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Abstract
MSc

Divisorial gonality of graphs

by Jelco M. Bodewes
ICA-3689719

In this thesis the concept of divisorial gonality is explored. A triple of distinct def-
initions for divisorial gonality is presented and they are shown to be equivalent to
each other. We explain a number of techniques for reasoning about divisorial gonal-
ity. We also consider several simple classes of graphs and calculate their divisorial
gonality. We then present an upper bound on divisorial gonality based on minimum
cuts between a set of vertices and a single other vertex in the graph.

The main result of this thesis is a set of reduction rules that can be used to recog-
nize the graphs with divisorial gonality at most 2. We prove the rule set is both safe
and complete, properties required for it to be usable. We also show that there exists a
polynomial time algorithm based on this rule set.

Afterwards we answer three questions about the divisorial gonality of minors
and subgraphs by making use of this set of reduction rules. These questions are
then also answered for the closely related concepts of stable divisorial gonality and
stable gonality.

Keywords: Chip-firing game, Divisor, Gonality, Parametrized complexity, Reduc-
tion rules
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Chapter 1

Introduction

Graphs are a mathematical structure commonly used in both computer science and
mathematics. Many problems can be modeled using graphs and algorithms on
graphs can therefore often be used to solve a variety of problems. In many cases
it turns out however that the more interesting problems are NP-hard for general
graphs. One approach to still obtain usable algorithms has been through the field of
parametrized complexity.

An important and commonly used parameter in this field is treewidth, which
describes the complexity of a tree-decomposition of the graph. A recent survey on
treewidth and its applications can be found in [5]. While treewidth has in many cases
been successfully applied to create fast algorithms for graphs with low treewidth,
there remain problems that are hard even for bounded treewidth. For this rea-
son several other width-measures have been proposed, including amongst others
branchwidth and cliquewidth; for an overview see [12].

Meanwhile in the seemingly unrelated field of algebraic curves there is the theory
of divisors. It turns out that this field can actually be related to graphs: graphs can be
seen as the discrete analogue of algebraic curves. Using this relation it is possible to
apply ideas and theories from the theory of divisors to graphs. This was successfully
done in [3] and has led to the current definition of divisorial gonality.

Divisorial gonality is a new measure that, in some sense, describes the complex-
ity of a graph. Though it originated in theory from algebraic geometry, divisorial
gonality can actually be described in terms of a chip-firing game. This often allows
for intuitive reasoning about the divisorial gonality of graphs. At the same time it
can be described more formally in the theory of divisors.

Compared to treewidth divisorial gonality has two main properties that we hope
make it suitable to parametrize some hard problems: first, it is influenced by the
complete structure of a multigraph, whereas treewidth is only influenced by the un-
derlying simple graph; second, it is a finer measure than treewidth in the sense that
it is lower bounded by treewidth, see [9], and there exist simple graphs of arbitrarily
high divisorial gonality but with bounded treewidth, recently proven in [11].

As for the computability of divisorial gonality, there are already some interesting
results. Calculating divisorial gonality for a general graph is NP-hard, a recent re-
sult from [10]. There exists an algorithm for calculating the divisorial gonality with
running time O(n4m2n!) presented in [8] based on reduced divisors, a concept we
will also use extensively in this thesis.

Interestingly, divisorial gonality is not the only new measure on graphs referred
to as gonality. Two other variants are stable divisorial gonality and stable divisorial
gonality. While stable divisorial gonality is based on ideas from [2], stable divisorial
and stable gonality were both recently introduced in [6]. They are both based on
refining of the graph: stable divisorial gonality still uses the same divisor based
theory, but stable gonality is based on so called finite harmonic morphisms. While
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stable divisorial gonality and stable gonality will also both be defined in this thesis
and we present a set of new results for both, the main focus will be on divisorial
gonality.

The remainder of this thesis is split in several chapters. In Chapter 2 we introduce
three different definitions of divisorial gonality and show they are equivalent. In ad-
dition we also introduce stable divisorial gonality and stable gonality. In Chapter
3 we explain several techniques useful for reasoning about divisorial gonality. The
main result of this work is presented in Chapter 4 : a set of reduction rules to rec-
ognize graphs with divisorial gonality at most 2. In Chapter 5 new proofs for three
questions answered in [11] are given. The same questions are then also answered
for the cases of stable divisorial gonality and stable gonality. Finally in Chapter 6 we
finish with a short conclusion and some interesting open problems.

New results of this thesis include the following:

• Theorem 3.3.1, a new upper bound for the divisorial gonality of a graph, based
on minimum cuts.

• Several answers to questions about the stable and stable divisorial gonality of
graphs, found in Theorems 5.2.1, 5.2.3, 5.3.1 and 5.3.2.

• The main new result is the set of reduction rules for recognizing graphs with
divisorial gonality at most 2 and Theorem 4.2.1, stating that this set has the
desired properties.

While working on this thesis the author collaborated and discussed often with
fellow master student Marieke van der Wegen. While both theses are about gonality,
this thesis is mostly focused on divisorial gonality, while her thesis focuses more
on stable and stable divisorial gonality. For more information on these subjects we
therefore recommend [15]. Much of the theory behind the reduction rule set is also
joint work and the full results, including two sets of reduction rules for stable and
stable divisorial gonality, can be found in [4].
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Chapter 2

Preliminaries

In this chapter we introduce the main concept of this work, divisorial gonality, as
well as two other variants of gonality that we will use in Chapter 5.

Both in this chapter and the rest of this thesis we will often refer to graphs. Un-
less otherwise mentioned these will be connected multi-graphs, allowing for mul-
tiple edges between any pair of vertices and loops from a vertex to itself. We will
later see that loops do not actually have any influence on the divisorial gonality of a
graph. For this reason graphs considered in the case of divisorial gonality will also
be assumed to be loopless unless mentioned otherwise.

2.1 Divisorial gonality

The main subject of this work is divisorial gonality, but what exactly is divisorial
gonality? On the most basic level the divisorial gonality of a graph is a natural
number assigned to that graph, that attempts to describe how complex that graph
is. A tree graph is the simplest graph in this measure. There are several different
ways to define how to assign such a natural number to each graph.

In this section we start by giving three definitions of divisorial gonality. These are
then shown to be equivalent to each other. The first definition is based on the idea
of chip-firing games and most easily understood on a intuitive level. The second
definition makes use of the concept of divisors and rank of divisors, and provides
a nice formal notation. The final definition also makes use of divisors, but instead
introduces the concept of reaching vertices. This turns out to often be useful when
reasoning about the divisorial gonality of a graph.

We first consider the following chip-firing game that is played on a graph. It
is similar to that of [3], but slightly different in the demand that any vertex can be
reached with at least one chip.

Definition 2.1.1 (The chip-firing game). The game is based on chips that move be-
tween vertices of the graph. A configuration is an assignment of an integer to each
vertex in the graph that describes the number of chips on that vertex. Any vertex
with a negative number of chips is called in debt. Firing is done by choosing a subset
of the vertices, called the firing set, and then moving one chip along each outgoing
edge out of the firing set.

A configuration is called a winning configuration, if for each vertex in the graph
there exists a sequence of firings, such that the vertex ends with at least one chip on
it and no other vertex ends in debt. The degree of a configuration is the sum of the
integers assigned to each vertex or, in other words, the total number of chips on the
graph.

We observe that if a configuration a can be turned into configuration b by firing a
subset A, then b can be turned into a by firing Ac, the complement of A. This follows
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since the outgoing edges of A and its complement are the same. Note then that
if configuration a can be turned into configuration b by firing a sequence of subsets
(A1, . . . , Ak), then b can be turned into a by firing the sequence (Ac

k, . . . , Ac
1). In other

words, the transformations by firing are symmetric.
Another thing to note is that firing a subset has the same result as firing each

vertex in that subset separately. When firing each vertex individually, any edge be-
tween two vertices in the firing set causes a chip to move one way and then back
the other way. So only along edges with exactly one incident vertex in the firing set
a chip is moved. The same would happen if we fired the entire firing set at once.
For a similar reason loops have no influence on the chip-firing game, after all a chip
moved along a loop simply stays on the same vertex.

Using this chip-firing game we can now define the divisorial gonality of any
graph. The divisorial gonality of a graph is based on the following simple question:
what is the minimum number of chips needed for a winning configuration?

Definition 2.1.2 (Divisorial gonality). Let G be a graph. The divisorial gonality of G
or dgon(G) is the lowest degree of all winning configurations on G for the chip-firing
game of definition 2.1.1.

v(1)

w(1) u(0) x(0)

v(0)

w(0) u(2) x(0)

v(0)

w(0) u(0) x(2)

FIGURE 2.1: An example of the chip-firing game on a graph G

In Figure 2.1 an example of how the chip-firing game works is demonstrated.
The numbers in brackets describe the number of chips on each vertex and the red
vertices are those in the firing set. On the left there is an initial configuration with
one chip on w and v. After firing the firing set {v, w} the result is the middle config-
uration. From this configuration firing the firing set {v, w, u} results in the rightmost
configuration. Note that from the initial configuration we reached each vertex with
a chip at least once, without having vertices go into debt, so the initial configuration
is a winning configuration and in fact each of the configurations reached is. Since
the configuration has a degree of 2 and, as we will see later, a non-tree graph can not
have divisorial gonality 1, it follows this example graph has divisorial gonality 2.

While the definition given here is intuitive, it does not give a great basis to work
with for reasoning and proofs on divisorial gonality. For that reason we now move
on to the second, more formal, definition of divisorial gonality, based on the concepts
of [3] and notation from [8].

Definition 2.1.3. Let G be a graph. A divisor D on G is an element of
⊕

V(G)
Z. We

use D(v) to denote the integer assigned to vertex v. We call a divisor D effective,
denoted D ≥ 0, if D(v) ≥ 0 for all v ∈ V(G). We denote the set of divisors on
G by Div(G) and the set of effective divisors by Div+(G). The degree deg(D) of a
divisor is the sum over D(v) for all v ∈ V(G). By Divk(G) we denote all divisors
with degree k.

Definition 2.1.4. Let G be a graph with n vertices. The Laplacian matrix L is given
by L = D − A, where D is the diagonal matrix with Dv,v = deg(v) and A is the
adjacency matrix of G.

We call a divisor P a principal divisor if there exists a divisor D such that P = LD
and we denote the set of principal divisors by Prin(G).
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Definition 2.1.5. We call two divisors D and D′ equivalent or in notation D ∼ D′,
if there exists a principal divisor P such that D′ = D − P. In this case we will also
call D′ − D the transformation of D into D′. Given a divisor D, we have a class of
equivalent effective divisors |D| = {D′ ∈ Div+(G) | D ∼ D′}.

While we will go more into the relation with definition 2.1.2 later, we want to
note that the divisors introduced here are very similar to the configurations in the
chip-firing game. Similarly the principal divisors here play the same role as the firing
of subsets in the game.

Definition 2.1.6. The rank of a divisor D is denoted by r(D) and defined as follows:
r(D) = max{k | |D − E| 6= ∅ ∀E ∈ Divk

+(G)} if |D| 6= ∅ and r(D) = −1 if
|D| = ∅.

Definition 2.1.7 (Divisorial gonality). The divisorial gonality, dgon, of a graph G is
the lowest degree for which there exists an effective divisor of rank greater or equal
to one, ie. dgon(G) = min{deg(D) | D ∈ Div+(G), r(D) ≥ 1}.

Already the similarity of this definition with the earlier chip-firing game may
be noticed. The concept of rank of a divisor is less intuitive though than that of the
chip-firing game and also often is hard to reason about. For that reason we introduce
one final definition of divisorial gonality. Also based on divisors, this definition asks
what vertices in the graph can be reached by a divisor.

Definition 2.1.8. Let G be a graph, D a divisor on G and v a vertex of G. The divisor
D reaches v if there exists an effective divisor D′ on G with D ∼ D′ and D′(v) ≥ 1.

Definition 2.1.9 (Divisorial gonality). The divisorial gonality, dgon, of a graph G is
the lowest degree for which there exists an effective divisor that reaches each vertex
of G.

