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Abstract

Rendering a large number of 2D textures in real-time requires reducing the
overhead of a large number of draw calls on the CPU caused by binding different
textures when drawing. Texture atlases are used to avoid switching textures by
packing textures into one larger texture before rendering. Graphics hardware
APIs limit the size of a texture, so textures need to be partitioned into multiple
atlases. Unfortunately, composing textures into atlases is performed manually
by developers or artists with an educated guess and requires manually checking
which texture switch breaks a draw call batch to improve batching. Manual
composition of texture atlases is cumbersome, time-consuming and not optimal
for large-scale and unpredictable use of textures. We automated the composition
of atlases based on previously gathered texture rendering data to remove manual
intervention and created transient texture atlases at run-time based on usage
to optimize draw call batching. We applied our approach to four simulations
and measured the number of draw calls, CPU frame time and GPU frame time.
The number of draw calls is similar or less for data-guided texture atlases than
for manually composed texture atlases. Transient data-guided texture atlases
reduce the number of draw calls significantly for unpredictable use of textures,
which leads to performance gains on the CPU.
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Chapter 1

Introduction

Texture mapping is a common practice in 3D games that involves the wrapping
and mapping of pixels onto a surface of a 3D model. Usually these pixels
originate from a 2D image, a texture, that adds detail to a 3D surface. For
example, a floor can be textured with an image of the top of a wooden plank.
In 2D games however 3D models are replaced by 2D sprites. A sprite is a
2D entity that can be manipulated in the game, by rotation or translation for
example. To visualize a sprite, a texture is used as a resource that can be shared
between multiple sprites.

The geometry of a 3D model or a 2D sprite consists of primitives, such
as triangles. When rendering a frame, the geometry is passed through the
rendering pipeline, which is a sequence of steps to draw the geometry. This is
done by submitting draw calls to the GPU. A draw call is a driver API function
call for drawing one or more primitives. Not all primitives of the geometry
have the same texture or shader, which is a program that runs for each unit
(e.g. a pixel or a vertex). Each time primitives have a different texture than
previously, the render pipeline state changes, because a different texture has
to be bound. When the render pipeline state changes, a new draw call needs
to be done for the primitives with the different texture. Typically a game
has many different entities with different textures that need to be drawn in
a frame, so many draw calls are issued when rendering a frame, which can
severely impact CPU performance and make the frame time CPU-bound[6][25].
To improve performance primitives with the same render pipeline state are
batched together. So drawing a frame with optimal performance consists of
minimizing draw calls by batching primitives with the same render pipeline
state. If a group of primitives does not have the previous render pipeline state
the current batch is broken up into two batches, thus breaking the batch. Render
pipeline state changes cannot be solely attributed to texture bindings, but also to
binding a pixel shader, different texture formats or primitive indices for example.
However, texture binding is one of the most common batch-breakers[26].

Texture atlases are used to reduce the number of times a different texture is
bound[6][15][26]. A texture atlas contains multiple textures that can be drawn



together in one draw call, because a texture atlas is stored in memory as one
larger texture, the texture does not need to change between draw calls. An
example of a texture atlas can be seen in Figure 1.1. When rendering a texture
that was separate before, we look it up in the texture atlas. Optimally all
textures that are drawn together in a frame reside in one single atlas. However,
texture atlases also need to be loaded into GPU memory and the maximum
texture dimensions are limited. In addition, loading a single atlas of which
only a small number of textures is used, uses a lot of GPU memory, which
leads to poor performance. If a texture atlas exceeds the maximum texture
dimensions, a single atlas cannot be created, the textures need to be divided
over multiple atlases. Multiple atlases do not have to be loaded into memory
at the same time and can be unloaded anytime, when the containing textures
are not in use anymore. Textures are usually packed into atlases by manual
selection for atlases when building the assets. Unfortunately it can be hard to
achieve optimal atlases, because the manual process of composing the texture
atlases is cumbersome for large numbers of textures, the usage of textures might
not be apparent and building texture atlases before running the game is not
optimal due to the possibly varying and dynamic usage of textures that cannot
be predetermined. For example when a player assembles a team of characters
with different sets of textures, a different combination of those sets of textures
can be used each time the player assembles a new team. Although it would
reduce draw calls if the textures of all characters were in one atlas, they might
not all fit and even when they would fit, GPU memory is wasted by loading
textures of characters that are not going to be used. The assembly of the team
by the player cannot be predetermined, so the characters may all need to be
put into separate atlases to ensure consistent performance.

We aim to eliminate or at least decrease the need for manual composition
of texture atlases while also reducing the number of draw calls and to provide
a solution to improve draw call batching for varying, dynamic and emergent
texture usage while running a game. Automating the composition of texture
atlases is also necessary to solve the problem of improving draw call batching
while running a game. By gathering data when rendering a game in previous
runs, we can guide an automatic process of composing and packing textures into
texture atlases before run-time and we can also guide batching improvements
while running a game the next time. We aim to outperform the overhead that
is caused by applying this approach through reducing the number of draw calls
per frame significantly.

In the rest of this chapter we elaborate on how textures are stored and used
to lay the groundwork for the approach in Chapter 2. Thereafter we dig deeper
into our implementation in Chapter 3. To put our approach to the test we
performed experiments of which the design is detailed in Chapter 4 and the
results are shown in Chapter 5. We discuss the outcomes in Chapter 6, position
and compare our approach in Chapter 7, and conclude this thesis in Chapter 8.



Figure 1.1: A texture atlas of Egyptian props used in Renowned Explorers:
International Society[17].

1.1 Mipmapping

When an object is viewed from a distance, it is usually sufficient to render the
texture of the object with less detail to avoid aliasing and unnecessarily detailed
rendering[23]. Williams presents mipmaps as a parameterized pyramidal data
structure[24] to optimize rendering a texture at a lower level of detail. A mipmap
is parametrized by texture coordinates and by a mip level. Texture coordinates
are on the two axes of a 2D texture, denoted by U and V and are used to look
up a texel (texture pixel) in a texture. Each subsequent mip level changes the
resolution of these axes. The top level is usually the most detailed and the
bottom level the least detailed. The resolution of a texture is divided by half
for each level in the pyramid, which diminishes the level of detail with each
additional level in a mipmap. When rendering a texture at a small level of
detail, for example 2 by 2 texels, all the texels of a texture of 512 by 512 texels
have to be filtered and averaged into those 2 by 2 texels, this can become very
costly at run-time. To prevent these unnecessary computations at run-time a
mipmap is precomputed and contains the filtered and averaged resolutions on
multiple levels in its pyramidal data structure. When the width and height of a
texture are the same power of two, the texture can be stored very efficiently in
memory and can easily be looked up at run-time with the texture coordinates
and by computing a mip level based on the level of detail necessary.

All the mipmaps of a textures are placed into the same texture atlas to also



reduce draw calls when a lower level of detail is sufficient. Unfortunately, this
has some drawbacks for putting textures with a different number of mipmaps
into the same atlas. If we were to put two textures with a different amount
of mipmap levels into one texture atlas, the range of mipmap levels to use or
the bias towards certain mipmap levels should be adjusted between rendering a
texture with a different mipmap level than the previous texture, which would
break the batch even though that was exactly what we were trying to avoid by
putting the two textures in the same atlas. So the two options left are equalizing
the number of mipmap levels of the textures or just putting them into a different
texture atlas. For the sake of brevity and clarity a texture is used as a reference
to all the mipmaps that a texture has instead of stating the mipmaps of that
texture individually.

1.2 Texture compression

For rendering high-resolution textures block compression is used to reduce mem-
ory requirements. Texture block compression operates on blocks of 4 by 4 texels
and compresses those blocks into a given compression format. Some compression
formats include only RGB bits for minimum storage requirements, but others
can also contain alpha bits. The dimensions of a texture are required to be
multiples of 4 for block compression. The mipmaps of a texture are also stored
with the texture and the dimensions of the mipmaps also have to be multiples of
4 if a texture needs to be compressed. This means that the texture dimensions
need to be aligned based on the number of mipmap levels and the block size for
compression. Decompression is implemented in graphics hardware and has no
performance penalty. Block compression not only increases the number of high-
resolution textures we can store in GPU memory, but also decreases bandwidth
usage, which improves real-time rendering performance[22][23].

Texture atlases are also textures, so if we want to apply compression, their
dimensions should be aligned. Only textures with the same compression format
can be put into the same texture atlas, because an atlas can only have one
compression format. For example when we have one texture with an alpha
channel and one without, we cannot put the texture with the alpha channel
into an atlas with a compression format without an alpha channel. However, we
can put the texture without an alpha channel into a compression format with
an alpha channel, but it increases the memory requirements for the texture
originally without an alpha channel.

1.3 Texture packing

Texture packing is used to create texture atlases. Texture packing takes a list
of textures as the input, an atlas composition, and arranges the textures in a
texture with larger dimensions. Usually this is done as compactly as possible
to reduce memory requirements and to fit as many textures as possible into the



larger texture. Packing textures into atlases is a 2D bin packing optimization
problem, which is NP-hard, so different approximation algorithms and heuris-
tics can make a significant difference. A rectangle bin packing algorithm and
heuristic can be used to pack textures as rectangles[14], although more advanced
and memory sparing texture packing algorithms for arbitrary shapes also ex-
ist[15]. In a rectangle bin packing algorithm the textures are arranged by using
the dimensions a texture is stored in, because a 2D texture is stored as a rectan-
gle. Rectangle bin packing algorithms and heuristics come in a variety of space
and time complexities, picking the right algorithm and heuristic for the job is a
space-time trade-off[14].

The whole texture including the mipmap levels is packed into a texture atlas
and even though the texture atlas should be packed as tightly as possible, some
padding is necessary to avoid texture bleeding. Texture bleeding occurs when
applying a texture filtering technique, which takes into account neighboring
texels of a looked up texel during rendering, to reduce visual artifacts when a
texel does not directly correspond to a pixel. This means that one texture can
bleed into another neighboring texture. Each mipmap level of a texture atlas
should also account for texture bleeding with padding, even at the lowest level,
because each subsequent level decreases the padding by half. When using block
compression the placement of the texture in the atlas should be aligned based
on the number of mipmap levels and the block size to keep the textures from
bleeding on lower mipmap levels and to keep texture coordinates consistent on
smaller mipmap levels.



