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Abstract

Clustering is a process of dividing data into groups of similar objects. Each such
group (a cluster) contains objects that are similar to each other and dissimilar to
objects in other groups. The clustering problem is widespread in day-to-day life
where data can be found, mined, or generated for most situations imaginable. To
make managing or finding data easier, it is a useful practice to group, or cluster,
data that is in some way similar. In this thesis, a genetic algorithms approach using
a greedy partitioning crossover operator and a genetic algorithms approach using a
linkage tree for recombination are studied.

Solutions are represented as arrays of n integer cluster labels, where n represents
the number of data points. As a distance metric the sum of squared errors is used.
Two different local search operators are studied. One operator looks at all elements
in each solution once and places the element in the best cluster. The second version
continues to improve the solution until an optimum is reached. Various data sets
are used in the comparative experiments. In these data sets, the number of data
points ranges from dozens to thousands, the number of variables ranges from two
to dozens, and the number of clusters ranges from two to ten.

Data from the experiments shows that the greedy partitioning crossover approach
and the linkage tree genetic algorithm approach can both solve instances of the clus-
tering problem. However, the simpler multi-start local search approach solves the
same instances to the same degree or better, in a more cost-effective way. We have
gained valuable insight into the relation between these approaches and their perfor-
mances.
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Abbreviations

FOS Family Of Subsets: set of subsets of the problem variables used to
model dependencies between variables.

GA Genetic Algorithm: subset of evolutionary algorithms using a
natural-evolution approach.

GGA Grouping Genetic Algorithm: class of evolutionary algorithms mod-
ified specifically to solve grouping problems.

GOMEA Gene-pool Optimal Mixing Evolutionary Algorithm: model-based
evolutionary algorithm using the nodes of a FOS structure as
crossover masks.

GPX Greedy Partitioning Crossover algorithm: GA using a greedy
crossover selecting the fittest clusters in the recombination step first.
Uses a LS operator that improves the solution for one iteration over
all elements.

LS Local Search: algorithm that optimizes a solution for a combinatorial
optimization problem by walking through the search space from one
solution towards better neighbouring solutions.

LT Linkage Tree: a FOS model representing a hierarchical clustering of
the dependencies between variables. See FOS.

LTGA Linkage Tree Genetic Algorithm: gene-pool optimal mixing evolu-
tionary algorithm incorporating the LT as its FOS structure. Uses a
LS operator that improves the solution for one iteration over all ele-
ments.

MLS Multi-start Local Search.
optGPX Greedy Partitioning Crossover algorithm using a LS operator that

continues until a(n) (local) optimum is found. See GPX.
optLTGA Linkage Tree Genetic Algorithm using a LS operator that continues

until a(n) (local) optimum is found. See LTGA.
RI Rand Index: measures similarity to known optimal solution. A su-

pervised measure.
SSE Sum of Squared Errors criterion: measures cohesion of clusters.
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1 Introduction

The clustering problem is the problem of finding a way to divide data into groups of
similar objects. It is widespread in day-to-day life where data can be found, mined,
or generated for most situations imaginable. To make managing or finding data eas-
ier, it is a useful practice to group, or cluster, data that is in some way similar. As the
number of possible data sets grows and the data sets become larger in both number
of data points and variables, this automation of this process through clustering al-
gorithms is increasingly important. Many different approaches have been proposed
in the past decades, indicating that this problem is neither new nor solved. Chapter
2 gives an overview of many proposed approaches.

This thesis focuses on a genetic algorithm (GA) approach to solve the clustering
problem. This research was inspired by the grouping genetic algorithm (GGA) pro-
posed in (Agustın-Blas et al., 2012). Agustín-Blas et al. proposed a viable approach
to solve the clustering algorithm. We will continue with the general outline of a GA
such as proposed in (Agustın-Blas et al., 2012), but look at a greedier approach using
a fairly simple recombination operator using knowledge about the fitness of indi-
vidual clusters in a solution as opposed to using the fitness of the entire solution:
the GPX approach. This approach is explained in Section 3.3. It has been used effec-
tively in genetic algorithms for solving the graph colouring problem (Galinier and
Hao, 1999; Glass and Prügel-Bennett, 2003). It is expected that a modified version of
this operator can be used to solve the clustering problem.

Additionally, we have seen that the linkage tree genetic algorithm (LTGA) learns de-
pendency between problem variables and solves many problems successfully (Thierens,
2010; Thierens and Bosman, 2011; Bosman and Thierens, 2012). We study the LTGA
algorithm, using the same problem representation as the GGA proposed in (Agustın-
Blas et al., 2012).

This then leads us to the focus of this thesis research. We investigate whether ge-
netic algorithms, using the same problem representation as the GGA presented in
(Agustın-Blas et al., 2012) are a viable approach to solve the clustering problem.

Our research questions can then be defined as:

Can we use a greedy partitioning crossover approach to solve the clustering
problem?

Can we use a linkage tree genetic algorithm to solve the clustering problem?
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We would like to improve the results found by Agustín-Blas et al., but are mostly
interested in how these different approaches compare to each other. To this end,
we compare the proposed GPX and LTGA approaches with each other and a sim-
ple multi-start local search (MLS) approach. The comparison to this last simple ap-
proach is to make sure the studied algorithms benefit from their specific ways of
dealing with information about clusters and generating solutions based on that in-
formation, as opposed to just starting from random solutions. This thus leads us
to the following research question which will also be used to answer the aforemen-
tioned questions:

How do the performances of the GPX, LTGA, and MLS approaches in solving
the clustering problem compare?

In the rest of this chapter, we will give an overview of the clustering problem and the
general concepts it entails. In Section 1.1, we will define clustering. In Section 1.2,
we will describe some basic vocabulary that is used in literature on the clustering
problem and approaches. Then, we will give an overview of the clustering process
in Section 1.3. Following this, we will indicate some of the different data types used
in clustering in Section 1.4. An overview on some similarity measures is given in
Section 1.5. Finally, the structure of this thesis is presented in Section 1.6.

1.1 Definition

Clustering is a process of dividing data into groups of similar objects. Each such
group (a cluster) contains objects that are similar to each other and dissimilar to
objects in other groups. It is also known as data clustering, clustering analysis, seg-
mentation analysis, taxonomy analysis, or unsupervised classification (Gan, Ma, and
Wu, 2007). It is important to note the difference between supervised learning and
unsupervised learning processes. Supervised learning uses a priori labelled data to
classify newly encountered data, whereas in unsupervised learning, no a priori la-
belled data is available and the cluster structure must be inferred from the data alone
(Goebel and Gruenwald, 1999). Looking at this from a machine learning perspective,
resulting the resulting clustering system represents a data concept. Thus, clustering
can be seen as the unsupervised learning of a hidden data concept (Berkhin, 2006;
Dalal and Harale, 2011).

1.2 Vocabulary

A single data item may be called a data point, pattern, observation, object, item,
datum or feature vector. It is mostly represented as a vector of d features X =
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(x1, ..., xd). Thus, the dimensionality of a feature vector is described by d. Individ-
ual scalar components xi of a pattern X in high-dimensional spaces may be denoted
as variable, attribute, or feature (Jain, Murty, and Flynn, 1999; Gan, Ma, and Wu,
2007). Cluster, group, and class are used interchangeably in clustering literature.
The number of clusters is typically denoted by k.

Distance measures quantify the similarity or dissimilarity of clusters. Distance mea-
sures are specialisations of proximity measures (Jain, Murty, and Flynn, 1999). They
are metrics or quasi-metrics on the features space and play an important role in clus-
tering (Anderberg, 1973; Jain and Dubes, 1988). Every clustering algorithm is based
on an index of this. When no such distance measure exists, cluster analysis will have
no meaningful results (Gan, Ma, and Wu, 2007).

1.3 Clustering Process

Clustering algorithms typically include the following four steps (Buhmann, 1995;
Jain and Dubes, 1988):

1. Representation of the data

2. Definition of model and proximity measure

3. Clustering

4. Validation of the output

In the representation step, the structure of the clusters is determined. This includes,
for example, the number of clusters to be found, the size of the data set, dimen-
sionality of the data, and details on the features such as type and scale. Optionally,
feature selection or feature extraction may be used here to obtain an appropriate set
of features to use in the clustering step. In the definition step, cluster structure and
criteria that separate clusters are defined. Also, a proximity measure is defined that
is used in the next step. Different approaches to the clustering step will be explained
in Chapter 2.

