
Predictive Machine Learning for a Housing
Corporation

Using machine learning and subgroup discovery to identify tenants
that are more likely to cause payment problems

Author: An Li

Student ID: 5646219

Internal supervisor: Dr. A.J. Feelders

External supervisor: Guus van de Mond

A mater thesis presented for the degree of Master of Science in
Computing Science

Algorithmic Data Analysis Group

Department of Information and Computing Science

Utrecht University

The Netherlands

12-11-2017

Abstract

In the process of renting a house, payment arrears may happen to some
tenants. Normally, the housing corporation can only take actions after the
problems occurred. In this thesis, several machine learning and subgroup dis-
covery algorithms are used to detect in advance people who are more likely
to cause payment problems. The chosen machine leaning algorithms include
logistic regression, random forests, k nearest neighbors, naive bayes and neu-
ral networks using model averaging, while the PRIM algorithm is selected for
subgroup discovery. Because the skewed distribution of classes in datasets, we
utilize the synthetic minority over-sampling technique (SMOTE) to generate
more reasonable results. Additionally, feature selection and several ensemble
methods are leveraged as well to improve the model performance, such as av-
eraging, majority voting and stacking. By all these approaches, finally, we
are able to get a few models that are significantly better than the preliminary
one. However, since the available data is limited and incomplete, and impor-
tant time-based information is missing, we can’t obtain a model which is good
enough.

Key words: machine learning, subgroup discovery, SMOTE, ensemble,
payment problems, housing corporation

i

Contents

Abstract i

Contents ii

1 Introduction 1
1.1 Motivation . 1

1.1.1 The housing corporation . 1
1.1.2 Business motivation . 1
1.1.3 Scientific motivation . 2

1.2 Problem statement . 3
1.3 Challenges . 4

1.3.1 Business perspective . 4
1.3.2 Technical perspective . 5

1.4 Research questions . 5
1.5 Outline . 6

2 Background 7

3 Theory 9
3.1 Machine learning . 9

3.1.1 Lasso and elastic-net regularized linear models 9
3.1.2 Random forests . 11
3.1.3 Naive bayes . 12
3.1.4 K nearest neighbors . 13
3.1.5 Neural networks using model averaging 14

3.2 Subgroup discovery . 15
3.3 Ensemble methods . 15

3.3.1 Averaging and weighted averaging 15
3.3.2 Majority voting . 16
3.3.3 Stacking . 16

3.4 Measures . 17

4 Data 19
4.1 Internal Data . 19
4.2 External Data . 21
4.3 Label . 22
4.4 Final datasets . 25

4.4.1 Pre-processing . 26
4.4.2 Feature selection with variable importance 29

5 Experiments 33
5.1 Experiments setup . 33
5.2 Train/Test and SMOTE . 33
5.3 Procedures . 34

ii

5.3.1 Single algorithm . 34
5.3.2 Ensemble methods . 35
5.3.3 Subgroup discovery . 36

6 Results 37
6.1 Single algorithms . 37

6.1.1 Lasso and elastic-net regularized linear models 37
6.1.2 Random forests . 39
6.1.3 K nearest neighbors . 40
6.1.4 Naive bayes . 41
6.1.5 Neural networks using model averaging 41

6.2 Ensemble methods . 42
6.2.1 Averaging and weighted averaging 42
6.2.2 Majority voting . 43
6.2.3 Stacking . 44

6.3 Subgroup discovery . 44
6.3.1 Rules . 45
6.3.2 Prediction . 48

7 Conclusion 49

References 51

Appendix I 53

Appendix II 55

iii

1 Introduction

1.1 Motivation
This thesis presents the results of a data mining project performed at the Machine
Learning Company where the author worked as an intern. First, we introduce the
customer, namely, the housing corporation we worked for. Then we explain the
reason why it is important for the housing corporation to investigate the chosen
problem. Because the thesis is the graduation research of a master degree, the sci-
entific motivation will also be given.

1.1.1 The housing corporation

The housing corporation is located in the Netherlands and concentrates especially
on two municipalities within the North Brabant province. They have nearly 5000
rented houses and public property such as health centers and care homes. They also
rent a lot of garages and parking spaces for organizations and individuals. Generally
speaking, the following services are mainly provided by the housing corporation:

1. Renting houses, public buildings, garages and parking places;

2. Managing and maintaining houses, public buildings, garages and parking places;

3. Purchasing real estate;

4. Researching on the livability of neighborhoods.

With approximately 37000 people recorded in the database, the potential of
conducting machine leaning or data mining on the housing corporation seems to
be promising. If we can use all the profiles and records of these customers, there
might be a number of opportunities to generate interesting conclusions. However, it
depends on the databases significantly, for instance, what kind of features are there,
how many missing records do they have and is there any pollution in the data? In
practice, we must take all these circumstances into consideration in order to yield
reliable and meaningful results. Besides, the housing corporation can also provide us
the complete financial database, in which we can find all the payment transactions
of both individual level and company level.

1.1.2 Business motivation

In recent years, with the popularity of machine learning, many traditional compa-
nies are seeking such intelligent techniques to enhance their business competitive-
ness. This is one of the reasons why the housing corporation would like to explore
how machine learning can be applied to help them. It is undoubted that a company
will dominate the market with the best services and the newest technologies, such
as Google in search engine and Amazon in e-commerce. If they don’t follow the
trend of the development of the technologies, they will finally be eliminated in the
future because of the out of date services and ideas. According to [1, 2, 3, 4, 5],

1

we can find that machine learning has been prevalent in various fields of industries
today, and more and more companies have already benefited from it. In a word,
integrating machine learning with business will not only save investments, but also
make enormous profits.

Additionally, the housing corporation intends to make their employees work more
efficiently by getting rid of unnecessary manual work. Meanwhile, most complex
operations are normally extremely time consuming when executed by humans, and
most of them require, more or less, some predictive abilities. Here we take a small
example to explain it more clearly. If the weather condition is awful on a certain
day, it might lead to an increase of service requests submitted by tenants, such
as leaking roofs and broken windows. Thus, it is wise to assign more employees
during these bad weather days to react for larger amount of service requests. By
this means, the housing corporation can arrange their manpower more efficiently.
However, they can’t make a reasonable plan to allocate the manpower yet, because
they don’t know exactly how many service requests will appear on a day based on
the weather condition. But if we apply machine learning on this problem, and build
a simple regression model to predict the potential service requests on a future day
based on some appropriate features, then, the housing corporation can use the pre-
dicted number of service requests to adjust their arrangement in advance. Therefore,
machine learning seems to be a good choice to meet the demands of the housing
corporation.

1.1.3 Scientific motivation

From scientific perspective, we would like to go through the entire process of man-
aging a machine learning project and gain hands-on experience of data preparation,
data analysis, data cleaning, model training, validation and parameter tuning. As
far as we know, in the academic field, researchers and students always use well-
edited, well-structured and uniform distributed datasets to practice. Nevertheless,
in reality, we will probably have to deal with completely raw data or extremely un-
balanced data. Sometimes, we even need to manipulate datasets with quite limited
features. In some sense, real world problems can help people acquire more experi-
ence and improve their engineering abilities. Hence, it is worthwhile to apply what
we have learned from the university to real world problems.

Moreover, we will also compare the results generated by different machine learn-
ing algorithms to summarize useful experience in practice. Commonly, people can’t
decide which algorithm is the best, because every algorithm may have a chance to
outperform others in some specific situations. So it is recommended to train as many
models as time and computing power permits. In this way, we are able to find the
algorithm that suits the particular case best.

2

1.2 Problem statement
A variety of IT technologies have been applied by the housing corporation to improve
their service quality and make their employees more efficient, such as CRM systems
which record profiles of tenants, self-service portals for submitting service requests
and complaints, back-office systems to provide automated invoicing. But only these
tools are not enough yet, there are still many scenarios that involve time-consuming
labor, low efficiency of resource arrangement, low customer satisfaction and so on.

In this thesis, we choose to present a case that predicts which people are more
likely to cause payment problems if they rent a house from the housing corporation.
Payment plays a significant role in a rent contract, it is also directly related to the
profits of the housing corporation. If every tenant will pay their rent or service cost
on time, it will save a lot of extra expenses on collecting the overdue bill. In other
words, the housing corporation doesn’t have to arrange employees to investigate the
unpaid tenants and make additional records to follow these unexpected events if no
payment problem occurs. Payment problems will happen now and then, but the
housing corporation can’t take any early actions before the problems appears.

On the basis of the above evidence, the main goal of the thesis is unambiguous
now, that is to say, based on the historical data, we are going to predict which ten-
ants or find which kind of group of people are more likely to have payment arrears
so that preventive actions can be assigned and proper attention to the right tenants
can be given. Intuitively, the following two categories of data are important for us
to start some preliminary analysis.

• Tenants’ profiles which has as rich information as possible

• Payment transactions that are made on individual level

Another important point is about the label. In fact, there aren’t actual records
that label the tenants with having payment problems or not. Thus, the first step for
us is figuring out how we can extract valuable information which can help us label
the tenants with 1 or 0 (1 means someone had payments problems before while 0
means no payment problems). Once we have the labeled data, we can execute the
machine learning phase and the subgroup discovery phase. In figure 1, we create an
overview of the proposed methods to solve the entire problem. (In section 4, We
will introduce all the data sources we have used in this figure with more details.)

3

Figure 1: Overview of the proposed methods

1.3 Challenges
Unlike classifying the categories of flowers or predicting if tomorrow will be a rainy
day, it is always more difficult for computers to capture humans’ behaviors. There-
fore, numerous challenges exist from both the business side and the technical view.
Before we start the main work, it is considerable for us to think about the limitation
of this project and the underlying difficulties we will face. By this way, we are able
to set up a reasonable baseline to refer to when the actual results come out during
the experiments.

1.3.1 Business perspective

The housing corporation are specialized at sales and marketing but not data and
technology, thus, it will always be difficult for them to provide us the expected
datasets. Meanwhile, they are not familiar with machine learning and subgroup dis-
covery techniques, which sometimes leads them to overestimate the abilities of these
methods. Overall, it is crucial how we introduce machine learning and subgroup
discovery algorithms to them as well as how we interpret the results of models or
analysis in the end. We can foresee that there might be a huge gap between the
housing corporation and us with respect to the understanding of technologies, but
from a different perspective, it will also push us to make our work understandable
by our customers. Moreover, we can’t guarantee that we will get flawless models,
because it depends on the scale and quality of the datasets the housing corporation
has. In fact, if we can get more data with better quality, we will be more confident
to produce better results and more accurate models.

4

1.3.2 Technical perspective

In real world, we will face various kinds of datasets, some datasets might have lots of
missing values while others might be polluted when people or programs create them.
In this project, there is no doubt that we will encounter such problems as well when
we manipulate the datasets before building models. Particularly, when it comes to
predicting if a tenant will cause payment problems or not, it is common that we
are going to manage an unbalanced dataset. Because people have such problems
are always in a minority class in real world so the biggest challenge for us is how
we can tackle the unbalance of the dataset in a most appropriate way. But beyond
that, we should also put effort into algorithm selection and parameter tuning in the
following steps after manipulating the data. Hence, the other challenge is how we
select algorithms and the parameters for each model. Additionally, it is possible
that the information we extract from the original datasets is not enough so that we
need to find extra data sources to enrich the original one. The question is where
we can find such data sources if we need them and how we can make connections
among different data sources. For example, the tenants’ profiles are not complete
in the databases and we have to find several important features such as income and
family structure from external sources.

1.4 Research questions
The motivations, problem statement and challenges discussed in the previous sec-
tions lead us to the following research questions:

1. Is it possible to build a classification model to predict if a tenant will cause
payment problems or not based mainly on the tenant’s profile?

2. Is it possible to use subgroup discovery algorithm to find which kind of people
are more likely to cause payment problems and then build a predictive model
based on the most representative rules?

3. Which supervised machine learning algorithm performs best with regard to this
specific problem?

4. How can we interpret the results of both machine learning and subgroup dis-
covery?

The first question covers the main topic of this project, and this is basically
what the housing corporation requires. In consideration of the potential difficulties
to handle unbalanced data, we come up with the second research question to help
us find more descriptive results. The third question is associated with the first
one, which aims to generate models with the best prediction performance. The last
research question proposes to investigate the interpretability of machine learning
and subgroup discovery as well as compare the results produced by both of them
with respect to this specific problem.

