
Training Sequence Generative Adversarial Nets
to Compose Music in the abc-notation.

Bachelor project by O.F. Jansen
Student Bachelor Artificial Intelligence
Universiteit Utrecht, The Netherlands
Email: O.F.Jansen@students.uu.nl

Supervised by dr. A.J. Feelders
Department of Information and Computing Sciences,

Universiteit Utrecht, The Netherlands
Email: A.J.Feelders@uu.nl

Creating new music is traditionally seen as a
task performed only by humans. Getting comput-
ers to compose music would have advantages such
as the ability to create more music in the same
amount of time. With recent developments in the
field of machine learning, music composition by
computers seems closer than ever. In this study
we have applied the Sequence Generative Adver-
sarial Nets technique as proposed by Yu et al. to
the task of generating tunes in the abc notation, a
text-based music notation system. The training set
we have used was built by Sturm et al. and con-
sists of 23,636 abc songs. We succeeded in train-
ing a model that generates valid abc files. These
songs were empirically evaluated with the help of
47 participants. No significant difference between
the ratings of real tunes and generated tunes was
found. However, we think it is possible that even
the real tunes were not well-received by the partic-
ipants which would make this conclusion less valu-
able.

1 Introduction
Composing music is very much a creative pro-

cess of the human mind. As such, we do not yet
fully understand how it works and what factors
play a role in it, nor can we algorithmically mimic
it. It would therefore be quite impressive if we

could learn a computer in an unsupervised manner
how to generate music that sounds good.

This research focusses on the use of generative
adversarial networks (GANs) [11], which are sys-
tems of two neural networks that play a minimax
game against each other in order to eventually end
up with a very good generative model. GANs have
been successfully applied to (text to) image gen-
eration [11] [16]. They tend to generate sharper
images than other generative models [8].

More specifically, this research makes use of a
technique that enables the application of the gen-
erative adversarial networks framework to sequen-
tial data. This technique has recently been devel-
oped by Yu et al. in their paper ’SeqGAN’ from
2017 [22].

In this research, SeqGANs are trained on a
dataset containing songs in a high-level, text-based
music notation system called the abc notation. The
abc notation is mainly being used by traditional
and folk artists [21]. Files in abc are represen-
tations of the music to be played but do not ac-
tually describe the audio waveforms; they consist
of a chronological sequence of notes. This makes
it a great and lightweight source of data to train
the model on. There are tools available to convert
music in the abc notation to a listenable waveform
format such as MP3. This process can be seen as

playing the notes described in the abc transcription
on a virtual instrument.

The generated music will be evaluated by shuf-
fling real and generated tunes and asking people to
rate each tune using an online questionnaire.

1.1 Related work
At the time of writing this paper, there is only

one publication that mentions generating music us-
ing SeqGANs to be found. Not only do Yu et
al. introduce the SeqGAN technique on which
the model in this work is based, they also apply it
to music generation [22]. They used the Notting-
ham dataset [7] consisting of 695 folk songs in the
MIDI format and modified the songs to focus only
on the solo track. BLEU (’bilingual evaluation un-
derstudy’, normally used for measuring the quality
of machine-translated text [14]) was used to eval-
uate the quality of the piano key patterns and the
mean squared error on continuous pitch patterns.
The authors report that the SeqGAN model out-
performs maximum likelihood estimation signifi-
cantly on both these metrics. Unfortunately they
do not go into detail on how and why these metrics
are used for evaluating music.

Sturm et al. use long short-term memory net-
works to generate Celtic folk songs in the abc no-
tation in their 2016 paper [19]. They have built a
large set of training data in the abc notation which
they have open sourced and describe the process
of building it in their paper. Descriptive statistics
such as the number of tokens in the tunes and the
occurrences of certain notes are used as an eval-
uation metric. The authors themselves deem the
relevance of this evaluation to the experience of
music by the listener highly questionable, and I
agree. After this analysis the authors also evalu-
ate just one generated tune in terms of technical
musical terms. They do not provide another, more
objective evaluation of the quality of the generated
songs.

In a paper by Agarwala, Inoue and Sly, the au-
thors try to generate music in the abc notation us-
ing various methods such as recurrent neural net-
works, Seq2Seq and GANs [3]. They also de-
scribe the process of building a large dataset of abc
tunes for training purposes. The authors created a
survey containing fragments of human-composed

songs and songs generated by the discussed mod-
els and asked the respondents if they thought
the songs were human-composed or computer-
generated. However, the authors did not succeed
in training the GAN model because it was too un-
stable and they thus did not include any songs gen-
erated by it in the survey.

The current research differs from the above.
Speaking in terms of the mentioned papers, this re-
search combines the model of Yu et al., SeqGANs
[22], with the dataset by Sturm et al. [19] and an
empirical evaluation metric comparable with the
one used by Agarwala, Inoue and Sly [3].

1.2 Research question
The research question that guided this study

and that will be answered at the end of this report
is the following:

Can SeqGANs be trained to compose music in
the text-based notation system ’abc’ that sounds as
good as human-composed music?

2 Background
Before expanding on the current research, the

following subsections provide some background
on generative adversarial nets (GANs), sequence
GANs and the abc notation.