It may occur that values are missing from the data set. Missing data can be divided
into three categories (Fujikawa and Ho, 2002): (1) in some attributes, (2) in a num-
ber of patterns, and (3) randomly. If one attribute or pattern misses all values, that
attribute or pattern should be removed from the data set (Rousseeuw and Kaufman,
1990). It the number of missing values is limited, there are two ways to deal with
missing values (Fujikawa and Ho, 2002): (1) replace the missing values before the
clustering starts, or (2) deal with missing values during clustering. Thus, there may
be a preprocessing step before the aforementioned steps if many values are missing
in the data set.
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1.4 Data Types

Data-clustering algorithms depend on the data types that need to be handled by
them. A data type can be defined as the degree of quantization in the data (Ander-
berg, 1973; Jain and Dubes, 1988). Attributes can be categorized as being discrete
or continuous. Discrete attributes have a finite number of possible values, while
continuous attributes have an infinite number of possible values.

Attributes can be defined as either quantitative or qualitative. Quantitative attributes
are associated with numerical data, while qualitative attributes are associated with
categorical data. The following subdivision can be made (Gowda and Diday, 1992):

1. quantitative features:

(a) continuous values (e.g., weight)

(b) discrete values (e.g., the number of computers)

(c) interval values (e.g., the duration of an event)

2. qualitative features:

(a) nominal or unordered (e.g., colour)

(b) ordinal (e.g., military rank or qualitative evaluations of temperature ("cool"
or "hot"))

A special categorical type of attributes is the binary attribute. Binary attributes have
exactly two values. Examples include true or false, male or female, and inclusive or
exclusive.

In real life applications, various more complex data types exist, for example image
data or spatial data. In addition, attributes of a single data point may be of different
data types. For such data sets, the chosen similarity or dissimilarity measures need
special thought.

1.5 Similarity Measures

In this section, we describe some similarity measures as used in clustering algo-
rithms. Much of this information comes from (Gan, Ma, and Wu, 2007). How
similar (or dissimilar) two data points or clusters are is normally measured using
a distance function. Similarity is also called proximity or distance. A similarity co-
efficient indicates how strong the relationship between two data points is (Everitt,
Landau, and Leese, 1993). Similarity between two data points is usually symmetric,
i.e., s(x, y) = s(y, x). Such measures are key to clustering algorithms.
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Four strict rules define whether some measure is a metric or not: nonnegativity,
reflexivity, commutativity, and triangle inequality (Anderberg, 1973; Zhang and Sri-
hari, 2003).

1. nonnegativity: f(x, y) ≥ 0

2. reflexivity: f(x, y) = 0⇔ x = y

3. commutativity: f(x, y) = f(y, x)

4. triangle inequality: f(x, y) ≤ f(x, z) + f(y, z)

where x, y, and z are arbitrary data points in the set.

Functions that are like metrics but do not have all properties are pseudo-metrics. The
specific properties of such a function are the following (Rousseeuw and Kaufman,
1990):

1. 0 ≤ s(x, y) ≤ 1

2. s(x, x) = 1

3. s(x, y) = s(y, x)

where x and y are arbitrary data points in the set.

1.5.1 Numerical Data

The Minkowsky distance metric is a measure for numerical data with many different
uses:

dp(xi, xj) =
d∑

k=1

(|xi,k − xj,k|p)1/p = ||xi − xj ||p

Well-known and often-used versions of the Minkowsky distance are the Euclidean
distance (p = 2), the Manhattan distance (p = 1), and the maximum distance (p =

∞). The Euclidean distance is an intuitive measure and is often used to measure
distance of objects in two or three-dimensional space. The Minkowsky distance has
a drawback: if some feature is much larger-scaled than the other features, this dom-
inates the distance. This problem can, for example, be solved by normalising the
numerical features to a common range, such as [0, 1].

1.5.2 Categorical Data

Measures for categorical data have not received as much attention as measures for
numerical data. One simple and well-known measure for categorical data is the
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simple matching distance (Rousseeuw and Kaufman, 1990; Huang, 1997; Huang,
1998). It is defined as:

δ(x, y) =

0 if x = y

1 otherwise

Let X and Y be two categorical objects described by d attributes. The dissimilarity
between X and Y is defined by:

dsim(X,Y ) =
d∑

j=1

δ(xj , yj)

If we then take the frequencies of categories in the data set into account, we can
define the dissimilarity measure as:

dsimf (X,Y ) =

d∑
j=1

nxj + nyj
nxjnyj

δ(xj , yj)

where nxj and nyj are the amounts of objects in the data set that have categories xj
and yj , respectively.

1.5.3 Measures between Clusters

It may be required that not the distance between data points is evaluated, but the
distance between clusters. Some measures include:

• Mean-based Distance
This is a popular measure to evaluate dissimilarity between clusters for nu-
merical data. In this measure, the distance between the means of two clusters
is used.

• Nearest Neighbour Distance
This measure looks at the minimal distance between pairs of data points of two
clusters and takes this as a measure (Williams and Lambert, 1966).

• Farthest Neighbour Distance
This measure looks at the maximal distance between pairs of data points of
two clusters and takes this as a measure (Duran and Odell, 1974).

In the end, which similarity or dissimilarity measures are appropriate depends on
the types of variables and their measurement levels. Additional information on sim-
ilarity and dissimilarity measures can be found in (Cattell, 1949; Sokal and Sneath,
1963; Goodall, 1966; Hartigan, 1967; Green and Rao, 1969; Sneath and Sokal, 1973;
Hubalek, 1982; Gower and Legendre, 1986; Baulieu, 1989).
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1.6 Structure

This section details the structure of the thesis. In Chapter 1, the clustering problem
is defined and the research focus is detailed. Chapter 2 describes various techniques
previously and currently used in the field in the form of a literature study. The var-
ious algorithms used in the experiments are explained in Chapter 3. Then, Chapter
4 notes the scope of the experiments and details the experiments performed in the
study. The results of the experiments are stated in Chapter 5. Following the results,
conclusions and a discussion are presented in Chapter 6.
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2 Clustering Techniques:
Literature Study

Clustering algorithms can be categorized in many ways. There is no straightforward
and/or canonical way to do this. Such groups can also overlap. Common subdivi-
sions include (Jain, Murty, and Flynn, 1999):

• Hierarchical and partitioning: Hierarchical clustering algorithms build clus-
ters gradually over multiple levels, while partitioning clustering algorithms
create a one-level clustering.

• Agglomerative and divisive: Agglomerative methods work bottom-up, start-
ing with one cluster for each object and merging those until a stopping crite-
rion is met. Divisive methods work top-down, starting with one cluster of all
data points and splitting until a stopping criterion is met.

• Monothetic and polythetic: Polythetic methods consider all vector features at
once; most clustering algorithms take this approach. Monothetic methods look
at the vector features sequentially.

• Hard and fuzzy: In hard clustering, all objects are assigned to exactly one clus-
ter. Such approaches find strict partitions and thus result in disjoint clusters.
In fuzzy clustering, all objects are assigned degrees of membership in several
clusters. In practice, fuzzy clusters often make sense: each object can then
belong to multiple clusters with some probability. A membership function is
used to assign this probability (Zadeh, 1965). The clusters fuzzy clustering
algorithms have as output are not partitions. A book discussing the fuzzy
clustering problem was written by (Höppner, 1999).

• Deterministic and stochastic: Traditional techniques use a deterministic method
to cluster the data, but random search of the state space of all labellings may
be used as a stochastic method.

• Incremental and non-incremental: If constraints on execution time and mem-
ory space are a problem, incremental methods may be employed to solve this
problem. If not, non-incremental methods suffice.

In this chapter, we present a categorization of clustering algorithms based on a lit-
erature study. It is of importance to note that in our research, we focus on some
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specific approaches, namely Genetic Algorithms (GAs). These algorithms fall in the
probability-based approaches category, presented in Section 2.3.

This chapter is structured as follows. In Section 2.1, hierarchical clustering ap-
proaches are discussed. In Section 2.2, centre-based approaches are presented. Then,
we will discuss different probability-based approaches in Section 2.3. Following this,
we will present some density-based clustering approaches in Section 2.4. Finally, in
Section 2.5, we will review subspace clustering approaches.

2.1 Hierarchical Clustering

In the hierarchical clustering approach, a cluster hierarchy, or dendrogram, is built.
A horizontal slice in the hierarchy represents a certain partitioning. This kind of
approach enables different granularity levels to be investigated. Hierarchical clus-
tering methods are divided into two categories: agglomerative and divisive (Jain
and Dubes, 1988; Rousseeuw and Kaufman, 1990). Agglomerative hierarchical clus-
tering works bottom-up: it starts with one cluster for each object and recursively
merges the two closest clusters according to a chosen similarity measure until a stop-
ping criterion is met. Divisive hierarchical clustering works top-down: it starts with
one cluster containing all objects and recursively splits the most appropriate clusters
until a stopping criterion is met.