5

1.5 Outline
The structure of the thesis is as follows: in chapter 2, we will firstly introduce some
background knowledge of artificial intelligence, machine learning as well as subgroup
discovery, at the same time, we will illustrate some related work in these fields. In
chapter 3, we discuss all the algorithms we have used in the experiments, and make
sure we explain all the techniques clearly so that people can understand the main
idea of each algorithm without any deeper reading. Then, we will describe all the
available data sources in chapter 4 and give detailed statistic analysis for them,
meanwhile, we will also indicate the challenges and issues with respect to the scale
and quality of the data. After, we will conduct our experiments in chapter 5, and
analyze the results in chapter 6. Finally, the summary and some future work will
be presented in chapter 7.

6

2 Background
Artificial Intelligence(AI) is becoming more and more prominent and has been ap-
plied in many areas all over the world, for instance, chat bot like Siri, self-driving car
of Baidu and also the famous I-go player AlphaGo from Google. In the meantime,
the other term "Machine Learning" is also mentioned frequently along with AI. In
1959, Arthur Samuel firstly defined machine learning as "provides computers with
the ability to learn without being explicitly programmed." [6]. Basically, machine
learning is an approach to achieve AI and the process of machine learning is as
similar as data mining, that is to say, both fields look for patterns from the data.
Nevertheless, in data mining, we mainly concentrate on patterns that people can
easily understand whilst machine learning can find patterns with deeper insights
which might be more difficult for human-beings to detect manually. People often
divide machine learning algorithms into supervised algorithms and unsupervised al-
gorithms. Supervised machine learning algorithms require labeled datasets to create
models while unsupervised machine learning algorithms are more suitable for deal-
ing with unlabeled datasets [7].

For supervised algorithms, data has labels like True/False, Spam/Not Spam or
continuous real number. Based on some well defined features, supervised algorithms
can build a predictive model on training dataset and then predict the label of each
instance in test dataset. In order to obtain higher accuracy and better perfor-
mance, several tuning techniques should be applied along with the machine learning
algorithms, such as cross-validation. Cross-Validation is a statistical method of eval-
uating and comparing learning algorithms by dividing data into two segments: one
used to learn or train a model and the other used to validate the model. In typ-
ical cross-validation, the training and validation sets must cross-over in successive
rounds such that each data point has a chance of being validated against [8]. The
most basic form of cross validation is K fold cross validation and repeated K fold
cross validation is another popular variation.

Furthermore, supervised learning can be divided into regression problems and
classification problems. In regression problems, the output takes continuous values,
whereas in classification problems, the output must be categorical values. The most
representative examples should be linear regression [9] and logistic regression [10].
The former one dedicates to solve regression problems while the latter one is desig-
nated to tackle classification problems (the name also contains "regression", but it
is because of some historical reasons and it is essentially a classification algorithm).
Nevertheless, many widely used algorithms can cope with both regression and clas-
sification problems so there is no need to worry about the selection of algorithms
too much.

As mentioned before, the training data of unsupervised learning should be unla-
beled and the algorithm aims to draw inferences from datasets. The most common
unsupervised learning scenario is clustering, which is used for exploratory data anal-
ysis to find hidden patterns or classify data into different unknown subgroups. Sim-
ilarity measures are used to construct clusters, namely, calculating distance between
instances. Normally, distance metrics like Euclidean distance and Manhattan dis-

7

tance are widely used. Another significant type of unsupervised learning is principal
components analysis, which is a tool used for data visualization or data preprocess-
ing before supervised techniques are applied. Some well known algorithms are PCA
(which is invented in 1901 by Karl Pearson [11] and then independently developed
and named by Harold Hotelling [12] in the 1930s) as well as K-means clustering
which was firstly introduced by James MacQueen [13].

On the basis of supervised learning, ensemble algorithms [14] are proposed to
maximize the accuracy of the model. The underlying principle of ensemble learning
is utilizing the strength of multiple models to overcome the weakness of a single
model. In real world problems, every model built by a single algorithm has bottle-
necks and will probably make mistakes. Given that each model has these “limita-
tions,” an ensemble method will result in the best possible overall predictions. Many
theoretical and empirical researches have shown that the accuracy of an ensemble
model can dramatically outperform a single model. There are a lot of popular al-
gorithms adopt the idea of ensemble learning, for example, Random Forests [15],
Adaboost [16] and Gradient Boosting Machines (GBM) [17].

Subgroup discovery is a data mining technique which extracts interesting rules
with respect to a target variable. An important characteristic of this task is the com-
bination of predictive and descriptive induction [18]. Similar to supervised learning,
subgroup discovery can also be classified based on the type of the target variable.
Normally, there are three types of target variables in subgroup discovery: binary,
nominal and numeric.

• Binary analysis. The target variable has only two distinct values (positive or
negative), and the goal is finding interesting subgroups for each target value.

• Nominal analysis. The methodology for this kind of analysis is similar to the
binary case, that is to say, to find subgroups for each possible value, but the
target variable can take an arbitrary number of values.

• Numeric analysis. This is the most complex one because the variable can
be studied in different ways such as dividing the variable in two ranges with
respect to the average.

Another very important component of subgroup discovery is the search strategy.
The dimensions of the search space will increase exponentially with respect to the
number of features and target values. Thus, a better search strategy can yield a
more efficient subgroup discovery algorithm, which is crucial for handling massive
datasets. Different strategies have been used so far, for example, beam search based
algorithms, exhaustive search based algorithms, genetic algorithm based approaches
[19].

8

3 Theory
In this chapter, we introduce all the theories behind the techniques we have used in
experiments. The outline of several machine learning algorithms will be presented at
the first place. Then the introduction of the selected subgroup discovery algorithm
will be given. Subsequently, the sketch of the ensemble methods will be described.
At last, we discuss some popular measures in relation to classification problems.

3.1 Machine learning
Nowadays, numerous machine learning algorithms have been invented and imple-
mented for people to use. However, it is difficult to find the best one for a concrete
problem directly. In order to get the best results, the only way is trying as many
algorithms as possible. But this doesn’t mean we can pick algorithms randomly,
on the contrary, we should try the most popular algorithms in the community first.
This is the first reason why we choose the following algorithms. The second reason
is that we choose algorithms with diverse properties to make sure the subsequent
ensemble methods can give us better performance.

3.1.1 Lasso and elastic-net regularized linear models

In order to fit a linear model, we use "glmnet" package in R. The "glmnet" is
a package that fits a generalized linear model via penalized maximum likelihood.
Normal linear models formulate a linear relationship between a response and one or
more predictors. Nevertheless, sometimes, a nonlinear relationship exists. Nonlin-
ear regression or classification describes general nonlinear models. A special class of
nonlinear models, called generalized linear models [20], which is a flexible general-
ization of ordinary linear models that allows for response variables that have error
distribution models other than a normal distribution.

Lasso (1) is a regularization technique for estimating generalized linear models.
Lasso uses L1 penalty term that constrains the size of the estimated coefficients
while another technique ridge (2) regularization adopts L2 norm. Unlike ridge re-
gression, as the penalty term increases, the lasso technique sets more coefficients to
zero. This means that the lasso estimator results in a smaller model, with fewer
predictors which makes the final model more interpretable. As such, lasso is an
alternative to stepwise regression and other model selection and dimensionality re-
duction techniques. Elastic net is a related technique as well. Elastic net (3) is
something similar to a hybrid of ridge regularization and lasso regularization. As
with lasso, elastic net can generate reduced models by generating zero-valued co-
efficients. Empirical studies suggest that the elastic net technique can outperform
lasso on data with highly correlated predictors.

β̂ = argminβ

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj| (1)

9

β̂ = argminβ

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2
j (2)

β̂ = argminβ0,β

n∑
i=1

wil(yi, β0 + βTxi) + λ[(1− α)||β||22/2 + α||β||1] (3)

In the above three equations, y represents the dependent variable (response or
output variable) while x stands for independent variable (predictor or input vari-
able). Equation (2) presents how to calculate the coefficient estimates of ridge

regularization, where λ ≥ 0 is a tuning parameter and the term λ

p∑
j=1

β2
j , called a

shrinkage penalty which can be very small when β1, ..., βp are close to zero. The
tuning parameter λ serves to control the relative impact of these two terms on the
coefficient estimates. When λ = 0, the penalty term has no effect, and ridge regular-
ization will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regularization coefficient estimates will
approach zero, but will not set any of them exactly zero (unless λ = ∞). Unlike
least squares, which generates only one set of coefficient estimates, ridge regular-
ization will produce a different set of coefficient estimates, β̂, for each value of λ.
Therefore, selecting a good value for λ is critical. Ridge regularization does have
one disadvantage. Because L2 norm is used, it will include all p predictors in the
end which may affect the interpretation of the final model.

Comparing equation (2) and equation (1), we see that the only difference between
ridge and lasso is that the β2

j term in the ridge regularization has been replaced by
|βj|, which is called L1 norm. As with the ridge regularization, the lasso shrinks
the coefficient estimates towards zero. However, in the case of the lasso, the L1
norm has the effect of forcing some of the coefficient estimates to be exactly equal
to zero when the tuning parameter λ is large enough. Hence, much like best subset
selection, the lasso performs variable selection. As a result, models generated from
the lasso are generally much easier to interpret than those produced by ridge. We
say that the lasso regularization yields sparse models that involve only a subset of
the variables. As in the ridge regularization, selecting a good value of λ for the lasso
regularization is also critical.

Equation (3) shows us the elastic net regularization, where l(yi, β0 + βTxi) is
the negative log-likelihood contribution for observation i. The elastic-net penalty is
controlled by α, and bridges the gap between lasso (α = 1, the default) and ridge
(α = 0). The tuning parameter λ controls the overall strength of the penalty. Here,
||β||22 means L2 norm and ||β||1 is the L1 norm.

Overall, advantages of "glmnet" are:

• The algorithm is extremely fast

• It can exploit sparsity in the input matrix

10

• It can fit linear, logistic and multinomial, poisson, and cox regression models

• A variety of predictions can be made from the fitted models

• It can also fit multi-response linear regression

• It includes internal feature selection

According to "glmnet" documentation, the regularization path is computed for
the lasso or elastic net penalty at a grid of values for the regularization parameter
λ. Besides, we also need to tune the α parameter to control elastic net penalty.

3.1.2 Random forests

We choose the package "randomForest" to fit tree based model. Random forests[15]
is an ensemble learning algorithm. The main idea of this algorithm is building sev-
eral weak decision trees with fewer features and then combine these trees to form a
single, stronger learner by averaging or majority voting. In practice, random forests
has been proven to be one of the most accurate machine learning algorithms. In
algorithm 1, we illustrate the pseudocode of random forests.

Algorithm 1 Random Forests
Require: A training set S := (x1, y1),...,(xn, yn), features X, and number of trees

in forest B.
1: function RandomForests(S,X)
2: H ← ∅
3: for i ∈ 1, ..., B do
4: S(i) ← A bootstrap sample from S
5: hi ← RandomizedTreeLearn(S(i), X)
6: H ← H ∪ hi
7: end for
8: return H
9: end function

10: function RandomizedTreeLearn(S,X)
11: for each node do
12: f ← Random select a subset of X
13: Split on best feature in x
14: end for
15: return The learned tree
16: end function

Random forests algorithm really has a lot of superiorities and also a few draw-
backs, for example:

• Pros:

– It is dominant in accuracy among current algorithms

– It is very efficient on large data sets

– It can decide the best subset of features

11

– It has an effective method for estimating missing data and maintains
accuracy when a large proportion of the data are missing

– It generates an internal unbiased estimate of the generalization error as
the forests building progresses

• Cons:

– Random forests have been observed to overfitting for some datasets with
noisy classification/regression tasks

– The results made by random forests are difficult for humans to interpret

– For data including categorical variables with different number of levels,
random forests are biased in favor of those attributes with more levels

3.1.3 Naive bayes

In machine learning, naive Bayes classifiers are a family of simple probabilistic clas-
sifiers based on applying Bayes’ theorem with naive independence assumptions be-
tween the features. The Naive Bayes algorithm is called "naive" because it makes
the assumption that the occurrence of a certain feature is independent of the oc-
currence of other features. When it comes to the “Bayes” part, it is because of
Thomas Bayes and the theorem named after him, Bayes’ theorem, which is the base
for Naive Bayes Algorithm. More formally, Bayes’ Theorem is formulated as the
following equation:

P (A|B) =
P (B|A)P (A)

P (B)
(4)

In this equation, P(A|B) (or P(B|A)) means the posterior probability (condi-
tional probability) of occurrence for event A (or B) given B (or A) is true, P(A) and
P(B) are prior probabilities of the occurrence for event A and B respectively.

