
The Agda UHC Backend
Philipp Hausmann

M.Sc. thesis ICA-4003373
Supervisors: Dr. Wouter Swierstra

Dr. Atze Dijkstra

October 9, 2015

Department of Computing Science

Abstract

This thesis studies how we can facilitate combined Haskell/Agda developments. As
foundation for our research we have created the Agda UHC backend, targeting the in-
termediate Core language of the Utrecht Haskell Compiler. We will present a formal
description of our translation scheme, which now powers all major Agda backends.

Building upon our new backend, we introduce a Contract framework specifically
aimed at the Foreign Function Interface (FFI). As with most FFI implementations, a
major challenge are the different type systems of the languages involved. Our contract
library provides a concise and powerful way to translate data between Agda foreign lan-
guages like Haskell. We also provide a formal specification of our contract framework,
making it feasible to implement a similar scheme in other languages.

Furthermore, we provide an improved Agda FFI interface for function calls which
combines well with our Contract framework.

Our contributions make Agda a more viable choice for applied dependently-typed
programming and provide an elegant and novel solution for the FFI problem in a de-
pendently typed setting.

Contents

1 Introduction 3

2 Background 5
2.1 Agda - the Language . 5

3 The Agda UHC Backend 7
3.1 Existing Agda backends . 7

3.1.1 What should be the target language? 7
3.2 Translating between Agda and UHC 10

3.2.1 Treeless Intermediate Syntax 10
3.2.2 Translating Agda’s Internal Syntax to Treeless Syntax 10
3.2.3 Example . 17

3.3 Lessons learned . 18
3.3.1 Adapting UHC to our needs 18
3.3.2 Testing our Compiler . 18

3.4 Related work . 19
3.5 Future work . 19

4 FFI 21
4.1 Existing FFI . 21
4.2 Level/Set arguments . 22
4.3 Syntax . 23
4.4 The new foreign calls . 23
4.5 Related work . 24
4.6 Future Work . 24

5 Contracts 25
5.1 Data Contracts . 25

5.1.1 The problem . 25
5.1.2 Unsafe Conversions . 26

5.2 Type-Indexed contracts . 27
5.2.1 Why type-indexed . 27
5.2.2 Non-dependent Isomorphisms 28
5.2.3 Contract language . 29
5.2.4 Contract desugaring . 30

5.3 Dependent Contracts . 33
5.3.1 Extended Syntax . 34
5.3.2 Embellished Translation Rules 35

1

5.4 An actual Agda Implementation . 38
5.4.1 Dependent Partial Isomorphisms 38
5.4.2 Internal Syntax . 40
5.4.3 Surface Syntax . 41
5.4.4 Fitting everything together 44
5.4.5 Examples . 45

5.5 Witness Objects . 46
5.6 Contracts and the FFI . 49
5.7 Related work . 49
5.8 Future work . 50

6 Conclusion 51

2

Chapter 1

Introduction

The importance of computer programs in society is growing steadily; most parts of
our modern civilization grind to a standstill when our electronic gadgets fail us. This
increasing reliance on computer programs causes a rising demand for assuring the cor-
rectness of programs. To meet this increased need for correct programs, a lot of effort
is being spent on different ways to reach this goal. Testing is often the first approach
chosen to meet this goal. Its major drawback is that exhaustive testing of all possible
program inputs is rarely possible, especially with the ever-increasing size and complex-
ity of programs. In consequence, non-exhaustive testing can only prove the absence of
certain errors but never the correctness of a program. And while testing is certainly a
valuable tool for assuring correctness, it is often not sufficient by itself.

One avenue seeing a lot of research activity are type-systems and dependent types
in particular, which could well be the tool solving this issues. Dependent types provide
a way to formally state the expected behavior and verify that the program adheres to the
specification. Dependent types only admit programs which are correct by construction,
thereby assuring the correctness of the program for all possible inputs.

However, often programs have to interact with some external entities and other pro-
grams running on the same or other computers. Creating a formal specification for a
program often requires knowledge about this other external systems, but the specifica-
tion of this external systems are often written in an informal way and cannot be readily
incorporated in a formal specification. This problem is not new, and every programming
language which interacts with any outside systemwith a more relaxed type system faces
this difficulty.

The additional challenge in interoperating with the outside world from Agda is be-
cause Agda does not readily admit programs failing at runtime; there is no exception or
error mechanism in Agda. We strive to remedy this problem by providing a controlled
way to perform unsafe operations embedded in Agda.

This thesis documents our work and the solutions we have implemented:

• Wewill describe our experience implementing a new compiler backend for Agda.
We survey the existing Agda backends and the design criteria we set ourselves
for our new compiler.
Our new backend enables easy experimentation with combined Agda/Haskell de-
velopments. The principal algorithms implemented may not be novel and many
elements have been described before, but we do provide a more detailed formal
semantics of the translation from Agda to UHC’s Core language (Chapter 3).

3

• We have built a new Foreign Function Interface for calling Haskell functions
from Agda. Having a shared intermediate language for both the Utrecht Agda
Compiler and the Utrecht Haskell Compiler makes it possible to have a common
runtime data representation and exchange data between the two languages freely
(Chapter 4).

• We have created a contracts framework enabling us to annotate FFI calls with
their invariants and verifying them at runtime. Building upon our compiler back-
end and FFI work, this feature increases the safety of FFI calls while making
them more concise and convenient to use at the same time. Our work shows how
Contracts can be implemented and used in a dependently typed setting and we
explore some of the available design space (Chapter 5).

The Agda UHC backend is available as part of the official Agda codebase 1. All
other code has been published on public Github repositories, namely the Contracts li-
brary 2, the new FFI for Agda 3 and the accompanying standard library version 4.

1https://github.com/agda/agda
2https://github.com/phile314/agda-contracts/
3https://github.com/phile314/agda/tree/new-ffi
4https://github.com/phile314/agda-stdlib/tree/ffi

4

https://github.com/agda/agda
https://github.com/phile314/agda-contracts/
https://github.com/phile314/agda/tree/new-ffi
https://github.com/phile314/agda-stdlib/tree/ffi

Chapter 2

Background

2.1 Agda - the Language
Agda is the language used throughout this Master Thesis, hence we will give a very
brief introduction into it. More in-depth introductions are available online 1.

Agda is a functional language, whose main difference compared to traditional func-
tional languages such as Haskell and ML is its dependently typed nature. This mix of
dependent types with functional programming makes Agda suitable for creating pro-
grams, specifications and proofs; unifying all these applications in one language. We
will use Agda mostly as programming language in this thesis and only touch on the
specification/proofing parts lightly.

The Agda language is quite similar in spirit and syntax to Haskell, but not without
some major differences. Let us begin with data type declarations. In Agda we can
define data types similar to the GADT syntax in Haskell. However, Agda allows us
to index data types, which for example means that we can encode the length of a list
in it’s type. The following vector type for example mimics a Haskell list, where we
additionally encode the length:

𝖽𝖺𝗍𝖺 𝖵𝖾𝖼 (𝐴 ∶ 𝖲𝖾𝗍) ∶ ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
[] ∶ 𝖵𝖾𝖼 𝐴 𝟢
∷ ∶ ∀ {𝑛} → 𝐴 → 𝖵𝖾𝖼 𝐴 𝑛 → 𝖵𝖾𝖼 𝐴 (𝗌𝗎𝖼 𝑛)

The definition follows the usual List definition, where we have a base case nil con-
structing the empty Vector of length 0, and the cons case constructing a Vector with the
length incremented by one.

Taking advantage of this more expressive data type, we can define a safe head func-
tion where the type will ensure that it is only called on non-empty lists:

𝗁𝖾𝖺𝖽 ∶ ∀ {𝑛 𝐴} → 𝖵𝖾𝖼 𝐴 (𝗌𝗎𝖼 𝑛) → 𝐴
𝗁𝖾𝖺𝖽 (𝑥 ∷ 𝑣) = 𝑥

In fact, Agda requires that all functions are total, it is hence impossible to define the
traditional non-total head function. This restriction is necessary to ensure that Agda is
a consistent logic, admitting non-total functions would make it inconsistent.

1http://wiki.portal.chalmers.se/agda/pmwiki.php?n=Main.Othertutorials

5

The remainder of this thesis assumes that the reader is familiar with the basics of
dependently typed programming and Agda. The Agda tutorial by Norell [24] provides a
good introduction to dependently typed programming and Agda for those familiar with
functional programming.

6

Chapter 3

The Agda UHC Backend

3.1 Existing Agda backends
The current version of Agda has three backends. TheMAlonzo backend targets Haskell
as intermediate language, which is then compiled using GHC. The JS backend, as it’s
name says, targets JavaScript and is intended for compiling web applications. Lastly,
the Epic backend targets the Epic language and uses the Epic compiler to produce an
executable. We shall now look at these three backends a bit more in depth.

The most notable compiler for Agda is MAlonzo [21]. It targets the Haskell lan-
guage, using the Glasgow Haskell Compiler (GHC) to produce executables from the
generated Haskell code. While a substantial part of the Agda language can easily be
translated into valid Haskell code, this does not hold for the entire language; after all,
Haskell is not dependently typed. The MAlonzo compiler works around this problem
by inserting (unsafe) type coercions. This coercions increase the code size significantly,
as can be seen in the Hello World example in Figure 3.1.

This behavior, together with the lack of optimizations in MAlonzo, can lead to a
blowup in the size of the generated Haskell code [1]. The inserted type-coercions also
prevent GHC from applying certain type-directed optimization, which is unfortunate as
MAlonzo relies solely on GHC for optimizing the generated code. Although these coer-
cions can have a performance impact, they do not affect the correctness of the program,
as the Agda source code has already been type checked by Agda.

MAlonzo also provides a Foreign Function Interface (FFI) to Haskell. Using this
FFI, programmers can call Haskell functions from Agda, export Agda functions to
Haskell and reuse Haskell data types in Agda. Only the common subset of both pro-
gramming languages can be used in the FFI. Dependently typed functions, for exam-
ple, are not supported. The current FFI relies on the programmer to specify the exact
mapping between Agda and Haskell using pragmas. We will discuss the FFI more thor-
oughly in chapter 4.

Besides theMAlonzo compiler, there are several more experimental Agda backends
targeting JavaScript [17] and Epic [25, 7].

3.1.1 What should be the target language?
While targeting Haskell directly is certainly a viable approach, the numerous coercions
inserted by MAlonzo push GHC to its limits. There are examples of modest Agda files

7

𝗆𝖺𝗂𝗇 = 𝗋𝗎𝗇 (𝗉𝗎𝗍𝖲𝗍𝗋𝖫𝗇 (𝗌𝗁𝗈𝗐 (𝟣𝟢 + 𝟣𝟢)))

(a) A small Agda program.

main = d1
name1 = ”HelloWorld.main”
d1
= MAlonzo.RTE.mazCoerce

(MAlonzo.Code.IO.d21
(MAlonzo.RTE.mazCoerce MAlonzo.Code.Agda.Primitive.d3)
(MAlonzo.RTE.mazCoerce MAlonzo.Code.Data.Unit.Base.d3)
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.IO.d75
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Show.d11
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Base.d14
(MAlonzo.RTE.mazCoerce

(MAlonzo.Code.Data.Nat.Base.↩
↪ mazIntegerToNat (10 :: Integer)))

(MAlonzo.RTE.mazCoerce
(MAlonzo.Code.Data.Nat.Base.↩

↪ mazIntegerToNat
(10 :: Integer))))))))))

(b) The generated Haskell code for the above Agda program. The mazCoerce expressions are
type coercions.

Figure 3.1: A example Agda program and its translation to Haskell.

8

generating huge Haskell files, that require unacceptable compilation time. We felt that
it might be worthwhile to explore alternative approaches.

We explicitly wanted to avoid creating a full compiler from scratch; instead, we
wanted to reuse existing infrastructure to deal with the low-level aspects of compila-
tion. Foremost, reusing an existing language as our target language saves a lot of work
and allows us to leverage all existing tooling and infrastructure. Secondly, we hope to
experiment further with a Foreign Function Interface between two high-level languages
such as Agda and Haskell. Having a common target language is almost a necessity for
such experiments.

The obvious candidate for an intermediate language would have been GHC Core
[27]. GHC Core, however, is a typed intermediate language, based on System FC [29].
While all of Haskell’s high-level language features, including type families [10] and
GADTs [28], can be translated to System FC, it is not dependently typed. As a result,
translating Agda to System FC is a non-trivial exercise.

This mismatch in type systems is the same problem the MAlonzo backend exhibits.
We could solve the problem in the same way: inserting numerous type coercions. These
coercions, however, will also cause the same problems already present in the current
MAlonzo backend. We could, perhaps, do a slightly better job by only inserting those
type coercions that are strictly necessary, as opposed to naively inserting them ev-
erywhere where they might be required. Coq’s extraction mechanism takes this ap-
proach [18]. By replicating an ML type checker inside the Coq compiler, the extraction
mechanism only inserts coercions at places where the generated ML code would not
type check otherwise. Nonetheless, following the same approach would have required
a relatively large effort and would have seriously limited our freedom to experiment and
modify the target language to suit our needs.

Although there have been proposals for a dependently-typed core language [4], there
is nomature implementation that we could use off the shelf. Instead, we chose to resolve
this mismatch between type systems by targeting an untyped core language.

Adapting the existing Epic backend would have been another possibility. It’s target
language Epic is a simple untyped lambda calculus extended with data types. The main
drawback of this approach would have been that the existing Haskell FFI could not have
been retained. The Agda Standard library and most executable Agda code assumes the
existence of a Haskell FFI; not being able to support it would require significant changes
to many existing Agda projects. Furthermore, there is no other high-level language
with which the Epic backend can interact, necessitating that the runtime system is built
mostly in C.

The candidate target language we chose in the end is the Utrecht Haskell Compiler’s
Core language. The Utrecht Haskell Compiler (UHC), developed by Dijkstra et al. [12],
is a Haskell Compiler which has an intermediate Core language similar to Epic. The
advantage of choosing UHC Core over Epic is that the Utrecht Haskell Compiler also
compiles Haskell to executables via UHC Core. This allows us to retain the existing
Haskell FFI and use it as a vehicle for exploring the possibility of mixed Agda-Haskell
developments. Additionally, the UHC project also focuses primarily on experiment-
ing with new ideas which fits well with the the experimental nature of our new Agda
Compiler.

9

3.2 Translating between Agda and UHC
Both Agda and UHC consist of a series of transformations between intermediate lan-
guages; starting from the high-level Agda or Haskell input and going towards more
simplistic core languages. Our compiler links Agda’s Internal Syntax language with
the UHC Core language; reusing Agda’s type checker and UHC’s code generation.

While UHC’s code generation already existed, its compilation pipeline required
significant changes to support our use case. We will describe these changes in more
detail in Section 3.3.1.

Reusing Agda’s type checker by itself is easy; the hard part has been translating
Agda’s Internal Syntax language to the UHC Core language. We were able to reuse
some code from the existing Agda Epic backend, but differences in the target language
and new Agda features posed new challenges. For example, the support for varying
arity functions described later in this section is new compared to the Epic backend.

The task of translating Agda’s Internal Syntax into the relevant target language is
one that all backends have to carry out. Yet at the time when we started implement-
ing the UHC backend, every backend had it’s own translation with it’s own specific
set of limitations and bugs. This is clearly not a scaleable approach and increases the
maintenance burden considerably. We have thus decided to introduce an additional in-
termediate language in Agda, called Treeless. The Treeless language is modeled after
UHC Core and is a slightly more high-level, locally-nameless version of UHC Core.
This new language allows us to share the complicated conversion of case trees to a cas-
cade of case expressions by all backends. A welcome side-effect of this approach is that
this also helped fixing a major bug in the code generator of the MAlonzo backend [16].
How our new Treeless Syntax fits into Agda can be seen in Figure 3.2.

We will give a formal description of the translation from Agda’s Internal syntax to
the Treeless syntax in the remainder of this chapter. We will omit the translation from
Treeless syntax to UHC Core, as it mainly consists of replacing De Bruijn indices by
names.

3.2.1 Treeless Intermediate Syntax
Our new Treeless Syntax is an untyped lambda calculus using a locally-nameless rep-
resentation extended with data types. We do not specify the evaluation regime of Tree-
less syntax, to keep open the possibility of targeting strict languages in the future. The
grammar of Treeless syntax is given in Figure 3.3.

Local variables 𝛾 use De Bruijn indices. The Con 𝑛 𝜓 → 𝑡 alternative matches on
the constructor with the name 𝑛 which has arity 𝜓 .

All Treeless syntax terms in the rest of this paper will bewritten in red to distinguish
them from terms in Agda’s Internal Syntax.

3.2.2 Translating Agda’s Internal Syntax to Treeless Syntax
The input for our Compiler is Agda’s Internal Syntax (AIS), which is produced by the
existing Agda frontend and presented in Figure 3.4. The description of the translation
uses a simplified version of AIS. To help distinguish AIS from Treeless, we will use the
color blue for AIS expressions in the rest of this chapter.

Figure 3.5 contains the complete formal semantics of the translation. In the follow-
ing subsections, we will go through all constructs of AIS and explain the translation in
detail. The translation from the AIS term A to the Treeless term B is written as A ▷ B.

10

Haskell

UHC Core

Executable

A. Treeless Syn.

A. Internal Syn.

A. Abstract Syn.

A. Concrete Syn.

Agda

GHC Haskell

Executable

JavaScript

UHC backend MAlonzo backend JavaScript backend

Figure 3.2: The Agda architecture and how it fits together with the UHC backend. Parts
of UHC are marked yellow, parts of Agda orange. Note that the drawing omits some
of the intermediate languages present in the UHC and GHC compilers. The JavaScript
backend currently uses Agda’s Internal Syntax as its input, but the goal is to make it
use Treeless syntax as input too.

Terms 𝑡 ∶∶= 𝛾 Variable
| 𝑛 Definition
| 𝑡 �⃗� Application
| 𝜆 → 𝑡 Lambda Abstraction
| Con 𝑛 �⃗� Constructor Application
| case 𝛾 of 𝑎𝑙𝑡 else 𝑡 Case with default
| ⊤ Unit
| ⊥ Failure

Alternatives 𝑎𝑙𝑡 ::= Con 𝑛 𝜓 → 𝑡 Constructors

Figure 3.3: The abstract syntax of Treeless. The notation �⃗�, 𝑎𝑙𝑡 refers to a list of terms
and alternatives respectively.

11

Name n

Definition 𝑑𝑒𝑓 ∶∶= Fun 𝑐 Function
| Axiom Axiom

CaseTree 𝑐 ∶∶= Case 𝛼 �⃗� Inspect
| Done 𝜓 𝑡 Finished
| Fail Absurd case

Branch 𝑏 ∶∶= Con 𝑛 𝜓 → 𝑐 Constructor
| CatchAll → 𝑐 Default

Term 𝑡 ∶∶= Var 𝛽 �⃗� Variable / Application
| Def 𝑛 �⃗� Application / Projection
| 𝜆 → 𝑡 Abstraction
| Con 𝑛 �⃗� Constructor Application
| Π 𝑡 𝑡 (Dependent) Function Type
| Set Set / Type

Figure 3.4: The abstract syntax of Agda. Irrelevant parts of the syntax have been omit-
ted for brevity.