2.1 Generative Adversarial Nets
Generative Adverserials Nets were introduced

by Goodfellow et al. in 2014 [11]. The idea builds
upon the general concept of generative models
(models that output new data samples from a distri-
bution that is learned from the training dataset) and
the success of deep discriminative models. Instead
of training just a generative model, Goodfellow et
al. have trained one generative model and one dis-
criminative model at the same time. The objective
of this discriminative model is to guess whether a
presented data sample is real, or has been gener-
ated by the generative model. The objective of the
generative model is to generate a sample and max-
imise the probability that the discriminative model
makes a mistake when presented with this sample
(in other words: to generate data that the discrimi-
native model thinks is not generated).

We can formalise this a bit. Let D(x) be the
probability that the discriminative network pre-
dicts sample x is a real sample (i.e. a sample from
the dataset) and let G(z) be the data sample gen-
erated by the generative model given the random
variable z, usually sampled from a Gaussian or
Normal distribution. z usually has the same or a
lower dimensionality than the training data. The
generative model thus maps the latent variable z
to a sample from a distribution that will approach
the distribution of the dataset after training. Be-
cause z is a random variable, the generative model
produces a wide variety of data samples given dif-
ferent values of z. Each value of z is a unique seed
The objective of the discriminative network is to
maximise the probability that it assigns the correct
label (1 for a real sample, 0 for a fake sample) to
presented samples. The objective of the generative
model is to minimise log(1−D(G(z))) (the loga-
rithm of 1 minus the probability that the discrimi-
nator predicts a generated sample to be real).

This situation can also be interpreted as a two-
player minimax game played by the generative and
discriminative model. The game has the following
value function V (G,D) [11]:

min
G

max
D

V (D,G) = Exxx∼pdata(xxx)[logD(xxx)]+

Ezzz∼pzzz(zzz)[log(1−D(G(zzz)))].
(1)

In above equation z is the latent variable, sam-
pled from a random noise distribution, and x is a
real data sample. Exxx∼pdata(xxx)[logD(xxx)] is the ex-
pected value of the logarithm of the probability
that D predicts x is a real sample. Ezzz∼pzzz(zzz)[log(1−
D(G(zzz)))] is the expected value of the logarithm of
the probability that D predicts G(z) is a fake sam-
ple. So the better D gets at predicting the proba-
bility that a sample is real or fake, the higher the
value of V (G,D) will get. In this minimax game G
tries to minimise the value function and D tries to
maximise it.

To algorithmically build the GAN, the genera-
tive and discriminative models are trained simul-
taneously by k times sampling m noise samples
and m real samples and using these samples to as-
cend the discriminator’s gradient. Goodfellow et

al. used k = 1 in their experiments. The genera-
tive model then generates m samples and these are
used to descend its gradient.

Fig. 1: Generative Adversarial Nets. The discrimi-
nator is trained on real samples and generated fake
samples. The loss of the discriminator ("Is D Cor-
rect?") is used to update both the discriminator and
the generator. This figure is made by Al Gharakha-
nian [9].

In the original paper, a great analogy is made.
You can compare the generative model with a team
of counterfeiters, trying to produce and use fake
currency. The discriminative model would be the
police, trying to stop the counterfeiters. The com-
petition between the counterfeiters and the po-
lice causes both to improve their methods until
eventually the fake money cannot be distinguished
from real money by the police. The same goes
for the models: the generative model is bound to
eventually generate samples that cannot be distin-
guished from real data samples by the discrimina-
tive model.

The adversarial framework has some disadvan-
tages, e.g. the training phase can prove to be tricky
because the generator and discriminator must be
kept in sync with each other (one model must not
significantly outperform the other). This can be
done by simply tweaking the hyper parameters but
this does not seem to be a very transparent process.
The framework also has advantages, for example
the generator does not get to ’see’ the input data
directly but only through gradient updates coming
from the discriminator. This prevents parts of the
training data to be adopted directly by the gener-

ative model and thus can prevent the model from
overfitting.

2.2 Sequence Generative Adversarial Nets
Generative adversarial nets, as described by

Goodfellow et al. [11], try to minimise the loss
function of the generative model by using stochas-
tic gradient descent and try to maximise the value
function of the discriminative model by using gra-
dient ascent (these loss and value functions are the
same function, as given in equation 1). The output
of the discriminative model on a generated sample
(that is: the assigned probability that the sample is
real) is being used to guide the generative model
in changing its weights a bit so that the next gen-
erated sample will be more likely to fool the dis-
criminative model. According to Yu et al. (and
also according to Ian Goodfellow, author of the
GAN paper, in a Reddit comment [10]) this ’slight
change’ does not make any sense when working in
the domain of sequential data. For example: imag-
ine the oversimplified case in which the discrim-
inator considers only samples containing just the
letter ’B’ to be real (and samples containing an-
other letter to be fake) and the generative model
only generates just the letter ’A’. The output of
the discriminator on generated sample ’A’ will be
about 0. This would lead to an update to the gen-
erative model in such a way that it will generate
a letter that is a bit more like ’B’. However, this is
not possible since there is no such letter in between
’A’ and ’B’, there is only ’A’ or ’B’.

