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Abstract

The ever growing spread of spam emails, despite being adequately fought
by spam filters, can be more effectively addressed by understanding how
spammers act. Grouping spam emails into spam campaigns, provides valu-
able information on many aspects; how spammers obfuscate and correlation
between seemingly different spam campaigns as well as many descriptive
statistics. In this thesis, we focus on identifying spam campaigns from a
7.5 months period by clustering the web pages, which are referred to by
the URLs inside the spam emails, based on their content. Following that,
we apply Latent Dirichlet Allocation to assign a topic to every cluster and
finally, we present a mechanism that incrementally clusters the incoming
spam emails into spam campaigns in an automatic and on-line environment.
We argue that our method for spam campaign identification is quick and
efficient, able to represent the identified spam campaigns in a compact man-
ner. On top of that it can assist towards better understanding of the domain
and its applications.
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1 Introduction

Spam messages are an efficient, cheap and common way of spreading un-
solicited messages used for many purposes such as advertising, deceiving,
testing the efficiency of spam detection systems, hacking and infecting com-
puters etc. but most of the time, its main purpose is to make money. In this
thesis, we narrow our interest to spam emails, also known as junk emails or
unsolicited bulk emails (UBE), and we are particularly interested in identi-
fying spam campaigns. In the context of this work, we will try to identify the
spam campaigns, extract the topic for each spam campaign and finally cre-
ate a mechanism that will be able to automatically cluster the spam emails
into spam campaigns. Therefore, the work is divided in chapters as follows.

In chapter 1 we state the problem and present the related work in this
field while we differentiate our work from the previous studies.

Chapter 2 refers to the database acquisition and management and de-
scribes the methods and the procedure we adopted to gather our data.

In chapter 3 we present the measures we used throughout the experi-
ments we conducted. We give an overview of their functionality and explain
their suitability for our cause.

Chapter 4 describes the process of identification of spam campaigns from
spam emails that arrived during a 7.5 months period. We explain the pro-
cedure, the algorithm and the hypotheses we introduced for identifying the
spam campaigns. Finally, we explain those results based on the evaluation
we performed and our insight into the data.

In chapter 5, we try a topic modelling approach in order to label our
clusters. Latent Dirichlet Analysis (LDA) is used so that we can get an idea
of what the identified clusters are about and we also present some interesting
descriptive statistics.

Chapter 6, describes an algorithm for automatic, on-line incremental
clustering of spam emails. Based on the evaluation of the clusters, the best
performing setting is chosen and applied.

Finally, in chapter 7, we conclude with a summary of the main results
and open the path for future work and directions in this field.

1.1 Problem statement

According to [3], an electronic message is ”spam” if (A) the recipient’s per-
sonal identity and context are irrelevant because the message is equally
applicable to many other potential recipients; AND (B) the recipient has
not verifiably granted deliberate, explicit, and still-revocable permission for

1



it to be sent. The volume of mass unsolicited electronic email has increased
dramatically, being a threat not only to the internet but also to society. For
instance, according to Symantec Intelligence Report [2], the global propor-
tion of spam in email traffic had reached 71.9% during March and April
2013.

It is generally believed that spam campaigns are designed such that they
serve numerous different purposes such as advertising, deceiving, testing the
efficiency of spam detection systems, hacking and infecting computers etc.
Most of the times though their aim is to increase revenue. People responsible
for distributing spam emails are often those who try to spread these spam
emails in a way such that they are not easily tracked by the spam filters,
i.e. they use obfuscation techniques.

By looking at spam emails as a whole we can hardly ascertain any char-
acteristics that may point to strategies being used [19], but by grouping
those spam emails into spam campaigns, we can gain insight into spamming
strategies and protect ourselves better. Although the way spammers ob-
fuscate is not our subject of study, it could be better treated when spam
emails are grouped so that each spam campaign can be examined separately
for common patterns [10].

Eventually, by clustering the spam emails, we are able to extract insights
that could assist in understanding how spammers obfuscate and disseminate
their messages. Also, there is a vast amount of data, where analysing all
these spam emails is infeasible and costly. By grouping the spam emails into
clusters, we can focus on different set of spam emails that maintain their
characteristics and speed up the procedure. On top of that, spam gangs
are generally believed to be responsible for launching the spam campaigns.
Different spam campaigns can be originated by the same spam gang [15].
As a result, identifying spam campaigns and studying their attributes and
characteristics is an important step towards identifying spam gangs in terms
of the way they operate.

Therefore, our main purpose is to find a way to identify the spam cam-
paigns, which we will further use to build an incremental mechanism for
clustering spam emails into spam campaigns, as described in chapter 6.

1.2 Spam campaign definition

There is no generally accepted definition for a spam campaign. According to
[14], a spam campaign is commonly used with varying degrees of generality
to mean anything from all spam of a certain type (e.g. pharmaceutical), to
spam continuously generated from a single template. Also according to [14],
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three levels of abstractions are introduced to further define the term.

1. Classes: Intened purpose of the spam, e.g. phising, pharmaceutical
offers, stock scam etc.

2. Types: Sets of spam campaigns that have messages that share content
which can be matched directly, such as verbatim text.

3. Instances: Sets of spam campaigns that are identical but run across
several time periods, delimited by 24 hour time slots.

Another more compact definition of spam campaign comes from [10],
where they state that a spam campaign is defined as ”a set of spam messages
that have the same goal, such as advertising a specific brand or product; and
that also use the same obfuscation strategy among this set of messages”

Since we are not dealing with obfuscation techniques, our definition for
a spam campaign is those spam messages that refer to the same entity (e.g.
sets of spam emails that advertise a product).

1.3 Related work

Spam campaign identification has received a lot of attention and several
studies have focused on this topic, although each one for different purposes.

A spam email has different attributes one can explore in order to iden-
tify the spam campaigns. Based on these attributes, we can categorize the
related work as follows.

Li and Hsieh in [16], in order to cluster the behaviour of spammers, they
try to cluster the spam emails based on the URLs of the spam email. Their
group-based anti-spam framework can be used as a complementary tool to
the anti spam filters for a more efficient block of spammers. In the same
context, the authors in [21], have proposed the AutoRE framework, that
can detect botnet hosts by signatures, which are generated from URLs that
are embedded in the body of the emails. The two aforementioned studies
focus on URL-based clustering. Despite exhibiting a very good performance,
spammers can easily obfuscate the URLs, for instance by using dynamic
source IP adresses or polymorphic URLs.

A different approach for identifying spam campaigns is to examine the
content of the spam emails. Such an approach is presented in [22], where
the goal of the authors is to map botnet memberships (group bots into
botnets),for which they first need to identify the spam campaigns. This is
performed by applying the shingling algorithm [9], as a text mining process.
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A similar approach was conducted by [18], where they designed an online
spam campaign detection tool called SpamCampaignAssassin (SCA). SCA
involves a text mining framework that utilizes Latent Semantic Analysis
(LSA) to identify campaigns. These two approaches though suffer from lack
of scalability and as a result text mining becomes ineffective.

Wei et. al in [20] use the agglomerative hierarchical clustering algorithm
together with the connected components with weighted edges in order to
cluster the spam emails. Cailis, et al have tried to identify spam campaigns
in order to characterize the spamming strategies. They have developed a
technique based on a frequent pattern tree that explores many attributes
of a spam email such as its language, layout, message type (HTML, text,
image), URL and subject. Haider et al. in [12], in order to group spam
emails into spam campaigns, have applied Bayesian hierarchical clustering
[13]. A generative model is created so that binary vectors are clustered
based on a transformation of the input vectors. Lems in [15], also tries to
identify spam campaigns in order to examine to what extent spammers tend
to share resources such as mail server, recipient list and web servers. To
this end, he constructed a bag-of-words model to represent the text of the
spam email (i.e. subject and body) and then he applied an agglomerative
hierarchical clustering algorithm on the document vectors.

Finally, Anderson et al. in [4], have followed a different path towards
identifying spam campaigns. Specifically, their model, spamscatter, follows
the URLs lying inside the spam emails and cluster the spam emails into
spam campaigns, using image shingling from the content of the referred web
pages.

1.4 Spam campaign identification based on websites

In spite of the fact that the related works include novel ways for identification
of spam campaigns, our work differentiates by exploiting an attribute of a
spam email that has not attracted much attention so far. An attribute of a
spam email is the attached link it contains, usually in the body of the spam
email, that links to a web page. There might be more than one attached
link possibly pointing to different web pages. Our work therefore focuses on
studying the web pages that originate from the spam emails and trying to
determine document similarity on the content of the referred web pages. We
believe that by comparing the referred web pages, we can cluster the spam
emails and identify the spam campaigns. Another significant reason behind
studying the web page from the attached link, is that we believe it is not
or hardly obfuscated. Although some typical obfuscation techniques are to
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replace words with synonyms, insert irrelevant words in between sentences,
change the ordering of sentences etc. that usually apply in the subject,
URLs or in the body of the email, we believe that the referred web page is
less obfuscated and a better clue to take advantage of. To the best of our
knowledge, only [4] has dealt with the referred web pages, but we focus on
the text of the page instead of the images contained in it.

Looking at the web pages, the problem is then translated into comparison
of text between documents. When it comes to document similarity, there
is a vast literature devoted to that subject. However, due to the special
nature of our dataset and the purpose we want to achieve, we explain the
procedure we followed and our reasoning in chapter 3, where we describe the
appropriate measures we applied for document similarity. First, we describe
in the next chapter how our data are organized in the databases and the
filters we applied in order to extract our dataset.
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2 Data acquisition and management

The first challenge to encounter was the acquisition of the dataset. ParaBots
(PAge RAting BOT Systems) has created a system that stores large volumes
of spam emails that arrive daily.It processes the spam emails through the
spam monitor software in order to analyse their behaviour and contribute
to a better understanding of the domain. So, the daily flow of spam emails
can reach up to 1 million which are then stored in the databases for further
analysis.

