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(a) unsolved (b) solved

Figure 1: A regular nonogram

Abstract

In this thesis we propose a new algorithm for automatically generating curved nonograms,
which are a variation on the popular nonogram puzzle. Aside from a core algorithm, several
optional features are introduced which can modify the algorithm to try and generate curved
nonograms that best fulfill the aesthetic requirements for publishing.
The core algorithm and additional features are tested on several different input images. We
find that the algorithm is able to generate usable puzzles in many cases. Some of the optional
features prove to be promising, but require further study and adjustment to get their desired
effect.

1 Introduction

Nonograms (also known as Picross, Paint-by-numbers puzzles, Griddlers, Japanese Puzzles and
several other names) are a type of pen-and-paper puzzle where the puzzler draws an image by
coloring in cells of a square grid based on information given about the rows and columns of the
grid. An example of a nonogram is given in Figure 1. The numbers associated with each row and
column (called “descriptions”) reveal the lengths of the sequences of cells that should be colored
in that column. For example, the number sequence “2,1” in the second row of the nonogram in
Figure 1 reveals that the row should have a sequence of two colored cells, followed by at least one
uncolored cell, followed by another colored cell with any number of white cells before and after
the colored cells. By combining the descriptions associated with different rows and columns the
puzzler can figure out the solution.

De Jong [7] introduced the curved nonogram, a variation on nonograms that does not use
a grid. Instead, the puzzle cells are given by a set of arbitrary curves enclosed by a border. The
curves are completely enclosed by the border and their endpoints are on the border, so all of the
area inside the border is divided by the curves into cells of heterogeneous shape. An example of
a curved nonogram is given in Figure 2. The row and column descriptions of a normal nonogram
are replaced by descriptions for each side of each curve. The descriptions reveal the length of
sequences of colored cells that are incident to the curve side being described in the order that they
are encountered when tracing the curve from one endpoint to the other.

The abolishing of the grid makes that a curved nonogram can have any possible input
image as a solution, unlike regular nonograms. The possibility of self-intersections or faces that
are incident to the same curve side more than once introduces new types of information that a
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(a) unsolved (b) solved

Figure 2: A curved nonogram (image taken from [7])
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puzzler can use to solve a curved nonogram, making solving them a new experience even for people
who are familiar with normal nonograms.

When creating a new nonogram puzzle a puzzle creator typically works backwards. The
puzzle creator starts with a solution image and then breaks this into cells. The descriptions then
follow automatically by how the image fits into the cells. Then the image needs to be slightly
adjusted so that the nonogram has a unique solution, by changing the color of a few cells while
maintaining a strong visual resemblance between the original image and the solution image. When
making a regular nonogram usually the only way to change how the image is broken into cells is
by changing the resolution of the grid, as the cells will always be homogeneous in size and shape.
The total amount of freedom when creating a nonogram based on an input image is thus quite
low. When making a curved nonogram, however, there is an infinite number of possible ways to
break the image into cells, given that the cells are made by intersecting curves without a lot of
restrictions. However, a lot of these combinations are unusable for creating a puzzle that needs to
be solvable by humans. This is because a lot of combinations are visually ambiguous, meaning that
a human puzzler cannot accurately see which cells are incident to which curve, cannot accurately
trace curves or is otherwise prevented from understanding how the descriptions match the cells.
It is also possible to create puzzles that have multiple solutions, which makes them unwanted.
(This is also a problem for regular nonograms.) Aside from straight up unusable puzzles, among
the usable puzzles there are typically still puzzles that are better than other puzzles by virtue of
being even less visually ambiguous than other puzzles, having a different puzzle difficulty, being
more asthetically pleasing, or other factors.

Creating a curved nonogram by hand is a time- and skill-intensive task considering the
different quality factors that have to be considered. Not everyone who wants to create a curved
nonogram will want to make this investment. The way puzzles are distributed is also changing.
Aside from only being published on paper, nonograms and other puzzles are increasingly being
published in digital apps or games. As the number of such apps increases, the demand for new
puzzles increases as well. Some games offer near infinite puzzles by generating them procedurally.
Other games allow users to easily create their own puzzles using computer assistance and share
them with their friends. These developements have caused there to be more study into automated
puzzle generation. Likewise the automated generation of curved nonograms is an interesting topic
of study. By developing algorithms that can either provide computer assistance to a manual
designer or generate new curved nonograms outright we can enable people to easily make their
own curved nonograms without having to worry about their skill level . We can also make it
possible to create a large number of curved nonograms in a short amount of time to be used in a
commercial application if curved nonograms would reach the mainstream puzzle market.

De Jong introduced the first algorithm for automatically generating curved nonograms.
This thesis builds upon his work to try and find a better algorithm. The focus of this new algorithm
is on finding curved nonograms of minimal visual ambiguity, although there is also some effort in
trying to obfuscate the solution image. We ideally want a puzzler to only realize what the solution
image to a curved nonogram is going to be when he has almost solved it, instead of being able to
guess the solution image immediately upon first looking at the puzzle.

2 Related Work

2.1 Nonograms

Nonograms have been studied in a variety of contexts. The difficulty of solving nonograms has
been proven to be NP-hard [20][17]. However, not all individual nonograms actually are NP-hard.
A polynomial time algorithm will be able to fully solve most published nonograms correctly. To
differentiate between different kinds of nonograms, a classification system has been proposed [2][1].
In this system, nonograms are classified according to solvability. They can be unsolvable, solvable
by multiple solutions, or uniquely solvable. Uniquely solvable nonograms that are solvable in
polynomial time are called simple nonograms. Several algorithms for solving nonograms efficiently
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have been proposed based on a variety of techniques [22][2][18]. Aside from the curved nonograms
proposed by De Jong [7] another variant on nonograms called sloped nonograms has also been
proposed [14].

2.2 Puzzle Generation

Several algorithms for automatic generation of (regular) nonograms have been proposed [1][13].
Aside from nonograms, there have also been studies done on automating the design of other types
of pen-and-paper puzzles such as connect-the-dots puzzles [12] and sudoku [6], as well as more
general automated puzzle design that is bound by constraints [19].

2.3 Automated Drawing

Aside from puzzles, there are other fields of study that focus on drawing in a way that optimizes
given aesthetic qualities of the subject matter. A lot of study has been done into the aesthetic
qualities of graphs [16][15][21] as well as into algorithms to automatically draw graphs that have
these qualities [5][8]. Research has also been done into quantifiable metrics concerning the aesthet-
ics of objects other than graphs, such as the degree of symmetry of images [23] or the similarity of
polygons [11]. These metrics can be used in optimization techniques based on Local Search such
as the one used in this thesis.

3 Definitions

Nonogram A nonogram (see Figure 1a for an example) is a pairing of a grid of uniformely sized
square cells (also called faces) and a set of descriptions associated with the rows and cells of the
grid. Each description is a sequence of numbers that restrict the allowed color strings associated
with the cells in the associated row or column. A color string of a row or column is a string with
characters from the color alphabet Σ = {b, w} (black and white) where the sequence of the colors
corresponds to the sequence of the cells of the row or column. Together the color strings make a
coloring C of the nonogram. Let s be a color string. It is then of the form

s ∈ Σl (1)

where l is the length of the row or column. Let d be the description of that row or column. It is
then of the form

d = c1c2 . . . ck (2)

where ci is a positive integer.
s is said to adhere to d if it matches the following regular expression:

s ∈ w∗bc1w+bc2w+ . . . bckw∗ (3)

So the color string must be a set of k segments that are colored black that have lengths equal
to the associated integer in the description. The segments are separated by at least one cell that
is colored white, and the set of segments can be trailed on either side with any number of white
cells. There is also an exceptional case possible where the description is a single 0. In that case
the entire color string must be only white. If each color string in a coloring C adheres to their
associated description, the coloring is a valid solution to the nonogram. A nonogram can have
any number of solutions, or no solution at all. However, only nonograms that have exactly one
solution are suitable for publishing.
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Figure 3: A curved nonogram. The faces highlighted in gray are incident to the curve side with
the highlighted description. The faces highlighted in dark gray are incident multiple times in the
sequence. Image adapted from [7]
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Figure 4: A cubic Bézier curve with points drawn up until t = 0.56. Image taken from Wikipedia
[24].

Curved Nonogram Instead of having a grid and descriptions associated with the rows and
columns of that grid, a curved nonogram (see Figure 2a for an example) consists of a set of curves
that induce a set of faces that can take any shape and size. The curves that make up the curved
nonogram each fall into one of three categories: There is exactly one boundary curve, which is
a closed curve that encloses all other curves. Most curves are usually puzzle curves, which are
open curves with both their endpoints lying on the boundary curve. Each puzzle curve also has a
description associated with it. Lastly, there are background curves [7], which are open or closed
curves that completely fall within the boundary curve and have no further information associated
with them. The faces of the arrangement that is induced by the curves are the cells of the curved
nonogram.

Each of the curves has two sequences of cells associated with it; one for each curve
side. These sequences are sequences of incident cells that are encountered when tracing the
associated curve side from one endpoint to the other. It is also possible for the same cell to
be a part of the same sequence more than once as seen in Figure 3. Each of the sequences
has a description associated with it that limits the accepted colorings of the sequence, making
the sequences analogous to the rows and columns of a regular nonogram. Color strings for the
sequence adhere to the description if it has segments of cells that are colored black with the same
lengths as the numbers in the description and in the same order, separated by at least one white
cell each. If a coloring adheres to all descriptions at once, it is a valid solution to the curved
nonogram.