Advantages of hierarchical clustering include (Berkhin, 2006; Dalal and Harale, 2011):

• embedded flexibility regarding the level of granularity

• ease of handling of any forms of similarity or distance

• good result visualizations are integrated into the methods

• applicability to any attribute type

Disadvantages of hierarchical clustering are related to (Berkhin, 2006; Gan, Ma, and
Wu, 2007):

• vagueness of termination criteria

• most hierarchical algorithms do not revisit once (possibly incorrectly) con-
structed clusters

• different similarity measures for measuring similarity between clusters may
lead to different results

• the computational complexity is generally higher than that of partitional algo-
rithms

Finding the appropriate clusters to merge or split is done depending on the sim-
ilarity or dissimilarity of objects in the clusters. So, as a certain similarity between
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objects in a cluster is assumed, the (dis)similarity between clusters can be used rather
than (dis)similarity between individual objects. This generalization is called a link-
age metric. The way in which this linkage metric is derived affects closeness and
connectivity. Important inter-cluster linkage metrics include single-link, average-
link, and complete-link, which are calculated for all pairs of objects in the different
sets (Murtagh, 1985; Olson, 1995). Such methods are called graph methods. Other
linkage metric methods are geometric methods. In geometric methods, a cluster
is represented by a central point instead of individual objects. Geometric linkage
metrics include centroid, median, and minimum variance. All linkage metrics for
hierarchical clustering have, under reasonable assumptions, a time complexity of
O(n2) (Olson, 1995).

We will now give a non-exhaustive list of hierarchical clustering algorithms (Gan,
Ma, and Wu, 2007):

• BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) is an
agglomerative algorithm (Murtagh, 1983). It was designed to cluster very large
numerical data sets in Euclidean space.

• CHAMELEON is an agglomerative algorithm (Karypis, Han, and Kumar, 1999).
It utilizes dynamic modelling in cluster aggregation. It merges two clusters
only if interconnectivity and closeness between them are high enough, relative
to internal interconnectivity and closeness.

• CLINK is based on a compact representation of a dendrogram (Defays, 1977).

• COBWEB is an algorithm for categorical data (Fisher, 1987). It utilizes incre-
mental learning and also belongs to conceptual or model-based learning. The
dendrogram created is called a classification tree. COBWEB does reconsider
clustering decisions.

• CURE (Clustering Using REpresentatives) is an agglomerative algorithm that
is capable of identifying non-spherical shaped clusters in large databases and
with wide variances in size (Guha, Rastogi, and Shim, 1998). It is robust to
outliers.

• DIANA (DIvisive ANAlysis) can be applied to all data sets that van be clus-
tered by means of the agglomerative hierarchical algorithms (Rousseeuw and
Kaufman, 1990).

• DISMEA is a divisive algorithm that uses the k-means algorithm to subdivide
a cluster into two (Späth, 1980).

• Edwards and Cavalli-Sforza Method is a divisive algorithm, based on splitting
clusters into two new clusters to maximize the inter-cluster sum of squares
(Edwards and Cavalli-Sforza, 1965).
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• ROCK is an agglomerative algorithm for categorical attributes (Guha, Rastogi,
and Shim, 1999). It is based on the number of links between records, not on
any distance function.

• Single-link Algorithms Based on Minimum Spanning Trees is a single-link al-
gorithm that can be carried out by using only the information contained in the
minimum spanning tree (Gower and Ross, 1969).

• SLINK is a single-link algorithm that can be carried out using arbitrary dissim-
ilarity coefficients (Sibson, 1973).

Some papers discussing hierarchical clustering methods and algorithms can be found
in (Murtagh, 1983; Gordon, 1987; Willett, 1988; Rousseeuw and Kaufman, 1990; Gor-
don, 1996).

2.2 Centre-based Clustering

Centre-based clustering algorithms can be divided into two approach types: cen-
troid and medoid (Dalal and Harale, 2011). In centroid approaches, clusters are
represented by the gravity centre of the data points in that cluster. In medoid ap-
proaches, clusters are represented by the means of the data points closest to the grav-
ity centre. Centre-based clustering algorithms are very efficient for large and high-
dimensional databases (Gan, Ma, and Wu, 2007). These algorithms find convex-
shaped clusters (Anderberg, 1973). Thus, when clusters of arbitrary shapes have to
be found, the centre-based approach is likely not the best choice.

The k-means algorithm is the most well-known centre-based centroid clustering al-
gorithm (MacQueen, 1967; Wagstaff et al., 2001). Even though it was proposed over
50 years ago, the k-means algorithm is still one of the most popular clustering algo-
rithms (Jain, 2010). It is simple and straightforward. Beside the efficiency of centre-
based algorithms in general, k-means often terminates at a local optimum (Ander-
berg, 1973; Selim and Ismail, 1984) and is sensitive to outliers (Dalal and Harale,
2011). It is not as effective for high-dimensional data as some other algorithms (Hin-
neburg and Keim, 1999). As the k-means algorithm takes the centroid approach to
represent clusters, it does not work well with categorical attributes, while it does
work well with numerical attributes (Berkhin, 2006). Determining the right k num-
ber of clusters is no trivial task.

Fuzzy k-means is an extension of the traditional k-means algorithm for fuzzy clus-
tering (Bezdek, 1973). Many other extensions or improvements for the k-means al-
gorithm can be found in (Faber, 1994; Bradley and Fayyad, 1998; Kanungo et al.,
2002; Bottou and Bengio, 1995).

Some other centre-based centroid clustering algorithms include (Berkhin, 2006; Gan,
Ma, and Wu, 2007):
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• k-modes is derived from the k-means algorithm and was proposed to cluster
categorical data (Ye, 2003). First, k initial modes are selected, after which all
data points are assigned to their respective nearest mode. A parametric version
(Huang, 1997; Huang, 1998) and a non-parametric version (Chaturvedi, Green,
and Caroll, 2001) were proposed.

• Fuzzy k-modes is an extension of the traditional k-modes algorithm for fuzzy
clustering (Huang and Ng, 1999).

• k-prototypes originates from k-modes and k-means, designed for the cluster-
ing of data sets with mixed attribute types (Huang, 1998; Jain and Dubes, 1988).

• k-probabilities extends the k-modes algorithm and was, like k-prototypes, de-
signed for the clustering of data sets with mixed attribute types (Wishart, 2003).

• FCM (Fuzzy C-Means) is a fuzzy centroid based clustering algorithm (Bo-
browski and Bezdek, 1991; Wagstaff et al., 2001; Bezdek, 2013).

Some centre-based medoid clustering algorithms include (Berkhin, 2006; Nagpal,
Jatain, and Gaur, 2013):

• k-medoids methods represent clusters by one data point. This enables the al-
gorithm to deal with all attribute types. Selecting medoids, clusters are defined
as groups of points close to said medoids.

• PAM (Partitioning Around Medoids) is an iterative algorithm, improving found
clusters with each step (Rousseeuw and Kaufman, 1990). Medoids are first cre-
ated by determining a representative data point per cluster. Dissimilarity to all
non-centre data points is then calculated, upon which clustering is then based.
Medoids can be re-assigned when an improvement is found.

• CLARA (Clustering LARge Applications) is an algorithm that uses sampling
to select a subset of data points and then uses PAM to select medoids (Ng
and Han, 2002). It uses multiple sample subsets and presents the best clusters
found from the sample sets.

• CLARANS (Clustering Large Applications based on RANdomized Search) com-
bines PAM and CLARA into a more efficient and effective algorithm (Sarle,
1991). The drawback is that if the data set is large enough that not all data
points can be stored in main memory, the run time increases.

2.3 Probability-based Clustering

Most clustering techniques described in the previous sections are deterministic. Al-
gorithms based on those techniques guarantee a local optimal solution. In contrast,
stochastic techniques cannot guarantee an optimal solution. However, they generate
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near-optimal solutions quickly. Also, convergence to optimal solutions is guaran-
teed asymptotically (Jain, Murty, and Flynn, 1999). Stochastic approaches allow for
perturbations in directions that are non-optimal (locally) with non-zero probabilities.
We mention three different (possibly overlapping) points of view for probability-
based clustering in the following sections. Section 2.3.1 describes search-based clus-
tering, Section 2.3.2 pertains evolution-based clustering and finally, Section 2.3.3 de-
tails model-based clustering.

2.3.1 Search-based Clustering

A well-known search technique is simulated annealing. This technique has been
used to solve clustering problems (Klein and Dubes, 1989; McErlean, Bell, and Mc-
Clean, 1990; Bell et al., 1990; Selim and Alsultan, 1991; Hua, Lang, and Lee, 1994).
The perturbation operator in simulated annealing is similar to the k-means scheme:
it relocates a data point from its current to a randomly chosen other cluster (Berkhin,
2006). For example, SARS (Simulated Annealing using Random Sampling) takes the
simulated annealing approach, based on decomposition (Hua, Lang, and Lee, 1994).
For this algorithm to work, the clustering problem is transformed into a graph par-
titioning problem. SARS explicitly addresses excessive disc access problems during
annealing (Gan, Ma, and Wu, 2007).