The sketch of the naive bayes learning algorithm is as follows:

1. Build a frequency table for all the features against different classes

2. Create the likelihood table for the features against the classes

3. Calculate the conditional probabilities for all the classes

4. A new instance will belong to the class which has the maximum conditional
probability

Naive bayes classifier has the following properties:

• Pros:

– It is a relatively easy algorithm to build and interpret

– It is faster to predict classes using this algorithm than many other clas-
sification algorithms

12

– It can be easily trained using a small dataset

• Cons:

– One limitation of Naive Bayes is the assumption of independent predic-
tors. In real life, it is almost impossible that we can find such completely
independent variables

3.1.4 K nearest neighbors

In machine learning, K nearest neighbors algorithm (KNN) [21] is a non-parametric
method used for classification and regression. Given a positive integer K and a test
observation x0, the KNN classifier first identifies the K points in the training data
that are closest to x0, represented by N0. Algorithm 2 shows the procedure to find
the nearest neighbors. It then estimates the conditional probability for class j as the
fraction of points in N0 whose response values equal j, see equation (5):

Algorithm 2 K nearest neighbors
Require: A training set X, class labels Y of X, x: unknown sample, K: an integer
1: for i = 1 to m do
2: Compute distance d(Xi, x)
3: end for
4: Compute set I containing indices for the K smallest distances d(Xi, x)

P̂ r(Y = j|X = x0) =
1

K

∑
i∈N0

I(yi = j) (5)

Finally, KNN applies Bayes rule (4) and classifies the test observation x0 to the
class with the largest probability [7], see equation (6).

ŷ = argmaxyPr(y|X) (6)

Though KNN is a very simple algorithm, it can often produce surprisingly good
results. A summary of the benefits and drawbacks of KNN is as follows:

• Pros:

– It can be regarded as one of the most simplest machine learning algorithm

– The decision boundary of KNN can take any form

– Performance is promising with enough representative data

• Cons:

13

– The main disadvantage of the KNN algorithm is that it is a lazy learner,
i.e. the function is only approximated locally and all computation is
deferred until classification

– The algorithm must compute the distance and sort all the training data at
each prediction, which can be slow if there are a large number of training
examples

– It does not learn anything from the training data, which can result in the
algorithm not generalizing well and also not being robust to noisy data

– Need to tune K, because it can affect the results significantly

3.1.5 Neural networks using model averaging

Following Ripley [22], the same neural network model is fitted using different ran-
dom number seeds. All the resulting models are used for prediction. For regression,
the output from each network are averaged. For classification, the model scores are
first averaged, then translated to predicted classes. Bagging can also be used to
create the models.

Hereby, we won’t discuss too much about the concept of neural network, because
it will go beyond our scope, but we will summarize some pros and cons of neural
network and averaging neural networks according to [23]:

• Pros:

– The performance of averaging neural networks can be better than single
neural network

– Neural network models require less formal statistical training to develop

– Neural network models can implicitly detect complex nonlinear relation-
ships between independent and dependent variables

– Neural network models have the ability to detect all possible interactions
between predictor variables

– Neural network can be developed using multiple different training algo-
rithms

• Cons:

– The training time can be extremely high compared to other algorithms

– Neural network is a “black box” and sometimes it will be hard to interpret
the results

– Neural network models are prone to overfitting

– Neural network model development is empirical, and many methodolog-
ical issues remain to be resolved

14

3.2 Subgroup discovery
The notion of subgroup discovery has been defined by Klosgen [24] and Wrobel [25]
as: "Given a population of individuals and a property of those individuals that we
are interested in, find population subgroups that are statistically ’most interesting’,
for example, are as large as possible and have the most unusual statistical (distribu-
tional) characteristics with respect to the property of interest."

Subgroup discovery focuses on extracting relations among different variables with
respect to the property of interest. These relations can be represented by rules as
follows: if: A and B, then: C, i.e. if: Conditions, then: Target.

We choose the PRIM [26] algorithm as an implementation of subgroup discovery.
The PRIM algorithm uses bump hunting to find interesting subsets. Generally, the
goal of bump hunting is to find regions in the input (attribute/feature) space with
relatively high (low) values for the target variable. The regions are described by
simple rules like if: {condition-1 ∨...∨ condition-n}, then: estimated target value.
Given the data (or a subset of the data), it is expected to produce a box B within
which the target mean is as large as possible.

In practice, finding such regions is valuable for a variety of problems. Especially,
these problems that require a decision maker to select the values of the input vari-
ables in order to optimize the value of the target variable. Besides, in bump hunting
it always follows a so-called covering strategy. This means that the same box con-
struction (rule induction) algorithm is applied sequentially to the subsets of the data.

3.3 Ensemble methods
Generally speaking, ensemble is a technique of combining two or more algorithms in
similar or different types as base learners in order to construct a integrated model.
By this way, a more powerful and robust model can be made which utilizes all the
prediction results from different base learners. The aim of ensemble is improving
the performance of a number of weak learners by putting them together. The rest
of this section will demonstrate some popular approaches to build ensemble models.

3.3.1 Averaging and weighted averaging

Averaging ensemble is defined as taking the average of predictions from different
models in case of regression problem or predicting probabilities for the classification
problem. Moreover, in weighted averaging, different weights are assigned to predic-
tions from multiple models and then we can use the weighted average to produce
more reasonable results. Table 1 and 2 are examples for averaging ensemble and
weighted averaging ensemble respectively.

15

Model 1 Model 2 Model 3 Model final
50 100 150 100

Table 1: Averaging ensemble

Model Weight Prediction
Model 1 0.4 50
Model 2 0.3 100
Model 3 0.3 150

Model final - 95

Table 2: Weighted averaging ensemble

3.3.2 Majority voting

In a classification problem, majority voting is defined as taking the class with the
maximum appearance as the final prediction from multiple models’ outcomes, see
table 3 for an example.//

Model 1 Model 2 Model 3 Model final
A B A A

Table 3: Majority voting ensemble

3.3.3 Stacking

In stacking ensemble, multiple layers of machine learning models are placed one over
another where each model passes their predictions to the model in the layer above
it and the top layer model takes decisions based on the outputs of the models in the
layer below it.

For instance, in figure 2, the stacking model has two layers, the bottom layer
models (Logistic regression, KNN, naive bayes) receive the original features from
the dataset and make predictions respectively. Subsequently, the model at the top
layer (random forests) takes the output from the bottom layer models and generates
final predictions.

Particularly, we should notice that the out of fold predictions are used when
we create the inputs for the top layer. In the above example, the stacking model
consists of two layers, but in practice, people can use any number of layers and
algorithms to create stacking ensemble model. Besides, we should make sure that
the predictions from different models are not correlated with each other, that is to
say, it is recommended to select models built by different algorithms.

Below, we conclude some advantages and disadvantages of ensemble methods:

• Pros:

– Ensemble is a proven method for improving the accuracy of the model
and works in most of the cases

16

Figure 2: Stacking ensemble

– Ensemble makes the model more robust and stable

• Cons:

– Ensemble reduces the interpretation of the model and makes it very dif-
ficult to draw any crucial business insights at the end

– Ensemble learning is time-consuming and thus it might not be a good
choice for real-time applications

– The selection of algorithms for creating an ensemble model is really hard
to master

3.4 Measures
Performance measures are ways to evaluate machine leaning models and different
machine learning problems require different measures. For instance, regression prob-
lems and classification problems will use totally different performance measures.
Since we are dealing with a classification problem, we only concentrate on measures
for classification problems.

Actual class
Positive Negative

Predicted class Positive True Positive False Positive
Negative False Negative True Negative

Table 4: Classification confusion matrix

Table 4 is a confusion matrix of measures for classification problems. From this
table, we can define some representative measures for classification models. To begin

17

with, we explain the meaning of terms in this table. The first term "True Positive
(TP)" means that actual class and predicted class are both positive while "False
Negative (FN)" indicates that the actual class should be positive but the predicted
class is negative. Then, "True Negative (TN)" and "False Positive (FP)" can be
defined in the same way. With these four basic measures, we can formulate a lot of
more sophisticated measures below.

• Accuracy = TP+TN
TP+TN+FP+FN

: accuracy is the most intuitive performance mea-
sure and it is simply the ratio of correctly predicted observation to the total
observations. Nevertheless, accuracy requires balanced data, otherwise a high
accuracy doesn’t mean anything, because in an unbalanced dataset, a high
accuracy model will be probably biased to the majority class severely.

• Precision = TP
TP+FP

: precision is the ratio of correctly predicted positive ob-
servations to the total predicted positive observations. If we are interested in
the number of actual positive observations in the predicted positive observa-
tions, precision might be the best choice.

• Recall = TP
TP+FN

: recall is the ratio of correctly predicted positive observations
to all the observations in positive class. For example, if we would like to classify
people who has cancer, recall is an extremely crucial measure to evaluate the
model. Because if we use a low recall model, it means that most people who
has cancer will not be detected successfully by the model.

• F1 = 2 ∗ Precision∗Recall
Precision+Recall

: F1 Score is the harmonic average of precision and
recall. Therefore, F1 score takes both false positive and false negative into
consideration.

• ROC: receiver operating characteristic curve (ROC curve) is a graphical plot
that illustrates the diagnostic ability of a binary classifier system as its dis-
crimination threshold is varied. The ROC curve is created by plotting the
true positive rate (recall) against the false positive rate (FP

FP+TN
) at various

threshold settings.

• AUC: the overall performance of a classifier, summarized over all possible
thresholds, is given by the area under the (ROC) curve (AUC). An ideal ROC
curve will hug the top left corner, so the larger the AUC the better the classi-
fier. A reliable and valid AUC estimate can be interpreted as the probability
that the classifier will assign a higher score to a randomly chosen positive ex-
ample than to a randomly chosen negative example. Both ROC and AUC are
insensitive to the class distribution (suitable for unbalanced datasets), thus,
we choose AUC as one of the most important measures to evaluate models in
experiments.

18

4 Data
In order to predict people who are more likely to cause payment problems, detailed
profiles of tenants are necessary, such as age, income and family size. Additionally,
records of payment transactions for each tenant are also required to label the tenants
if the dataset doesn’t contain any labels. In this problem, we indeed have to label
the tenants by ourselves based on the payment records. Besides, because of some
historical reasons, the profiles of tenants are not recorded completely in the database
by the housing corporation, therefore, we also need to seek extra sources in order to
enrich the tenants’ profiles.

4.1 Internal Data
We derive all the internal data from databases provided by the housing corporation.
In total, three Microsoft SQL Server databases are used to create the final dataset.

1 "HuurProductie"

"HuurProductie" is a primary database of the housing corporation, almost all
basic information of tenants and houses can be found in it, table 5 will give us
a summary of features for both tenants and houses that are registered in the
database.

According to table 5, it seems that we already get a decent profile for both
tenants and houses. However, though the feature list looks good enough to
make something impressive, we still should take the quality and the amount
of data into consideration. The completely statistic description for the final
datasets will be presented in the subsection "Final datasets" below.

Hereby, we just explain a few possibly ambiguous features in this table. For
the features of tenants, the only unclear feature could be the "Mental Status",
which is a binary variable indicates whether a people is involved with a mental
health clinic or not. As to the features of houses, "Type I" and "Type II"
are two different classification ways for houses while "Cluster" represents the
group of similar houses, they are all defined by the housing corporation itself.
Moreover, "Initial Rent" records the payment of the first month for each house.

2 "Omega"

"Omega" is a reference database which contains addresses of the houses. Be-
cause the actual addresses are not stored explicitly in the "HuurProductie"
database, we need to use the "Postcode ID" variable to match them from the
"Omega" database. Actually, we will not use address as a predictor in the
experiments, but it is important for us to join the internal data with the ex-
ternal data by the address.

19

Type Features

Tenants

Date of Birth
Ethnicity

Marital Status
Gender

Bank Account
Mental Status

Rent Allowance Indicator
Household Size

Household Income

Houses

Type I
Type II
District
Cluster

Building Year
Number of Rooms

Initial Rent

Table 5: Raw features derived from the database "HuurProductie"

Table 6 shows the geographical distribution of the houses at postcode level.
According to this table, we can see that the business of the housing corporation
spreads in 5 places, and mainly in "VALKENSWAARD" and "BERGEIJK".

VALKENSWAARD BERGEIJK LUYKSGESTEL WAALRE EINDHOVEN
324 29 4 4 1

Table 6: Distribution of the houses at postcode level

3 "DBS"

"DBS" database contains the entire financial data of the housing corporation,
including every separate payment for each tenant. The records can be traced
back to 2007, it means that we have approximately 10 years data to conduct
our analysis.