Axioms

Axioms are one of the simplest definitions to translate. They arise from postulates, for
example:

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾 𝖺𝗑𝗂𝗈𝗆−𝟢==𝟣 ∶ 𝟢 == 𝟣
Postulates can be used to introduce new assumptions by declaring their type, without
providing the associated definition. Such postulates are only interesting during proofs;
if such an axiom needs to be evaluated at runtime, the program will crash. We hence
translate it to the crashing Treeless expression ⊥, as can be seen in rule E-Def-Axiom.

Functions and case splitting trees

The AIS Fun construct introduces a new function. Most such functions are defined
using pattern matching, just as in other functional languages such as Haskell or OCaml.
During type checking this patterns are converted to case splitting trees, as first described
by Augustsson [5]. The AIS case tree generated by Agda’s type checker is the input to
our compiler.

Nameless references AIS uses a locally nameless representation for variable refer-
ences [23, 19, 11]. Somewhat surprisingly, AIS uses both De Bruijn indices and levels.
This unusual choice is motivated by the varying arity feature of Agda explained later in
this section. The Treeless syntax on the other hand uses exclusively De Bruijn indices
for local references, which considerably simplifies code generation. Importantly, the
AIS De Bruijn indices do not necessarily coincide with the Treeless De Bruijn indices.
Wewill use the letter 𝛾 to denote Treeless De Bruijn indices, 𝛽 for AISDe Bruijn indices
and 𝛼 for AIS De Bruijn levels.

12

𝑔𝑟𝑜𝑤(Γ, Δ) = [0..(Δ − 1)] ++ 𝑤𝑘(Δ, Γ)

E-Def-Axiom
Axiom ▷ ⊥

[]; ⊥; 𝑐 ▷ 𝑐′
E-Def-Fun

Fun 𝑐 ▷ 𝑐′

let Δ = 𝑚𝑎𝑥(0, 𝛼 + 1 − |Γ|)
let Γ′[𝛾𝑛..𝛾𝛼..𝛾0] = 𝑔𝑟𝑜𝑤(Γ, Δ) Γ′; 𝜙 0..(Δ − 1); �⃗� ▷ 𝜙′ Γ′; 𝜙′; 𝛼; �⃗� ▷ �⃗�′

E-Case
Γ; 𝜙;Case 𝛼 �⃗� ▷ 𝜆0𝜆1..𝜆Δ−1 → case 𝛾𝛼 of �⃗�′ else 𝜙′

Γ; 𝜙; 𝑐 ▷ 𝑐′
E-CatchAll

Γ; 𝜙; [𝑏0, 𝑏1, ..(CatchAll → 𝑐).., 𝑏𝑛] ▷ 𝑐′

�⃗� contains no CatchAll E-NoCatchAll
Γ; 𝜙; �⃗� ▷ 𝜙

(𝑤𝑘 𝜓 [𝛾𝑛..𝛾𝛼+1]) ++ [0..(𝜓 − 1)] ++ (𝑤𝑘 𝜓 [𝛾𝛼−1..𝛾0]); 𝜙; 𝑐 ▷ 𝑐′
E-Branch-Con

[𝛾𝑛..𝛾𝛼..𝛾0]; 𝜙; 𝛼;Con 𝑛 𝜓 → 𝑐 ▷ [Con 𝑛 𝜓 → 𝑐′]

E-Branch-CatchAll
Γ; 𝜙; 𝛼 CatchAll →c ▷ []

E-Fail
Γ; 𝜙;Fail ▷ ⊥

let Δ = 𝑚𝑎𝑥(0, 𝜓 − |Γ|) 𝑔𝑟𝑜𝑤(Γ, Δ); 𝑡 ▷ 𝑡′
E-Done

Γ; 𝜙;Done 𝜓 𝑡 ▷ 𝜆0𝜆1..𝜆Δ−1 → 𝑡′

Γ; �⃗� ▷ 𝑡′
E-VarApp

Γ[𝛾0..𝛾𝛼..𝛾𝑛];Var 𝛼 �⃗� ▷ 𝛾𝛼 𝑡′

𝑔𝑟𝑜𝑤(Γ, 1); 𝑡 ▷ 𝑡′
E-Abs

Γ; 𝜆 → 𝑡 ▷ 𝜆 → 𝑡′

Γ; �⃗� ▷ 𝑡′
E-DefApp

Γ Def 𝑛 �⃗� ▷ 𝑛 𝑡′

Γ; �⃗� ▷ �⃗�′
E-Con

Γ;Con 𝑛 𝑥 ▷ Con 𝑛 �⃗�′
E-Pi

Γ; Π 𝑡1 𝑡2 ▷ ⊤
E-Set

Γ;Set ▷ ⊤

Figure 3.5: The formal description of the translation from Agda’s internal Syntax to
Treeless Syntax.

13

𝖿 ∶ ℕ → ℕ → ℕ
𝖿 𝖹 = 𝜆 𝑦 → 𝑦
𝖿 (𝖲 𝑥) (𝖲 𝑦) = 𝖲 𝑥
𝖿 𝑥 𝑦 = (𝖲 𝑦)

(a) Example Agda function.

Case 0

Done 2 (Con S [Var 0 []])Case 1

Done 2 (Con S [Var 1 [])]

Con S

Done 1 (𝜆 → (Var 0 []))

Con Z
Con S

CatchAll

(b) Case-tree translation of the above Agda function. The branches �⃗� of a Case non-terminal are
drawn as edges, and case trees as nodes.

Figure 3.6: A simple example of the case splitting tree translation.

The conversion from AIS De Bruijn levels and indices to Treeless De Bruijn in-
dices is achieved by passing down an environment Γ, containing the mapping from AIS
levels/indices to Treeless indices. We will use the convention that the left side of the
environment contains the closest bound AIS variable, and the rightmost entry is the
most distant bound AIS variable.

We will use this environment to look up the Treeless De Bruijn index of any name-
less AIS variable. Initially, we set Γ to the empty environment in rule E-Def-Fun, as
the function has not yet received any arguments or defined any local variables.

Case splitting trees Unlike Treeless case expressions which scrutinize exactly one
variable at a time, a case tree can inspect any number of variables. The case splitting
tree translation of an example Agda function can be seen in Figure 3.6.

A case tree consists of non-terminal Case nodes that scrutinizes one variable at a
time; and Done and Fail terminal nodes representing the result of the given branch.

Terminal nodes

The Fail non-terminal occurs whenever the Agda type checker believes that this node
should never be reached. These nodes correspond to absurd patterns in Agda. As Fail
terminal nodes should never be reached at runtime, we translate them to the Treeless
error term ⊥:

E-Fail
Γ; 𝜙;Fail ▷ ⊥

14

Second, a Done 𝜓 𝑡 non-terminal represents a successful pattern match, containing
the body of the corresponding function clause for this terminal node. We ignore the 𝜓
value for now and simply translate the body term 𝑡:

Γ; 𝑡 ▷ 𝑡′
E-Done’

Γ;Done 𝜓 𝑡 ▷ 𝑡′

Term translation

The terms Π and Set are significant for type checking only. In Agda, a value of type Set
cannot be inspected or pattern matched on. As Agda enforces that it is impossible to
observe any value of these types, they cannot affect the runtime semantics. For execut-
ing a program, it is thus safe to replace all occurrences of such values by the unit value
⊤.

One could also be tempted to completely remove any values of these kind. This
could potentially alter the semantics of the translated program. Agda does not evaluate
expressions under lambdas; dropping lambda abstractions taking type expressions could
remove lambdas blocking evaluation. A sound way to erase types is to only do so where
it doesn’t affect soundness, for example in saturated function applications. A more
detailed description of when such types may be soundly erased can be found in previous
work by Letouzey [18].

The lambda construct translated by the E-Abs rule is the first place where we grow
the environment. The rule uses the 𝑔𝑟𝑜𝑤(Γ, Δ) function, which grows the environment
Γ by Δ entries. As we are introducing new bound variables, we also have to weaken the
existing environment. Let 𝑤𝑘(Γ, Δ) be the function which weakens the environment Γ
by Δ in the definition for the 𝑔𝑟𝑜𝑤 function:

𝑔𝑟𝑜𝑤(Γ, Δ) = [0..(Δ − 1)] ++ 𝑤𝑘(Δ, Γ)

The remaining term constructs have a clear one-to-one translation fromAIS to Tree-
less Syntax and can hence easily be translated.

Case non-terminals Case 𝛼 �⃗� non-terminals use the argument at the De Bruijn level
𝛼 to branch on. De Bruijn levels count arguments from the outermost towards the in-
nermost binder; as the environment Γ grows to the left, the name has to be looked up at
position 𝛼 from the right.

In the example case tree in Figure 3.6, the root non-terminal branches on the first
argument of the function 𝖿 . If the first variable has the value Con S, another Case
non-terminal is encountered and the second argument of the function is examined. A
case tree may contain any number of such Case non-terminals.

Each Case 𝛼 �⃗� non-terminal is translated to one case expression. Given a way to
translate the branches �⃗� to Treeless alternatives and assuming that the environment Γ
already contains the variable matched on and ignoring non-exhaustive cases, the trans-
lation is defined as follows:

Γ; �⃗� ▷ �⃗�′
E-Case’

Γ[𝛾𝑛..𝛾𝛼..𝛾0];Case 𝛼 �⃗� ▷ case 𝛾𝛼 of �⃗�′

15

Varying arity One peculiarity of Agda complicating the translation to Treeless is
that, in contrast to Haskell, Agda doesn’t require all functions clauses to take the same
number of arguments. Agda function clauses may accept a varying number of argu-
ments; for instance, when assigning a dependent type to functions such as printf,
the value of one argument may determine the number of subsequent arguments.

This behavior makes the conventional way of compiling functions by putting as
many lambda abstractions as there are function arguments around the whole function
body impossible. Instead, we need to check at all Case non-terminals if enough lambda-
abstractions are already present; if not, additional lambda abstractions need to be in-
serted. To this purpose we let Δ be the number of lambda abstractions to insert, and
grow the environment accordingly:

let Δ = 𝑚𝑎𝑥(0, 𝛼 + 1 − |Γ|) let Γ′[𝛾𝑛..𝛾𝛼..𝛾0] = 𝑔𝑟𝑜𝑤(Γ, Δ) Γ′; 𝛼; �⃗� ▷ �⃗�′
E-Case”

Γ;Case 𝛼 �⃗� ▷ 𝜆0𝜆1..𝜆Δ−1 → case 𝛾𝛼 of �⃗�′

The varying arity feature motivates using De Bruijn levels in the case splitting trees;
with De Bruijn indices it would be impossible to tell when additional lambdas need to
be inserted.

We also need to extend the rule for the 𝐷𝑜𝑛𝑒 𝜓 𝑡 non-terminal in a similar way. The
𝜓 value we have ignored beforehand tells us how many arguments the function body
expects to have already been abstracted over:

let Δ = 𝑚𝑎𝑥(0, 𝜓 − |Γ|) 𝑔𝑟𝑜𝑤(Γ, Δ); 𝑡 ▷ 𝑡′
E-Done

Γ; 𝜙;Done 𝜓 𝑡 ▷ 𝜆0𝜆1..𝜆Δ−1 → 𝑡′

Constructor branches Previously, we assumed that branches could be translated to
Treeless alternatives, but have not gone into any details. A Con 𝜓 𝑐 branch translates
directly to a Treeless alternative. The number 𝜓 records the number of arguments the
constructor takes, andwe replace the current case scrutinee 𝛾𝛼 in the environment Γ with
𝜓 Treeless De Bruijn indices. As this enlarges the environment, the whole remaining
environment needs to be weakened by 𝜓 . This updated environment makes the pattern
matched variables available to be used in the child case splitting tree stored inside the
current Con non-terminal. The body of the generated Treeless alternative is the sub tree
𝑐, translated to Treeless syntax.

(𝑤𝑘 𝜓 [𝛾𝑛..𝛾𝛼+1]) ++ [0..(𝜓 − 1)] ++ (𝑤𝑘 𝜓 [𝛾𝛼−1..𝛾0]); 𝜙; 𝑐 ▷ 𝑐′
E-Branch-Con

[𝛾𝑛..𝛾𝛼..𝛾0]; 𝜙; 𝛼;Con 𝑛 𝜓 → 𝑐 ▷ [Con 𝑛 𝜓 → 𝑐′]

Note that this replacement inside the environment can change the size of Γ and
may change the indexes of variables inside it. This is already taken into account when
the case splitting tress are generated and requires no further consideration during the
translation.

CatchAll branches So far we have ignored the CatchAll 𝑐 branches. These come into
play when none of the other branches match and provide a default value. This default 𝑐
in itself is another case splitting tree.

CatchAll branches apply to a whole sub tree. To come back to the example in Fig-
ure 3.6, the CatchAll branch at the root node also applies to the Case 1 non-terminal.
This can be useful when the same CatchAll applies to many Case non-terminals. For

16

1 𝑓 = 𝜆 → case 0 of
2 Con Z 0 → (𝜆 → 0)
3 Con S 1 → (𝜆 →
4 case 0 of
5 Con S 1 → Con S 2
6 else ((𝜆 → Con S 0) 0)
7)
8 else (𝜆 → Con S 0)

Figure 3.7: Translation to Treeless of the example Agda function from Figure 3.6.

example, when compiling the following Agda function, a failing pattern match on the
first or second argument will yield the same result:

𝖿 ∶ ℕ → ℕ → ℕ
𝖿 𝗓𝖾𝗋𝗈 𝗓𝖾𝗋𝗈 = 𝗓𝖾𝗋𝗈
𝖿 𝑥 𝑦 = 𝑥

Our earlier rule E-Case” plainly ignore CatchAll branches. To fix this, we need
to pass around the default value to use when generating Treeless case expressions in
E-Case”. To this end, we pass down the value 𝜙, which contains the Treeless term to
use as default value. Initially, we set 𝜙 to ⊥, causing the produced program to crash
when a pattern match fails.

Wemay also need to update the default value 𝜙. If the current non-terminal contains
a CatchAll branch, rule E-CatchAll triggers and returns the new default value 𝜙′. If
there is no CatchAll branch, rule E-NoCatchAll fires and the current default value is
used unchanged.

Furthermore, the updated default value 𝜙′ needs also to be passed along when trans-
lating the case tree branches. Doing this correctly requires careful attention though. The
rule E-Case may introduces new lambda abstractions, which the Treeless expression 𝜙
does not expect. The expression 𝜙 has been compiled in the environment Γ, where
the corresponding CatchAll branch has been defined, rather than the extended environ-
ment 𝑔𝑟𝑜𝑤(Γ, Δ). To remedy this, the 𝜙 needs to ignore all newly-introduced lambda
abstractions. This is achieved by applying the default value immediately to the newly
introduced lambda arguments before passing it on. The changed rule E-Case looks like
this:

let Δ = 𝑚𝑎𝑥(0, 𝛼 + 1 − |Γ|)
let Γ′[𝛾𝑛..𝛾𝛼..𝛾0] = 𝑔𝑟𝑜𝑤(Γ, Δ) Γ′; 𝜙 0..(Δ − 1); �⃗� ▷ 𝜙′ Γ′; 𝜙′; 𝛼; �⃗� ▷ �⃗�′

E-Case
Γ; 𝜙;Case 𝛼 �⃗� ▷ 𝜆0𝜆1..𝜆Δ−1 → case 𝛾𝛼 of �⃗�′ else 𝜙′

3.2.3 Example
The translation of the Agda example from Figure 3.6 is shown in Figure 3.7.

One side-effect of the inherited default values can be seen in the repetition of the
term (𝜆 → Con S 0) on line 6 and 8. The higher the sub tree in question and the larger
the default expression, the more significant this duplication becomes. To avoid this
problem, our compiler shares the default expression between all occurrences using a let
binding.

17

3.3 Lessons learned
Apart from constructing the necessary translation and compilation scheme, making our
compiler work also gave rise to some engineering and technical challenges. In this
section we will go into more detail about what these difficulties were and the solutions
we have adopted.

3.3.1 Adapting UHC to our needs
Build System At the start of this project, UHC was a standalone Haskell compiler. It
had not been used before as component of another compiler. Using UHC as part of our
Agda compiler required using the build system in an unsupported way and was fairly
fragile. The long dependency lists of both Agda and UHC, combined with the custom
configuration and build system of UHCmade versioning conflicts in the Cabal Package
Database a recurring problem.

UHCCore In contrast to the build system, exposing the UHCCore language as a pub-
lic API not only required technical changes, but also posed challenges in understand-
ing the behavior of the generated code. Due to its origin as an internal intermediate
language, there is no formal specification of UHC Core. While most of the syntactic
constructs are self-explanatory, a few of the invariants are harder to discover. For ex-
ample, UHC Core requires case alternatives to be in lexicographical order. This is not
immediately obvious from the syntax of UHC Core and was poorly documented. Con-
sequently, early versions of our compiler violated this invariant and the generated code
exhibited unexpected behavior.

In the rare case that we encountered such unexpected behavior, the difficult part
often lay in identifying the actual cause of the issue; fixing the issue after the root cause
had been discovered usually was straightforward.

3.3.2 Testing our Compiler
As with all sufficiently complex software, verifying the correctness of our Agda com-
piler is non-trivial. We have not tried to formally prove the correctness of our compiler.
Instead, we rely on a test suite to validate the correctness of our compiler.

To this end, we have created a test suite consisting of 40 example Agda programs in
total. Each of these programs can be run, and the output can be compared to a golden
standard. Most of the examples are inspired by existing programs; in some cases by
adapting existing Agda programs for our need, in others by porting examples from lan-
guages such as Haskell.

A somewhat unexpected issue we ran into was that none of the popular Haskell test
frameworks supported our main use cases directly out of the box. The best candidate
was the tasty-golden [31] package, but it does not have an interactive mode for inspect-
ing the test results. Nonetheless, we used tasty-golden as basis for our tests and created
the new tasty-silver [32] package which adds an interactive test running mode and a
simpler API.

The test collection itself, very roughly, consists of two kinds of programs. The first
kind are small Agda programs, each testing a single Agda feature. These programs also
serve as regression tests to avoid re-introducing fixed bugs.

The second kind of test programs are more complicated programs, which involve
more computations. The intent here is to stress test all parts of the compiler and runtime

18

system. For example, we have a port of the interactive Eliza1 program fromGHC’s nofib
benchmark suite.

These test cases target both our compiler and the existing MAlonzo compiler. This
allows us to compare the output and use the MAlonzo backend as baseline for develop-
ment. In fact, our principled approach to testing revealed an existing bug in the MAl-
onzo backend that the old test suite missed [20].

3.4 Related work
A lot of work has been done on compiling dependently typed languages in the last few
years, without which this project would not have been feasible.

Other Agda Compilers The existing Epic backend [25] was very important in the
development of our compiler. While the implementation of our backend by now signifi-
cantly diverges from the Epic backend, it nonetheless provided us with a good starting
point from where on we could incrementally improve our backend. It is also the most
ambitious existing Agda compiler in terms of optimizations, and clearly shows the vi-
ability of compiling Agda to an untyped core language. Sadly, it is not maintained
anymore and does not work with up-to-date Agda code.