Tabu search is similar to simulated annealing (Al-Sultan, 1995). Tabu search is a com-
mon heuristic algorithm used to solve combinatorial optimization problems (Glover,
1989; Glover, 1990; Glover and Taillard, 1993). Tabu search uses steepest descent to
improve solutions. After finding a locally optimal solution, some perturbations are
done. A number of recent solutions are recorded in the tabu list. These solutions
are not allowed to be visited for a number of iterations. This allows tabu search
to escape local optima. Adaptation of tabu search for the clustering problem were
proposed in (Al-Sultan, 1995; Sung and Jin, 2000). Some adaptations were also pro-
posed for solving the fuzzy clustering problem (Xu, Wang, and Li, 2002; Ng and
Wong, 2002). Also, a tabu search technique was combined with the fuzzy c-means
algorithm (Delgado, Skármeta, and Barberá, 1997).

Many search-based clustering algorithms are stochastic algorithms, but some deter-
ministic algorithms exist (Gan, Ma, and Wu, 2007):

• VNS (Variable Neighbourhood Search for Clustering) is a metaheuristic which
uses a systematic change of neighbourhood within a local search algorithm
(Hansen and Mladenović, 2001).

• Global k-means combines the standard k-means algorithm and a local search
procedure (Likas, Vlassis, and Verbeek, 2003). The clustering problem is solved
incrementally: intermediate clustering problems with 1, ..., k − 1 clusters are
solved sequentially.
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2.3.2 Evolution-based Clustering

Evolution-based clustering approaches are inspired by natural evolution. Different
evolutionary approaches exist, including (Jain, Murty, and Flynn, 1999): genetic al-
gorithms (GAs) (Holland, 1975; Goldberg, 1989), evolutionary strategies (ESs) (Schwe-
fel, 1981), and evolutionary programming (EP) (Fogel, Owens, and Walsh, 1965).
These approaches see the clustering problem as a minimisation of the squared error
criterion, described in Section 3.1.3. GAs have been applied for clustering the most
out of the evolution-based clustering approaches (Jiang and De Ma, 1996; Maulik
and Bandyopadhyay, 2000; Cheng, Lee, and Wong, 2002; Greene, 2003).

GAs use evolutionary operators, such as selection, crossover, and mutation, on a
population of solutions. Generally, GAs consist of the following (Gan, Ma, and Wu,
2007): problem encoding, initialisation, selection operator, crossover operator, and
mutation operator. The problem encoding is problem dependent. In addition, the
evaluation function used to determine the fitness of a particular solution is also prob-
lem dependent. However, even for the same problem, different encodings or evalu-
ation functions may be suitable.

The initialisation phase takes care of the (random) construction of the first popula-
tion. Typically, GAs then iteratively create new populations using the genetic oper-
ators. The number of generations is specified by the user. The crossover operator
takes parent solutions and combines these into new child solutions. The mutation
operator takes a solution and modifies it slightly with a certain probability. The se-
lection operator selects a number of new solutions based on survival of the fittest.

The best found solution is stored separately from the population and will be the
output at the end of all iterations. The sensitivity to the selection of parameters is a
major problem in the use of GAs (Jain, Murty, and Flynn, 1999). A survey of GAs
can be found in (Ribeiro Filho, Treleaven, and Alippi, 1994).

Multiple hybrid approaches were proposed in literature (Jain, Murty, and Flynn,
1999; Gan, Ma, and Wu, 2007):

• A GA was used to find good initial cluster centres, after which the k-means al-
gorithm was used for the final clustering (Babu and Murty, 1993). This hybrid
approach outperformed the pure GA.

• GKA finds the globally optimal partition of data set into a given number of
clusters (Krishna and Murty, 1999). It is proven to converge to optimality using
the finite Markov chain theory.

• GKMODE (Genetic k-MODEs) is similar to GKA, but uses the k-modes opera-
tor and allows for illegal strings (Gan, Yang, and Wu, 2005).
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• Genetic Fuzzy k-modes is the fuzzy version of GKMODE. It uses a one-step
fuzzy k-modes algorithm instead of the crossover operator to speed up con-
vergence.

2.3.3 Model-based Clustering

Model-based clustering algorithms assume that the data points can be classified us-
ing a mixture of probability distributions, where each such distribution corresponds
to a different cluster. Model is often used to represent the type of constraints and
geometric properties of the covariance matrices (Martinez et al., 2010). Model-based
clustering algorithms attempt to optimize the fit between models and data. This
means that the more the data conforms to the model, the better model-based clus-
tering algorithms perform.

Some common model-based clustering techniques are described below (Gan, Ma,
and Wu, 2007; Nagpal, Jatain, and Gaur, 2013):

• EM (Expectation Maximization) is a general statistical algorithm (McLachlan
and Basford, 1988; Krishnan and McLachlan, 1997). It can be used in the pres-
ence of incomplete data for maximum likelihood estimation. It can be seen as
an extension to k-means. EM is simple, stable, and robust to noise.

• Gaussian Mixture Models are a classical and powerful approach to clustering
analysis (Banfield and Raftery, 1993).

• COBWEB creates a hierarchical clustering through simple incremental concep-
tual learning. The number of classes is automatically adjusted.

• CLASSIT extends COBWEB for continuous data clustering.

• Auto Class estimates the optimal number of clusters through Bayesian statisti-
cal analysis.

• COOLCAT clusters categorical attributes using entropy (Barbará, Li, and Couto,
2002). In an initialization step, a sample from the data set is used to find a set
of cluster, after which all other data points are assigned to these clusters in an
incremental step.

• STUCCO uses newly defined contrast-sets to find meaningfully different groups.
A subset is selected from significant contrast-sets, selected from all possible
combinations of attribute values using a tree searching method.

• SOM (Soft-Organizing Map) uses an incremental approach to map high-dimensional
data points to a 2-dimensional or 3-dimensional space, preserving distance
and proximity where possible (Kohonen, 1990). The visualisation of a SOM
is straightforward because of this mapping.
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• Artificial Neural Networks (ANNs) are based on their biological counterparts
(Hertz, Krogh, and Palmer, 1991). ANNs only process numerical vectors, are
inherently parallel, and may learn interconnection weights adaptively (Oja,
1992; Jain, Mao, and Mohiuddin, 1996; Mao and Jain, 1996). Learning systems,
however, suffer from issues in balancing plasticity and stability.

As the EM algorithm is so popular, a framework for model-based clustering was
based on it. This framework consists of three steps (Martinez et al., 2010):

1. Initialize EM using the partitions found by model-based agglomerative hierar-
chical clustering.

2. Estimate parameters using EM.

3. Choose the model and the number of clusters according to the BIC.

2.4 Density-based Clustering

In this section, we describe density-based clustering techniques. We first discuss
general density-based clustering in Section 2.4.1. Then, we look at grid-based clus-
tering in Section 2.4.2.

2.4.1 General Density-based Clustering

Density-based clustering algorithms are based on the idea that density of data within
a cluster is higher than density of data outside a cluster. Clusters grow in any direc-
tion, based on density alone. Thus, density-based clustering algorithms are able to
find clusters of arbitrary shapes. Outliers also do not disturb density-based algo-
rithms. Knowing the number of clusters beforehand is not necessary, since density-
based clustering algorithms can find the natural number of clusters automatically
(El-Sonbaty, Ismail, and Farouk, 2004). In general, scalability is very good, but inter-
pretability is worse than for other clustering approaches (Berkhin, 2006). Choosing
the density threshold well is of high importance, and a difficult task. Also, a metric
space is required, so spatial data clustering is the main application (Han, Kamber,
and Tung, 2001; Kolatch, 2001).

Two major approaches for density-based clustering algorithms can be identified
(Berkhin, 2006). In the first approach, density is pinned to training data points. In
the second approach, density is pinned to a point in the attribute space.

Algorithms for the first approach include:

• DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is one
of the most commonly known density-based algorithms (Ester et al., 1996).



Chapter 2. Clustering Techniques: Literature Study 17

It targets low-dimensional data and for the proximity of data, the Euclidean
distance is used.

• OPTICS (Ordering Points To Identify the Clustering Structure) extends DB-
SCAN by automatically adjusting its parameters to different parts of the data
in the clustering process (Ankerst et al., 1999).

• DBCLASD (Distribution-Based Clustering of LArge Spatial Databases) assumes
that data points inside a cluster are uniformly distributed (Xu et al., 1998). It is
a non-parametric approach that dynamically detects appropriate cluster count
and shapes. As the name suggests, the algorithm targets larger databases.