Nevertheless, there are many difficulties exist in this database when we man-
age to extract payment features. The first problem is the naming method for
tables in the database. All the names can not be recognized by people who has
never used this database before, so it will cost us pretty long time to inspect
this huge database with over 200 different tables. Hence, we adopt a more
efficient method here. First, we calculate the number of rows for each table
and then we only check those tables that have over 100000 rows of instances.
In this way, only 17 tables are left for inspection. Finally, we find two tables
contain the data we expect after scanning these 17 tables. The second prob-
lem is about the name of tenants, it is not recorded in the "DBS" database
at the beginning which make it impossible for us to link the "DBS" data to a

20

specific tenant. But fortunately, it is feasible to connect the "DBS" database
with the "HuurProductie" database by the bank account number instead of
the name, which leads to less instances in the resulting dataset. The third
problem appears in above two tables which contain the expected data. The
first table called "aobr" which has the bank account number of the tenant, the
amount of each payment etc. whilst the other table named "bst" stores more
information related to transactions, such as the type of payment, the date of
each transaction etc. As mentioned before, we can only find records starting
from 2007 in both tables, but many contracts started before 2007, thus, in
some sense, the data itself is not complete. Furthermore, we assume the table
"aobr" and the table "bst" will record data consistently, but there are a lot of
exceptions. For example, the table "aobr" records the payment amount of a
tenant since 2010, but the table "bst" may record the same person’s transac-
tions since 2007, consequently, if we join both table together, it will generate
missing data of payment amount during 2007-2010 for that person. Figure 3
and 4 display a concrete example for this problem and they are also good ex-
amples for readers to understand what the table "aobr" and the table "bst"
look like. By the way, we have removed some useless columns in both two
figures.

Figure 3: Example of the table "aobr"

4.2 External Data
Table 5 already gives us many useful features, but the missing data in the table
"aobr" and "bst" is too much to handle, so we have to look for external sources
to enrich the tenants’ profiles. Then, a company named Cendris enters our line of

21

Figure 4: Example of the table "bst"

sight, which is a subsidiary of PostNL and can provide us more detailed data of
some tenants at household level. We should notice that they can only provide the
data of people who are currently living at the addresses we apply for, so that we
will get more features at the cost of the decreasing of the instances.

We send Cendris all the postcodes that the housing corporation’s houses locate
in, and the dataset we receive contains all the people who are living in those streets at
present, owning or renting a house respectively. Therefore, we obtain extra features
for tenants who still live in the same houses or the same clusters now. But one
thing we should take care is that we are using current profiles of tenants to predict
the past behavior of them. It sounds like non-logical, but it is quite hard for the
housing corporation to collect the data of the past years for each tenant. As a
consequence, we have to run our experiments based on the available datasets. For
more information about variables of Cendris dataset, please see Appendix I.

4.3 Label
In this part, we are going to describe how we label the people with having payment
problem or not.

From figure 4, we can see there are extra two different descriptions besides the
normal description for monthly rent, they are "Nieuwe betalingsregling" and "Afloss-
ing betalingsregling". The first term means there is a new payment strategy applied
to the tenant, it can reveal that something happens to the tenant so the housing
corporation has to change the strategy for that person. The second term says there
is a redemption or a repayment appear which directly indicates a payment problem

22

in that month. As a result, we decide to use these two descriptions as references to
label the tenants. Firstly, we look at the distribution of these two descriptions in
the database, see table 7. There are 756 people that the housing corporation once
changed the payment strategy because of some reasons while 739 people encountered
payment problems in the past. Actually, each tenant who has a "Aflossing betal-
ingsregling" record can also be found in the "Nieuwe betalingsregling" group. Thus,
we only need to focus on people who has a "Aflossing betalingsregling" description
and figure out how to label the data using it.

Nieuwe betalingsregling Aflossing betalingsregling
756 739

Table 7: People with "Nieuwe betalingsregling" and "Aflossing betalingsregling"

Figure 5: Distribution of "Aflossing betalingsregling" by count for tenants

In order to label the tenant with having payment problems, we have narrowed
our searching space to those people has "Aflossing betalingsregling" description in
the database. Next, we attempt to visualize this group of people in figure 5 to help
us obtain more insights. The histogram shows that most people has less than 10
times "Aflossing betalingsregling" records. But how can we label the tenants based
on this summary? If we take the threshold too small then we will weaken the rep-
resentativeness of people who are more likely to cause payment problems, because
some people may cause payment problems once or twice but they may not in the
similar situation with those people who has payment arrears more than 20 or 30
times. On the contrary, if we set a large threshold then we will lose the generaliza-
tion of different kinds of people who are likely to cause payment problems. Figure 6
presents another distribution of "Aflossing betalingsregling". By this histogram, we
know that there are more than 400 "Aflossing betalingsregling" records appear dur-
ing each year since 2007, and up to 794 in the maximum year. Accordingly, we can
conclude that the count of "Aflossing betalingsregling" is approximately uniform

23

for each year which means we can use all the records from 2007 to 2016. However,
we still would like to know the number of years where problems appears for most
people, see figure 7. This figure demonstrates the distribution of problematic years
for all tenants, it is evident that almost half of the tenants (331 of 739) who once
had payment problems only in a single year. Therefore, we can’t merely filter out
those people who only had payment problems in one year, because it was possible
for people to cause quite a lot payment problems in only one year, and tenants like
this should also be labeled as problematic.

Figure 6: Count of the "Aflossing betalingsregling" per year

Given the above, we set the threshold as 3, namely, if a tenant has more than
3 times "Aflossing betalingsregling" records we will label this person with a "1",
otherwise we will label the person with a "0". At last, 539 tenants are labeled with
"1" in the "DBS" database. In this way, we filter out people who causes payment
problems just a few times, but we remain those people who has more obvious pat-
terns to cause problems, for example, people causes a lot of problems in one year
and people has payment problems for many years. Specially, according to section
1.1.1, we know that the housing corporation has approximately 37000 tenants in the
database, thus, except these 539 problematic tenants, other tenants are all labeled
with a "0". Nonetheless, this is not the final label distribution yet, since we still
need to join all the data from different data sources together and some tenants might
not be matched successfully. The final datasets we use in the experiments will be
discussed in the following section.

24

Figure 7: Distribution of problematic years among tenants

4.4 Final datasets
In this section, we describe the datasets we eventually use in the experiments. Ulti-
mately, we create two datasets for use, one is the original dataset without Cendris
data, the other one is the dataset joined with Cendris data.

Table 8 and 9 display the total number of instances and the distribution of labels
for both datasets after joining all the data we have mentioned in previous sections.
It is notable that there are only 258 tenants having payment problems left in the
dataset without Cendris because we can’t match the other 281 tenants from both the
"HuurProductie" database and the "DBS" database. Simultaneously, the number
of tenants with negative label decline from around 36000 to 2981. Moreover, if we
join Cendris data as well, the number of instances will reduce even worse, with only
97 positive instances and 1074 negative instances left. Another observation is that
both datasets suffer from significantly unbalanced distribution (the positive label
only accounts for 8%). Unbalanced data can cause the model to be biased towards
one class, hence, we will manage to solve it in the chapter of experiments.

Label Number Percentage
0 2931 91.9%
1 258 8.1%

Total 3189 100%

Table 8: Label distribution of the dataset without Cendris

25

Label Number Percentage
0 1074 91.7%
1 97 8.3%

Total 1171 100%

Table 9: Label distribution of the dataset with Cendris

4.4.1 Pre-processing

Pre-processing is an important step in machine learning and data mining. It aims
to create datasets with high quality. Kotsiantis et al. present a decent summary
of methods in different steps of pre-processing [27]. Because we have two datasets
with some non-overlapping features, so we will deal with them respectively.

1 Dataset without Cendris

(a) Remove messy rows:
When we join data from different sources, sometimes, it is inevitable to
generate some messy rows. Messy data will affect the accuracy of the
prediction and lead to a lot of unknown errors when we try to fit models
on them. So, we delete rows involved with data dislocation as well as
rows with all blanks.

(b) Feature construction:
Because age is not recored directly in the database, we use the date of
birth as well as the year the transaction happened to construct the actual
age of a tenant at that year. In this manner, we can get the real age of
tenants when they caused the first payment problem, which makes age
become a reliable feature.

(c) Replace illegal values:
We extract age of tenants by the date of birth, however, it is strange
that some people are over 200 years old when we examine the results,
which is completely impossible in real life. After tracking back to the
database, we find that the original database sets default value "1800-1-1"
for tenants whose date of birth is unregistered. For around 100 rows of
data like this, we replace wrong ages in each label with the mean of all
the other reasonable ages belonging to the same label.

(d) Fill missing values:
Incomplete data is an unavoidable problem in dealing with most of the
real world data sources [27]. It is also a very common problem exists in
this project. In table 5, certain potentially significant features, such as
"Household Size", "Household Income", "Number of Rooms" and "Initial
Rent" have a lot of missing value, see table 10 for an overview of the
number of missing values. If we just ignore all the missing values in
these four fields we will lose much valuable information and we have
to eliminate a lot of instances. Therefore, we must figure out a more
reasonable method to handle it. Because each feature has different nature
so that we have to tackle them using the most appropriate approach
respectively.

26

Features Number of missing values Number of valid data Total
Household size 2360 829 3189

Household income 2379 810 3189
Number of rooms 37 3152 3189

Initial rent 2275 914 3189

Table 10: Overview of missing values

i. "Household Size"
"Household Size" is correlated with the marital status, thus, we can
calculate the mean household size for each type of marital status and
use it to fill in the missing values of "Household size". Table 11 is a
reference table for the feature "Marital status" and also presents the
mean household size for each type of marital status. It is interesting
to see that people who is married, living together or in a registered
partnership owns a bigger household size, which means the data is
reliable enough to fill in the missing values.

Marital Status Description Mean Household Size
X Unknown 1.43
O Unmarried 1.43
S Unmarried living together 2.29
P Registered partnership 1.75
G Married 2.21
GO Married (partner deceased) 1.15

Table 11: Mean household size for different "Marital Status"

ii. "Household Income"
When it comes to "Household Income", we adopt the same approach
as we described before. We list the mean household income for dif-
ferent "Marital Status" in table 12. According to this table, we can
summarize that people who is married, living together or in a reg-
istered partnership has more household income, which accords with
common sense as well.

Marital Status Description Mean Household Income
X Unknown 17225.76
O Unmarried 20544.90
S Unmarried living together 27218.90
P Registered partnership 29823.97
G Married 28506.78
GO Married (partner deceased) 22453.69

Table 12: Mean household income for different "Marital Status"

iii. "Number of Rooms"
In fact, the "Number of Rooms" is not associated with tenants, but

27

it is dominated by the address and the type of the house. Hence,
we should take those houses with the same postcode and category
into account, more specifically, we can fill in the missing values by
the "Number of Rooms" from similar houses. Fortunately, there
are only 37 rows’ data are missing with respect to the "Number of
Rooms". Furthermore, 12 of them are garages, gardens, park places
and storages, all of these kind of estates are not in our interest, so,
we directly delete these 12 instances from the dataset. Eventually,
25 houses are left to be filled with the number of rooms.

Besides the address and the type of houses, there is another feature
called "Cluster" available. It represents a group of similar houses.
Generally, houses with the same cluster will have almost the same
size, number of rooms and the amount of rent. Thus, for each house
that the number of rooms is unknown, we calculate the average rooms
of the other houses with valid values in the cluster it belongs to, then,
we fill in the missing value with the average.

iv. "Initial Rent"
As far as "Initial Rent" is concerned, the same process as the feature
"Number of Rooms" is done to deal with the missing values, because
the amount of rent also depends on the type of houses. A slightly
different step is that we calculate the overall mean of "Initial Rent"
using all valid data, and we make it as a default to fill in all the
instances that belong to a cluster without any valid "Initial Rent"
records at all.

(e) Eliminate useless features:
Both "Ethnicity" and "Mental Status" have only one unique value and
will not provide any meaningful information, so we should remove these
useless features. It makes sense that these two features are not effective
in this case, because the housing corporation locates in a small city of the
Netherlands and the citizens are mostly dutch and it is also reasonable
that most people has ability to rent a house will not be involved with a
mental health clinic.

(f) Transform feature types:
Because we use the programming environment R to run all experiments
of this project, it is vital that we elaborate the correct data types for
each feature. In general, "data.frame" is the desired type for the entire
dataset, and "factor" and "numeric" are two basic data types for the
features. Especially, we should note that "factor" represents categorical
variables in R. A summary of data types and possible values for all the
features in the final dataset without Cendris is in table 13.