The MAlonzo backend, written by Benke [21], on the other hand is better main-
tained and works reasonably well. Compared to the Epic backend, it has the advantage
that it can interface freely with Haskell libraries. However, it does not support many of
the optimizations that the Epic backend does implement.

Last but not least, there is also a JavaScript backend [17]. It supports some of the
optimizations of the Epic backend and has a mature FFI to JavaScript. The motiva-
tion for targeting JavaScript was to use Agda for developing web applications. Using
JavaScript as a target language for running code locally, however, may not be the best
choice.

Coq Leaving the world of Agda, Coq supports the extraction of OCaml, Haskell and
Scheme from Gallina. It suffers from similar problems as compiling Agda to Haskell
as discussed in Section 3.1.

Idris Idris, created by Brady [8], is the dependently typed language aimed specifically
at writing real-world runnable programs. To this end, it currently features a compiler
targeting the LLVM intermediate language. This is a different design compared to the
extractions to high-level languages used by Agda and Coq, as it targets a low-level
language. While this approach may yield favorable performance, it severely limits the
possibility of interacting with other high-level languages – an important constraint to
support the existing FFI between Agda and Haskell.

3.5 Future work
While our new UHC backend creates correct code, it would be worthwhile to further
improve it’s performance. A major issue is that currently Agda’s typechecker destroys

1https://github.com/ghc/nofib/tree/master/spectral/eliza

19

https://github.com/ghc/nofib/tree/master/spectral/eliza

sharing even when explicitly introduced by using an Agda let-binding [33]. This behav-
ior occurs both, at typechecking time and at runtime. Fixing this issue in the backends
first requires the Agda typechecker to be fixed, which may happen in the near future.

As with all compilers, it would also be nice if more optimizations were added than
currently exist. For example, some of the optimizations implemented in the Idris lan-
guage [9] could be ported to Agda. Our newly introduced Treeless syntax should make
it feasible to implement those optimizations in Agda.

Last but not least, Agda currently does not properly support per-module/per-package
compilation. While the backends try to avoid recompilation as much as possible inside
a given source code collection, there is no means of easily sharing compilation results
between different projects. Compilation speeds could probably be improved signifi-
cantly by compiling libraries, such as the Agda standard library, only once instead of
once per project. The root cause of this problem is that Agda currently has no package
management system at all, and it would be a great improvement to add such a system.

20

Chapter 4

FFI

As a short interlude before introducing a Contract framework for Agda Foreign Func-
tion calls, we will discuss the current state of Agda’s Foreign Function Interface (FFI)
and some improvements we have implemented. This improvements will allow us to
introduce a nice syntax for combining Contracts and FFI calls later on in chapter 5.

Each of the existing Agda backends features a Foreign Function Interface (FFI) to
their target language. The basic functionality of all these FFI interfaces is similar; they
bind an Agda definition to a definition in the foreign language. This involves specifying
the identity of the relevant Agda and foreign definitions, and declaring the type of the
binding. As all three existing backends use a similar approach, we will discuss the
limitations and challenges for the Haskell FFI of the UHC backend only. The findings
should nevertheless carry over to the other backends.

4.1 Existing FFI
Functions

The basic functionality of any FFI is to call functions from the foreign language. This
is done by exposing a matching Agda function definition, which will call the foreign
Haskell function at runtime when evaluated.

We assume that the Agda compiler provides a way to pass primitive data types to
and from Haskell, e.g. integers. We can then define a FFI call; first we postulate an
Agda definition matching the Haskell definition we want to expose. Second, using a
pragma we bind this Agda definition to a Haskell implementation.

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
𝖺𝖻𝗌 ∶ 𝖧𝗌𝖨𝗇𝗍𝖾𝗀𝖾𝗋 → 𝖧𝗌𝖨𝗇𝗍𝖾𝗀𝖾𝗋

{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖴𝖧𝖢 𝖺𝖻𝗌 (Prelude.abs) #−}

Note that the Agda definition is a postulate. This means that Agda will never try to
reduce the _+_ function for type checking, it treats it as a black box.

Data types

While we can assume that the compiler provides some way to pass primitive data types
to Haskell, we would prefer to be able to pass arbitrary data types around. In general,

21

this is not possible for arbitrary Agda data types; however, for the Haskell case it is
possible to define proper FFI semantics for a large subset of Haskell data types and
their Agda counterpart.

Depending on the compiler backend, this may include GADTs, but will always in-
clude non-GADT data types without class constraints. To enable the FFI machinery to
generate correct code, a FFI pragmamapping the Agda definition to a Haskell definition
needs to be used:

𝖽𝖺𝗍𝖺 𝖫𝗂𝗌𝗍 (𝐴 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
[] ∶ 𝖫𝗂𝗌𝗍 𝐴
∷ ∶ 𝐴 → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐴

{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖣𝖠𝖳𝖠_𝖴𝖧𝖢 𝖫𝗂𝗌𝗍 Data.List.List [] (:) #−}

4.2 Level/Set arguments
The current FFI of Agda is type-directed to some degree, but only in a very limited
fashion. The MAlonzo backend verifies that FFI function bindings only involve valid
FFI types, but none of the other backends do any verification whatsoever. And while
it in general is not possible to completely guarantee the correctness of FFI bindings, it
would be preferable to include as many checks as possible.

Furthermore, depending on the target language the builtin Level and Set Agda types
need to be treated specially. For example, Haskell has no notion of explicit Level and
Set values; types are completely separated from terms. Compare the Agda identity
function, which takes the explicit type argument A:

𝗂𝖽 ∶ (𝐴 ∶ 𝖲𝖾𝗍) → 𝐴 → 𝐴
𝗂𝖽 𝐴 𝑥 = 𝑥

with the corresponding Haskell function:

id : : f o r a l l a . a −> a
id x = x

Note that the type a in the Haskell code is not a normal argument, but is treated
differently and erased at runtime.

If wewant to expose theHaskell identity function inAgda, wemight now be tempted
to write the following FFI definition:

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
𝗂𝖽′ ∶ (𝐴 ∶ 𝖲𝖾𝗍) → 𝐴 → 𝐴

{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖴𝖧𝖢 𝗂𝖽′ The.Haskell.id #−}

This, however, will not work. As described in the formal semantics in section 3.2.2,
Set terms are translated to the unit value, but they are not completely removed. Agda
thus expects that the compiled representation of 𝗂𝖽 takes two argument. The Haskell
identity function doesn’t satisfy this invariant. This can easily be resolved by wrapping
the Haskell identity function in an additional lambda, discarding the superfluous Set
argument:

22

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
𝗂𝖽″ ∶ (𝐴 ∶ 𝖲𝖾𝗍) → 𝐴 → 𝐴

{−# 𝖢𝖮𝖬𝖯𝖨𝖫𝖤𝖣_𝖴𝖧𝖢 𝗂𝖽″ (_ -> The.Haskell.id) #−}

The user is required to insert this additional lambdas for all Level and Set arguments
occurring in the Agda type. The process of inserting the lambdas is completely type-
directed and mechanical, and doesn’t require any human interaction in principle. It is
thus preferable that we extend the Agda compilers to handle this translation internally,
instead of burdening the user.

4.3 Syntax
A more syntactical problem with the current FFI system is that it only admits top-level
FFI calls. However, especially when generating FFI calls automatically it would be
preferable to allow FFI calls to be used like normal expressions. Furthermore, the cur-
rent pragma-based approach will grow cumbersome as additional FFI target languages
are added.

4.4 The new foreign calls
To remedy the problems we have outlined, we have extended the Agda language with
a special foreign call expression:

𝗂𝖽‴ = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Prelude.id”) ((𝐴 ∶ 𝖲𝖾𝗍) → 𝐴 → 𝐴)

The 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 keyword takes an ordinary Agda record describing the Haskell entity
as first argument, and an Agda type as second argument. This new syntax emphasizes
the fact that the FFI interface is type-directed. Apart from the new syntax, this new FFI
interface also uses the type information to automatically handle Level and Set arguments
correctly. This becomes especially handy when we want to call higher-ranked Haskell
functions. As a simple example, lets say we want to call the following Haskell functions
from Agda:

f : : (f o r a l l a . a −> a) −> Bool
f = . . .

To do so, we can just give the corresponding type- and universe-polymorphic Agda
type for the foreign call:

𝖿 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”f”)
(({𝑎 ∶ 𝖫𝖾𝗏𝖾𝗅} {𝐴 ∶ 𝖲𝖾𝗍 𝑎} → 𝐴 → 𝐴)

→ 𝖡𝗈𝗈𝗅)

Another advantage is that the specification of the foreign entity is a normal Agda
record. This lets the Agda interactive editingmode give helpful hints about the expected
information in a convenient fashion.

23

4.5 Related work
The dependently typed language Idris has gained a new FFI recently as well [6]. Idris
has chosen a slightly different approach, in that they use a universe encoding in Idris
itself to represent the type of a foreign call, whereas we just take normal Agda types
as input. However, this is only a minor difference in implementation strategy. Our
choice of avoiding a universe encoding in Agda itself is motivated by a restriction in
Agda’s implementation of universe polymorphism. It is currently impossible to repre-
sent universe-polymorphic types inside Agda itself using a universe encoding. We will
encounter this Agda restriction again in the next chapter and discuss it in more detail in
section 5.4.2.

The main difference to the Haskell FFI [22] is that our foreign calls are expressions
instead of declarations, which makes them more composable. Additionally, we rep-
resent the naming information required by the FFI as a normal Agda record, thereby
reducing the amount of special syntax we have to introduce.

4.6 Future Work
We have only introduced a new FFI for function calls in this chapter, but the Agda FFI
also contains pragmas to have a common runtime representation for Agda and Haskell
data types. Some of the concepts shown in this chapter could also be used to improve
the other parts of the Agda FFI.

An issue more specific to the UHC backend FFI lies in how the names of Haskell
functions need to be specified. Haskell modules often use re-exports to hide the internal
implementation details of a package. However, these re-exports are removed when
UHC compiles Haskell code to UHC Core and replaces all uses of re-exported names
with their original names. The consequence of this is that the Haskell FFI of the UHC
backend requires that the Haskell names are the original names; it is not possible to use
re-exported names. While it is not difficult to resolve the names manually, it can be
inconvenient and it would be preferable if re-exported names could be used in the FFI
of the UHC backend.

Lastly, linking Agda code with Haskell code which is not part of the Haskell base
libraries currently requires some manual interaction during the compilation when the
UHC backend is used. Contributing to this problem are the lack of a package system
for Agda, and the outdated nature of the Cabal UHC support.

24

Chapter 5

Contracts

In the previous chapter we have demonstrated a Foreign Function Interfacewhich allows
us to call Haskell code. This is very useful by itself, but a recurring problem with
Foreign Function calls is that the type systems on both sides are not an exact match.
Agda’s type system is more powerful than Haskell’s, which results in an impedance
mismatch. In this chapter, we discuss how to handle this impedance mismatch in a
graceful and controlled fashion.

5.1 Data Contracts

5.1.1 The problem
Agda programs often use richer types than Haskell programs, as it enables us to prove
the correctness of programs. The enriched Agda types are often similar to the Haskell
or C representation, with additional information or guarantees added.

Let us start with a simple example. Most languages have special builtin numeric
types with associated primitive operations. Not so in Agda, where for example natural
numbers are normally represented as Peano numbers:

𝖽𝖺𝗍𝖺 ℕ ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝗓𝖾𝗋𝗈 ∶ ℕ
𝗌𝗎𝖼 ∶ ℕ → ℕ

This definition is well-suited for conducting inductive reasoning and programming
in Agda itself. However, if we want to call code written in other languages such as
Haskell or C, the Peano number representation from Agda needs to be converted to
the binary numerical types used by this languages. For example, natural numbers are
usually represented as arbitrary-precision integers in Haskell; thus we need to convert
between Agda’s Peano numbers and Haskell’s integers.

However, this conversion is not fool-proof, as Haskell’s integers have a bigger range
than Agda’s Peano numbers. If the Haskell integer representation has a negative value,
there is no sensible way to convert this into an Agda Peano number. In other languages
this problem could easily be solved by emitting a runtime failure if necessary, but Agda
does not have any such facility readily available; it forces all functions to be total. A
reasonable solution could hence be to lift the conversion functions into an error monad

25

such as Maybe. However, doing so is contagious and forces us to lift many calls using
the foreign function interface (FFI) into the error monad. For example, if we want to
expose Haskell’s integer addition as an addition function on natural numbers in Agda,
the resulting function is forced into the chosen error monad:

𝗁𝗌𝖠𝖽𝖽 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”UHC.Agda.Builtins.primAdd”) (ℤ → ℤ → ℤ)

𝗇𝖺𝗍𝟤𝗂𝗇𝗍𝖾𝗀𝖾𝗋 ∶ ℕ → ℤ
𝗇𝖺𝗍𝟤𝗂𝗇𝗍𝖾𝗀𝖾𝗋 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

𝗂𝗇𝗍𝖾𝗀𝖾𝗋𝟤𝗇𝖺𝗍 ∶ ℤ → 𝖬𝖺𝗒𝖻𝖾 ℕ
𝗂𝗇𝗍𝖾𝗀𝖾𝗋𝟤𝗇𝖺𝗍 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

+ ∶ ℕ → ℕ → 𝖬𝖺𝗒𝖻𝖾 ℕ
𝑥 + 𝑦 = 𝗂𝗇𝗍𝖾𝗀𝖾𝗋𝟤𝗇𝖺𝗍 (𝗁𝗌𝖠𝖽𝖽 (𝗇𝖺𝗍𝟤𝗂𝗇𝗍𝖾𝗀𝖾𝗋 𝑥) (𝗇𝖺𝗍𝟤𝗂𝗇𝗍𝖾𝗀𝖾𝗋 𝑦))

While this is correct and safe code, it tends to force the entire program to live in the
chosen error monad. This is often inconvenient and makes code more verbose, even
though it is impossible that the _+_ function should ever return 𝗇𝗈𝗍𝗁𝗂𝗇𝗀.

5.1.2 Unsafe Conversions
In light of the fact that FFI calls themselves are highly unsafe and dangerous territory,
we propose to approach the problem by using dynamic checks at runtime instead of
lifting all computations into an error monad. The intention is to make checking the
invariants of FFI calls feasible and accessible, but it should in no way replace proper
error handling. Instead, it should be used to verify invariants where proper error han-
dling would be prohibitively expensive. In other words, it provides a middle ground
between fully handling all possible errors, and just blindly assuming that invariants are
never violated.

To this end, we first need to model the data conversions in Agda itself. A conversion
is a decision function, which decides if the given conversion succeeds. This can be
encoded simply by returning a Maybe:

𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍 → 𝖲𝖾𝗍
𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐹 𝑅𝑂𝑀 𝑇 𝑂 = 𝐹 𝑅𝑂𝑀 → 𝖬𝖺𝗒𝖻𝖾 𝑇 𝑂

The trickier part is in actually performing the conversion and inserting the dynamic
checks as necessary.

As we want to hide the potential runtime failure from the type signature, we are
required to introduce a new ConversionFailure axiom. Importantly, this axiom makes
Agda potentially unsound! However, we use this axiom as an implementation detail
only and do not expose it to the outside world; it is just used to hide the potential failure.
Using this axiom, we can define the ↯ function executing the conversion:

𝗉𝗈𝗌𝗍𝗎𝗅𝖺𝗍𝖾
𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇𝖥𝖺𝗂𝗅𝗎𝗋𝖾 ∶ {𝐴 ∶ 𝖲𝖾𝗍} → 𝐴

↯ ∶ {𝐴 𝐵 ∶ 𝖲𝖾𝗍} → 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐴 𝐵 → 𝐴 → 𝐵
↯ 𝑐𝑜 𝑥 𝗐𝗂𝗍𝗁 𝑐𝑜 𝑥

26

↯ 𝑐𝑜 𝑥 | 𝗃𝗎𝗌𝗍 𝑥1 = 𝑥1
↯ 𝑐𝑜 𝑥 | 𝗇𝗈𝗍𝗁𝗂𝗇𝗀 = 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇𝖥𝖺𝗂𝗅𝗎𝗋𝖾

Using the ConversionFailure axiom in this restricted way ensures that we make
Agda programs unsound only in a strictly controlled fashion. Any usage of the axiom
will be surrounded by the necessary dynamic checks, thus making sure that introducing
and evaluating an unsound conversion will lead to a runtime failure.

Example Revisiting the addition example discussed earlier, we can now rewrite the
addition function. The newly introduced ↯ function enables us to remove the Maybe
monad from the type signature, resulting in the following code:

+ ∶ ℕ → ℕ → ℕ
𝑥 + 𝑦 = ↯ 𝗂𝗇𝗍𝟤𝗇𝖺𝗍 (𝗁𝗌𝖠𝖽𝖽 (𝗇𝖺𝗍𝟤𝗂𝗇𝗍 𝑥) (𝗇𝖺𝗍𝟤𝗂𝗇𝗍 𝑦))

5.2 Type-Indexed contracts

5.2.1 Why type-indexed
While the conversion primitive introduced in the previous section makes it possible to
convert data as necessary, doing so for non-trivial functions yields a significant amount
of boilerplate code and obfuscates the intention of the code.

Assume we want to expose a map-like Haskell function in Agda. For simplicity, we
assume that we map over a list of integers and that we want to strengthen/weaken the
domain/range of the mapping function to natural numbers. Doing so using the primi-
tive conversion operator results in the following code, assuming we are given the two
conversions ℤ⇒ℕ and ℕ⇒ℤ:

𝗁𝗌𝖬𝖺𝗉 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”The.Haskell.map”)
((ℤ → ℤ) → 𝖫𝗂𝗌𝗍 ℤ → 𝖫𝗂𝗌𝗍 ℤ)

𝗆𝖺𝗉 ∶ (ℕ → ℕ) → 𝖫𝗂𝗌𝗍 ℤ → 𝖫𝗂𝗌𝗍 ℤ
𝗆𝖺𝗉 𝑓 𝑥𝑠 = 𝗁𝗌𝖬𝖺𝗉 (𝜆 𝑥 → ↯ ℕ⇒ℤ (𝑓 (↯ ℤ⇒ℕ 𝑥))) 𝑥𝑠

This verbose syntax makes it hard to understand what the exact conversions are and
what the assumed invariants of the whole function are.

More concise and expressive code can be achieved by using a small Domain Spe-
cific Language (DSL) to create a description of the necessary conversions. Note that in
the above example, all conversions can be related to certain positions in the type signa-
ture. This relation can be exploited by giving the DSL the same structure as the type
signature. This approach has been successfully applied to implementing contracts in
other languages such as Haskell [15] or Scheme [13].

For our earlier map example, we aim to write a contract in approximately the fol-
lowing fashion:

𝗆𝖺𝗉′ = 𝖺𝗌𝗌𝖾𝗋𝗍 ((⟨ ℕ⇔ℤ ⟩ ⇒ ⟨ ℕ⇔ℤ ⟩) ⇒ 𝖫𝗂𝗌𝗍 ℤ ⇒ 𝖫𝗂𝗌𝗍 ℤ) 𝗁𝗌𝖠𝖽𝖽

27

This contract lifts the Haskell map on integer lists function to Agda’s natural num-
bers. Compared to the explicit, manual insertion of conversions shown earlier, our pro-
posed syntax requires a lot less boilerplate code and expresses the expected invariants
in a much clearer fashion.