Bézier Curves A Bézier Curve [9] is a parametric curve that is frequently used in computer
graphics and other fields. It is defined by a number of control points. The Bézier Curve always
lies within the convex hull of its control points. Bézier curves are useful because they can be
easily manipulated by performing transformations on the control points. Let BP0,P1,...,Pn be a
bezier curve defined by n+ 1 control points. The points on the Bézier curve are then given by the
following recursive formula:

BP0
(t) = P0 (4)

B(t) = BP0,P1,...,Pn(t) = (1− t)BP0,P1,...,Pn−1
(t) + tBP1,...,Pn (5)

for 0 ≤ t ≤ 1
This means that each point is the result of linearly interpolating between the control points and
recursively linearly interpolating between those results until we get a single point. In this thesis
we only use Bézier curves with exactly 4 control points, called cubic Bézier curves. Unrolling the
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recursion in the formula for the points on such a curve we get:

B(t) = (1− t)3P0 + 3(1− t)2tP1 + 3(1− t)t2P2 + t3P3 (6)

for 0 ≤ t ≤ 1

An example of a cubic Bézier is given in Figure 4. In this figure the points have been
generated up until t = 0.56. Each point has been generated by linearly interpolating with the
given t between each pair of consecutive control points to get the control points of a new Bézier
curve. Then the proces is repeated until a single point remains.

(a) A C0-continuous curve connection. The connection is not smooth and the individual curves can be
clearly distinguished.

(b) A C1-continuous curve connection. Note that S2, S3 and R1 are colinear.

Figure 5: Comparison between a C0- and C1-continuous curve connections. Images taken from
Wikipedia [25].

Parametric Continuity Bézier curves can be connected to each other to make composite Bézier
curves. Such a connection can be made by having the endpoint of one Bézier curve be equal to the
endpoint of another Bézier curve. To describe the smoothness of a composite Bézier curve, we use
the notion of parametric continuity. The order to which two curves are continuous is written as
Cn, where n is the degree of continuity. Two curves that are C−1 continuous are not continuous
at all and do not share endpoints. If the curves are C0-continuous, they share an endpoint, but
can have radically different directions as seen in Figure 5a. It can be clearly seen where one curve
ends and the other begins. If a curve is C1-continuous, not only are the two curves continuous,
their derivatives are as well. There are infinite orders of parametric continuity. Two curves can be
said to be Cn-continuous if their first n derivatives are continuous with each other. If two curves
are C1-continuous their transition looks smooth and it can no longer be seen where one curves
goes into the next. Let S be a Bézier curve with control points {S0 . . . Sn} and R be a Bézier curve
with control points {R0 . . . Rn}. For S and R to be connected in a way that is C1-continuous,
their control points must satisfy the following equations [7]:

R0 = Sn (7)
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Figure 6: The distance between vertices v and w, d(v, w) is lower than the threshold dvert, so a
penalty ρvert(v, w) is incurred equal to the difference

R1 = Sn + (Sn − Sn−1) (8)

See Figure 5b for an example. It is of course also possible to connect R0 to S0 or Rn to Sn. The
rest of the control points then need to be flipped accordingly in the equation.

Some curves do not have parametric continuity while still having geometric continuity.
The orders of geometric continuity are written as Gn. Two curves are Gn continuous if they can
be parameterized to have Cn continuity without necessarily being Cn-continuous already. For B
and Q to be continuous R1 and Sn−1 would have to have opposite directions from the join point,
whereas for C1-continuity they must also have equal distance to the join point.

4 Measuring curved nonogram quality

To be able to try to find an optimal curved nonogram, we must define a measure of puzzle quality.
The main objective of this study is to generate curved nonograms that are visually unambiguous.
So we score our puzzle on the presence of a number of factors that negatively affect the visual
unambiguity. The lower the score, the better the puzzle. The factors that we consider are listed
below.

Vertex Distance If two of the vertices of the arrangement created by curve intersections are
close together this indicates that the puzzle is ambiguous. So we use the distance between every
pair of vertices as a measure of ambiguity. Once the distance between a pair of vertices is large
enough, however, further distance between the two does not decrease ambiguity. So we only
measure the distance between vertices if that distance is below a given threshold dvert. If two
are below a closeness threshold, they contribute a Vertex Penalty to the score of our arrangement
equal to the distance threshold minus their distance, see Figure 6 for an example. By structuring
it like this penalties can be calculated quickly and are bound between 0 and dvert, which means
the score can be normalized.
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Figure 7: The intersection v has a smaller angle α(v) than the threshold αmin, so a penalty
ρangle(v) is incurred equal to the difference

Because we want to be able to compare the scores of puzzles that were created using a
different input file, we want to normalize the penalty. The theoretical maximum vertex penalty
is the number of possible vertex pairs multiplied by dvert. By dividing the final penalty by this
number we get a score between 0 and 1. (Because a normal solution will never come close to being
as tightly clustered as this theoretical maximum, the penalty is always very close to 0.) By doing
this normalization we can compare our penalty to that of a solution that has a different number
of vertices. The total vertex penalty ρvert is thus given by

ρvert =

∑
v,w∈V |v 6=w∧d(v,w)<dvert

dvert − d(v, w)∑
v,w∈V |v 6=w

dvert
(9)

where d(v, w) gives the (Euclidean) distance between two vertices v and w.

Vertex Angle Curve intersections that have a very small intersection angle make it hard to tell
if curves are intersecting or merely ”touching”, increasing ambiguity. So we use intersection angle
as a measure for ambiguity. Like with vertex distance, once the angle is over a certain threshold
a further increase does not lower the visual ambiguity. So we only measure the angles that are
smaller than a given threshold αmin. If an intersection angle is smaller than this threshold, it adds
an Angle Penalty to the score equal to the angle threshold minus the intersection angle. For each
intersection, we only consider the smallest angle between curves included in the intersection.

To normalize the penalty as we did with the vertex distance, we divide the penalty by
the theoretical maximum penalty that would be given in the situation where each intersection is
0 degrees. The total angle penalty ρangle is then given by
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Figure 8: The area of face f (shown in yellow) A(f) is smaller than the minimum area Amin
(shown in blue), so it incurs a penalty ρsize(f) equal to the difference (shown in red)

ρangle =

∑
v∈V |α(v)<αmin

αmin − α(v)∑
v∈V

αmin
(10)

where α(v) gives the smallest angle between the curves incident to vertex v.

Face Size Small faces are easily missed when tracing a curve and feature many curve intersec-
tions near each other which makes it hard to keep track of the curves, so they can greatly increase
the ambiguity of a puzzle. To use the face size as a measure of visual ambiguity, we include the
area of each face in our score metric. Again, once a face is big enough, making the face bigger
does not significantly decrease visual ambiguity. (In fact, faces that are too big are undesirable
for aesthetic reasons. We do not optimize for this though, as our focus is on making the puzzle
visually unambiguous.) To reflect this in our puzzle score, we look at the arrangement faces that
have an area smaller than a preset area threshold Amin, and have them contribute a Size Penalty
to the score equal to Amin minus the face area. We again normalize the penalty. The total size
penalty ρsize is then given by

ρsize =

∑
f∈F |A(f)<Amin

Amin −A(f)∑
f∈F

Amin
(11)

where F is the collection of faces in our arrangement and A(f) is a function that gives the area of
a face f .
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Face Shape Faces that are highly concave or elongated are more ambiguous than convex, com-
pact faces. They are also more annoying to color when trying to solve the puzzle using pen and
paper. As a measure of the quality of the shape of a face we use the Compactness [4] of each
face. This is the area of the face over its perimeter squared. As with the other components of
our scoring function, we do not care about the compactness once it is over a certain threshold, as
compactness is maximised if a face is circular, but we do not want only circular faces. So we only
look at faces with a compactness lower than a preset compactness threshold Cmin. Faces with a
small compactness contribute a Shape Penalty to the score equal to Cmin minus the compactness
of the face. We again normalize the penalty. The total shape penalty ρshape is then given by

ρshape =

∑
f∈F |C(f)<Cmin

Cmin − C(f)∑
f∈F

Cmin
(12)

where C(f) = A(f)
perimeter(f)2 .

Obfuscation Although the optimization is mainly focused on minimizing visual ambiguity, this
is not the only consideration. Another concern is obfuscating the solution image. If the puzzler
correctly solves the puzzle he is rewarded with an image. However, because the boundaries of
this image are also curves in the puzzle, it is possible to see what the image is going to be before
solving the puzzle. We do not want this because it ruins the surprise, and may tempt puzzlers
into cheating by using knowledge of what the image is likely to look like to determine which cells
to color, rather than the curve descriptions.

To obfuscate the solution image, we want the curves we add during our algorithm to look
the same as the input curves, that way a puzzler will not be able to tell which is which as easily. To
determine if two curves look the same, we consider their curvature. Curves that are straight lines
look alike, and look different from curves with a high curvature. Of course, we cannot compare
curves on a pairwise basis. The total set of added curves needs to resemble the total set of input
curves, but a single curve does not (and usually cannot) have to look like every single other curve.
To compare the set of input curves to the set of added curves, we convert the sets to histograms,
using Algorithm 1. We get a number of equidistant points from each curve in the set and compute
the curvature at each point by calculating the reciprocal of the radius of the osculating circle at
that point. The curvatures are then divided into a preset number of bins of equal width. Instead
of calculating kmin and kstep for both histograms, they are only calculated for the Histogram of
input curve curvatures and then also used for filling the added curve Histogram.