2.1 Data organization

There are two databases for storing the data, a MongoDb and a MySQL
database. The MongoDb database is responsible for storing all the infor-
mation about the spam emails. It contains several tables, each one used
for storing specific attributes of the spam emails. Every spam email has
a unique number (id); a link between the tables. There are many tables
in the MongoDb database but for illustrative purposes we refer to the two
most important ones. The spam table contains attributes such as original-
mail-from (sender’s mail address), arrival date (date that the spam email
was received), charset (UTF-8 or ISO-8859-1 format), PlainTxt (text of the
body of the spam email), html (html code of the spam email) etc. The
url table contains attributes such as charset (UTF-8 or ISO-8859-1 format),
host (the domain of the URL), in (which spam emails contain a specific
URL) etc.

These tables are characteristic examples of the organization of the Mon-
goDb database; there are many more to fully describe and categorize the
spam emails. What is more, the spam emails very often contain attached
URLs that refer to an external web page. Spam emails can either contain
more than one URL or none. If a spam email has attached links, it usually
has only one. In case of more than one attached links, it is reasonable to
believe that they refer to the same entity (URLs point to web pages with
similar content). Whatever the case is, the web pages are uniquely num-
bered when stored in the MySQL database and we can always refer back to
the MongoDb database to see in which spam email they are contained. The
MySQL database is responsible for storing all the relevant attributes of the
spam web pages with a structure similar to the MongoDb database. THe
MySQL database is also organized in tables, each one containing relevant
attributes of the web pages. Indicatively, we mention a couple of important
tables so as to show the structure of the database. The table pages contains
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attributes such as title, summary, html code, charset, country code, plain
text and download date. The table language contains the attribute language
that the web page is written in.

2.2 Filtering English and url contained spam emails

From now on, we will only refer to the web pages as stored in the MySQL
database as these are the subjects of study and our further analysis. Having
clarified the way the databases are structured, we now describe the filters
that are set in order to obtain the data. The first and apparent filter to be
applied is the fact of whether a spam email contains an attached URL or
not. Therefore, we filter out those spam emails that do not contain a URL.
This is the filter with the highest impact on the reduction of spam emails.

The second filter is the language of the text of the website. There are
many different languages that a web page can be written in. A language
detector tool is applied in order to predict the language used for every web
page and based on this tool the database is updated in the relevant table. We
are interested only in the English language which is by far the most popular
language (from 17/09/2014 until 29/04/2015 there are 44223 English web
pages, 25048 German web pages, 854 Italian web pages, 706 French web
pages, 564 Swedish web pages, 532 Dutch web pages and many more in
decreasing order).

After these two filters applied, we ended up with an order of tens of web
pages per day, where prior to the filters, it used to be up to one million. The
MySQL database stores only the web pages, which means the spam emails
have already been filtered on the URL attribute. So MySQL is our main
database to work with, while we need to add the extra limitation on filtering
on the language to retrieve only the English web pages.
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3 Appropriate similarity measures

One of the basic and fundamental problems we faced was the choice of the
measure that could identify the similarity between two web pages. Before
describing the measures we applied, we need to report a couple of attributes
that are related to the nature of the web pages.

From our experience and having manually inspected many web pages,
we have the following remarks to present. Our first observation has to do
with the type of the web pages in our dataset. In general, there are two
categories of web pages. The first contains very similar web pages while the
second contains those web pages that have some parts in common but are not
considered near-duplicates. The first category usually contains web pages
that differ only in a small percentage. The difference might lie in numbers,
titles, names or different attached links. These web pages are often warning
messages or fixed messages that are informative about malicious behaviour
of sites, absence of a valid url etc. Sometimes, they might contain the actual
content of a web page but whatever the case is, these web pages differ only
in a small percentage.

On the other hand, the second category of web pages relates to those
web pages that are similar in a different sense than what is described for
type 1. It is a common phenomenon that web pages have different news
in the context of their texts. A web site might be 200 words long, split in
6 paragraphs and each paragraph talking about a specific topic. Two such
web pages might have one or more paragraphs in common, meaning that
these paragraphs are exactly or almost similar. As a consequence, two web
pages may share a common part of text but a third web page might share a
different part of text with one of the two previous web pages. Nevertheless,
as long as this is the case (identical parts shared among the web pages) the
second category contains web pages that are partially similar among each
others.

Next, we describe two measures that we tested and explain their suit-
ability to our cause.

3.1 Simhash

Charikar’s Simhash [11], is particularly useful for identifying near-duplicates
in web documents belonging to a multi-billion page repository [17]. Initially,
simhash was the fist measure to apply in order to obtain a similarity score
between two web pages. Every document is represented as a number of bits
with 64 and 128 to be the most common. Their binary representation allow
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for quick hamming distance calculation and eventually a score to indicate the
number of different bits between two documents. A threshold is then defined
to determine the similarity between documents. It was only after we got the
first results, when we realized its unsuitability to our purpose. Simhash is
designed such that it can detect near duplicate documents; documents that
differ only in a small percentage, like those belonging in type 1 as described
in 4. Simhash is very sensitive to minor changes in text and this is why
the threshold for a 64 bit simhash value is really low. The threshold for
a billion document database according to [17] with 64 bits is estimated to
work properly for values 4 or 5. As a result, while it was able to identify
near duplicate documents, it lacked in being able to distinguish between
documents of type 2. Consequently, simhash was unable to capture the
documents that constitute a spam campaign, because of their bigger than 5
difference in score.

3.2 Plagiarism detection

Having abandoned the idea of Simhash and figured out the cause of the
problem, we tried to come up with a scheme that would fit to our needs.
Plagiarism detection was the scheme to introduce as it is able to capture
web pages that share common parts. It is reasonable to believe that two
web pages that share a subtext of a few lines, each one taken from its
corresponding text, originate from the same source. Plagiarism detection
then could perform well in both categories of web pages. Consequently, for
the web pages of the first category, the output score would be very high
whereas for the second category would be lower.

In terms of plagiarism detection, the successful measure to be applied
should be able to output a similarity score between two documents, indicat-
ing the degree of their similarity. The size of the document is a factor to take
into account. On one hand it influences the percent of similarity between
two documents but we believe that two documents that are considered to
belong to the same spam campaign do not have substantial difference in
their size. The ideal measure should be able to embed fuzzy logic. In other
words, it should be able to detect that two documents refer to the same
entity despite any possible obfuscation techniques or re-organization of the
structure of the documents.

Fuzzywuzzy in Python [1], a library for Fuzzy String Matching or Ap-
proximate String Matching, was deployed to assist in that purpose. Fuzzy
String Matching, is the process of finding strings that approximately match
a given pattern. The closeness of a match is often measured in terms of
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edit distance, which is the number of primitive operations (insertion, dele-
tion and substitution of a character) necessary to convert the string into an
exact match.

Typical applications of Fuzzy String Matching involve spell-checking,
text re-use detection (as of plagiarism detection), spam filtering as well
as several applications in the bioinformatics domain, e.g. matching DNA
sequences.

The fuzzywuzzy library contains several functions, each one designed for
different applications of Fuzzy String Matching. The score ranges from 0 to
100 with 100 indicating exact similarity and 0 totally different. Next, we list
those functions along with the description of their suitability and conclude
to the one we chose to apply.

Figure 1: ratio vs partial.ratio for Fuzzy String Matching.

Figure 2: fuzz.token sort ratio vs fuzz.token set ratio for Fuzzy String
Matching.

Consider the first example in figure 1. The fuzz.ratio() function is con-
fused by the suffix ”Inc.”, which is used in company names, but essentially
the two strings refer to the same entity.
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Looking at the second example we observe the exact opposite behaviour.
The reason is the term ”H.” in the middle of the string that produces a lower
score for fuzz.partial ratio(). In order to overcome that problem, we tried
two other functions that tokenize the string and treat it as a set or a sequence
of words as shown in figure 2.

The token * functions split the string on white-spaces, turn all upper-
cases into lower-cases and remove the non-alpha and non-numeric characters.

We chose the token set ratio as the function to apply for determining the
similarity between two documents, because we believe it can represent an
entity better. The score of the token set ratio is not influenced (decreased)
by random words that might exist inside the strings. In that way, it avoids
such cases of typical obfuscation techniques. Instead, it is searching for
similar sets of terms that refer to the entity.
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4 Clustering spam campaigns for identification

In this chapter, we are going to show how web pages can be clustered so
that spam campaigns can be identified. Spam campaign identification as
presented in this chapter, will serve as the baseline for the next chapters
that deal with labelling of those clusters (chapter 5) and on-line, automatic
incremental clustering of incoming spam emails (chapter 6). We open this
chapter by referring to the importance and the role of the parameters we will
employ, while examining the range of their values leading to a series of exper-
iments (4.1). Next, we describe the idea behind the design of the algorithm
along with some heuristics used to assist in performing the experiments as
presented in 4.2. We continue in 4.3 by performing an evaluation of the
clusters in order to select the best performing configuration of parameters
and we conclude with 4.4 where we discuss the results.

4.1 Parameter selection

In this section, we focus on identifying spam campaigns. There are 44.223
web pages in total from a 7.5 months period (17/09/2014 - 29/04/2015).
These web pages need to be clustered in such a way that one cluster rep-
resents a spam campaign. For that reason we employ the Fuzzy Wuzzy
measure in order to get a score when the text of two web pages is compared.
The algorithm that we describe next is based on two main functions. It is
apparent that we cannot do pairwise comparisons in our whole dataset as
it would require n2 comparisons. Therefore, we needed to come up with a
scheme in order to reduce the number of comparisons, while maintaining
the trustworthiness of the results. Hence, we split our dataset into batches
and for every batch separately, we identified the spam campaigns, The spam
campaign identification for every batch is the outcome of the first function.
The second function, has to do with the merge of those batches. As a result,
prior to implementing the algorithm, we defined two parameters that are
described next.