Chapter 2

Approach

In this chapter we explain the approach for gathering texture rendering data,
automatically generating texture atlas compositions and guiding the creation of
new texture atlases while running a game. The implementation of our approach
provides more depth and insight into the specifics of our approach in Chapter
3.

2.1 Telemetry

When composing texture atlases out of textures, we want to know which texture
to put into which atlas. We can make an informed guess by manually checking
which textures break the batch frequently and which textures can be packed
into the same texture atlas, but it would be much better if we automate this
process. To automate the traditionally manual collection of this knowledge, data
is gathered from rendering a game. We call this atlas telemetry. Atlas telemetry
registers the beginning and the end of a frame and the batch that is sent to the
GPU when issuing a draw call. When a draw call is issued, the bound textures
are registered, because those textures are used to draw the batch. We also keep
track of the render pipeline state and whether it has changed or not between
batches, regardless of whether one or more different textures have been bound
between draw calls or not. A render pipeline state change is the reason a batch
needs to be broken down into multiple batches and multiple draw calls need to
be issued. Setting a texture also changes the render pipeline state, to avoid this
we use texture atlases. When the render pipeline state only changes because
of the texture, we might be able to merge this batch with the previous batch
if the textures bound for the previous batch are packed together into an atlas
with the textures bound for the current batch. If this is true we make pairs
of these textures and count the frequency at which this occurs. Unfortunately,
we should not make pairs of all textures that satisfy this condition, because
textures might have different storage formats or different mipmap levels, so we
cannot put them in the same atlas. We make pairs of textures and only count



occurrences, because the amount of data is unreasonably large when logging all
frames of many runs of a game or keeping track of all paths, instead of just
pairs, of sequenced textures over multiple draw call batches[1]. By storing these
frequencies we know how many times a batch is broken and which textures break
the batch.

2.2 Telemetry data processing

We can extract compositions of the atlases from the data gathered by the atlas
telemetry. We process the pairs of the textures and whenever a pair exists we
put both textures into the same atlas composition. However, a texture atlas
composition might not be enough to create texture atlases optimized for draw
call batching if the textures in the composition do not fit into one texture atlas,
so we also need a way to partition the textures into multiple compositions based
on the atlas telemetry data, when the texture atlases are eventually packed. To
prepare for partitioning, we create a graph of textures from the pairs in which
each pair resembles an edge between two textures as nodes with a weight based
on the draw call batch breaking frequency. A visualization of such a texture
graph can be seen in Figure 2.1.

2.3 Prebuilt data-guided atlases

Using the atlas compositions and the texture graph we build data-guided texture
atlases before run-time, usually during the phase in which the textures are
also compressed if necessary. The data-guided atlases are built automatically
without any manual intervention necessary by packing the textures according
to the atlas compositions with a rectangle bin packing algorithm. When the
rectangle bin packing algorithm cannot pack the textures into one atlas, the
textures can be partitioned based on the texture graph or according to the bin
packing algorithm itself. When using the texture graph, the composition is split
up into multiple compositions by partitioning the texture graph with textures of
the original composition with a graph partitioning algorithm. By partitioning
the graph, it is split into multiple components that resemble the new texture
atlas compositions. The textures in a single graph component need to fit into
one atlas, which adds an additional constraint. The partitioning should also be
balanced based on the weights for optimized draw call batching. If a partitioning
is unbalanced, for example using a minimum cut algorithm, one texture at a
time could be split off until we have multiple separate textures and one coherent
fitting component. The leftover textures might not be related in any way, so
this is not optimal nor a good approximation. In fact, an optimal solution for
balanced graph partitioning is NP-complete [2], although in our case we do not
need our components to be of equal size, which makes the problem space even
larger. When the texture atlases have been created we store them on disk and
we can run the game with textures in the prebuilt data-guided texture atlases.
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Figure 2.1: A visualization of a texture graph.
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2.4 Transient atlases

Although we have automated the composition of texture atlases, the texture
atlases are still not prepared for emergent and unpredictable use of textures as
is the case in our running example introduced in Chapter 1, the assembly of a
team of characters with different sets of textures. To accomplish this we create
transient data-guided texture atlases. These atlases are transient, because they
only exist in GPU memory while running a game, and might not even have to
exist for the whole run. While running a game we gather which textures are
loaded. After we have finished loading those textures into GPU memory, we
create new atlases from the loaded textures. Loaded textures can be texture
atlases as well as separate textures. We combine the loaded textures into a larger
texture atlas composition by checking their mipmaps and format. Thereafter
we pack the textures with rectangle bin packing and create a new texture in
GPU memory that can contain the larger texture atlas composition. If the
packing of the new texture atlas composition has larger dimensions than the
maximum dimensions of a texture on the GPU, a partitioning algorithm is used
to partition the transient texture atlas composition into multiple compositions
based on the texture graph, as is also performed for prebuilt data-guided atlases.
After valid compositions have been created, we copy each loaded texture to its
transient texture atlas on the GPU, if it was put into a transient texture atlas
composition. This operation needs to lead to a valid replacement of the loaded
textures with the newly created transient atlases. When we create transient
data-guided atlases for our running example, we can combine the characters of
our assembled team into one transient texture atlas. If that does not fit we can
partition the textures of the assembled team according to the texture graph.
We expect a reduction of the number of draw calls for drawing textures of our
assembled team by combining the textures into one or more transient atlases.
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Chapter 3

Implementation

We implemented our approach, discussed in Chapter 2, in the Abbey Games
game engine AbbeyCore and created a tool for receiving rendering data on a
server and another for processing the rendering data and storing the output, so
a game can use it to guide its texture atlas compositions.

3.1 AbbeyCore

AbbeyCore is a proprietary general purpose cross-platform 2D and 3D game
engine developed in-house by Abbey Games written in C++. The engine sup-
ports scripting in Lua and hotloading scripts and assets. AbbeyCore targets
the Direct3D and OpenGL graphics hardware APIs. We implemented our ap-
proach for Direct3D 11 in AbbeyCore. AbbeyCore 1.0 was used for Renowned
Explorers: International Society[17]. Currently AbbeyCore is under further
development and has passed version 2.0.

3.2 Atlas telemetry

The telemetry was implemented in the engine and gets notified of rendering
events, such as the beginning of a new frame, the ending of a frame, when a
new texture is bound and when a draw call is issued. The telemetry runs on a
separate thread and collects the data associated with the events. When a frame
begins, new frame data is allocated in which the data for the batches can be
stored. Batch data consists of a list of texture data for one or more textures
that were bound, because there are multiple texture slots available, and of a
boolean that indicates whether the render pipeline has only changed due to
texture binding or not. Texture data contains the name of the texture, the
number of mipmap levels and the format. Each time a texture is bound, it is
added to the current batch data and when a draw call is issued, the batch data
is finished. Eventually the frame ends and then the frame data is finished. After
a frame has ended, the telemetry performs preprocessing on the frame data to
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reduce the total amount of data that needs to be sent to the atlas telemetry
server, because running a game at 60 frames per second with 1000 draw calls
leads to a lot of data. When preprocessing a frame, the properties of data
for a texture are hashed to avoid a lot of data duplication, because the same
textures can be used in subsequent frames and even in other draw call batches
in the same frame. For each pair of subsequent draw call batches we check if
the pair could be batched together. This is true if only a binding of a different
texture triggered the two draw calls and if the bound textures of the first and
second draw call have the same number of mipmap levels and the same format.
Keeping track of all texture paths through the draw calls that can be batched
is too expensive, so we keep track of the frequency of the occurrence of pairs of
textures in draw calls that can be batched[1]. The resulting data containing the
properties of the textures and the frequency of their pairs is sent to the atlas
telemetry server in a non-pretty-printed JSON format only when enough frames
have been preprocessed to reduce memory usage, network bandwidth usage and
load on the server.

The atlas telemetry server runs inside a Docker container and is situated
locally on a server on the Abbey Games network. It was built using Node.]js,
TypeScript and Express using a PostgreSQL database. The server collects the
data for running each game and keeps track of the period in which the data was
sent, because development, patches, and expansions can change texture usage
over time. We implemented weekly periods, but other periods of time can also
be used depending on the developer’s needs.

3.3 Atlas telemetry data processing

All the texture pairs of a game over all periods are used to create a texture
graph, where a texture is a node and if two textures have a frequency as a pair,
there is an edge between them with the frequency as the weight. The singular
textures are added as a single node. Texture atlas compositions consist of a list
of textures and are composed by computing the connected components[11] of the
texture graph. The textures as nodes of each resulting connected component
form an atlas composition. The contribution factor of the frequencies of the
texture pairs are also diminished by half per period the further in the past
the period was. We chose to diminish the contribution factor by half, other
factors could also be used. When all the weights of the texture graph have been
computed, the weights are normalized to a rational number between 0 and 1.
The atlas compositions and the texture graph are written to the storage of the
game, so the game can make use of the compositions and the texture graph. A
visualization of the texture graph can be seen in Figure 2.1.
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3.4 Prebuilt data-guided atlases

Source textures are stored in an uncompressed format and can be compressed
during a build phase of the game. The build phase is executed before running the
game and also before distribution of the game. In this phase texture atlases are
also built. The uncompressed textures are read and packed based on the atlas
compositions, previously composed manually. For prebuilt data-guided atlases
the atlas compositions are composed by processing the atlas telemetry data. We
use these atlas compositions to pack textures. Before packing, the textures in
the atlas compositions are checked for consistency, because the format and the
number of mipmap levels could have changed intermediately and could not be
suitable for the composition anymore. If this is the case we exclude the texture
from the composition.

3.5 Texture packing

Texture packing produces one or more texture atlas arrangements. An arrange-
ment consists of the minimum width and height of the atlas and a texture region
for each texture packed into the arrangement. A texture region has a source
texture and a destination rectangle in the texture atlas. When finally building
the texture atlas the texture is copied from the source texture to the destina-
tion rectangle in the texture atlas for each mipmap level. Two offline rectangle
bin packing algorithms were implemented for packing textures into atlas ar-
rangements based on compositions. Offline algorithms were used, because the
atlas compositions with the input textures were known before texture packing.
The time and space complexities of the two algorithms seemed feasible for our
approach, while the algorithms also perform an almost optimal packing[14].