As an example we again consider the graph G in Figure 2.1. To denote the divi-
sors and Laplacian of G we use the ordering (w, v, u, x) here. The three configura-
tions displayed in the figure then correspond with the following divisors:

c1 =


1
1
0
0

 , c2 =


0
0
2
0

 , c3 =


0
0
0
2


The Laplacian of G is:

L =


1 0 −1 0
0 1 −1 0
−1 −1 4 −2
0 0 −2 2


Then by taking the divisors

f1 =


1
1
0
0

 , f2 =


1
1
1
0

 , f3 =


2
2
1
0


and applying the Laplacian to them it can be seen that the differences c1 − c2,

c2− c3 and c1− c3 are given by L f1, L f2 and L f3 respectively, making them principal
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divisors. From this it follows the divisors c1, c2 and c3 are equivalent to each other.
Note that f3 is simply the sum of f1 and f2. It makes sense then that is also a principal
divisor, after all the Laplacian is a linear map, so any sum of principal divisors must
also be a principal divisor.

So there are three equivalent effective divisors and, for each vertex in the graph,
one of them assigns at least one chip to that vertex. It follows c1 reaches all vertices
in the graph, and so dgon(G) ≤ 2.

Clearly this definition of divisorial gonality is quite similar to that of Definition
2.1.7. In fact it is not very hard to show that the two notions are equivalent:

Theorem 2.1.1. The Definitions 2.1.7 and 2.1.9 of divisorial gonality are equivalent.

Proof. Let G be a graph and denote its divisorial gonality by Definition 2.1.7 as
dgonrank(G) and its divisorial gonality by Definition 2.1.9 as dgonreach(G). We first
show dgonrank(G) ≤ dgonreach(G). Let D be a divisor of degree dgonreach(G) that
reaches each vertex in G. We claim rank(D) ≥ 1.

Let E be a divisor in Div1
+(G). Note that this divisor assigns 1 to exactly one

vertex v and 0 to all other vertices. Since D reaches all vertices in G, D reaches
v. Let Dv be an equivalent effective divisor with Dv(v) ≥ 1. Then Dv − E is an
effective divisor, since Dv(v) ≥ 1 and Dv is effective, so it follows |D − E| 6= ∅.
Since this holds for any E ∈ Div1

+(G), it follows that rank(D) ≥ 1. We conclude
dgonrank(G) ≤ dgonreach(G).

Now to show dgonreach(G) ≤ dgonrank(G): let D be an effective divisor with
rank(D) ≥ 1 and deg(D) = dgonrank(G). We claim D reaches every vertex of G.
Let v ∈ V(G) and E the divisor with E(v) = 1 and E(w) = 0 for w 6= v. Since
rank(D) ≥ 1, we know |D − E| 6= ∅. Choose a divisor DE ∈ |D − E| and let
D′ = DE + E. Then D′ is an effective divisor equivalent to D such that D′ − E is
effective, but from this it follows D′(v) ≥ 1. This exactly means that D reaches v and
since this works for every v ∈ V(G), we know that D reaches every vertex of G. We
conclude dgonreach(G) ≤ dgonrank(G) and finally combined with the previous result
get dgonreach(G) = dgonrank(G).

Not only does the above proof show that the two definitions are equivalent, it
even shows that the same divisors of lowest degree work for both definitions. This
fact will be used often in proofs.

Corollary 2.1.2. Let G be a graph and D a divisor. Then rank(D) ≥ 1 if and only if D
reaches all vertices of G.

Proof. Follows from the proof of Theorem 2.1.1.

Moving back to the original chip-firing game, note that the divisors introduced
here are simply a more formal way of describing the configurations from the chip
firing game of Definition 2.1.1. Similarly the Laplacian matrix describes how chips
can be moved by firing certain subsets.

If G is a graph and v ∈ V(G), consider the row of the Laplacian corresponding
to v. This row in fact describes the change in chip totals that follows from firing the
subset V(G)−{v} in the chip-firing game. But the result of firing the subset V(G)−
{v} is simply the reverse of firing its complement {v}, in terms of the resulting
divisor this is represented by the integer assigned to each vertex being multiplied
by −1. So if we have a divisor P, it follows that LP gives the amount of chips each
vertex loses, by the firing of each vertex v ∈ V(G) exactly P(V) times.
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In other words the image of the Laplacian matrix, the set of principal divisors, is
exactly the set of divisors that describe a change of chips that can be achieved by a
finite sequence of firings in the chip-firing game. This leads to the following:

Lemma 2.1.3. Let D and D′ be two divisors on a graph G. Then the configurations cor-
responding with D and D′ in the chip-firing game can be turned into each other by firings
exactly when D ∼ D′.

Proof. If the configuration corresponding to D can be turned into that of D′, there
exists a sequence of subset firings that has the difference in their chip assignments as
a result. This difference is exactly D′−D. If we take the divisor f that describes how
often each vertex is fired in this sequence, then L f results exactly in this difference
times −1. So D′ − D = −L f and it follows D ∼ D′.

Assuming on the other hand that D ∼ D′, there must then exist a divisor f such
that D′ − D = −L f . But now f exactly describes how often each vertex should be
fired to transform the configuration corresponding to D into that of D′. We con-
clude the divisors are equivalent if and only if their corresponding configurations
are related by a sequence of firings.

Now that we know that equivalence of divisors and the firing rules of our chip-
firing game describe the same relation, we can show the Definitions 2.1.2 and 2.1.9
are the same:

Theorem 2.1.4. The Definitions 2.1.2 and 2.1.9 of divisorial gonality are equivalent.

Proof. Let G be a graph, dgonchip(G) its divisorial gonality under Definition 2.1.2
and dgonreach(G) its divisorial gonality under Definition 2.1.9. Then there must exist
a winning configuration for the chip-firing game of degree dgonchip(G). Let W then
be the divisor describing this configuration and let Wv describe the configuration
with at least one chip on v and no vertices in debt reachable from W for a v ∈ V(G).
By Lemma 2.1.3 we know that W ∼ Wv, and, since this holds for every v ∈ V(G),
conclude that W reaches each vertex in G. So dgonreach(G) ≤ dgonchip(G).

There also must exist an effective divisor D with deg(D) = dgonreach(G) that
reaches each vertex in v. So if v ∈ V(G) we know there exists an effective divisor
Dv with Dv(v) ≥ 1 and D ∼ Dv. But note now that the configuration in the chip-
firing game described by D is a winning configuration, the divisors Dv describe the
configurations with at least one chip on v that can be reached by firings. We conclude
dgonchip(G) ≤ dgonreach(G) and finally dgonchip(G) = dgonreach(G).

Not only are the definitions equivalent, as in Corollary 2.1.2 we also see in the
proof that a configuration is a winning configuration exactly when the divisor de-
scribing it reaches all vertices:

Corollary 2.1.5. Let G be a graph and D a divisor on G. D reaches all vertices of G exactly
when the configuration represented by D is a winning configuration in the chip firing game
of Definition 2.1.1.

Proof. See the proof of Theorem 2.1.4.

So we now have three equivalent definitions of divisorial gonality, each with
their own advantages. In many cases a combination of the definitions is used during
proofs, in these situations the Lemma 2.1.3 and corollaries 2.1.2, 2.1.5 are especially
useful. For this reason it will be convenient to be able to discuss firing sets directly
on divisors.
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Definition 2.1.10. Firing a firing set A, A ⊂ V(G), on a divisor D on a graph G,
results in the divisor D′ = D − LIA, where IA(v) = 1 if v ∈ A and IA(v) = 0
otherwise.

Note that this is the same as the firing set being fired in the chip-firing game on
the configuration represented by D and then representing the resulting configura-
tion by D′. It also will be useful to be able to discuss the impact a given firing set has
on the divisor and specifically if it keeps all vertices out of debt.

Definition 2.1.11. Given a graph G and a firing set A, we define the out degree of a
vertex v ∈ A under A as follows: outdegA(v) = LIA, where IA(v) = 1 if v ∈ A and
IA(v) = 0 otherwise.

Definition 2.1.12. Given a graph G and a divisor D, we call a non-empty firing set
A valid if D(a) ≥ outdegA(a) for all a ∈ A.

The out degree of a vertex v for a firing set A tells us how many chips v will
lose by the firing of A. A firing set A then is valid if no vertex will go into debt by
firing it (each vertex loses at most the number of chips it had). The final notation we
introduce here will be useful when discussing the divisorial gonality of minors of
graphs:

Definition 2.1.13. Let G be a graph and H a minor of G with V(H) ⊂ V(G). Let D
be a divisor on G and D′ a divisor on H. The restriction of D to H is the divisor DH
on H with DH(v) = D(v) for all v ∈ H. On the other hand the expansion of D′ to G
is the divisor D′G with D′G(v) = D′(v) for v ∈ H and D′G(v) = 0 for v /∈ H.

2.2 Stable divisorial gonality

In this section we introduce stable divisorial gonality as a variant on divisorial gonal-
ity. The idea is that by adding the possibility of refinements stable divisorial gonality
better describes the global structure of a graph. The concept was proposed in the
appendix of [6]. We start by introducing refinements and then use these to define
stable divisorial gonality:

Definition 2.2.1. Let G be a graph. A refinement G′ of G is a graph created from G
by a finite number of applications of the following two operations:

1. Attaching a new leaf to any vertex in the graph.

2. Subdividing an edge by adding a vertex in its middle.

Definition 2.2.2. Let G and H be graphs, such that H is a refinement of G. The
original vertices of H are the vertices not created by refinements, i.e. {w ∈ V(H)|w ∈
V(G)}.

Definition 2.2.3. Let G be a graph. The stable divisorial gonality of G is the
minimum of the divisorial gonality over all refinements of G, i.e. sdgon(G) =
min{dgon(G′)|G′ a refinement of G}.

Since any graph is a refinement of itself it can quickly be seen that the divisorial
gonality of a graph is an upper bound for its stable divisorial gonality. In addition,
while the definition of refinements allows for two operations, it turns out only the
second operation is required to obtain a refinement with minimum divisorial gonal-
ity.
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1. 2.

FIGURE 2.2: The two operations for the refinements of graphs.

Theorem 2.2.1. Let G be a graph. There exists a refinement G′ of G created only by subdi-
viding edges such that dgon(G′) = sdgon(G).

This theorem will be proven in Section 3.4 when the required techniques have
been introduced. The result is quite useful though, since it significantly reduces the
complexity of refinements that need to be considered for stable divisorial gonality.
For this reason, when talking about stable divisorial gonality, we will only consider
refinements created by subdividing edges.

2.3 Stable gonality

The final variant of gonality we introduce here is stable gonality. Its definition differs
significantly from that of divisorial gonality, though it bears some similarity to stable
divisorial gonality in the use of refinements. While this variant does not play a major
role in this work, we give here a definition for the sake of several results in Chapter
5.

The definition given here has been taken from [4], while the concept was origi-
nally proposed in [6]. To start, we first need to define a class of functions between
graphs, known as finite harmonic morphisms:

Definition 2.3.1. Let G and H be graphs. A finite morphism is a map φ : G → H such
that

(i) φ(V(G)) ⊆ V(H),

(ii) φ(uv) = φ(u)φ(v) for all uv ∈ E(G),

together with, for every e ∈ E(G), an “index” rφ(e) ∈ N.

Definition 2.3.2. We call a finite morphism φ : G → H harmonic if for every v ∈ V(G)
it holds that for all e, e′ ∈ Eφ(v)(H)

∑
d∈Ev(G),φ(d)=e

rφ(d) = ∑
d′∈Ev(G),φ(d′)=e′

rφ(d′).

We write mφ(v) for this sum.

Definition 2.3.3. The degree of a finite harmonic morphism φ : G → H is

∑
d∈E(G),φ(d)=e

rφ(e) = ∑
u∈V(G),φ(u)=v

mφ(u),

for e ∈ E(H), v ∈ V(H). This is independent of the choice of e or v ([3], Lemma 2.4).

Combining these finite harmonic morphisms with the definition as given for sta-
ble divisorial gonality gives the following definition of stable gonality. Here the
leaf-adding operation of refinements can actually be necessary.
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Definition 2.3.4. The stable gonality of a graph G is

sgon(G) = min{deg(φ) | φ : G′ → T a finite harmonic morphism,
G′ a refinement of G, T a tree}.
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Chapter 3

Several techniques and results for
gonality

We start this chapter by discussing some example graphs and their gonality. An
obvious family of graphs to start with is that of the tree graphs and in fact tree graphs
turn out to be the simplest graphs for gonality. Both of the following results will be
proven later in section 3.4:

Theorem 3.0.1. Let G be a graph. The divisorial gonality of G is 1 if and only if G is a tree.
The same holds for stable divisorial gonality.