After both histograms are made, they are normalized. We then calculate the vector dis-
tance between the histograms. Our Obfuscation penalty ρo is thus given by

ρo =
√

(Hi[0]−Ha[0])2 + (Hi[1]−Ha[1])2 + . . .+ (Hi[n− 1]−Ha[n− 1])2 (13)

where Hi and Ha are the (normalized) histograms of the curvatures of the input curves
and added curves respectively.

Combining penalties For the evaluation function that we use during our algorithm we com-
bine the different penalties described above by multiplying them with a weight and adding the
weighted scores to get our final score. So our score is given by:

score = wvertρvert + wangleρangle + wsizeρsize + wshapeρshape + woρo (14)
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Algorithm 1: Constructing a curvature Histogram from a set of cubic Bézier curves

Data: Set of cubic Béziers C, point distance dpoint, step size ε, curvature function
κ : (Bézier, Point)→ R, number of bins n

Result: Histogram H with n bins
K ← ∅
for c ∈ C do

t← ε
pprev ← c[t]
K ← K ∪ κ(c, pprev)
while t < 1 do

t← t+ ε
if d(c[t], pprev) > dpoint then

pprev ← c[t]
K ← K ∪ κ(c, pprev)

end

end

end
kmin ← min

k∈K
k

kmax ← max
k∈K

k

kstep ← kmax−kmin
n

for i← 0 to n− 1 do
H[i]← 0

end
for k ∈ K do

kδ ← k − kmin
j ← b kδ

kstep
c

if j is smaller than 0 or larger than n− 1, set it to 0 or n− 1 respectively
H[j]← H[j] + 1

end
return H, kstep, kmin
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Figure 9: The green face has an ambiguous section (marked by the red circle.) Due to the large
area of the face it might still pass the compactness threshold in spite of this ambiguity. The
dilation penalty would detect this ambiguity.

with wvert, wangle, wsize, wshape, wo ≥ 0

where wvert, wangle, wsize, wshape and wo are the weights for our penalties. The lower the score an
arrangement has the better it is. The best possible score achievable is 0.

Unused measures Many of the penalties included in our score function were also used by de
Jong [7]. Of the penalties used by their algorithm we did not include the dilation penalty, which
calculates the ratio between the Euclidean distance between points and their graph distance when
interpreting the puzzle as a plane graph. The reason for not including it is how long it takes to
compute dilation, not that it would not add anything to the quality of our score function.

There are situations where clear examples of visual ambuguity would not be caught by
our current score function. For example we could have an extremely large face that has a section
that is visually ambiguous, see Figure 9. Because of the large area of the face, the shape penalty
might not catch this ambiguity, while the dilation penalty would catch it. So there is a trade-off
between computation speed and effectivity of the score function.

The reason we can get away with not including dilation is that sections such as those
in Figure 9 are unlikely to arise as a result of our algorithm. As we only add cubic Béziers the
amount of complexity created by single curve chains is limited unless the ambiguous areas are
already present in the input image. In this latter case we would never be able to remedy the
ambiguity, even if we did manage to detect it. So the benefits of including dilation do not weigh
up against the significant speed decrease.

Aside from the dilation penalty, other measures could also be thought up to include in
the score function. For example the total length or curvature of the added curves. For each of
these measures, we need to consider the trade-off between the increased accuracy and the increased
computation time. Another factor we have to take into account when thinking of including more
measures into our score function is that each additional measure reduces the total impact on the
score of all of the other measures. If we would add measures that do not provide additional capa-
bilities for detecting visual ambiguity, the score function worsens as the more accurate measures
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get drowned out. Our score function as given in the above paragraph is therefore only one possi-
ble solution to this great trade-off, and further research might discover other score functions with
different measures that work just as well or possibly even better.

5 Algorithm

In this section we describe the algorithm that we use to generate curved nonograms. Our goal is
to create curved nonograms of minimum visual ambiguity, of which the solution image cannot be
immediately spotted. Our algorithm takes in a solution image and produces a set of curves that
can be used to create a curved nonogram of high quality. The final step of writing a description
to associate with each curve is considered out of scope for this thesis as the placement and look
of the descriptions does not influence the visual ambiguity or obfuscation of the puzzle. So if
someone would want to publish a puzzle generated by the algorithm the descriptions would have
to be added by hand. The algorithm also does not consider puzzle solvability or difficulty as they
are outside of the scope of this thesis. We do know that each curved nonogram we create has at
least one solution, namely the input image.

5.1 Overview

Our algorithm attempts to arrive at a good solution by generating an initial (often bad) solution
and iteratively adjusting it to improve it to an acceptable level. An overview of the algoritm
can be seen in Algorithm 2. (In the pseudocode, variables with names written in cursive (e.g.
cooling rate) are constants that can be set beforehand.) We start by preprocessing the input by
cutting the curves up into pieces. We interconnect some of the pieces, and extend the rest of the
pieces to the boundary to get an initial arrangement. We optimize the extensions using Simulated
Annealing. We then split all of our curve extensions at each intersection and optimize the pieces
using a pairwise iterative local search. The steps of the algorithm are explained in more detail
below.

Algorithm 2: Generate Curved Nonogram

Data: Set of input curves Cin, Boundary rectangle R, Score function fscore
Result: A curved nonogram
Cpuzzle ← CutCurves(Cin);
Cpuzzle ← InterConnect(Cpuzzle, connect rate);
Cext ← Extend(Cpuzzle);
Cext ← OptimizeBySA(Cext, fscore, starting temperature, cooling rate);
Cext ← OptimizePairwise(Cext, pair iterations);
puzzle← BuildPuzzle(Cpuzzle, Cext, R);
return puzzle

5.2 Input

Our input consists of a set of chains of cubic Bézier curves (such a chain is called an input curve,
contained in a bounding rectangle (instead of a rectangle other shapes that form a closed boundary
could also be used for curved nonograms, but our focus is on bounding rectangle as that is all our
test inputs use.) The curves induce a planar arangement. The faces of this arrangement each have
a color associated with them. Because we ignore solvability in our algorithm, the color information
is ignored as well.

The reason for using cubic Bézier curves is their compatibility with the SVG file format
and that they can be easily adjusted by shifting their control points. The input images we use for
our experiments are the ones that were created by De Jong so we can compare the results of the
different algorithms. The images can be seen in Appendix B
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Our core algorithm also uses the same solution space as De Jong, which is expanded by
some optional algorithm adjustments. In this solution space, instead of looking at all possible
variations of curves, we break up the input curves into C1-continuous pieces and extend them
with cubic Bézier curves to the solution boundary. This solution space works well for creating
curved nonograms because it limits the total number of curves to be optimized, and limits the
amount of data that needs to be stored for each curve. This allows for a relatively fast optimization
process. This solution space also has the advantage that every generated puzzle has at least one
valid solution that is exactly equal to the input image. Our larger solution space that is created
when interconnecting ECEs (see Section 5.5) or applying pairwise optimization (see Section 5.7)
maintains these advantages. The number of curves we optimize is limited and for each curve we
only need to store four control points.

5.3 Finding ECEs

The first part of our algorithm is breaking up the input curves into C1-continuous pieces so that
they can be extended. The endpoints of these pieces are called Extendable Curve Ends (ECEs)
because we will extend these points with new Bézier curves. To find the ECEs, we examine each
curve chain of the input. We check each pair of consecutive curves to see if they are C1-continuous.
If they are not, we break the chain into two new chains, and add the endpoints to the list of ECEs.

5.4 Extending ECEs

To get an intial solution that we can later optimize, we want to extend each ECE with a cubic
Bézier curve that connects the rest of the curve chain to the boundary.

Let b0 be the curve we are extending that has control points q0, q1, q2, q3. (We assume b0
to be directed so that q3 is the ECE) We then add a new curve b1 with control points p0, p1, p2, p3.
De Jong demonstrates [7] that our new curve b1 has three degrees of freedom: We can choose the
x- and y-coordinates of p2 as long as they are within the boundary, and we can place p3 anywhere
on the boundary. p0 and p1 each have only one valid location, because placing them anywhere
else will either break the curve chain or break C1-continuity, which would make the puzzle ugly.
b1 needs to extend b0’s curve chain, so p0 must be equal to q3. To preserve C1-continuity, p1 must
be equal to q3 + (q3− q2). Like in de Jong’s algorithm, if the second control point would be placed
out of bounds, we instead place it on the boundary so that it is colinear with q2 and q3. We also
make sure that p1 has a minimum distance dmin from p0 to prevent extremely sharp turns right
after connecting. So the actual equation for p1 is equal to

p1 = q3 + s(q3 − q2) (15)

where s is a scale factor determined by the following piecewise function:

s =


d(p0,pb)
q3−q2 p∗1 6∈ R
dmin
q3−q2 d(p∗1, p0) ≤ dmin, p∗1 ∈ R
1 otherwise

(16)

where p∗1 = q3 + (q3 − q2), R is the bounding rectangle and pb is the intersection point of the line
through q2 and q3 and R that is closest to p∗1. Our added curves are thus C1-continuous unless
prevented by our constraints, and G1-continuous otherwise.