4.1.1 Length of batches

Regarding the first parameter, we split our dataset into batches and pro-
cessed each batch separately. The length of the batch is a parameter to
experiment with, but it is unavoidably limited within certain boundaries.
The batch should not be small since it would seriously affect the results
when the join-of-the-batches algorithm takes place. It should also not be
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too large because in that case the time complexity increases dramatically.
In general, the bigger the batch, the more reliable the results would be. In
other words, the more we increase the length of the batch the more it tends
to reach the pairwise comparison state.

We found two cases that served our purpose adequate enough to exper-
iment with. The batches contain either 1000 or 2000 web pages. Batches of
1000 web pages do not need a lot of time and it is considered big enough
for obtaining reliable results. On the other hand, batches of 2000 web pages
require more time to execute while the results theoretically should be closer
to the actual results.

4.1.2 Determining the threshold

The second parameter to test is the threshold of the fuzzywuzzy measure,
which determines whether two web pages should belong together under the
same spam campaign or not. The score ranges from 0 to 100 with 100 indi-
cating that the two web pages are exactly the same and 0 totally different.
Applying such a measure without any previous knowledge on its appropriate
threshold value, unavoidably leads to a big series of experiments in order to
pick the most suitable threshold value. After some preliminary experiments
with extreme values, we rejected threshold values ranging from 0 - 40 and
80 - 100 as in the first case the score is not adequate enough to distinguish
between similar web pages whereas, in the latter case a high threshold cat-
egorizes web pages such that two ”similar” web pages are not assigned to
the same cluster as expected.

Finally, the threshold values to be examined range from 45 to 75 which
combined with the two cases of batches constitute 14 different experiments.
The following table shows these experiments.

Settings 1 2 3 4 5 6 7
Batch size 1000 1000 1000 1000 1000 1000 1000
Threshold 45 50 55 60 65 70 75

Settings 8 9 10 11 12 13 14
Batch size 2000 2000 2000 2000 2000 2000 2000
Threshold 45 50 55 60 65 70 75

Table 1: set of experiments with 14 parameter configurations.
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4.2 Methodology - implementation

After having determined the possible values of the parameters we also need
to describe the pipe line of the algorithm. The size of the batches and
the threshold of the similarity measure are the two apparent and prede-
fined parameters in the algorithm. Nevertheless, during the implementation
the need for defining a couple of different parameters came up. These pa-
rameters, embedded in the core of the algorithm need also to be stated as
they also (slightly) influence the outcome of the algorithm and are described
next along with the explanation of the decisions made for the design of the
algorithm.

After fetching the data from the MySQL database, we preprocessed the
text in the standard way so as to reduce the feature space and make the
comparison between web pages faster. The preprocessing step involves low-
ering the capital letters, removing the punctuation, removing the numbers,
stripping the white space and removing the English stop words.

Starting with the first function and having set the threshold and the
length of the batch, the algorithm works as follows: the first web page is
assigned to the first cluster since the dictionary that stores the clusters is
empty. The second web page to be clustered is compared with the first
already clustered and if they are found to match (the score is above the
predefined threshold) then it is assigned to the same cluster as the first web
page. If the score is less than the threshold, the second web page is assigned
a new cluster and thus starts a new spam campaign. Algorithm 1 below in
pseudo-code describes this procedure.

It is worth mentioning that every page is assigned to the first cluster
it matches. Theoretically, the ideally formed clusters should be different
from each other. That means that the ordering of the clusters should not
have any influence on the result. No matter the ordering of the clusters
(line 3 of algorithm 1), the page is supposed to be assigned to the cluster
if and only if its score with every page from the cluster-sample is above
threshold. In reality, the clusters are not formed ideally, which leads to low
intra- and high inter-cluster similarity scores. To check how sensitive the
result is with respect to the processing order, would require the repetition of
this experiment several times. Then, we would need to evaluate the clusters
based on a different ordering of the available clusters at each step of the
algorithm. All in all, different ordering of the clusters should not influence
the result, but in our case, due to the sampling method, different ordering
of clusters might give a better insight.

At this point, we introduce the implicit parameters that take place when
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Algorithm 1 clustering the batches.

1: for each batch do
2: for each new web page P in batch do
3: for each already existing cluster C do
4: determine size C
5: Select random sample R from cluster C
6: for each page Pr in R do
7: if score(P,Pr) >= threshold then
8: NrOfTrue increases by one

9: if NrOfTrue == number of samples in R then
10: assign page P to cluster C
11: break
12: if PageNotAssignedToExistingCluster then
13: Create new cluster with page P

a web page to be clustered has to be compared with the already clustered
web pages. Let us suppose that we are in the middle of the process and
there have been 500 web pages already clustered. In that point, these 500
web pages have been clustered creating a number of clusters. Each cluster
contains a number of web pages which can vary from 1 to 500. In order
to assign a new web page into one of the already existing clusters, it needs
to check the web pages inside each cluster and as soon as it matches with
those web pages it is assigned to the corresponding cluster. For instance, a
cluster may contain one hundred web pages and we simply can not afford
one hundred comparisons in order to check if the new page belongs in that
cluster. As a result, after every assignment of a new web page into some
cluster, the updated clusters are split into 5 categories depending on their
size. The new web page to be clustered is compared against a random
selection of web pages from each cluster. The overview of how clusters are
categorized together with the corresponding samples is presented in table 2.

Also, in order for a new web page to be assigned to a cluster, the score
for each comparison must be above threshold. In other words, it must be
considered ”similar” with every randomly selected web page from a clus-
ter. We refer to these parameters as implicit because they were not clearly
stated prior to building the algorithm. In contrast to the two initially de-
fined parameters based on which, we performed a series of experiments, we
experimented with the implicit parameters by evolving from the early ver-
sions of the algorithm to the latests. A more detailed description on the
implicit parameters is given at the end of section 4.2. All in all, we could

15



Category Size of the clusters Random sample per cluster
1 1 - 5 1
2 6 - 10 2
3 11 - 50 5
4 51 - 100 8
5 More than 100 10

Table 2: Size of the clusters with the number of random web pages retrieved
per cluster.

say that the selection of the implicit parameters is mainly done because we
want to keep the number of comparisons relatively low, so the choice of im-
plicit parameters is not only influenced by the performance of the algorithm,
but it is more of a trade off between cluster performance and speed.

This procedure takes place for all the batches until the last web page is
clustered. Before continuing to the second function, which is the join of the
batches, we introduce another scheme. It is a very common phenomenon
that clusters contain only one web page. Theoretically, these clusters con-
stitute separate spam campaigns. Although these single web pages are part
of our dataset, we chose not to include them in the join-of-the-batches al-
gorithm for two reasons. Firstly, even in the ”bad” scenario with 1000 web
pages per batch, it is reasonable to believe that a web page that exists alone
inside a cluster, is not very likely to match with any other web page from
clusters from different batches. It has already been tested against all the
clusters from this batch and found not to match with any of these. The
probability then for a one-web page cluster to merge with other clusters
from different batches is small. Even in the case where this might occur,
we expect it to be the minority of the one-web page clusters and therefore
we do not lose in generality. In the case where the batch contains 2000 web
pages, the likelihood of a one-web page cluster joining another cluster is even
smaller. The second reason is that we need to reduce the number of web
pages before the next step of joining the batches takes place. The number of
one-web page clusters is relatively big, reaching 7604 different clusters. This
essentially means that we have 7604 more spam campaigns and 7604 more
clusters to be tested when the join-of-the-clusters function takes place. To
sum up, clusters containing only one web page, are not considered relevant
and are left out from the rest of the process.

Coming next to the second function of joining the clusters from different
batches, two web pages from each cluster are randomly selected and are
compared against each other. The procedure is similar to the first function
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and the first cluster contains its own initial pages. Two web pages from the
second cluster are randomly selected and are compared pairwise against the
two randomly selected web pages from the first cluster. If both pairs have
a score above the predefined threshold then the two clusters are merged
and the new-formed cluster contains the page-ids from both clusters. This
procedure continues until the last cluster from the last batch is compared.
The pseudo-code for the second function is shown in below in algorithm 2.

Algorithm 2 Merging the batches.

1: assign the first cluster Cinit to the final dictionary F
2: for every other cluster C do
3: select two random web pages P1, P2 from cluster C
4: for every cluster Cf existing in F do
5: Select two random web pages from Cf
6: compare P1, P2 from C with the two randomly
7: selected web pages from Cf
8: if both comparisons have a score above threshold then
9: merge the two clusters

10: break
11: if ClusterNotMergedWithExistingClusters then
12: create new cluster in F with P1 and P2

Finally, after the merging the batches, we have our spam campaigns
with at least two web pages per spam campaign. These spam campaigns
have been created for each parameter configuration along with the implicit
parameters embedded in the algorithm. The implicit parameters for the
second function e.g. join-of-the-batches, is the number of pairs created from
two clusters in order to be compared. The choice of 4 randomly selected web
pages that lead to 2 pairs for comparison, might seem small for joining the
clusters, especially the big ones. However, big-sized clusters from algorithm
1 have been formed based on many comparisons and are expected to be very
homogeneous. On top of that, putting execution time into the equation, the
two pairs for comparisons seem a logical choice to make.

While clearly stating the experiments conducted with the different con-
figurations of the explicit parameters, we have not done the same with the
implicit ones, which may have an (important) influence on the outcome.
Nevertheless, we managed to gain insight in their role by adjusting their
values starting from the early versions of the algorithm until the final, as
explained next.

In that point, we describe two different versions of the algorithm which
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were applied before we concluded to the final version as described above.
Initially, and in order to tackle the problem of clustering the web pages
and merging the clusters efficiently, without any ground truth in hand, we
experimented with different implicit parameters that are described next.
The first approach to follow, had as prerequisite condition only a fraction
of comparisons to be above threshold. There were 4 categories in total and
the sufficient matches are shown in table 3.