While tree graphs are the simplest graphs in terms of divisorial gonality, the
complete graph turns out to be the simple (not multi-) graph with highest divisorial
gonality for its number of vertices:

Theorem 3.0.2. The complete graph Kn with n vertices has divisorial gonality n− 1.

As mentioned in the introduction, treewidth is a commonly used measure of
complexity of graphs. When considering a new measure such as divisorial gonality
it is therefore interesting to check if it relates to treewidth. In 2014 Dobben de Bruyn
and Gijswijt showed in [9] that such a relation exists and it also holds for stable
divisorial gonality and stable gonality:

Theorem 3.0.3 ([9]). For any connected graph G it holds that dgon(G) ≥ tw(G). In
addition sdgon(G) ≥ tw(G) and sgon(G) ≥ tw(G).

Let us consider now one additional example class of graphs with this theorem in
mind: the grid graphs. Suppose we have a n×m grid graph G, what is the divisorial
gonality of G? It turns out that by using the treewidth of the graph, which is known
to be min(m, n), it becomes fairly easy to establish the divisorial gonality of G. This
result has been proven previously by a different method in [8].

Theorem 3.0.4. The n×m grid graph has divisorial gonality min(n, m).

Proof. Let G be the m × n grid graph. We assume without loss of generality that
m ≤ n. Note that the vertices of G can be split into n columns of m vertices each,
we will call these columns (C1, . . . , Ck), ordering them by adjacency. We claim the
divisor D1 with one chip on each vertex of C1 and no chips elsewhere reaches each
vertex of G. As an example of D1 see Figure 3.1, where the red vertices are those in
C1.

Consider the firing set A1 containing exactly the vertices of C1, the outgoing
edges of this firing set connect each vertex of C1 to an adjacent vertex of C2. Firing
this firing set on D1 therefore results in a divisor D2 with one chip one each vertex in
C2 and no chips elsewhere. Similarly we can create the firing set A2 consisting of the
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vertices in C1 and C2, which, when fired, moves a chip from each vertex in C2 to an
adjacent vertex in C3. By repeating this process we can create a series of equivalent
divisors (D1, . . . , Dk), where Di has a chip on each vertex in Ci and nowhere else.
Since the columns (C1, . . . , Ck) together cover all vertices of G, it follows D1 reaches
all vertices of G.

So we know now that dgon(G) ≤ m, since deg(D1) = m. But since the treewidth
of G is min(m, n) = m, by Theorem 3.0.3 we also know dgon(G) ≥ m. We conclude
dgon(G) = m.

1

1

1

FIGURE 3.1: An example of the divisor D1 for a grid graph

3.1 Level set decomposition

In this section we introduce a technique to be used in proofs on divisorial and stable
divisorial gonality. It can be used to reason about transformations between equiva-
lent divisors. We use the definition from [8].

We recall that two divisors D and D′ are defined as equivalent if there exists
a principal divisor P such that D′ = D − P. A principal divisor then is a divisor
that can be expressed as an image of the Laplacian matrix, in other words there is a
divisor f , such that P = L f . Intuitively this can be understood as follows: −P is a
vector over all vertices that for each vertex describes the change in number of chips.
Then f is the vector that describes for each vertex how often it should be fired, in the
terms of the chip-firing game, to produce the result −P.

Therefore we have some divisor f that describes how often vertices should be
fired to produce D′ from D, D′ = D − L f . We now consider the idea of splitting
this divisor f into layers, where each layer gives a subset of the graph that should be
fired once. We shall see that with the right definition these layers or level sets have
certain helpful properties. The level sets are given by the following definition:

Definition 3.1.1. Let D and D′ be two equivalent divisors, then there must exist
a divisor f such that D′ = D − L f , where L is the Laplacian matrix. Let m =
max{ f (v) | v ∈ V(G)} and let k = m−min{ f (v) : v ∈ V(G)}. We then define the
level sets as follows:

Ai = {v ∈ V(G) : f (v) ≥ m− i} for i ∈ {0, . . . , k}.

Note that while there are multiple such f , these can only differ by a multiple
of the all ones vector and they therefore result in the same level set decomposition.
Because of this we will often refer to the level set decomposition of a transformation
of D into D′, without mentioning the divisor f .

We can then also consider the sequence of divisors that is created by firing each
level set in the given order:
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Definition 3.1.2. A level set decomposition A0, . . . , Ak belonging to a transformation
of D into D′ produces a sequence of divisors as follows:

D0 = D,
Di+1 = Di −LIAi for i ∈ {0, . . . , k− 1}.

Here, IAi is the divisor with IAi(v) = 1 for v ∈ Ai and IAi(v) = 0 otherwise.

Remark. Note that for a level set decomposition A0, . . . , Ak we have that A0 ⊆ A1 ⊆
· · · ⊆ Ak.

We continue with an useful property of level set decompositions, namely the
fact that each divisor in the associated sequence is lower bounded by the pointwise
minimum of D and D′:

Theorem 3.1.1. Let D and D′ be two equivalent divisors and A0, . . . , Ak the level set de-
composition of the transformation of D into D′. Let D0, . . . , Dk be the associated sequence of
divisors. We then have that:

Di(v) ≥ min(D(v), D′(v)) ∀i ∈ {0, . . . , k}, ∀v ∈ V(G).

Proof. Choose an i ∈ {0, . . . , k} and a vertex v ∈ V(G). If Di(v) ≥ D(v) we are done,
so assume that Di(v) < D(v). Since Di(v) < D(v), v must have been fired at least
once before Di (the only way a vertex can loose chips is by firing), so there is an Aj
with v ∈ Aj and j < i. But since A0 ⊆ · · · ⊆ Ak, we then have that v ∈ Am for all
m ≥ j and specifically for all m ≥ i.

So v is fired in every subset starting from Ai, but the number of chips on v cannot
increase if v is part of the fired subset, so we have that Di(v) ≥ Dm(v) for all m ≥ i
and specifically, Di(v) ≥ Dk(v) = D′(v).

Therefore either Di(v) ≥ D(v) or Di(v) ≥ D′(v) for all v ∈ V(G) and i ∈
{0, . . . , k}. We conclude that Di(v) ≥ min(D(v), D′(v)) for all v ∈ V(G) and i ∈
{0, . . . , k}.

Theorem 3.1.1 gives a nice result for the transformation between two equivalent
effective divisors:

Corollary 3.1.2. Let D and D′ be two equivalent effective divisors. Let A0, . . . , Ak be the
level set decomposition of the transformation of D into D′ and D0, . . . , Dk the associated
sequence of divisors. Then all divisors Di are effective and all firing subsets Ai are valid with
respect to Di.

Proof. This follows simply from Theorem 3.1.1: since Di(v) ≥ min(D(v), D′(v)),
D(v) ≥ 0 and D′(v) ≥ 0, we conclude that Di(v) ≥ 0 and so Di is effective. To
see that all firing sets are valid, note that a non-valid firing set would result in a
non-effective divisor.

3.2 Reduced divisors

When working with divisors it will often be useful to consider the equivalent divisor
that moves chips ’as much as possible’ towards a given vertex. This somewhat vague
idea can be formalized in the following definition of reduced divisors. These were
originally introduced in [3], though some notation used here was introduced in [8].
s
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Definition 3.2.1. A divisor D on a graph G is called v-reduced, for v ∈ V(G), if the
following two conditions hold:

• D(w) ≥ 0 ∀w ∈ V(G)− {v}

• If A is a valid firing set on D, then v ∈ A.

Any divisor for which only the first condition holds is called v-semireduced.

These reduced divisors are only really useful if any divisor can be turned into
one. Luckily, it turns out this is possible and in fact any divisor is equivalent to a
single unique v-reduced divisor, for any vertex v in the graph. The following proof
is based on that in [3] and the proof in [8].

Theorem 3.2.1 (Proposition 3.1 in [3]). Let G be a graph and D a divisor on G. For any
v ∈ V(G) there exists an unique v-reduced divisor Dv equivalent to D.

For the proof of this theorem we require the following lemma:

Lemma 3.2.2. Let G be a graph and D a divisor on G. For any v ∈ V(G) there exists a
v-semireduced divisor D′ with D′ ∼ D.

Proof. We assume D itself is not v-semireduced, otherwise D′ = D suffices. Let lv(w)
be the length of the shortest path between any vertex w and v. Let d = max{lv(w) :
w ∈ V(G)} and Si = {w ∈ V(G)|lv(w) = i} for i ∈ [0, . . . , d]. Note what happens if
we fire the firing set Ck = {w ∈ V(G)|lv(w) ≤ k} for k ∈ N: clearly every vertex at
distance k + 1 from v is adjacent to at least one vertex in Ck and itself not in Ck, thus
it receives at least one chip when Ck is fired. Meanwhile only vertices within at most
k distance of v lose chips by the firing of Ck.

Starting with divisor D, by firing the firing set Cd−1 enough times we can ensure
that all vertices in Sd are out of debt. The number of firings required for this is at
most the largest debt among vertices in Sd. Then by firing the set Cd−2 enough times
we can do the same for the vertices of Sd−1 without affecting the number of chips on
any vertices farther away. By repeating this process with firing sets (Cd−3, . . . , C0) we
can ensure no vertex with distance at least 1 from v is in debt. Since the only vertex
at distance 0 from v is v itself, we conclude the final divisor D′ is v-semireduced, and
since we achieved it by a sequence of firings starting in D, D′ ∼ D.

We continue with the proof of the theorem:

Proof of Theorem 3.2.1. We start by proving that for every vertex v and divisor D there
exists an equivalent v-reduced divisor Dv. Note that by Lemma 3.2.2 there exists at
least one v-semireduced divisor D′ equivalent to D. Let lv(w) be the length of the
shortest path between any vertex w and v. Let d = max{lv(w) : w ∈ V(G)} and
Si = {w ∈ V(G)|lv(w) = i} for i ∈ [0, . . . , d]. We introduce the following function
on divisors:

β(D) = ( ∑
v∈S0

D(v), ∑
v∈S1

D(v), . . . , ∑
v∈Sd

D(v))

Let now F be a v-semireduced divisor equivalent to D that maximizes the func-
tion β(F) with regards to the lexicographical ordering. We claim F is actually v-
reduced.

Suppose it is not, then, since F is v-semireduced, the second condition must be
violated. So there exists a valid firing set A on F, with v /∈ A. But consider the
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divisor F′ created by firing A from F. Let w ∈ A be any vertex in A with minimal
lv(w) amongst the vertices of A. Note that v /∈ A, so lv(w) ≥ 1. Then w must have at
least one neighbor w′ with lv(w′) < lv(w) and we know w′ /∈ A, since then w would
not be at minimal distance.

But if w ∈ A and w′ /∈ A, it follows the firing of A moves at least one chip
from w to w′. And since no vertex at distance smaller than lv(w) can be in A, this
implies β(F′) > β(F) with regards to the lexicographical ordering. But, because A
was valid on F, we know that F′ is still v-semireduced. But now we have another
v-semireduced divisor F′ equivalent to D, but with β(F′) > β(F), while we chose
F to maximize β. By this contradiction we conclude that no such valid A can exist,
and thus F is v-reduced.

It remains to show that this equivalent v-reduced divisor is unique for a given
D and v. Suppose instead that there are two distinct v-reduced divisors D′ and D”,
both equivalent to D. Then we also know D′ ∼ D”. Let then (A0, . . . , Ak) be the
level set decomposition of the transformation from D′ to D”.

Note that by Lemma 3.1.2 we know A0 is valid, so, because D′ is v-reduced it
follows v ∈ A0 and so v ∈ Ai, for all i ∈ [0, . . . , k]. Since D′ 6= D”, k > 1 and
Ak−1 6= V(G). Let D′k−1 be the divisor that is turned into D” by firing Ak−1. By
Lemma 3.1.1 we know that for all w 6= v, D′k−1(w) ≥ 0, since D′ and D” are both
v-reduced.

Consider the firing set V(G)− Ak−1 on D”. Firing it results in the divisor D′k−1.
Since v ∈ Ak−1 it is clear that v /∈ Ak−1. Then because Dk−1(w) ≥ 0 for all w ∈ V(G)
w 6= v, it follows V(G) − Ak−1 is a valid firing set on D” not containing v. This
contradicts D′ being v-reduced and we conclude no such two distinct divisors D′

and D” can exist and the v-reduced divisor is unique.