To solve this problem, the authors approach
the generative model as an ’agent of reinforcement
learning’. Reinforcement learning is a general
framework with contributions from research into
optimal control problems [5] and animal learning
by trial and error [17]. Learning your dog to sit
on command by letting him perform random ac-
tions and (not) rewarding these actions, instead
of showing him examples of how to properly sit,
can be seen as an instance of reinforcement learn-
ing. In the proposed SeqGAN system, our gen-
erative model keeps track of the current state (the
sequence of tokens generated thus far) and has a
parametrised policy that it uses to decide the next
action (the next token to add to the sequence based
on the current state) in order to maximise the re-

ward (the probability that the discriminator makes
a wrong classification). We use gradient descent
to optimise this policy [20]. Because the discrim-
inator can only reward finished sequences, Monte
Carlo search with a roll-out policy is used to make
up the rest of an unfinished sequence so that scores
can be given at intermediate steps during sequence
generation. Note that these scores are not always
accurate as part of the scored sequence was made
up by the roll-out policy. g, d and k are hyper
parameters, respectively indicating 1) how many
times the generator model should be updated each
cycle, 2) how many times a training set with newly
trained and real samples should be created and
used for the discriminator model to train on each
cycle and 3) for how many epochs or full cycles
on the created training set the discriminator should
be trained.

Reward

Next
action

State

MC
searchG D

Generate

True data

Guide

Train

G

Real World
D Reward

Reward

Reward

Policy Gradient

Fig. 2: Sequence Generative Adversarial Nets.
The discriminator is still trained on real and gen-
erated samples and its loss guides the generator.
Inside the generative model, Monte Carlo search
is used to roll-out a partial sequence so that the
discriminator can judge a sequence and this output
can be used as the value for a certain action from
the policy. This figure is taken from Yu et al. [22].

Yu et al. have proposed a recurrent neural
network as the generative model and a convolu-
tional neural network as the discriminative model.
These networks both get pre-trained using maxi-
mum likelihood estimation.

Returning to the present study: if we define a
tune as a sequence of notes (which are discrete to-
kens), this solution by Yu et al. to the discrete-
token-problem of GANs provides us with a way to
train a model to generate music in an adversarial
manner.

2.3 The abc music notation system
The abc notation is a text-based music notation

system. This means that only ASCII-characters are
being used to decode tunes and that it’s easy for
people to encode their own tunes.

According to abcnotation.com [21] the abc no-
tation is "the de facto standard for folk and tradi-
tional music". This is backed up by the numerous
websites that distribute free tunes in abc, such as
The Session [2], the abc version of the Notting-
ham Music Database [4], or the tune search on the
abc homepage which at the time of writing con-
tains around 560,000 tunes [21].

Every valid abc file starts with a header con-
taining key-value pairs joined by a colon (also
called the ’fields’ of a tune) describing the song.
Not all software for handling abc files demands the
same fields to be defined but the K-field, describ-
ing the key of a song and marking the end of the
header, must always be present. Other common
fields are the M-field with which the meter is set,
the T and C-fields with which the title and com-
poser of a song are set and the X-field which con-
tains a reference number which is mostly legacy
but is also being used by software to tell where one
song ends and another song starts.

After the header, the notes section starts. This
is a high-level, chronological representation of the
song. Notes are notated as one of the letters
CDEFGAB for the corresponding note. Notes one
octave up are notated using these same letters in
lowercase. Notes higher than this are denoted by
adding apostrophes to the letters. By adding com-
mas to the uppercase letters, we extend the scale an
octave below. After a note, a fraction can be added
like this: C/2. This will result in a C that’s half
the default note length, which is set in the headers.
Other fractions are also possible and result in dif-
ferent relative note lengths. Tunes are segmented
into bars by |-signs between the notes.

Examples of abc songs and accompanying ex-
planation are available at the official website [21].

3 Method
3.1 Implementation

Although the authors of the SeqGAN paper
have published a Tensorflow implementation on

their Github page [1], this study makes use of an-
other implementation [6] because Yu et al. only
published the implementation for their synthetic
data experiments and the other implementation
was found to be better documented and more read-
able.

Here is a list of all files included in the imple-
mentation and a summary of each of them:

model.py
Contains the SeqGAN class which implements
most of the ideas of Yu et al. [22]. The class
has methods for building the generative model,
the discriminative model and the optimizer
functions. train_batch is a method that trains
the system on a single batch and generate can
be called to generate a sample from the trained
model. It also has a build method that ties pre-
vious mentioned methods together and a save
method for saving and loading a trained model.

sample.py and train.py
Has CLI wrappers for the generate and
train_batch methods of the SeqGAN class in
model.py. train.py repeats the batch training
for the number of steps times the number of
epochs as defined by the user.

utils.py
Defines functions to map the tokens in the data
(character in the abc files, in this case) to in-
tegers and back again and to store these map-
pings to a dictionary.

The implementation requires Tensorflow ver-
sion 1.0.1 to be installed, otherwise it won’t run.
If you want to train the model or sample from it
using a machine without a GPU, you can pass the
−c flag to train.py or sample.py.

3.2 Dataset
The dataset of Sturm et al. [19] is of great qual-

ity. It contains 23,636 transcriptions of folk songs
originating from thesession.org. Three variants of
the dataset that differ in the amount of cleaning
they’ve gone through have been published.

sessions_data_clean: The raw abc tunes from
thesession.org. Cleaned to contain only valid

abc and no HTML or comments from the
website.

allabcwrepeats_parsed: The same set as
above but now without short tunes (fewer than
7 measures), without tunes that have more than
one key or meter and with all songs transposed
to a key with root C. More details about this
cleaning process are described in the original
paper.

allabcworepeats_parsed: The same set as the
previous set but all songs have now been con-
verted to midi and back to abc. This makes all
repeats (which can be denoted with : in abc)
explicit.