The first one was a shelf first fit bin first fit decreasing height algorithm
(SHELF-FF-BFF-DESCH) for which the input textures were sorted based on
decreasing height before packing and a texture is placed on the first level that
fits. If a texture does not fit on any level, a new texture atlas arrangement or
bin is created and the texture is placed in the new bin. The next texture is
placed in the first bin that fits[14].

The second one was a maximum rectangles best shortest side fit bin first
fit decreasing shortest side algorithm (MAXRECTS-BSSF-BFF-DESCSS) for
which the input textures were sorted based on decreasing shortest side before
packing and a texture is placed in the rectangle with the best shortest side fit.
If a texture does not fit into any rectangle, a new bin is created and the texture
is placed in the new bin. The next texture is also placed in the first bin that
fits[14].

3.6 Alignment

To avoid texture bleeding on lower mipmap levels the textures are padded or
aligned on a square grid, depending on the rectangle bin packing algorithm. For
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MAXRECTS the textures were padded with the difference between the size of
the texture and the texture size plus the size of a grid square aligned to the size
of a grid square. For FFDH the textures coordinates were aligned on the grid
squares and at least one grid square is between each texture. The formula for
the size of a grid square is

v = max {2™7 1 b}
for prebuilt texture atlases and
y=2""1xb

for transient texture atlases, where 7 is the square grid size, m is the number
of mipmap levels and b is the block size of the format. Usually for compressed
textures b is 4 pixels and for uncompressed textures it is 1 pixel. For prebuilt
texture atlases the grid does not have to be aligned to the block size, because
the textures to be packed are still uncompressed. For transient texture atlases
however, the target texture atlas for compressed packed textures is already
compressed, so to be able to directly copy a texture into the transient texture
atlas, we need align the grid to the compression block size.

The dimensions of a texture atlas also need to be aligned for consistent
texture coordinates when using mipmaps and compression. The formula for
computing the alignment necessary is

a=2""1xp

where « is the alignment, m is the number of mipmap levels and b is the block
size of the format. The formula for computing the right dimensions for a texture
is

6 = min{[s/a] * a, 2182511

where ¢ is a dimension of the texture, s is the original dimension of the texture,
which for a 2D texture can either be the width or the height, and « is the
alignment. A dimension is either aligned or ceiled to the nearest power of two,
which also works.

3.7 Texture partitioning

By default the chosen rectangle bin packing algorithm puts a texture into a new
atlas when the current atlas is full, so textures are partitioned based on the order
of the input textures. This means that textures are not partitioned based on
batch breaking, but on a heuristic on a property of a single texture. Instead of
relying on a heuristic that may or may probably not produce a partitioning that
reduces draw calls, we can use the texture graph to partition textures into atlases
based on texture pair batch breaking frequency. When the texture packer cannot
fit the textures of the atlas composition into one atlas, a partitioning algorithm is
used. We developed two partitioning algorithms in addition to the default of the

16



rectangle bin packing algorithm. A rectangle bin packing algorithm still takes
care of the arrangement of the atlases, a partitioning algorithm only takes care
of partitioning the composition that did not fit into a single atlas arrangement.

The greedy algorithm packs the textures in the texture graph that are most
frequently sequentially drawn into one atlas, so that at least those are together
in an atlas. First the edges in the texture graph are sorted based on their weight
in decreasing order. Thereafter the first edge is dequeued and the two textures
at the end of both sides are packed into one atlas, if not already packed. When
a packing overflows into multiple atlases, the previous packing is used as it only
had one atlas and the resulting atlas is added to the collection of partitioned
atlases. We repeat dequeuing edges until there are no edges left.

The approximation algorithm partitions the textures in the texture graph
into the most tightly connected components using a Stoer-Wagner-like algo-
rithm[19]. First the textures in the composition are sorted based on the sum of
the edge weights of neighboring textures in decreasing order. The texture that
is the most tightly connected to its neighbors is picked and added to the tightly
connected textures composition. From there the tightly connected textures com-
position is grown by adding the neighboring texture, that is the most tightly
connected to the all the textures in the composition by summing the weights
to the textures in the composition, until the composition overflows. When the
composition overflows, the previous composition is stored and it starts over by
growing another tightly connected textures composition, until all textures are
partitioned and packed.

Offline nearly optimal rectangle bin packing algorithms were used for parti-
tioning to approximate optimal packing. However, online suboptimal algorithms
have a better time complexity, but worse space usage and might have been more
suitable for partitioning or checking whether or not a composition fits. Espe-
cially for transient atlases the time complexity could become problematic when
partitioning a large amount of textures.

3.8 Transient atlases

For creating transient texture atlases the engine keeps track of the sprites and
their corresponding textures that are loaded for the game. When all textures
have been loaded, the transient atlases are composed and arranged on a separate
thread, so the work can be spread over multiple frames if necessary, without
decreasing the frame rate of the game. Composing and arranging transient
atlases is done by executing Algorithm 1. Afterwards the transient texture
atlas arrangements are sent over to the main thread and then commands are
given to the render thread which communicates with the GPU to actually create
the transient texture atlases in Algorithm 2. The number of in-GPU-memory
texture region copies per frame can be limited to ensure an interactive frame
rate, but possibly spreads the process of creating transient texture atlases over
multiple frames, so multiple texture atlases with unnecessary textures could stay
in GPU memory and increase memory usage. We did not limit the number of
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in-GPU-memory texture region copies per frame for our experiments in Chapter
4.

Algorithm 1: The composition and arrangement of transient atlases.

Data: S = loaded sprites, G = texture graph, packer, partitioning
Result: Transient texture atlas arrangements

C={}h
for sprite € S do
// Can only pack a texture if dimensions are aligned
if aligned(sprite.texture) then
// Check if sprite texture is already in a composition
if C.HasCompositionWith(sprite.texture)} then

‘ C.GetCompositionWith(sprite.texture).S.insert(sprite);
else
// Check if there is already a composition with
// the same number of mipmap levels and format,
// if not create it
maipLevels = sprite.texture.mipmapLevels;
format = sprite.texture. format;
if C.HasCompositionFor(mipLevels, format) then
composition =

C.GetCompositionFor(mipLevels, format);

else
composition = new Composition(mipLevels, format);
C.insert(composition);
end
// Keep track of the sprites using the texture
composition[sprite.texture].S = {sprite};
end
end
end
// Create transient texture atlas arrangements
A={}
for composition € C' do
‘ A.insert(packer.packT extures(composition, partitioning, G));
end
return A

18



Algorithm 2: The creation of transient texture atlases.

Data: A = transient texture atlas arrangements
for a € A do

end

// Create a transient texture atlas in GPU memory
texture =

new Texture2D(a.width, a.height, a.mipmapLevels, a.format);
blockSize = GetBlockSize(a. format);
for region € a.regions do

// The current width of the mipmap level

width = region.width;

// The current height of the mipmap level

height = region.height;

// The source rectangle

source = (0,0, region.width, region.height);

// The destination position in the atlas
destination = (region.x, region.y);

for mipLevel <+ 0 to a.mipmapLevels do

// Copy the region of a mipmap of a texture to
// the transient texture atlas in GPU memory
region.texture.CopyTo(source, mipLevel, texture, destination);

// Divide by two for the next mipmap level
width = max{width / 2,blockSize};

height = max{height / 2,blockSize};

source.x = source.x | 2;

source.y = source.y | 2;

source.z = source.x + width;

source.w = source.y + height;

destination.x = destination.z / 2;

destination.y = destination.y / 2;

end
// A region can be a texture atlas,
// so we need to point all sprites to
// their place in the new texture
for sprite € region.S do
sprite.UpdateT extureCoordinates(region.u, region.v, a.width, a.height);

sprite.SetTexture(texture);
end

end

19



Chapter 4

Experimental Setup

In this chapter we explain the setup and design of a set of experiments and
discuss the usage of the approach proposed in Chapter 2 in these experiments.

4.1 Simulations

We gathered results from multiple simulations to show what strengths and weak-
nesses the proposed approach entails and how varying and combining different
algorithms and parameters for the approach perform in comparison. The cam-
era does not move during all simulations and is positioned directly in front of the
textures with all textures facing the camera plane with their normals. There
is no user interaction required for the simulation to make the simulations as
reproducible and stable as possible.

The first simulation is a real world scenario in which a dynamic 2D scene
is simulated. The scene contains multiple sprites and animations with many
textures. The scene is suitable for an experiment, because it is typical for an
Abbey Games game and was created by the Abbey Games artists and devel-
opers. We can measure how our approach performs in the real world with this
simulation.

The second simulation is an artificially composed scene with a set of static
textures that serves as a baseline. The textures are always drawn the same
way each frame, so we can measure the effectiveness of data-guided atlases and
the overhead and impact on performance of creating and using transient atlases
during the whole simulation.

The third simulation is an artificially composed scene for which combinations
of groups of static textures are used. Each time the simulation is run five groups
of static textures are loaded and shown at random out of a total of ten groups.
This simulates our running example introduced in Chapter 1. The simulation
was created to test the effectiveness of transient atlases, because our approach
should improve draw call batching by combining the randomly chosen groups
of textures into a transient atlas at run-time. A frame of the simulation can be
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Figure 4.1: A frame of simulation 3 where five characters have been selected.

seen in Figure 4.1.

The fourth simulation is an artificially composed scene with sets of textures
of which each set dynamically changes position in a random x- and z-direction
in order to trigger overlap, occlusion and draw order changes. This simulation
was created to check if our approach also improves performance for coherently
moving groups of textures.

Other simulations could have been formulated. For example a simulation
where textures dynamically change positions randomly. However, simulations
usually have some form of visual coherence with respect to their textures in
order to provide a meaningful perception[27].

The textures used in the second, third and fourth simulation were taken
from the game Renowned Explorers: International Society[17]. An encounter
in the game can be seen in Figure 4.2. In the encounter a crew of characters,
as can be seen in the middle of Figure 4.2, duels versus opponents. The player
can select the characters for the crew, which perfectly resembles our running
example.

4.2 Setup

Simulations were written in Lua and were run on AbbeyCore using the imple-
mentation discussed in Chapter 3. In Table 4.1 specifications of the system used
for performing the experiments are specified.
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Figure 4.2: An encounter in Renowned Explorers: International Society[17].