For this reason, if we specify the divisor D and the vertex v, it is possible to
talk about the v-reduced divisor of D. The fact that this reduced divisor is unique
and representative for a class of equivalent divisors is already quite useful, but the
following result from [8] shows that reduced divisors are also related to the rank of
a divisor:

Theorem 3.2.3. Let D be a divisor on a graph G. rank(D) ≥ 1 if and only if Dv(v) ≥ 1
for every v ∈ V(G), where Dv is the v-reduced divisor equivalent to D.

Proof. Let D be a divisor on a graph G. Suppose that rank(D) ≥ 1. Let v be a
vertex in G and let Dv be the v-reduced divisor equivalent to D. Since rank(D) ≥ 1
we know that D is equivalent to an effective divisor D′ with D′(v) ≥ 1. Because
D ∼ Dv and D ∼ D′ it follows Dv ∼ D′. Consider then the transformation of Dv
to D′ and its level set decomposition (A0, . . . , Ak). By Corollary 3.1.2 we know A0
must be valid on Dv, but since Dv is v-reduced that implies that v ∈ A0. This means
v ∈ Ai, for all i ∈ [0, . . . , k], from which it follows that Dv(v) ≥ D′(v), because v can
never increase its chips when it is in the firing set. Since we know that D′(v) ≥ 1,
we conclude Dv(v) ≥ 1 and this holds for all v ∈ V(G).

Suppose now on the other hand that Dv(v) ≥ 1 for all v ∈ V(G). We fix one such
v ∈ V(G) and show that D reaches v. We know Dv ∼ D, and also that Dv is effective
everywhere except v by the definition of a reduced divisor. But we also know that
Dv(v) ≥ 1. So D is equivalent to an effective divisor with at least one chip on v and
so reaches v. Since this holds for all v ∈ V(G), with Corollary 2.1.2, we conclude
rank(D) ≥ 1.
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3.3 Lower bound by minimal cuts

In this section a lower bound on the divisorial gonality of a given graph is proven.
This lower bound is based on the idea that the number of chips fired out of a firing
set is equal or greater to the minimal cut between any vertex in the fired subset and
any vertex outside it. Based on this idea, the following lower bound can be created:

Theorem 3.3.1. Let G be a connected graph. Let v ∈ V(G) and W ⊂ V(G), with v /∈ W.
If W contains at least n− 1 elements, such that for each w ∈ W the minimal cut between v
and w is at least n, then dgon(G) ≥ n.

Proof. We assume instead that the divisorial gonality of G is lower than n. Then
there must exist an effective divisor D with deg(D) = n− 1 and r(D) ≥ 1. We now
introduce a function that counts the number of elements of W with at least one chip
on them for a given divisor:

ϕ(F) = |{w ∈W|F(w) ≥ 1}|

We note that since r(D) ≥ 1, there must be at least one equivalent effective divisor
that assigns one or more chips to v. We choose such a divisor that maximizes our
function ϕ and name it D′. So D′ ≥ 0 , D′ ∼ D, D′(v) ≥ 1 and ϕ(D′) = max{ϕ(F) :
F ∈ Div(G), F ∼ D, F ≥ 0, F(v) ≥ 1}.

Since deg(D′) = deg(D) = n− 1 and D′(v) ≥ 1 it follows ϕ(D′) < n− 1. Because
|W| ≥ n− 1 there exists a vertex w′ ∈ W with D′(w′) = 0. However from r(D) ≥ 1
we know that r(D′) ≥ 1, so there exists an effective divisor D′′ with D′′(w′) ≥ 1 and
D′′ ∼ D′.

Given that D′ ∼ D′′, there must be some divisor f such that D′′ = D′ − Q f . We
now consider the level set decomposition A0, . . . , Ak corresponding with this f and
the associated sequence of divisors D0, . . . , Dk. By Corollary 3.1.2 we know that all
the divisors Di are effective. This implies that outdeg(Ai) ≤ Di(Ai), where we use
the notation outdeg(Ai) = ∑a∈Ai

outdegAi(a) and Di(Ai) = ∑a∈Ai
Di(a).

Observe now that the total outdegree of a subset is equal to the weight of the cut
between that subset and its complement. First consider now the case that v ∈ Ai
for some Ai ⊆ V(G). If there is a w ∈ W with w /∈ Ai then clearly Ai defines a cut
between v and w. We know however that the minimum cut between v and w is at
least n. So it follows that outdeg(Ai) ≥ n.

Since deg(Di) = n − 1 for all i, Di(Ai) ≤ n − 1 for all i. Combining this with
outdeg(Ai) ≤ Di(Ai), we conclude the following for all Ai: if v ∈ Ai then W ⊂ Ai.
Since the outdegree of any subset and its complement are the same, it also follows
that if v /∈ Ai then W ∩ Ai = ∅.

We move back to considering the level set decomposition A1, . . . , Ak from D′

to D′′. Since D′′(w′) > D′(w′) it follows that there must exist an integer j such
that Dj(w′) > Dj−1(w′). This implies that w′ /∈ Aj−1, but by our result above then
v /∈ Aj−1 and W ∩ Aj−1 = ∅. Therefore for all w ∈ W/{w′} it follows that Dj(w) ≥
Dj−1(w), combining this with Dj(w′) > Dj−1(w′) we get that ϕ(Dj) > ϕ(Dj−1).

But since W ∩ Aj−1 = ∅, it follows that W ∩ Ah = ∅ ∀h ≤ j− 1. If no vertex in
W fires until at least subset Aj−1 it follows that ϕ(Dj−1) ≥ ϕ(D′) and thus ϕ(Dj) >
ϕ(D′).

Note however that Dj fulfills all conditions over which we maximized ϕ (Dj ∼
D, Dj ≥ 0 and Dj(v) ≥ 1), yet it has higher value under ϕ than D′. From this
contradiction we conclude that the divisorial gonality of G must be at least n.
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3.4 Proofs of earlier claims

Earlier in this chapter we claimed that a graph has divisorial gonality 1 exactly when
it is a tree and that the same holds for stable divisorial gonality. Now that we have
the technique of level set decompositions we can prove this:

Proof of Theorem 3.0.1. We start by considering divisorial gonality. First let G be a tree
and let v be any vertex in G. We claim the divisor D with one chip on v and no other
chips reaches all vertices of G. Let w be any vertex in G with w 6= v. Note that there
exists an unique path P from v to w. Let v1 be the first vertex on this path from v,
so v1 is adjacent to v. Let Gv be the subtree attached to v1 that contains v. If we fire
the subset Gv from D, note the only outgoing edge is the one between v and v1, so
the one chip of D moves to v1. By repeating this construction, we can move the chip
along the entirety of P and end with a divisor D′ with the chip on w. We conclude D
reaches all vertices of G and so dgon(G) = 1.

Assume on the other hand then that dgon(G) = 1. Suppose there exists a cycle
C in G and let v, w be two different vertices on C. Let D be the effective divisor
with D(v) = 1, this divisor should reach all vertices and so should be equivalent
to an effective divisor D′ with D′(w) = 1. Let A0 then be the first set of the level
set decomposition of the transformation of D to D′. Note that v ∈ A0 and w /∈
A0. But the minimum cut between v and w is at least 2, they are part of the same
cycle after all. This implies however that firing A0 would move two chips, since D
only contains one chip this leads to at least one vertex going into debt, contradicting
Corollary 3.1.2. We conclude that G cannot contain any cycles and must be a tree.

Now we consider stable divisorial gonality. Note that any graph is a refinement
of itself. Therefore any tree graph has a tree as a refinement and it follows the stable
divisorial gonality of a tree is 1. Assume on the other that a given graph G has
sdgon(G) = 1, then there exists a refinement G′ of G with dgon(G′) = 1. But by the
previous part of our proof then G′ must be a tree, and the only graphs that have a
tree as refinement are trees themselves.

We also claimed that the complete graph is the simple graph with the highest
divisorial gonality amongst the graphs of n vertices.

Lemma 3.4.1. Let G be a simple graph with at least 2 vertices. The divisorial gonality of G
is at most |V(G)| − 1.

Proof. Choose a vertex v ∈ V(G). Consider now the divisor D with D(w) = 1 if
w 6= v and D(v) = 0. Clearly the degree of D is |V(G)| − 1 and D reaches all vertices
w 6= v. If we now fire the subset V(G) − {v} from D, note that v receives at least
1 chip from a neighbor (we assume G is connected), while any other vertex loses at
most 1 chip to v. It follows the resulting divisor is an effective divisor with at least
one chip on v and so D can reach v. We conclude that dgon(G) ≤ |V(G)| − 1.

Proof of Theorem 3.0.2. By Lemma 3.4.1 Kn has divisorial gonality at most n− 1. Sup-
pose that dgon(Kn) < n− 1, then there exists a divisor D with degree at most n− 2
that reaches each vertex of Kn. By Corollary 3.1.2 this requires the existence of valid
firing sets on Kn, note though that each partition of Kn has a cut of at minimum n− 1.
Since there are only n− 2 chips in D, it follows no valid firing set can exist for D. But
this means D cannot have any equivalent divisors and so cannot reach every vertex.
We conclude that Kn must have divisorial gonality exactly n− 1.
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In Section 2, Theorem 2.2.1, we stated that subdividing edges is the only neces-
sary operation for stable divisorial gonality. We now have the techniques to prove
this statement:

Proof of Theorem 2.2.1. We call any vertex in a refinement created by a leaf-adding op-
eration an external added vertex. Note that the number of external added vertices in
a refinement is exactly the number of times the leaf-adding operation was performed
to create the refinement. Let now H be a refinement of G with dgon(H) = sdgon(G)
and minimal number of external added vertices. If H has no external added vertices,
H is a valid candidate for G′ in the theorem and we are done.

Suppose then that H has at least one external added vertex. Choose one such
vertex v with degree 1 and let v′ be its neighbor. Let D be an effective divisor on H
with deg(D) = dgon(H) that reaches all vertices in H. If D(v) ≥ 1 we create the
equivalent effective divisor D′ by firing {v} until D′(v) = 0, otherwise let D′ = D.
Let H′ be H, but with v removed. We claim D′ restricted to H′, denoted here as D′H′ ,
reaches all vertices of H′.

Let w be a vertex in H′ with D′H′(w) = 0. We know D′ reaches all vertices of
H, so there exists an effective divisor D′w on H with D′w ∼ D′ and D′w(w) ≥ 1. Let
A0, . . . , Ak be the level set decomposition of the transformation of D′ into D′w. Since
D′(v) = 0 and each firing set of the level set decomposition is valid by Corollary
3.1.2, it follows that if v ∈ Ai then v′ ∈ Ai for all i ∈ [1, . . . , k].

Consider now what happens when we fire each set of the level set decomposition
after restricting to H′. Since only v is missing compared to H and v ∈ Ai only
if v′ ∈ Ai, each vertex in H′ ends up with at least as many chips as it would in
H′. Specifically this means we end up with an effective divisor with at least one
chip on w. So D′H′ reaches w. This works for any w ∈ V(H′) and so it follows that
dgon(H′) ≤ dgon(H). But H′ is an refinement of G that contains one external added
vertex less than H, contradicting the minimality of H. We conclude H must have no
external added vertices and so there always exists at least one refinement of minimal
divisorial gonality created by only subdividing edges.
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Chapter 4

Reduction rules for divisorial
gonality

As mentioned before, the general problem of finding the divisorial gonality of a
graph is NP-hard [10]. In this section we therefore try to solve the smaller problem
of checking whether a given graph has divisorial gonality at most 2. The method we
take to solve this problem is similar to work on treewidth.

It is also known that the general problem of finding the treewidth of graph is
NP-hard. Checking if a graph has treewidth at most k can be done in polynomial
time though for any given k. For the cases of k = 2, k = 3 and k = 4 this can be done
in linear time by making use of a set of reduction rules [1][14]. The idea is that the
set of rules can reduce a graph to the empty graph exactly when it is in the class of
graphs recognized. The question we answer here, at least partially, is if such sets of
reduction rules can also be found for divisorial gonality and if they result in efficient
recognition algorithms.

In this chapter we explore a set of reduction rules for graphs with divisorial go-
nality at most 2. We also show that these rules lead to a polynomial time algorithm
to recognize graphs with divisorial gonality at most 2. These results are also part of
a larger joint work [4] which presents similar sets of reduction rules for stable divi-
sorial gonality and stable gonality. In addition in [4] it is shown that these reduction
rule sets lead to O(n log n + m) time algorithms, where n is the number of vertices
and m the number of edges.