So, in the case of 10 randomly selected web pages from a cluster contain-
ing 50-100 web pages, it was sufficient only if 3 out of 5 comparisons were
above the threshold. This parameter configuration was abandoned since the
results were not really promising.

The second version of the algorithm included also 4 categories for the
clusters but the limitation of achieving a minimum number of matches was
quashed. In this second version, the web page to be clustered must match
all the randomly selected web pages from a cluster. In the previous example,
where 10 web pages were randomly selected from a cluster containing 50-100
web pages, the new web page must have a score above threshold with all the
5 randomly selected web pages. The overview of the implicit parameters for
the second version of the algorithm is shown in table 3.

The second approach, despite exhibiting a decent performance especially
in big-sized clusters, suffered from a pitfall. Its drawback occurred in the
small-sized clusters mainly due to the fact that clusters with up to 10 web
pages are formed based on only one comparison (1 random selected web
page from clusters with 0 to 10 web pages).

Version of algorithm 1, 2 1 2
Clusters (Web pages) random sample Min. matches Min. matches
1-10 1 1 1
10-50 3 1 3
50-100 5 3 5
More than 100 10 6 10

Table 3: Number of minimum matches per sample per category for the two
versions.

In spite of the fact that our final experimentation set-up performs well
and is able to identify the spam campaigns in a very satisfactory degree,
there are better configurations that cluster the web pages with better ac-
curacy. The more categories we split our clusters into, the more likely is
to achieve better accuracy. Also, the more documents we randomly select
from a cluster to compare with a new web page, the better the chances of
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assigning the correct cluster are. All in all, our model achieves a reliable
performance and more elaboration on the parameters’ configuration is left
for future work.

4.3 Cluster evaluation

For each parameter configuration applied, we obtained a different distribu-
tion of clusters. Therefore, we need to select the best parameter configura-
tion that points to the most suitable cluster formation.

Cluster evaluation in this form, is not a trivial procedure as there is
no general accepted measure to perform evaluation on this kind of clusters.
The special nature of our clusters require alternative measures that can de-
pict the homogeneity of the clusters. Moreover, when talking about cluster
evaluation we need to take into account both intra- and inter-cluster simi-
larity. In the first case, a cluster should be as coherent as possible, so that
it contains web pages that are meant to belong in the same cluster. In the
latter case, the ideal scenario involves no two clusters containing web pages
that are supposed to be one cluster. We need to avoid circumstances when
different clusters should be actually one cluster, leading to high inter-cluster
similarity.

Therefore, we came up with a measure designed in such a way that takes
into account both intra- and inter-cluster similarity. It outputs a score for
intra- and inter-cluster similarity where one needs to maximize the first and
minimize the latter. The point in 2D plane with the best ratio is selected
as the best performing parameter configuration.

To begin with, we need to sample both clusters and web pages, otherwise
it would be infeasible to perform pairwise comparisons in all of our clusters.
Therefore, we made a sample choice on the number of clusters for evaluation
and from these randomly selected clusters, we performed a random choice
on the number of web pages they contain. By doing so, we were able to
make it timely feasible while maintaining the integrity and the notion of
similarity of web pages.

More specifically and in order to make our results less skewed, we split
our clusters based on their size (the number of web pages inside each cluster).
In order to do so, we categorized all clusters as belonging to one of the five
following categories: 1) clusters that contain from 2 to 10 web pages, 2)
clusters that contain from 10 to 50 web pages, 3) clusters that contain from
50 to 100 web pages, 4) clusters that contain from 100-500 web pages and
5) clusters that contain more than 500 web pages.

Returning next to the way how intra- and inter-cluster similarity scores
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are calculated, the sampling method on the number of clusters and the
number of web pages is a good approach for performing cluster evaluation.
Starting with intra-cluster similarity and depending on the size of the cluster,
we created random pairs of web pages for each (randomly) selected cluster.
We calculated the score for each pair and we finally divided the summed
score with the number of comparisons made. This is the average score for
intra-cluster similarity and a similar procedure follows for the inter-cluster
similarity. Using randomly selected web pages from the randomly selected
clusters, we formed pairs so as the two web pages in every pair must come
from two different clusters. By doing so, we are able to see the degree of
similarity between web pages from different clusters. The results for every
parameter configuration are summarized in table 4 as follows:

Settings 1 2 3 4 5 6 7
Intra score 70.42 86.9 90.43 90.04 92.1 95.03 95.12
Inter score 29.82 32.32 29.67 35.85 33.03 33.23 26.65
#Clusters 341 743 971 800 605 473 411

Settings 8 9 10 11 12 13 14
Intra score 72.95 83.54 92.19 92.98 91.97 95.73 95.83
Inter score 33.35 32.26 30.89 31.27 28.16 29.43 25.6
#Clusters 354 783 1021 843 662 526 461

Table 4: Intra- and inter-cluster similarity scores for different settings.

As mentioned earlier, we need to select the point in plane that performs
best in the two axes. Specifically, the point of our choice should have a high
score on y-axis and a low score in x-axis. Y-axis represents the intra-cluster
similarity while x-axis the inter-cluster similarity. Therefore we need to
select the point in 2D plane that combines high intra- and low inter-cluster
similarity score.

In addition, we favoured the big-sized clusters during the process of intra-
cluster similarity compared to the inter-cluster similarity where we favoured
the small-sized clusters. This is explained because the intra-cluster similarity
makes more sense and is of higher importance when a cluster is big. A cluster
that contains for example 200 web pages is considered a big cluster and we
need to be as certain as possible regarding its homogeneity. On the contrary,
inter-cluster similarity makes more sense when there are many small-sized
clusters and we need to check whether they should have merged or not.
Small-sized clusters are more likely to merge than big-sized clusters due to
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Figure 3: Intra- and inter-cluster similarity score.

the fact that a wrong assignment of a web page would have most likely
occurred in the small-sized clusters. Big-sized clusters are considered more
solid since more comparisons are made in order to be formed. Towards
accomplishing that, during the intra-cluster similarity, we sampled more
web pages from big clusters, so that the chance of two compared web pages
belonging in a big cluster is higher that the chance of two web pages to
originate from a small cluster. One the other hand, we favoured the inter-
cluster similarity in such a way that more web pages are sampled from
small-sized clusters and as a consequence more comparisons are potentially
made between web pages from different small-sized clusters.

Finally, as a remark, the evaluation of the clusters is based on the sam-
pling method, which means that sampling clusters and web pages is not
a precise way to find the best parameter configuration. We can observe
the difference when the parameters differ a lot, but when the settings are
close regarding their parameters’ values, the differences sometimes are not so
obvious and the results might not depict the real situation. Because of sam-
pling, when two settings exhibit similar scores we cannot be certain of the
superiority of one over the other. The same applies when favouring big-sized
and small-sized clusters for computing the intra- and inter-cluster similarity
score respectively. The fact that we allow more pairs from big-sized clusters
for instance, does not necessarily mean we actually selected more pairs from
big-sized clusters. Favouring different sizes of clusters for the two cases is
just a way to approach the idea behind the evaluation method. To the best
of our knowledge we have not introduced any bias towards skewed results,
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neither are we aware of which clusters provided the pairs for comparison for
each case.

4.3.1 Selecting the suitable setting

The graph with the settings represented as points in the 2D plane is shown in
figure 3. As you can observe, the differences between the points are relatively
small. However there is one point (Setting 14 with y=95.83 , x=25.6) that
is slightly higher in the y-axis than the second (Setting 13 with y=95.73 ,
x=29.43). Also, Setting 14 has the lowest score in x-axis with x=25.6 while
the second lowest score is from Setting 7 (y=95.12 , x =26.65). Although
the differences in the two axes from the second best scores (setting 13 in
y-axis and setting 7 in x-axis) are not substantially bigger to choose setting
14 without hesitation as the best, it is still superior than the rest of the
points and it will be the point to choose as the best performing setting.

Looking how close the points in the plane are, it would be a good idea
to see the impact of sampling on the settings’ mark on the plane. For
that purpose, we chose the two settings with the highest thresholds, namely
settings 13 and 14, to observe their performance when different samples
are taken to perform the evaluation of the clusters. The idea is to find
the clusters for each setting and then perform evaluation by repeating the
sampling method ten times per setting. In that way, we can see the variance
of the points because of the uncertainty introduced by the sampling method.
The table 5 below summarizes those results

From table 5, we observe that for each evaluation process, the fluctuation
of the results ranges within a few percentage points. Specifically, for setting
13, the intra-cluster similarity score lies between 92.37 (5th iteration) and
95.83 (1st iteration) with a difference of 3.46. The inter-cluster similarity
score lies between 24.32 (5th iteration) and 32.63 (8th iteration), having a
difference of 8.31.

On the other hand for setting 14, the intra-cluster similarity scores ranges
from 96.03 (3rd iteration) to 93.85 (4th iteration) leading to 2.18 difference,
whereas its inter-cluster similarity score ranges from 25.59 (1st iteration) to
32.19 (8th iteration) with 6.6 difference.

Looking at figure 3, some points in the plane are very close to each other.
Taking into account the variance of the settings 13 and 14, we can conclude
that figure 3 eventually is not really helpful in drawing very safe conclusions.