28

Data types Features Possible values

Numeric

Age 17 - 95
Household Size 1 - 6

Household Income 954 - 148965
Building Year 1920 - 2016

Number of Rooms 1 - 5
Initial Rent 107 - 1332

Factor

Marital Status 6 categories
Gender 3 categories
Type I 20 categories
Type II 27 categories

Rent Allowance Indicator Binary
Label Binary

Table 13: Final dataset without Cendris

2 Dataset with Cendris

Since tenants in the dataset with Cendris are a subset of the dataset without
Cendris as well as Cendris data is already well-structured when we received
it, we only need to join the original dataset with Cendris data by person ID
in order to get extra features for subset of the tenants. Furthermore, as the
same as previous section, we should transform the data type of all the features
correctly, however, Cendris already made all the features categorical initially,
so the only thing we should take care is making sure all features from Cendris
are in "factor" type. In Appendix I, 24 features with "MX" prefix are newly
added from Cendris data to the second dataset. Though this dataset has less
instances compared with the dataset without Cendris, we still use it in the
experiments because we assume that more features might improve the model
performance as well.

3 The label distribution after pre-processing

After pre-processing, both datasets are cleaned thoroughly and well-formatted.
In table 14 and 15, we illustrate new label distributions of the latest datasets
and we compare them with the old distributions. It seems that the distribu-
tions remain the same, which means the pre-processing phase didn’t lead to
much loss of the number of instances. Nevertheless, we can’t guarantee all
the features are effective predictors, some of them are informative but a few
features might be noisy. As a result, we will apply feature selection on the
datasets in next section.

4.4.2 Feature selection with variable importance

The objective of variable (feature) selection is three-fold: improving the prediction
performance of the predictors, providing faster and more cost-effective predictors,

29

Label Previous number Previous percentage Latest number Latest percentage
0 2931 91.9% 2916 91.9%
1 258 8.1% 258 8.1%

Total 3189 100% 3174 100%

Table 14: Label distribution of the final dataset without Cendris

Label Previous number Previous percentage Latest number Latest percentage
0 1074 91.7% 1058 91.7%
1 97 8.3% 96 8.3%

Total 1171 100% 1154 100%

Table 15: Label distribution of the final dataset with Cendris

and providing a better understanding of the underlying process that generated the
data [28]. In addition, the reasons for using feature selection also include: avoiding
the curse of dimensionality, simplifying the model and making it easier to interpret.
Thus, it is wise to apply feature selection and check whether it will improve the
results or not, especially for the dataset with Cendris (which has 35 features). In fact,
many machine learning algorithms perform feature selection implicitly as part of
their overall operation, such as algorithms using L1 norm regularization and random
forests. Therefore, we use the selected features to enhance only those algorithms
without feature selection internally.

1 Create train set and test set:

In order to make models in the experiments comparable, for both datasets,
we create a fixed train set and test set by setting the splitting proportion of
the original dataset as 0.7, namely, 70% of instances will be distributed into
the train set and 30% will remain in the test set. The reason why we set the
proportion as 0.7 is that it can keep both train set and test set with enough
instances.

Notably, we can’t randomly split the original datasets, on the contrary, we
should split the datasets by stratified sampling. In stratified sampling, we se-
lect a single column for which we want values to be apportioned equally among
train and test sets. In other words, it is still a kind of random splitting but it
is done within the levels of selected column when this column is a factor in an
attempt to balance the class distributions within the splits. In this case, the
chosen column is the class label. Table 16 shows the resulting datasets and
label distributions after splitting.

With fixed train and test sets, we are able to fit different algorithms on the
train set and compare their results on the test set. Importantly, we should
only perform feature selection on the train set instead of the entire dataset,
because the latter option may lead to biased performance estimate.

30

datasets Types Train Test

Label 0 1 Total 0 1 Total

Without Cendris Number 2042 181 2223 874 77 951
Percentage 91.8% 8.2% 100% 91.9% 8.1% 100%

With Cendris Number 741 68 809 317 28 345
Percentage 91.6% 8.4% 100% 91.9% 8.1% 100%

Table 16: Label distribution after splitting

2 Filter based variable importance

Variable importance are typically presented in two classes, the first class is
filter based while the other one is model based. Because model based variable
importance methods are customized for different algorithms so that we can’t
find a way to generalize them, moreover, the results of model based variable
importance are difficult to interpret. Because of this, we only use filter based
variable importance in this section. Filter based variable importance method
selects variables regardless of the model and use the chosen metric to calculate
the correlation between the potential features and the target variable. Gen-
erally, we use the selected metric to identify irrelevant features, and filter out
redundant variables from the feature list. By choosing the most relevant fea-
tures, it can potentially improve the accuracy and efficiency for classification
problems. Paper [29] presents a good example of filter based feature selection
by correlation between dependent variables and independent variables.

In the community of R, there are many available implementations of filter
based variable importance and we choose "filterVarImp" function from "caret"
package for use. In a word, we pick features with the highest score of impor-
tance as final predictors. For classification, ROC curve analysis is conducted
on each predictor within "filterVarImp" function. For two class problems, a
series of cutoffs is applied to the predictors to predict the class. The sensitivity
and specificity are computed for each cutoff and the ROC curve is computed.
The trapezoidal rule is used to compute the area under the ROC curve. This
area (i.e. AUC) is used as the measure of variable importance. Finally, we
only need to decide the number of features we would like to pick from the
ordered list.

The scores of importance for each feature are listed in table 17 and table 18.
Because there are 35 features in the dataset with Cendris and features with a
low score are non-significant, we only display the top 20 of them here.

31

Features Score
Age 0.6159436

Marital Status 0.5432641
Household Income 0.5326662

Gender 0.5203435
Household Size 0.5167423

Rent Allowance Indicator 0.5153787
Type I 0.5140394
Type II 0.5077151

Number of Rooms 0.5068641
Initial Rent 0.5068425
Building Year 0.5003179

Table 17: Filter based feature importance for the dataset without Cendris

Features Score
Age 0.6285425

MXinkomen 0.6017504
MXwelstand 0.5775482
MXnvolw 0.5675359

Marital Status 0.5656009
MXbrink 0.5606494
MXleeftijd 0.5569084
MXTwinkkw 0.5459633

MXctht 0.5445046
MXlevfas 0.5440680
MXauto 0.5388386

Initial Rent 0.5383524
Household Size 0.5382333

Gender 0.5328848
Number of Rooms 0.5244205

Type I 0.5205307
Household Income 0.5200742

Rent Allowance Indicator 0.5196674
MXopleid 0.5166706
MXauleas 0.5138922

Table 18: Filter based feature importance for the dataset with Cendris (Top 20)

32

5 Experiments
In this chapter, we set up all the procedures for the experiments. First of all, the
tools we use to run the experiments will be introduced and then we will explain how
oversampling and undersampling are employed on the train sets. To end with, the
detailed steps of how we build models are presented for each algorithm.

5.1 Experiments setup
We conduct all the experiments within Rstudio, the R version is 3.3.3 and the version
of Rstudio is 1.0.153. At the beginning, we also tried using Python and the Microsoft
Azure Machine Learning Studio as experimental options, but we finally found that
Rstudio makes it easier for us to manipulate data because it has very handy visu-
alization tools, furthermore, R outperforms Azure Machine Learning Studio due to
more flexibility as well as more packages available.

5.2 Train/Test and SMOTE
In chapter 4.4.2, we already split the original datasets by 70% for training and 30%
be testing, see table 16. Because of unbalance of the datasets, the predictions will
always biased to the majority class. In order to overcome this problem, we attempt
to apply oversampling or undersampling techniques on the train sets. One of the
most well-known sampling methods is Synthetic Minority Oversampling Technique
(SMOTE) [30]. The paper claims that a combination of their method of oversam-
pling the minority (abnormal) class and undersampling the majority (normal) class
can achieve better performance (in ROC space) than only undersampling the ma-
jority class.

We apply SMOTE on both datasets with three different pairs of oversampling
and undersampling rates, table 19 and 20 list all the rates we set for both datasets
and the distributions of the label in the resulting train sets. The terms "Over" and
"Under" control the amount of oversampling of the minority class and undersam-
pling of the majority classes respectively. Here we take the third column in table 19
for an example, "Over=100" means 100% (181) of minority class instances are newly
created, while "under=200" indicates that 200% of the number of new created mi-
nority instances, namely, 362 instances will be randomly selected from the majority
class to constitute the final balanced dataset.

Label Original Over=100
Under=200

Over=200
Under=150

Over=1000
Under=110

0 2042 362 543 1991
1 181 362 543 1991
Total 2223 724 1086 3982

Table 19: Label distributions after SMOTE (without Cendris)

33

Label Original Over=100
Under=200

Over=400
Under=125

Over=900
Under=111

0 741 136 340 679
1 68 136 340 680
Total 809 272 680 1359

Table 20: Label distributions after SMOTE (with Cendris)

5.3 Procedures
We create two datasets for the experiments, one is generated without Cendris data,
the other one is enriched with Cendris data. Therefore, the following procedures are
applicable for both datasets. Besides, we use the "caret" package to streamline the
model training process. The package utilizes a number of R packages but tries not
to load them all at package start-up, which is very handy and time-saving.

5.3.1 Single algorithm

Because "glmnet" and "random forests" implement feature selection implicitly, we
only fit extra models with explicit feature selection (filter based variable importance
in chapter 4) for other algorithms. More specifically, both "glmnet" and "random
forests" will generate 3 models, while other algorithms will yield 6 models.

1. Lasso and elastic-net regularized linear models

• Train set: 3 SMOTE datasets

• Family: binomial, which fits a traditional logistic regression model

• Tuning parameters: lambda, which is the regularization parameter (the
other parameter alpha is set as a constant 1, namely, the lasso regular-
ization is used)

• Tuning grid: automatically

• Tuning method: 3 times repeated 10 fold cross validation

• Selected measure for optimization: ROC, in fact, AUC is calculated (the
same in the following settings)

• Extra models with feature selection: no

2. Random forests

• Train set: 3 SMOTE datasets

• Tuning parameters: mtry, which is the number of variables randomly
sampled as candidates at each split

• Tuning grid: automatically

• Tuning method: 3 times repeated 10 fold cross validation

• Selected measure for optimization: ROC

• Extra models with feature selection: no

34

3. K nearest neighbors

• Train set: 3 SMOTE datasets
• Tuning parameters: K, which is the number of neighbors considered
• Tuning grid: automatically
• Tuning method: 3 times repeated 10 fold cross validation
• Selected measure for optimization: ROC
• Extra models with feature selection: yes

4. Naive bayes

• Train set: 3 SMOTE datasets
• Tuning parameters: usekernel, which is a binary parameter used to esti-

mate the densities of numeric predictors
• Tuning grid: automatically
• Tuning method: 3 times repeated 10 fold cross validation
• Selected measure for optimization: ROC
• Extra models with feature selection: yes

5. avNNet

• Train set: 3 SMOTE datasets
• Tuning parameters: size, which is the number of units in the hidden layer;

decay, which is the parameter for weight decay
• Tuning grid: automatically
• Tuning method: 3 times repeated 10 fold cross validation
• Selected measure for optimization: ROC
• Extra models with feature selection: yes

5.3.2 Ensemble methods

Sometimes, a single algorithm is not enough to yield satisfactory prediction results,
so we also try to build ensemble models. Three types of ensemble methods are
employed in the experiments: averaging, majority voting and stacking.

1. For each algorithm, we select the best model based on accuracy, recall, F1
score, AUC respectively

2. Firstly, we create averaging ensemble models using the best three models of
different algorithms with respect to the same measure

3. Then, we tune the weights for each components of the best averaging ensemble
model in step 2, it is so-called the weighted averaging ensemble method

4. Next, we build majority voting ensemble model using the same components of
the best averaging ensemble model in step 2

5. At last, we construct stacking ensemble models by setting 5 different top layers
(with 5 algorithms we have used in the previous section). As far as the bottom
layer is concerned, we will give more specific explanations in chapter 6.

35

5.3.3 Subgroup discovery

There are many packages in R that have implemented subgroup discovery or rule
mining algorithms. In our experiments, we use an R package called "subgroup.discovery".
This package aims to assist in discovering interesting subgroups in multi-dimensional
data, it is an implementation of the PRIM algorithm [26]. PRIM involves finding a
set of "rules" which combined imply unusually large (or small) values of some other
target variable. Specifically one tries to find a set of subregions in which the target
variable is substantially larger than overall mean.

Because SMOTE data may mislead the generated rule due to its unreality, we
run the subgroup discovery algorithm on the original datasets only. We will list
the mined rule (includes a number of conditions) for both datasets in next chapter.
Additionally, we will convert the generated rule to a predictive model and test the
model with the test set as well.