In the remainder of this chapter, wewill show howwe can implement such a solution
in Agda.

5.2.2 Non-dependent Isomorphisms
A crucial observation to make about the examples used so far is that we often want to
relate a specific Agda data type with a Haskell or C data type, or to be more precise
the Agda representation of it. This relation forms an isomorphism, consisting of the
conversion from the Agda to the Haskell/C data type and the conversion in the opposite
direction.

There is a catch though, having a proper isomorphismwould require the conversions
to be total functions. As we explicitly want to allow conversions to fail, we have a re-
stricted form of an isomorphism which only holds under certain additional conditions.
We will call such an isomorphism with additional conditions a partial isomorphism.
Note that we do not require the isomorphism to be partial. If one or both of the conver-
sion functions are total, the partial isomorphism may be in reality a retraction or proper
isomorphism.

It is also possible to use isomorphisms between arbitrary Agda data types and is
in no way restricted to the FFI. To honor this, we will call the Agda type we want to
expose the high type, and the Haskell/C type we will call the low type.

Having discussed themotivation for using partial isomorphisms, we require a way to
encode this concept in Agda. This can be easily done using records. The record contains
the low and high types, and the conversion functions to go from one representation to
the other:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖯𝖺𝗋𝗍𝖨𝗌𝗈 ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖿 𝗂𝖾𝗅𝖽

𝖫𝖮𝖶 ∶ 𝖲𝖾𝗍
𝖧𝖨𝖦𝖧 ∶ 𝖲𝖾𝗍
𝗎𝗉 ∶ 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐿𝑂𝑊 𝐻𝐼𝐺𝐻
𝖽𝗈𝗐𝗇 ∶ 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐻𝐼𝐺𝐻 𝐿𝑂𝑊

An example definition for the isomorphism between natural numbers and integers
could then look like this:

ℕ⇔ℤ ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈
ℕ⇔ℤ = 𝗋𝖾𝖼𝗈𝗋𝖽 { 𝖫𝖮𝖶 = ℤ ; 𝖧𝖨𝖦𝖧 = ℕ ; 𝗎𝗉 = ℤ⇒ℕ ; 𝖽𝗈𝗐𝗇 = ℕ⇒ℤ }

𝗐𝗁𝖾𝗋𝖾
ℕ⇒ℤ ∶ ℕ → 𝖬𝖺𝗒𝖻𝖾 ℤ
ℕ⇒ℤ 𝑛 = 𝗃𝗎𝗌𝗍 (+ 𝑛)
ℤ⇒ℕ ∶ ℤ → 𝖬𝖺𝗒𝖻𝖾 ℕ
ℤ⇒ℕ −[𝟣+ 𝑛] = 𝗇𝗈𝗍𝗁𝗂𝗇𝗀
ℤ⇒ℕ (+ 𝑛) = 𝗃𝗎𝗌𝗍 𝑛

Finally, given such an isomorphismwe can define two functions to extract the neces-
sary information from the record and apply the conversion. This is implemented using

28

the conversion primitive introduced in section 5.1.2:

𝗀𝗈𝖣𝗈𝗐𝗇 ∶ (𝑝 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈) → 𝖧𝖨𝖦𝖧 𝑝 → 𝖫𝖮𝖶 𝑝
𝗀𝗈𝖣𝗈𝗐𝗇 𝑝 𝑥 = ↯ (𝖽𝗈𝗐𝗇 𝑝) 𝑥

𝗀𝗈𝖴𝗉 ∶ (𝑝 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈) → 𝖫𝖮𝖶 𝑝 → 𝖧𝖨𝖦𝖧 𝑝
𝗀𝗈𝖴𝗉 𝑝 𝑥 = ↯ (𝗎𝗉 𝑝) 𝑥

5.2.3 Contract language
Building upon the Agda encoding of partial isomorphisms discussed in the previous
section, we can construct a contract language to describe the conversions we want to
apply to a function. We will use the term contract to denote such a specification. We
will start by defining a formal model for our contracts, and will explain our Agda im-
plementation in more detail in section 5.4.

The full syntax of the expression, type and contract language we are going to use
can be seen in figure 5.1. Our contract language 𝐶 uses a syntax closely mirroring the
syntax of normal Agda types. The only extension is the ”⟨𝐼⟩” construct, indicating that
the partial isomorphism 𝐼 should be used at the denoted location. Note that we allow
mixing contracts with normal Agda types, as it may very well be that some arguments
need not be converted.

An isomorphism is defined by the four projections giving the low and high type,
and the up and down conversions. In the actual Agda code, the conversion functions
are normal Agda functions; for the formal semantics we will ignore how the conversion
functions are constructed and will just assume they are given.

As our main intention is to create a contract language suitable for the foreign inter-
face, our contract language is only able to represent a subset of all Agda types. More pre-
cisely, we do not admit lambdas to our contract or type language, as neither Haskell nor
C support types containing lambdas. However, note that this restrictions applies to the
normalized type only, fully-applied lambda abstractions pose no problem as they dis-
appear during type/contract normalization. We also restrict ourselves to non-dependent
contracts/types for now, but we will later add those to the contract language in section
5.3.

Examples The newly introduced contract language already allows us to annotate func-
tions and FFI calls with contracts. Our examples in this section will all use the partial
isomorphism between natural numbers and integers. The formal specification of the
partial isomorphism 𝐼ℕℤ can be seen in equation 5.1. As the specific definition of the
conversions functions ℕ⇒ℤ and ℤ⇒ℕ is not relevant for the contract language, we will
omit their definition:

𝐼ℕℤ = {𝜏𝑙𝑜𝑤 = ℤ; 𝜏ℎ𝑖𝑔ℎ = ℕ; 𝛼𝑑𝑜𝑤𝑛 = ℕ⇒ℤ; 𝛼𝑢𝑝 = ℤ⇒ℕ} (5.1)

Taking advantage of this isomorphism, we can express the before mentioned con-
tract lifting an addition function from integers to natural numbers. This gives us the
following expression, wrapping the hsAdd FFI call:

𝑎𝑑𝑑 = assert (⟨ 𝐼ℕℤ ⟩ ⇒ ⟨ 𝐼ℕℤ ⟩ ⇒ ⟨ 𝐼ℕℤ ⟩) ℎ𝑠𝐴𝑑𝑑 (5.2)

29

Contracts 𝐶 ∶∶= ⟨ 𝐼 ⟩ Apply Isomorphism
| 𝜎𝐶 Type

Types 𝜏 = 𝜎𝜏 Plain Agda Type

Type-Like 𝜎𝑟 ∶∶= Set Set
| 𝑛 𝜏 Variable / Application
| 𝑟1 ⇒ 𝑟2 Function Type

Isomorphism 𝐼 = {𝜏𝑙𝑜𝑤 = 𝜏; 𝜏ℎ𝑖𝑔ℎ = 𝜏; 𝛼𝑑𝑜𝑤𝑛 = 𝛼; 𝛼𝑢𝑝 = 𝛼}

Conversion 𝛼
Expressions 𝑒 ∶∶= Let 𝑛 = 𝜎𝑒 in 𝜎𝑒 Let binding

| 𝜆𝑛 → 𝑒 Lambda Abstraction
| 𝑒 ∶ 𝜏 Type annotation
| ↯ 𝛼 𝑒 (Unsafe) conversion primitive
| assert 𝐶 𝑒 Assertion
| 𝐼.𝜏𝑙𝑜𝑤 | 𝐼.𝜏ℎ𝑖𝑔ℎ | 𝐼.𝛼𝑑𝑜𝑤𝑛 | 𝐼.𝛼𝑢𝑝 Isomorphism Projection

Figure 5.1: The contract, type and expression language for non-dependent contracts.

Our contract language also allows us to specify contracts on higher order functions.
To demonstrate this, we will reuse the map-like Haskell function introduced in section
5.2.1 with the following Agda representation:

𝗁𝗌𝖬𝖺𝗉 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”The.Haskell.map”)
((ℤ → ℤ) → 𝖫𝗂𝗌𝗍 ℤ → 𝖫𝗂𝗌𝗍 ℤ)

Our intent is to lift the first argument from the type (ℤ → ℤ) to the type (ℕ → ℕ).
We hence have to apply the 𝐼ℕℤ partial isomorphism on the function argument, yielding
the following expression:

𝑚𝑎𝑝 = assert ((⟨ 𝐼ℕℤ ⟩ ⇒ ⟨ 𝐼ℕℤ ⟩) ⇒ 𝐿𝑖𝑠𝑡 ℤ ⇒ 𝐿𝑖𝑠𝑡 ℤ) ℎ𝑠𝑀𝑎𝑝 (5.3)

Note that the above expression mixes contracts with normal Agda types. We specify
that a contract needs to be applied to the argument/result of the function passed as the
first argument to 𝑚𝑎𝑝 ; for the list argument/result we did not specify any contracts and
just use the normal Agda data types directly.

5.2.4 Contract desugaring
So far we have shown how a type-indexed contract language can be defined, but we have
not yet discussed it’s precise semantics nor how to implement it. We can accomplish
both goals by formally specifying how a contract 𝐶 desugars into normal Agda code.

In the end, the goal is to replace all terms of the form assert 𝐶 𝑒 by a plain Agda
expression performing the necessary checks and conversions.

A slight complication arises from the fact that we intend to use contracts mainly
together with the FFI. Agda’s FFI works in a type-directed fashion, and requires that
the type of a FFI call is explicitly given. It would thus be nice if we could reuse the

30

T-Set𝜌; 𝑆𝑒𝑡 ▶ 𝑆𝑒𝑡 T-Var𝜌; 𝑛 𝜏 ▶ 𝑛 𝜏

𝜌; 𝐶1 ▶ 𝜏1 𝜌; 𝐶2 ▶ 𝜏2 T-Pi𝜌; 𝐶1 ⇒ 𝐶2 ▶ 𝜏1 ⇒ 𝜏2

T-Iso-Low𝐿; ⟨𝐼⟩ ▶ 𝐼.𝜏𝑙𝑜𝑤

T-Iso-High
𝐻; ⟨𝐼⟩ ▶ 𝐼.𝜏ℎ𝑖𝑔ℎ

Figure 5.2: Derivation rules for the high and low types.

contract specification 𝐶 to derive the type of an FFI call; thereby exposing one syntax
for both, defining the contracts for an FFI call, and the FFI call itself.

In the formal model, we take this into account by inserting type annotations for the
scrutinee of an assertion. A nice side effect of this approach is that it enables us to also
annotate the whole generated term with the expected type. This allows the type checker
of Agda to check that the generated expression matches the expected type.

In the formal description of the translation which follows, we will refer to the ex-
pression targeted by an assertion as the scrutinee. Following the terminology introduced
earlier, we will call the type of the scrutinee the low type, while calling the type of the
whole assertion term the high type.

Type derivation

We will start explaining the full translation by discussing how the high/low types are
derived. We will use the syntax 𝐿; 𝐶 ▶ 𝜏𝑙𝑜𝑤 to denote the translation of the contract
𝐶 to the low type 𝜏𝑙𝑜𝑤. Note that the leading 𝐿 value signals that we want to derive
the low type. Replacing 𝐿 with 𝐻 will represent the derivation of the high type corre-
spondingly. The full rules can be seen in figure 5.2.

The rules for all Type-Like 𝜎 constructs are trivial; these constructs are already valid
parts of Agda types and no conversion is thus needed. The only case where special care
needs to be taken is the isomorphism case. Depending on if the high or low type should
be derived, the proper type needs to be selected.

Example For the addition example given in equation 5.2, the derived low/high types
are as follows:

𝑎𝑑𝑑 − 𝜏𝑙𝑜𝑤 = ℤ ⇒ ℤ ⇒ ℤ (5.4)
𝑎𝑑𝑑 − 𝜏ℎ𝑖𝑔ℎ = ℕ ⇒ ℕ ⇒ ℕ (5.5)

Similarly, we can derive the following low/high types for the map-like function from
equation 5.3:

𝑚𝑎𝑝 − 𝜏𝑙𝑜𝑤 = (ℤ ⇒ ℤ) ⇒ 𝐿𝑖𝑠𝑡 ℤ ⇒ 𝐿𝑖𝑠𝑡 ℤ (5.6)
𝑚𝑎𝑝 − 𝜏ℎ𝑖𝑔ℎ = (ℕ ⇒ ℕ) ⇒ 𝐿𝑖𝑠𝑡 ℤ ⇒ 𝐿𝑖𝑠𝑡 ℤ (5.7)

31

Inserting dynamic checks

The final missing piece is the code actually translating the assertion terms, inserting the
necessary checks and conversions. To be more precise, the translation function needs
to construct a term of type 𝜏ℎ𝑖𝑔ℎ, being given the contract 𝐶 and an expression to wrap
of type 𝜏𝑙𝑜𝑤.

Expressions language The target expression language 𝑒 is given in figure 5.1. It fea-
tures a basic lambda calculus, extended with an unsafe conversion primitive ↯ which is
used to apply a conversion. In the actual Agda implementation, the conversion primi-
tive is a normal Agda function, but for clarity we choose an explicit representation in
our formal expression language. Furthermore, we introduce the syntax assert 𝐶 𝑒 to
apply the contract 𝐶 to the expression 𝑒.

Translation rules The aim of the translation rules now is to replace all assertions by
a suitable new expression using the unsafe conversion primitive instead.

The complete set of rules can be found in figure 5.3. Most of the rules are fairly
straightforward and we will focus our description on the complicated cases, starting
from the top-level.

Top-level translation The translation of assertion starts at the assert 𝐶 𝑒 expressions.
Computing the low/high types for the generated expression builds upon the already
introduced rules for the type derivation. The more interesting part is the generation of
the actual new expression to splice in.

Most translation rules require additional information about their context. First, for
applying partial isomorphisms correctly it is important to know if they are used in a
co- or contravariant context. We encode the contravariant context as 𝑁 (negative) and
the covariant context as 𝑃 (positive). Second, we need to know the expression which
shall be wrapped. We will use the syntax 𝜔; 𝜙; 𝐶 ▷ 𝑒 to describe how to derive the
conversion term 𝑒, given the contract 𝐶 , the co- or contravariant context 𝜔, and the term
to wrap 𝜙.

Using this preliminaries, we can introduce the assertion rule:

𝐿; 𝐶 ▶ 𝜏𝑙𝑜𝑤 𝐻; 𝐶 ▶ 𝜏ℎ𝑖𝑔ℎ 𝑃 ; (𝑒 ∶ 𝜏𝑙𝑜𝑤); 𝐶 ▷ 𝑒′

C-Assertassert 𝐶 𝑒 ▷ (𝑒′ ∶ 𝜏ℎ𝑖𝑔ℎ)

A top-level contract is always covariant, we thus mark it as 𝑃 (positive) and set 𝜙
to the expression containing the assertion scrutinee. We also add two type annotations
using the derived high/low types.

Trivial cases A contract may contain plain Agda types. By their definition, these con-
tract terms do not establish any additional property or conversion of the given argument,
hence we can just return the original assertion scrutinee given as 𝜙.

Isomorphisms If an isomorphism is encountered, an upward or downward conversion
of the 𝜙 term needs to be inserted. The position dictates the direction of the conversion:

C-Iso-Pos𝑃 ; 𝜙; ⟨𝐼⟩ ▷ ↯ 𝐼.𝛼𝑢𝑝 𝜙

C-Iso-Neg
𝑁; 𝜙; ⟨𝐼⟩ ▷ ↯ 𝐼.𝛼𝑑𝑜𝑤𝑛 𝜙

32

Function Type Finally, the missing piece and most complex rule handles the function
type/contract:

let 𝑥, 𝑥′ be fresh 𝜔−1; 𝑥′; 𝐶1 ▷ 𝑒1 𝜔; 𝑎𝑝𝑝 (𝜙, 𝑥); 𝐶2 ▷ 𝑒2 C-Fun𝜔; 𝜙; 𝐶1 ⇒ 𝐶2 ▷ 𝜆𝑥′ → Let 𝑥 = 𝑒1 in 𝑒2

Notably, we have to introduce a new lambda abstraction to be able to inspect the
newly given argument. To derive the term for converting 𝑥′ we walk over the 𝐶1 con-
tract, giving 𝑥′ as the term to transform. We also invert the context 𝜔 using the syntax
𝜔−1. This results in the term 𝑒1, which performs the necessary checks on 𝑥′ and which
we bind in a Let expression to the fresh name 𝑥.

For the right hand side of the function contract, the contract 𝐶2 needs to be in-
spected. Importantly, we apply the original wrapped term 𝜙 to the transformed term 𝑥.
This gives us the body 𝑒2, which we then insert into the Let binding.

Examples Once again, we will first give the solution for the addition example. The
whole translation including the type signatures gives the following result:

𝑎𝑑𝑑 =𝜆𝑥′ → Let 𝑥 = ↯ ℕ⇒ℤ 𝑥′ in
𝜆𝑦′ → Let 𝑦 = ↯ ℕ⇒ℤ 𝑦′ in

↯ ℤ⇒ℕ
((ℎ𝑠𝐴𝑑𝑑 ∶ ℤ ⇒ ℤ ⇒ ℤ) 𝑥 𝑦)

∶ ℕ ⇒ ℕ ⇒ ℕ (5.8)

More interestingly, we can do the same transformation for the higher-order map
example:

𝑚𝑎𝑝 =𝜆𝑓 ′ →
Let 𝑓 = (𝜆𝑥′ →

Let 𝑥 = ↯ ℕ⇒ℤ 𝑥′ in
↯ ℤ⇒ℕ (𝑓 ′ 𝑥)

) in
𝜆𝑥𝑠′ → Let 𝑥𝑠 = 𝑥𝑠′ in

(ℎ𝑠𝑀𝑎𝑝 ∶ (ℤ ⇒ ℤ) ⇒ 𝐿𝑖𝑠𝑡 ℤ ⇒ 𝐿𝑖𝑠𝑡 ℤ) 𝑓 𝑥𝑠
)

∶ (ℕ ⇒ ℕ) ⇒ 𝐿𝑖𝑠𝑡 ℤ ⇒ 𝐿𝑖𝑠𝑡 ℤ (5.9)

Importantly, the lambda 𝜆𝑥′ → ... is introduced in the body of the let-binding for 𝑓 .
This lambda allows us to inspect the argument passed to the function 𝑓 ′, applying the
appropriate contract to 𝑥′ as well as to the result of 𝑓 ′ being applied to 𝑥.