In De Jong’s algorithm, each of the puzzle curves is fully random (within these 3 degrees
of freedom) to create an initial solution which is improved by an optimization algorithm. A random
solution created like this has a high probability of having puzzle curves that make extremely sharp
hairpin turns very close to p0 if p0 is near the boundary. These turns are undesirable. Optimization
wil of course smooth them out somewhat, but it is quite easy to limit their appearance by limiting
where p2 is placed as well as ensuring a minimum distance between p0 and p1 as mentioned above.
The sharp turns are prevalent near the boundary because p1 is always an extension of the previous
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(a) The placement of P2 causes an extremely sharp turn right after connecting

(b) By ensuring P2 is placed to the right of P0, a sharp turn is prevented

Figure 10: During curve extension, we can improve the initial solution by restricting curve place-
ment
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curve and thus usually lies very close to the border. See Figure 10 for an example. There is then
a very large chance when placing p2 randomly that it will be far away on the opposite side of p0
compared to p1, making a sharp turn. To combat this, for the initial solution, we do not place
p2 randomly. Instead we divide our area into four quarters with the dividing axis aligned with
the bounding rectangle and centering on p0. We then put p2 into the same quarter as p1, so the
distance between them is limited. This is an easy way to improve the quality of our initial solution
that is easy to implement and quick to compute. During optimization, we allow p2 to be placed
anywhere, to ensure we are not trapping ourselves in a local minimum. It would also be possible
to divide the space into two halves with the line that is perpendicular to the vector from p0 to p1
that passes through p0 and making sure p2 is on the same side of the line as p1, but this version
has not been tested in this thesis.

If we would further want to improve our initial solution, we could consider biased place-
ment of p3 as well where it has a higher chance of being placed near p0 if it is close to the boundary,
but this has also not been tested in this thesis due to time constraints.

5.5 Connecting ECEs

An optional step to do before extending our ECEs to the bounding box we examine is to connect
the ECEs to each other, rather than connecting each ECE to the boundary. This reduces the
number of free ECEs in the puzzle, making it more simple to optimize. It also makes for a more
interesting puzzle with a more diverse structure.

To connect two ECEs we add a new cubic Bézier that connects the two curves. Because
we want to ensure C1-continuity, any two ECEs can be connected by only one specific cubic Bézier.
Let b0 and b1 be the two curves we want to connect with new cubic Bézier curve b2. Let b0’s control
points be q0 . . . q3, b1’s control points be r0 . . . r3 and b2’s be p0 . . . p3. We assume b0 and b1 to
be directed so that q3 and r0 are the ECEs. To preserve connectedness and C1-continuity with
both b0 and b1 p0 must be equal to q3, p1 must be equal to q3 + s1(q3 − q2), p2 must be equal to
r0 + s2(r0 − r1) and p3 must be equal to r0, where s1, s2 are scale factors so the points lie within
the boundary like in Section 5.4. So b2 has zero degrees of freedom.

In our algorithm, we choose the ECEs to connect at random with the condition that we
do not create a closed loop of curves. If connecting two curves would create a loop, we choose
new ECEs to connect instead. Other conditions can also be imposed (e.g. choosing new ECEs
to connect if the connecting would create a self-intersection, see Section 5.8.) The percentage of
ECEs to connect is set by a parameter connect rate beforehand. See Figure 14 in Appendix B for
an example of a curved nonogram that was created while interconnecting the ECEs.

5.6 Optimization by Simulated Annealing

Our optimization is based on Simulated Annealing [10], which is a well known optimization tech-
nique that reduces the risk of getting trapped in a local minimum. The optimization algorithm
is shown in Algorithm 3. We continuously generate a neighbor solution Cn by making a small
change to our current solution Ccurr. If this new solution is better than our old one we accept it
as the new Ccurr. If the new solution is worse it still has a chance of being accepted to prevent
getting stuck in a local minimum. The probability of acceptance Paccept is based on the difference
in quality as well as the temperature T , which is a parameter that decreases as the algorithm
goes on. As T decreases, the probablility of accepting inferior solutions decreases also. Once T
is small enough we consider the optimization finished and return the best solution found overall.
The individual steps of the optimization are further explained below. The score function we use
during Simulated Annealing is given in Section 4.

5.6.1 Generating neighbors

We generate a neighbor by taking the current solution and changing one of the curves that have
been added during the algorithm initialization. To do this, we first select an appropriate curve.
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Algorithm 3: Optimization by Simulated Annealing

Data: Set of curves Cin, Score function fscore, Starting temperature T0, Cooling rate k
Result: Optimized set of curves
Cbest ← Ccurr ← Cin;
T ← T0;
while T > 1 do

Cn ← GetNeighbor(Ccurr, fscore);

∆score ← fscore(Cn)
0.01∗fscore(Ccurr) − 100;

Paccept ← e
−∆score

T ;
r ←GetRandomNumber(0, 1);
if r < Paccept then

Ccurr ← Cn;
if fscore(Ccurr) < fscore(Cbest) then

Cbest ← Ccurr;
end

end
T ← T ∗ k;

end
return Cbest

The usability of our final puzzle result determined by its “weakest link”. If most of the puzzle
is good but there is one section that is too ambiguous to be able to finish the puzzle, the entire
puzzle cannot be published. So, in our optimizations we want to focus on fixing these weakest
links. We take this into account when selecting which curve we want to change.

When deciding on a curve, for each optimizable curve we compute how much it con-
tributes to the score of the puzzle. To do this, we add the weighted and normalized partial
penalties that are incurred only by those parts of the puzzle that are incident to the curve. Be-
cause the obfuscation is calculated globally rather than locally, it is omitted in this computation.
So the partial score for curve b, scoreb is equal to the following equation:

scoreb = wvertρvert(b) + wangleρangle(b) + wsizeρsize(b) + wshapeρshape(b) (17)

where

ρvert(b) =

∑
v,w∈V |v 6=w∧d(v,w)<dvert∧vIb

dvert − d(v, w)∑
v,w∈V |v 6=w

dvert
(18)

ρangle(b) =

∑
v∈V |α(v)<αmin∧vIb

αmin − α(v)∑
v∈V

αmin
(19)

ρsize(b) =

∑
f∈F |A(f)<Amin∧fIb

Amin −A(f)∑
f∈F

Amin
(20)

ρshape(b) =

∑
f∈F |C(f)<Cmin∧fIb

Cmin − C(f)∑
f∈F

Cmin
(21)

where aIb means that a and b are incident. (See Section 4 for explanations of the other terms.)
We add the partial penalties for each curve together to get our sum of partial penalties

(this is a larger number than the score of the current solution, as the scored features are incident
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to multiple curves.) To select a curve to optimize, we then assign each curve a probability of being
selected that is equal to the ratio of the partial penalty for that curve and the sum of partial
penalties. We then select a curve at random using these probabilities. In this way, curves that
cause a lot of ambiguity are more likely to be changed, without us completely ignoring curves that
have a smaller impact on the total ambiguity.

When we have selected the curve we want to optimize, we change it. As mentioned in
Section 5.4, the curve has three degrees of freedom. We choose the new values uniformly at random
within the relevant bounds. After applying the changes, we check if the updated curve is not
responsible for degenerate arrangements. As the number of curves in the input rises, the chance of
creating an arrangement with a triple intersection or overlapping curves increases quickly. We also
need to include a margin for error when trying to detect these degeneracies, as our implementation
in C# does not handle the precision of numbers with high precision optimally. Because of this, a
lot of curve changes result in an invalid arrangement. When this happens, the new values for the
curve are randomized again. If we cannot find a suitable curve in a preset number tries rattempts
we restore the original curve and try optimizing a different curve. Although this is not ideal, the
impact of this margin of error on the final result is limited since the degeneracies it prevents give
a bad fitness score, so it is unlikely that such arrangements would get accepted as the new current
solution in either case.

5.6.2 Accepting or Rejecting the Neighbor

Once we have generated a neighbor, we score it using the evaluation function described above.
We then compare this score with the score of the solution that was used to generate the neighbor.
The choice to accept or reject is based on the difference between the fitness score of the neighbor
solution and the previous solution. We choose by generating a random number between 0 and 1
and see if it is lower than the result of the equation

Paccept = e
−∆score

T (22)

where Paccept is the probability of accepting the solution, T is the Temperature and ∆score is
the percentage point increase of the new score compared to the old.

The temperature is continually decreasing as the algorithm runs. Every time a solution
is tested, the temperature is multiplied with a the cooling rate k with 0 ≤ k ≤ 1 afterwards. The
decreasing temperature means that the probability of accepting a worse solution decreases as the
algorithm nears its end when we should be closer to a globally optimal solution. The reason that
∆score is on a percentage basis rather than comparing actual scores is that the scores nearing the
end of optimization can be several orders lower than the scores at the start of optimization. By
expressing the score as a percentage of the score of the current solution, the scores more acurately
reflect the impact of the changes on the ambiguity of the solution.

Our algorithm stops when T becomes smaller than 1. It then returns the overall best
solution that was found.

5.7 Secondary Optimization Round

After we have done our primary optimization, we consider the topological aspects of our solution
to be settled. We have determined which of our curves intersect and where, and which faces and
vertices are created by those intersections.