The concrete approach to transform the rule to a predictive model is as below:
for each condition of the rule, we check if the test instance meet the condition;
supposing one test instance meets all the conditions, we will predict it as a positive
sample. In this way, we are able to compare subgroup discovery rules with machine
learning models by the same measures like accuracy recall, F1 score and AUC.

36

6 Results
In this chapter, we display the results produced from the experiments. First of
all, we show the results of all models fitted by single machine leaning algorithm,
subsequently, we illustrate the results generated by ensemble methods. In the end,
we list the mined rule of subgroup discovery and the results of the converted model.
The selected measures to evaluate models are accuracy, recall, F1 score and AUC.
Particularly, the most significant measure should be AUC, because it is more suitable
for unbalanced datasets.

6.1 Single algorithms

6.1.1 Lasso and elastic-net regularized linear models

Lasso and elastic-net regularized linear models correspond to the "glmnet" package
in R. Table 21 and 22 present results of the linear models for the dataset with Cendris
and the dataset without Cendris respectively. In the following tables, there are a lot
of terms like "glmnet1wo". Actually, the letters indicate which algorithm or package
is used, and the number "1" means we fit this model on the first SMOTE train set,
namely the SMOTE train set with the least number of instances, the postfix "wo"
means this model is built on the dataset without Cendris. Another abbreviation will
be used frequently is "fs", it means the model is fitted using features produced by
explicitly feature selection method. The rest paper will use similar naming method
for other models. For example, "glmnet1wo" shows that it is a "glmnet" model
fitted on the first SMOTE train set of the dataset without Cendris.

Models Accuracy Recall F1-score AUC
glmnet1wo 60.2 57.1 18.9 58.8
glmnet2wo 61.1 54.5 18.5 58.1
glmnet3wo 58.6 45.4 15.1 52.6

Table 21: "GN" models on dataset without Cendris

Models Accuracy Recall F1-score AUC
glmnet1w 63.0 39.3 14.7 52.1
glmnet2w 68.7 39.2 16.9 55.3
glmnet3w 69.6 46.4 19.8 59.0

Table 22: "GN" models on dataset with Cendris

According to table 21 and 22, the best models should be "glmnet1wo" and "glm-
net3w" if we take all measures into account.i But both models have a low F1-score,
it is because of the influence of low precision. Moreover, it is interesting to see
that the model becomes worse if we oversample more data for the dataset without
Cendris, while it is completely opposite with respect to the dataset with Cendris.

iThe confusion matrix of the model in bold can be found in Appendix II

37

Features Coefficient estimates
Marital Status 0.11778597034

Gender -0.42014234657
Rent Allowance Indicator -0.64440136134

Household Size -0.41945110102
Household Income -0.00002305128

Type I 0.00420757808
Type II 0.08840304898

Building year -
Number of Rooms -

Initial Rent 0.00027108745
Age -0.02938079041

Table 23: Coefficients estimate of "glmnet1wo"

Features Coefficient estimates Features Coefficient estimates
MXleeftijd -0.014189272 MXsentype 0.052645401
MXctht -0.039399759 MXlevfas -

MXmanvrw - MXnvolw 0.640711466
MXopleid - MXwelstand -0.176857183

MXinkomen 0.209406016 MXbrink 0.031442583
MXtwinkkw 0.047361187 MXprijs 0.077322829
MXsockl . MXchartype .
MXmedia -0.004529825 MXkwdb .
MXpopdb 0.357463585 MXpostord 0.040877751

MXduurzaam . MXactie -0.015300159
MXcc -0.195286314 MXadopter -0.087778967

MXauto -0.499737714 MXauleas 0.167397031
Maritial Status 0.271749751 Gender .

Rent Allowance Indicator -0.656517530 Household Size -0.103873000
Household Income - Type I -0.043028400

Type II 0.084240094 Building Year -0.003131642
Number of Rooms 0.136078169 Initial Rent 0.001919512

Age -0.033785996

Table 24: Coefficients estimate of "glmnet3w"

We extract the coefficient estimates of model "glmnet1wo" and model "glm-
net3w" using the function "coef()". Features that have positive coefficient are most
predictive for the positive class (there is a positive correlation between these features
and the positive class), while features that have a negative sign are most predictive
for the negative class. As shown in table 23, "Rent Allowance Indicator" has a co-
efficient of 0.644, because it is a binary variable, it indicates that tenants who don’t
have rent allowance are more likely to cause payment problems which makes sense.
Another example is "Household Income", which has a coefficient of -0.000023, this
means that an increase in household income is associated with an decrease in the
probability of having payment problems which is also sensible. Besides, we can see
that if an initial rent is high, the tenants may have more probability to cause pay-

38

ment problems in the future. More interesting, the building year and the number
of rooms are not correlated with the payment problems, because the coefficients
of these two features are not provided. However, because "glmnet" doesn’t handle
factor variables as same as "glm" (basic logistic regression) package, normally we
have to transform factor variables into dummy variables. But in this problem, when
we check the values of "Type I" and "Type II", we can see that the possible values
are already in an ascending order of the potential rent price, for example, in "Type
I", "1" represents a single room while "4" stands for a semi-detached villa, thus, we
can regard these variables as numeric features. As to the "Marital status", we trans-
form the possible values to indicate the status from unmarried to married, such as
"0" represents "Unknown", "1" means "Unmarried" and "4" expresses "married".
In this way, we can interpret the results for these three factor features as same as
numeric features. Both "Type I" and "Type II" have a positive parameter, which
means that tenants who rent expensive houses are more likely to cause payment
problems. "Marital status" also has a positive coefficient, it might reveal that peo-
ple who have a larger family tend to cause more payment problems.

Nevertheless, in table 24, the positive coefficient estimates are unreasonable for
features "MXinkomen", "MXbrink", "MXtwinkkw", it means that more income will
lead to more probability of having payment problems. The reason of this may involve
with the generated date of Cendris data, as mentioned before, we are using current
data (Cendris data is made in 2016) to predict past behavior of people, which seems
not logical. Another reason might be the number of instances in the dataset with
Cendris are not sufficient for "glmnet" to gain useful insights. Anyway, we can still
find some surprising results, for instance, "MXauto" has a negative coefficient while
"MXauleas" has a positive coefficient, which indicates that people who lease a car
are more likely to cause payment problems than people who own a car.

6.1.2 Random forests

The "randomForest" package is chosen to fit tree based models, which provides an
efficient implementation of random forests. Similar to the "glmnet" model, random
forests algorithm also performs feature selection internally, this is also the reason
why there are three models for each dataset as well.

Models Accuracy Recall F1-score AUC
rf1wo 69.9 39.0 17.3 55.8
rf2wo 82.8 16.9 13.7 52.7
rf3wo 89.6 6.5 9.1 51.7

Table 25: "RF" models on dataset without Cendris

Table 25 and 26 give us all measures of random forests models. If we only look
at accuracy, we will consider model "rf3wo" and model "rf3w" as the best models,
but it is necessary to check the other measures as well. Both model "rf3wo" and
model "rf3w" have low recall and F1-score, it reveals that the predictions of them
will always biased to the majority class, namely, the class labeled with "0". A good
model can’t accept such biased results. The aim of the problem is to find people

39

Models Accuracy Recall F1-score AUC
rf1w 61.5 42.9 15.3 53.0
rf2w 74.8 28.6 15.5 53.7
rf3w 85.5 3.6 3.8 48.2

Table 26: "RF" models on dataset with Cendris

who might cause payment problems in the future, therefore, recall must be taken
into consideration. On the basis of this, model "rf1wo" and model "rf1w" should
outperform other models. However, compared to the "glmnet" models, random
forests doesn’t improve the results as we expect.

6.1.3 K nearest neighbors

We choose K nearest neighbors algorithm in "class" package to fit models in this
section. It requires explicitly feature selection for "KNN" models, so there are 6
models for each dataset. As defined previously, "fs" means the model is built with
explicit feature selection by filter based variable importance.

Models Accuracy Recall F1-score AUC
knn1wo 71.1 33.8 16.0 54.1
knn2wo 81.4 23.4 17.0 54.9
knn3wo 87.4 6.5 7.7 50.5
knn1fswo 74.0 29.9 15.7 53.9
knn2fswo 79.7 19.5 13.5 52.2
knn3fswo 90.0 3.4 5.9 50.7

Table 27: "KNN" models on dataset without Cendris

Models Accuracy Recall F1-score AUC
knn1w 78.8 35.7 21.5 59.2
knn2w 78.0 21.4 13.6 52.2
knn3w 84.6 14.3 13.1 52.6
knn1fsw 74.2 39.3 19.8 58.3
knn2fsw 78.6 17.9 11.9 50.9
knn3fsw 84.4 7.14 6.9 49.2

Table 28: "KNN" models on dataset with Cendris

Table 27 and 28 show us that "KNN" algorithm works better on the dataset with
Cendris. And so far, "knn1w" should be the best model we have seen with respect
to F1-score and AUC. Another interesting observation is that feature selection can’t
help us to improve the results of KNN. One reason is because we use filter based
variable importance method to select best features for all algorithms, but these
features might not be suitable for "KNN". Therefore, if we would like to improve
it, we can conduct a model based variable importance method directly on "KNN"
algorithm and then use the most predictive features to rebuild models.

40

6.1.4 Naive bayes

For Bayesian models, "naivebayes" package is used. The "naive_bayes" function
in this package accepts numeric matrix or dataframe with categorical or numeric
values as predictors. Normally, numeric predictors are handled by assuming that
they follow Gaussian distribution, given the class label. Alternatively, kernel den-
sity estimation (KDE), which is a non-parametric way to estimate the probability
density function of a random variable, can be used to estimate the class-conditional
distributions of numeric features.

As shown in figure 8, we plot the density distributions of a numeric variable "age"
for the model "nb1wo" in table 29. The red solid line represents the distribution
for the negative class while the green dashed line corresponds to the positive class.
Because the "usekernel" parameter is set as "True" in this model, so the distributions
don’t obey Gaussian distribution and the smoothing parameter for KDE, namely,
the bandwidth is also reported along with the class label.

Models Accuracy Recall F1-score AUC
nb1wo 51.2 67.5 18.3 58.7
nb2wo 53.0 58.4 16.8 55.5
nb3wo 53.0 53.2 15.5 53.1
nb1fswo 51.1 62.3 17.1 56.2
nb2fswo 53.0 61.0 17.4 56.7
nb3fswo 51.4 50.6 14.4 51.0

Table 29: "NB" models on dataset without Cendris

Models Accuracy Recall F1-score AUC
nb1w 66.1 35.7 14.6 52.2
nb2w 68.4 28.6 12.8 50.2
nb3w 75.7 21.4 12.5 50.9

nb1fsw 67.8 35.7 15.3 53.2
nb2fsw 70.7 28.6 13.7 51.5
nb3fsw 78.3 21.4 13.8 52.4

Table 30: "NB" models on dataset with Cendris

Based on table 29, it is surprising to see that naive bayes algorithm produces
the best recall (67.5%) so far on the dataset without Cendris, but with a cost of low
accuracy. Meanwhile, the AUC still remains around 59%. From table 30, it seems
that the results are not promising on the dataset with Cendris, especially for AUC,
because the best AUC has a percentage of only 53.2%.

6.1.5 Neural networks using model averaging

Neural network is another famous machine learning algorithm. In the experiments,
we use "avNNet" package to fit ensemble averaging neural network models, which
is supposed to be much more predictive than a single neural network.

41

Figure 8: The densities of "age" for model "nb1wo"

Models Accuracy Recall F1-score AUC
nn1wo 59.1 53.2 17.4 56.4
nn2wo 64.5 49.3 18.3 57.6
nn3wo 72.3 42.9 20.0 58.9

nn1fswo 58.7 59.8 19.0 59.2
nn2fswo 55.8 59.7 18.0 57.6
nn3fswo 57.6 51.9 16.6 55.0

Table 31: "NN" models on dataset without Cendris

From table 31 and 32, we can see model "nn1fswo" yields the best AUC among
all models on the dataset without Cendris, while model "nn3w" can be regarded
as the best model on the dataset with Cendris. But if we take all measures into
consideration, the model "nn3wo" might outperform all the others.

Now, let’s summarize the results of all the models made by single algorithm.
Generally speaking, Models of "glmnet" and "avNNet" outperform other algorithms
in terms of the available datasets. If we only concern about AUC, then the model
"knn1w" and the model "nn1fswo" models perform best. Furthermore, considering
all measures, the model "glmnet3w" as well as the model "nn3wo" will win out.