We start this chapter by formalizing what exactly a set of reduction rules is and
what properties we want it to have. After that an extra layer of structure on top of
the graph is introduced, called constraints. After this preparation in Section 4.1, the
actual set of reduction rules is presented in Section 4.2. We will the prove that the
set of reduction rules has the properties we require of it, which will be referred to
as safeness and completeness. Finally in Section 4.3 we present proof that the set of
reduction rules allows for a polynomial time algorithm.

4.1 Reduction rules

We will be talking a lot about reduction rules in this section. By a reduction rule we
mean a rule that can be applied to a graph to produce a different graph. The follow-
ing notation shows when a graph can be produced by the application of reduction
rules starting from another graph:

Definition 4.1.1. Let G and H be graphs and S be some set of reduction rules. We
use GSH to denote that H can be produced by some application of a reduction rule
from S. We use GS∗H to denote that H can be produced from G by some finite
sequence of applications of reduction rules from S.
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If U is a single rule, we write GUH as shorthand for the application of the sin-
gleton set containing U .

Our final goal with the set of reduction rules is to show that it can be used to
characterize the graphs in a certain class by reduction to the empty graph. For this
we need to make sure that membership of the class is invariant under our reduction
rules.

Definition 4.1.2. Let U be a rule and S be a set of reduction rules. Let A be a class
of graphs. We call U safe for A if from GUH it follows that H ∈ A ⇐⇒ G ∈ A. We
call S safe for A if every rule in S is safe for A.

Note that if S is safe for a class A then GS∗H implies that H ∈ A ⇐⇒ G ∈ A.
Apart from our rule sets being safe, we also need to know that, if a graph is in

our class, it is always possible to reduce it to the empty graph. In other words, there
must always be some sequence of rule applications that results in the empty graph.

Definition 4.1.3. Let S be a set of reduction rules, A a class of graphs. We call S
complete for A if for any graph G ∈ A it holds GS∗∅.

For any rule set that is both complete and safe for A it then follows the rule set
is suitable for characterization of A. Additionally it is not possible to make a wrong
choice early on that would prevent the graph from being reduced to the empty set.

Lemma 4.1.1. Let S be a set of rules that is safe and complete for A, with ∅ ∈ A, then we
have the following for all graphs G, H:

(i) GS∗∅ if and only if G ∈ A;

(ii) if G ∈ A and GS∗H, then HS∗∅.

Proof. For property i: Let G be a graph, such that GS∗∅. Note that by the safeness
of S and the fact that ∅ ∈ A it follows that G ∈ A. Assume on the other hand that
G ∈ A, then by the completeness of S it follows that GS∗∅.

For property ii: Let G be a graph in A and H a graph such that GS∗H. Note that
by the safeness of S we have that H ∈ A, then by completeness of S it follows that
HS∗∅.

4.1.1 Constraints

During the reduction of the graph we will need to keep track of certain restrictions
otherwise lost by the removal of vertices and edges. We will maintain these restric-
tions in the form of a set of pairs on the vertices of the graph:

Definition 4.1.4. Given a graph G = (V, E) the set of constraints C is a set of pairs
(v, w), where v, w ∈ V. This set can contain pairs of a vertex with itself, but can
contain each pair only once.

Checking whether a graph has gonality two or lower can be seen as checking
whether there exists a divisor with degree two and rank greater or equal to one on
our graph. Constraints in this case are used to restrict which divisors and transfor-
mations we consider after reduction. The pairs in the constraints place the following
restrictions on what divisors and firing sets are allowed:

Definition 4.1.5. Given a constraint r = (v, w) a divisor satisfies r if it is equivalent to
an effective divisor after removing one chip from v and one chip from w. In addition
any firing set used in transformations should either contain both v and w or neither.
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In terms of principal divisors, this is the same as a constraint only allowing those
principal divisors P = L f , where f (v) = f (w). Note that in the case that v = w the
first part means a divisor should be equivalent to an effective divisor after removing
two chips from v and the second condition is fulfilled trivially. It will also be useful
to define when constraints are non-conflicting on a cycle. For this we introduce the
idea of compatibility on cycles:

Definition 4.1.6. Let C be a cycle. Let CC ⊆ R be the set of constraints that contain a
vertex in C. We call the constraints CC compatible if the following hold.

(i) If (v, w) ∈ CC then both v ∈ C and w ∈ C.

(ii) For each (v, w) ∈ CC and (v′, w′) ∈ CC, the divisor given by assigning a chip
to v and w must be equivalent to the one given by assigning a chip to v′ and w′

on the subgraph consisting of C.

Note that a divisor of degree 2 can only satisfy all constraints on a cycle if they
are compatible. Now we are interested in the existence of a divisor that has rank
greater or equal to one, while satisfying all constraints.

Definition 4.1.7. Given a graph G = (V, E) and its constraints C , we will call a
divisor D suitable if it has degree 2 and r(D) ≥ 1 while also satisfying all constraints
in C .

Given a graph with constraints we will say that the graph has divisorial gonality
2 or lower if there exists a suitable divisor. Note that for a graph with no constraints
this formulation is equivalent to the usual definition of divisorial gonality 2 or lower.
We will denote the class of graphs with constraints that has divisorial gonality two
or lower as Gd

2 .

4.2 The reduction rules

We are given a graph G = (V, E) and a still empty set of constraints C . We note here
that it is assumed we start with a connected graph and all the reduction rules main-
tain connectivity. The following rules are illustrated in Figure 4.1, where a constraint
is represented by a red dashed edge.

We start by covering the two possible end states of our reduction:

Rule Ed
1 . Given a graph consisting of exactly one vertex, remove that vertex.

Rule Ed
2 . Given a graph consisting of exactly two vertices, u and v, connected to each other

by a single edge, and C = {(u, v)}, remove both vertices.

Next are the reduction rules to get rid of vertices with degree equal to one. These
rules are split by what constraint applies to the vertex:

Rule T d
1 . Let v be a leaf, such that v has no constraints in C . Remove v.

Rule T d
2 . Let v be a leaf, such that its only constraint in C is (v, v). Let u be its neighbor.

Remove v and add the constraint (u, u) if it does not exist yet.

Rule T d
3 . Let v1 be a leaf, such that its only constraint in C is (v1, v2), where v2 is another

leaf, whose only constraint is also (v1, v2). Let u1 be the neighbor of v1 and u2 be the neighbor
of v2 (these can be the same vertex). Then remove v1 and v2 and add the constraint (u1, u2)
if it does not exist yet.
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Rule Ed
1 Rule Ed

2

Rule T d
1 Rule T d

2

Rule T d
3

Rule Cd
1 Rule Cd

2

C C

Rule Cd
3

C

FIGURE 4.1: The reduction rules for divisorial gonality

Finally we have a set of reduction rules that apply to cycles containing at most 2
vertices with degree greater than two. The rules themselves are split by the number
of vertices with degree greater than two.

Rule Cd
1 . Let C be a cycle of vertices with degree two. If the set of constraints CC on C is

compatible, then replace C by a new single vertex.

Rule Cd
2 . Let C be a cycle with one vertex v with degree greater than two. If the set of

constraints CC on C plus the constraint (v, v) is compatible, then remove all vertices except
v in C and add the constraint (v, v) if it does not exist yet.

Rule Cd
3 . Let C be a cycle with two vertices v and u of degree greater than two. If there

exists a path from v to u that does not share any edges with C and the set of constraints CC
on C plus the constraint (v, u) is compatible, then remove all vertices of C except v and u,
remove all edges in C and add the constraint (v, u) if it does not exist yet.

We shall use Rd for the set consisting of all the above reduction rules: Ed
1 , Ed

2 ,
T d
1 , T d

2 , T d
3 , Cd

1 , Cd
2 and Cd

3 .
We will now state the main theorem declaring that this set of reduction rules has

the desired properties. After this we will build up the proof.

Theorem 4.2.1. The set of rulesRd is safe and complete for Gd
2 .

4.2.1 Safeness

We assume here that there is a graph G and H such that H follows from G by apply-
ing a reduction rule. To start, we note that all reduction rules maintain connectivity
of our graph:
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Lemma 4.2.2. Let G and H be graphs. If G is connected and GRd∗H then H is connected.

Proof. We observe that the only rule that removes a path between two remaining
vertices is Cd

3 . In the case of Cd
3 however we demand that there is a path between v

and w outside of C so this path will still exist and it follows that H is still connected.

Since G is assumed to be connected it follows that each produced graph H is also
connected. Now we show for each of the rules inRd that it is safe.

Lemma 4.2.3. Rules Ed
1 and Ed

2 are safe.

Proof. For both rules it can easily be seen that their starting states as well as the
empty graph have divisorial gonality two or lower. From this it follows they both
are safe.

Lemma 4.2.4. Rules T d
1 and T d

2 are safe.

Proof. Let v be our vertex with degree 1 and u its neighbor. We know that the only
constraint on v can be the constraint (v, v).

Note that if H ∈ Gd
2 then there is a divisor on H that puts at least one chip on

u. Moving this divisor to G, note that we can move chips to v by firing G − {v}, it
follows that this divisor is also suitable for G.

Given that G ∈ Gd
2 note that we can find a suitable divisor that has no chips on v

by firing v until it contains no chips. This divisor will also be suitable on H.
For T d

2 the proof is analogous, except with two chips on v.

Lemma 4.2.5. Rule T d
3 is safe.

Proof. Let v1 and v2 be the vertices with degree one, such that their only constraint is
(v1, v2) and let u1 and u2 be their neighbors. We first assume that H ∈ Gd

2 , then there
is a suitable divisor on H with one chip on u1 and another chip on u2. Note that we
can move this divisor to G. Then by firing V(G)− {v1, v2} we can move a chip to v1
and v2. Therefore this divisor is also suitable on G.

Assume then that G ∈ Gd
2 , then there is a suitable divisor on G with one chip on

v1 and v2. By firing {v1, v2} we can create a divisor with a chip on u1 and u2 (or two
on u1 if u1 = u2). Note that this divisor is suitable on H.

Lemma 4.2.6. Rule Cd
1 is safe.

Proof. We start by assuming that H ∈ Gd
2 . Note that by Lemma 4.2.2 we have that

H is connected. Therefore it follows that H must consist of a single vertex, there-
fore G consists of a single cycle and it follows that G ∈ Gd

2 , since all constraints are
compatible.

Assume then that G ∈ Gd
2 instead. Since G is connected it must consist exactly of

the cycle C, thus H consists of a single point and H ∈ Gd
2 .

Lemma 4.2.7. Rule Cd
2 is safe.

Proof. Let C be our cycle with one vertex v with degree greater than 2. Assume that
H ∈ Gd

2 ; then there is a suitable divisor on H with two chips on v. Move this divisor
to G. Note that if we fire V(G)− C + {v} then we move the two chips onto the two
neighbors of v in C. Since all constraints on C are compatible with the constraint
(v, v) it follows that we can move the chips along C while satisfying the constraints
on C. From this it follows that our divisor is suitable on G.
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Assume now that G ∈ Gd
2 . Since all constraints on C are compatible with (v, v) it

follows that we can find a suitable divisor with two chips on v. Moving this divisor
to H gives a suitable divisor there. Thus, H ∈ Gd

2 .

Lemma 4.2.8. Rule Cd
3 is safe.

Proof. Let C be our cycle and v, w the two vertices with degree greater than two in C.
We first assume that H ∈ Gd

2 . From this it follows that there exists a suitable divisor
on H with a chip on v and a chip on w. Note that in G all constraints on C plus
(v, w) are compatible. From this we see that if we move the divisor from H to G it
will be able to satisfy all constraints on C. It is also clear that from v and w we can
move chips along either of the arcs that form C together with v and w. Therefore the
divisor is also suitable on G and thus G ∈ Gd

2 .
Let us then assume that instead G ∈ Gd

2 . Clearly there exists a suitable divisor D
on G that has a chip on v. We will show that there is a suitable divisor that has a chip
on both v and w: Assume that D(w) = 0, then there should be a suitable divisor D′

with D′(w) = 1 and D ∼ D′. This implies there is a level set decomposition of the
transformation from D to D′.

If none of the subsets contain v then it follows that D′(v) = 1 and we are done.
Otherwise let Ai be the first subset that contains v and Di the divisor before fir-
ing Ai. Note that we should have Di(a) ≥ outdegAi

(a) for all a ∈ Ai, since all
firing sets should be valid by Corollary 3.1.2. Since deg(Di) = 2 it follows that
∑a∈Ai

outdegAi
(a) ≤ 2. This is the same as the cut induced by Ai having size two

or lower. Note that the minimum cut between v and w is at least three, since they
are both part of C and there exists an additional path outside of C between them.
Therefore it follows that Ai can only induce a cut of size two or lower if w ∈ Ai. But
this implies that Di(w) ≥ 1, since a vertex can not receive a chip after entering the
firing set. We conclude that Di(v) = 1 and Di(w) = 1.