5.3 Dependent Contracts
The mechanism discussed so far already gives us first-order and higher-order contracts,
but one crucial bit is still missing. Contracts are so far not allowed to depend on other

33

𝑎𝑝𝑝(𝑒1, 𝑒2) = 𝐿𝑒𝑡 𝑥 = 𝑒1 𝑖𝑛 𝑥 𝑒2,where x is fresh

C-Set𝜔; 𝜙; Set ▷ 𝜙 C-Var𝜔; 𝜙; 𝑛 𝜏 ▷ 𝜙

let 𝑥, 𝑥′ be fresh 𝜔−1; 𝑥′; 𝐶1 ▷ 𝑒1 𝜔; 𝑎𝑝𝑝 (𝜙, 𝑥); 𝐶2 ▷ 𝑒2 C-Fun𝜔; 𝜙; 𝐶1 ⇒ 𝐶2 ▷ 𝜆𝑥′ → Let 𝑥 = 𝑒1 in 𝑒2

C-Iso-Pos𝑃 ; 𝜙; ⟨𝐼⟩ ▷ ↯ 𝐼.𝛼𝑢𝑝 𝜙

C-Iso-Neg
𝑁; 𝜙; ⟨𝐼⟩ ▷ ↯ 𝐼.𝛼𝑑𝑜𝑤𝑛 𝜙

𝐿; 𝐶 ▶ 𝜏𝑙𝑜𝑤 𝐻; 𝐶 ▶ 𝜏ℎ𝑖𝑔ℎ 𝑃 ; (𝑒 ∶ 𝜏𝑙𝑜𝑤); 𝐶 ▷ 𝑒′

C-Assertassert 𝐶 𝑒 ▷ (𝑒′ ∶ 𝜏ℎ𝑖𝑔ℎ)

Figure 5.3: Non-dependent contracts translation.

arguments; they are not dependent contracts. In the setting of Agda, this is especially
problematic as type polymorphism is done using type arguments. To give an example,
the normal Haskell map function for lists can be imported into Agda with the following
Agda code:

𝗁𝗌𝖬𝖺𝗉 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Data.List.map”)
((𝐴 𝐵 ∶ 𝖲𝖾𝗍) → (𝑓 ∶ 𝐴 → 𝐵) → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐵)

The types A and B are passed as arguments, and the remainder of the type depends
on these values.

A further complication is that the Agda representation of a function may take addi-
tional arguments compared to the Haskell version. For example, we may want to expose
Haskell Lists as Agda Vectors of a certain length. We would like to be able to write
a dependent contract stating that mapping a list does not change its length. Assuming
we are given a partial isomorphism 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍 between vectors and lists, the syntax for
specifying such a contract could look like the following pseudo-code:

𝗆𝖺𝗉 = 𝖺𝗌𝗌𝖾𝗋𝗍
((𝑛 ∶ ℕ) ⇒ (𝐴 𝐵 ∶ 𝖲𝖾𝗍) ⇒ (𝑓 ∶ 𝐴 ⇒ 𝐵) ⇒ ⟨ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍 𝐴 𝑛 ⟩ ⇒ ⟨ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍 𝐵 𝑛 ⟩)
𝗁𝗌𝖬𝖺𝗉

This example shows that the lifted / dependently-typed version of a function may
take more arguments than its low-level counterpart; in the map example, the 𝑛 argument
is only used by the high-level definition and not by the original low function.

5.3.1 Extended Syntax
To properly support dependent contracts, we need to embellish our contract and type
language; making it powerful enough to encode dependent types. To this end, the gram-
mar itself does no longer distinguish between expressions and types as can be seen in

34

Figure 5.4.
We also let the partial isomorphism projections be lambdas taking arguments, and

the partial isomorphism application now takes the corresponding argument expressions.
Note that we split the arguments of a partial isomorphism application into three parts.
All fields of an isomorphism may depend on the 𝑥𝑎 argument. The high type, on the
other hand, is not allowed to depend on the 𝑥𝑙 argument, and the low type must not
depend on the 𝑥ℎ argument. This separation is necessary to support the erasing Pi
construct, as it causes arguments to only be in scope in certain contexts.

For example, a partial isomorphism 𝐼𝑙𝑣 between lists and length-indexed vectors
might look like this given the two conversions 𝑣𝑒𝑐 ⇒ 𝑙𝑖𝑠𝑡 and 𝑙𝑖𝑠𝑡 ⇒ 𝑣𝑒𝑐, where the
𝑙𝑖𝑠𝑡 ⇒ 𝑣𝑒𝑐 conversion takes the expected length 𝑛 as argument. Note that 𝑛 is a high
argument, as it must not be used in the derived low type later on:

𝐼𝑙𝑣 = {𝜏𝑙𝑜𝑤 = 𝜆𝐴 _ → 𝐿𝑖𝑠𝑡 𝐴
;𝜏ℎ𝑖𝑔ℎ = 𝜆𝐴 𝑛 → 𝑉 𝑒𝑐 𝐴 𝑛
;𝛼𝑑𝑜𝑤𝑛 = 𝜆𝐴 _ 𝑛 → 𝑣𝑒𝑐⇒𝑙𝑖𝑠𝑡
;𝛼𝑢𝑝 = 𝜆𝐴 _ 𝑛 → 𝑙𝑖𝑠𝑡⇒𝑣𝑒𝑐 𝑛
} (5.10)

Furthermore, we introduce the dependent function type Pi, subsuming the existing
non-dependent function type. We also add a special Pi type to annotate functions where
the argument shall be erased. We will call this an erasing Pi.

As a small example, let us show how we could apply the 𝐼𝑙𝑣 partial isomorphism
defined earlier to expose the Haskell List map function as Vector map function in Agda.
This also makes use of the erasure annotations, as we want to erase the length argument
𝑛 before calling the Haskell function. We also pass the unit value as the low argument
𝑥𝑙, as the isomorphism 𝐼𝑙𝑣 does not take any low arguments:

𝑚𝑎𝑝 = assert ((𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝐵 ∶ 𝑆𝑒𝑡) ⇒ (𝑛 ∶ ℕ)
⇏ (𝑓 ∶ 𝐴 ⇒ 𝐵) ⇒ ⟨ 𝐼𝑙𝑣 𝐴 () 𝑛 ⟩ ⇒ ⟨ 𝐼𝑙𝑣 𝐵 () 𝑛 ⟩) ℎ𝑠𝑀𝑎𝑝 (5.11)

5.3.2 Embellished Translation Rules
Given the extended syntax defined in the previous section, the translation rules need
embellishment as well. The updated rules for the type derivation are given in figure
5.5. Note that even though we have merged the expression and type grammar, we only
allow the subset for which we have given type derivation rules to be used in contracts.

Furthermore, we need to extend the type derivation rules to parametrize them over
whether we derive the low or high type. We use the syntax 𝜔; 𝜌; 𝐴 ▶ 𝐵 to denote
the translation of the term 𝐴 to the term 𝐵, in the covariant (𝑃) or contravariant (𝑁)
context 𝜔, where 𝜌 takes the value 𝐿/𝐻 for deriving the low/high type. This allows us
to introduce the two new rules handling the erasing Pi construct.

Erasing Pi

For first-order contracts this is relatively easy; for producing the high-type, the T-Pi rule
applies without any change. On the other hand, for the low type we just need to ignore
the left hand side of the erasing Pi:

35

Contracts 𝐶 ∶∶= ⟨ 𝐼 𝑒𝑎 𝑒𝑙 𝑒ℎ⟩ Apply Isomorphism
| (𝑛 ∶ 𝐶1) ⇏ 𝐶2 Erasing Pi
| 𝑒𝐶 Type

Isomorphism 𝐼 = {𝜏𝑙𝑜𝑤 = 𝜆𝑥𝑎 𝑥𝑙 → 𝑒
; 𝜏ℎ𝑖𝑔ℎ = 𝜆𝑥𝑎 𝑥ℎ → 𝑒
; 𝛼𝑑𝑜𝑤𝑛 = 𝜆𝑥𝑎 𝑥𝑙 𝑥ℎ → 𝛼
; 𝛼𝑢𝑝 = 𝜆𝑥𝑎 𝑥𝑙 𝑥ℎ → 𝛼}

Conversion 𝛼

Expressions 𝜏𝑟, 𝑒𝑟 ∶∶= (𝑛 ∶ 𝑟) ⇒ 𝑟 Pi
| Set Set
| 𝑛 𝑒𝑟 Variable / Application
| Let 𝑛 = 𝑒𝑟 in 𝑒𝑟 Let binding
| 𝜆𝑛 → 𝑒𝑟 Lambda Abstraction
| 𝑒𝑟 ∶ 𝜏 Type annotation
| ↯ 𝛼 𝑒𝑟 (Unsafe) conversion primitive
| assert 𝐶 𝑒𝑟 Assertion
| () Unit
| 𝑒𝑟, 𝑒𝑟 | 𝑝𝑟𝑜𝑗1 𝑒𝑟 | 𝑝𝑟𝑜𝑗2 𝑒𝑟 (Dependent) pairs
| 𝐼.𝜏𝑙𝑜𝑤 | 𝐼.𝜏ℎ𝑖𝑔ℎ | 𝐼.𝛼𝑑𝑜𝑤𝑛 | 𝐼.𝛼𝑢𝑝 Isomorphism Projection

𝑒, 𝜏 = 𝑒𝑒, 𝜏𝜏

Figure 5.4: The terms of the dependent contracts.

36

𝜔; 𝐿; 𝐶2 ▶ 𝜏2 T-Erase-Pi1’𝜔; 𝐿; 𝐶1 ⇏ 𝐶2 ▶ 𝜏2

Beware though, this rule breaks down for higher-order contracts. Assume we are
given the following contract, with the corresponding low/high type computed using rule
T-Erase-Pi1’ :

𝐶 = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝐴 ⇏ 𝐴) ⇒ 𝐴
𝜏𝑙𝑜𝑤 = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝑓𝑙𝑜𝑤 ∶ 𝐴) ⇒ 𝐴

𝜏ℎ𝑖𝑔ℎ = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝑓ℎ𝑖𝑔ℎ ∶ 𝐴 ⇒ 𝐴) ⇒ 𝐴

According to the types, if we want to call the low function we have to produce an
expression 𝑓𝑙𝑜𝑤 of type 𝐴 while being given the expression 𝑓ℎ𝑖𝑔ℎ of type 𝐴 ⇒ 𝐴. The
only way to do this is to apply 𝑓ℎ𝑖𝑔ℎ to an expression of type 𝐴, but we do not have any
such value.

The crucial observation to make here is that the erasing Pi is in contravariant posi-
tion in the given example. The proper solution is thus to reverse the effect of the erasing
Pi in a contravariant context; instead of erasing arguments in the low type, we do so in
the high type.

Coming back to the example, thismeans that the types of 𝑓𝑙𝑜𝑤 and 𝑓ℎ𝑖𝑔ℎ are switched
around:

𝐶 = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝐴 ⇏ 𝐴) ⇒ 𝐴
𝜏𝑙𝑜𝑤 = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝑓𝑙𝑜𝑤 ∶ 𝐴 ⇒ 𝐴) ⇒ 𝐴

𝜏ℎ𝑖𝑔ℎ = (𝐴 ∶ 𝑆𝑒𝑡) ⇒ (𝑓ℎ𝑖𝑔ℎ ∶ 𝐴) ⇒ 𝐴

Accordingly, we now need to produce an expression 𝑓𝑙𝑜𝑤 of type 𝐴 ⇒ 𝐴 being
given the expression 𝑓ℎ𝑖𝑔ℎ of type 𝐴. This is now easily possible by wrapping 𝑓ℎ𝑖𝑔ℎ in
an additional lambda abstraction: 𝜆_ → 𝑓ℎ𝑖𝑔ℎ .

We can generalize this observation and the rules for the type derivation we thereby
obtain erase an argument in the low or high type depending on the co-/contravariant
context 𝜔 and the low (𝐿) / high (𝐻) target type 𝜌:

(𝜔, 𝜌) ∈ {(𝑃 , 𝐿), (𝑁, 𝐻)} 𝜔; 𝜌; 𝐶2 ▶ 𝜏2 T-Erase-Pi1𝜔; 𝜌; 𝐶1 ⇏ 𝐶2 ▶ 𝜏2

(𝜔, 𝜌) ∈ {(𝑃 , 𝐻), (𝑁, 𝐿)} 𝜔−1; 𝜌; 𝐶1 ▶ 𝜏1 𝜔; 𝜌; 𝐶2 ▶ 𝜏2 T-Erase-Pi2𝜔; 𝜌; 𝐶1 ⇏ 𝐶2 ▶ 𝜏1 ⇒ 𝜏2

The rule for checking the contract established by a erasing Pi closely follows the
rule for normal Pis, the only difference is that the wrapped term 𝜙 is not applied to the
argument 𝑥:

let 𝑥′ be fresh 𝜔−1; 𝑥′; 𝐶1 ▷ 𝑡1 𝜔; 𝜙; 𝐶2 ▷ 𝑡2 C-Erase-Pi𝜔; 𝜙; (𝑥 ∶ 𝐶1) ⇏ 𝐶2 ▷ 𝜆𝑥′ → Let 𝑥 = 𝑡1 in 𝑡2

Dependent Isomorphisms

The rules T-Iso-Low/High need to be adapted to apply the arguments of the now depen-
dent partial isomorphism correctly. Importantly, the T-Iso-Low rule must apply only

37

T-Set𝜔; 𝜌; 𝑆𝑒𝑡 ▶ 𝑆𝑒𝑡

T-Var𝜔; 𝜌; 𝑛 𝜏 ▶ 𝑛 𝜏
𝜔−1; 𝜌; 𝐶1 ▶ 𝜏1 𝜔; 𝜌; 𝐶2 ▶ 𝜏2 T-Pi𝜔; 𝜌; 𝐶1 ⇒ 𝐶2 ▶ 𝜏1 ⇒ 𝜏2

T-Iso-Low𝜔; 𝐿; ⟨𝐼 𝑒𝑎 𝑒𝑙 𝑒ℎ⟩ ▶ 𝐼.𝜏𝑙𝑜𝑤 𝑒𝑎 𝑒𝑙

T-Iso-High
𝜔; 𝐻; ⟨𝐼 𝑒𝑎 𝑒𝑙 𝑒ℎ⟩ ▶ 𝐼.𝜏ℎ𝑖𝑔ℎ 𝑒𝑎 𝑒ℎ

(𝜔, 𝜌) ∈ {(𝑃 , 𝐿), (𝑁, 𝐻)} 𝜔; 𝜌; 𝐶2 ▶ 𝜏2 T-Erase-Pi1𝜔; 𝜌; 𝐶1 ⇏ 𝐶2 ▶ 𝜏2

(𝜔, 𝜌) ∈ {(𝑃 , 𝐻), (𝑁, 𝐿)} 𝜔−1; 𝜌; 𝐶1 ▶ 𝜏1 𝜔; 𝜌; 𝐶2 ▶ 𝜏2 T-Erase-Pi2𝜔; 𝜌; 𝐶1 ⇏ 𝐶2 ▶ 𝜏1 ⇒ 𝜏2

Figure 5.5: Derivation rules for the high and low types for the dependent contracts.

the 𝑥𝑎 and 𝑥𝑙 arguments, whereas the T-Iso-High rule only the 𝑥𝑎 and 𝑥ℎ arguments.
Simply applying all arguments in either rule would lead to invalid terms, as an erasing
Pi may have dropped the respective argument in the current context.

It is also worth noting that even though ourmodel only permits exactly one argument
per argument kind, we can easily encode any number of arguments by using pairs or the
unit value as arguments.

For the contract checking itself in rule C-Iso-Pos/C-Iso-Neg, all arguments are in
scope and we can just apply all arguments and apply the resulting up/down conversions
as beforehand.

5.4 An actual Agda Implementation
Having formulated a formal model of our contracts, we can now go ahead and discuss
some of the key design points in our Agda implementation.

5.4.1 Dependent Partial Isomorphisms
First, we need to extend our earlier Agda definition of partial isomorphisms to depen-
dent partial isomorphisms. Crucially, it must be relatively easy to define a specific
instance of such a dependent partial isomorphism. To aid the programmer to use our
contracts properly, we also strive to enforce the correctness of any such partial isomor-
phism definition using Agda’s type system.

A partial isomorphism will always contain a conversion in both the upward and
downward direction, we hence give bidirectional conversions an explicit name:

– bi-directional conversions
𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇𝗌 ∶ 𝖲𝖾𝗍 → 𝖲𝖾𝗍 → 𝖲𝖾𝗍
𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇𝗌 𝐴 𝐵 = 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐴 𝐵 × 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇 𝐵 𝐴

38

C-Set𝜔; 𝜙; Set ▷ 𝜙

C-Var𝜔; 𝜙; 𝑛 𝜏 ▷ 𝜙

let 𝑥′ be fresh 𝜔−1; 𝑥′; 𝐶1 ▷ 𝑡1 𝜔; (𝑎𝑝𝑝𝑙𝑦 𝜙 𝑥); 𝐶2 ▷ 𝑡2 C-Pi𝜔; 𝜙; (𝑥 ∶ 𝐶1) ⇒ 𝐶2 ▷ 𝜆𝑥′ → Let 𝑥 = 𝑡1 in 𝑡2

C-Iso-Pos𝑃 ; 𝜙; ⟨𝐼 𝑒𝑎 𝑒𝑙 𝑒ℎ⟩ ▷ ↯ (𝐼.𝛼𝑢𝑝 𝑒𝑎 𝑒𝑙 𝑒ℎ) 𝜙

C-Iso-Neg
𝑁; 𝜙; ⟨𝐼 𝑒𝑎 𝑒𝑙 𝑒ℎ⟩ ▷ ↯ (𝐼.𝛼𝑑𝑜𝑤𝑛 𝑒𝑎 𝑒𝑙 𝑒ℎ) 𝜙

let 𝑥′ be fresh 𝜔−1; 𝑥′; 𝐶1 ▷ 𝑡1 𝜔; 𝜙; 𝐶2 ▷ 𝑡2 C-Erase-Pi𝜔; 𝜙; (𝑥 ∶ 𝐶1) ⇒ 𝐶2 ▷ 𝜆𝑥′ → Let 𝑥 = 𝑡1 in 𝑡2

𝐿; 𝐶 ▶ 𝜏𝑙𝑜𝑤 𝐻; 𝐶 ▶ 𝜏ℎ𝑖𝑔ℎ 𝑃 ; (𝑒 ∶ 𝜏𝑙𝑜𝑤); 𝐶 ▷ 𝑒′

C-Assertassert 𝐶 𝑒 ▷ (𝑒′ ∶ 𝜏ℎ𝑖𝑔ℎ)

Figure 5.6: Dependent contracts translation.

In our formal model, partial isomorphisms take exactly three arguments. As we
want to support arbitrary numbers of arguments in our Agda formulation, we might be
tempted to encode the argument types as a list of types:

𝖠𝗋𝗀𝖳𝗒𝗉𝖾𝗌 ∶ 𝖲𝖾𝗍
𝖠𝗋𝗀𝖳𝗒𝗉𝖾𝗌 = 𝖫𝗂𝗌𝗍 𝖲𝖾𝗍

This however has the big drawback of requiring that all argument types must be
independent; the argument types may not depend on each other! Therefore we instead
adopt the aforementioned approach using (dependent) pairs and unit values to encode
arbitrary number of arguments.