6.2 Ensemble methods

6.2.1 Averaging and weighted averaging

The naming method changes a little bit in this section. For instance, "accwo" indi-
cates that we select the best model from each algorithm based on the accuracy on
the dataset without Cendris. Particularly, "waucwo" means we set weights for each
candidate model of "aucwo" and then create the weighted averaging model.

42

Models Accuracy Recall F1-score AUC
nn1w 64.9 32.1 13.0 50.0
nn2w 69.0 35.7 15.7 53.8
nn3w 71.3 39.3 18.2 56.7
nn1fsw 62.0 39.3 14.4 51.7
nn2fsw 68.1 28.6 12.7 50.0
nn3fsw 74.2 32.1 16.8 55.0

Table 32: "NN" models on dataset with Cendris

Models M1 M2 M3 Accuracy Recall F1-score AUC
accwo rf3wo knn3fswo nn3wo 84.4 22.1 18.7 56.0
recwo glmnet1wo nb1wo nn1fswo 52.7 65.8 18.2 59.1
f1wo glmnet1wo nb1wo nn3wo 56.8 57.9 17.7 57.3
aucwo glmnet1wo nb1wo nn1fswo 52.7 65.8 18.2 59.1
waucwo 0.175 0.65 0.175 52.0 68.4 18.6 59.9

Table 33: "Averaging ensemble" models on dataset without Cendris

According to table 33 and 34, if we take all the best models based on AUC, it
will yield the best averaging model for both datasets, that is to say, 65.8% recall
and 59.1% AUC for dataset without Cendris while 35.7% recall and 60.6% AUC for
dataset with Cendris. Next, we adjust different weights for each candidate model
(M1, M2, M3) and we put the best result in the bottom row of both tables. The
good news is that we lift the AUC and recall to some extent. Now, we have 68.4%
recall and 59.9% AUC for dataset without Cendris whilst 39.3% recall and 60.8%
AUC for dataset with Cendris. In the latter model, "waucw", it still has an accuracy
over 78% and the F1-score beyond 23%.

6.2.2 Majority voting

From above analysis, we know that "aucwo" and "aucw" can make the best predic-
tions by averaging ensemble method. Therefore, we only perform majority voting on
the components within these two models. In other words, as for the dataset without
Cendris, we build a majority voting model using the model "glmnet1wo", "nb1wo"
and "nn1fswo". At the same time, we make another majority model with the model
"knn1w", "nn3w" and "glmnet3w" for the dataset with Cendris.

Table 35 shows that the majority voting model "mvwo" improves the accuracy,
F1-score and AUC once again based on the model "waucwo", now the AUC for
the dataset without Cendris comes to 60.5%. Whereas the majority model can’t
improve the weighted averaging model for the dataset with Cendris, see table 36,
it decreases the AUC of "waucw" from 60.8% to 57.1%, and other measures also
decline in some degree.

43

Models M1 M2 M3 Accuracy Recall F1-score AUC
accw rf3w knn3w nb3fsw 86.6 10.7 11.5 52.0
recw rf1w nn3w glmnet3w 71.0 42.9 19.4 58.2
f1w knn1w nn3w glmnet3w 81.5 35.7 23.8 60.6
aucw knn1w nn3w glmnet3w 81.5 35.7 23.8 60.6
waucw 0.2 0.4 0.4 78.8 39.3 23.2 60.8

Table 34: "Averaging ensemble" models on dataset with Cendris

Models M1 M2 M3 Accuracy Recall F1-score AUC
mvwo glmnet1wo nb1wo nn1fswo 55.6 66.2 19.5 60.5

Table 35: "Majority voting" models on dataset without Cendris

Models M1 M2 M3 Accuracy Recall F1-score AUC
mvw knn1w nn3w glmnet3w 75.1 35.7 18.9 57.1

Table 36: "Majority voting" models on dataset with Cendris

6.2.3 Stacking

Because the stacking technique we adopt can only handle train sets with the same
size, and less SMOTE data in train set, more reliable results we will get. Thus, we
use all the models fitted on the smallest SMOTE train set to build stacking models.
In previous sections, we have seen that 5 different algorithms have been applied to
fit models. Therefore, first of all, we fit a stacking ensemble model with all these
5 algorithms. Furthermore, we create more stacking ensemble models with only 4
algorithms for each, then there will be 5 different combinations in total. Here we
illustrate the 5-algorithm stacking model and the best 4-algorithm stacking model
in table 37 and 38 respectively.

Excitedly, we obtain the best models ("sfourwo" and "sallw") on both datasets
with respect to AUC. Moreover, other measures are also acceptable with accuracy
over 61%, recall more than 57% as well as F1-score bigger than 20%. In a word, we
can use these two models as our final predictive models.

6.3 Subgroup discovery
In "subgroup.discovery" package, we can adjust the following parameters to get
expected results:

• peeling.quantile: quantile to peel off for numerical variables

• min.support: minimal size of a box to be valid

• max.peel: maximal size of a peel, as a fraction. Defaults to 0.1

• train.fraction: train-test split fraction used in validation, defaults to 0.66

• max.boxes: maximum number of boxes, NA or leave out for no limit

44

Models Bottom
layer Top layer Accuracy Recall F1-score AUC

sallwo

glmnet1wo
rf1wo
knn1wo
nb1wo
nn1fswo

Random forests 74.2 32.5 16.9 55.2

sfourwo

glmnet1wo
rf1wo
nb1wo
nn1fswo

Naive bayes 61.9 59.7 20.3 60.9

Table 37: "Stacking ensemble" models on dataset without Cendris

Models Bottom
layer Top layer Accuracy Recall F1-score AUC

sallw

glmnet1w
rf1w
knn1w
nb1fsw
nn1fsw

avNNet 67.0 57.1 21.9 62.5

sfourw

rf1w
knn1w
nb1fsw
nn1fsw

avNNet 74.8 42.9 21.6 60.2

Table 38: "Stacking ensemble" models on dataset with Cendris

• quality.function: function to use for determining set quality, defaults to mean

• optimal.box: during validation, choose the box with the highest quality or a
simpler box, two standard errors from the optimum

During the experiments, we set the value of peeling.quantile = 0.05, (the rec-
ommend range is 0.05-0.1 according to [26]) min.support = 0.1 and optimal.box
= "2se", while we keep all the other arguments remain the defaults. By this set-
ting, the algorithm will produce interesting rules contains a number of conditions
that represent the potential group of people who are more likely to cause payment
problems.

6.3.1 Rules

For both datasets, we first present all the boxes or covers generated by the subgroup
discovery algorithm. Then we list all the conditions that constitute these rules. And
in the end, the leftover set will be given, where the algorithm stops because relative
support of rules in this subset is less than the "min.support" we have set.

45

1. Dataset without Cendris

• Cover 1 (the first rule):

– Cover set size: 2223
– Cover set quality: 0.08
– Box relative quality: 0.11 (1.37)
– Box relative support: 0.51 (1135)

• Conditions of cover 1:
+ 27 <= Age <= 56
+ Initial Rent >= 420
+ Gender != ’Unknown’
+ Maritial Status != {’Unmarried living together’, ’Married(Partner de-
ceased)’}
+ Type I != {’Semi-detached villa’,’Porch apartment’,’Duplex apart-
ment’, ’Studio’}
+ Type II != {’Senior housing’,’Senior apartment’,’Apartment with lift’}

• Leftover (the remaining dataset except cover 1):

– Cover set size: 1088
– Cover set quality: 0.05

Cover 1 is the first rule found by the algorithm, and only this rule is
valid for the dataset without Cendris. Details of the results are displayed
as above. The cover set size in cover 1, 2223, is the size of the original
dataset and the cover set quality indicates the mean of the class label
over all the instances in the original dataset. The box relative quality
represents the quality of the subgroup which consists of the conditions in
the first rule. We can see that the quality has been increased from 0.08
to 0.11 in this subgroup with 1135 instances.

Besides, we can find conditions of the rule are more interpretable com-
pared with the logistic regression model, for instance, the first condition
shows that people between 27 and 56 years old are more likely to cause
payment problems, the reason is that people in this range mostly makes a
living by themselves and are more likely to face the problem of losing jobs
while they don’t have enough allowances like the older. Another interest-
ing condition summarizes that people who pay an initial rent more than
420 euro have more probability to cause payment problems. However,
we should take care of how we interpret the results of subgroup discov-
ery, actually, we should consider a tenant might be more problematic if
this person meet all the conditions of the rule instead of only focus on
one single condition, this might be the main difference of interpretation
between a rule and a logistic regression model.

46

2. Dataset with Cendris

• Cover 1 (the first rule):

– Cover set size: 809
– Cover set quality: 0.08
– Box relative quality: 0.15 (1.82)
– Box relative support: 0.19 (150)

• Cover 2 (the second rule):

– Cover set size: 659
– Cover set quality: 0.07
– Box relative quality: 0.09 (1.25)
– Box relative support: 0.59 (387)

• Conditions of cover 1:
+ 28 <= Age <= 59
+ Marital Status != ’Married(Partner deceased)’
+ Useful Income Area <= 2
+ Number of rooms >= 2.95
+ Person type == {’Multicultural city residents’,’Decent neighborhood
residents’}
+ Stage of life == {’Family without children <35 years old’,’Family with
children, youngest 13+ years old’,’Single 55-69 years old’,’Family without
children, 55-69 years old’}
+ Well-being class >= 3 (The worst class is 5)
+ Type I != {’Corner house’, ’Semi-detached villa’,’Porch apartment’,’Gallery
apartment’}

• Conditions of cover 2:
+ Gender != ’Unknown’
+ Leased car == 0
+ Person type == {’Concerned old people’,’Enterprising old people’}
+ Stage of life == {’Single 35-54 years’,’Family without children, 35-54
years old}

• Leftover (the remaining dataset except cover 1):

– Cover set size: 257
– Cover set quality: 0.04

The subgroup discovery algorithm generates two rules for the dataset
with Cendris. The first rule has a better quality but with a cost of low
support while the second rule just improve the overall quality slightly
with a better support.

The conditions of both rules are combined together for a more general
description of the problematic tenants, and surprisingly, the rules suggest
almost the same range of age for problematic tenants. Additionally, it
reveals that people whose useful income areas are less than 2 are more
problematic.

47

6.3.2 Prediction

In table 39 and 40 we demonstrate the results of converted models built based on
the the above rules. Nevertheless, the overall performance is not as good as the
best models we already get from stacking ensemble models in section 6.2.3. But
it is notable that the subgroup discovery algorithms can still generate models with
recall more than 30%. Hence, we believe that if the algorithm can produce more
representative rules then it will yield models with better results.

Models Accuracy Recall F1-score AUC
sbwo 77.5 31.2 18.3 56.4

Table 39: "Subgroup" models on dataset without Cendris

Models Accuracy Recall F1-score AUC
sbw 66.7 35.7 14.8 52.6

Table 40: "Subgroup" models on dataset with Cendris

48

7 Conclusion
In this thesis, we have compared five different machine learning algorithms: lasso
and elastic-net regularized linear models, random forests, K nearest neighbors, naive
bayes and neural network using model averaging. In this particular problem, "glm-
net" and "avNNet" achieves the best overall performance for both datasets. Besides,
we also investigate how feature selection can affect the prediction results. In some
sense, feature selection can improve the results but it depends on which measure
should be taken into consideration. Furthermore, different oversampling and un-
dersampling rates of SMOTE have been tested while different kinds of ensemble
methods have been created to improve the results as well. It seems that, sometimes,
less oversampling works well on several algorithms, however, undersampling could
also make sense, so we must make a trade off between them. In summary, it is always
worthwhile to try both kinds of sampling techniques and find the best combination
of rates for a specific dataset. Finally, a subgroup discovery algorithm is introduced
to help us get more insights from the data, meanwhile, predictive models are built
based on the rules generated from the subgroup discovery algorithm. In this way,
a comparison analysis has also been done between machine learning and subgroup
discovery.

Next, we answer all the research questions we presented in the introduction
chapter. To end with, some future work will be discussed afterwards.

• Is it possible to build a classification model to predict if a tenant will cause
payment problems or not based mainly on the tenant’s profile?
According to the experiments, we can find it is easy to fit a model that has high
accuracy on an unbalanced dataset. But it is always biased to the majority
class which is not expected by the customer because the minority class is
of more interests. Moreover, we are using current data to predict the past
behavior of tenants, so the features we find can not represent real situations
of the tenants during the years that they caused payment problems. In the
meantime, we also lack a lot of crucial features such as the working status
of tenants at that time, namely, we are eager to know whether something
changed or happened to the tenant when the payment problems occurred. In
conclusion, we can build a number of machine learning models, but due to the
poor quality of the original data, the best result (AUC of approximately 60%)
is not good enough to be used in practice.