• BRIDGE is a hybrid clustering algorithm, combining k-means and DBSCAN
(Dash, Liu, and Xu, 2001). This approach helps deal with larger databases and
deals with noise.

Algorithms for the second approach include DENCLUE (DENsity-based CLUstEr-
ing) (Hinneburg and Keim, 1998). DENCLUE focuses on its density function’s lo-
cal maxima and uses gradient hill-climbing to find these local maxima. The den-
sity function used in DENCLUE is a superposition of multiple influence functions
(Berkhin, 2006). The algorithm is very robust regarding noise.

2.4.2 Grid-based Clustering

Grid-based clustering algorithms are also based on density (Berkhin, 2006; Gan, Ma,
and Wu, 2007; Mann and Kaur, 2013). Grid-based clustering pertains to the value
space surrounding the data instead of the data points themselves. Such algorithms
use a multi-resolution grid data structure and dense grids for cluster formation.
Thus, the infinite amounts of data are first quantized into a finite number of grid
cells. All operations can then be performed on this finite number of cells instead of
the data points themselves, making the run-time independent of the number of data
points in the original data set and thus achieving a fast processing time, even for
large data sets. This reduction in computational complexity is especially apparent
when clustering very large data sets. Choosing grid size or density thresholds is
a difficulty of these algorithms. Techniques of adaptive grids, automatically deter-
mining grid size based on data distribution, are proposed to help solve this problem
(Nagesh, Goil, and Choudhary, 2001). Grid-based clustering algorithms are inde-
pendent of data ordering.

Some common grid-based clustering algorithms include (Berkhin, 2006; Gan, Ma,
and Wu, 2007; Nagpal, Jatain, and Gaur, 2013):

• STING (STatistical INformation Grid approach) was developed for spatial database
clustering (Wang, Yang, and Muntz, 1997). Various levels of detail can be in-
vestigated and this results in a very scalable algorithm.
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• WaveCluster applies wavelet transforms on the feature space to filter data
(Sheikholeslami, Chatterjee, and Zhang, 1998). While it is able to deal with
noise, able to detect clusters of arbitrary shapes, and efficient for large databases,
it is not suitable for very high-dimensional data sets (Andritsos, 2002). It works
on numerical data.

• CLIQUE is a grid-based and density-based algorithm developed to cluster
high-dimensional data (Agrawal et al., 1998).

• BANG-clustering is a hierarchical clustering algorithm (Schikuta and Erhart,
1997). The algorithm works with grid-based segments, stored in a so-called
special BANG-structure. From this structure, a dendrogram can be calculated.

• FC (Fractal Clustering) is an algorithm for numeric attributes (Barbará and
Chen, 2000). It uses an incremental structure, which is beneficial for memory,
but is data order dependent.

• GDILC (Grid-based Density-IsoLine Clustering) uses the concept of density-
isoline figures to depict the distribution of data samples (Zhao and Song, 2001).

• GRIDCLUS is a hierarchical algorithm developed for large data set clustering
(Schikuta, 1996).

2.5 Subspace Clustering

The high dimensionality of modern-world data sets sometimes makes it infeasible
to identify clusters in the entire data space as conventional clustering algorithms
do. Difficulties encountered by conventional clustering algorithms because of high-
dimensional data include: more limitations on distance discrimination as distances
even out the more dimensions there are (Beyer et al., 1999), and clusters may exist in
different subspaces of the data space (Agrawal et al., 1998). Subspace, or projected,
clustering finds clusters and their associated attributes from the data set (Gan, Ma,
and Wu, 2007).

We can divide subspace clustering approaches into two categories (Parsons, Haque,
and Liu, 2004):

• Top-down algorithms that look for an initial clustering in the full data space
and then evaluates cluster subspaces.

• Bottom-up algorithms that look for dense regions in low-dimensional spaces
and then combine them into clusters.

We will now describe some algorithms in the two categories mentioned above. First,
some examples of top-down subspace clustering algorithms are (Gan, Ma, and Wu,
2007):
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• PART (Projective Adaptive Resonance Theory) is a neural network architecture
proposed to find projected clusters for data sets in high-dimensional spaces
(Cao and Wu, 2002).

• PROCLUS (PROjected CLUSting) is a variation of the k-medoid algorithm
(Rousseeuw and Kaufman, 1990) in subspace clustering (Aggarwal et al., 1999).

• ORCLUS (arbitrarily ORiented projected CLUSter generation) is an extension
of PROCLUS. It diagonalizes the covariance matrix of each cluster and finds
information about projection subspaces from the diagonalisation of the covari-
ance matrix (Aggarwal and Yu, 2000).

• FINDIT (a Fast and INtelligent subspace clustering algorithm using DImen-
sion voTing) is a subspace clustering algorithm that uses a dimension-oriented
distance measure and a dimension voting policy to determine the correlated
dimensions for each cluster (Woo et al., 2004).

Some examples of bottom-up subspace clustering algorithms are (Gan, Ma, and Wu,
2007):

• CLIQUE (Clustering In QUEst) was the first subspace clustering algorithm.
It is able to identify dense clusters in subspaces of maximum dimensionality
(Agrawal et al., 1998).

• ENCLUS (ENtropy-based CLUStering) is an entropy-based subspace cluster-
ing algorithm for clustering numerical data. It can find arbitrarily shaped clus-
ters embedded in the subspaces of the original data space (Cheng, Fu, and
Zhang, 1999).

• MAFIA (Merging of Adaptive Finite Intervals) is a parallel subspace clustering
algorithm using adaptive computation of the finite intervals in each dimension
that are merged to explore clusters embedded in subspaces of a high dimen-
sional data set. It is also a density- and grid-based clustering algorithm (Goil,
Nagesh, and Choudhary, 1999; Nagesh, Goil, and Choudhary, 2000).

• CLTree (CLustering based on decision Trees) is a clustering algorithm for nu-
merical data based on a supervised learning technique called decision tree con-
struction (Liu, Xia, and Yu, 2000).

• DOC (Density-based Optimal projective Clustering) is a Monte Carlo–based
algorithm that computes a good approximation of an optimal projective cluster
(Procopiuc et al., 2002).

More information on subspace clustering algorithms can be found in (Krishnapuram
and Freg, 1991; Narahashi and Suzuki, 2002; Aggarwal and Yu, 2002; Har-Peled and
Varadarajan, 2002; Sarafis, Trinder, and Zalzala, 2003; Amir et al., 2003; Agarwal
and Mustafa, 2004; Parsons, Haque, and Liu, 2004; Ke and Kanade, 2004; Kailing,
Kriegel, and Kröger, 2004; Wang et al., 2004).
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3 Algorithms

The algorithms we study to solve the clustering problem can be categorized as centre-
based and probability-based clustering algorithms. In the algorithms, we look for a
partitioning clustering and we look at instances with numerical data. Some instances
may have categorical data transformed into numerical data, but we treat this as nu-
merical data nonetheless. In our algorithms, we require the number of clusters as an
input parameter. This makes sure the researcher has most control over the number
of clusters that is found by the algorithms and does not prevent potentially sub-
optimal but interesting numbers of clusters from being ruled out by the algorithm
automatically.

As stated in the introduction of Chapter 1, the approaches presented in this thesis
are mainly inspired by the grouping genetic algorithm (GGA) presented in (Agustın-
Blas et al., 2012). This GGA has the following characteristics:

• Problem encoding
The GGA uses a variable-length encoding. The elements and the groups of a
solution are kept track of separately. The encoding length is n (for the number
of elements) + k (for the number of groups). Each element gets assigned a
number 1, ..., k.

• Selection operator
A rank-based wheel selection mechanism was used. The parents are selected
for crossover with this operator. It is performed with replacement: individuals
can be selected as parents multiple times, but the two parents must be different
in the same crossover operation.

• Crossover operator
Two parents generate one offspring. Two individuals are selected, where two
crossing points are chosen in their group part. The elements belonging to the
selected groups from the first individual are inserted into the offspring, after
which the elements from the selected group of the second individual are in-
serted into the offspring, if unassigned by the first. Then, unassigned elements
are randomly assigned and empty clusters are removed. The labels are then
renamed 1 to k. The probability of crossover is high at first and moderate in
the final stages of the algorithm.
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• Mutation operator
Two mutation operators are used, both with low probability. The first mutation
operator is cluster splitting. A selected cluster is split into two new clusters.
The elements are assigned with equal probability. One cluster will keep the
old label, the other will get the label k + 1. The second mutation operator
is cluster merging. This selects two random clusters and merges them into
one. For both mutations, the probability to select a cluster depends on the
cluster’s size. Both operators are applied with low, independent probabilities.
The probability of applying a mutation is low at first and moderate in the final
stages of the algorithm to gain opportunities of escaping local minima.