Also by the fact that the minimum cut between v and w is at least three it follows
that a subset firing can only be valid if the subset contains either both v and w or
neither. Since, by Corollary 3.1.2, any transformation between effective divisors can
be done by a series of valid subset firings it follows that any transformation can be
done while adhering to the constraint (v, w).

Therefore the divisor Di gives us a suitable divisor on H. We conclude that H ∈
Gd

2 .

Since we have shown that each of the rules inRd is safe, we conclude:

Theorem 4.2.9. The rulesetRd is safe for Gd
2 .

4.2.2 Completeness

By the previous section we now have that membership in Gd
2 is invariant under the

reduction rules inRd. For the reduction rules to be useful however we will also need
to confirm that any graph can be reduced to the empty graph by a finite sequence
of rule applications, or in other words, the rule set is complete. We will first prove
several lemmas required for this.

Lemma 4.2.10. Let G be a graph and v ∈ V(G) a vertex. If there are two different con-
straints on v, so (v, w), (v, w′) ∈ R(G), with w 6= w′, then G /∈ Gd

2 .

Proof. We first check the possibility where v = w′. Then any suitable divisor must
be equivalent to the divisor D with D(v) = 2, but also equivalent to the divisor
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D′ with D′(v) = 1 and D′(w) = 1. But this means these divisors are equivalent
to each other. Note however that since we have the constraint (v, w) any firing set
containing v must also contain w. Starting with divisor D any valid firing set must
contain v (it is the only vertex with chips), which means it must also contain w. This
implies no level set decomposition from D to D′ can exist, from which it follows that
there is no transformation of D into D′, so G /∈ Gd

2 .
The other possibility then is that v 6= w and v 6= w′. This means any suitable

divisor should be equivalent to the divisor D with D(v) = 1, D(w) = 1, and equiv-
alent to the divisor D′ with D′(v) = 1, D′(w′) = 1. Note that any firing set that
contains v also contains both w and w′ by our constraints, moreover any firing set
containing w contains w′ by our constraints. Since starting in D any valid firing set
must contain either v or w (they are the only vertices with chips), it follows that any
valid firing set must contain w′. Again this implies no level set decomposition from
D to D′ exists, so D and D′ cannot be equivalent. We conclude no suitable divisor
can exist and therefore G /∈ Gd

2 .

Lemma 4.2.11. Let G ∈ Gd
2 be a graph where none of the rules Ed

1 , Ed
2 , T d

1 , T d
2 or T d

3 can
be applied. Then G contains no vertices of degree 1.

Proof. Assume on the contrary that G does contain a vertex v with degree 1. By
Lemma 4.2.10 and G ∈ Gd

2 we have that at most one constraint contains v. If there
is no constraint on v, we could apply Rule T d

1 to it, therefore there is exactly one
constraint on v. If this constraint is (v, v) we would be able to apply Rule T d

2 to
v. If the constraint is (v, w), where w is another vertex of degree 1, Rule T d

3 could
be applied to v. The only remaining possibility is that the constraint on v is the
constraint (v, w) where w is a vertex with degree greater than 1. We will use D to
denote the divisor with D(v) = D(w) = 1. Since we have the constraint (v, w) and
G ∈ Gd

2 , D is a suitable divisor.
We first consider the case where w is not a cut-vertex. Let u be the neighbor of v.

Consider the transformation from D to a divisor D′ with D′(u) = 1. Let A0 be the
first firing set in the level decomposition of this transformation. Note that we have
v, w ∈ A0 and u /∈ A0. Since w is not a cut-vertex, it follows for each neighbor wi
of w that there is a path from wi to u that does not contain w or wi = u. Note that
if a neighbor wi 6= u is in A0, then somewhere on its path to u must be an edge that
crosses between A0 and Ac

0. But such a crossing edge would imply the firing set is
not valid, since no vertex on this path contains a chip. Since w has degree at least two,
and all its neighbors are not in A0, it follows the firing set is not valid, since w would
lose at least two chips. Since no valid firing set exists to start the transformation, it
follows that no transformation from D to D′ exists, but this implies that r(D) < 1.
Since D should be suitable by constraint (v, w) we have a contradiction.

We proceed with the case where w is a cut-vertex. Let Cx be a connected com-
ponent not containing v after removing w. Consider the subset Cx in G. Note that
from D we can never obtain an equivalent divisor with two chips on Cx. Since the
chip from v would have to move through w to get to Cx, this would require D to
be equivalent to a divisor with two chips on w, which is impossible if G ∈ Gd

2 by
Lemma 4.2.10. Since D has rank greater than zero it then follows Cx must be a tree.
This means Cx must contain a vertex x of degree one, we know however that since
we cannot apply rules T d

1 , T d
2 or T d

3 to G, x must have a constraint (x, y) where y is
a vertex with degree greater than one. We now consider the possible locations of y.

If y ∈ Cx, then D must be equivalent to a divisor with a chip on x and a chip on
y. As mentioned before D cannot be equivalent to a divisor with two chips on Cx, so
it follows y /∈ Cx.
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Since y /∈ Cx, D has to be equivalent to the divisor D′′ with D′′(x) = D′′(y) = 1.
Let Cy be the component containing y. Let A0 be the first subset of the level set
decomposition of the transformation of D into D′′. Note that v, w ∈ A0 and x, y /∈ A0.
But this implies that w has at least one neighbor w1 in Cy, with w1 /∈ A0, namely the
first vertex on the path from w to y. But w also has at least one neighbor w2 in Cx, with
w2 /∈ Cx, namely the first vertex on the path from w to x. But this means w has two
neighbors that it will send a chip to, but w only has one chip. By Corollary 3.1.2 then
no transformation from D to D′′ can exist and thus y /∈ Cy, giving a contradiction.

We conclude there can be no such constraint (x, y) and from this we conclude
that no vertices with degree 1 can exist in G.

Lemma 4.2.12. Let G be a graph with a set of constraints C and let C be a cycle in G with
CC the set of constraints that contain a vertex in C. If G ∈ Gd

2 then the constraints CC are
compatible.

Proof. We first show the first property of a compatible constraint set holds. Let
(v, w) ∈ CC be a constraint and let v ∈ C without loss of generality. We show
that w ∈ C. Assume on the contrary that w /∈ C, then let D be the divisor with
D(v) = D(w) = 1, D should be suitable. Let x be a vertex in C with x 6= v. Let D′

be any divisor with D′(x) ≥ 1. Let A0 be the first firing set of the level set decompo-
sition of the transformation of D into D′. Note that v, w ∈ A0 and x /∈ A0. But note
there are two disjoint paths from v to x, since they are on the same cycle. But this
implies a chip will be sent along both these paths by A0, but since w /∈ C, both these
chips must come from v, but v only has one chip. We conclude no transformation
can exist and thus D is not suitable, a contradiction.

For the second property, let (v, w), (v′, w′) ∈ CC be two constraints on C. By our
first property we have that v, w, v′, w′ ∈ C. Let D be the divisor with D(v) = D(w) =
1 and D′ the divisor with D′(v′) = D′(w′) = 1. Let A0 be the first firing set of the
level set decomposition of the transformation of D into D′. Note that v, w ∈ A0 and
v′, w′ /∈ A0. We observe that v and w split C into two arcs. Note that both v′ and w′

must be on the same arc: if they are not on the same arc, there exists disjoint paths
from v to v′ and to w′ that do not contain w. This implies that A0 sends two chips
along these paths, but v only has one chip.

Now note that C is biconnected, this implies that for a firing set A with w ∈ A
and w′ /∈ A to be valid there must be at least two chips on vertices in C. This follows
since there are at least two edges crossing between A and AC in C. We know D and
D′ must be equivalent, since G ∈ Gd

2 and both correspond to constraints on G, so let
A0, . . . , Ak be the level set decomposition of the transformation of D into D′. Since
each of these firing sets is valid by Lemma 3.1.2, it follows this transformation leaves
two chips on C at each intermediate divisor. It follows that if we restrain these firing
sets to C, we have a sequence of firing sets that transforms D into D′ on C. Therefore
D and D′ are equivalent on C, so our second property is also fulfilled.

Lemma 4.2.13. Let G be a simple graph of treewidth 2 or lower and containing at least 4
vertices, then G has at least two vertices with degree 2 or lower.

Proof. Let T be a tree decomposition of G, such that we can remove no vertex of T
while still keeping a valid tree decomposition. Then note that T must contain at least
two leaves t1 and t2. Note that t1 must contain at least one vertex v from G that is
sent to no vertex of T, since otherwise we would be able to remove t1. Then note
that all neighbors of v must be sent to t1, but t1 contains at most three elements of G,
so v has at most two neighbors. Applying the same argument to t2 we find another
vertex with at most two neighbors.



4.2. The reduction rules 27

Lemma 4.2.14. Given a non-empty graph G ∈ Gd
2 there is a rule in Rd that can be applied

to G.

Proof. Let G ∈ Gd
2 be such a graph and assume that instead no rule in Rd can be

applied to G. By Lemma 4.2.11 we have that such a graph can contain no vertices of
degree one. Therefore our graph consists of vertices of degree 2 and of a set T of ver-
tices of degree 3 or greater. Consider the minor H of G created by contracting each
path of degree 2 vertices to an edge. Note that any edge in H therefore represents a
path consisting of a single edge or a path with any number of vertices with degree 2
in G.

Now assume we have a loop in H, note this loop corresponds to a path of degree
2 vertices in G going from a degree 3 or greater vertex to itself, so this path plus the
vertex forms a cycle with one vertex of degree 3 or greater. By Lemma 4.2.12 the
constraints on this cycle are compatible, so we are able to apply Rule Cd

2 to it. Since
we assumed no rules can be applied, it follows H contains no loops.

Now we attempt to find a subgraph H′ of H with no multiple edges. If H con-
tains no multiple edges, simply let H′ = H. Otherwise let v and w be vertices such
that there are at least two edges between v and w. If v and w are still connected
to each other after removing two edges e1, e2 between them, note that these edges
correspond to two disjoint paths of degree 2 vertices in G. Thus v, w plus the paths
corresponding to e1 and e2 form a cycle C in G with exactly two vertices of degree 3
or greater, where v and w have a path that does not share any edges with C. Again
by Lemma 4.2.12 we have that the constraints on this cycle are compatible and so
we are able to apply Rule Cd

3 to C. From this it follows that v and w must be dis-
connected after removing e1 and e2. So any multiple edge in H consists of a double
edge, whose removal splits the graph in two connected components. Let H′ be the
connected component of minimal size over all removals of a double edge in H. Note
that H′ cannot contain any double edge, since this would imply a smaller connected
component.

Note we now have a minor H′ of G, where each vertex has degree at least 3
with at most one exception, which has no loops or multiple edges and therefore is a
simple graph. Since H′ only has at most one vertex with degree lower than three, by
Lemma 4.2.13 it follows that tw(H′) ≥ 3 and since treewidth is closed under taking
minors we get tw(G) ≥ 3. But then by Lemma 3.0.3 it follows that dgon(G) ≥ 3,
creating a contradiction, since G ∈ Gd

2 . We conclude our assumption must be wrong
and there is a rule inRd that can be applied to G.

Now we have everything required to prove our main theorem:

Proof of Theorem 4.2.1. By Theorem 4.2.9 we have thatRd is safe. It remains to prove
thatRd is also complete.

Assume that G ∈ Gd
2 . By Lemma 4.2.14 and Theorem 4.2.9 we have that we can

keep applying rules from Rd to G as long as G has not been turned into the empty
graph yet. Now observe that each rule removes at least one vertex or in the case of
Cd

3 at least two edges, while never adding more vertices or edges. Since G starts
with a finite number of vertices and edges it follows that rules from Rd can be only
applied a finite number of times to the graph. When no more rules can be applied
to the graph, it follows the graph has been reduced to the empty graph. Therefore
GRd∗∅ and it follows thatRd is complete.

By Lemma 4.1.1 it follows Rd has the properties we want it to have so that we
are able to use it for characterization of the graphs with divisorial gonality two or
lower.
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4.3 An algorithm based on the reduction rules

So we now have a set of reduction rules that reduces exactly the graphs with divi-
sorial gonality 2 or lower to the empty graph. We will argue here that by using this
set of reduction rules we can create a polynomial time algorithm that determines
if a graph has divisorial gonality at most 2. We use n in this section to denote the
number of vertices and m the number of edges.