The second set, allabcwrepeats_parsed, is
used to train the model discussed in this report.
This set was chosen over the first set because of the
more thorough cleaning process it went through.
The third set wasn’t used because I hypothesised
that converting the songs to midi and back to abc
could lead to some loss of patterns present in the
original tune transcription. Implicit repeats also
make the tunes more compact which could be an
advantage for the model since it gets trained on
samples of a fixed length. A more dense represen-
tation could result in better recognisable patterns in
short transcriptions. Some software requires tunes
to have an identifier field so X header fields with
value 1 have been added to the beginning of all
songs to make them valid in all abc-software.

After multiple attempts to train the model on
the entire dataset, it was decided to not use the en-
tire dataset because of time concerns. The avail-
able hardware wasn’t powerful enough for the
model to converge in reasonable time. Training on
the entire dataset takes extremely long (in the or-
der of weeks) on the used system. This issue could
be resolved by training the model on a system with
more computational power provided by e.g. a ded-
icated graphics card.

The dataset used contains the first 1666 songs
of the original allabcwrepeats_parsed dataset
(or: the first 9995 lines). The first and last tunes in
this set are displayed in figures 3 and 4.

X:1
T:’G Iomain Nan Gamhna
M:9/8
K:Cmaj
G E E E 2 D E D C | G E E E F G A B c |
G E E E 2 D E D C | A D D G E C D 2 A |
G E E E 2 D E D C | G E E E F G A B c |
G E E E 2 D E D C | A D D G E C D 2 D |
E D E c 2 A B A G |E D E A /2 B /2 c A B 2 D |
E D E c 2 A B A G | A D D D E G A 2 D |
E D E c 2 A B A G | E D E A /2 B /2 c A B 2 B |
G A B c B A B A G | A D D D E G A B c |

Fig. 3: The first tune in the dataset used.

X:1
T:The Beauty Spot
M:4/4
K:Cmix
c A | (3 G B G F A (3 G B G c A | (3 G B G F E D
E F 2 | (3 G B G F A (3 G B G c A | B G F D E C
C A | (3 G B G F A (3 G B G c A | (3 G B G F E D
E F 2 | (3 G B G F A (3 G B G c A | B G F D E C
C e | d B B 2 d B c e | d c B c d e f e | d c B c d c B
G | F 2 (3 A B c d B c e | d B B 2 d B c e | d c B c
d e f 2 | g e (3 f e d c d B G | F 2 (3 A B c d B c A |

Fig. 4: The last tune in the dataset used.

4 Results
The songs produced by different trained

models were of varying quality. Training with
slightly different hyper parameters (g, d and k
in the paper by Yu et al. [22]), e.g. training the
discriminator 3 times for every time the generator
gets trained, sometimes led to completely useless
generated samples. An example of such a sample
is displayed in figure 5. This tune is of very low
quality because it just repeats the same note over
and over. Even the time each note should be
played, does not vary.

Using the default values for the parameters for
the system (d = g = 1 and k = 100) experimen-
tally proved to be the best option. The system ran
about 50 cycles before the samples that were used

| c 2 c 2 c 2 | 2 | 2 | 2 | c 2 c 2 c 2 c 2 c 2 | c 2 c 2 c
2 c 2 | c 2 c 2 c 2 c 2 c 2 c 2 | c 2 c 2 c 2 c 2 |

Fig. 5: Part of a very low quality generated sample.

to evaluate the model were generated. This model
generated samples that were in valid abc notation
and with a seemingly healthy balance between rep-
etition and variation. Most samples did raise some
warnings with the abc parser (some double num-
bers for indicating note length for example) but the
parser software is able to solve these issues by it-
self. All generated samples that were used in the
evaluation section can be found in the appendix.

5 Evaluation
To evaluate the quality of the generated sam-

ples, it was decided to take an empirical approach
and create an online questionnaire. The follow-
ing subsection goes into detail on the experimental
design and the subsection after that analyses the
results of the questionnaire.

5.1 Experimental design
The questionnaire was built using Google

Forms because this service allows for music to
be embedded in the list (in the form of Youtube
videos), it is a responsive service (i.e. it works
on mobile devices, this stimulates people to par-
ticipate) and it allows for total control over the
pages, questions and general markup. The survey
was distributed among family and friends, mainly
using social media. The online questionnaire fea-
tured 15 tunes. Ten of these tunes were generated
by the model and five were real, human-composed
tunes randomly selected from a part of the dataset
by Sturm et al. that wasn’t used for training the
model. Of the ten generated tunes, five were ran-
domly selected (generated and immediately added
to the survey) and five were handpicked by me
out of a set of 50 generated samples, based on
how good I found these songs to sound. These
three classes were labeled ’random’, ’selected’ and
’real’. The order of the tunes is the same for every
participant but was randomised before publishing
the questionnaire. In the analysis each tune is also
labeled with a number that indicates its position in

the questionnaire. After a tune has finished play-
ing, the participants are asked to give it a rating on
a scale from one ("very bad") to five ("very good").
The accompanying label for this rating was "How
do you like this tune?". The results of the survey
were exported out of Google Forms and analysed
using R [15].

Fig. 6: A screenshot of the questionnaire. All 15
tunes were displayed on a single page.