• Elitism
The algorithm always automatically passes the best solution to the next gener-
ation directly.

• Local search
Local search was used to try to find local optima in a close neighbourhood
of a solution. It works based on best neighbourhood search. As it is time-
consuming, it is done with small probability.

• Island model
The algorithm uses the island model to improve the performance. An elitist
island model was used in which only the best solution of each island migrates
and replaces a randomly chosen solution on another island.

In the algorithms discussed in this chapter, we differ from this approach in the fol-
lowing ways:

• We do not require the number of groups in the problem encoding

• The selection operator is different for both algorithms

• The crossover operator is different for both algorithms

• The mutation operator does not exist in either algorithm because its effects are
lost when performing local search

• The local search operator is based on first-improvement instead of best-improvement,
which reduces the time required to perform it and as such is done each gener-
ation

• No island model is used in either of the algorithms

The rest of this chapter is structured as follows. In Section 3.1, the framework upon
which both algorithms are based is discussed. Then, the different local search ap-
proaches are presented in Section 3.2. Section 3.3 details the greedy partitioning
crossover approach. Finally, the linkage tree genetic algorithm is explained in Sec-
tion 3.4.
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3.1 Algorithms Framework

All algorithms used in this study, besides the basic local search algorithm, are based
on the same framework. Using this framework for all algorithms enables a clean
comparison to be made where difference in implementation could make a difference
otherwise.

The following input parameters are used in the algorithm:

• Maximum number of Evaluations
This value indicates the maximum number of evaluations that are allowed by
the algorithm before termination.

• Time Limit
This value indicates the time limit in milliseconds the algorithm is allowed to
take before termination.

• Problem
This value indicated the problem instance the algorithm should solve.

• Goal Clusters
This values indicates the number of clusters the algorithm should aim to clus-
ter the data set in.

In addition, the application running the algorithm also takes the number of iterations
the algorithm should run to termination and the specific algorithm that should be
used to solve the problem instance.

3.1.1 Solution Representation

A solution is represented as an array of n integer cluster labels, where n represents
the number of data points. More information is stored about solutions to reduce
recalculation cost, but the integer array is the essential part of the representation.

3.1.2 Framework Outline

In the framework, a pool of populations of solutions is used. As seen in Algorithm 1,
the algorithm framework provides a multi-population structure, where the largest
population size exponentially increases over the generations. In this way, we do
not have to provide the algorithms based upon this framework with a population
size when running an experiment. Instead, the first population size is set to 1 and
the maximum number of populations in the population pool is set to 25. This thus
means that the maximal population size is 224 for the 25th population pool is cre-
ated in the 25th generation. This is a huge population size. However, it is unlikely
that this full number of population sizes the algorithm can explore will actually be
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explored, as the termination criterion makes sure the algorithm is stopped when
necessary. The best solution encountered is saved independently from the pool of
populations. Every generation, every solution in the population pool is generated
and improved as in Algorithm 2 or Algorithm 3. At the end of every generation, the
best solution may be updated and another population is added to the population
pool with doubled population size.

Algorithm 1 Algorithm Framework
1: function RUN(problem, seed,maxEvaluations, timeLimit)
2: Initialize given parameters
3: maximumNumberOfPopulations← 25

4: while notterminated do
5: if numberOfPopulations < maximumNumberOfPopulations then
6: InitializeNewPopulation()

7: GenerationalStepAllPopulations()
8: numberOfPopulations+ +

9: function INITIALIZENEWPOPULATION

10: if numberOfPopulations = 0 then
11: create first population of size 1

12: else
13: create new population of size 2 ∗ populations[numberOfPopulations− 1]

14: numberOfPopulations+ +

15: function GENERATIONALSTEPALLPOPULATIONS

16: for all nonterminated populations do
17: GenerationalStepRecursion(smallestIndex, largestIndex)

18: function GENERATIONALSTEPRECURSION(smallestIndex, largestIndex)
19: for i = 0 to 3 do
20: for index = smallestIndex to largestIndex do
21: if notterminated[index] then
22: terminated[index]← CheckTerminationPopulation(index)

23: if notterminated[index]andindex ≥ minimumPopulationIndex then
24: MakeOffspring(index)
25: SelectSurvivors(index)
26: PerformLocalSearch(index)

27: function CHECKTERMINATIONPOPULATION(index)
28: for i = 0 to numberOfPopulations do
29: if avg population[i] fitter is better than avg population[index] fitness then
30: minimumPopulationIndex← index+ 1 return true

31: for i = 1 to populationSizes[index] do
32: for j = 0 to numberOfDatapoints do
33: if populations[index][i][j] 6= populations[index][0][j] then return false

return true
34: function SELECTSURVIVORS(index)
35: for i = 0 to populationSizes[index] do
36: populations[index][i]← offsprings[index][i]
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The SelectSurvivors function copies the offspring to the population directly, so the
generated offspring becomes the new population.

The PerformLocalSearch function has two different versions that are used. The first
version of the algorithm, seen in Algorithm 2, looks at all elements in each solution
once and places the element in the best cluster. The orders in which the elements
and the clusters are examined are randomized as to avoid any bias. The second
version, seen in Algorithm 3, works in the same way but continues to improve the
solution until no more improvements are possible, so until an optimum is reached.
This is a local optimum, which may or may not be the global optimum. Both LS
approaches are based on first-improvement neighbourhood search instead of best-
improvement neighbourhood search. In preliminary comparisons between first-
improvement and best-improvement, it was found that best-improvement search
takes an infeasible amount of time to complete, while first-improvement search takes
a reasonable amount of time and has good results.

Algorithm 2 PerformLocalSearch once for every element
1: function PERFORMLOCALSEARCH(index)
2: for i = 0 to populationSizes[index] do
3: elementOrder ← random ordering of size numberOfDatapoints
4: for j = 0 to numberOfDatapoints do
5: clusterOrder ← random ordering of size numberOfClusters
6: for k = 0 to numberOfClusters do
7: currentCluster ← populations[index][i][elementOrder[j]]

8: if currentCluster 6= clusterOrder[k] then
9: populations[index][i][elementOrder[j]]← clusterOrder[k]

10: Evaluate the updated solution
11: if new solution fitter than old solution then
12: keep the change
13: else
14: revert the change
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Algorithm 3 PerformLocalSearch to optimum
1: function PERFORMLOCALSEARCH(index)
2: for i = 0 to populationSizes[index] do
3: improved← true

4: while improved do
5: improved← false

6: elementOrder ← random ordering of size numberOfDatapoints
7: for j = 0 to numberOfDatapoints do
8: clusterOrder ← random ordering of size numberOfClusters
9: for k = 0 to numberOfClusters do

10: currentCluster ← populations[index][i][elementOrder[j]]

11: if currentCluster 6= clusterOrder[k] then
12: populations[index][i][elementOrder[j]]← clusterOrder[k]

13: Evaluate the updated solution
14: if new solution fitter than old solution then
15: keep the change
16: improved← true

17: else
18: revert the change

The MakeOffspring function is the defining function for the different algorithms based
on this framework. It decides how the algorithm generate new solutions for the pop-
ulation.

3.1.3 Evaluation

As a distance metric for this study we will take the sum of squared errors (SSE),
where the distance is the Euclidean distance. The Euclidean distance is a specific
version of the Minkowsky distance, explained in Section 1.5. Both the SSE approach
and the Euclidean distance are very straightforward and popular in the evaluation
of clustering (Agustın-Blas et al., 2012). The SSE represents cohesion of clusters. The
SSE is used as an unsupervised measure, so it evaluates the quality of a solution
without having information about the perfect solution. It is calculated as follows:

SSE(U) =

k∑
i=1

∑
x=Ci

d2(x, µi)

where U stands for a solution, k stand for the number of clusters and d(x, µi) rep-
resents the distance from element x to the cluster centre of cluster Ci, denoted by
µi.

Fitness of a solution is represented in the form of an objective value and a constraint
value. The objective value pertains to the fitness is the SSE for that solution. The
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constraint value pertains to how well the number of clusters in the solution corre-
sponds to the desired number of clusters in the algorithm. If the constraint value
is equal to zero, the solution is feasible given the required number of clusters. The
fitness value and the objective value of a solution are used interchangeably as the
constraint value is supposed to be equal to zero for solutions encountered when an
algorithm terminates. The complete fitness can thus be represented by a tuple:

F (U) = 〈SSE(U), |kreq − kU |〉

where kreq stands for the number of clusters required by the input parameter and kU
represents the number of clusters in solution U .

