 2.74s 2.53s

Issue2218s 2.19s 4.24s 3.64s 3.88s

Issue2222s 1.69s 3.2s 2.61s 2.69s

Issue326s 1.7s 3.49s 2.78s 2.92s

Issue561s 1.82s 3.15s 2.8s 2.87s

Issue727s 1.83s 2.95s 2.51s 2.5s

Issue728s 1.63s 2.86s 2.45s 2.67s

Literals 1.64s 3.39s 2.63s 2.85s

ModuleArgs 1.72s 3.35s 2.8s 2.96s

ModuleReexport 1.74s 3s 2.78s 3.35s

Mutual 1.68s 3.16s 2.82s 4.32s

NoRecordConstructor 1.71s 3.11s 2.74s 3.48s

PrimSeq 2.04s 3.16s 2.97s 3.18s

PrintBool 1.78s 2.95s 2.3s 2.35s

QNameOrder 2.23s 3.6s 3.75s 3.82s

Records 1.87s 2.82s 2.68s 2.92s

Sort 1.98s 3.02s 3.57s 3.25s

StaticPatternLambda 1.77s 3.18s 4.15s 3.38s

String 1.93s 2.96s 3.3s 3.25s

StringPattern 1.86s 2.83s 3.5s 3.22s

TrailingImplicits 1.7s 2.72s 3.15s 3s

UniversePolymorphicIO 1.01s 1.58s 1.86s 1.82s

UnusedArguments 1.77s 3.24s 3.06s 3.32s

VaryingClauseArity 1.68s 2.95s 3.3s 2.4s

VecReverse 2.61s 3.69s 2.72s 3.55s

VecReverseIrr 1.93s 3.16s 2.95s 3.13s

WfRec 1.78s 3.23s 2.39s 2.98s
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A.4. Standard library compile times
Test case stage 1 stage 2 stage 3