To try and improve our solution further, we want to see if minor changes to some curve
trajectories can improve our score by slightly increasing the area of some faces or changing the
shape of some faces. To do this without changing the location of the curve intersections, we first
break each extension curve that has a nonzero partial penalty associated with it into pieces. Each
curve is broken up so that each piece (which is also a cubic Bézier curve) is as large as possible
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(a) Before a pairwise change. The red and blue curve pieces are
G1-continuous.

(b) After a pairwise change to S2 and R1, the curve pieces are
C1-continuous again.

Figure 11: Pairwise change to a pair of curve pieces. If the new arrangement scores better, it
becomes our new solution.

without having intersections in its interior. Then, for a set number of iterations, we select two
curve pieces that are C1-continuous curve pieces. We then further optimize on those pieces. The
algorithm for this second optimization round is given in Algorithm 4. The individual steps are
explained in more detail below.

5.7.1 Breaking the curves

Because we have already finished our optimization using Simulated Annealing, parts of the puzzle
may be visually unambiguous and add nothing to the score. We do not need to further optimize
these parts. Other curves may still influence the score, e.g. by bounding a face that has a very
small area. We want to improve these curves without causing major changes to the rest of the
puzzle. So as optimizable curves for our second optimization round, we start by only considering
the curves that have a nonzero partial penalty (see Section 5.6.1 on how partial penalties are
computed.) For each such curve, we then look at each curve intersection it is a part of. At each
such intersection point, we split the curve into two new cubic Bézier curves that together follow
the exact trajectory of the original curve. The intersection point is the point where the two curves
overlap, and is a control point to both of the curves.

We maintain a list of each pair of curve pieces we create in this way. We continue
splitting the curve like this until each of its pieces has no more intersections in its interior. As
a consequence of how curve splitting is implemented the curve pieces are parameterized so that
they are G1-continuous with each other rather than C1-continuous. They can be reparameterized
to be C1-continuous but we don’t need to do it in this step as our optimization makes the pieces
C1-continuous with each other as well. During our optimization, we continually choose one of
these pairs at random and try changing it to improve the score of the puzzle.

5.7.2 Changing a Pair

We cannot change a curve piece by itself without affecting the smoothness of the connections
between the chain of curve pieces. By themselves they have zero degrees of freedom just like
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a Bézier we would use to connect two ECEs as explained in Section 5.5. However, if we move
two pieces at once, we can change them while reestablishing C1-continuity. Let S and R be
the curve pieces we want to optimize with controlpoints S0 . . . S3 and R0 . . . R3 respectively. See
Figure 11. S0, S3, R0, and R3 cannot be moved because the curves are connected to the rest of
their curve chains there. S1 and R2 cannot be moved because it would break the C1-continuity
with the rest of the curve chain. However, the constraints on S2 and R1 can be formulated like this

S2 = R0 + (R0 −R1) (23)

R1 = S3 + (S3 − S2) (24)

But considering S3 and R0 are the same point the relationship between S2 and R1 can be written as

S2 = 2S3 −R1 (25)

If we keep S3 constant, we can change S2 without breaking C1-continuity as long as we change R1

in an opposite fashion. To do this in our algorithm, in each iteration we choose a new value for
S2 at random with the constraint that it lies within a set maximum distance dmax of its previous
value, so as to limit the degree to which the rest of the puzzle is affected. R1’s new value is then
computed so that the C1-continuity constraint is satisfied. If the puzzle has a lower score using
these new curve pieces, it becomes our new working solution.

5.8 Disallowing self-intersecting puzzle curves

The puzzle curves we end up creating in our algorithm run from one point on the boundary to
another, twisting and turning along the way and intersecting other curves. It is also possible for
a puzzle curve to intersect itself. These intersections are interesting because they add a new type
of information that a puzzler can use when trying to solve the puzzle. They do make the curve
significantly harder to trace, however, and the new type of information can be tricky to use for
less experienced puzzlers. Because of this, it can be useful to be able to prevent the occurence of
these self-intersections.

This is implemented by letting the algoritm check every time new random values are
chosen for a curve that there is no intersection between two cubic Béziers that are part of the
same puzzle curve. It also checks that there are no cubic Béziers that have an internal self-
intersections. If it finds a self intersection, the change is rejected and new values have to be chosen
for the curve, just like how curves that induce degeneracies are limited in Section 5.6.1. It starts
checking for self-intersections during the initial extension of the ECEs.

Due to the iterative nature of extending the ECEs where ECEs are extended one at a
time until they have all been extended, it is possible that one ECE cannot possibly be extended to
the boundary by a cubic Bézier without intersecting the rest of the puzzle curve someplace. This
case is hard to detect however. To prevent the algorithm from getting stuck in a loop where it
keeps trying new random values for an extension curve that get rejected due to self-intersections,
we include a safety switch where after a preset number of attempts have failed, the extension
curve is marked as an exception that is allowed to have a self-intersection. This means that there
is no guarantee that the puzzle is completely free of self-intersections, but they are limited in the
frequency with which they appear. If someone would want an absolute guarantee that there are
no self-intersections, it is possible to disable the possibility of making exceptions, but then the
algorithm will have to be restarted occasionaly if it is unable to find an acceptable curve.
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Algorithm 4: Pairwise optimization of curve pieces

Data: Set of curves Cin, Score function fscore, number of iterations n
Result: Optimized set of curve pieces
Cpairs ←BreakCurves(Cin);
for 1 to n do

Get a random pair P from Cpairs;
Pchanged ← ChangePair(P);
Cchanged ← (Cpairs \ P ) ∪ Pchanged;
if fscore(Cchanged < Cpairs then

Cpairs ← Cchanged;
end

end
return Cpairs

Image ECEs
penguin 10
butterfly 12
coffee cup 12
lamb 16
monitor 16
rocket 16
mask 18
airplane 22
hut 24
catface 26
church 32
space 36
pumpkin 38

Table 1: Our input images and their number of ECEs

6 Experiments

This section describes several experiments that have been performed to study the influence of
several different features of the algorithm. The main goal is to find the ways in which these
features could be useful when making an automated system for creating curved nonograms.

6.1 Experimental Settings

6.1.1 Test Set

As inputs we use the same input files that were used by de Jong. This is done so that the final
puzzles generated by the two algorithms can be compared. This comparison has not been done
in this thesis however, as a meaningful comparison of the results on visual ambiguity requires a
user study. Not the full set of images is used. “car”, “fish” and “flower” are dropped. The three
images use arcs in their input rather than just cubic Béziers which have not been implemented in
the code used to run the experiments. The full test set is given in Table 1. The images can be
viewed in Appendix B.
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Name Description Value
wvert Vertex Penalty Weight 1000
wangle Angle Penalty Weight 3
wsize Size Penalty Weight 3
wshape Shape Penalty Weight 7
dvert Vertex Distance Threshold 11
αmin Vertex Angle Threshold 20
Amin Face Area Threshold 55
Cmin Face Compactness Threshold 0.025
k Cooling rate of T during SA 0.97
rattempts Maximum Number of Attempts for Randomizing Curve 10
dpoint Histogram Sample Point Distance 5
ε Histogram Sample Step Size 0.01
n Number of Histogram Bins 5
dmax Pairwise Optimization Maximum Move Distance 100
dmin Minimum distance first extension curve control points (See Section 5.4) 60

Table 2: The static settings of our algorithm

6.1.2 Test Settings

The algorithm has a lot of different parameters and settings. The settings that do not change
between different experiments are given in Table 2. The settings for dvert, αmin and Amin have
been copied from De Jong’s Algorithm setting c) for comparability of the results. The Compactness
Penalty replaces the Dilation Penalty of De Jong, so a good value for Cmin had to be determined
experimentally. The current value gave lower scores for generated curved nonograms than other
tested values.

The values for the weights are chosen so that the different parts of our score function have
about equal impact on the score. Before weighting the values for ρvert are a lot smaller than the
other penalties so it gets a large weight. After weighting the penalties lie closer together. As the
complexity of the input increases the relative difference between ρvert and the other unweighted
penalties will increase because ρvert is normalized by dividing by a factor that grows quadratically
with input size, where the other dividing factors grow linearly. For the current inputs keeping
wvert constant seems to work fine, but as inputs with a larger range of complexity get tested it may
be worthwile to switch to a dynamic weight that depends on input size or a different normalization
method for ρvert so that the weighted penalties are more in line again.

The other static parameters have values that have been chosen experimentally, but they
have not been tested as much, so better values likely exist.

Due to time constraints, most settings have been run only once for each input. Simulated
Annealing has a significant random component, so ideally each setting would be tested a large
amount of times to account for variance, but that has not been done for this thesis. Some of
the variance is accounted for due to each setting being run for each image in the test set. Any
conclusions are based on the average over all of these input images so there is at least some
repetition of each setting, but this may not be enough.