Table 4.1: System specifications

0OS
Motherboard
CPU

GPU

RAM
Harddisk 1
Harddisk 2
Display

Microsoft Windows 10 Home 10.0.15063 Build 15063

Intel HM175

Intel Core i7-7700HQ CPU @ 2.80GHz, 4 Cores, 8 Logical
Processors

NVIDIA GeForce GTX 1070 Mobile - 8192 MB, Core: 1443
MHz, Memory: 4000 MHz, GDDRS5, 256-bit interface, no
Optimus

16384 MB, DDR4-2400, single-channel

Samsung SSD PM&71a MZNLN256HMHQ, 256 GB
HTS721010A9E630, 1 TB HDD, 7200 rpm

15.6 inch 16:9, 1920x1080 pixel 141 PPI, LG Philips
LP156WF6 (LGD046F), IPS, G-Sync, 60 Hz, Full HD
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Game thread Frame 0 Frame 1 Frame 2 Frame 3

CPU

Render thread Idle Frame 0 Frame 1 Frame 2

Figure 4.3: A high-level overview of the CPU and GPU usage of AbbeyCore
including the game and render thread executing on the CPU. A green rectan-
gle overlapping the game and render thread flows represents a synchronization
point.

4.3 Performance metrics

We measured performance directly in the engine using numerous metrics.

For measuring how well our packing and partitioning algorithms performed
we tracked the CPU time it took to partition and pack an atlas in milliseconds,
the used area of the atlas in square texels, the total area of the atlas in square
texels, the occupancy of the atlas as a percentage of the used space of the atlas
and the number of textures per atlas.

For our simulations we measured the time spent in the render thread per
frame on the CPU in milliseconds, the time spent per frame on the GPU in
milliseconds, the number of draw calls and the average number of primitives
per draw call per frame. Performance was measured from the moment all tex-
tures are loaded, but before the moment that initiates the creation of transient
atlases from the loaded textures, because we want to measure the overhead and
the impact of creating and using transient texture atlases. AbbeyCore uses a
multithreaded setup on the CPU including a game thread and a render thread.
An overview of this setup can be seen in Figure 4.3. The game thread executes
the scripting code and the render thread on the CPU keeps track of GPU re-
sources and communicates with the GPU. The render thread renders the game
for the previous frame while the game thread prepares the next frame for ren-
dering. Both threads have a synchronization point in common after rendering
the previous frame and after the game has prepared the next frame to prevent
one another from continuing while the other has not finished yet. Only the ren-
der thread communicates with the GPU, which means that any CPU bottleneck
due to draw calls is to be found on the render thread.

The overhead when running a game on the engine with atlas telemetry en-
abled is rather significant, but not disturbing as it runs on a separate thread.
However, at Abbey Games atlas telemetry is only be enabled during develop-
ment, playtesting and QA testing, so it does not impact the end user experience.
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Data was also sent over a local network for reduced memory overhead, which
grows when waiting for a request due to the sequential nature of the telemetry
requests. The performance was assessed without enabling atlas telemetry to
simulate the end user experience.

Instrumentation overhead for measuring the performance metrics was either
negligible or had no impact on the measurements itself. The instrumentation
was implemented directly in the relevant parts of the engine for accurate mea-
surements and to avoid impact by performing resource-intensive tasks out of
scope of the measurements.

4.4 Parameter configurations

The parameters that have an effect on building texture atlases when building
a simulation are the maximum texture size, the texture packing algorithm and
the partitioning algorithm for partitioning textures into multiple atlases for an
overflowing texture atlas. The maximum texture size should always be conser-
vative, because some older hardware APIs that should be able to run the game,
might not be able to use larger textures that do run on newer hardware APIs.
For example Direct3D 11 supports 16384 texels in both dimensions. AbbeyCore
also targets Direct3D 10 in addition to Direct3D 11, which supports 2D textures
with up to 8192 texels in both dimensions, so when building a simulation we
cannot create larger textures than 8192 by 8192 texels. The maximum texture
size can also be set lower than the hardware API capability, for example to
4096 texels and might benefit transient atlas compositions or memory usage
when only some textures in a texture atlas are used. The texture packing algo-
rithm can be either the FFDH or the MAXRECTS bin packing algorithm|[14].
The partitioning algorithm for overflowing atlases can be the default of the cho-
sen rectangle bin packing algorithm, the greedy algorithm or the approximation
algorithm.

When running a simulation and loading the textures used for a scene we
also have to choose whether transient atlases are enabled or not and if so what
texture packing and what texture partitioning algorithm are used. The max-
imum texture size is not configurable for a transient texture atlas, because a
larger texture atlas can be composed of more textures when necessary, so per-
formance is improved when that leads to less draw calls and the performance
gain outweighs the small memory overhead of a transient texture atlas. When
atlas transience is enabled textures are packed with a maximum texture size
of the hardware API of the GPU. In our case this was 16384 texels in both
dimensions.

An overview of all these parameters and their possible values can be seen in
Table 4.2.

To avoid combinatorial explosion and data irrelevance some parameter con-
figurations were not executed. The texture packing and partitioning algorithms
were not varied with different combinations for building texture atlases when
building a simulation and packing transient atlases. If we did vary those algo-
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rithms we would have needed much more time for executing all the parameter
configurations, because this would multiply the number of different possible con-
figurations by at least six. Running a simulation with prebuilt separate textures
or with prebuilt separate textures with transient texture atlases enabled made
varying some parameters irrelevant for execution, such as the maximum tex-
ture size, so we only performed executions with parameter configurations with
varying parameters that had an effect on the execution itself. Full details on
which configurations were run for which simulation are shown in the results in
Chapter 5.

Table 4.2: Configuration parameters

Packing algorithm FFDH MAXRECTS

Partitioning algorithm Default Greedy Approximately
Maximum texture size 4096 8192

Atlas transience Enabled Disabled

4.5 Execution

For each simulation we executed three phases. The first phase was executed
only once for each simulation and the second and third phases were executed
for each parameter configuration for each simulation.

The first phase is a data collection and analysis phase in which we enabled
atlas telemetry for the engine and sent data to the atlas telemetry server while
running a simulation a hundred times with separate textures, so no texture
atlases, for 300 frames. The simulation was run for a hundred times to account
for the randomness in the first, third and fourth simulations. After the first
phase we have gathered enough data for analysis and we output the input atlas
compositions and the texture graph for AbbeyCore.

In the second phase we built the simulation with the engine. This phase was
also varied in three ways in addition to the parameter configurations. As build-
ing the simulation includes building the textures and texture atlases, intuitively
there are two choices: build separate textures or build texture atlases. However,
for three out of the four simulations we had original input atlas compositions
manually created by the developers of Renowned Explorers: International So-
ciety[17]. For those simulations the manual atlas compositions were also used,
because these were unbiased and the use of the textures was similar to their use.
So there were three ways of building the textures: separately, texture atlases
built using the input atlas compositions created from the atlas telemetry data
in the first phase and texture atlases using the manual atlas compositions.

After build completion the simulation was run twenty times for a limited
number of frames in the third phase. The number of frames a simulation runs
was limited to 600 to get a good stable profile sample of the performance of
a simulation. The simulation was run multiple times to account for profiling

25



sample outliers due to randomness or to detect other anomalies. Randomness
is expected to not affect performance randomly, because it determined only the
use of different textures in the first and third simulation and no additional events
other than overlap, occlusion and draw order changes in the fourth simulation.
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Chapter 5

Results

In this chapter we show the results of the experiments conducted according to
the setup in Chapter 4.

5.1 Overall performance

For each simulation, detailed in Section 4.1, the overall performance was ana-
lyzed and the averages of each performance measurement were put into Table
5.1, 5.2, 5.3 and 5.4. Each of those tables shows what was prebuilt in the top-
most row. The second row shows if the simulation was run with transience
enabled or just with what was prebuilt. When a simulation is run with tran-
sience what was prebuilt is also used. The results are averages of the twenty
executions of 600 frames of each parameter configuration with the exception of

the transient parameter.

Table 5.1: Average performance measurements for all configurations ran with
simulation 1.

Data-Guided Atlases Separate Textures

Measurement Prebuilt  Transient  Prebuilt Transient
CPU Frame Time (ms) 6.78 6.76 11.44 7.92
GPU Frame Time (ms) 7.64 7.65 12.24 8.73
#Draw Calls 345.10 343.26 1098.71 363.89
#Primitives per Draw Call  21.89 21.91 8.86 26.33

In Table 5.1 the manual atlases measurements are missing, because there
were no manually created atlases available for real-world simulation 1. We
observe that on average the performance for non-transient and transient data-
guided atlases was very similar for the real world scenario in simulation 1 and
that separate textures without transient atlases performed the worst, as ex-
pected. On average the performance of prebuilt separate textures with tran-
sient atlases is better than completely separate textures and is quite close to
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the performance of data-guided atlases, especially regarding the number of draw
calls.

Table 5.2: Average performance measurements for all configurations ran with
simulation 2.

Data-Guided Atlases Separate Textures Manual Atlases
Measurement Prebuilt  Transient  Prebuilt Transient Prebuilt Transient
CPU Frame Time (ms) 3.82 2.40 10.20 2.97 7.24 4.07
GPU Frame Time (ms) 4.02 2.59 10.43 3.18 7.46 4.28
#Draw Calls 338.07 5.91 1608.89 84.57 1090.92 318.23
#Primitives per Draw Call  551.09 765.85 2.10 1042.65 3.11 14.56

For static textures simulation 2 the results were a lot less similar. In Table
5.2 the transient data-guided atlases performed the best on average, although
the prebuilt separate textures with transient atlases were also quite performant.
The manual atlases performed badly without transient atlases and even with
transient atlases enabled it could not match transient data-guided atlases nor
transient atlases for separate textures. We observe that the number of draw
calls had a severe impact on performance of both the CPU and GPU when only
rendering static geometry with a lot of textures.

The number of draw calls and the average number of primitives per draw call
are inversely proportional and the proportion should roughly be the same for
each execution of the same simulation regardless of parameter configuration, but
in the prebuilt data-guided atlases column in Table 5.2 the number of draw calls
and the average number of primitives per draw call are both very high compared
to the rest. This also occurs in some columns in Table 5.3 and 5.4 and was caused
by averaging highly varying performance measurements of the configurations.
We elaborate on the varying performance of the parameter configurations in the
next section and we also expect to see the stability and inverse proportionality
of the number of draw calls and the average number of primitives per draw call.

Table 5.3: Average performance measurements for all configurations ran with
simulation 3.