The ideal scenario would be to repeat this ten-fold evaluation method
for all settings. Averaging over all ten scores per setting per axis, we would
get a more accurate estimate of the evaluation score for each setting. We
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Setting 13 Setting 14
Intra cluster 1 95.73 95.83
Inter cluster 1 29.49 25.59
Intra cluster 2 92.94 94.88
Inter cluster 2 31.37 30.54
Intra cluster 3 92.63 96.03
Inter cluster 3 27.02 29.17
Intra cluster 4 92.74 93.85
Inter cluster 4 28.13 30.53
Intra cluster 5 92.7 95.14
Inter cluster 5 24.32 31.19
Intra cluster 6 92.37 94.36
Inter cluster 6 29.15 32.09
Intra cluster 7 93.46 95.53
Inter cluster 7 31.22 32.153
Intra cluster 8 93.54 95.38
Inter cluster 8 32.63 32.19
Intra cluster 9 94.13 94.69
Inter cluster 9 30.5 29.19
Intra cluster 10 93.04 95.53
Inter cluster 10 28.98 30.88

Table 5: intra- and inter-cluster scores for 10 different samplings for settings
13 and 14.

chose to focus on settings 13 and 14 for two reasons. Firstly, these two
settings have the highest thresholds and a high threshold implies better
performance. Secondly, conducting 10 evaluations for both inter- and intra-
cluster similarity for 14 settings would require a lot of time.

Nevertheless, the intra- and inter-cluster similarity score is not the only
factor to base our choice. Although setting 14 performs better in the y-axis
and worse on x-axis than setting 13, it has 461 total number of clusters, that
is 65 less clusters than setting 13. The lower number of clusters of setting
14 in a sense, counterbalances the difference in the inter-cluster similarity
score. Therefore, although it would be interesting to have a graph where
its points are based on the average value over 10 evaluations from random
samples procedures, we consider setting 14 as the best performing parameter
configuration.
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4.4 Discussion

After having performed the evaluation of the clusters as summarized in table
4, we can now discuss the findings and compare them with what we thought
the case would be before conducting the experiments.

Before starting the experiments and after having set the different config-
urations of parameters, we tried to foresee how the experiments were going
to perform. Specifically, the extreme values of the threshold, ranging from
0-40 were rejected in the first place for exhibiting poor results. As a conse-
quence, threshold values close to the lower bound of 40 were expected not to
perform well. Indeed, we can observe from table 4 that both intra- and inter-
cluster similarity scores are poor, compared to those with higher threshold.
On the other hand, the situation is more complicated when the threshold
value reaches the upper bound of 80. We have also rejected the values rang-
ing from 80 - 100 as not being able to distinguish the web pages as belonging
to the same cluster. More analytically, when we increase the threshold we
expect the intra-cluster similarity score to increase and the inter-cluster sim-
ilarity score to decrease. It is clear that when we increase the threshold, the
intra-cluster similarity score increases, making it a straightforward criterion
to base our choice. The intriguing case concerns the inter-cluster similarity,
where despite the fact that increasing the threshold the inter-cluster simi-
larity score decreases (not always), there is a limit where beyond that, the
assignment of web pages into clusters becomes problematic. The reason is
that the clusters that are created, are malformed in the sense that these
clusters contain very similar web pages which in turn, are unable to capture
the spam campaign itself. Instead, the spam campaign is split in its web
pages, with those web pages assigned into high homogeneous clusters and
thus causes the inter-cluster similarity score to increase. The question is
then, what this upper bound should be. After experimenting by setting the
threshold value equal to 80, we found out that there are too many clus-
ters generated, trying to capture one single spam campaign, than actually
needed. As a result, we decided to exclude threshold values ranging from 80
onwards and experiment with values from 45 to 75 with step 5.

Except for the sampling idea behind the results, there is also the aver-
aging procedure to influence the output. The averaging procedure has the
property of influencing the results by pulling the score up when almost iden-
tical web pages are compared. As an example, consider a cluster with 100
near duplicate web pages. If we sample and create 5 pairs of web pages from
this cluster, then we will end up with 5 scores close to 100. These 5 scores
are added to the final score which will then be divided by the total number
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of comparisons. By doing so, the average intra-cluster similarity will be af-
fected and unavoidably will be led to a high score. To moderate this effect,
the same procedure applies to every evaluation process for every parameter
configuration. The averaging process then is not essentially a pitfall since
all evaluation methods work with the same principles, while they are mainly
affected by the sampling method.

Another intuition we had prior to conducting the experiments, has to do
with the superiority of the results concerning the set of experiments with
2000 web pages per batch. The parameter of the number of web pages per
batch was introduced in order to avoid the pair wise comparisons and speed
up the process. It was reasonable to believe that the bigger the batch is,
the more it tends to reach the pairwise comparisons state and if possible to
reduce the error introduced from the join-of-the-batches algorithm. Looking
at table 4 more closely, we can see that for the majority of the thresholds,
the intra- and inter-scores are higher when we set 2000 web pages per batch
than 1000 per batch. Only settings 2 and 7 seem to perform better with
small-sized batches but still the differences are small. Nevertheless, despite
the small differences for each threshold, we can see that bigger batches tend
to perform better.

A significant observation from table 4 concerns the number of clusters
formed for every setting. The number of clusters play an important role
especially when the settings have neighbouring values concerning their pa-
rameters. As an example, we examine settings 10 and 11. The intra-score
for setting 11 is slightly higher than that of setting 10. On the contrary, the
inter-score for setting 11 is worse (slightly higher) than setting 10. Taking
only the numbers into account, it would be a tough decision to choose the
best between these two settings. One is slightly better than the other in
the two scores. If we look at the number of clusters for these two settings
though, we observe a significant difference. Setting 11 has 178 less clusters
than setting 10 that makes it a better choice.

The number of clusters is also an indication of how well are the clusters
structured. Setting 11 has 178 less clusters than setting 10 meaning less
clusters per spam campaign, which leads to better reflection of the spam
campaigns. If we go one step further, better representation of a spam cam-
paign means lower inter-cluster similarity score. By setting the threshold
high, we guarantee the intra-cluster similarity, which combined with as few
clusters as possible we increase the possibilities for a more accurate identifi-
cation of spam campaigns. Finally, setting 14 has significantly less clusters
than its neighbouring settings and that is another reason to support our
choice.
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5 Extraction of cluster descriptions with LDA

In the previous chapter, we went through the procedure of identifying spam
campaigns. The spam campaigns in form of clusters contain the web pages
that are derived from spam emails. Although we have managed to cluster
the spam campaigns based on the content of their web pages, we have truly
no insight in their content. It would be interesting if we could describe the
clusters with a few indicative words that characterize these spam campaigns.
From a 7.5 months period, we have identified 461 spam campaigns and we
would like to see at least the domain these spam emails belong to. In
this chapter, we demonstrate the effectiveness of Latent Dirichlet Allocation
(LDA) on assigning a topic to every cluster such that with a few words
to be able to have an idea of what a cluster is about. In section 6.1 we
introduce LDA as a topic allocation model and explain its suitability in our
case. Section 6.2 explains the procedure followed in order to obtain the
topics for each cluster and finally in 6.3 we present some statistics and the
main results from applying LDA in order to label the clusters.

5.1 LDA

Latent Dirichlet Allocation (LDA) as presented in [8], is a generative model
used to extract topics from a set of documents. The idea behind LDA is
to model documents as arising from multiple topics where each topic is a
distribution over a fixed vocabulary of terms. It is reasonable to believe that
a document contains a mixture of topics in different proportions since doc-
uments tend to be heterogeneous containing more than one idea or theme.

The main assumption of the LDA model is that the topics are defined
before any data has been generated. Having that in mind, for each document
in the collection, we generate the words in a two-stage process:

1. random choice of a distribution over topics

2. for each word in the document

(a) random choice of a topic from the distribution over topics in step
1.

(b) random choice of a word from the corresponding distribution over
the vocabulary

The main principle is that there is a predefined number of topics, (dis-
tributions over words), that exist for the whole collection of documents (left
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Figure 4: The intuitions behind latent Dirichlet allocation. We assume that
some number of topics, which are distributions over words, exist for the
whole collection (far left). Each document is assumed to be generated as
follows. First choose a distribution over the topics (the histogram at right);
then, for each word, choose a topic assignment (the colored coins) and choose
the word from the corresponding topic. This figure is taken from [5].

in figure 4). Every document is then assumed to have originated as fol-
lows: Each document as shown at the right of figure 4, exhibits the topics
in different proportions (step 1). Each word in each document is drawn
from one of the topics (step 2b), where the selected topic is chosen from the
per-document distribution over topics (step 2a).

The fact that there are no labels, tags, annotations and titles to describe
the articles, means that we are dealing with an unsupervised method of
labelling documents, where we have observed and hidden variables. The ob-
served variables refer to the documents and the vocabulary acquired while
the hidden variables pertain to the topics, the per-document topic distribu-
tions and the per-document per-word topic assignments. The main issue is
to use the observed documents in order to reveal the hidden structure. This
problem can be reformulated by ”reversing” the generative process. The
generative process defines a joint probability distribution over both hidden
and observed variables. The model then, computes the conditional distri-
bution of the hidden variables given the observed ones.

Having mentioned the principles based on which the data are generated
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and in order to see how the topics are actually constructed, we can divide
the process of LDA in three major steps.

1. Firstly, we need to specify the number of topics.

2. Secondly, the algorithm assigns every word to a temporary topic (the
two-stage process of word generation described previously.). This ran-
dom assignment of the words (to be exact, they are assigned according
to a Dirichlet distribution) is temporary as they will be updated in the
third step. Notice that if a word has two occurrences, each word may
be assigned to different topics.

3. Thirdly, the last iterative step will check and update topic assignments,
while looping through each word in every document. For each word,
two criteria define how the topic assignment is updated:

(a) How prevalent is that word across topics?

(b) How prevalent are topics in the document?

Weighing the conclusions from the two criteria, the algorithm assigns
each word to a topic. This process takes place for all the words in the
documents cycling through the entire collection of documents many times
until there is a convergence and a roughly steady state.

The LDA model adopts three assumptions about the corpus where new
research on this field tries to loosen these assumptions towards achieving
different aims.

The first assumption to make is that it uses the ”bag-of-words” model,
in other words, LDA does not take the order of the words into account.
This makes sense when one is interested in the semantic structure of the
text but is not applicable for more sophisticated purposes such as language
generation.