The results of this experiment will demonstrate
1) how generated tunes are perceived compared to
real tunes and 2) if a human selection of generated
tunes can boost the quality. The expectation is 1)
that generated tunes will be rated lower than real
tunes and 2) that human selection can boost the
quality.

5.2 Analysis
The questionnaire was completed by 47 peo-

ple.
As visible in figure 7, it is not immediately

clear that songs from the different classes differ in
their received rating. Because of the ordinal nature
of the data we cannot simply compare the mean
ratings of the different classes to draw a conclu-
sion. The distance between two items on an ordi-
nal scale is unknown so the mean would be mean-
ingless. We could have a look at the median of all
ratings, which turns out to be 3 for all tunes expect
for tune #1 (a random generated one) which has
a median rating of 2 and tunes #7 and #10 (real
tunes) which have median ratings of 4. This is as

1 2 3 4 5

#1 (random)

0
5

10
15

20
25

1 2 3 4 5

#4 (random)

0
5

10
15

20
25

1 2 3 4 5

#11 (random)

0
5

10
15

20
25

1 2 3 4 5

#14 (random)

0
5

10
15

20
25

1 2 3 4 5

#15 (random)

0
5

10
15

20
25

1 2 3 4 5

#6 (selected)

0
5

10
15

20
25

1 2 3 4 5

#8 (selected)

0
5

10
15

20
25

1 2 3 4 5

#9 (selected)

0
5

10
15

20
25

1 2 3 4 5

#12 (selected)

0
5

10
15

20
25

1 2 3 4 5

#13 (selected)

0
5

10
15

20
25

1 2 3 4 5

#2 (real)

0
5

10
15

20

1 2 3 4 5

#3 (real)

0
5

10
15

20

1 2 3 4 5

#5 (real)

0
5

10
15

20

1 2 3 4 5

#7 (real)
0

5
10

15
20

1 2 3 4 5

#10 (real)

0
5

10
15

20

Fig. 7: The distribution of ratings for all featured
tunes. The rows contain plots for the tunes that
were generated (plots in red, labeled ’random’),
the tunes that were selected from a set of 50 gener-
ated tunes (plots in yellow, labeled ’selected’) and
the real tunes respectively (plots in blue, labeled
’real’). All possible ratings are on the x-axis and
the height of the bars depicts the cumulative num-
ber of times a tune was given this rating.

expected: the real tunes are rated higher than the
selected tunes, which are in turn rated higher than
the generated tunes. The difference, however, is
quite small.

To proceed and test whether the ratings from
the different classes actually come from the same
distribution (which would imply that there is no
significant difference in rating between the songs),
the Kruskal-Wallis test [12] was used. The
Kruskal-Wallis test is the non-parametric equiva-
lent of the one-way analysis of variance, which
means that it does not assume the data is normally
distributed and can be performed on ordinal data.
The null hypothesis of this test assumes that there
is no stochastic dominance between the groups.
This would mean that there is no difference be-
tween the groups in terms of their received ratings.
Variable A is said to stochastically dominate B if
P(A < x) ≤ P(B < x) for all possible values x of

A and B. The alternative hypothesis is that for at
least one group i stochastic dominance exists. That
would mean that a tune from this group i is less
likely to receive a lower rating than a tune from
another group.

To compute the test statistic of the Kruskal-
Wallis test, let N be the total number of sam-
ples (47×15 in our experiment), k be the number
of classes or groups (in this case there are three
groups) and ni the sample size of group i (for ev-
ery group N

k in this case). Now add all samples to
a list, sort it and give each item a rank. Tied items
receive the average of the ranks they would have
received if they were not tied. Let ri j be this rank
of sample j from group i. Let r̄i be the average
rank of all samples in group i and r̄ the average
of all ranks. The test statistic can now be calcu-
lated using equation 2, which is a measure for the
difference between the groups. The distribution of
the test statistic approximates the chi-square distri-
bution, which is used to calculate the p-value.

H = (N−1)
∑

k
i=1 ni(r̄i− r̄)2

∑
k
i=1 ∑

ni
j=1(ri j− r̄)2 (2)

Performing this test on the data using R, led
to a test statistic of 2.969 and a corresponding p-
value of 0.227. This indicates that, although the
observations are somewhat off, the three classes do
not differ significantly.

Assuming there really is no difference in distri-
bution between the ratings of the different classes
we proceed. Say random > real means the me-
dian of the ratings a participant gives to the ran-
dom tunes is higher than the median of the ratings
this same participant gives to the real tunes. Under
our assumption, there should be an equal number
of participants for which random > real as par-
ticipants for which random < real. In the experi-
ment there were 13 participants who rated the ran-
dom tunes better (random > real) and 15 partic-
ipants who rated the real tunes better (random <
real). For 19 participants the median rating was
the same for these groups (random = real). Us-
ing the binomial distribution B(N = 28,P = 1

2)
we calculate the probability of observing this out-
come under the null-hypothesis that P(random >

real) = P(random < real) = 0.5. The p-value of
this binomial test is P(x ≤ 13)+P(x ≥ 15), given
x ∼ B(N = 28,P = 1

2) = 0.851. This is far from
significant so the null-hypothesis is not rejected.
Analysing the difference between the real and se-
lected tunes using this procedure and performing
a binomial test lead to a similar p-value of 0.845
which is also far from significant.