We then go on to define the embellished 𝖯𝖺𝗋𝗍𝖨𝗌𝗈 record. The arguments follow the
split into the three kinds discussed beforehand, and the low/high types and the conver-
sions may depend on these arguments. This yields the following Agda code:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖯𝖺𝗋𝗍𝖨𝗌𝗈 ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝗆𝗄𝖯𝖺𝗋𝗍𝖨𝗌𝗈
𝖿 𝗂𝖾𝗅𝖽
– the common arguments
𝖠𝖱𝖦−𝖺 ∶ 𝖲𝖾𝗍
– the low arguments
𝖠𝖱𝖦−𝗅 ∶ 𝐴𝑅𝐺−𝑎 → 𝖲𝖾𝗍
– the high arguments
𝖠𝖱𝖦−𝗁 ∶ 𝐴𝑅𝐺−𝑎 → 𝖲𝖾𝗍
– the low type
𝜏−𝗅 ∶ (𝑎𝑎 ∶ 𝐴𝑅𝐺−𝑎) → (𝐴𝑅𝐺−𝑙 𝑎𝑎) → 𝖲𝖾𝗍
– the high type

39

𝜏−𝗁 ∶ (𝑎𝑎 ∶ 𝐴𝑅𝐺−𝑎) → (𝐴𝑅𝐺−ℎ 𝑎𝑎) → 𝖲𝖾𝗍
– the conversions
⇅ ∶ (𝑎𝑎 ∶ 𝐴𝑅𝐺−𝑎) → (𝑎𝑙 ∶ 𝐴𝑅𝐺−𝑙 𝑎𝑎) → (𝑎ℎ ∶ 𝐴𝑅𝐺−ℎ 𝑎𝑎)

→ 𝖢𝗈𝗇𝗏𝖾𝗋𝗌𝗂𝗈𝗇𝗌 (𝜏−𝑙 𝑎𝑎 𝑎𝑙) (𝜏−ℎ 𝑎𝑎 𝑎ℎ)

To see if this indeed works, let us build a dependent partial isomorphism between
lists and vectors. We first define a conversion function converting a list into a vector of
a certain length:

– decision function for converting lists
– to vectors of a certain length
𝗅𝗂𝗌𝗍⇒𝗏𝖾𝖼 ∶ ∀ {𝑛 ∶ ℕ} {𝐴 ∶ 𝖲𝖾𝗍} → 𝖫𝗂𝗌𝗍 𝐴 → 𝖬𝖺𝗒𝖻𝖾 (𝖵𝖾𝖼 𝐴 𝑛)
𝗅𝗂𝗌𝗍⇒𝗏𝖾𝖼 {𝑛} 𝑥𝑠 𝗐𝗂𝗍𝗁 𝑛 ≟ 𝗅𝖾𝗇𝗀𝗍𝗁 𝑥𝑠
𝗅𝗂𝗌𝗍⇒𝗏𝖾𝖼 𝑥𝑠 | 𝗒𝖾𝗌 𝗋𝖾𝖿 𝗅 = 𝗃𝗎𝗌𝗍 (𝖣𝖺𝗍𝖺.𝖵𝖾𝖼.𝖿𝗋𝗈𝗆𝖫𝗂𝗌𝗍 𝑥𝑠)
𝗅𝗂𝗌𝗍⇒𝗏𝖾𝖼 𝑥𝑠 | 𝗇𝗈 ¬𝑝 = 𝗇𝗈𝗍𝗁𝗂𝗇𝗀

The definition of the partial dependent isomorphism given this preliminaries is then
straightforward:

– the partial dependent isomorphism
𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍𝖨 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈
𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍𝖨 = 𝗋𝖾𝖼𝗈𝗋𝖽
– the element type
{ 𝖠𝖱𝖦−𝖺 = 𝖲𝖾𝗍
– dummy unit type
; 𝖠𝖱𝖦−𝗅 = 𝜆 _ → ⊤
– the vector length type
; 𝖠𝖱𝖦−𝗁 = 𝜆 _ → ℕ
– the low list type
; 𝜏−𝗅 = 𝜆 𝐴 _ → 𝖫𝗂𝗌𝗍 𝐴
– the high vector type
; 𝜏−𝗁 = 𝜆 𝐴 𝑛 → 𝖵𝖾𝖼 𝐴 𝑛
– the conversions
; ⇅ = 𝜆 𝐴 _ 𝑛 → 𝗅𝗂𝗌𝗍⇒𝗏𝖾𝖼 , (𝗃𝗎𝗌𝗍 ∘ 𝗍𝗈𝖫𝗂𝗌𝗍)
}

This demonstrates that our chosen representation allows us to encode dependent
partial isomorphisms.

5.4.2 Internal Syntax
The syntax for describing contracts is split into two parts; the internal syntax used to
generate the proper code, and the surface syntax exposed to the user.

The internal syntax closely mirrors the contract language 𝐶 introduced in the formal
model before hand. An important design aspect is whether this internal language should
be strongly-typed inside Agda itself, thereby taking advantage of Agda’s type system to
guarantee that terms are correct by construction. While certainly a worthwhile goal, this
is more challenging than apparent at first as the contract language includes dependent
types.

40

The first main issue is related to the universe hierarchy of Agda. Agda code needs
to be explicit in which universe a type belongs to, and this universes are not cumula-
tive. As long as the term we want to describe in our contract language are universe-
homogeneous, meaning that all Abstract Syntax Tree (AST) nodes live in the same uni-
verse, this causes no difficulties. This would be overly restrictive though, as it would
severely limit the expressiveness of our language.

For example, the type of the identity function already violates this restriction:

𝗂𝖽𝟣 ∶ (𝐴 ∶ 𝖲𝖾𝗍𝟢) → 𝐴 → 𝐴
𝗂𝖽𝟣 _ 𝑥 = 𝑥

The first argument is in the universe Set1, whereas the second argument and the
result are in universe Set0. While it is possible to encode such universe-heterogeneous
terms in Agda using a clever encoding, this requires some additional effort. [2]

Furthermore, there are still certain contracts terms we can not represent. Reusing
the identity function example, we may want to make the identity function universe poly-
morphic:

𝗂𝖽𝟤 ∶ (𝑙 ∶ 𝖫𝖾𝗏𝖾𝗅) → (𝐴 ∶ 𝖲𝖾𝗍 𝑙) → 𝐴 → 𝐴
𝗂𝖽𝟤 _ _ 𝑥 = 𝑥

There is however currently no way known to express an universe-polymorphic data
structure in Agda itself. It’s unclear if this Agda restriction will be lifted in the future,
and what the implications of doing so would be. [3]

Due to this complications with the universe hierarchy in Agda we chose a shallow,
untyped embedding for the internal syntax, where the well-formedness of terms is not
enforced by the Agda type checker. The untyped nature of our internal syntax also
implies that we have to use reflection for this purpose if we want to interact with other
Agda code.

Our untyped approach is a reasonable strategy, as it simplifies code generation; fur-
thermore, we expect that the public surface syntax will perform the necessary checks
to ensure that all contract terms are valid.

5.4.3 Surface Syntax
Creating a suitable surface syntax is deeply related to how we have defined the internal
syntax. Nevertheless, the focus here lies on creating a safe and easy-to-use language.
The two major design goals are:

1. Concise and clear syntax

2. Only admit well-formed contracts

One option to achieve this is to extend the Agda compiler to support some special
syntax for our contracts. This is a rather invasive approach and makes it difficult to
evolve our contracts over time. It would also require extending the Agda compiler for
this specific use-case, which is not desirable.

Instead, we have chosen to create a sufficiently sophisticated typed AST in Agda
itself, taking advantage of Agda’s typesystem to guarantee well-formedness. However,
this approach leads us to immediately re-encounter the universe hierarchy/polymor-
phism problems mentioned in the previous section. We resolve this problem by simply

41

disabling the universe check in Agda (–type-in-type), as this is the only possibil-
ity to be able to express the full power of our contracts in Agda itself. Beware that this
makes Agda inconsistent due to Girard’s paradox! It is however highly unlikely that
one writes this paradox by accident, and disabling the universe check is normally not a
problem in practice.

The basic structure of the surface syntax can then be implemented in Agda using
induction-recursion.

First, let us introduce a helper function for the isomorphism application construct.
Given a partial isomorphism, the function will return the type of a dependent pair which
we will use to store the argument values. Note that the type of the low/high argument
may depend on the common argument 𝖠𝖱𝖦−𝖺:

𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈 → 𝖲𝖾𝗍
𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌 𝑖 = Σ (𝖠𝖱𝖦−𝖺 𝑖) (𝜆 𝑎𝑎 → 𝖠𝖱𝖦−𝗅 𝑖 𝑎𝑎 × 𝖠𝖱𝖦−𝗁 𝑖 𝑎𝑎)

We can then define the contract data type, where the 𝖺𝗉𝗉𝗅𝗒𝖨𝗌𝗈 constructor takes both,
an isomorphism and the corresponding arguments:

𝖽𝖺𝗍𝖺 𝖢 ∶ 𝖲𝖾𝗍
𝖾𝗅 ∶ 𝖢 → 𝖲𝖾𝗍

𝖽𝖺𝗍𝖺 𝖢 𝗐𝗁𝖾𝗋𝖾
– a pi contract
𝗉𝗂 ∶ (𝑐 ∶ 𝖢) → (𝖾𝗅 𝑐 → 𝖢) → 𝖢
– a plain Agda type
𝗍𝗒𝗉𝖾 ∶ 𝖲𝖾𝗍 → 𝖢
– (partial) isomorphism application
𝖺𝗉𝗉𝗅𝗒𝖨𝗌𝗈 ∶ (𝑖 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈)
– the arguments for the isomorphism i
→ 𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌 𝑖
→ 𝖢

𝖾𝗅 (𝗉𝗂 𝑐 𝑥) = (𝑎 ∶ 𝖾𝗅 𝑐) → 𝖾𝗅 (𝑥 𝑎)
𝖾𝗅 (𝗍𝗒𝗉𝖾 𝑥) = 𝑥
𝖾𝗅 (𝖺𝗉𝗉𝗅𝗒𝖨𝗌𝗈 𝑖𝑠𝑜 𝑎𝑟𝑔𝑠) = ⊤

However, some complications arise when we try to encode the erasing Pi construct
in the surface syntax. An argument introduced by an erasing Pi construct is by definition
only in scope for the low or high type, but never for both. We thus need to ensure that
arguments introduced by erasing pis are only used in the proper context.

It is worth noting that an erased argumentmay only be used by a partial isomorphism
application, and never in plain Agda types. The reason for this is that partial isomor-
phism applications are the only terms constructing differing low/high types, where the
low type may depend on other arguments than the high type.

To enforce this invariant, we introduce two new data types representing the high
and low context. It is crucial that we do not publicly export any eliminators of these
data types, as we will use them to wrap arguments which may only be used in a high or
low context. On the other hand, it is perfectly fine to export functions to lift any value
into the High/Low data types, as lifting an argument valid in all contexts into the low
or high context is always sound.

42

The definition of the two data types is as follows:

𝖽𝖺𝗍𝖺 𝖧𝗂𝗀𝗁 (𝐴 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝗐𝗋𝖺𝗉 ∶ 𝐴 → 𝖧𝗂𝗀𝗁 𝐴

𝖽𝖺𝗍𝖺 𝖫𝗈𝗐 (𝐴 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝗐𝗋𝖺𝗉 ∶ 𝐴 → 𝖫𝗈𝗐 𝐴

We also need to slightly extend the 𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌′ function, as we will need to specify in
which context the expected arguments of a partial isomorphism application shall live:

𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌′ ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈 → 𝖲𝖾𝗍
𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌′ 𝑖 = Σ (𝖠𝖱𝖦−𝖺 𝑖) (𝜆 𝑎𝑎 → 𝖫𝗈𝗐 (𝖠𝖱𝖦−𝗅 𝑖 𝑎𝑎) × 𝖧𝗂𝗀𝗁 (𝖠𝖱𝖦−𝗁 𝑖 𝑎𝑎))

Furthermore, we will need to keep track if we are in a co- or contravariant position
to determine into which high/low wrapper erased arguments need to be lifted. First, let
us introduce a 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 data type and a function to invert the context:

𝖽𝖺𝗍𝖺 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖯𝗈𝗌 ∶ 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 – Covariant
𝖭𝖾𝗀 ∶ 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 – Contravariant

𝗂𝗇𝗏𝖾𝗋𝗍 ∶ 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 → 𝖢𝗈𝗇𝗍𝖾𝗑𝗍
𝗂𝗇𝗏𝖾𝗋𝗍 𝖯𝗈𝗌 = 𝖭𝖾𝗀
𝗂𝗇𝗏𝖾𝗋𝗍 𝖭𝖾𝗀 = 𝖯𝗈𝗌

This lets us define a small helper function, which will wrap an erased argument in
the proper data type depending on the context:

𝜔→𝖶𝗋𝖺𝗉 ∶ 𝖢𝗈𝗇𝗍𝖾𝗑𝗍 → 𝖲𝖾𝗍 → 𝖲𝖾𝗍
𝜔→𝖶𝗋𝖺𝗉 𝖯𝗈𝗌 = 𝖫𝗈𝗐
𝜔→𝖶𝗋𝖺𝗉 𝖭𝖾𝗀 = 𝖧𝗂𝗀𝗁

The basic contract data type is similar to our previous version. The first difference
is that the 𝖢′ is now indexed by the Context. Second, we introduce a 𝖾𝗋𝖺𝗌𝗂𝗇𝗀−𝗉𝗂 con-
structor where the argument is wrapped in the 𝖫𝗈𝗐/𝖧𝗂𝗀𝗁 data types using the 𝛾→𝖶𝗋𝖺𝗉
function:

𝖽𝖺𝗍𝖺 𝖢′ (𝜔 ∶ 𝖢𝗈𝗇𝗍𝖾𝗑𝗍) ∶ 𝖲𝖾𝗍
𝖾𝗅′ ∶ ∀ {𝜔} → 𝖢′ 𝜔 → 𝖲𝖾𝗍

𝖽𝖺𝗍𝖺 𝖢′ (𝜔 ∶ Context) 𝗐𝗁𝖾𝗋𝖾
𝗉𝗂 ∶ (𝑐 ∶ 𝖢′ (𝗂𝗇𝗏𝖾𝗋𝗍 𝜔))

→ (𝖾𝗅′ 𝑐 → 𝖢′ 𝜔)
→ 𝖢′ 𝜔

𝗍𝗒𝗉𝖾 ∶ 𝖲𝖾𝗍 → 𝖢′ 𝜔
𝖺𝗉𝗉𝗅𝗒𝖨𝗌𝗈 ∶ (𝑖 ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈)

→ 𝗐𝗂𝗍𝗁𝖠𝗋𝗀𝗌′ 𝑖
→ 𝖢′ 𝜔

𝖾𝗋𝖺𝗌𝗂𝗇𝗀−𝗉𝗂 ∶ (𝑐 ∶ 𝖢′ (𝗂𝗇𝗏𝖾𝗋𝗍 𝜔))
→ (𝜔→𝖶𝗋𝖺𝗉 𝜔 (𝖾𝗅′ 𝑐) → 𝖢′ 𝜔)

43

→ 𝖢′ 𝜔

Our embellished contract language now also allows us to express contracts with
erased arguments, and applied partial isomorphisms may depend on such arguments.
The extended 𝖾𝗅′ function follows the same pattern, we add a clause for the 𝖾𝗋𝖺𝗌𝗂𝗇𝗀−𝗉𝗂
constructor and wrap the argument depending on the context:

𝖾𝗅′ {𝜔} (𝖾𝗋𝖺𝗌𝗂𝗇𝗀−𝗉𝗂 𝑐 𝑥) = (𝑎 ∶ 𝜔→𝖶𝗋𝖺𝗉 𝜔 (𝖾𝗅′ 𝑐)) → 𝖾𝗅′ (𝑥 𝑎)
𝖾𝗅′ (𝗉𝗂 𝑐 𝑥) = (𝑎 ∶ 𝖾𝗅′ 𝑐) → 𝖾𝗅′ (𝑥 𝑎)
𝖾𝗅′ (𝗍𝗒𝗉𝖾 𝑥) = 𝑥
𝖾𝗅′ (𝖺𝗉𝗉𝗅𝗒𝖨𝗌𝗈 𝑖 (𝑎𝑎 , 𝑎𝑙 , 𝑎ℎ)) = ⊤

We now finally have a complete surface syntax for our internal syntax, which guar-
antees that all contracts are correct by construction. Importantly, this solution works
without any changes to the Agda compiler and language.

The actual Agda implementation also features some additional syntactic sugar using
Agda’s Macro and Syntax features, but this are only minor additions and the implemen-
tation mirrors closely the solution described in this section.

5.4.4 Fitting everything together
What’s left to be done is fitting all the pieces together to present a clean interface to
the user. We have already discussed most parts necessary for this; for example, the
low/high type and wrapper function derivation follows exactly the formal model. We
thus are not going to discuss the Agda implementation of this functions in detail, as the
formal model introduced in section 5.3 already fully captures how these functions work.
This gives us the following three Agda functions implementing the formal model, where
𝖳𝖾𝗋𝗆 is a special Agda data type representing reflected terms and 𝖨𝗇𝗍𝖾𝗋𝗇𝖺𝗅𝖲𝗒𝗇 represents
our internal syntax:

– derive the low/high type from a contract
𝖽𝖾𝗋𝗂𝗏𝖾𝖫𝗈𝗐𝖳𝗒𝗉𝖾 ∶ 𝖨𝗇𝗍𝖾𝗋𝗇𝖺𝗅𝖲𝗒𝗇 → 𝖳𝖾𝗋𝗆
𝖽𝖾𝗋𝗂𝗏𝖾𝖫𝗈𝗐𝖳𝗒𝗉𝖾 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

𝖽𝖾𝗋𝗂𝗏𝖾𝖧𝗂𝗀𝗁𝖳𝗒𝗉𝖾 ∶ 𝖨𝗇𝗍𝖾𝗋𝗇𝖺𝗅𝖲𝗒𝗇 → 𝖳𝖾𝗋𝗆
𝖽𝖾𝗋𝗂𝗏𝖾𝖧𝗂𝗀𝗁𝖳𝗒𝗉𝖾 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

– lifts a term from the low type to the high type
𝖼𝗈𝗇𝗍𝗋𝖺𝖼𝗍−𝖺𝗉𝗉𝗅𝗒 ∶ 𝖨𝗇𝗍𝖾𝗋𝗇𝖺𝗅𝖲𝗒𝗇 – the contract

→ 𝖳𝖾𝗋𝗆 – the assertion scrutinee
→ 𝖳𝖾𝗋𝗆 – the produced wrapper

𝖼𝗈𝗇𝗍𝗋𝖺𝖼𝗍−𝖺𝗉𝗉𝗅𝗒 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

The translation between the surface syntax and the internal syntax uses Agda’s re-
flection mechanism. It takes a reflected term representing the surface syntax as input
and produces the internal syntax as output. The translation itself is not very compli-
cated per se, only tedious. As Agda’s reflection mechanism is untyped, we cannot rely
on Agda’s type system to check our translation. At the same time, the reflected terms
are often quite large which makes debugging complicated. The translation from the
reflected terms to internal syntax itself does not perform any checks, but only converts

44

the reflected terms to our internal syntax. The implementation is hence straightforward
and mechanical. It’s type signature is as follows:

– convert the surface syntax in reflected term form
– to internal syntax
𝗌𝗎𝗋𝖿𝖺𝖼𝖾⇒𝗂𝗇𝗍𝖾𝗋𝗇𝖺𝗅 ∶ 𝖳𝖾𝗋𝗆 → 𝖨𝗇𝗍𝖾𝗋𝗇𝖺𝗅𝖲𝗒𝗇
𝗌𝗎𝗋𝖿𝖺𝖼𝖾⇒𝗂𝗇𝗍𝖾𝗋𝗇𝖺𝗅 = <<𝗈𝗆𝗂𝗍𝗍𝖾𝖽>>

This gives us all the necessary building blocks to add a nice syntax. We take ad-
vantage of Agda’s macro system for this, which is a shorthand notation for inserting the
necessary reflection calls. It requires that the macro function takes arguments of type
𝖳𝖾𝗋𝗆, and returns a result of type 𝖳𝖾𝗋𝗆 and will take care of converting these terms
to/from actual Agda code.