The second assumption is that the order of documents does not matter.
In case that the archive contains documents that span over many years, one
might be interested in knowing how the topics evolve over time. A potential
solution to this problem would be the dynamic topic modelling, a model that
respects the ordering of the documents and gives a richer posterior topical
structure than LDA [7]

The third assumption is the fact that there is a fixed and predefined
number of topics. In case where someone has no clue on what the number
of topics should be, the Bayesian non-parametric topic model assists in that
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direction where the data are used to construct a tree like structure of topics
moving from more abstract to more concrete topics [6].

The LDA model we applied does not incorporate the three aforemen-
tioned extensions. The standard model suffices to satisfy our needs.

5.2 Cluster topics

Before describing the application of the LDA model in the clusters, let us
remember what the two types of clusters are, as described in chapter 3.

The first type of clusters contains web pages that are usually uninfor-
mative warning/fixed messages that differ only in a small percent (numbers,
titles, names, dates etc.). On the other hand, the second type of clusters
contain web pages, whose text is partially identical (two web pages have for
instance a paragraph in common).

Based on those two types of clusters, it is apparent that topic selection
must be applicable and adjusted to the type of each cluster. Therefore,
we can discriminate between 3 possible scenarios for topic assignment in
clusters. The first scenario involves clusters whose web pages are near du-
plicates. In this scenario, there is only one topic to describe all the web
pages of that cluster. The second scenario is also about near-duplicate web
pages inside a cluster but there are more than one topics. In that case, all
web pages point to one main text which can contain more than one topics.
While the first two scenarios have to do with clusters of type 1, the third
scenario can be described as type 2 clusters, that contain documents that
partially match each others.

As mentioned earlier, the purpose of applying LDA on the web pages
of a cluster is to get an idea of what these clusters are about. We are not
interested in a topic being fully descriptive, neither in finding all the possible
topics for a cluster. What we seek is the ability to know what kind of web
pages a cluster contains, in other words what is the subject of each cluster.
Therefore, the application of LDA is described next in accordance with the
purpose of topic modelling as described above.

The LDA model, prior to obtaining the results, asks from the user to
define the number of topics. The number of topics is then taken as an input
variable and one has to enter a value, most of the times without knowing how
many topics there might be, especially when the dataset contains hundreds
or thousands of different documents. In our case, and since we are not
interested in identifying all the possible topics, we chose to get a maximum
of three topics for each cluster and five words per topic. We applied LDA
in every cluster and for each cluster we used the following scheme. After
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the topics were acquired, the first topic is automatically assigned as the first
topic to represent the cluster. If there is a second topic, then we examine
how many words it has in common with the first topic. If the two topics
share three or more words out of the total five, then we do not include the
second topic in the topic representation of the cluster. In the case where
we have a third topic, we follow the same procedure and exclude it if it
has three or more common words with topic one or two. Finally, the topics
that represent a cluster have in the worst case two words in common. Our
experience shows that clusters that contain near duplicate web pages tend
to have only one topic in contrast to the clusters with distinguishable web
pages that are represented with two or three topics.

5.3 Descriptive statistics

After having applied LDA to label our clusters, we present an overview of
the most important findings.

A very interesting finding from topic modelling concerns the big-sized
clusters. Specifically, we would like to know what the top 10 biggest clusters
are about. Also, the results we acquired highlighted a problem which we
were initially aware of, but not on its full magnitude. The pie chart in figure
5 shows the 10 biggest clusters along with the number of web pages written
on every piece. Different colours indicate different spam campaigns and the
topics are shown at the right of the figure.

The biggest cluster is coloured light blue, contains 8434 web pages and
its topic is ”tinyurl spam url use email”. This cluster belongs to the type of
clusters that contain near duplicate web pages and its text is simply a fixed,
warning message. It is then very interesting to visualize the results since the
top 10 biggest clusters contain 30940 out of the total 36619 web pages which
is translated to 84.5% of the whole dataset. The dark blue piece does not
have a topic since it is used to represent the web pages from the remaining
clusters.

However, looking at figure 5 and manually inspecting the plain text of
the web pages in these big clusters, we realized the big scale of the problem.
In the beginning of this thesis, during the database manipulation and data
extraction, we were aware of some web pages displaying a warning mes-
sage and not the actual content behind these ”temporary” web pages. The
downloaded text of the web page happened to be a fixed warning message,
where one should follow the link inside the web page, in order for the actual
content to be revealed. Unfortunately, the web pages were parsed only by
following the first step and that resulted in a big amount of non-informative
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Figure 5: Topics for the 10 biggest clusters.

messages.
This phenomenon is depicted in figure 5 where many clusters contain

fixed messages that are not intended by the creators of these spam cam-
paigns. For example, the piece with 6469 is about a fixed message from
twitter as this can also be seen from its topic (”sites”, ”harmful”, ”twitter”,
”ignore”, ”way”). In general, it is hard to say which clusters contain these
fixed messages and which are actually designed to exhibit such messages.
For example, the red cluster, which is considered very big with 5025 web
pages, has a text of a few lines and its text cannot be said with certainty
whether it is meant to be an uninformative fixed warning or not. The in-
triguing thing is that its topic contains 2 terms consisted of many syllabus
and combined words. For instance, the term ”includepathusrlocallibohop-
urslocalphp” combines sub-terms such as ”include”, ”path”, ”local”, ”lib”
and ”php”. This is a typical obfuscation technique that makes it difficult
for spam filters to characterize it as spam. All in all, many clusters contain
such fixed messages and are roughly estimated to be more than 50% of the
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whole dataset.
If we isolate those clusters, whose web pages contain beyond any doubt

uninformed fixed messages, then we have the following pie chart.

Figure 6: Topics for the 10 biggest clusters without the uninformative fixed
messages.

In figure 6, we left out 18131 web pages coming from only 4 clusters,
which is almost 50% of the whole dataset. The remaining web pages are
18488 and the majority of those belong to the top 10 biggest clusters (after
the removal of the 4 uninformative clusters) that all together contain 14130
web pages or 76% of the dataset. Although we left out those clusters that
we are certain not to contribute towards our aim, we are not entirely sure
though about the rest of the clusters. Some of the remaining small clusters
might also be uninformative or there might be different instances of the
same spam campaign reflected by different clusters that all in all increase
the percentage of more than 50%.

The size of the clusters and the knowledge of what they represent is very
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useful. For instance, it can serve as a guidance to see which are the most
popular spam campaigns during a time period.

Beyond this scope, it would also be interesting to know what the top
terms throughout our dataset are and in how many web pages they are
contained. One way to achieve that, is to perform a frequency count on
the whole dataset and select the top n most frequent terms. This approach
though does not yield reliable results since it is highly skewed. The reason
is that a big cluster for instance containing thousands of near-duplicate web
pages, is certain to contain a number of words many times. As a result
the majority of the most frequent terms would originate only from the big
clusters and dominate the list of top n frequent terms. Although with this
approach we can draw some conclusions even if the most frequent terms
come from a few big clusters, we are more interested to see the frequency of
terms that are evenly distributed across the documents.

The first approach to follow was to group the web pages by the cluster
they belong to. In that way, we get a random web page for every cluster
and perform a frequency count on the total vocabulary. Theoretically, every
cluster is different than the others in the sense that it contains a unique set
of homogeneous web pages. In the best case scenario, this is translated into
461 different web pages leading to one characteristic web page per cluster.
The frequency count then is performed equally on all the clusters. However,
due to the error margin introduced by the parameters, either the clusters
are not that homogeneous or there are more than one clusters to represent
a spam campaign. This, results in being the frequency count influenced by
the aforementioned reasons. All in all, despite of some misclassification of
web pages, frequency count performed on this type of corpus gives us an
overview of the most important terms.

Specifically, to illustrate our claims, we show in table 6 the top 10 terms
for the 461 web pages.

term buy gener onlin us can viagra ciali pill mg use

#.Of.occur. 1791 828 803 560 541 541 511 501 494 478

Table 6: top 10 most frequent terms from 461 web pages, one per cluster.

In order to perform the frequency count in the corpus of the 461 web
pages, we also performed stemming. We decided to stem the words because
the power of a stemmed word is assumed to be equal to the unstemmed, in
terms of identifying the notion of this term. Stemming allowed us to avoid
cases of retrieving different instances of one word (adjective, noun, verb etc.)
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and thus allowing us to get a wider picture of the most frequent terms.
Looking at figure 7, we can obtain some useful observations. It offers a

broader view of the dataset by stating the number of web pages that contain
the top 10 most frequent terms. In general, 10 terms do not give a clear
picture that spans all over the dataset but can be still informative. Many
of these frequent terms come from certain clusters for two main reasons. If
we look at the terms ”viagra”, ”ciali”, ”pill” and ”mg”, we can understand
that they are strongly correlated and most probably come from the same
cluster. This is due to the fact that some popular clusters like this, appear
more than once in the identified clusters. The second reason is the length of
those web pages. If for example a web page selected to represent a cluster
is long and on top of that contains many times some particular words, then
the frequency of these terms is high and as a result they appear in our top
list.

Figure 7: Number of web pages for the top 10 most frequent terms from
table 6.

A different approach in order to find the top indicative and descriptive
terms is to perform a frequency count on the topics acquired for each cluster.
Theoretically, each topic should be different and not match with any other
topic. Practically, this rule is violated by a couple of factors which are
described next. Some topics have up to two words in common, which is
the limit for not creating a new topic. Also, it might be the case where
we have some misclassification of web pages into different clusters, leading
to topic assignments that already exist. Lastly, due to the nature of the
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algorithm there might be some cases of more than one clusters defining
a spam campaign and as a consequence similar topics to originate from
different clusters.

As soon as we have acquired the topics for each cluster, we performed
a frequency count on these topics, again using the stemming method. The
number of topic ranges from 1 to 3 for each cluster, which means the number
of terms ranges from 5 to 15 for each cluster. Finding the terms with high
frequencies, gives us an idea of the vocabulary used. These top 10 most
frequent terms are then extracted and for each term we compute the number
of web pages that contain this term.