6.2 Verifying the Algorithm using visual inspection

Throughout all of the experiments described below and others, 120 curved nonograms have been
created and inspected visually. A number of these can be seen in Appendix B. The average score of
the 88 curved nonograms that passed visual inspection (meaning that they contain no sections that
are so visually ambiguous that it would prevent the puzzle from being published) is 0,158057. The
average score for the 32 curved nonograms that failed this inspection is 0,401166. Furthermore,
there are 29 curved nonograms that achieved the best possible score of 0. All of these curved
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nonograms passed visual inspection.
This seems to indicate that our score function gives a somewhat accurate indication of

visual ambiguity, although the separation between puzzles that passed and failed visual inspection
is not entirely clear-cut. The puzzle with the highest score that passed has a score of 0,693041,
with 28 of the puzzels that fail inspection having a lower score. The puzzle with the lowest score
that failed inspection has a score of 0,000546, with 57 puzzles passing inspection while having a
higher score. So while using our score function during our optimization does help move our puzzle
in a less ambiguous direction, the score function is not so accurate that it could be used as a
classifier for testing if an individual puzzle can be called visually ambiguous.

Important to note is also that visual inspection like this is subjective by necessity, and
at the moment it is especially subjective given that all of the visual inspection was done by just
one person. To reduce this amount of subjectivity the visual inspection should be repeated by as
large a group of people as possible in a user study, see Section 8.

Aside from looking at the scores, the average runtime of the algorithm is around an
hour. So we can also conclude that the algorithm has a good chance to create an acceptable
curved nonogram in an acceptable timeframe for such an application. Increasing the number of
iterations the algorithm runs could be used to further improve the quality while still taking an
acceptable amount of time.

In the generated curved nonograms we can see that a lot of ambiguity is still created by
sharp turns near the image edge. Despite efforts to limit the occurence of these sharp turns in our
initial solution (see Section 5.4) and the visual ambiguity that sharp turns bring that increases
the score, the turns still return during optimization. Although this indicates that the situation
with these sharp turns would be less visually ambiguous than whatever visual ambiguities were
removed during optimization, they are still unwanted.

6.3 Testing the effect of disallowing self-intersections in curve chains

As described in Section 5.8, it can be beneficial to disallow puzzle curves in our solution to self-
intersect. To test the influence of disallowing these self-intersections, two sets of curved nonograms
were generated. One with self-intersections allowed, and one with them disallowed. The experi-
ment settings of the two sets are given in Table 3. The obfuscation penalty, interconnecting ECEs
and pairwise optimization were disabled to more directly focus the experiment on the effects of
having self-intersections enabled.

The results of the experiment are given in Table 4. It gives a comparison between the
final scores, the time taken to run the algorithm and the number of self-intersections in the final
image. The table shows that disallowing self-intersections generally improves the score, while also
taking slightly longer. The improvement in score is relatively greater than the time increase: The
curved nonograms with disallowed self-intersections have a score average that is 14.5% lower than
that of curved nonograms with self-intersections, while the average time is only 3.5% higher. This
suggests that even if the puzzle designer does not care if there are self-intersections in the puzzle,
it can still be beneficial to turn them off, as it improves the score/time ratio.

The table also shows that the algorithm can easily prevent self-intersections if the input
image is simple. For images with a lot of ECEs, however, it could not prevent all self-intersections.
It did reduce their numbers. This result implies that self-intersections make a puzzle more visually
ambiguous. The reason that the time increase when disallowing self-intersections is not that big
even though a lot more curve randomizations are rejected is that the randomization “fails faster”
if it is rejected due to a self-intersection. As soon as a self-intersection is found we can discard
the curve without having to check the rest of the puzzle for degeneracies or having to update the
arrangement.

6.4 Testing the effect of connecting ECEs

To test the effects of connecting some of the ECEs to each other instead of the boundary, we
generated four sets of curved nonograms with different levels of connectivity. The experiment
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Parameter Description Set 1 Set 2
wo Obfuscation Penalty Weight 0 0

connect rate Percentage of ECEs to Connect 0% 0%
pair iterations # Iterations to run Pairwise Optimization 0 0

T0 Starting Temperature for SA 72 72
self intersections Acceptance of Self-Intersections Allowed Disallowed
exception attempts # Attempts until allowing Self-Intersections N/A 10

Table 3: The settings of our Experiment involving disallowing self-intersections. Other values are
given in Table 2

Score Time # Self-Intersections
InputName Allowed Disallowed Allowed Disallowed Allowed Disallowed
penguin 0,014273 0 1839 2321 1 0
butterfly 0 0 2844 2826 3 0
coffee cup 0,016777 0 1772 2276 6 0
lamb 0,031632 0,006218 4033 3356 4 0
monitor 0 0,009432 1666 3541 2 0
rocket 0 0 2947 2364 0 0
mask 0,037112 0,076584 4847 3148 4 0
airplane 0,088418 0,042659 3170 3303 1 0
hut 0,138924 0,142949 2771 2473 4 0
catface 0,188053 0,158126 3779 4070 6 3
church 0,481681 0,408648 3916 4723 6 1
space 0,541120 0,474626 7029 7358 6 1
pumpkin 0,479699 0,425446 6367 6913 6 0
Average 0,155207 0,134207 3614 3744 3,769231 0,384615

Table 4: Comparison between puzzles generated with Self-Intersections either Allowed or Disal-
lowed. (Corresponding to Set 1 and Set 2 in Table 3 respectively.) Times are given in seconds.
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Parameter Set 1 Set 2 Set 3 Set 4
wo 0 0 0 0

connect rate 0% 25% 50% 75%
pair iterations 0 0 0 0

T0 72 72 72 72
self intersections Allowed Allowed Allowed Allowed
exception attempts N/A N/A N/A N/A

Table 5: The settings of our experiment varying the connection rate. Other values are given in
Table 2, parameter explanations in Table 3

settings are given in Table 5. The results of the experiment are in Table 6.
The results show that the best scores are achieved without connecting curves. The time

needed does decrease as connectivity increases. High connectivity directly correlates with a lower
runtime.

The score increase caused by connecting ECEs can be explained by the fact that each
curve we add to connect two ECEs has zero degrees of freedom concerning its placement. (See
Section 5.5 .) If this placement causes ambiguous sections in our puzzle they can never be fixed,
because the curve never gets moved. See Figure 12 for an example: only the curves marked red
in Figure 12a can be moved during our optimization algorithm. All of the visual ambiguity that
is already present in Figure 12b cannot possibly be removed.

The time decrease that occurs when connecting curves is nice, but it is important to note
that the time needed to process the puzzle per optimizable curve in it increases as we connect
more curves. In other words: inputs that have fewer curves can be processed faster than inputs
that have more curves which we then connect to get the same number of curves.

A possible way to prevent the score from increasing when connecting ECEs may be to
use a more complex curve to connect them. If we connect them with a Bézier curve of higher
order (or some other complex curve), it gets degrees of freedom and can be moved around if it
creates ambiguity in our puzzle. This should be studied further, see Section 8. It should also be
studied if scores can be improved by putting more effort into determining which curves to connect,
rather than picking the ECEs at random. If we iteratively connect the curves that have the lowest
impact on visual ambiguity, we may limit the occurence of areas with a lot of immovable visual
ambiguity.

6.5 Testing the effect of including a secondary optimization round

To test the effects of including the pairwise optimization step in our algorithm as shown in Sec-
tion 5.7, we generated two sets of curved nonograms using the settings in Table 7. A starting
temperature of 72 lets our SA run for 140 iterations. A starting temperature of 21 lets it run for
100. So both settings make it so our algorithm does 140 optimization steps total. For a number of
input images, there was already a solution found of score 0 during the first 100 iterations of SA.
Because this does not make for a useful comparison, we have excluded these inputs from the test
set for this experiment.

The results of the experiment are in Table 8. In this table, the data on the curved
nonograms that were generated with pairwise optimization are split. “SA-Score” shows the score
after 100 iterations of Simulated Annealing but before Pairwise Optimization has taken place,
“Final Score” shows the score after Pairwise Optimization. The time needed to generate the
curved nonogram is split likewise. The progression of the scores of the puzzles as the algorithm
iterates can be seen in Appendix A. The red lines show the effects of 140 iterations of Simulated
Annealing.The algorithm starts with T = 72 at the first iteration and ends when T < 1, with T
being multiplied by 0.97 each iteration. The blue lines show our combined algorithm: the first 100
iterations are done by Simulated Annealing starting at T = 21 at the first iteration with T < 1 at
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Score Time
InputName 0 0.25 0.5 0.75 0 0.25 0.5 0.75
penguin 0,014273 0 1,014617 0,318093 1842 1382 1978 1565
butterfly 0 0 0 0,000026 2846 1557 1380 1505
coffee cup 0,016778 0,053078 0,070708 0,242361 1775 1577 1286 1177
lamb 0,031632 0,027717 0,007402 0,0976 4039 2134 2357 1340
monitor 0 0 0,060398 0,121641 1671 1583 1456 907
rocket 0 0 0,199395 0,063284 2961 2118 1831 1574
mask 0,037112 0,038631 0,299532 0,505217 4871 2394 3121 3072
airplane 0,088418 0,201988 0,140205 0,316368 3199 2372 2459 3234
hut 0,138924 0,124257 0,151273 0,322466 2792 2150 2425 2312
catface 0,188053 0,5631 0,691809 1,467871 3818 3579 3150 3054
church 0,481681 0,991716 0,230514 0,244792 3956 3876 2682 1724
space 0,54112 0,634889 0,52567 0,693041 7195 6620 4460 4823
pumpkin 0,479699 0,439557 0,433597 0,673097 6566 5132 5287 3092
Average 0,155207 0,236533 0,29424 0,389681 3656 2806 2606 2260

Table 6: Comparing four different levels of curve connectivity. Times are in seconds