This allows us to define the 𝖺𝗌𝗌𝖾𝗋𝗍 macro, which we can use to assert a contract on
any arbitrary Agda expression:

𝗆𝖺𝖼𝗋𝗈
𝖺𝗌𝗌𝖾𝗋𝗍 ∶ 𝖳𝖾𝗋𝗆 – reflected surface syntax term

→ (𝑙𝑜𝑤𝐷𝑒𝑓 ∶ 𝖳𝖾𝗋𝗆) – assertion scrutinee
→ 𝖳𝖾𝗋𝗆

𝖺𝗌𝗌𝖾𝗋𝗍 𝑎𝑠𝑡 𝑙𝑜𝑤𝐷𝑒𝑓 = 𝗋𝖾𝗌𝗎𝗅𝗍
𝗐𝗁𝖾𝗋𝖾

𝗈𝗉𝖾𝗇 𝗂𝗆𝗉𝗈𝗋𝗍 𝖥𝗎𝗇𝖼𝗍𝗂𝗈𝗇
– convert surface to internal syntax
𝗂𝗇𝗍 = 𝗌𝗎𝗋𝖿𝖺𝖼𝖾⇒𝗂𝗇𝗍𝖾𝗋𝗇𝖺𝗅 𝑎𝑠𝑡
– annotate the scrutinee with the low type
𝗅𝗈𝗐 = 𝖿𝗈𝗋𝖼𝖾𝖳𝗒′ (𝖽𝖾𝗋𝗂𝗏𝖾𝖫𝗈𝗐𝖳𝗒𝗉𝖾 𝗂𝗇𝗍) 𝑙𝑜𝑤𝐷𝑒𝑓
– apply the contract
𝗅𝗂𝖿 𝗍𝖾𝖽 = 𝖼𝗈𝗇𝗍𝗋𝖺𝖼𝗍−𝖺𝗉𝗉𝗅𝗒 𝗂𝗇𝗍 𝗅𝗈𝗐
– annotate the result with the high type
𝗋𝖾𝗌𝗎𝗅𝗍 = 𝖿𝗈𝗋𝖼𝖾𝖳𝗒′ (𝖽𝖾𝗋𝗂𝗏𝖾𝖧𝗂𝗀𝗁𝖳𝗒𝗉𝖾 𝗂𝗇𝗍) 𝗅𝗂𝖿 𝗍𝖾𝖽

We have finally constructed a complete contract library. In the following section,
we will demonstrate how this can be put to good use.

5.4.5 Examples
Having discussed the design of our contracts library, it is time to show some examples
using the actual Agda implementation. The syntax used follows closely the syntax
introduced in the previous sections, but may differ in some details. All examples shown
in this section are directly usable and work as-is.

Starting with the easiest example, the Haskell addition function can be lifted to nat-
ural numbers as follows, using the ∅ shorthand to indicate that the partial isomorphism
does not take any arguments:

𝗁𝗌𝖠𝖽𝖽 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Prelude.add”)
(ℤ → ℤ → ℤ)

𝖺𝖽𝖽 ∶ ℕ → ℕ → ℕ
𝖺𝖽𝖽 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (

45

⟨ _ ∷ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩⇒
⟨ _ ∷ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩⇒
⟨ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩
)) 𝗁𝗌𝖠𝖽𝖽

A more interesting example is lifting the map function from lists to vectors, where
𝗍𝗍 is the unit constructor. This also demonstrates how the erasing Pi feature can be used
to discard additional arguments; the 𝑛 argument in this case. :

𝗁𝗌𝖬𝖺𝗉 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Data.List.map”)
((𝐴 𝐵 ∶ 𝖲𝖾𝗍) → (𝐴 → 𝐵) → 𝖫𝗂𝗌𝗍 𝐴 → 𝖫𝗂𝗌𝗍 𝐵)

𝗆𝖺𝗉 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (
⟨ 𝑛 ∷ ⟦ ℕ ⟧ ⟩⇏
⟨ 𝐴 ∷ ⟦ 𝖲𝖾𝗍 ⟧ ⟩⇒
⟨ 𝐵 ∷ ⟦ 𝖲𝖾𝗍 ⟧ ⟩⇒
⟨ 𝑓 ∷ (⟨ _ ∷ ⟦ 𝐴 ⟧ ⟩⇒ ⟨ ⟦ 𝐵 ⟧ ⟩) ⟩⇒
⟨ _ ∷ ⟦ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍′ ⇋ 𝐴 , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝑛 ⟧ ⟩⇒
⟨ ⟦ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍′ ⇋ 𝐵 , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝑛 ⟧ ⟩
)) 𝗁𝗌𝖬𝖺𝗉

Also notice that we have not given the 𝗆𝖺𝗉 function an explicit type. This is possible
because the 𝖺𝗌𝗌𝖾𝗋𝗍 macro will annotate the generated body with the type derived from
the given contract, which allows Agda to easily infer the type of the whole definition.

5.5 Witness Objects
The contracts we introduced so far work very well for translating between different
drapes; however, we often want to have separate witness objects in Agda.

List indexing example

A simple example is the list indexing function. Importing this function from Haskell is
easy enough:

𝗁𝗌𝖨𝗇𝖽𝖾𝗑 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Data.List.!!”)
((𝐴 ∶ 𝖲𝖾𝗍) → (𝑛 ∶ ℕ) → (𝑥𝑠 ∶ 𝖫𝗂𝗌𝗍 𝐴) → 𝐴)

However, the Haskell list indexing function will throw a runtime error if the index
is out of bounds. Using our contracts and the erasure annotation, we can easily create
a safer version of the same function which takes a proof object that the index is valid
for the given list. Assuming we have a less-than relation <, we can write the following
contract:

𝗂𝗇𝖽𝖾𝗑 ∶ (𝐴 ∶ 𝖲𝖾𝗍) → (𝑛 ∶ ℕ) → (𝑥𝑠 ∶ 𝖫𝗂𝗌𝗍 𝐴) → 𝑛 < 𝗅𝖾𝗇𝗀𝗍𝗁 𝑥𝑠 → 𝐴
𝗂𝗇𝖽𝖾𝗑 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (

⟨ 𝐴 ∷ ⟦ 𝖲𝖾𝗍 ⟧ ⟩⇒
⟨ 𝑛 ∷ ⟦ ℕ ⟧ ⟩⇒
⟨ 𝑥𝑠 ∷ ⟦ 𝖫𝗂𝗌𝗍 𝐴 ⟧ ⟩⇒
⟨ _ ∷ ⟦ 𝑛 < 𝗅𝖾𝗇𝗀𝗍𝗁 𝑥𝑠 ⟧ ⟩⇏
⟨ ⟦ 𝐴 ⟧ ⟩)) 𝗁𝗌𝖨𝗇𝖽𝖾𝗑

46

Even numbers example

While erasure annotation are very useful for specifying additional constraints for argu-
ments, we may also want to annotate the result with additional proof objects.

Let us first introduce a witness data type stating that a number is even:

𝖽𝖺𝗍𝖺 𝖤𝗏𝖾𝗇 ∶ ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖹 ∶ 𝖤𝗏𝖾𝗇 𝟢
𝖲𝖲 ∶ {𝑛 ∶ ℕ} → 𝖤𝗏𝖾𝗇 𝑛 → 𝖤𝗏𝖾𝗇 (𝗌𝗎𝖼 (𝗌𝗎𝖼 𝑛))

We can now annotate the addition function type with this witness data type using
dependent pairs:

𝖺𝖽𝖽 ∶ Σ ℕ 𝖤𝗏𝖾𝗇 → Σ ℕ 𝖤𝗏𝖾𝗇 → Σ ℕ 𝖤𝗏𝖾𝗇

It would now be desirable to lift an addition function on plain natural numbers to
the above refined type. To do so, we need to define a partial isomorphism between ℕ
and Σ ℕ 𝖤𝗏𝖾𝗇.

But instead of defining a partial isomorphism specifically for our current example,
we strive to define a partial isomorphism which allows us to refine any type with addi-
tional proof objects.

In general, we will need a decision function to decide if the invariant holds on the
given object. We introduce the 𝖣𝖾𝖼 data type to represent the result of such a decision
function:

𝖽𝖺𝗍𝖺 𝖣𝖾𝖼 (𝑃 ∶ 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝗒𝖾𝗌 ∶ (𝑝 ∶ 𝑃) → 𝖣𝖾𝖼 𝑃
𝗇𝗈 ∶ (¬𝑝 ∶ ¬ 𝑃) → 𝖣𝖾𝖼 𝑃

We introduce the type synonym 𝖣𝖤𝖢 to denote decision functions:

𝖣𝖤𝖢 ∶ (𝐴 ∶ 𝖲𝖾𝗍) → (𝑃 ∶ 𝐴 → 𝖲𝖾𝗍) → 𝖲𝖾𝗍
𝖣𝖤𝖢 𝐴 𝑃 = (𝑎 ∶ 𝐴) → 𝖣𝖾𝖼 (𝑃 𝑎)

Using this type synonym, we can for example define the type of the function decid-
ing whether a number is even:

𝖾𝗏𝖾𝗇? ∶ 𝖣𝖤𝖢 ℕ 𝖤𝗏𝖾𝗇

For all decision functions of this form, we can define an isomorphism between the
non-refined type 𝖠 and the refined type Σ 𝖠 𝖯 with the proof object 𝖯. We can implement
such a parametrized partial isomorphism using the framework for dependent contracts
introduced earlier. The definition goes as follows:

⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌′ ∶ 𝖯𝖺𝗋𝗍𝖨𝗌𝗈
⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌′ = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝖠𝖱𝖦−𝖺 = Σ
𝖲𝖾𝗍 – the unrefined type
(𝜆 𝐴 → Σ

(𝐴 → 𝖲𝖾𝗍) – the proof type

47

(𝜆 𝑃 → 𝖣𝖤𝖢 𝐴 𝑃) – the decision function
)

; 𝖠𝖱𝖦−𝗅 = 𝜆 _ → ⊤
; 𝖠𝖱𝖦−𝗁 = 𝜆 _ → ⊤
; 𝜏−𝗅 = 𝜆 𝑎𝑎 _ → 𝗉𝗋𝗈𝗃𝟣 𝑎𝑎
; 𝜏−𝗁 = 𝜆 𝑎𝑎 _ → Σ (𝗉𝗋𝗈𝗃𝟣 𝑎𝑎) (𝗉𝗋𝗈𝗃𝟣 (𝗉𝗋𝗈𝗃𝟤 𝑎𝑎))
; ⇅ = 𝜆 𝑎𝑎 _ _ →

𝗅𝖾𝗍 𝑑𝑒𝑐 = 𝗉𝗋𝗈𝗃𝟤 $ 𝗉𝗋𝗈𝗃𝟤 𝑎𝑎
𝑢𝑝 = 𝜆 𝑥 → 𝖼𝖺𝗌𝖾 𝑑𝑒𝑐 𝑥 𝗈𝖿 𝜆

{ (𝗒𝖾𝗌 𝑝) → 𝗃𝗎𝗌𝗍 (𝑥 , 𝑝)
; (𝗇𝗈 ¬𝑝) → 𝗇𝗈𝗍𝗁𝗂𝗇𝗀 }

𝗂𝗇 𝗐𝗂𝗍𝗁𝖬𝖺𝗒𝖻𝖾 𝑢𝑝 , 𝗍𝗈𝗍𝖺𝗅 𝗉𝗋𝗈𝗃𝟣
}

We can then instantiate the parametrized partial isomorphism, for example to refine
the addition function to even numbers:

𝖺𝖽𝖽 ∶ Σ ℕ 𝖤𝗏𝖾𝗇 → Σ ℕ 𝖤𝗏𝖾𝗇 → Σ ℕ 𝖤𝗏𝖾𝗇
𝖺𝖽𝖽 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (

⟨ _ ∷ ⟦ ⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌 ⇋ 𝖾𝗏𝖾𝗇𝖣𝖾𝖼 ⟧ ⟩⇒
⟨ _ ∷ ⟦ ⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌 ⇋ 𝖾𝗏𝖾𝗇𝖣𝖾𝖼 ⟧ ⟩⇒
⟨ ⟦ ⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌 ⇋ 𝖾𝗏𝖾𝗇𝖣𝖾𝖼 ⟧ ⟩)) 𝗁𝗌𝖠𝖽𝖽
𝗐𝗁𝖾𝗋𝖾

𝖾𝗏𝖾𝗇𝖣𝖾𝖼 = (ℕ , 𝖤𝗏𝖾𝗇 , 𝖾𝗏𝖾𝗇?) , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝗐𝗋𝖺𝗉 𝗍𝗍

Gcd example

Witness objects may also depend on other arguments, going into the realm of dependent
types. For example, we may want to annotate the gcd function with the proof that the
gcd divides the given two integers.

Let us first introduce the Haskell gcd function:

𝗁𝗌𝖦𝖼𝖽 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Prelude.gcd”)
(ℕ → ℕ → ℕ)

And the type synonym 𝖨𝗌𝖦𝖢𝖣 which defines the proof object we are interested in:

𝖨𝗌𝖦𝖢𝖣 ∶ ℕ → ℕ → ℕ → 𝖲𝖾𝗍
𝖨𝗌𝖦𝖢𝖣 𝑥 𝑦 𝑧 = 𝑧 𝖣𝗂𝗏𝗂𝖽𝖾𝗌 𝑥 × 𝑧 𝖣𝗂𝗏𝗂𝖽𝖾𝗌 𝑦

We also assume that we are given the following decision function:

𝖽𝗂𝗏𝗌? ∶ (𝑥 ∶ ℕ) → (𝑦 ∶ ℕ) → 𝖣𝖤𝖢 ℕ (𝖨𝗌𝖦𝖢𝖣 𝑥 𝑦)

We can then apply the parametrized partial isomorphism we have defined in the
even example, and just pass in the 𝖽𝗂𝗏𝗌? decision function among other things:

𝗀𝖼𝖽 ∶ (𝑥 ∶ ℕ) → (𝑦 ∶ ℕ) → Σ ℕ (𝖨𝗌𝖦𝖢𝖣 𝑥 𝑦)
𝗀𝖼𝖽 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (

48

⟨ 𝑥 ∷ ⟦ ℕ ⟧ ⟩⇒
⟨ 𝑦 ∷ ⟦ ℕ ⟧ ⟩⇒
⟨ ⟦ ⇔𝖶𝗂𝗍𝗇𝖾𝗌𝗌 ⇋ (ℕ , 𝖨𝗌𝖦𝖢𝖣 𝑥 𝑦 , 𝖽𝗂𝗏𝗌? 𝑥 𝑦) , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝗐𝗋𝖺𝗉 𝗍𝗍 ⟧ ⟩
)) 𝗁𝗌𝖦𝖼𝖽

This shows that our mechanism for dependent contracts is very powerful, and also
allows some degree of abstraction inside the contracts themselves.

5.6 Contracts and the FFI
The Contract framework we have defined so far cannot only be used with normal Agda
definitions, but most importantly also combines nicely with the new FFI introduced in
chapter 4. We introduce a new Agda reflection macro called 𝖺𝗌𝗌𝖾𝗋𝗍−𝖿𝗈𝗋𝖾𝗂𝗀𝗇 for this
purpose.

The big advantage of this new macro is that it is able to infer the type of the foreign
call from the contract; we don’t need to specify the type twice! If we revisit the map
example from earlier, we can rewrite this as:

𝗆𝖺𝗉″ = 𝖺𝗌𝗌𝖾𝗋𝗍−𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Data.List.map”)
(𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (
⟨ 𝑛 ∷ ⟦ ℕ ⟧ ⟩⇏
⟨ 𝐴 ∷ ⟦ 𝖲𝖾𝗍 ⟧ ⟩⇒
⟨ 𝐵 ∷ ⟦ 𝖲𝖾𝗍 ⟧ ⟩⇒
⟨ 𝑓 ∷ (⟨ _ ∷ ⟦ 𝐴 ⟧ ⟩⇒ ⟨ ⟦ 𝐵 ⟧ ⟩) ⟩⇒
⟨ _ ∷ ⟦ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍 ⇋ 𝐴 , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝑛 ⟧ ⟩⇒
⟨ ⟦ 𝗏𝖾𝖼⇔𝗅𝗂𝗌𝗍 ⇋ 𝐵 , 𝗐𝗋𝖺𝗉 𝗍𝗍 , 𝑛 ⟧ ⟩
))

The combination of our new FFI interface together with our contract library yields
a concise, precise and powerful tool for expressing FFI calls in Agda.

5.7 Related work
There has been a lot of research into dynamically verified contracts. The contracts
studied by Hinze et. al [15], which are implemented in Haskell, have inspired some of
our own design choices. They provide a succinct and elegant way of encoding contracts
in a functional setting. However, their contracts do not support dependent types and are
hence less powerful than our own implementation.

How contracts can be leveraged for interaction between a dependently and a non-
dependently typed language has been studied by Osera et. al [26]. He studies the behav-
ior of the dynamic conversions, but only discusses a basic conversion primitive without
adding contracts for functions.

How such a conversion primitive can be implemented has been discussed by Tanter
[30], who independently discovered a similar conversion primitive to the one we are
using. The fact that we have independently discovered a very similar solution maymean
that this is a preferable spot in the design space. In comparison, our solution extends

49

the basic primitives with a contract layer yielding a more high-level design more suited
for wide-scale application.

Furr et. al [14] have studied a different approach, whereby they have created a multi-
lingual type inference system for the OCaml/C language combination. Having such a
system would greatly reduce the potential use cases for contracts; however, implement-
ing a multi-lingual type inference system for the Agda/Haskell combination would be
non-trivial. Furthermore, their solution is not able to cover all possible FFI use cases;
a more traditional FFI would still be necessary.