This analysis points towards the conclusion
that the difference between the real tunes, the ran-
dom generated tunes and the selected generated
tunes as visible in the gathered data could be co-
incidental. We therefore cannot draw any other
conclusion than that the different songs cannot be
distinguished from each other based on the class.

6 Discussion
This study was guided by the question whether

SeqGANs can be trained to compose music in the
text-based notation system ’abc’ that sounds as
good as human-composed music.

First, a note must be made about the term
’compose’. The Merriam-Webster dictionary [13]
defines ’to compose’ as ’to create by mental or
artistic labor’, which doesn’t exactly match what
the model does. ’Generate’, however, is defined
as ’to define or originate (..) by the application
of one or more rules or operations’. This seems
to better describe our ’composer’ that just chooses
the most likely token based on what it has com-
posed already. This argument can be strengthened
by comparing the generative model with the man
that cannot speak Chinese from the famous Chi-
nese room argument by John Searle [18]. How
well the songs generated by the SeqGAN model
may sound, it still does not understand why it com-
posed the songs in the way it did and can not re-
flect on this process. It is for these reasons that
in a large part of this study these two terms have
been used interchangeably instead of sticking with
’compose’ as used in the original research ques-
tion.

As it turns out, SeqGANs can generate files
in the abc notation just fine. All tunes generated
by the final model were syntacticly valid and con-
tained all necessary header fields. This is as ex-
pected because the SeqGAN technique was devel-

oped specifically for handling sequences of dis-
crete tokens, which is what abc tunes are made up
of and the syntax rules of abc are not that strict so
minor mistakes will be forgiven. The length of the
sequences used in the examples from the original
paper by Yu et al. mostly lay below 100 tokens.
Although the number of tokens in the abc tunes
the model in this study was trained on was some-
times almost 10 times larger, this did not seem to
be a problem. It would still be a good idea to study
how the length of the sequences influences the be-
haviour of the model.

Determining the quality of generated se-
quences is a hard problem. It would be great to be
able to do this evaluation automatically. The way
the BLEU score is being used to evaluate machine-
translations [14] inspired a search for such metrics
to rate generated abc tunes. Unfortunately a useful
and reliable metric was not found. The empirical
approach to testing the quality of the tunes, as was
used in this study, did lead to a result but a ques-
tionable one. Although a difference in ratings was
found and it did match the hypothesis, it was not
of significant size. A reason for this could be that
the participants were not prepared for the way the
tunes sound. Compared to mainstream music the
tunes from the dataset sound very minimalistic and
simple. The automatic conversion of the abc-file
to listenable mp3 also made all notes sound very
’staccato’; there is no overlap between the notes
and every note is played at the same intensity. This
makes the tunes sound somewhat robotic and bor-
ing. The difference between the generated tunes
and the tunes from the dataset may have gone un-
noticed because of this culture shock. The sam-
ple size of the experiment could also have been
too small to accurately represent the population.
Another explanation for the insignificance of the
difference found, could be that the generated mu-
sic really is of comparable quality as the real tunes
but the model has not fooled me once so I find that
hard to believe. To rule out these options another
experiment could be conducted. The sample size
should be much larger and the participants should
first get used to the ’abc sound’, which could be
achieved by converting a few famous songs to abc
and playing these before the start of the experi-
ment.

References
[1] Implementation of sequence generative ad-

versarial nets with policy gradient.
[2] The session. https://

thesession.org/. Accessed: 2017-
06-09.

[3] Nipun Agarwala, Yuki Inoue, and Axel Sly.
Music composition using recurrent neural
networks.

[4] James Allwright. Abc version of the
nottingham music database. http:
//abc.sourceforge.net/NMD/. Ac-
cessed: 2017-06-09.

[5] Richard Bellman. Dynamic programming
(dp). 1957.

[6] Benjamin Bolte. SeqGAN implemen-
tation for generating text using an rnn.
https://github.com/codekansas/
seqgan-text-tensorflow/. Ac-
cessed: 2017-05-18.

[7] Université de Montréal. Nottingham dataset.
http://www.iro.umontreal.ca/
~lisa/deep/data. Accessed: 2017-05-
19.

[8] Emily L Denton, Soumith Chintala, Rob Fer-
gus, et al. Deep generative image models
using a laplacian pyramid of adversarial net-
works. In Advances in neural information
processing systems, pages 1486–1494, 2015.

[9] Al Gharakhanian. GANs: One of the
hottest topics in machine learning. https:
//www.linkedin.com/pulse/gans-
one-hottest-topics-machine-
learning-al-gharakhanian?trk=
pulse_spock-articles. Accessed:
2017-06-08.

[10] Ian Goodfellow. goodfeelow_ian com-
ments on generative adversarial networks
for text. https://www.reddit.com/
r/MachineLearning/comments/
40ldq6/generative_adversarial_
networks_for_text/cyyp0nl/.
Accessed: 2017-06-11.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. In Advances in
neural information processing systems, pages

2672–2680, 2014.
[12] William H Kruskal and W Allen Wallis. Use

of ranks in one-criterion variance analysis.
Journal of the American statistical Associa-
tion, 47(260):583–621, 1952.

[13] Merriam-Webster Online. Merriam-
Webster Online Dictionary. http:
//www.merriam-webster.com, 2009.

[14] Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. Bleu: a method for
automatic evaluation of machine translation.
In Proceedings of the 40th annual meeting
on association for computational linguistics,
pages 311–318. Association for Computa-
tional Linguistics, 2002.