Before we generalize and show the number of web pages that contain
each frequent term, let us see what these terms are and in how many topics
they occur (see table 7).

term line redirect email web fail host buy error websit onlin

# Of occur. 40 29 24 24 22 22 22 21 21 21

Table 7: top 10 most frequent terms from the 461 cluster topics.

Figure 8 below presents these terms in the x-axis, while on y axis is
the number of web pages. The information that we can extract from figure
4, concerns the nature of the most frequent terms. All 10 of them make
great sense since these are the kind of words one would expect to see in
spam emails. These terms are very general and do not include a name or a
product or something more descriptive and concrete as we explain next.

Figure 8: Number of web pages for the top 10 most frequent terms from
table 7.
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These two methods, used to present the most frequent terms in the
whole dataset, yielded different but expected results. Trying to explain
their differences, we concluded at the following. We can observe that the
frequent terms from figure 8 are on average included in more web pages than
those from figure 7. This is mainly explained because figure 8 contains the
most frequent terms that come from the topics extracted for each cluster.
Since a topic contains essentially the most characteristic terms of a cluster,
it is reasonable to believe that the terms from the topics apply to a higher
proportion of web pages. In contrast to the most frequent terms from figure
7, where these terms are based on the frequency count of one web page per
cluster. Taking also into account the (small) error rate of the miss-assigned
web pages into clusters, it supports the claim that topic terms are of general
usage throughout our clusters’ structure.

The second observation has to do with the nature of the terms in the two
figures. It is a fact that figure 7 contains very specific terms such as names of
drugs (”viagra”, ”ciali”) or even ”mg” that is an abbreviation for milligram.
These kind of terms are very descriptive for the cluster they refer to, and
they are contained in the list of the most frequent terms because of the fre-
quency count on the web page itself. On the contrary, many clusters contain
web pages whose text is not about a specific product or advertisement but
contains more general text. The topics extracted for that kind of clusters
contain more abstract terms like the ones we see in figure 8. Additionally,
the number of such clusters that contain many web pages with abstract and
vague topics, is the majority and as a consequence, the top terms in figure
8 originate from this type of clusters.
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6 On-line and automatic incremental clustering

After the spam campaign identification (chapter 4) and the topic assignment
of the clusters (chapter 5), we now focus on the 3rd main part of this thesis.
In this chapter we describe the process of on-line and automatic clustering of
continuously incoming spam emails. As mentioned earlier, the spam monitor
receives a daily feed of spam emails that can reach up to 1 million. These
spam emails are initially stored in the MongoDb database and only if they
contain at least one link, they are transferred in the MySQL database that
stores the attributes of the spam web pages. From now on, when we talk
about incremental clustering of spam emails, we refer to those that contain
a link and their language is English.

6.1 Defining ”online” and ”automatic” clustering

The spam emails arrive continuously and are stored in the databases for
further analysis. The purpose is to build a mechanism that takes the spam
emails the moment they arrive in the database, creates clusters and assigns
each spam email to a cluster. In addition, on-line clustering means that it
takes place almost in real time, after the spam emails are received. In our
case, ”almost” real time means that there is one-hour interval between every
clustering of the spam emails. Every one hour, the spam emails that satisfy
the conditions (pass the filters), are retrieved and processed in order to be
assigned into clusters. The interval of one hour was chosen such that it is
adequate to fit the time frame needed for performing the clustering proce-
dure and small enough so that we can observe the fluctuation/formation of
the formed clusters relatively often. On the other hand, the spam campaign
identification in chapter 4 was conducted off-line since we had a fixed dataset
of spam emails from a 7.5 months period to work with.

Automatic clustering of incoming spam emails means that we do not in-
tervene in the process at all. The whole procedure of retrieving the dataset,
executing the clustering algorithm and updating the database with the re-
sults, takes place automatically. Even in cases of malfunctions (e.g. failure
of the server), it is designed in such a way that the mechanism waits until
the problem is fixed, while notifying us about the cause of the problem. We
explain those details later in section 6.4.

6.1.1 Threshold range

Similar to the off-line spam campaign identification, in the incremental clus-
tering of the spam emails we need to select the parameters values of the
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algorithm. In this case, however, we have only the threshold as an explicit
parameter. The threshold ranges from 45 to 75 with a step of 5. The size
of the batches is no longer useful since the incremental clustering procedure
handles only a small number of emails per hour (order of tens). This is
the reason why we need to experiment again with different values of the
threshold, i.e. we can not reuse the best one achieved in chapter 5. As a
result, we need to test for which value of threshold do we obtain the best
clusters. The experimentation set up then is consisted of 7 experiments for
7 different values of threshold.

We will use the same implicit parameters as in the spam campaign iden-
tification in section 4.2. The clusters are divided based on their size in the
following categories and a corresponding sample of web pages is retrieved,
as shown in table 8. Also, in order for an incoming web page to be assigned
into a cluster, the score must be above the threshold for all the comparisons
made.

Category Size of the clusters Sample size per cluster
1 1 - 5 1
2 6 - 10 2
3 11 - 50 5
4 51 - 100 8
5 More than 100 10

Table 8: Size of the clusters with the number of random web pages retrieved
per cluster.

6.2 Methodology - implementation on training database

The algorithm for the incremental clustering of spam emails is based on ap-
proximately the same principles as the ones used for spam campaign iden-
tification. First of all, we needed a training dataset for two main reasons;
in order to test the functionality of the algorithm and secondly to select
suitable parameter values. Also, the advantage of incrementally clustering
the web pages on a fixed dataset, is that we do not actually have to wait
for one week. Instead, after the clustering algorithm for each batch (spam
web pages that are retrieved during one hour) is finished, the clustering of
the next batch occurs immediately. Therefore, our training dataset consists
of those web pages that arrived during one week (17/09/2014 - 23/09/2014)
with the total number of web pages during this period being 3100.
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After the algorithm was tuned to the training dataset and the best pa-
rameter configuration for maximum performance is chosen, we were then
in position to launch it on-line to automatically cluster the spam emails in
(almost) real time.

The implementation of the incremental clustering algorithm involves sev-
eral calls from Python to MySQL and vice versa. Initially, we created a table
in the MySQL database that stores the clusters from the incremental pro-
cedure. Every hour, one call is made from Python to MySQL in order to
retrieve the ids and the text of the web pages during the exact previous hour.
Another call is made from Python, so that all clusters created so far, are
fetched in order for their contained web pages to be tested with the newly
arrived web pages. Moreover, we have also access to the table where the pre-
processed text of the web pages (during the week of our training dataset) is
stored. Next, we present the pseudo-code for the incremental clustering for
the training dataset.

Algorithm 3 Incremental clustering of spam web pages for the train-
database.
1: date = 17/09/2014 17:34:00
2: while date not equal to 23/09/2014, 24:00:00 do
3: fetch the existing clusters from the database
4: fetch the web pages arrived during the exact previous hour
5: for each web page Ppr from the previous hour do
6: for each already exisiting cluster C do
7: determine size C
8: select random sample R from C
9: for each page Pr in R do

10: if score (Ppr,Pr) >= threshold then
11: NrOfTrue increases by one

12: if NrOfTrue == number of samples in R then
13: assign page Ppr to cluster C
14: break
15: if PageNotAssignedToExistingCluster then
16: create new cluster with page Ppr

17: increase date by one hour

Every web paged arrived during the last hour, is tested against a sample
of web pages from the existing clusters. If the web page matches (the score is
above threshold) with all the web pages sampled from a cluster, it is assigned
into that cluster. Then, the database is updated with the new entry and the
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next page is due to be clustered. Otherwise, it continues to the next cluster,
where it is compared with a new sample of web pages. If there are no more
clusters to compare, then a new cluster is created with the new page in it.
This procedure finally stops when the condition is met.

6.3 Evaluation of clusters from training database

After experimenting with different values of threshold, we acquired the clus-
ters for every configuration. Once again, we need to evaluate the clusters
for all 7 settings and select the one with the highest performance. We use
the same approach as the one used for evaluating the clusters during the
spam campaign identification process. The results in terms of intra- and
inter-cluster similarity scores are presented next in table 9 and the points in
plane representing the settings in figure 9.

Settings 1 2 3 4 5 6 7
Intra score 71.94 81.23 85.08 89.25 90.98 91.58 93.46
Inter score 33.62 35.86 36.67 34.44 32.71 31.93 32.69
#Clusters 194 407 767 930 1029 1103 1166

Table 9: Intra- and inter-cluster similarity scores for different settings.

Figure 9: Intra- and inter-cluster similarity score.
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Looking at figure 9, we need to select the point in the plane that combines
high intra- and low inter-cluster similarity. In contrast to figure 3 in section
4.3 where we had one point both higher in y-axis and more to the left in
x-axis, the situation now is more complicated. The problem of selecting the
best point is a trade off between favouring intra- or inter-cluster similarity.
If someone is more interested in highly homogeneous clusters, he would
select the point lying higher in y-axis, otherwise he would pick the left
most point in x-axis. The aforementioned criteria should be in accordance
with the number of clusters for each setting. In our case, the best two
performing settings are setting 6 (x-axis:31.93, y-axis:91.58) and setting 7(x-
axis:32.69, y-axis:93.46). The difference in their intra-cluster score is 1.88
percentage points while their inter-cluster score difference is 0.76 percentage
points. It is apparent that setting 6 performs better in inter-cluster structure
but setting 7 has better intra-cluster score. From our experience, settings
with high threshold, like settings 6 and 7, tend to be very homogeneous.
Changing the threshold from 70 to 75 does not have such an impact on the
homogeneity of the clusters as it has on their inter-cluster similarity. In
other words, although the difference in y-axis is almost double than that of
x-axis (1.88 vs 0.76), the difference in x axis, is more important for high
threshold settings. On top of that, setting 6 has 63 less clusters than setting
7, which supports our claims for selecting setting 6 as the best performing
parameter configuration.