Data-Guided Atlases Separate Textures Manual Atlases
Measurement Prebuilt  Transient Prebuilt Transient Prebuilt Transient
CPU Frame Time (ms) 4.57 2.43 9.25 2.66 3.45 2.52
GPU Frame Time (ms) 4.77 2.62 9.47 2.86 3.64 2.71
#Draw Calls 542.33 44.01 1436.21 72.31 263.22 51.52
#Primitives per Draw Call  7.95 75.58 2.11 94.83 11.34 58.88

Our running example in simulation 3, Table 5.3, shows that on average
the prebuilt manual atlases outperformed the prebuilt data-guided atlases, be-
cause of the unpredictability. However, transient data-guided atlases slightly
outperformed transient manual atlases. We observe that transient atlases were
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essential for optimal performance when dealing with team assembly.

Table 5.4: Average performance measurements for all configurations ran with
simulation 4.

Data-Guided Atlases Separate Textures Manual Atlases
Measurement Prebuilt  Transient Prebuilt Transient Prebuilt Transient
CPU Frame Time (ms) 6.16 4.60 12.11 5.29 9.60 5.95
GPU Frame Time (ms) 12.06 11.82 12.79 12.55 12.67 12.51
#Draw Calls 331.95 7.25 1533.81 64.60 1028.22 212.37
#Primitives per Draw Call  552.17 767.63 2.02 1056.65 3.26 15.80

In Table 5.4, for simulation 4 with the static coherently moving textures, the
GPU frame time was rather high compared to the GPU frame time for other
simulations independent of the number of draw calls. The CPU frame time
however was heavily influenced by the number of draw calls. We also see that
the decrease of CPU frame time due to the reduction of draw calls diminishes
when the number of draw calls has become lower and lower.

5.2 Configuration performance

In Table 5.5, 5.6, 5.7 and 5.8 the average performance results per parameter
configuration and per performance measurement are shown. Each performance
measurement has a minimum or maximum value in bold. We want to minimize
CPU frame time, GPU frame time and the number of draw calls, so for these
columns the minimum is emboldened. For the average number of primitives
per draw call the opposite is the case, so the maximum has been emboldened.
The configurations are listed according to the following format: the type of
prebuilt textures (separate textures, data-guided atlases or manual atlases), the
maximum texture size for prebuilt atlases, which is not relevant and left out for
separate textures, the texture packing algorithm and the partitioning algorithm.
The transience is encoded as the highlight of the row, if a row is highlighted,
transient atlases were enabled.
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Table 5.5: Average performance measurements of simulation 1 for each config-
uration. Highlighted rows indicate that transience was enabled.

Configuration CPU Frame GPU Frame #Draw Calls #Primitives
Time (ms) Time (ms) per Draw Call

Separate Textures 11.44 12.24 1098.71 8.86
Separate Textures FFDH Approx. 7.91 8.70 362.87 26.38
Separate Textures FFDH Default 7.95 8.78 364.21 26.43
Separate Textures FFDH Greedy 7.91 8.73 363.12 26.37
Separate Textures MAXRECTS Approx. 7.90 8.68 364.66 26.18
Separate Textures MAXRECTS Default 7.93 8.74 364.01 26.34
Separate Textures MAXRECTS Greedy 7.92 8.73 364.44 26.29
Data-Guided Atlases 4096 FFDH Approx. 6.88 7.72 347.74 22.11
Data-Guided Atlases 4096 FFDH Approx. 6.88 7.75 349.26 22.20
Data-Guided Atlases 4096 FFDH Default 6.91 7.7 347.97 22.11
Data-Guided Atlases 4096 FFDH Default 6.97 7.81 349.42 22.16
Data-Guided Atlases 4096 FFDH Greedy 6.88 7.75 349.15 22.03
Data-Guided Atlases 4096 FFDH Greedy 6.96 7.83 349.84 22.08
Data-Guided Atlases 4096 MAXRECTS Approx. 6.75 7.65 328.22 21.54
Data-Guided Atlases 4096 MAXRECTS Approx. 6.51 7.41 328.72 21.57
Data-Guided Atlases 4096 MAXRECTS Default 6.50 7.35 346.44 20.51
Data-Guided Atlases 4096 MAXRECTS Default 6.47 7.36 332.54 21.38
Data-Guided Atlases 4096 MAXRECTS Greedy 6.42 7.30 329.41 21.48
Data-Guided Atlases 4096 MAXRECTS Greedy 6.45 7.31 329.51 21.60
Data-Guided Atlases 8192 FFDH Approx. 6.77 7.61 347.96 22.16
Data-Guided Atlases 8192 FFDH Approx. 6.81 7.63 349.95 22.25
Data-Guided Atlases 8192 FFDH Default 6.87 7.74 348.37 22.13
Data-Guided Atlases 8192 FFDH Default 6.94 7.80 348.06 22.13
Data-Guided Atlases 8192 FFDH Greedy 6.88 7.71 348.28 22.19
Data-Guided Atlases 8192 FFDH Greedy 6.92 7.77 347.85 22.14
Data-Guided Atlases 8192 MAXRECTS Approx. 6.95 7.83 349.83 22.18
Data-Guided Atlases 8192 MAXRECTS Approx. 6.61 7.80 333.46 21.05
Data-Guided Atlases 8192 MAXRECTS Default 6.77 7.60 349.28 22.03
Data-Guided Atlases 8192 MAXRECTS Default 6.82 7.67 350.23 22.20
Data-Guided Atlases 8192 MAXRECTS Greedy 6.78 7.65 348.49 22.16
Data-Guided Atlases 8192 MAXRECTS Greedy 6.82 7.68 350.33 22.10

The real world scenario of simulation 1 with results for each configuration
in Table 5.5 performed similar for each configuration with separate textures as
well as with data-guided atlases. A partitioning of textures into smaller texture
atlases of 4096 by 4096 texels was apparently slightly better than a partitioning
into larger texture atlases for data-guided atlases. All configurations of separate
textures with transient atlases performed worse than all configurations of the

data-guided atlases.
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Table 5.6: Average performance measurements of simulation 2 for each config-
uration. Highlighted rows indicate that transience was enabled.

Configuration CPU Frame GPU Frame #Draw Calls #Primitives
Time (ms) Time (ms) per Draw Call
Separate Textures 10.20 10.43 1608.89 2.10
Separate Textures FFDH Approx. 2.58 2.79 5.58 1095.55
Separate Textures FFDH Default 2.57 2.77 4.36 1096.16
Separate Textures FFDH Greedy 2.57 2.78 5.04 1095.54
Separate Textures MAXRECTS Approx. 3.38 3.59 168.61 986.40
Separate Textures MAXRECTS Default 3.37 3.57 164.95 989.03
Separate Textures MAXRECTS Greedy 3.34 3.56 158.86 993.20
Data-Guided Atlases 4096 FFDH Approx. 4.76 4.96 555.22 5.97
Data-Guided Atlases 4096 FFDH Approx. 2.43 2.62 8.61 468.84
Data-Guided Atlases 4096 FFDH Default 4.65 4.85 526.36 6.29
Data-Guided Atlases 4096 FFDH Default 2.42 2.60 7.78 469.49
Data-Guided Atlases 4096 FFDH Greedy 5.09 5.30 645.76 5.14
Data-Guided Atlases 4096 FFDH Greedy 2.40 2.59 7.53 469.83
Data-Guided Atlases 4096 MAXRECTS Approx. 5.64 5.83 732.32 4.54
Data-Guided Atlases 4096 MAXRECTS Approx. 2.44 2.63 10.14 365.18
Data-Guided Atlases 4096 MAXRECTS Default 5.07 5.27 624.86 5.31
Data-Guided Atlases 4096 MAXRECTS Default 2.41 2.61 7.41 469.91
Data-Guided Atlases 4096 MAXRECTS Greedy 6.35 6.57 954.20 3.50
Data-Guided Atlases 4096 MAXRECTS Greedy 2.43 2.62 11.45 364.79
Data-Guided Atlases 8192 FFDH Approx. 2.37 2.56 3.01 1097.05
Data-Guided Atlases 8192 FFDH Approx. 2.38 2.57 3.01 1096.98
Data-Guided Atlases 8192 FFDH Default 2.38 2.56 3.01 1097.06
Data-Guided Atlases 8192 FFDH Default 2.39 2.57 3.01 1097.06
Data-Guided Atlases 8192 FFDH Greedy 2.38 2.57 3.01 1097.09
Data-Guided Atlases 8192 FFDH Greedy 2.38 2.57 3.01 1097.02
Data-Guided Atlases 8192 MAXRECTS Approx. 2.38 2.57 3.01 1096.93
Data-Guided Atlases 8192 MAXRECTS Approx. 2.39 2.57 3.01 1097.01
Data-Guided Atlases 8192 MAXRECTS Default 2.40 2.58 3.01 1097.10
Data-Guided Atlases 8192 MAXRECTS Default 2.39 2.58 3.01 1097.06
Data-Guided Atlases 8192 MAXRECTS Greedy 2.38 2.57 3.01 1097.05
Data-Guided Atlases 8192 MAXRECTS Greedy 2.38 2.58 3.01 1097.04
Manual Atlases 4096 FFDH Approx. 6.99 7.20 1044.74 3.20
Manual Atlases 4096 FFDH Approx. 3.53 3.73 209.95 15.73
Manual Atlases 4096 FFDH Default 7.13 7.34 1044.74 3.20
Manual Atlases 4096 FFDH Default 3.54 3.75 209.53 15.74
Manual Atlases 4096 FFDH Greedy 6.94 7.15 1044.74 3.20
Manual Atlases 4096 FFDH Greedy 3.53 3.74 209.74 15.74
Manual Atlases 4096 MAXRECTS Approx. 6.99 7.21 1046.73 3.20
Manual Atlases 4096 MAXRECTS Approx. 3.56 3.77 211.45 15.59
Manual Atlases 4096 MAXRECTS Default 6.95 7.17 1045.73 3.20
Manual Atlases 4096 MAXRECTS Default 3.55 3.76 211.03 15.60
Manual Atlases 4096 MAXRECTS Greedy 6.95 7.17 1045.73 3.20
Manual Atlases 4096 MAXRECTS Greedy 3.58 3.79 212.01 15.59
Manual Atlases 8192 FFDH Approx. 6.94 7.16 1044.74 3.20
Manual Atlases 8192 FFDH Approx. 3.53 3.73 209.32 15.74
Manual Atlases 8192 FFDH Default 6.98 7.20 1044.74 3.20
Manual Atlases 8192 FFDH Default 3.53 3.74 208.97 15.75
Manual Atlases 8192 FFDH Greedy 7.06 7.28 1044.74 3.20
Manual Atlases 8192 FFDH Greedy 3.54 3.74 209.39 15.74
Manual Atlases 8192 MAXRECTS Approx. 6.98 7.20 1046.73 3.20
Manual Atlases 8192 MAXRECTS Approx. 3.57 3.78 211.10 15.60
Manual Atlases 8192 MAXRECTS Default 6.95 717 1045.73 3.20
Manual Atlases 8192 MAXRECTS Default 3.56 3.77 211.73 15.59
Manual Atlases 8192 MAXRECTS Greedy 10.05 10.28 1591.97 2.13
Manual Atlases 8192 MAXRECTS Greedy 9.78 10.01 1504.58 2.25