Algorithm 4 Solution evaluation
1: objective← 0

2: constraint← 0

3: clustercenters← newdouble[k][d]

4: clustercenters← initializeeverycenterwith0

5: for all cluster c in clusters do
6: for all element e in solution do
7: if e.cluster = c then
8: clustercenters[c]← add all d attributes

9: clustercenters← divide by the number of elements in c

10: for all cluster c in clusters do
11: for all element e in solution do
12: if e.cluster = c then
13: objective += d2(e, clustercenter[c])

14: if there is an empty cluster then
15: constraint← value > 0

Additionally, we use the Rand Index (RI) to calculate the similarity of a found so-
lution (U ) and the known optimal solution (O) (Rand, 1971). As such, it measures
how correct the solution is compared to the perfect solution. The RI is calculated as
follows:

RI(U) =
TP + TN

TP + FP + TN + FN

where U represents the solution that is measured. O represents the known optimal
solution. TP (true positives) describes the number of elements U and O agree on
being in the same cluster. TN (true negatives) describes the number of elements
U and O agree on being in different clusters. FP (false positives) and FN (false
negatives) refer to the numbers of elements U and O disagree on being in the same
and in different clusters, respectively. RI is in the interval [0, 1], where values closer
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to 0 indicate worse solution quality and values closer to 1 indicate better solution
quality.

3.1.4 Termination

Termination of the algorithm happens based on the elapsed time or the number of
evaluations. After every generation, these values are checked and the algorithm
determines whether it should terminate. These values are passed to the algorithm
as input parameters.

3.2 Local Search Algorithms

In order to test whether the GPX algorithm and the LTGA benefit from their specific
ways of dealing with information about clusters and generating solutions based on
that information we need to compare these algorithms to a simple algorithm starting
from random solutions. So we can test whether these approaches are better than a
multi-start local search (MLS) approach, we implement MLS to keep the difference
only in terms of how new solutions are generated when comparing results.

For this, the framework algorithm is adjusted in such a way that SelectSurvivors is
omitted. The MakeOffspring function generates new random solutions and the Per-
formLocalSearch function improves each newly generated solution until an optimum
is found. This therefore effectively becomes a multi-start local search algorithm. In
addition, populations are not terminated as this is not necessary due to there being
no recombination operator in this algorithm.

3.3 Greedy Partitioning Crossover Algorithms

Two variants of the GPX approach are implemented. The GPX algorithm uses a LS
operator that improves the solution through one iteration over all elements. Thus, all
elements are moved to a different cluster at most once. This is shown in Algorithm
2. The optGPX algorithm uses a LS operator that keeps improving the solution until
a(n) (local) optimum is found. This is shown in Algorithm 3. Thus, the LS operator
is the only difference between the GPX and optGPX algorithms.

Both algorithms use a simple tournament selection of size 2 to select the solution
parent pairs to use in the crossover. The same solution can be selected twice in a
pair, resulting in the offspring being equal to either parent. As the population size
increases, selecting the same solution from the population as both parents becomes
less likely.
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Algorithm 5 shows how both versions of the GPX approach handle selection and
crossover. The greedy partitioning crossover operator (Galinier and Hao, 1999), per-
forms the crossover of solutions based on the cardinality of the groups within them.
We argue that the greedy partitioning crossover approach as proposed by (Galinier
and Hao, 1999) also works well for clustering, as the graph colouring problem can
be viewed as a partitioning problem. In our approach, we perform crossover based
on cluster fitness of the clusters within a solution instead. This is more in line with
our evaluation function, how fit a part of the solution is, than cardinality would be;
clusters containing more elements are not necessarily better clusters than smaller
ones.

Algorithm 5 GPX and optGPX MakeOffspring function
1: function MAKEOFFSPRING(index)
2: populationSize← populationSizes[index]

3: indices← new integer array of size populationSize ∗ 2

4: perm1← random permutation of solution indices
5: perm2← random permutation of solution indices
6: for i = 0 to populationSize do
7: if populations[index][perm1[i]] fitter than populations[index][perm2[i]] then
8: indices[i]← perm1[i]

9: else
10: indices[i]← perm2[i]

11: perm1← random permutation of solution indices
12: perm2← random permutation of solution indices
13: for i = 0 to populationSize do
14: if populations[index][perm1[i]] fitter than populations[index][perm2[i]] then
15: indices[i+ populationSize]← perm1[i]

16: else
17: indices[i+ populationSize]← perm2[i]

18: for i = 0 to populationSize do
19: parentA← populations[index][indices[i]]

20: parentB ← populations[index][indices[i+ populationSize]]

21: child← initialize empty solution
22: Sort clusters of parentA and parentB based on their fitness
23: while there are unassigned elements in child do
24: cluster ← fittest remaining cluster from parentA and parentB
25: for all element e in cluster do
26: if e unassigned in child then
27: Assign e to cluster in child

28: offsprings[index][i]← child

29: Evaluate offsprings[index][i]

The algorithm considers both parents and uses the fittest cluster from either parent.
This cluster is then inserted into the offspring. The elements in this cluster are then
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further ignored in both parent solutions. This is repeated until all clusters from the
parent solutions are assigned to the offspring.

The evaluation of the fitness of a single cluster is simply a run of SSE for only one
cluster:

SSE(C) =
∑
x∈C

d2(x, µC)

where C stands for a cluster, the cluster centre of C is represented as µC and d(x, µC)

represents the distance from element x to µC .

3.4 Linkage Tree Genetic Algorithms

Two variants of the LTGA approach are implemented. The LTGA algorithm uses
a LS operator that improves the solution through one iteration over all elements.
Thus, all elements are moved to a different cluster at most once. This is shown in
Algorithm 2. The optLTGA algorithm uses a LS operator that keeps improving the
solution until a(n) (local) optimum is found. This is shown in Algorithm 3. Thus,
the LS operator is the only difference between the LTGA and optLTGA algorithms.

Algorithm 6 shows both versions of the LTGA approach. LTGA can be described
as a gene-pool optimal mixing evolutionary algorithm (GOMEA) with its family of
subsets (FOS) model being a linkage tree (LT).

A FOS is a dependency structure between the problem variables. It is a set of subsets
of the set of all problem variables.

A LT is an hierarchical structure. It forms an hierarchical clustering of the problem
variables (here the data points in the clustering instance). The root node is the group
of all variables and each node at a lower level is the subset of the parent node split
into two mutually exclusive subsets. The LT has n leaf nodes and n − 1 internal
nodes.

Building the LT is done bottom-up, starting with a univariate structure and cluster-
ing hierarchically. Variables in a subset are considered to be dependent, but inde-
pendent in different child subsets. The similarity measure between two variables is
the mutual information, based on joint entropy. The similarity measure between two
groups is the average pairwise linkage clustering. This is the unweighted pair group
method with arithmetic mean (UPGMA). This is done in the LearnLT function and
this is done each generation.

GOMEA (and thus LTGA) selects a new donor for each FOS subset. New solutions
are generated by traversing the tree, starting at the top. Nodes in the LT are used
as crossover masks. A random donor solution gets selected and its values at the
crossover mask replace the variable values in the selected solution. Then, the new
solution is evaluated and if it is better or equal, is accepted. If it is worse, the change
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is rejected. More specifics about the LTGA algorithm can be found, e.g. in (Thierens,
2010; Thierens and Bosman, 2011; Bosman and Thierens, 2012).

Algorithm 6 LTGA and optLTGA MakeOffspring function
1: function MAKEOFFSPRING(index)
2: LearnLT(index)
3: GenerateNewSolutions(index)
4: function LEARNLT(index)
5: Compute mutual information matrix using joint entropy
6: Initialize LT to the initial mutual information matrix
7: Initialize similarity matrix
8: Calculate the LT
9: function GENERATENEWSOLUTIONS(index)

10: for i = 0 to populationSizes[index] do
11: result← GenerateNewSolution(index, i)
12: offsprings[index][i]← result

13: function GENERATENEWSOLUTION(index, parentIndex)
14: result← populations[index][parentIndex]
15: backup← result
16: ShuffleFOS(index)
17: for i = 0 to fossLength[index] do
18: if fossNumberOfIndices[index][i] = numberOfDatapoints then
19: continue
20: donor ← random donor from populations[index]
21: for j = 0 to fossNumberOfIndices[index][i] do
22: result[foss[index][i][j]]← donor[foss[index][i][j]]

23: if result changed then
24: if change is improvement then
25: backup← result
26: else
27: result← backup

28: if result not changed or no improvement for some time then
29: ShuffleFOS(index)
30: for i = 0 to fossLength[index] do
31: donor ← elitist solution
32: for j = 0 to fossNumberOfIndices[index][i] do
33: result[foss[index][i][j]]← donor[foss[index][i][j]]

34: if result changed then
35: if change is improvement then
36: backup← result
37: else
38: result← backup

39: if result was not changed and elitistSolution fitter than result then
40: result← elitistSolution

return result
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4 Experiments

In this chapter, we will give an overview of the experiments that are performed. In
Section 4.1, we will define the data sets used for the experiments and describe how
the artificial data sets were created. In Section 4.2, we will describe the structure of
the experiments and details about the used termination criteria. Finally, the hard-
ware used to run the experiments is stated in Section 4.3.