[15] R Core Team. R: A Language and Environ-
ment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Aus-
tria, 2013.

[16] Scott Reed, Zeynep Akata, Xinchen Yan,
Lajanugen Logeswaran, Bernt Schiele, and
Honglak Lee. Generative adversarial text to
image synthesis. In Proceedings of The 33rd
International Conference on Machine Learn-
ing, volume 3, 2016.

[17] Robert A Rescorla, Allan R Wagner, et al.
A theory of pavlovian conditioning: Vari-
ations in the effectiveness of reinforcement
and nonreinforcement. Classical condition-
ing II: Current research and theory, 2:64–99,
1972.

[18] John R Searle. Minds, brains, and programs.
Behavioral and brain sciences, 3(3):417–
424, 1980.

[19] Bob L Sturm, João Felipe Santos, Oded Ben-
Tal, and Iryna Korshunova. Music transcrip-
tion modelling and composition using deep
learning. arXiv preprint arXiv:1604.08723,
2016.

[20] Richard S Sutton, David A McAllester, Satin-
der P Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning
with function approximation. In Advances in
neural information processing systems, pages
1057–1063, 2000.

[21] Chris Walshaw. abc notation home page.
http://www,abcnotation.com. Ac-
cessed: 2017-06-06.

[22] Lantao Yu, Weinan Zhang, Jun Wang, and
Yong Yu. Seqgan: sequence generative ad-
versarial nets with policy gradient. In Thirty-
First AAAI Conference on Artificial Intelli-
gence, 2017.

Appendix A: Generated samples
The first 5 generated samples are of class

’random’ (that is: generated and immediatly
used without subjective evaluation). The last 5
generated samples are of class ’selected’ (they
come from a set of 50 generated tunes and were
manually picked). The order of the tunes in this
section corresponds with the order of the tunes in
their classes in the evaluation section.

X:1
T:The Drunk
M:4/4
K:Cmin
|: G C D E G E G | e 2 d c A G A 2 | G A
G c e 2 d d | e 2 c e 2 e e 2 2 c e 2 e | e 2 c
e 2 c c 2 B | A 2 B F 2 G B c d | e 2 c e 2 c
B 2 e | A 2 B c 2 d B A G | E 2 | D E E G 2
| e 2 d c 2 c B 2 G | A 2 G c 2 d | B 2 c G 2
c B 2 B | A 2 G F E E F 2 :| |2 B | G B A B | c 3 G 2 |

X:1
T:Taerinhe Birlin
M:6/8
K:Cmix
f > a c > f f | e > c c > e g | f 3 f 2 :|

X:1
T:The Brue Dort The Bille
M:2/4
K:Cdor
B G C D G 2 | G G F 2 C E | F 2 E F 2 2 C 2 | C
D E 2 C 2 | F 2 B, C D | E F F B, 2 A, | , 2 C D |
G E C C 2 | E 2 E F D 2 | F D E 2 C 2 | F D E F
C 2 | C 3 E, A, 2, | C D D B 2 | A, 3 B, C 2 | A, C
D 2 | C 3 :| |: E | C E C 2 C D | E E C E 2 | C 2 E
3 | D E C 4 | C D C 4 | C 2 C 4 | C 2 C 4 | G 2 A 3
G | A B c 2 c 2 | A 3 G 2 c 2 | G 2 G 4 | G 2 A 3 G
| A 3 G 2 | G 2 A 3 G | A B c 2 B 2 | A 2 G 4 | G 2
G 4 | G 2 A 3 G | A B c 2 B 2 | A 2 G 2 G 2 | A 2 G
4 | G 2 A 4 | |2 D 3 D C 2 | C 2 C 4 | C 2 E 3 D | C

2 G 2 | D 6 | G 4 | G 2 A 3 G | A B c 2 B 2 | A 2 G
2 G 2 | A 2 E 2 C 2 | C D E 2 G 2 | C 2 E 2 C 2 |
C 2 E 4 | 2 | G 2 E 2 G 2 | A 2 G 4 | G 2 A 3 G |
A B c 2 B 2 | A 2 G 4 | C D 2< E 2 D | C 2 G 4 |
G 2 A 3 G | A 2 c 2 G 2 | A 2 G 4 | G 2 A 3 G | A
B c 2 B 2 | A 2 G 4 | G 2 A 3 G | A B c 2 B 2 | A
2 G 4 | G 2 E 2 D 2 E 2 | C 2 C 4 | G 2 A 3 G | A
B c 2 B 2 | A 2 G 2 | 2 | C 2 E 2 G 2 | A 2 G 2 | G 2 G

X:1
T:The Barshe Boss On M:2/4
K:Cmaj
|: C 2 E C C E c 2 | G 2 G 2 E 2 G 2 | F 2 E 2 C 2
G 2 | F 2 E 2 G 2 | F 2 A 2 G 2 | F 2 E 2 G 2 | G 2
A 2 G 2 | A G G 2 | 2 | G 2 E 2 G 2 | A 2 G 4