For simulation 2 in Table 5.6 the results are a lot less decisive. Separate tex-
tures with transient atlases and the FFDH packing algorithm performed similar
to data-guided atlases and consistently a lot better than the other packing al-
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gorithm for separate textures with transient atlases, MAXRECTS. Data-guided
atlases configurations still consistently performed better than their manual at-
lases counterparts, but when decreasing the maximum texture atlas size for
data-guided atlases performance went down and only transience could get it up
to speed with the configurations of larger maximum texture size for data-guided
atlases, which all performed equally well. The equality in performance is due to
the fact that almost all textures fit into the texture atlas of 8192 by 8192 texels.
The manual atlases with a maximum texture size of 8192, MAXRECTS pack-
ing algorithm and greedy partitioning made a rather large slip in performance,
almost as bad as completely separate textures, which is rather odd compared
to the other manual atlases configurations performing consistently.
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Table 5.7: Average performance measurements of simulation 3 for each config-
uration. Highlighted rows indicate that transience was enabled.

Configuration CPU Frame GPU Frame #Draw Calls #Primitives
Time (ms) Time (ms) per Draw Call
Separate Textures 9.25 9.47 1436.21 2.11
Separate Textures FFDH Approx. 2.41 2.61 31.49 100.63
Separate Textures FFDH Default 2.39 2.59 31.42 102.50
Separate Textures FFDH Greedy 2.46 2.66 32.56 97.67
Separate Textures MAXRECTS Approx. 2.98 3.19 122.08 85.27
Separate Textures MAXRECTS Default 2.90 3.10 112.82 91.71
Separate Textures MAXRECTS Greedy 2.82 3.03 103.49 91.23
Data-Guided Atlases 4096 FFDH Approx. 4.48 4.68 512.13 5.92
Data-Guided Atlases 4096 FFDH Approx. 2.46 2.66 47.75 69.35
Data-Guided Atlases 4096 FFDH Default 6.62 6.83 1012.65 3.05
Data-Guided Atlases 4096 FFDH Default 2.44 2.64 47.15 72.94
Data-Guided Atlases 4096 FFDH Greedy 4.28 4.48 473.38 6.41
Data-Guided Atlases 4096 FFDH Greedy 2.45 2.64 46.04 71.05
Data-Guided Atlases 4096 MAXRECTS Approx. 4.52 4.72 531.24 5.58
Data-Guided Atlases 4096 MAXRECTS Approx. 2.48 2.68 53.03 62.41
Data-Guided Atlases 4096 MAXRECTS Default 6.93 7.13 1122.84 2.67
Data-Guided Atlases 4096 MAXRECTS Default 2.43 2.62 47.04 70.18
Data-Guided Atlases 4096 MAXRECTS Greedy 4.89 5.09 622.53 4.83
Data-Guided Atlases 4096 MAXRECTS Greedy 2.45 2.64 49.49 65.27
Data-Guided Atlases 8192 FFDH Approx. 2.87 3.06 151.06 19.38
Data-Guided Atlases 8192 FFDH Approx. 2.36 2.55 35.71 88.98
Data-Guided Atlases 8192 FFDH Default 4.58 4.77 549.55 5.51
Data-Guided Atlases 8192 FFDH Default 2.37 2.56 37.23 85.37
Data-Guided Atlases 8192 FFDH Greedy 3.04 3.23 171.56 19.84
Data-Guided Atlases 8192 FFDH Greedy 2.39 2.58 37.26 85.67
Data-Guided Atlases 8192 MAXRECTS Approx.  3.52 3.71 296.53 9.98
Data-Guided Atlases 8192 MAXRECTS Approx. 2.41 2.60 40.41 78.66
Data-Guided Atlases 8192 MAXRECTS Default 5.02 5.22 644.32 4.66
Data-Guided Atlases 8192 MAXRECTS Default 2.45 2.65 43.22 81.07
Data-Guided Atlases 8192 MAXRECTS Greedy 4.08 4.28 420.15 7.59
Data-Guided Atlases 8192 MAXRECTS Greedy 2.44 2.63 43.78 75.99
Manual Atlases 4096 FFDH Approx. 3.43 3.63 259.81 11.48
Manual Atlases 4096 FFDH Approx. 2.45 2.65 48.43 61.95
Manual Atlases 4096 FFDH Default 3.44 3.64 266.18 11.18
Manual Atlases 4096 FFDH Default 2.52 2.71 52.11 57.77
Manual Atlases 4096 FFDH Greedy 3.46 3.66 262.99 11.47
Manual Atlases 4096 FFDH Greedy 2.48 2.67 49.69 60.78
Manual Atlases 4096 MAXRECTS Approx. 3.44 3.64 265.53 11.11
Manual Atlases 4096 MAXRECTS Approx. 2.55 2.74 53.44 57.46
Manual Atlases 4096 MAXRECTS Default 3.41 3.60 258.27 11.45
Manual Atlases 4096 MAXRECTS Default 2.54 2.73 52.46 57.75
Manual Atlases 4096 MAXRECTS Greedy 3.45 3.64 262.20 11.46
Manual Atlases 4096 MAXRECTS Greedy 2.49 2.68 51.58 58.81
Manual Atlases 8192 FFDH Approx. 3.44 3.64 267.32 11.05
Manual Atlases 8192 FFDH Approx. 2.52 2.72 51.05 58.95
Manual Atlases 8192 FFDH Default 3.49 3.69 264.29 11.35
Manual Atlases 8192 FFDH Default 2.52 2.71 52.30 57.28
Manual Atlases 8192 FFDH Greedy 3.46 3.66 262.15 11.53
Manual Atlases 8192 FFDH Greedy 2.50 2.69 49.33 61.34
Manual Atlases 8192 MAXRECTS Approx. 3.46 3.66 262.25 11.41
Manual Atlases 8192 MAXRECTS Approx. 2.50 2.70 51.04 59.62
Manual Atlases 8192 MAXRECTS Default 3.42 3.62 261.35 11.28
Manual Atlases 8192 MAXRECTS Default 2.55 2.75 53.24 57.28
Manual Atlases 8192 MAXRECTS Greedy 3.47 3.67 266.33 11.31
Manual Atlases 8192 MAXRECTS Greedy 2.56 2.76 53.58 57.58

Our team assembly running example in simulation 3 was unpredictable and
this is reflected in the results in Table 5.7. Each transient atlases configuration
performed better than its corresponding non-transient configuration. All tran-
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sient atlas configurations had a CPU frame time of under three milliseconds and
we observe that the transient data-guided atlases outperform the transient man-
ual atlases, bu the prebuilt data-guided atlases do not outperform the prebuilt
manual atlases. The manual atlases for simulation 3 consisted of the characters
to be assembled, so these are better than the unpredictable team assemblies
affecting the data of the prebuilt data-guided atlases. The separate textures
with transient atlases and the FFDH packing algorithm had the least draw calls
independent of the partitioning algorithm, because the separation allows for
unrestricted combination and thus maximum preparedness for unpredictability.
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Table 5.8: Average performance measurements of simulation 4 for each config-
uration. Highlighted rows indicate that transience was enabled.