(a) Optimizable curves marked in red (b) Without optimizable curves

Figure 12: Curves interconnecting ECEs can create visual ambiguity that cannot be removed
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Parameter No Second Optimization Round Second Optimization Round
wo 0 0

connect rate 0% 0%
pair iterations 0 40

T0 72 21
self intersections Allowed Allowed
exception attempts N/A N/A

Table 7: The settings of our Experiment testing pairwise optimization. Other values are given in
Table 2

SA-Only Pairwise SA-Only Pairwise
InputName Score SA-Score Final Score Time SA-time Final Time
airplane 0,031796 0,059697 0,040538 1133 829 1048
catface 0,507891 0,470861 0,350880 1630 1250 1691
church 0,362922 0,726080 0,682776 1590 1154 1738
hut 0,000546 0,009733 0,015108 874 564 724
mask 0,070977 0,165301 0,240669 1324 834 1108
pumpkin 0,677896 0,748872 0,794321 2435 1783 2455
space 0,602420 0,364679 0,313025 2818 1465 1933
Average 0,322064 0,363603 0,348188 1686 1125 1528

Table 8: Comparing the results of Pairwise Optimization and pure Simulated Annealing. Times
are in seconds

iteration 100. Then there are 40 iterations of Pairwise Optimization.
The results show that replacing 40 iterations of Simulated Annealing with 40 iterations

of Pairwise Optimization increases the average score by about 8%. However, the time needed to
generate the curved nonogram is decreased by 10%. Looking at the score progressions, we can see
that the SA-iterations have a far greater effect on the score than the pairwise iterations. This was
to be expected as SA makes greater changes and the Pairwise optimization is more focused on
refining the puzzle after Simulated Annealing has already removed most of the visual ambiguities.
However, when generating curved nonograms using only Simulated Annealing, the average score
at the end of 140 iterations is 42% lower than after 100 iterations. The 40 iterations of pairwise
optimization only manage to reduce the average score by 4.5%. So it seems to follow that until
our Simulated Annealing has fully or almost fully reached its optimum, it is better to spend more
iterations on Simulated Annealing than on Pairwise Optimization. If time is not an issue then
including some iterations of Pairwise Optimization after Simulated Annealing could help reduce
the score by some amount to truly get the best puzzle possible with this algorithm.

Also included in Appendix A are graphs showing the score progression during another
experiment done with pairwise optimization. In this second experiment, instead of having a set
maximum distance dmax we let the maximum distance a point can be moved during a pairwise
iteration be equal to its distance to the intersection point. This way, it becomes a lot less likely
that the changed curve pieces to intersect another curve making changes more likely to improve
the score. From the score progressions we can see that the effect of SA is still much greater on
decreasing the score, with almost no pairwise iterations making an improvement, so the conclusion
on pairwise optimization remains the same.

Important to note on these experiments is that because the test set is smaller, the test
results for these experiments are less reliable than those of other experiments. The variance in the
random components of our algorithm has a larger influence on the average result compared to the
rest of this thesis. See Section 6.1.2.
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Parameter Without Obfuscation With Obfuscation
wo 0 1

connect rate 0% 0%
pair iterations 0 0

T0 72 72
self intersections Allowed Allowed
exception attempts N/A N/A

Table 9: The settings of our Experiment testing the Obfuscation Penalty. Other values are given
in Table 2

No Obfuscation Penalty With Obfuscation Penalty
Input Score−ρo ρo Score Time Score−ρo ρo Score Time
penguin 0 0,0448 0,0448 1815 0,0386 0,0110 0,0496 2542
butterfly 0 0,0457 0,0457 1609 0 0,0411 0,0411 2070
coffee cup 0 0,0201 0,0201 3703 0 0,0210 0,0210 1960
lamb 0 0,0129 0,0129 2330 0,0078 0,0151 0,0229 2230
monitor 0 0,4448 0,4448 1675 0,0303 0,4433 0,4737 1509
rocket 0 0,0032 0,0032 2405 0 0,0023 0,0023 2090
mask 0,0549 0,0694 0,1243 3019 0,0019 0,0665 0,0684 3362
airplane 0,0378 0,1683 0,2061 3664 0,1009 0,1467 0,2476 2838
hut 0 0,3000 0,3000 1852 0,0732 0,3381 0,4113 1753
catface 0,4723 0,0669 0,5392 3914 0,4409 0,0566 0,4976 3646
church 0,2653 0,3353 0,6006 7708 0,6235 0,2332 0,8568 5206
space 0,5462 0,0159 0,5621 6464 0,4531 0,0130 0,4661 6489
pumpkin 0,4965 0,1533 0,6498 5700 0,5585 0,1509 0,7094 5983
Average 0,1441 0,1293 0,2734 3528 0,1791 0,1184 0,2975 3206

Table 10: Comparing the results of either including or excluding an Obfuscation penalty. Times
are in seconds

6.6 Trying to obfuscate the solution image

To test the effects of including an obfuscation penalty, we generated two sets of curved nonograms
using the settings in Table 9. The results are given in Table 10. One set was scored without an
obfuscation penalty, where the ρo-column shows what the obfuscation penalty of the final puzzle
is if we would calculate it, without the obfuscation penalty being used do determine scores during
optimization.

The results show that including the obfuscation penalty during optimization increases
the other penalties that are applied to the puzzle. Including it does help to lower the obfuscation
penalty of the final puzzle, although this reduction is smaller than the increase in the other
penalties.

Upon visual inspection, the inclusion of the obfuscation penalty does not seem to help
that much for actually hiding the image. The solution images can still easily be seen. Just as
with the visual inspection in Section 6.2, this is highly subjective. Another complicating factor
is that the person doing the visual inspection already knows what the solution image is going to
look like, so finding it is easier. To accurately decide if the obfuscation penalty helps to hide the
solution image a user study will have to be performed with a large number of participants who
have not seen the solution images before. Conducting this user study is not part of this thesis,
but it is important future work. See Section 8.
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7 Conclusions

In this thesis, we introduced a new algorithm for automatically generating curved nonograms
that builds on the work done by De Jong. Aside from a core algorithm based on Simulated
Annealing, we also introduced several optional features that can be used to adjust the algorithm:
Self-intersections can be prevented, a percentage of input curves to be connected to each other
instead of to the boundary can be set, a secondary optimization can be done to change the
trajectories of the extension curves after the main topologial aspects of the puzzle have been
settled, and the increasing degree to which the input image is hidden in the puzzle can be included
as an optimization goal.

Because visual ambiguity is a nebulous concept based on human perception that compu-
tations can only approach, a user study would need to be done before strong conclusions can be
drawn about how the algorithm’s output compares to that of De Jong. The new algorithm does
seem to be faster (1 hour versus 13 hours), although this all depends on the number of iterations
that are chosen for both algorithms as well as the implementation. Our new algorithm replaces
the dilation penalty, which was a bottleneck in De Jong’s algorithm, with a penalty based on
compactness that can be calculated very efficiently, but the two algorithms might require a vastly
different number of iterations to reach their optimum. Extensively researching the time and qual-
ity difference is outside of the scope of this thesis however.

We can conclude our core algorithm to be successful in being able to generate curved
nonograms that pass a simple visual inspection in an acceptable timeframe. Of the optional
features we introduced, being able to prevent self-intersections seems to be very useful. Aside
from making the puzzles more easily understood for beginners, it has on average a positive effect
on the score.

We were not able to improve the average score of our puzzles by interconnecting curves,
although this seems to be the fault of our restrictions that each curve must be a cubic Bézier curve
and that all connected curves must be C1-continuous. Either by connecting curves using higher
order Bézier curves with more degrees of freedom or by allowing the curves to break C1-continuity
we might be able to lessen the effect of unmovable curves being stuck in unfavorable positions. If
we can prevent this then connecting curves seems to be a good idea for decreasing our score, as
the total number of ECEs will decrease.

Our secondary optimization round did improve the scores of our puzzle, but was out-
classed by just running our core algorithm for more iterations. If time is less of a factor and the
best quality puzzle is desired, it does seem to be a valid tool for further improving the score after
our core optimization has sufficiently approached its optimum.

We were able to create and implement a scoring component for taking the obfuscation
of the solution image into account, but we cannot as of yet conclude on its effectivity.

8 Future Work

Further study on the algorithm A number of aspects of the algorithm proposed in this
thesis can be studied in more depth. A more in-depth comparison can be made between our new
algorithm and that of De Jong. For the best comparison, both algorithms would need to run for
the same amount of time. The different outputs would then have to be evaluated with a user
study, to see which outputs are deemed by people to be less ambiguous.
Aside from comparisons with De Jong, a user study can also be done to test the effectiveness of
including the obfuscation penalty, where test participants indicate if the solution image can be
less easily seen in curved nonograms that used it. Such a user study could also be used to test the
other, more intangible aspects of our generated curved nonograms such as how well the evaluation
function corresponds with actual perceived visual ambiguity, how fun people think solving curved
nonograms is, how difficult it is to solved curved nonograms compared to regular ones, how much
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self-intersections contribute to perceived difficulty, et cetera.
Another important way the algorithm can be studied further is simply by running all of

the experiments several more times. Due to time constraints most combinations of settings and
inputs have been run only once so far. Ideally, each experiment setting is run several times more
so that the variance caused by the random elements of our algorithm can be better accounted for.