X:1
T:Batbie Fowsls M:3/4
K:Cmaj
|: A | C E G c e 3 f | g e d e c A G E | G E G c d 2
E 2 | G c e d e 2 f | g e d e c A 3 |1 G c c 2 c 2 :| |:
d 2 d 2 c 2 A A | G C D 2 C 2 | C 2 E 2 D 2 | D 2 E
2 C 2 | G 2 A 2 G 2 | F 2 A 2 G 2 | A 2 G 2 E 2 | C
2 G 3 G | A B c 2 B 2 | A 2 G 4 | G 2 G 4 | G 2 A 3
G | A B c 2 B 2 | A 2 G 4 | G 2 A 3 G | A B c 2 B
2 | A 2 G 4 | G 2 A 4 | A G A 2 c 2 | A 2 G 4 | E D C 4

X:1
T:The May Waltz
M:3/4
K:Cmaj
G 3 A G 2 | G 2 A 2 c 2 | c 2 G 2 E 2 | F 6 | e 4 B 2
| d 2 c 2 c 2 | c 2 G 2 E 2 | F 6 E F 4 | D 2 G 2 e 2
| e 6 | e 4 B 2 | d 2 c 2 c 2 | c 2 G 2 E 2 | F 6 | F 4
E 2 | D 4 D 2 | D 2 G 2 e 2 | e 2 d 4 | d 2 d 2 d 2 |
d c c 2 | d 2 c 2 | G 2 A 2 G | A B c 2 B 2 | A 3 G 2
| G 2 A 2 B 2 | c 2 B3 B c B A 2 | (3 G A G E 2 D 2
| C 6 | E 2 E 2 | D 3 D E 2 | A, 3 B, C 2 | G, 3 C B,
2 | A, 3 B, C 2 | G, 3 C B, 2 | A, 3 B, C 2 | B, 3 C
D 2 | E 4 F 2 | C 3 G 3 | A G > E C 3 | D E 2 A, 3
| B, C 2 G, 3 | C B, 2 A, 3 | B, C 2 B, 3 | C D 2 E 3
| E E 2 D 3 | G, C > E G 3 | A G > E C 3 | D E 2
A, 3 | B, C 2 G, 3 | C B, 2 A, 3 | B, C 2 B, 3 | C D
> E C 3 | C D 2 C 3 | G, C > E G 3 | A G > E C
3 | D E 2 A, 3 | B, C 2 G, 3 | C B, 2 A, 3 | B, C 2
B, 3 | C D 2 E 3 | E F 2 D 3 | G, C > E G 3 | A G
> E C 3 | D E 2 A, 3 | B, C 2 G, 3 | C B, 2 A, 3 |
B, C 2 G, 3 | C B, 2 A, 3 | B, C 2 B, 3 | C D 2 E 3

| E F 2 D 3 | G, C > E G 3 | A G > E C 3 | D E 2
A, 3 | B, C 2 G, 3 | C B, 2 A, 3 | B, C 2 B, 3 | C D 22

X:1
T:Anddien The Hor
M:6/8
K:Cdor
| G c c d e d | e d c d c d | e d c B c c | c d c d 3 :| c
e g g g c | c d c g f d | f g g g c c | c c d e c c | c d c g
c d | c d c g 2 d | c 3 c g 3 :| c’ b g g f d | c 3 c c 3 |
c b g g f d | f g g g f d | c 3 c c 3 | g c d e c c | c d c g
f d | c d c g 2 a | b a g g f d | f g g g c c | c d c g f d | c

X:1
T:The Bllk OotoreenHan
M:6/8
K:Cmaj
|: g > b c’ | e > c f 2 :|
X:1
T:The Brill With The Blue Dress
M:2/4
K:Cmin
G C C 2 | C 2 E C F 2 F F | G F E 2 C D | D G E
D E D C 2 | C D E D D F | D C D F D C | D D C
B, C D | E 2 C D 2 E | F 2 G E E D E C 2 D B, 2
G F 2 | G 3 F F 2 | D 3 D C D | D E | C 3 D C 2 |
A 3 G A 2 | G 3 F F 2 | D 3 G C 2 | E 2 C 4 | C 2
C 4 | C 2 C 3 G | A B c 2 B | | B 2 2 | A 3 G 2 2 | A
2 G 2 2 | D 3 G C 2 | A 3 D E 2 | D 3 G B 2 | A 3
G 4 | G 2 A 4 | G 2 G 3 G | A B c 2 B 2 | A 2 G 2
G 2 | G 2 E 2 D 2 | 2 | C 4 | C 2 C 4 | G 2 A 3 G |
A B c 2 B 2 | A 2 G 4 | G 2 A 3 G | A B c 2 B 2 | A
2 G 4 | G 2 A 3 G | A B c 2 B 2 | A 2 G 4 | E D C 4
| C 2 C 4 | G 2 E 3 D | C 2 C 2 | C 2 C 3 D | E 2 G 4

X:1
T:The Balnk n mont
M:2/4
K:Cmaj
| e c e d c 2 G A | G A G F D 2 G C | c 3 D F G F
E F | G A B c A G E D | G A B c A G E D | C 3 D
E D A 2 B | A G F G F D F D C | c A F F A F A F
| c A F G G F D C | c A F A G F B A | G E D C C
C D F | B A G F G 2 C D | D E F D A 2 G c | B c
A G A D F D | E D C A, C G, | , C D E D C :| |2 E
G D E G E E C | F, C D A, C A, C | A, C D E C B,
C A, | G, A, C D A, C A | A, C E, C, C

Appendix B: Screenshot of questionnaire

Fig. 8: Top third of the evaluation questionnaire.

Fig. 9: Middle third of the evaluation question-
naire.

Fig. 10: Bottom third of the evaluation question-
naire.