Configuration CPU Frame GPU Frame #Draw Calls #Primitives
Time (ms) Time (ms) per Draw Call
Separate Textures 12.11 12.79 1533.81 2.02
Separate Textures FFDH Approx. 4.98 12.46 5.18 1097.69
Separate Textures FFDH Default 4.94 12.53 4.50 1097.70
Separate Textures FFDH Greedy 5.02 12.50 4.91 1097.10
Separate Textures MAXRECTS Approx. 5.58 12.52 125.96 1013.69
Separate Textures MAXRECTS Default 5.71 12.84 124.87 1016.39
Separate Textures MAXRECTS Greedy 5.53 12.47 122.16 1017.32
Data-Guided Atlases 4096 FFDH Approx. 7.03 12.08 525.15 6.32
Data-Guided Atlases 4096 FFDH Approx. 4.69 11.85 11.47 467.05
Data-Guided Atlases 4096 FFDH Default 7.07 12.47 521.95 6.35
Data-Guided Atlases 4096 FFDH Default 4.54 11.91 7.30 470.84
Data-Guided Atlases 4096 FFDH Greedy 7.78 12.37 675.10 4.93
Data-Guided Atlases 4096 FFDH Greedy 4.72 11.85 11.99 467.78
Data-Guided Atlases 4096 MAXRECTS Approx. 7.45 12.20 602.57 5.51
Data-Guided Atlases 4096 MAXRECTS Approx. 4.63 11.78 14.38 369.91
Data-Guided Atlases 4096 MAXRECTS Default 7.83 12.32 698.91 4.76
Data-Guided Atlases 4096 MAXRECTS Default 4.57 11.72 7.16 470.97
Data-Guided Atlases 4096 MAXRECTS Greedy 8.95 12.28 941.70 3.55
Data-Guided Atlases 4096 MAXRECTS Greedy 4.66 12.00 16.63 370.40
Data-Guided Atlases 8192 FFDH Approx. 4.55 11.73 3.01 1099.10
Data-Guided Atlases 8192 FFDH Approx. 4.59 11.77 3.01 1099.07
Data-Guided Atlases 8192 FFDH Default 4.65 11.84 3.01 1099.09
Data-Guided Atlases 8192 FFDH Default 4.56 11.76 3.01 1099.11
Data-Guided Atlases 8192 FFDH Greedy 4.71 11.93 3.01 1099.15
Data-Guided Atlases 8192 FFDH Greedy 4.54 11.76 3.01 1099.08
Data-Guided Atlases 8192 MAXRECTS Approx. 4.53 11.73 3.01 1099.10
Data-Guided Atlases 8192 MAXRECTS Approx. 4.57 11.74 3.01 1099.16
Data-Guided Atlases 8192 MAXRECTS Default 4.66 11.85 3.01 1099.11
Data-Guided Atlases 8192 MAXRECTS Default 4.54 11.74 3.01 1099.06
Data-Guided Atlases 8192 MAXRECTS Greedy 4.75 11.94 3.01 1099.10
Data-Guided Atlases 8192 MAXRECTS Greedy 4.57 11.97 3.01 1099.18
Manual Atlases 4096 FFDH Approx. 9.53 12.62 1022.68 3.28
Manual Atlases 4096 FFDH Approx. 5.95 12.46 213.98 15.77
Manual Atlases 4096 FFDH Default 9.52 12.57 1028.25 3.26
Manual Atlases 4096 FFDH Default 5.89 12.56 207.50 15.91
Manual Atlases 4096 FFDH Greedy 9.47 12.53 1029.63 3.25
Manual Atlases 4096 FFDH Greedy 5.97 12.43 213.74 15.84
Manual Atlases 4096 MAXRECTS Approx. 9.56 12.58 1027.82 3.26
Manual Atlases 4096 MAXRECTS Approx. 6.03 12.66 215.59 15.71
Manual Atlases 4096 MAXRECTS Default 9.62 12.59 1032.78 3.24
Manual Atlases 4096 MAXRECTS Default 5.91 12.38 208.62 15.81
Manual Atlases 4096 MAXRECTS Greedy 9.61 12.63 1026.60 3.26
Manual Atlases 4096 MAXRECTS Greedy 5.99 12.42 216.14 15.66
Manual Atlases 8192 FFDH Approx. 9.66 12.74 1029.15 3.25
Manual Atlases 8192 FFDH Approx. 5.97 12.59 214.08 15.77
Manual Atlases 8192 FFDH Default 9.59 12.82 1025.03 3.27
Manual Atlases 8192 FFDH Default 5.89 12.59 206.61 15.98
Manual Atlases 8192 FFDH Greedy 9.69 12.95 1022.06 3.28
Manual Atlases 8192 FFDH Greedy 5.98 12.80 215.53 15.75
Manual Atlases 8192 MAXRECTS Approx. 9.62 12.64 1035.48 3.24
Manual Atlases 8192 MAXRECTS Approx. 5.98 12.42 215.57 15.72
Manual Atlases 8192 MAXRECTS Default 9.59 12.60 1030.88 3.25
Manual Atlases 8192 MAXRECTS Default 5.90 12.35 207.06 15.94
Manual Atlases 8192 MAXRECTS Greedy 9.74 12.79 1028.23 3.26
Manual Atlases 8192 MAXRECTS Greedy 5.94 12.42 214.01 15.73

In Table 5.8 we see the results for simulation 4 of dynamic textures. GPU
frame times are higher for all configurations compared to other simulations
and were only slightly reduced when the number of draw calls was decimated.
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The configurations of manual atlases were significantly outperformed by the
corresponding configurations of data-guided atlases except for the prebuilt data-
guided texture atlases with a maximum texture atlas size of 4096 texels and
the MAXRECTS and greedy packing and partitioning algorithms. Again the
maximum texture size dictated performance for data-guided atlases without
transience, although the packing and partitioning algorithms also had an impact
on the number of draw calls.

5.3 Transient atlases overhead

We have chosen to zoom in on the first 25 frames of simulation 2 for checking
the transient atlases overhead, specifically on separate textures and data-guided
atlases with the FFDH packing algorithm and default partitioning. Simulation
2 is the most stable for its static usage of textures, so any overhead caused
by atlas transience is best observed there. For data-guided atlases we picked
4096 as our maximum texture atlas size, because it leads to a higher number
of smaller textures that can be combined when creating transient atlases, so
the overhead is more visible. We compare the average performance measure-
ments of all executions in figures 5.1, 5.2 and 5.3 for both prebuilt and transient
configurations.

First we notice that transient atlases were used from around frame five and
on in Figure 5.1 as the CPU usage dropped consistently for a few frames for
transient configurations. In the peaks at frame four overhead in CPU time for
the creation of transient atlases is observable if we compare the difference in
CPU frame time for prebuilt and transient configurations for separate textures
and for data-guided atlases.

In Figure 5.2 we see that the peaks in GPU frame time were similar and very
high. The peaks were slightly higher for separate textures due to the overhead of
having separate textures. We can see copying a large number of textures for the
creation of transient texture atlases affected the GPU frame time significantly,
because the GPU frame time transient separate textures configuration decreased
slower after the peak than the transient data-guided atlases configuration. After
frame five the GPU frame time kept a stable pace and was similar for transient
configurations. For prebuilt separate textures the GPU frame time was a lot
higher than for the other configurations.

Finally we confirm that transient atlases were indeed made around frame
four and used from around frame five by checking the number of draw calls in
Figure 5.3. The number of draw calls for prebuilt configurations was consistent
with the use of separate textures or texture atlases. It was also lower for the
the transient data-guided atlases at first compared to the separate textures with
transient atlases, because of the use of separate textures and the time it took
to create transient texture atlases.
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Figure 5.1: The average number of CPU frame time in milliseconds spent on the
render thread over 25 frames for a selection of configurations ran with simulation
2.
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Figure 5.2: The average number of GPU frame time in milliseconds over 25
frames for a selection of configurations ran with simulation 2.
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Figure 5.3: The average number of draw calls over 25 frames for a selection of
configurations ran with simulation 2.
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5.4 Memory usage

Table 5.9: Average area in square texels for the created texture atlases in sim-
ulation 3. Highlighted rows indicate that transience was enabled.

Configuration Area (square texels)
Separate Textures 61175935
Data-Guided Atlases 4096 94876557
Data-Guided Atlases 4096 122935579
Data-Guided Atlases 8192 94014819
Data-Guided Atlases 8192 115571497
Manual Atlases 4096 105313384
Manual Atlases 4096 68763453
Manual Atlases 8192 105313384
Manual Atlases 8192 68562622

In Table 5.9 the area of the texture atlases that were created before or during
simulation 3 is given. For separate textures with transience enabled the area is
the lowest, because only the textures that are used in the run of the simulation
are packed into transient atlases. For transient manual atlases the area is similar
to the area of separate textures. However, for prebuilt data-guided and manual
texture atlases the used area is much larger, although data-guided atlases use
less memory than manual atlases. For prebuilt configurations, the area of all
of the created atlases is measured and when using transient atlases only the
textures in use are packed into transient texture atlases and then the area is
much smaller, like for transient manual atlases. Unfortunately this is not the
case for transient data-guided atlases, because texture atlases are loaded with
lots of unnecessary textures. We chose five out of ten characters in simulation 3
and when those are spread out over multiple atlases, we get very high memory
consumption for transient atlases. The spread of textures of multiple characters
over multiple atlases for data-guided atlases can be seen in 5.4a compared to
the manual single character atlas in 5.4b.
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Figure 5.4: Prebuilt texture atlases for simulation 3.
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Chapter 6

Discussion

Our approach, implementation and experimental setup could have been done
in many different ways. In this chapter we discuss and justify the approach
and its implementation, evaluate the scale of the experiments, interpret the
results, compare the configurations and speculate about the best use cases for
the approach and its configurations.

6.1 Experiment scale

The experiments we conducted were not executed on large-scale simulations
nor on a game, but on much smaller scale simulations. Our simulations used
a huge number of textures, so that part was definitely large-scale, but the part
where we switch scenes, levels or layers and travel through huge open worlds
was simply not present.

6.2 Data-guided or manual composition

Most results have shown that we achieved reducing the number of draw calls
using data-guided atlases and that data-guided atlases outperform manual at-
lases. Some results were not as good as for manual atlases, but at least came
close, so we succeeded at automating the composition of texture atlases and
matching performance of manual atlases for our experiments. However, the re-
sults of data-guided texture atlases are promising enough to believe that the
approach is scalable with the right configuration and implementation and can
benefit large-scale simulations and games. Prebuilt data-guided texture atlases
seem especially suitable for textures of static geometry and textures that are
used dynamically in a predictable manner. If textures are reused and combined
a lot with different textures, the maximum atlas texture size should be lowered.
Otherwise a larger texture atlas ends up being loaded for just one texture for
example and batches might be broken unnecessarily. We did not take into ac-
count the reuse and combination of textures when processing the data gathered
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by the telemetry during rendering, so quite possibly there is much to be gained
by grouping textures into atlas compositions based on those criteria, while also
deciding the maximum texture atlas size automatically for the atlas composition
to reduce draw calls on reuse and combination of textures and to reduce GPU
memory usage.

6.3 Transient overhead

At first we thought the overhead of creating and using transient texture atlases
would be much more severe, but the results were better than expected. Copying
a large number of textures from one place in GPU memory to another is really
fast, the copy texture region commands issued from the render thread only
have a minor impact, also for separate textures and composing the textures
into transient atlases with texture packing was performed on another thread to
ensure smooth performance when that would take long. Both the process of
texture packing and the process of copying textures to a transient texture atlas
can be smeared out over multiple frames, which makes it suitable for real-time
usage. Although the number of draw calls might be higher at first when it takes
a little longer to transition to transient atlases, the performance is most likely
always better, because textures always become part of larger texture atlases and
creating larger texture atlases can only lead to an equal number of draw calls or
less draw calls. The transition to transient texture atlases could also be masked
by a loading screen and the number of draw calls is usually quite low if using
prebuilt texture atlases instead of separate textures.

In our implementation we used offline rectangle bin packing for both prebuilt
and transient texture atlases. The delay of building transient texture atlases
could be reduced by applying online rectangle bin packing, especially when
partitioning textures into different atlases. We did not choose to do so, because
of the increased number of atlases necessary for online packed texture atlases[14].
We also did not use texture rotation in our packing algorithms for the sake of
simplicity.