For our proofs we assumed the graph was connected and loopless. Suppose our
algorithm gets a non-connected graph as input, note that this graph has divisorial
gonality at most 2 exactly if it consists of two trees. This can easily be checked in
O(n + m) time. Suppose our input graph has loops in it. We know that loops have
no influence on the divisorial gonality of the graph, so we can remove them inO(m)
time before running the rest of the algorithm.

The idea of the algorithm is to repeatedly check if we can apply any of the rules
and if so apply it. If at any point no rules can be applied to the graph, we check
if we ended in the empty graph. If so, we conclude the input graph had divisorial
gonality at most 2, otherwise we conclude it did not.

We start by bounding the number of rule applications that can be performed
before the algorithm terminates:

Lemma 4.3.1. The number of rules that can be applied to any graph in sequence is bounded
by n + m.

Proof. Note that every rule inRd removes at least one edge or vertex from the graph.
Since no rule adds any edges or vertices, it follows at most n+m rules can be applied
to any graph.

Next is to show that every rule can be checked and performed in polynomial
time:

Lemma 4.3.2. It can be checked in O(n2(n + m)) time if any of the rules from Rd can be
applied to a graph. The application of any rule can be performed in linear time.

Proof. Rules Ed
1 and Ed

2 can only be applied if there are exactly 1 or 2 vertices left,
and thus can be checked and performed in constant time. By keeping track of the
degree of each vertex, we can check for leaves in linear time and the same holds for
removal. Note that rule Cd

1 can only be applied if the entire graph is a single cycle,
this can easily be checked in O(n) time. Cd

1 can also be applied in linear time.
To check for rules Cd

2 and Cd
3 we need to find all cycles containing 1 or 2 vertices

with degree greater than 2. These can be found by performing a depth first search
from each vertex with degree at least 3, passing only through vertices with degree
2 and noting which vertices with degree at least 3 are reachable from the vertex in
this way and by how many disjoint paths. Any vertex with degree at least 3 that
can reach itself through such a path is a candidate for rule Cd

2 . Any pair of vertices
with degree at least 3 with two such paths between them is a possible candidate for
rule Cd

3 , the second condition of which can be checked in time O(n + m) by another
depth first search ignoring the two paths.

For any vertex with degree at least 3 this depth first search can be performed in
O(n+m) time and the possible candidates checked inO(n(n+m)) time. Since there
are at most n vertices we need to perform this search from, we can check if there are
any candidates for rules Cd

2 and Cd
3 in O(n2(n + m)) time. Both of these rules can

be applied in time linear in the number of removed vertices, which is bounded by n.
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We conclude that checking if there is a rule inRd that can be applied can be done
in O(n2(n + m)) time. The application of any rule can also be done in at most O(n)
time.

Theorem 4.3.3. The set of reduction rules Rd allows for a polynomial time algorithm to
determine whether a given graph has divisorial gonality at most 2 or not.

Proof. The algorithm is as proposed before: first make sure the graph is connected
and loopless; then apply rules until none can be applied and finally check if the
empty graph was reached.

Taking care of disconnected graphs and loops in the graph can be done inO(n +
m) time. By Lemma 4.3.1 we know that we need to check for and apply a rule at most
n + m times. By Lemma 4.3.2 we know each of these steps takes at most O(n2(n +
m)) time. It follows that all application of rules takes at most O(n2(n + m)2) time.
Checking if the remaining graph is the empty graph can be done in constant time.

Since each of the phases of the algorithm takes at most polynomial time, the
entire algorithm terminates in polynomial time.

While algorithm proposed here runs in polynomial time, it is not actually very
efficient. By making use of Courcelle’s Theorem, see [7], and Theorem 3.0.3 it is
actually possible to design an algorithm that runs in O(n log n + m) time. For de-
tails on this algorithm we refer to [4]. In addition similar sets of reduction rules are
presented for stable divisorial gonality and stable gonality in the paper.
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Chapter 5

Gonality of minors

Given a graph G of which we know the gonality, what can we say about the gonality
of a minor (or subgraph) H of G? In 2015 Norin proposed this question in a survey
about graph-minor theory [13]. In this chapter the following three questions will be
considered:

Question 5.0.1. If G and H are graphs, where H is a connected minor of G, is gon(H) ≤
gon(G)?

Question 5.0.2. If G and H are graphs, where H is a connected subgraph of G, is gon(H) ≤
gon(G)?

Question 5.0.3. If G and H are graphs, where H is a connected subgraph of G with a
universal vertex, is gon(H) ≤ gon(G)?

Where a universal vertex is defined as follows:

Definition 5.0.1. A universal vertex of a graph G is a vertex that is adjacent to each
other vertex of G.

Recent work has already answered these questions for the case of divisorial go-
nality [11]. In this chapter a new, simpler proof for the answers is presented. In ad-
dition similar techniques and examples are used to also answer the three questions
for the cases of stable divisorial and stable gonality. The answers to the questions for
stable divisorial and stable gonality are new results.

5.1 Divisorial gonality

We start by constructing an example that shows that the answer to Question 5.0.2 is
No. This example also answers Question 5.0.1, since any subgraph of a graph is also
a minor of that graph.

Theorem 5.1.1. There exist graphs G and H, where H is a connected subgraph of G, such
that dgon(H) > dgon(G).

Proof. Let G be as shown in Figure 5.1 and let H be obtained from G by removing
vertex v. To see that G has divisorial gonality 2, first assign 2 chips to vertex u. Then
by firing u we can move the chips to its two neighbors. Now to continue moving
our chips to the left, we repeatedly add the current vertices containing chips to the
firing set. This results in the chips passing through all vertices and ending up in y
and x. We conclude that G has divisorial gonality at most 2. Since G is not a tree, it
follows it has divisorial gonality exactly 2.

Now we move on to proving that H has divisorial gonality at least 3. For this we
make use of the set of reduction we introduced in Chapter 4. By applying rules from
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G:
x

y
v

u H:
x

y
u

FIGURE 5.1: The graph G on the left and its subgraph H on the right.

this set we can reduce H to a graph with a vertex that is incident to two different
constraints. From this graph we cannot reduce to the empty graph by Lemma 4.2.10
and it follows that H must have divisorial gonality at least 3.

This example shows that for divisorial gonality the answer to Questions 5.0.1
and 5.0.2 is No. Luckily it turns out that at least the answer to Question 5.0.3 is Yes.
The original proof of this in [11] is fairly complex, so we present a new shorter proof
here.

Theorem 5.1.2. If G and H are graphs, such that H is a subgraph of G with a universal
vertex, then dgon(H) ≤ dgon(G).

Proof. Let D be an effective divisor on G with rank(D) ≥ 1 and deg(D) = dgon(G).
Let Dv be the v-reduced divisor of D, where v is the vertex that is universal in H.
Also consider the divisor DH

v on H which is the restriction of Dv to H. We will show
that rank(DH

v ) ≥ 1.
Let u be a vertex of H other than v. Our aim is to find an equivalent effective

divisor to DH
v that has a chip on u. If DH

v (u) ≥ 1 we are done, so assume DH
v (u) = 0.

It follows Dv(u) is also 0.
Since rank(Dv) ≥ 1 there exists an effective divisor D′ with D′(u) ≥ 1 and

Dv ∼ D′. Let A0, A1, . . . , Ak be the level set decomposition of the transformation
from Dv to D′. Note that since Dv is v-reduced, it follows that v ∈ A0. Let AH

0 be the
restriction of A0 to H.

We claim firing AH
0 from DH

v results in an effective divisor with at least one chip
on u. First, since v ∈ AH

0 and v is universal in H, it follows that at least one chip will
move to u by firing AH

0 . It then remains to be proven that AH
0 is valid. For this we

use the fact that A0 is valid on Dv. Since a vertex in H has at most as many neighbors
not in AH

0 as it had in G, it follows outdegAH′
0
(u) ≤ outdegA0

(u) ≤ Dv(u) = DH
v (u),

for all u ∈ V(H). So AH
0 is also valid.

This construction shows there exists an equivalent effective divisor to DH
v with

at least one chip on a vertex u. Because this holds for each u ∈ H, we conclude that
rank(DH

v ) ≥ 1. Since DH
v has degree at most that of Dv, we see that dgon(H) ≤

dgon(G).

To summarize, we have shown here the following for divisorial gonality:

• Is dgon(H) ≤ dgon(G1) when H is a connected minor of G? No

• Is dgon(H) ≤ dgon(G1) when H is a connected subgraph of G? No

• Is dgon(H) ≤ dgon(G1) when H is a connected subgraph of G with a univer-
sal vertex? Yes
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5.2 Stable divisorial gonality

The next case we answer the questions for is that of stable divisorial gonality. It
turns out that the results for stable divisorial gonality are quite similar to those of
divisorial gonality. We start again by answering Questions 5.0.1 and 5.0.2.

Theorem 5.2.1. There exist graphs G and H, where H is a connected subgraph of G, such
that sdgon H > sdgon G.

Proof. We again make use of the graph G as displayed in Figure 5.1. For the proof
of Theorem 5.1.1 we showed that G has divisorial gonality 2. From this it follows G
has stable divisorial gonality at most 2. Since G is not a tree, it has stable divisorial
gonality exactly 2 by Theorem 3.0.1.

Let H again be the minor of G created by removing the vertex v. The goal now is
to show that H has stable divisorial gonality at least 3. For this we will make use of a
set of reduction rules that can be used to recognize the graphs with stable divisorial
gonality at most two [4, figures 4, 7]. Similar to the set of reduction rules introduced
in this work, a graph has stable divisorial gonality at most 2 exactly when it can
be reduced to the empty graph by the reduction rules. By applying rules from this
set we can reduce H to a graph with a vertex that is incident to two green edges.
From this point it cannot be reduced to the empty graph and it follows H has stable
divisorial gonality at least 3. We conclude sdgon(H) > sdgon(G).

By the same example used for the case of divisorial gonality we have shown that
the answer to Questions 5.0.1 and 5.0.2 is No. We move on to answering Question
5.0.3 for stable divisorial gonality. The proof used here is similar to that of Theorem
5.1.2, though the addition of refinements adds complexity.

Lemma 5.2.2. Let D be an effective divisor on a graph G with D(v) ≥ 1 and D(w) ≥ 1,
where v and w are distinct vertices. If P is a path between v and w consisting of interior
vertices of degree 2, then D can reach each vertex on P with at least one chip.

Proof. We proof by induction on the number of vertices between v and w in P. Let D
be the divisor and v, w vertices as mentioned in the lemma.

If P contains 1 vertex p1 between v and w, then firing V(G) − {p1} results in
one chip from v and one chip from w going to p1. If P contains 2 vertices p1 and p2
between v and w, then firing V(G)− {p1, p2} results in one chip from v going to p1
and one chip from w going to p2. In both cases this is enough to reach all vertices in
P from D.

Assume now that all vertices on any such path containing of at most n vertices
between its ends can be reached by D. If we have a path P = {v, p1, . . . , pn+1, w}
containing n+ 1 vertices between v and w firing V(G)−{p1, . . . , pn+1} results in one
chip moving from v to its neighbor p1 and one chip moving from w to its neighbor
pn+1. Note that D has now reached p1 and pn+1 with a chip. After this P−{v, w} is a
path of degree 2 vertices with a chip on both ends containing n− 1 vertices between
its ends. By our assumption we know all vertices on such a path can be reached by
the divisor D. We conclude all vertices on P can be reached by D.

Theorem 5.2.3. If G and H are graphs, such that H is a subgraph of G with a universal
vertex, then sdgon(H) ≤ sdgon G.

Proof. Suppose we have such graphs G and H, where H has a universal vertex v. Let
G′ be a refinement of G such that dgon(G′) = sdgon(G). Let H′ be the refinement of
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G H

G′ H′

subgraph

refinement refinement

FIGURE 5.2: An overview of the different graphs used in the proof of
theorem 5.2.3

H created by applying the refinements that turned G into G′ when they apply to an
edge contained in H, except for those applying to an edge incident to v. Note that
v is still universal in H′ with regard to the original vertices. See Figure 5.2 for an
overview of the relations of the graphs.