Because our proposed algorithm ignores information on solvability, it still needs to be
studied into what solvability category the generated curved nonograms fall although De Jong’s
result of 80/80 generated puzzles falling in the simple category indicates that this is likely the case
for most of our nonograms as well.

It could also be studied how the different optional features of our algorithm interact
when they are combined. Our implementation of connecting curves suffers from a lack of freedom
of placement. This problem could possibly be mitigated during pairwise optimization. It is also
unclear how connecting curves impacts the obfuscation of the solution image.

Furthermore, while some of the parameters for our algorithm were experimentally deter-
mined, some values were chosen for other reasons, such as corresponding to De Jong’s settings,
or just chosen by intuition. Our algorithm could probably be improved by experimentally setting
the value for each parameter.

Study into other algorithms for generating curved nonograms Aside from further study-
ing the proposed algorithm, other algorithms or improvements to the algorithm can also be studied.
A restriction that causes some problems is the demand that all connected Béziers must be C1-
continuous with each other. It can be studied how much deviation there can be from this standard
without it becoming detrimental to the aesthetic qualities of the generated puzzles. By removing
the restriction, we increase the degrees of freedom of each Bézier by letting them move their second
control point more freely. Alternatively, a switch can be made to Bézier curves of a higher order
so they can have more complex trajectories. An even more radically different algorithm could be
developed by stopping with the focus on Bézier curves altogether, although the current algorithms
are doing well enough that such a radical shift may not be necessary to achieve a puzzle quality
that is suitable for commercial applications.

Alternate versions of the optional features of our algorithm could also be studied. Our
current implementation chooses ECEs at random when interconnecting curves, but it could be
studied if iteratively connecting the ECEs whose connection has the least impact on the score
would yield better results. A version of pairwise optimization could also be developed where the
intersection point can be moved along one of the two curves.

Other types of optimization could also be used for algorithms, such as a force-directed
model comparable to those used in graph visualization [5], where visually ambiguous elements
exert a force on the control points of our Bézier curves to move them to a more advantageous
position.

Our optimization can also be tweaked by looking at different penalties to be included in
our score function. Aside from Compactness, we can also determine the regularity of puzzle faces
by looking at their fatness [3], for example.

The current algorithm also does not allow any difference between the input image and
the solution image of the puzzle. By allowing minor changes between the images the freedom
of curve placements can be further increased or visual ambiguities inherent to the input curves
removed, although this needs to be balanced against the decreased aesthetic value of the solution
image.

A lot more research can also be done into good metrics for the obfuscation of the solution
image. A metric could for example be developed based on the difference in perceived symmetry
between the input curves and the curves that are added later. Because hiding an image requires
tricking the human eye, ideally some multi-disciplinary research can be done into good ways of
hiding the image, where knowledge of geometric algorithms is combined with knowledge on human
image processing.
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A Score Progression of (Pairwise) Optimization

Progression of scores with a fixed dmax of 100.
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Progression of scores with dmax changing to be equal to the distance between the control point
to move and the intersection point.
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B Inputs and Outputs

This section contains the input images that were tested, as well as some of the outputs that were
generated by the algorithm working with these images.
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Figure 13: The “airplane” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only

Figure 14: The “butterfly” input file. Puzzle generated during the experiment described in Section
6.4 with connect rate = 50%
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Figure 15: The “catface” input file. Puzzle generated during the experiment described in Section
6.6 with wo = 1

Figure 16: The “church” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only
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Figure 17: The “coffee cup” input file. Puzzle generated during the experiment described in
Section 6.5 optimized with SA only

Figure 18: The “hut” input file. Puzzle generated during the experiment described in Section 6.3
with self-intersections disallowed
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Figure 19: The “lamb” input file. Puzzle generated during the experiment described in Section
6.4 with connect rate = 50%

Figure 20: The “mask” input file. Puzzle generated during the experiment described in Section
6.6, with wo = 1.
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Figure 21: The “monitor” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only (this result has not been included in Table 8 because the score reached
0 before 100 iterations had passed)

Figure 22: The “penguin” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only (this result has not been included in Table 8 because the score reached
0 before 100 iterations had passed)
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Figure 23: The “pumpkin” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only
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Figure 24: The “rocket” input file. Puzzle generated during the experiment described in Section
6.5 optimized with SA only
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Figure 25: The “space” input file. Puzzle generated during the experiment described in Section
6.5 optimized with Pairwise Optimization

C Notes on CurvednonogramsGenerator.exe

The program used by this thesis to conduct experiments can be used by calling Curvednonograms-
Generator.exe with the appropriate command line arguments. This transforms one input file into
one curved nonogram. If multiple nonograms are wanted a batch file must be written.

C.1 Input

Input must initially consist of a .svg file. In this file needs to be at least one group (< g> tag)
with at least one rectangle (< rect> tag.) The bounding rectangle must be the first rectangle in
the first group. All other rectangles are ignored.

The rest of the file can contain any number of SVG paths (< path> tag) and any number
of groups. But each path must be in a group to be processed.
The paths are converted into cubic bezier curves. The following path commands are supported:
“c,C,h,H,l,L,m,M,v,V,z,Z”. The “translate” and “matrix” transforms are supported, but others
are not (They can be emulated by choosing the right matrix parameters.)

The program generates .xml files with arrangements that can also be loaded back in.
However, the only .xml files that should be used are the ones generated by the program itself. .svg
files generated by the problem can be loaded back in, but this is not recommended. To load an
old arrangement back in the .xml should be loaded.

C.2 Command Line Arguments

CurvednonogramsGenerator.exe can be called with the command line arguments listed in Table
11. In this table, arguments of the form -arg can be included without further parameters. arg=[s]
means a string must also be supplied. arg=[d,d] means two doubles separated by commas must
be supplied etc. A typical call to CurvednonogramsGerator looks like this:

CurvednonogramsGenerator.exe file="inputs/input1.svg" outdir="outputs/" outfile="1.svg"

savefile="1.xml" -af -am -me weights="1000,3,3,7,0"
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With this call we process the file “input1.svg”. By using -af we can put the entire file path
in the file argument instead of having to split it between file and indir arguments. We use -am to
not have to think about what filemode to use. Because we are creating a new arrangement from
an .svg we want to break the curves and create new ECEs so the -me argument is included. If
we would want to load in an existing .xml file, we would need to leave out -me. It is important
to specify the weights because otherwise all parts of the score function would be turned off by
default. This call generates a curved nonogram of the file using only simulated annealing with
default parameters.

Argument Description Default value
required arguments
indir=[s] sets the directory to look in for the input file -
file=[s] sets the input file -
Scoring arguments
thresholds=[d,d,d,d] sets dvert, αmin, Amin, Cmin (See Section 4) 11, 20, 55, 0.025
weights=[d,d,d,d,d] sets wvert, wangle, wsize, wshape, wo (See Section 4) 0,0,0,0,0
-wone include to set all score weights to 1 -
Optional arguments
-af include to auto-split input file and dir. names, replaces indir -
outdir=[s] sets the directory to place the output file indir
outfile=[s] sets the name of the output file “output.svg”
savefile=[s] sets the .xml file to save the arrangement to “saved.xml”
mode={0,1} sets filetype to load. 0 for .svg, 1 for .xml 0
-am include to choose load mode based on file extension -
seed=[i] sets the seed for the RNG. random seed
-me include to generate new ECEs in the arrangement -
-npsi include to disallow self-intersections in puzzle curves -
cratio=[d(0.0-1.0)] sets percentage of ECEs to interconnect. Requires -me 0
temp=[d] sets T0 for SA. Set to less than 1 to disable SA 72
coolrate=[d(0.0-1.0)] sets the cooling rate of the temperature during SA 0.97
pairits=[i] sets number of iterations for pairwise optimization 0
rattempts=[i] sets max. #attempts for randomizing a curve. 0 = no limit 10
sirattempts=[i] sets the max.#attempts to randomize a curve before-

allowing self-intersections if -npsi is included. 0 = no limit 10
ras=[i] sets the max. # attempts to randomize a curve before-

restarting the entire program. 0 = no limit 0
-dre include to prohibit extending ECEs -

Table 11: Available command line arguments for CurvednonogramsGenerator.exe

C.3 Output

The program generates output in the folder specified with the outdir argument (or the indir by
default.) In the following descriptions, OUTFILE and SAVEFILE should be read as the whatever
values are specified in the command line arguments.

The program generates OUTFILE, which is a .svg file showing the generated curved
nonogram. It also generates coloredOUTFILE, which is the curved nonogram but with each face
given a random color. markedOUTFILE shows the nonogram while marking the vertices and
faces that add a penalty to the score. Vertex penalties are marked purple, angle penalties orange,
area penalties red, shape penalties yellow. SAVEFILE is a file containing the entire arrangement
including a full description of the full DCEL. It can be used to load the arrangement back in if we
want the program to operate on it further. afterConnects.xml is a saved copy of the arrangement
before any optimization is done or ECEs are extended, but after ECEs are connected to each other
if applicable. If ECEs are extended, the program saves the arrangement as duringECEsolve.xml
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and updates it after each ECE that is extended, in case it is needed for debugging. Lastly
timesSAVEFILE is generated, which is a log of the amount of time the algorithm has taken. In
this file, all randomization steps are timed, and the different phases of the algorithm as well,
which also include all of the overhead that is not taken into account when timing individual
randomization steps.
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