We have seen that the usage of transient texture atlases reduces draw calls
when dealing with unpredictable combination of textures in our running exam-
ple. Although separate textures with transient texture atlases often reduced
draw calls as well as data-guided atlases, loading prebuilt separate textures
takes much longer than loading prebuilt texture atlases and when a lot of large
separate textures need to be combined, the transient atlas compositioning pro-
cess takes much longer. When transient atlas usage is delayed for separate
textures the initial frames are drawn with separate textures, which is really bad
for performance as we have seen in our results.
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6.4 Parameter configuration comparison

For a complete comparison we should have experimented with all possible config-
urations of course. We could have reduced the maximum texture atlas size even
more to 2048 and combined different packing and partitioning algorithms for
prebuilt and transient atlases. This was not feasible for this thesis, as it would
have lead to a combinatorial explosion of configurations and results. Though
we can compare the configurations that we did use in our experiments.

The partitioning of the textures into atlases also did not matter as much
as we expected and this might be caused by the small scale and predictability
of the simulations. If the simulation was of such a large scale that a lot of
textures would benefit from being in one atlas, then the partitioning algorithm
is expected to really make a difference. For data-guided atlases in simulation 3
the partitioning algorithm did matter and in some cases the greedy algorithm
performs better and in others the approximation algorithm, either of them is
better than the default. In simulation 4 the approximation algorithm performed
better than the greedy algorithm.

6.5 Memory versus draw calls

Memory consumption for transient data-guided texture atlases was much higher
than for transient manual atlases, because the manual atlases had less textures
per atlas composition and were organized per character and because the tex-
tures for the chosen characters were spread out over the data-guided atlases.
This means that the partitioning algorithms are insufficient for larger prebuilt
data-guided textures or that the draw order interleaved textures of different
characters, so that a good prebuilt data-guided atlas cannot be produced when
different characters are combined. The partitioning could benefit from a smaller
maximum texture size, such as 1024 or 2048, which enables more combinations
for transient atlases and a higher chance that the characters are not spread out
if the greedy or approximation partitioning algorithms perform well.

6.6 Requirements

Our approach to transient texture atlases requires the availability of fast in-
GPU-memory compressed texture region mipmap copying to another compressed
texture mipmap. We conducted our experiments only with the Direct3D 11
hardware API and the results might be different with for example OpenGL,
Direct3D 12 or Vulkan.
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Chapter 7

Related Work

Other approaches to improving draw call batching exist, such as clipmaps for
terrain rendering, virtual textures and texture arrays for textures with the same
properties. The alternative approaches are either not suitable for the general
application of our approach or have certain drawbacks or advantages depending
on the application and preferences or needs of the developer compared to our
approach. In this chapter we discuss clipmaps, virtual textures and texture
arrays and we review the contributions, usage, benefits and drawbacks of each
approach.

7.1 Clipmapping

Tanner, Migdal, and Jones introduce the clipmap as a virtual mipmap[20]. A
clipmap is a dynamic texture representation that partially clips the higher reso-
lution levels of a mipmap and dynamically updates a clipped region of a mipmap
level to greatly reduce memory usage. One of the goals was to support real-time
rendering with a very large texture by only using a subset of the mipmap levels
of that texture. This was accomplished by reducing the storage requirements for
a very large texture by clipping the mipmap and the virtualization of texture
memory. Dynamically updating a clipped region of a mipmap level requires
that parts of the new region are present in memory, either on the same level or
a lower resolution level. To accommodate for sudden scene changes, textures
need to be prefetched from memory and cached. The necessary regions are put
into a priority queue for loading, where coarser resolutions have a higher prior-
ity, because of the reduced bandwidth usage. This way a larger texture can be
used and the batch is not broken by multiple smaller textures. Unfortunately a
clipmap requires a spatial relation between texture data and geometry, because
of the dynamically updated clipped region. The technique is therefore primarily
used for terrain visualization. The clipmap approach was one of the firsts to in-
troduce texture memory virtualization and texture prefetching, the foundation
for virtual textures and texture streaming, an approach that has been developed
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further|[7][18][20]. Opposed to clipmaps, Hiittner presents a grid of mipmaps to
reduce memory usage by only loading higher resolution mipmap levels for spe-
cific textures in the grid, because a clipmap loads a whole mipmap level of a very
large texture for only a specific region, which is rather costly memory-wise [12].
In the same year as [20] and [12], Igehy, Eldridge, and Proudfoot introduced
prefetching in a texture cache architecture[13], reassuring the immediate need
for a different solution for the storage and usage of textures.

7.2 Virtual textures

In [3] Barrett explains a CPU-like virtualization of texture memory. Barrett
used the hints from John Carmack on the MegaTextures technique from id
Software for guidance and dubs his technique sparse virtual textures. The lit-
erature prefers to refer to the technique as virtual textures, so we will also use
this term, although AMD filed a patent in 2014 for partially resident textures
[9]. The virtual textures technique utilizes the property of texture atlases that
all the textures in one atlas can be drawn at once by putting all the mipmapped
textures in one massive texture. To accommodate for such a large texture, the
memory is virtualized and the texture only partially resides in GPU memory.
When a texture needs to be drawn the texture coordinates are mapped onto the
texture by a memory address translation. The requirement of real-time texture
streaming to dynamically load and unload parts of the texture is a disadvantage.
Sudden changes in a scene that require more detailed and different textures than
currently in memory can lead to a blurry textured environment when the GPU
bandwidth is limited, because it always loads the lowest mip first. To make the
process of loading and visualizing textures smoother, priority queues and CPU-
like cache policies must be used [4][5][10][16]. However, the GPU bandwidth and
prioritization can still be insufficient and then low quality textures are drawn
instead of high quality textures. Another disadvantage of such a massive texture
is that the resulting file is very large. This makes the process of development
when, for example, simply and quickly replacing a texture more complex and
it also complicates applying a patch with texture changes to an already pub-
lished application. Compared to our approach we only have some overhead on
the CPU and might be limited by the GPUY bandwidth when loading textures
and creating transient texture atlases, none of the other problems for virtual
textures exist.

7.3 Texture arrays

Trapp and Déllner propose texture arrays[21], an alternative texture represen-
tation, which aggregates textures of the same format and resolution in arrays
to reduce state changes. The approach also uses a data preprocessing step
that analyzes the 3D geometry and texture usage beforehand. Although this
technique shows promising results for a static city and could benefit from our
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approach, it requires textures of the same format and resolution and it is an
enhancement rather than a solution for scenes that include static geometry, but
also have more dynamic and unpredictable elements. Especially older hardware
APIs and also some modern hardware APIs do not support texture arrays.
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Chapter 8

Conclusion

We have shown that automating the composition of texture atlases is possible
by gathering and processing texture rendering data into texture atlas compo-
sitions. Using data-guided texture atlases created from the automated atlas
compositions we achieved similar or better performance than manually com-
posed texture atlases by reducing the number of draw calls significantly. Not
only have we shown that automation is possible, but also that it is a viable ap-
proach to reducing the number of draw calls, eliminating or at least decreasing
the need for cumbersome manual composition of texture atlases.

When developing the approach for composing textures into transient texture
atlases on the CPU and creating the transient texture atlases on the GPU at
run-time we built upon the approach of automating the composition of texture
atlases. Transient data-guided texture atlases enable the optimization of draw
call batching by automatically combining textures, which themselves can be
texture atlases, into texture atlases on load. The transient texture atlases can
utilize the full maximum texture dimensions of the GPU and are created based
on data and suitable for dynamic, unpredictable and emergent texture usage.
The overhead turns out to be far less than the performance gain and allows
real-time rendering.

We recommend transient data-guided atlases with a maximum texture atlas
size depending on the usage of textures. The maximum texture atlas size should
be lower when textures are not used statically, used unpredictably or reused a
lot. Unfortunately, we cannot recommend our partitioning algorithms, because
of high memory consumption. We do believe there are better algorithms out
there. Nevertheless we only recommend composing texture atlases manually
when the way textures are drawn is straightforward and predictable and when
creating all the atlas compositions manually is not cumbersome.

Finally we predict large-scale simulations with many 2D textures such as
the simulation of a virtual 3D city in [21] can benefit from using transient data-
guided texture atlases.
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8.1 Future work

Our implementation was not flawless, our approach can be improved and both
can be extended in the future.

Near the end of our research we gained new insights on texture coordinates
and size alignment for mipmaps and compression that we incorporated into the
work, but that also paved the way for adaptive transient data-guided texture
atlases. These texture atlases would be able to adapt based on rendering data
gathered at run-time and immediately processing the data to adapt the texture
atlases by moving texture regions in an atlas to another texture atlas instead of
only combining textures or texture atlases into larger transient texture atlases.
After some testing in AbbeyCore we thought this was not possible or not viable
due to the memory wastage of aligning textures for the compression block size
and the number of mipmap levels, although we did want to pursue adaptive
transient data-guided atlases at first. Adding adaptation to the transient data-
guided texture atlases could reduce draw calls even more, because of maximum
flexibility in composing the textures and could eliminate the need for gathering
rendering data beforehand.

Currently textures are only put into a single texture atlas, there are no
duplicates. For textures with a high rate of usage and combination with lots of
different textures putting them into multiple texture atlases, and introducing
duplicates, could reduce the number of draw calls. Textures would need to be
classified based on criteria that indicate duplicates would be beneficial and when
rendering such textures, a texture change has to be avoided by checking if the
currently bound texture (atlas) already is or contains the texture to be rendered
to reduce draw calls instead of changing the texture to a texture atlas that also
contains a duplicate of the texture and introducing a new draw call.

Grouping textures based on different kinds of usage might in general be
a good idea. Textured static geometry is always rendered the same way, so
draw call batching can be optimized easily before run-time. Dynamic and un-
predictable usage is hard to optimize before run-time and those textures could
benefit from being put into other texture atlases than those for static textures.
Classification based on usage could be done by applying machine learning tech-
niques on the rendering data. Optimizing a classification model for textures
would be interesting and may reduce draw calls.

The high memory consumption for combining data-guided texture atlases
into transient texture atlases for unpredictable use needs to be researched fur-
ther. If our graph partitioning algorithms were not suitable, clustering for com-
munity detection in graphs[8] could improve partitioning many textures into
multiple atlases to improve draw call batching and lower the high memory con-
sumption.

Our experiments used many textures, but were not necessarily large-scale in
the sense of dynamicity and unpredictability. This would have made a stronger
case for our approach, so the results of applying transient data-guided texture
atlases to a large-scale game or simulation would be interesting.
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