Let D be a divisor on G′ with rank(D) ≥ 1 and deg(D) = dgon(G′) and Dv the
v-reduced divisor equivalent to D. We then construct the divisor DH′

v by taking Dv,
moving all chips, from vertices created by refinements of an edge incident to v, to
v and then restricting the divisor to vertices in H′ (the vertices of H′ are a subset
of those of G′). We will now show that rank(DH′

v ) ≥ 1 on H′, we will do this by
showing that DH′

v reaches all vertices and using Corollary 2.1.2.
We start by showing that DH′

v can reach each original vertex in H′. Let u be such
a vertex, if DH′

v (u) ≥ 1 we are done, so assume DH′
v (u) = 0. Then it follows that

Dv(u) = 0, so there must be a transformation from Dv to an effective divisor that
assigns a chip to u on G′. Let A0 be the first subset of the level set decomposition
of this transformation. Note that since Dv is v-reduced, v ∈ A0 and u /∈ A0 because
Dv(u) = 0. Now let AH′

0 be the restriction of A0 to vertices in H′. We claim firing
AH′

0 from DH′
v results in an effective divisor with at least one chip on u.

To show this, we first observe that, if we fire AH′
0 , we move at least one chip from

v to u, since they are adjacent. So the resulting divisor has at least one chip on u. The
next step is to prove that the resulting divisor is also effective. We start by checking
what happens to v. Let e be an edge incident to v along which v sends a chip by
firing AH′

0 . There are two possibilities: firing A0 in G′ also results in a chip being
sent along this edge or there was a refinement of the edge and the vertex created by
this refinement is also in A0. In the second case somewhere among the refinements
of e is a border between A0 and its complement. Since A0 is valid, there must then be
a chip on one of these vertices created by refinements in Dv. Which means this chip
was moved to v when we created DH′

v based on Dv. So for each chip v loses by firing
AH′

0 , either v also loses this chip when firing A0 from Dv or v has an additional chip
in DH′

v compared to Dv. From this it follows that outdegAH′
0
(v) ≤ outdegA0

(v) + k,

where k is the number of additional chips v has in DH′
v compared to Dv. So v will not

go into debt by firing AH′
0 .

We also need to check no other vertex of H′ will go into debt by firing AH′
0 . Let

w be a vertex in AH′
0 , w 6= v. Note that the neighbors of w in H′ are a subset of

its neighbors in G′, with the potential addition of v. But since v ∈ AH′
0 , it follows

outdegAH′
0
(w) ≤ outdegA0

(w). Because DH′
v (w) = Dv(w), no other vertex will go

into debt by firing A0. We conclude that firing A0 results in an effective divisor with
at least one chip on u.
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We know now that the divisor DH′
v can reach all original vertices in H′. It remains

now to be shown that DH′
v can also reach vertices in H′ created by refinements of

edges.
Let ri be such a vertex. Let e(u1, u2) be the original edge in H that was refined to

create ri and potentially more new vertices on the same edge. If the edge was refined
into k additional vertices, then the situation is as in Figure 5.3. We first observe that
if both {u1, r1, . . . , ri−1} and {ri+1, . . . , rk, u2} contain at least one vertex with a chip
on it in DH′

v then by Lemma 5.2.2 ri can be reached by DH′
v . Assume then without

loss of generality that {u1, r1, . . . , ri−1} contains no vertex with a chip on it in DH′
v .

By the previous part of the proof there exists a subset AH′
0 with v ∈ AH′

0 and
u1 /∈ AH′

0 that by firing from DH′
v results in an effective divisor with a chip on u1.

Now if u2 /∈ AH′
0 firing this subset also results in a chip being moved onto u2 in

which case again by Lemma 5.2.2 it follows ri can be reached. So assume instead that
u2 ∈ AH′

0 , then there must be an edge somewhere in between u1 and u2 that crosses
the border of this firing set. But this means that the vertex incident to this edge
outside the firing set contains a chip after firing AH′

0 . Since there were no vertices
with chips on them in {u1, r1, . . . , ri−1}, it follows this vertex with a new chip must
be within {ri, . . . rk}. But now either ri has a chip on it after firing AH′

0 or by Lemma
5.2.2 ri can be reached (since both this vertex in {ri+1, . . . rk} and u1 have a chip).

We conclude that DH′
v can always reach ri and since this also holds for the original

vertices u it follows that DH′
v reaches all vertices. By how DH′

v was constructed we
know that deg(DH′

v ) ≤ deg(Dv), so it follows dgon(H′) ≤ dgon(G′). Since H′ is
a refinement of H and we chose G′ such that dgon(G′) = sdgon(G) we conclude
sdgon(H) ≤ sdgon(G).

u1 r1 ri rk u2

FIGURE 5.3: The situation surrounding ri in H′.

To summarize, we have shown that the same results hold for stable divisorial
gonality as for divisorial gonality, even though refining the graph adds more possi-
bilities:

• Is sdgon(H) ≤ sdgon(G1) when H is a connected minor of G? No

• Is sdgon(H) ≤ sdgon(G1) when H is a connected subgraph of G? No

• Is sdgon(H) ≤ sdgon(G1) when H is a connected subgraph of G with a uni-
versal vertex? Yes

5.3 Stable gonality

Finally we will consider the three questions in the case of stable gonality. Before
we saw that the answers to the three questions were the same for divisorial and
stable divisorial gonality. For stable gonality however the result is different. Again
Questions 5.0.1 and 5.0.2 are answered first. Here the result is still the same as that
of divisorial and stable divisorial gonality.

Theorem 5.3.1. There exist graphs G and H, where H is a connected subgraph of G, such
that sgon(H) > sgon(G).
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u

v
w

FIGURE 5.4: An example for theorem 5.3.2

Proof. Again the graph depicted in Figure 5.1 is used as graph G. We also create the
same graph H again by removing vertex v from G. To see that sgon(H) > sgon(G)
we will make use of a set of reduction rules created to recognize graphs with stable
gonality at most 2 [4, figure 4]. A graph has stable gonality at most 2 exactly when it
can be reduced to the empty graph by these reduction rules. By repeatedly applying
rules we can reduce G to the empty graph and it follows that sgon(G) ≤ 2. On
the other hand, when applying the reduction rules to graph H, we run into a vertex
with two distinct incident green edges. Such a graph cannot be reduced to the empty
graph and so sgon(H) > 2. We conclude sgon(H) > sgon(G).

We see that for Questions 5.0.1 and 5.0.2 the answers are the same as in the cases
of divisorial and stable divisorial gonality. Even the counterexample that can be
used is the same. Surprising then is the following result, showing this is not the case
for Question 5.0.3.

Theorem 5.3.2. There exist graphs G and H, where H is a connected subgraph of G with a
universal vertex, such that sgon(H) > sgon(G)

Proof. Let graph G be as the graph displayed in Figure 5.4, consisting of three con-
nected vertices. Then we create the connected subgraph H by removing the edge
between v and w in G, note that u is universal in H. As in the previous proof we
shall make use of the set of reduction rules for stable gonality at most 2 [4, figure
4]. By repeatedly applying rules to G, we can quickly reduce it to the empty graph.
From this it follows that sgon(G) ≤ 2. When attempted with graph H however,
we again run into a vertex with two distinct incident green edges. Since this means
the graph cannot be reduced to the empty graph it follows that sgon(H) > 2. We
conclude sgon(H) > sgon(G).

It is interesting to consider why stable gonality behaves differently here than
divisorial or stable divisorial gonality. An important observation is that the coun-
terexample used here is reliant on there being a loop in the graph. Loops have no in-
fluence on the divisorial or stable divisorial gonality of a graph, while they can have
significant influence of the stable gonality of that same graph. During this research
no counterexample was found that does not make use of a loop in the subgraph H.
The following interesting question therefore remains open:

Question 5.3.1. If G and H are graphs, where H is a connected loopless subgraph of G with
a universal vertex, is sgon(H) ≤ sgon(G)?
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Conclusion

In this thesis a variety of aspects of divisorial gonality have been studied, in addition
some questions relating to minors and subgraphs were also answered for the related
cases of stable divisorial gonality and stable gonality. To start we introduced three
different definitions of divisorial gonality, one using a chip-firing game and two us-
ing divisor theory, and showed that they are equivalent to each other. This allowed
for a mixture of the more intuitive thinking about chip-firing with the formality of
divisors.

Then in Chapter 3 we proved and reviewed several techniques and results for
divisorial gonality. In terms of results, we saw how divisorial gonality is related to
treewidth, the divisorial gonality of several example classes of graphs and an upper
bound on the divisorial gonality of any graph. In this chapter we also introduced
the techniques of level set decomposition and reduced divisors, both of which have
proven to be quite useful for reasoning about divisorial gonality and divisor equiv-
alence.

The main results of this thesis were presented in Chapters 4 and 5. We introduced
a set of reduction rules that can be used to recognize the graphs with divisorial go-
nality at most 2. Using these rules the graphs can be recognized in polynomial time,
even though the general problem of determining divisorial gonality is NP-hard. As
mentioned before, more details on an fast algorithm using the rules and similar re-
sults for the cases of stable divisorial gonality and stable gonality can be found in a
joint work with Marieke van der Wegen, Hans L. Bodlaender and Gunther Cornelis-
sen [4].

After this we answered a set of questions about the gonality of subgraphs and
minors. The reduction rules from Chapter 4 acted as an useful tool for checking
the divisorial gonality of graphs. It turns out that at least in the cases of divisorial
gonality and stable divisorial gonality having an universal vertex in a subgraph is a
sufficient condition to bound the divisorial gonality.

Open problems and possible future research

A variety of open problems still remains in the field of gonality. In Chapter 5 we
already mentioned the open question 5.3.1, regarding the stable gonality of loopless
subgraphs with an universal vertex. As a more general question it remains open if
there are other sufficient conditions for a subgraph to have bounded gonality.

Another possible area of future study concerns reduction rules. The motivation
for finding the set of rules presented in this work was the similar existing result for
treewidth. In that case however, existing work has already shown that sets of rules
also exist for the cases of tw ≤ 3 and tw ≤ 4, see [1] and [14]. Perhaps there are
then also sets of reduction rules that can recognize graphs with divisorial gonality
at most 3 or 4?
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While the work in this thesis was focused mostly on divisorial gonality itself and
its properties, the main motivation behind the research is the field of parametrized
complexity. Already treewidth has allowed for many problems on graphs to be
solved in fast polynomial time, assuming the treewidth of the graph is bounded.
Even for bounded treewidth though, many problems remain hard. An important
open question then is if there problems among these that can be solved efficiently
for graphs with bounded gonality. One such problem considered during the process
of this thesis is the L(2, 1)-labeling problem, but no parametrized algorithm was
found yet.

In addition there has not been much research into general algorithms to calculate
the divisorial gonality of graphs. In [8] an algorithm based on Theorem 3.2.3 is
presented, but we suspect faster algorithms may be possible using the more recently
found lower bound using treewidth from [9]. Overall divisorial gonality, and more
generally gonality, is a fairly new and not yet widely researched subject. It still has
a large number of interesting open questions, both related to the measure itself and
to its applications.
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[12] Petr Hliněny, Sang-il Oum, Detlef Seese, and Georg Gottlob. “Width param-
eters beyond tree-width and their applications”. In: The Computer Journal 51.3
(2007), pp. 326–362.

[13] Sergey Norin. “New tools and results in graph minor structure theory.” In:
Surveys in Combinatorics 424 (2015), pp. 221–260.

[14] Daniel P. Sanders. “On linear recognition of tree-width at most four”. In: SIAM
Journal on Discrete Mathematics 9.1 (1996), pp. 101–117.

[15] Marieke van der Wegen. “Stable gonality of graphs”. Utrecht University. MA
thesis. 2017. URL: https://dspace.library.uu.nl/handle/1874/354700.

https://www.math.leidenuniv.nl/nl/theses/316/
https://www.math.leidenuniv.nl/nl/theses/316/
https://dspace.library.uu.nl/handle/1874/354700

	Abstract
	Acknowledgements
	Introduction
	Preliminaries
	Divisorial gonality
	Stable divisorial gonality
	Stable gonality

	Several techniques and results for gonality
	Level set decomposition
	Reduced divisors
	Lower bound by minimal cuts
	Proofs of earlier claims

	Reduction rules for divisorial gonality
	Reduction rules
	Constraints

	The reduction rules
	Safeness
	Completeness

	An algorithm based on the reduction rules

	Gonality of minors
	Divisorial gonality
	Stable divisorial gonality
	Stable gonality

	Conclusion
	Bibliography