5.8 Future work
Our contract solution works fine for many use cases, but there is still room for improve-
ment.

One restriction we would hope to lift in the future is that currently a contract may
not depend on arguments using isomorphisms. Consider the following example:

𝗁𝗌𝖬𝗂𝗇𝗎𝗌 = 𝖿𝗈𝗋𝖾𝗂𝗀𝗇 (𝗁𝗌𝖢𝖺𝗅𝗅 ”Prelude.-”) (ℤ → ℤ → ℤ)

𝗆𝗂𝗇𝗎𝗌 ∶ (𝑥 ∶ ℕ) → (𝑦 ∶ ℕ) → (𝑥 ≥ 𝑦) → ℕ
𝗆𝗂𝗇𝗎𝗌 = 𝖺𝗌𝗌𝖾𝗋𝗍 (𝗆𝖺𝗄𝖾𝖢𝗈𝗇𝗍𝗋𝖺𝖼𝗍 (

⟨ 𝑥 ∷ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩⇒
⟨ 𝑦 ∷ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩⇒
⟨ _ ∷ ⟦ 𝑥 ≥ 𝑦 ⟧ ⟩⇒
⟨ ⟦ ℕ⇔ℤ ⇋ ∅ ⟧ ⟩
)) 𝗁𝗌𝖬𝗂𝗇𝗎𝗌

We expose a minus function and require that a proof object is given that the minuend
𝑥 is greater or equal to the subtrahend 𝑦. We wish that this proof object is defined
in terms of the high level ℕ values 𝑥 and 𝑦. However, our current implementation
does not allow dependencies on arguments introduced by isomorphism application, the
above example hence is currently not supported. It should be feasible to allow such
dependencies, but this requires further investigation.

Our current implementation is based on Agda’s reflection mechanism. This has
two major drawbacks; first, this complicates the contract library code. Secondly, it
makes using the library by a user slightly more complicated than necessary. Creating
an alternative implementation abstaining from using reflection, if possible, couldmaybe
solve some of this issues.

A minor omission from our current contract library is that it does not support Agda
implicit arguments. Adding support for implicit arguments should not complicate the
underlying translation in any way, we hence expect that it will be straightforward to add
this feature in the future.

50

Chapter 6

Conclusion

TheAgdaUHCBackend We have developed a working compiler for Agda, targeting
UHC Core. We are able to compile the whole Agda standard library, together with a
test suite of executable Agda programs and we now consider the UHC backend ready
to use. Our modifications to UHC have been incorporated in the last UHC release; the
changes to Agda have been integrated into the development version of Agda and will
be part of the next release.

The UHC Agda backend provides an excellent foundation for exploring the interac-
tion between Agda and Haskell. Our new Agda backend was crucial in enabling us to
create a new FFI and contract framework.

This thesis shows how to tackle some of the challenges inherent in writing a com-
piler for Agda, piggybacking on the existing technology provided byUHC.We hope that
providing a more robust backend for Agda, with excellent interoperability with an ex-
isting Haskell compiler, will provide the technology for more ‘real world’ dependently
typed programs.

FFI We implemented a prototype of a new Foreign Function Interface (FFI) for Agda,
which improves greatly on the old implementation. While this is an important achieve-
ment by itself, it also lays the foundation for further research into the area. Especially
the combination with our Agda UHC backend enables the investigation of a more com-
plete Haskell-Agda FFI, for example adding support for Haskell’s class system.

Contracts Our work on contracts demonstrates that contracts are a viable and elegant
approach to expressing FFI calls in a dependently-typed setting. They provide an easy-
to-use solution to integrate Agda developments with external systems, offering a novel
trade-off between static verification and development effort.

Our formal model shows that contracts can be implemented in a dependent system
like Agda itself with only one additional axiom or primitive operation, hence limiting
the inherent unsafety of FFI calls to specific locations.

A more fundamental problem with Agda itself is that universe-polymorphic types
cannot be represented in Agda itself in a typed fashion, except by disabling the universe
hierarchy and hence making Agda inconsistent. This is not a satisfying solution, but
pending a more powerful Agda language cannot be avoided.

And while there is room for further improvement, our contract framework already
solves many of the use cases it is aimed at and provides an elegant way to use the FFI

51

in Agda in a concise and safe manner.

52

Acknowledgments

I would like to thank both my supervisors, Dr. Wouter Swierstra and Dr. Atze
Dijkstra, for their support, helpful guidance and the fruitful discussions we had. My
gratitude also goes to the Agda community and the Agda development team, which
always provided helpful answers to my questions and made it ease to contribute to Agda
and become part of the community.

With looming deadlines and a lot of work to do, my friends made the pressure much
more bearable and I would like to thank all of them for the great times we had. Finally,
a great thank you to my family and especially Dani, who has always supported me
throughout my studies.

53

Bibliography

[1] [Agda] Size limit on generated code? URL: https://lists.chalmers.
se/pipermail/agda/2014/006990.html (visited on 03/04/2015).

[2] [Agda] Universe-Heterogeneous tree. URL: https://lists.chalmers.
se/pipermail/agda/2015/007961.html (visited on 09/03/2015).

[3] [Agda] Universe-Heterogeneous tree. URL: https://lists.chalmers.
se/pipermail/agda/2015/007966.html (visited on 08/16/2015).

[4] Thorsten Altenkirch et al. “ΠΣ: Dependent Types without the Sugar.” In: Func-
tional and Logic Programming. Ed. by Matthias Blume, Naoki Kobayashi, and
Germán Vidal. Lecture Notes in Computer Science 6009. Springer Berlin Hei-
delberg, 2010, pp. 40–55. ISBN: 978-3-642-12250-7 978-3-642-12251-4. URL:
http://link.springer.com/chapter/10.1007/978-3-642-
12251-4_5 (visited on 02/14/2015).

[5] Lennart Augustsson. “A Compiler for Lazy ML.” In: Proceedings of the 1984
ACM Symposium on LISP and Functional Programming. LFP ’84. New York,
NY, USA: ACM, 1984, pp. 218–227. ISBN: 0-89791-142-3. DOI: 10.1145/
800055.802038. URL: http://doi.acm.org/10.1145/800055.
802038 (visited on 02/14/2015).

[6] Brady, Edwin. “Cross-platform Compilers for Functional Languages.” In:Under
consideration for Trends in Functional Programming (2015).

[7] Edwin Brady. “Epic—A Library for Generating Compilers.” In: Trends in Func-
tional Programming. Ed. by Ricardo Peña and Rex Page. Lecture Notes in Com-
puter Science 7193. Springer BerlinHeidelberg, 2012, pp. 33–48. ISBN: 978-3-642-32036-1
978-3-642-32037-8. URL: http://link.springer.com/chapter/
10.1007/978-3-642-32037-8_3 (visited on 02/14/2015).

[8] Edwin Brady. “Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation.” In: Journal of Functional Programming
23.05 (September 2013), pp. 552–593. ISSN: 1469-7653. DOI: 10.1017/
S095679681300018X. URL: http://journals.cambridge.org/
article_S095679681300018X (visited on 02/14/2015).

[9] Edwin C. Brady. Practical Implementation of a Dependently Typed Functional
Programming Language. 2005.

[10] Manuel M. T. Chakravarty et al. “Associated Types with Class.” In: Proceed-
ings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’05. New York, NY, USA: ACM, 2005, pp. 1–13. ISBN:
1-58113-830-X. DOI: 10.1145/1040305.1040306. URL: http://
doi.acm.org/10.1145/1040305.1040306 (visited on 03/13/2015).

54

https://lists.chalmers.se/pipermail/agda/2014/006990.html
https://lists.chalmers.se/pipermail/agda/2014/006990.html
https://lists.chalmers.se/pipermail/agda/2015/007961.html
https://lists.chalmers.se/pipermail/agda/2015/007961.html
https://lists.chalmers.se/pipermail/agda/2015/007966.html
https://lists.chalmers.se/pipermail/agda/2015/007966.html
http://link.springer.com/chapter/10.1007/978-3-642-12251-4_5
http://link.springer.com/chapter/10.1007/978-3-642-12251-4_5
http://dx.doi.org/10.1145/800055.802038
http://dx.doi.org/10.1145/800055.802038
http://doi.acm.org/10.1145/800055.802038
http://doi.acm.org/10.1145/800055.802038
http://link.springer.com/chapter/10.1007/978-3-642-32037-8_3
http://link.springer.com/chapter/10.1007/978-3-642-32037-8_3
http://dx.doi.org/10.1017/S095679681300018X
http://dx.doi.org/10.1017/S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
http://journals.cambridge.org/article_S095679681300018X
http://dx.doi.org/10.1145/1040305.1040306
http://doi.acm.org/10.1145/1040305.1040306
http://doi.acm.org/10.1145/1040305.1040306

[11] Arthur Charguéraud. “The Locally Nameless Representation.” In: Journal of Au-
tomated Reasoning 49.3 (May 6, 2011), pp. 363–408. ISSN: 0168-7433, 1573-0670.
DOI:10.1007/s10817-011-9225-2. URL:http://link.springer.
com/article/10.1007/s10817-011-9225-2 (visited on 03/13/2015).

[12] Atze Dijkstra, Jeroen Fokker, and S. Doaitse Swierstra. “The Architecture of the
Utrecht Haskell Compiler.” In: Proceedings of the 2Nd ACM SIGPLAN Sym-
posium on Haskell. Haskell ’09. New York, NY, USA: ACM, 2009, pp. 93–
104. ISBN: 978-1-60558-508-6. DOI: 10.1145/1596638.1596650. URL:
http://doi.acm.org/10.1145/1596638.1596650 (visited on
02/14/2015).

[13] Robert Bruce Findler and Matthias Felleisen. “Contracts for Higher-order Func-
tions.” In: Proceedings of the Seventh ACM SIGPLAN International Confer-
ence on Functional Programming. ICFP ’02. New York, NY, USA: ACM, 2002,
pp. 48–59. ISBN: 978-1-58113-487-2. DOI: 10.1145/581478.581484.
URL: http://doi.acm.org/10.1145/581478.581484 (visited on
10/08/2015).

[14] Michael Furr and Jeffrey S. Foster. “Checking Type Safety of Foreign Function
Calls.” In: Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI ’05. New York, NY, USA:
ACM, 2005, pp. 62–72. ISBN: 1-59593-056-6. DOI: 10.1145/1065010.
1065019. URL:http://doi.acm.org/10.1145/1065010.1065019
(visited on 02/14/2015).

[15] Ralf Hinze, Johan Jeuring, andAndres Löh. “TypedContracts for Functional Pro-
gramming.” In: Functional and Logic Programming. Ed. by Masami Hagiya and
PhilipWadler. Lecture Notes in Computer Science 3945. Springer Berlin Heidel-
berg, 2006, pp. 208–225. ISBN: 978-3-540-33438-5 978-3-540-33439-2. URL:
http://link.springer.com/chapter/10.1007/11737414_15
(visited on 03/30/2015).

[16] Issue 1414 - agda - MAlonzo returns wrong result for FlexibleInterpreter - Agda
is a dependently typed programming language - Google Project Hosting. URL:
https://code.google.com/p/agda/issues/detail?id=1414
(visited on 03/04/2015).

[17] Alan Jeffrey. “Dependently Typed Web Client Applications.” In: Practical As-
pects of Declarative Languages. Ed. by Kostis Sagonas. Lecture Notes in Com-
puter Science 7752. Springer BerlinHeidelberg, 2013, pp. 228–243. ISBN: 978-3-642-45283-3
978-3-642-45284-0. URL: http://link.springer.com/chapter/
10.1007/978-3-642-45284-0_16 (visited on 02/14/2015).

[18] Pierre Letouzey. “ANewExtraction for Coq.” In: Types for Proofs and Programs.
Ed. by Herman Geuvers and Freek Wiedijk. Lecture Notes in Computer Science
2646. Springer BerlinHeidelberg, 2003, pp. 200–219. ISBN: 978-3-540-14031-3
978-3-540-39185-2. URL: http://link.springer.com/chapter/
10.1007/3-540-39185-1_12 (visited on 02/14/2015).

[19] Andres Löh, Conor McBride, and Wouter Swierstra. “A Tutorial Implementa-
tion of a Dependently Typed Lambda Calculus.” In: Fundamenta Informaticae
102.2 (January 1, 2010), pp. 177–207. DOI: 10.3233/FI- 2010- 304.
URL: http://dx.doi.org/10.3233/FI-2010-304 (visited on
03/01/2015).

55

http://dx.doi.org/10.1007/s10817-011-9225-2
http://link.springer.com/article/10.1007/s10817-011-9225-2
http://link.springer.com/article/10.1007/s10817-011-9225-2
http://dx.doi.org/10.1145/1596638.1596650
http://doi.acm.org/10.1145/1596638.1596650
http://dx.doi.org/10.1145/581478.581484
http://doi.acm.org/10.1145/581478.581484
http://dx.doi.org/10.1145/1065010.1065019
http://dx.doi.org/10.1145/1065010.1065019
http://doi.acm.org/10.1145/1065010.1065019
http://link.springer.com/chapter/10.1007/11737414_15
https://code.google.com/p/agda/issues/detail?id=1414
http://link.springer.com/chapter/10.1007/978-3-642-45284-0_16
http://link.springer.com/chapter/10.1007/978-3-642-45284-0_16
http://link.springer.com/chapter/10.1007/3-540-39185-1_12
http://link.springer.com/chapter/10.1007/3-540-39185-1_12
http://dx.doi.org/10.3233/FI-2010-304
http://dx.doi.org/10.3233/FI-2010-304

[20] MAlonzo returns wrong result for FlexibleInterpreter · Issue #1414 · agda/agda.
URL: https://github.com/agda/agda/issues/1414 (visited on
10/07/2015).

[21] Marcin Benke. Alonzo - a compiler for Agda. 2007. URL: http://www.
mimuw.edu.pl/~ben/Papers/TYPES07-alonzo.pdf (visited on
02/14/2015).

[22] Simon Marlow. Haskell 2010 Language Report.
[23] Conor McBride and James McKinna. “Functional Pearl: I Am Not a Number–i

Am a Free Variable.” In: Proceedings of the 2004 ACM SIGPLAN Workshop
on Haskell. Haskell ’04. New York, NY, USA: ACM, 2004, pp. 1–9. ISBN:
1-58113-850-4. DOI: 10.1145/1017472.1017477. URL: http://
doi.acm.org/10.1145/1017472.1017477 (visited on 03/02/2015).

[24] Ulf Norell. “Dependently Typed Programming in Agda.” In: Proceedings of the
6th International Conference on Advanced Functional Programming. AFP’08.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 230–266. ISBN: 978-3-642-04651-3.
URL:http://dl.acm.org/citation.cfm?id=1813347.1813352
(visited on 10/09/2015).

[25] Olle Fredriksson and Daniel Gustafsson. “A totally Epic backend for Agda.”
Göteborg, Sweden: ChalmersUniversity of Technology,May 2011. URL:http:
//publications.lib.chalmers.se/records/fulltext/146807.
pdf.

[26] Peter-Michael Osera, Vilhelm Sjöberg, and Steve Zdancewic. “Dependent Inter-
operability.” In: Proceedings of the Sixth Workshop on Programming Languages
Meets ProgramVerification. PLPV ’12. NewYork, NY,USA:ACM, 2012, pp. 3–
14. ISBN: 978-1-4503-1125-0. DOI: 10.1145/2103776.2103779. URL:
http://doi.acm.org/10.1145/2103776.2103779 (visited on
02/14/2015).

[27] Simon Peyton Jones and Simon Marlow. “Secrets of the Glasgow Haskell Com-
piler Inliner.” In: J. Funct. Program. 12.5 (July 2002), pp. 393–434. ISSN: 0956-7968.
DOI: 10.1017/S0956796802004331. URL: http://dx.doi.org/
10.1017/S0956796802004331 (visited on 03/03/2015).

[28] Tom Schrijvers et al. “Complete and Decidable Type Inference for GADTs.” In:
Proceedings of the 14th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’09. NewYork, NY, USA: ACM, 2009, pp. 341–352. ISBN:
978-1-60558-332-7. DOI: 10.1145/1596550.1596599. URL: http://
doi.acm.org/10.1145/1596550.1596599 (visited on 03/13/2015).

[29] Martin Sulzmann et al. “System F with Type Equality Coercions.” In: Proceed-
ings of the 2007 ACM SIGPLAN International Workshop on Types in Languages
Design and Implementation. TLDI ’07. NewYork, NY,USA:ACM, 2007, pp. 53–
66. ISBN: 1-59593-393-X. DOI: 10 . 1145 / 1190315 . 1190324. URL:
http://doi.acm.org/10.1145/1190315.1190324 (visited on
02/18/2015).

[30] Éric Tanter and Nicolas Tabareau. “Gradual Certified Programming in Coq.” In:
(June 12, 2015). arXiv: 1506.04205. URL: http://arxiv.org/abs/
1506.04205 (visited on 07/15/2015).

[31] tasty-golden:Golden tests support for tasty | Hackage. URL:http://hackage.
haskell.org/package/tasty-golden (visited on 10/07/2015).

56

https://github.com/agda/agda/issues/1414
http://www.mimuw.edu.pl/~ben/Papers/TYPES07-alonzo.pdf
http://www.mimuw.edu.pl/~ben/Papers/TYPES07-alonzo.pdf
http://dx.doi.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
http://doi.acm.org/10.1145/1017472.1017477
http://dl.acm.org/citation.cfm?id=1813347.1813352
http://publications.lib.chalmers.se/records/fulltext/146807.pdf
http://publications.lib.chalmers.se/records/fulltext/146807.pdf
http://publications.lib.chalmers.se/records/fulltext/146807.pdf
http://dx.doi.org/10.1145/2103776.2103779
http://doi.acm.org/10.1145/2103776.2103779
http://dx.doi.org/10.1017/S0956796802004331
http://dx.doi.org/10.1017/S0956796802004331
http://dx.doi.org/10.1017/S0956796802004331
http://dx.doi.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://doi.acm.org/10.1145/1596550.1596599
http://dx.doi.org/10.1145/1190315.1190324
http://doi.acm.org/10.1145/1190315.1190324
http://arxiv.org/abs/1506.04205
http://arxiv.org/abs/1506.04205
http://arxiv.org/abs/1506.04205
http://hackage.haskell.org/package/tasty-golden
http://hackage.haskell.org/package/tasty-golden

[32] tasty-silver: A fancy test runner, including support for golden tests. | Hackage.
URL: http://hackage.haskell.org/package/tasty-silver
(visited on 10/07/2015).

[33] Use sharing in generated code · Issue #1528 · agda/agda. URL: https://
github.com/agda/agda/issues/1528 (visited on 10/07/2015).

57

http://hackage.haskell.org/package/tasty-silver
https://github.com/agda/agda/issues/1528
https://github.com/agda/agda/issues/1528

	Introduction
	Background
	Agda - the Language

	The Agda UHC Backend
	Existing Agda backends
	What should be the target language?

	Translating between Agda and UHC
	Treeless Intermediate Syntax
	Translating Agda's Internal Syntax to Treeless Syntax
	Example

	Lessons learned
	Adapting UHC to our needs
	Testing our Compiler

	Related work
	Future work

	FFI
	Existing FFI
	Level/Set arguments
	Syntax
	The new foreign calls
	Related work
	Future Work

	Contracts
	Data Contracts
	The problem
	Unsafe Conversions

	Type-Indexed contracts
	Why type-indexed
	Non-dependent Isomorphisms
	Contract language
	Contract desugaring

	Dependent Contracts
	Extended Syntax
	Embellished Translation Rules

	An actual Agda Implementation
	Dependent Partial Isomorphisms
	Internal Syntax
	Surface Syntax
	Fitting everything together
	Examples

	Witness Objects
	Contracts and the FFI
	Related work
	Future work

	Conclusion