• Is it possible to use subgroup discovery algorithm to find which kind of people
are more likely to cause payment problems and then build a predictive model
based on the most representative rules?
The subgroup discovery does find a subgroup of people who are more likely
to cause payment problems for both datasets and the results are proven to
be more interpretable compared with the machine learning models. And we
can also successfully convert the mined rules to a predictive model by the
method discussed in chapter 5. The models based on the discovered rules
can’t outperform stacking models, but they are as good as models made by
single machine learning algorithms. As a result, it is recommended to apply

49

subgroup discovery to obtain more interpretable results along with the machine
learning models.

• Which supervised machine learning algorithm performs best with regard to this
specific problem?
Random forests is assumed to produce the best results but it isn’t for this
particular problem. The "glmnet" and "avNNet" models generate the best
models made by a single algorithm. Therefore, we can generalize that differ-
ent algorithms could be suitable for different problems. In fact, there is no
omnipotent algorithm in the world. It is wise to try as many algorithms as
possible in order to find the most suitable one for a specific problem.

• How can we interpret the results of both machine learning and subgroup dis-
covery?
When it comes to the interpretability of machine learning models, one would
like to consider models like logistic regression and linear regression in the first
place. Because these models can be easily interpreted by the coefficient es-
timates. However, some other machine learning algorithms such as random
forests and neural network works like a black box scheme, which means the
results of these models are hard for people to explain. The rules of subgroup
discovery are more straightforward and more interpretable to humans. The
only thing we should be careful when we interpret the results of subgroup
discovery is that we should interpret the rule with all conditions instead of
one by one, because all of these conditions describe the whole picture of the
subgroup while one single condition is not too meaningful. In summary, if
more interpretable results are expected, subgroup discovery will be a better
option, while machine learning dominates if the predictive ability is required.

By this thesis, some difficulties can also be summarized when people try to apply
machine learning in practice. The first obstacle should be the data. Where can we
find reliable data sources? How many rows does the dataset have? Is the quality of
data good enough to fit a predictive model? After these three preliminary questions,
we should also think about how we can manipulate the data and pre-process it in
order to build workable models. Beyond this, we should also consider the methods of
conducting feature engineering and model selection. More importantly, unbalanced
distribution is a pretty common issue in real world data, so the last question is how
can we conquer the unbalance of the real world datasets?

So far, a lot of work has been done in this thesis. But the story can be continued.
For instance, in the experiments, we can try more algorithms like support vector
machines, and adjust the coefficients of weighted averaging ensemble methods with
more trials. In addition, we can also run feature selection by model based variable
importance instead of filter based variable importance. Most importantly, we are
confident that the results could break the bottleneck if we manage to get more data
and find more predictive features.

50

References
[1] V. Gulshan, L. Peng, M. Coram, and et al. Development and validation of a

deep learning algorithm for detection of diabetic retinopathy in retinal fundus
photographs. JAMA, 316(22):2402–2410, 2016.

[2] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen. Learning Hand-Eye Co-
ordination for Robotic Grasping with Deep Learning and Large-Scale Data
Collection. ArXiv e-prints, 2016.

[3] Y. Wu, M. Schuster, and et al. Google’s Neural Machine Translation System:
Bridging the Gap between Human and Machine Translation. ArXiv e-prints,
2016.

[4] G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-
item collaborative filtering. IEEE Internet Computing, 7(1):76–80, 2003.

[5] Y. Kou, C. T. Lu, S. Sirwongwattana, and Y. P. Huang. Survey of fraud de-
tection techniques. In IEEE International Conference on Networking, Sensing
and Control, 2004, volume 2, pages 749–754 Vol.2, 2004.

[6] A. L. Samuel. Some studies in machine learning using the game of checkers.
IBM J. Res. Dev., 3(3):210–229, 1959.

[7] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statis-
tical Learning: With Applications in R. Springer Publishing Company, Incor-
porated, 2014.

[8] L. Liu and M. T. Zsu. Encyclopedia of Database Systems. Springer Publishing
Company, Incorporated, 1st edition, 2009.

[9] A. Schneider, G. Hommel, and M. Blettner. Linear Regression Analysis. Dtsch
Arztebl International, 107(44):776–782, 2010.

[10] S. H. Walker and D. B. Duncan. Estimation of the probability of an event as a
function of several independent variables. Biometrika, 54:167–79, 1967.

[11] K. Pearson. On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2(11):559–572, 1901.

[12] H. Hotelling. Analysis of a complex of statistical variables into principal com-
ponents. J. Educ. Psych., 24, 1933.

[13] J. B. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 281–297. University of California
Press, 1967.

[14] T. G. Dietterich. Ensemble methods in machine learning. In Proceedings of the
First International Workshop on Multiple Classifier Systems, pages 1–15, 2000.

[15] T. K. Ho. Random decision forests. In Proceedings of the Third International
Conference on Document Analysis and Recognition - Volume 1, page 278, 1995.

51

[16] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119 – 139, 1997.

[17] J. H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29:1189–1232, 2000.

[18] F. Herrera and et al. An overview on subgroup discovery: Foundations and
applications. Knowl. Inf. Syst., 29(3):495–525, 2011.

[19] S. Helal. Subgroup discovery algorithms: A survey and empirical evaluation.
Journal of Computer Science and Technology, 31(3):561–576, 2016.

[20] J. A. Nelder and R. W. M. Wedderburn. Generalized linear models. Journal
of the Royal Statistical Society. Series A (General), 135(3):370–384, 1972.

[21] B. R. Kowalski and C. F. Bender. Pattern recognition: a powerful approach
to interpreting chemical data. Journal of the American Chemical Society,
94(16):5632–5639, 1972.

[22] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, 1996.

[23] V. T. Jack. Advantages and disadvantages of using artificial neural networks
versus logistic regression for predicting medical outcomes. Journal of Clinical
Epidemiology, 49(11):1225 – 1231, 1996.

[24] W. Klösgen. Explora: A multipattern and multistrategy discovery assistant.
pages 249–271, 1996.

[25] S. Wrobel. An algorithm for multi-relational discovery of subgroups. In Pro-
ceedings of the First European Symposium on Principles of Data Mining and
Knowledge Discovery, pages 78–87, 1997.

[26] J. H. Friedman and N. I. Fisher. Bump hunting in high-dimensional data.
Statistics and Computing, 9(2):123–143, 1999.

[27] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Data preprocessing for super-
vised leaning. International Journal of Computer Science, 1(2):111–117, 2006.

[28] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.
Journal of Machine Learning, 3:1157–1182, 2003.

[29] T. M. Phuong, Z. Lin, and R. B. Altman. Choosing snps using feature selection.
In 2005 IEEE Computational Systems Bioinformatics Conference (CSB’05),
pages 301–309, 2005.

[30] K. W. Bowyer, N. V. Chawla, L. O. Hall, and W. P. Kegelmeyer. SMOTE:
synthetic minority over-sampling technique. CoRR, abs/1106.1813, 2011.

52

Appendix I

Features Descriptions
postcode 6-positie postcode
huisnummer Huisnummer
MXleeftijd Leeftijdsklasse
MXsentype Ouderensegmentatie
MXctht Consumententype
MXlevfas Levensfase
MXmanvrw Man en/of vrouw aanwezig
MXnvolw Aantal volwassenen in het huishouden
MXopleid Opleidingsniveau
MXwelstand Welstandsklasse
MXinkomen Gezinsinkomen
MXbrink Besteedbare inkomensruimte
MXtwinkkw Aantal Inkomens in het huishouden
MXprijs Prijs boven kwaliteit
MXsockl Sociale Klasse
MXchartype Charitype
MXmedia Mediatype
MXkwdb Leest kwaliteitsdagbladen
MXpopdb Leest populaire dagbladen
MXpostord Postordergevoeligheidsindicator
MXDuurzaam Duurzaamheidsindicator
MXactie Actiegevoeligheid
MXcc Bezit Creditcard
MXadopter Adoptertypologie
MXauto Bezit auto
MXauleas Bezit Leaseauto

Table 41: Cendris data reference table

53

Features Possible values (integer) Range of actual values
MXleeftijd 1 - 14 18 - 85+
MXsentype 0 - 4 5 categories
MXctht 1 - 11 11 categories
MXlevfas 1 - 11 11 categories
MXmanvrw 1 - 3 3 categories
MXnvolw 1 - 2 1 or 2
MXopleid 1 - 7 7 categories
MXwelstand 1 - 5 5 categories
MXinkomen 1 - 5 5 categories
MXbrink 1 - 4 4 categories
MXtwinkkw 0 - 1 1 or 2(and more)
MXprijs 1 - 2 2 categories
MXsockl 1 - 5 5 categories
MXchartype 1 - 9 9 categories
MXmedia 1 - 5 5 categories
MXkwdb 0 - 1 Yes or No
MXpopdb 0 - 1 Yes or No
MXpostord 0 - 2 Low/medium/high
MXduurzaam 0 - 2 Low/medium/high
MXactie 0 - 4 5 categories
MXcc 0 - 1 Yes or No
MXadopter 1 - 5 5 categories
MXauto 0 - 1 Yes or No
MXauleas 0 - 1 Yes or No

Table 42: Possible values for features from Cendris data

54

Appendix II

Actual class
Positive Negative

Predicted class Positive 44 345
Negative 33 529

Table 43: Confusion matrix of model "glmnet1wo"

Actual class
Positive Negative

Predicted class Positive 30 239
Negative 47 635

Table 44: Confusion matrix of model "rf1wo"

Actual class
Positive Negative

Predicted class Positive 18 118
Negative 59 756

Table 45: Confusion matrix of model "knn2wo "

Actual class
Positive Negative

Predicted class Positive 52 439
Negative 25 435

Table 46: Confusion matrix of model "nb1wo"

Actual class
Positive Negative

Predicted class Positive 46 362
Negative 31 512

Table 47: Confusion matrix of model "nn1fswo"

Actual class
Positive Negative

Predicted class Positive 50 422
Negative 26 450

Table 48: Confusion matrix of model "aucwo"

55

Actual class
Positive Negative

Predicted class Positive 52 431
Negative 24 441

Table 49: Confusion matrix of model "waucwo"

Actual class
Positive Negative

Predicted class Positive 51 396
Negative 26 478

Table 50: Confusion matrix of model "mvwo"

Actual class
Positive Negative

Predicted class Positive 46 331
Negative 31 543

Table 51: Confusion matrix of model "sfourwo"

Actual class
Positive Negative

Predicted class Positive 13 90
Negative 15 227

Table 52: Confusion matrix of model "glmnet3w"

Actual class
Positive Negative

Predicted class Positive 12 117
Negative 16 200

Table 53: Confusion matrix of model "rf1w"

Actual class
Positive Negative

Predicted class Positive 10 55
Negative 18 262

Table 54: Confusion matrix of model "knn1w"

Actual class
Positive Negative

Predicted class Positive 10 93
Negative 18 224

Table 55: Confusion matrix of model "nb1fsw"

56

Actual class
Positive Negative

Predicted class Positive 11 82
Negative 17 235

Table 56: Confusion matrix of model "nn3w"

Actual class
Positive Negative

Predicted class Positive 10 46
Negative 18 271

Table 57: Confusion matrix of model "aucw"

Actual class
Positive Negative

Predicted class Positive 11 56
Negative 17 261

Table 58: Confusion matrix of model "waucw"

Actual class
Positive Negative

Predicted class Positive 12 102
Negative 16 215

Table 59: Confusion matrix of model "sallw"

57

	Abstract
	Contents
	Introduction
	Motivation
	The housing corporation
	Business motivation
	Scientific motivation

	Problem statement
	Challenges
	Business perspective
	Technical perspective

	Research questions
	Outline

	Background
	Theory
	Machine learning
	Lasso and elastic-net regularized linear models
	Random forests
	Naive bayes
	K nearest neighbors
	Neural networks using model averaging

	Subgroup discovery
	Ensemble methods
	Averaging and weighted averaging
	Majority voting
	Stacking

	Measures

	Data
	Internal Data
	External Data
	Label
	Final datasets
	Pre-processing
	Feature selection with variable importance

	Experiments
	Experiments setup
	Train/Test and SMOTE
	Procedures
	Single algorithm
	Ensemble methods
	Subgroup discovery

	Results
	Single algorithms
	Lasso and elastic-net regularized linear models
	Random forests
	K nearest neighbors
	Naive bayes
	Neural networks using model averaging

	Ensemble methods
	Averaging and weighted averaging
	Majority voting
	Stacking

	Subgroup discovery
	Rules
	Prediction

	Conclusion
	References
	Appendix I
	Appendix II