Agda.Builtin.Bool 10.8ms 10.4ms 10.8ms

Agda.Builtin.Char 26ms 26.2ms 26.6ms

Agda.Builtin.Coinduction 10.3ms 9.8ms 10.4ms

Agda.Builtin.IO 8.8ms 8.5ms 8.5ms

Agda.Builtin.List 13ms 12.4ms 12.9ms

Agda.Builtin.Nat 23ms 23.2ms 24.2ms

Agda.Builtin.String 52.7ms 51.6ms 51.7ms

Agda.Primitive 11.4ms 11.3ms 11.7ms

Algebra 3155.8ms 4647.3ms 3726.5ms

Algebra.Operations 803.7ms 917.9ms 620.5ms

Algebra.Properties.AbelianGroup 199.3ms 255.3ms 201.3ms

Algebra.Properties.BooleanAlgebra 3846.7ms 5269.4ms 3451.4ms

Algebra.Properties.BooleanAlgebra.Expression 756.8ms 11015.1ms 1489.6ms

Algebra.Properties.DistributiveLattice 299.1ms 327.4ms 257.4ms

Algebra.Properties.Group 220.9ms 266.2ms 218.9ms

Algebra.Properties.Lattice 406.8ms 452.3ms 418.7ms

Algebra.Properties.Ring 1484.2ms 680.1ms 363.7ms

Algebra.RingSolver 6149.3ms 23603.3ms 5560.5ms

Algebra.RingSolver.AlmostCommutativeRing 859.7ms 1244.9ms 1640.6ms

Algebra.RingSolver.Lemmas 1999.6ms 3888.1ms 1039.7ms

Algebra.Structures 2772.3ms 2618.4ms 1840.5ms

AllStdLib 26.6ms 32.5ms 28ms

Category.Applicative.Indexed 309ms 182.4ms 300.4ms

Category.Functor 15.7ms 15.4ms 20.4ms

Category.Monad.Identity 12.1ms 12.7ms 11.1ms

Category.Monad.Indexed 678.7ms 451.2ms 423.9ms

Data.Bool 8.3ms 8.5ms 7.8ms

Data.Bool.Base 27.9ms 26.1ms 25.1ms

Data.Bool.Properties 595.7ms 1128.8ms 558.3ms

Data.BoundedVec.Inefficient 26ms 29.5ms 24.6ms

Data.Char 22.1ms 34.6ms 31.7ms

Data.Char.Base 8.9ms 8.6ms 8.5ms

Data.Colist 773.1ms 1028ms 904.4ms

Data.Conat 62.8ms 65.8ms 65.1ms

Data.Digit 105.8ms 133.3ms 105.7ms

Data.Empty 8.5ms 8.6ms 8.4ms

Data.Fin 163ms 223.6ms 152.4ms

Data.Fin.Dec 173.9ms 287.9ms 136.8ms

Data.Fin.Subset 70.5ms 459.7ms 51.5ms

Data.Fin.Subset.Properties 1242.8ms 743.5ms 206.1ms

Data.Integer.Base 66ms 58.7ms 58.2ms

Data.List.Any 295.1ms 317.2ms 261.3ms

Data.List.Base 227.7ms 219.7ms 220ms

Data.List.NonEmpty 219ms 257.3ms 243.7ms

Data.Maybe.Base 58.9ms 53.3ms 53ms

Data.Nat 62.4ms 77.4ms 54.5ms

Data.Nat.Base 115ms 115.5ms 98.6ms

Data.Nat.DivMod 81.8ms 66.8ms 65.7ms

Data.Nat.Properties 641ms 995.3ms 541.7ms

Data.Nat.Show 50.9ms 50ms 49.6ms

Data.Plus 63.5ms 70.1ms 60.8ms

Data.Product 82ms 63.2ms 71.3ms

Data.Sign 20.1ms 19ms 18.7ms

Data.String 43.8ms 57.4ms 115.7ms

Data.String.Base 17.8ms 167.1ms 164.6ms

Data.Sum 39.5ms 34.6ms 34.5ms

Data.Vec 253.1ms 362.1ms 248.7ms

Data.Vec.Equality 98ms 125.6ms 79.9ms

Data.Vec.NZ45Zary 157.4ms 178.2ms 154.7ms

Data.Vec.Properties 289.8ms 410.2ms 290.7ms

DivMod 28.4ms 187ms 181.7ms

Foreign.Haskell 9.1ms 9.3ms 9.2ms

Function 53.9ms 44.7ms 44ms

Function.Bijection 134.4ms 133.3ms 141.8ms

Function.Equality 108.8ms 121.1ms 101.2ms

Function.Equivalence 99.5ms 84ms 66.4ms

Function.Injection 45.4ms 37.2ms 37.9ms

Function.Inverse 241ms 208ms 284.2ms

Function.LeftInverse 173.5ms 162.4ms 161.8ms

Function.Related 323.1ms 577.3ms 343.7ms

Function.Surjection 112.3ms 101.9ms 166.2ms

HelloWorld 12.2ms 14.3ms 11.9ms

HelloWorldPrim 10.9ms 12.1ms 12.1ms

Induction 22.1ms 20.3ms 21ms

Induction.WellFounded 53.1ms 47.5ms 45.9ms

IO 161.6ms 147.7ms 146.4ms

IO.Primitive 60.9ms 80.3ms 80.5ms

Level 9.9ms 10ms 10.1ms

Qdimensions 267.2ms 466ms 425.3ms

Relation.Binary 1132.6ms 1237.2ms 1963.2ms

Relation.Binary.Consequences 114.6ms 800.3ms 100.6ms

Relation.Binary.Consequences.Core 14.9ms 11ms 10.6ms

Relation.Binary.Core 55.9ms 56.5ms 65.4ms

Relation.Binary.Indexed.Core 42.1ms 42ms 53.5ms

Relation.Binary.Lattice 1144.6ms 1017.6ms 1027.8ms

Relation.Binary.List.Pointwise 191.8ms 365.1ms 230ms

Relation.Binary.List.StrictLex 354.9ms 579.2ms 385.6ms

Relation.Binary.On 242.3ms 222.7ms 147.1ms

Relation.Binary.PreorderReasoning 28.1ms 31.3ms 41.1ms

Relation.Binary.PropositionalEquality 92.7ms 88ms 76.9ms

Relation.Binary.PropositionalEquality.Core 21.8ms 18.3ms 18ms

Relation.Binary.Reflection 90.5ms 87.7ms 80.7ms

Relation.Binary.Vec.Pointwise 232.1ms 311.3ms 221ms

Relation.Nullary 10ms 12ms 9.7ms

Relation.Nullary.Decidable 54ms 49.3ms 49.8ms

Relation.Nullary.Negation 73.9ms 946.5ms 66.1ms

ShowNat 12.3ms 14.7ms 11.9ms

TrustMe 19.4ms 22.9ms 18.1ms

Vec 62ms 76.3ms 67ms
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A.5. Runtime

Test case Old stage 1 stage 2 stage 3

CatchAllVarArity 1ms 1ms 1ms 2ms

Coind 2ms 2ms 2ms 1ms

CompareNat 3ms 1ms 1ms 1ms

CompileNumbers 2ms 1ms 1ms 1ms

CopatternStreamSized 2ms 2ms 2ms 2ms

IdentitySmashing 4ms 1ms 1ms 1ms

Issue1496 1ms 4ms 1ms 1ms

Issue561 2ms 1ms 1ms 1ms

ModuleReexport 1ms 1ms 3ms 1ms

PrimSeq 165ms 164ms 163ms 179ms

Sort 24ms 25ms 25ms 27ms

StaticPatternLambda 1ms 2ms 1ms 1ms

VecReverse 313ms 316ms 319ms 341ms

VecReverseIrr 38ms 37ms 26189ms 26174ms
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