We also performed a series of experiments for the top two threshold
settings, in order to see their variance and if we could draw some safe con-
clusions from figure 9. Therefore, just like in section 4.3.1, for both settings
6 and 7 we evaluated their intra- and inter-cluster score by taking different
samples of web pages and clusters for 10 times. The results are shown below
in table 10.

Looking at table 10, we can see that both intra- and inter-cluster scores
do not exhibit a big fluctuation over the 10 experiments. The intra-cluster
similarity score for setting 6 for instance ranges between 91.49 (5th iteration)
and 91.83 (10th iteration) producing a difference of 0.34. The inter-cluster
similarity score ranges from 30.76 (2nd iteration) to 32.29 (3rd iteration)
with 1.53 as a difference. Setting 7 also performs accordingly, with its intra-
cluster‘s lowest score being 92.93 (2nd iteration) and highest 93.66 (10th
iteration) with 0.73 difference. Finally, the inter-cluster score for setting 7
ranges from 30.88 (10th iteration) to 32.77 (7th iteration) leading to 1.89
difference.

It is apparent that in that case, the sampling method does not have a
big impact and we can tell with higher certainty that setting 6 performs best
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Setting 6 Setting 7
Intra cluster 1 91.58 93.46
Inter cluster 1 31.93 32.69
Intra cluster 2 91.53 92.93
Inter cluster 2 30.76 32.12
Intra cluster 3 91.63 93.13
Inter cluster 3 32.29 32.73
Intra cluster 4 91.6 93.62
Inter cluster 4 31.37 32.63
Intra cluster 5 91.49 93.1
Inter cluster 5 31.9 32
Intra cluster 6 91.58 93.45
Inter cluster 6 31.73 32.36
Intra cluster 7 92.09 93.34
Inter cluster 7 32.07 32.77
Intra cluster 8 91.6 92.98
Inter cluster 8 32.25 32.05
Intra cluster 9 91.51 93.53
Inter cluster 9 31.5 32.39
Intra cluster 10 91.83 93.66
Inter cluster 10 32.18 30.88

Table 10: intra- and inter-cluster scores for 10 different samplings for settings
6 and 7.

among the rest based on our previous claims.
A reason for having less variation in the evaluation of clusters from the

of-line incremental procedure is the size of the dataset. The training dataset
contains the spam web pages that arrived during one week in contrast to
the spam campaign identification dataset that spanned over 7.5 months.

6.4 Online application

The final step is then to apply the incremental clustering algorithm on-line.
In order to do that, we need to make some adjustments to the algorithm
used for incremental clustering in the training database.

Firstly, we describe how the task scheduler Windows tool was applied so
that a call is made every one hour to the Python script. The task scheduler
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is designed in such a way that any program can be scheduled to run in
specified points in time. In our case, the Python script was programmed
to start on a daily basis and every one hour. Task scheduler offers also
several other options. One of the most important ones we took advantage
of, concerns the case where a problem might occur (e.g. server failure). In
that case, the scheduled task that can not be executed is put in queue, until
the previous one has successfully finished.

Secondly, in the incremental algorithm we added a limitation in one of
the Python queries to MySQL. Specifically, for every hourly batch of spam
emails to be clustered, we fetch from the database only those clusters that
have been active during the last 2 months. Therefore, there are two main
questions to answer. Why don‘t we retrieve all the clusters from the database
and why did we set 2 months as a limit?

As an example, imagine that the incremental clustering algorithm is
running for several months. At a specific time, when the next hourly batch
of incoming spam web pages is fetched in order to be clustered, each web
page must be compared against the clusters that exist in the database. The
worst case scenario is to be compared with samples from all existing clusters
and because of mismatches, to start a new spam campaign. Such a scenario
would require hours and sometimes it is even unnecessary. In [22], the
authors state that 50% of spam campaigns actually finish within 12 hours.
After that the durations distributed rather evenly between 12 hours to 8
days, and about 20% of campaigns persist more than 8 days. The average
duration of a spam campaign can then be used as a criterion to narrow down
the number of spam campaigns needed as an index for comparisons. Ideally,
we would like to identify what this average lasting period is, based on our
own dataset. By averaging over the download dates of the spam web pages
belonging into a cluster and then over the number of spam campaigns, we
could have an estimate of the average lasting duration of a spam campaign.
Unfortunately, for technical reasons that was not feasible, so the 2 months
period is inserted as a time frame and assumed to have a generous error
margin regarding the average time duration of a spam campaign.

Finally, we would like to know what happens in case of a malfunction.
Therefore, after every hourly call from Python to MySQL in order to retrieve
the web pages of the exact previous hour, 3 possible scenarios are identified:

1. At least one web page has been retrieved during the last hour.

2. No web pages have been retrieved during the last hour.

3. An error has occurred resulting in no web pages retrieved (e.g. server
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failure).

For every aforementioned scenario, an indicative message appears to sug-
gest the possible cause.

In this chapter, we have described the mechanism to incrementally clus-
ter spam emails into spam campaigns on-line and automatically. A very
interesting and important consequence is that our mechanism can be used
to serve different purposes. Our intention is to use it in order to cluster the
continuously incoming spam emails into spam campaigns, using a plagiarism
detection measure. Someone can apply a different measure, for instance the
simhash algorithm in order to detect near-duplicate documents. As long as
there is a measure that can output a similarity score between two entities,
our implementation can be used with some minor adjustments.

Finally, our incremental clustering mechanism is running consistently
from the time it was created without any noticed malfunctions. Every
one hour and for the first two months of its running mode (31/05/2015
- 30/07/2015) the Python script was being called and had already clustered
2,400 spam emails into spam campaigns.
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7 Conclusions

In this chapter we conclude by giving an overview of our work and present
some important directions for future work in this field.

We have indeed managed to identify spam campaigns based on the con-
tent of the web pages referred to by the spam emails. The results we pre-
sented showed that we can extract useful information by examining the
content of the web pages. The referred web pages then can stand on its own
as a criterion for identifying spam campaigns. Plagiarism detection based on
Fuzzy String Matching was the scheme to introduce because of the special
nature of our dataset. Our cluster evaluation method, despite not exhibiting
very clear results in terms of selecting the best parameter configuration for
an accurate spam campaign representation, in general assisted in capturing
the idea and notion of how clusters are formed and helped us select the most
suitable setting for a decent spam campaign identification.

After the identification of spam campaigns, we managed to label the
clusters with a few but indicative words. We explained in principle, how
Latent Dirichlet Allocation (LDA) works, and we were able to assign a topic
to each cluster. Topic modelling in our case is important in order to see what
the spam campaigns are about. Therefore, we presented some descriptive
statistics and showed both the top 10 most common terms in our dataset
and the top 10 biggest clusters in terms of their topic assignment.

Finally, we built an incremental mechanism that is able to cluster the
incoming spam emails into spam campaigns in an automatic and on-line en-
vironment. The incremental algorithm was first tested in a training dataset.
To this end, we did not use the parameter of the batches as we did for the
spam campaign identification in chapter 4. In the evaluation process, the
variation of the points (i.e. representing different settings) as showed in fig-
ure 9 was decreased. As a result, we are confident of having selected the
best parameter configuration to be applied on-line.

7.1 Future work

Spam campaign identification has been studied a lot during the last decade,
especially with the ever growing volume of spam messages spread every day
on the web. Although very efficient mechanisms have been developed to
filter spam emails, the need to understand how spammers work by summa-
rizing their characteristics, is still very important. Spam filters can then be
adjusted to the techniques used by spammers and become more effective.

Into that direction, the referred web page from the attached URL of
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the spam email can be combined with other attributes of a spam email.
The more attributes of spam emails we explore, the more reliable the rep-
resentation of the spam campaigns will become. Therefore, a study that
could combine all those different attributes together (content of spam email,
URLs, referred web pages, time stamps etc.) would lead to a more accurate
spam campaign representation.

Also, our process of identification of spam campaigns used sampling.
It would be interesting to see to what extent the increase in the size of
samples influences the quality of the clusters. We conjectural think that the
quality of the clusters, when increasing the sample size, increases to some
extent, but is upper-bounded by the ability of the plagiarism detection tool
to successfully identify similar web pages. A further study of the relation
between sample size and cluster quality might lead to a better clustering of
spam campaigns.

Another significant observation is the number of steps someone needs
to follow in order for the intended text of the web page to be revealed.
We encountered a serious anomaly with the text of the web pages, as the
downloaded text was parsed by following the attached URL only once. That
led to over 50% of the total texts to be uninformative. Further work on this
subject would involve to follow the next link until the intended text to
appear.

Furthermore, it would be very interesting if we could use the actual time
stamp of the spam emails. Then, we could use the averaging lasting period
of a spam campaign, based on our own dataset, to determine the search
criteria that would maximize the performance, as explained in section 6.4.
It would also give valuable insight when looking at the bursts of spam emails
and associate them with major effects happening at the same time (e.g.
elections of a country - bursts of spam campaigns related to this topic).

In addition, on-line and automatic incremental clustering of spam emails
is performed for an indefinite time period, unless manually interrupted. That
leads to some very nice opportunities we can explore in the future. The fact
that we are able to store the spam campaigns and access them at any time,
offers us some advantages. We can for example, search for the spam cam-
paigns that appeared during August for two consecutive years and extract
useful conclusions (e.g. size of the campaigns, duration, theme of the cam-
paigns etc.).

Finally, the HTML code of the referred web pages could be studied in
order to find out if it can be a criterion for spam campaign identification.
We believe that a standard template is used to represent the texts of the web
pages belonging to the same campaign. Even with some slight variations on
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the HTML code, we could examine its suitability in being able to identify
spam campaigns. On top of that, different spam campaigns might share
the same or similar HTML code layout. That could be an indication that
different spam campaigns might be orchestrated by the same entity.
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