4.1 Data Sets

For the experiments we compare fitness values of the best solutions encountered
during the runs of the algorithms. The data sets used for the experiments are well-
known and often-used data sets in the field of clustering algorithms. Some data sets
are given slightly modified names for clarity and brevity. The used data sets with
problem instance names and references can be found in Table 4.1. In case of the
cardio and german data sets, there are multiple problem instances, where the number
of clusters differs. This, and descriptions for the data sets, can be found in Table 4.2.

TABLE 4.1: Data Set Naming

Data set name Instance name Reference
spheric spheric (Agustın-Blas et al., 2012)
structured structured (Agustın-Blas et al., 2012)
unbalanced unbalanced (Agustın-Blas et al., 2012)
iris iris (Fisher, 1936)
wine wine (Forina, 1991)
studentevaluation studenteval (Gunduz and Fokoue, 2013)
ecoli ecoli (Nakai and Kanehisa, 1991)
pima indians diabetes diabetes (Sigillito, 1990)
banknote banknote (Doerksen, 2012)
cardiotocography cardio-_ (Campos et al., 2000)
german towns german-_ (Späth, 1980)

In order to compare the results of the algorithms with results achieved in (Agustın-
Blas et al., 2012), we run experiments on comparable data sets. These data sets are
spheric, structured, and unbalanced. These data sets are not exactly the same as in
(Agustın-Blas et al., 2012), but rather generated in exactly the same way. The other
data sets were chosen to be generally known data sets, such as in (Siddiqi and Sait,
2017).
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TABLE 4.2: Data Set Descriptions

Instance Data points n Attributes d Clusters k
spheric 300 2 8
structured 400 2 3
unbalanced 200 2 9
iris 150 4 3
wine 178 13 3
studenteval 5820 32 3
diabetes 768 8 2
cardio-_ 2126 21 3 or 10
banknote 1372 4 2
ecoli 336 7 8
german-_ 89 3 2 to 10

All three artificial data sets (spheric, structured, unbalanced) represent 2-dimensional
clustering problems. The spheric data set consists of, as is shown in Table 4.2, 300
data points. These data points are randomly generated using a Gaussian distribution
from 8 equiprobable classes. These classes have the following means: µ1 = (−1, 0),
µ2 = (−1,−1), µ3 = (−1,−3), µ4 = (3,−1), µ5 = (−1, 1), µ6 = (2,−2), µ7 = (1, 2),
and µ8 = (3, 1). All classes have the following covariance matrix:

Σ =

[
0.352 0

0 0.352

]

The resulting spheric instance used in the experiments is shown in Figure 4.1.
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FIGURE 4.1: Spheric instance representation

The structured data set consists of, as is shown in Table 4.2, 400 data points. These
data points are randomly generated using a Gaussian distribution from 3 classes
with probabilities: p1 = 0.5, p2 = 0.33, and p3 = 0.17. The means of the classes are:
µ1 = (−1,−1), µ2 = (2,−1), and µ3 = (0, 2). They have the following covariance
matrices:

Σ1 =

[
12 0

0 0.82

]
,Σ2 =

[
0.62 0

0 0.42

]
,Σ3 =

[
0.32 0

0 0.52

]
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The resulting structured instance used in the experiments is shown in Figure 4.2.
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FIGURE 4.2: Structured instance representation

The unbalanced data set consists of, as is shown in Table 4.2, 200 data points. These
data points are randomly generated using a Gaussian distribution from 9 equiprob-
able classes. The means of the classes are: µ1 = (1,−1), µ2 = (−1.5, 0), µ3 = (0, 1),
µ4 = (−1, 1), µ5 = (2,−1), µ6 = (−2,−1), µ7 = (−0.5, 2), µ8 = (−1,−1), and
µ9 = (1.5, 0). All classes have the following covariance matrix:

Σ =

[
0.22 0

0 0.22

]

The resulting unbalanced instance used in the experiments is shown in Figure 4.3.
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FIGURE 4.3: Unbalanced instance representation

4.2 Experiments

As we study the performance of the GPX and the LTGA algorithms, we need to
conduct experiments pertaining one difference at a time. Described in Section 3.2, we
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have two different ways to perform the local search operator. We need to distinguish
between these approaches and only compare the GPX and LTGA algorithms using
the same local search approach. However, we also want to see which local search
approach is more successful. This thus leaves us with the following experiments:

• Comparing GPX and optGPX (comparing the LS approaches)

• Comparing LTGA and optLTGA (comparing the LS approaches)

• Comparing GPX and LTGA (comparing the algorithms)

• Comparing optGPX and optLTGA (comparing the algorithms)

• Comparing optGPX and optLTGA to MLS (2 experiments, comparing the al-
gorithms to a simple restarting LS approach)

The comparisons will be done based on the fitness values of the best-found solutions.
A student’s t-test will determine statistical significance in experiment results.

In the experiments, we run most experiments 100 times and take the means of the
found elite solution fitnesses to compare. We also calculate the standard deviations.
The number of runs for each problem instance can be found in Table 4.3. A balanced
between time required to run the experiments and effect on statistical significance of
the results needed to be found. We found that running each experiment 100 times
gave us an acceptable required time to run all experiments and ensures that low
sample sizes are not a problem for statistical significance. The exception is the stu-
denteval instance, which takes a very long time to run. Because of the lengthy run
time for studenteval, only 10 runs were performed for each experiment.

TABLE 4.3: Number of runs per problem instance

Instance Runs
spheric 100
structured 100
unbalanced 100
iris 100
wine 100
studenteval 10
ecoli 100
diabetes 100
banknote 100
cardio-_ 100
german-_ 100

Such experiments can be performed with different termination criteria. Because
choosing a different criterion can influence the results of the experiments, we com-
pare the algorithms using both evaluation-based and time-based termination crite-
ria. The specific values for the chosen termination criteria can be found in Table 4.4.
These values were determined by running a single local search to an optimum. The
run times and numbers of evaluations were averaged over 100 runs and rounded.
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Furthermore, additional experiments are done with an extended time limit to inves-
tigate how the algorithms perform when less constrained. This gives the algorithms
the opportunity to show increased performance because of the more extensive learn-
ing that can take place, if applicable.

TABLE 4.4: Termination Criteria

Instance Run Time (ms) Evaluations
spheric 54 15068
structured 34 4456
unbalanced 24 9604
iris 9 2317
wine 21 1593
studenteval 119206 128734
ecoli 171 23416
diabetes 348 7187
banknote 508 10707
cardio-3 12039 52979
cardio-10 44741 535774
german-2 1 465
german-3 2 1116
german-4 6 2668
german-5 9 4724
german-6 7 3962
german-7 8 4784
german-8 9 5612
german-9 15 10012
german-10 15 10294

The framework used in all algorithms checks the termination criterion each genera-
tion. The termination criteria shown in Table 4.4 are, in many runs, higher than the
values at the generation which has the value that is actually closest to the value of
the termination criterion. As such, the run time or number of evaluations used by
the algorithms is usually 2 to 3 times that of the relevant termination criterion value.
This thus also allows the algorithms to reach evaluate more generations.

As an example: the termination criterion is set to 150 milliseconds. After some gen-
erations, the algorithm has used 140 milliseconds to reach this point. Because each
generation contains more solutions to process, the next generation will take, e.g. 170
milliseconds. The number of used milliseconds used by the algorithm on termina-
tion then becomes 140+170 = 310 milliseconds. This is more than twice the number
of milliseconds set as the termination value. This happens often during the experi-
ments.

Additionally, we will give an analysis of the Rand Index as opposed to the fitness
value based on the SSE used internally by the algorithms. We get the data for this
analysis through the experiments mentioned above. In this analysis, we can see how
well the used evaluation function fits the problems. Because this is not indicative of
how well the different approaches perform, it will not be extensive. The analysis
will be based on the correlation between internally used fitness and the Rand Index.
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We will also give an analysis of memory usage by the different approaches, giving
some indication about the scalability of the approaches, memory-wise.

4.3 System specifications

Because some of the experiment runs are limited by time rather than number of cal-
culations or evaluations, the hardware that was used when running the experiments
becomes an important factor. In this case, the same hardware was used for all ex-
periments, but the specifications are listed in Table 4.5 so that all relevant data is
noted.

TABLE 4.5: Specifications of the hardware used for the experiments

Component Model
CPU Intel Core i7-4790K (4.00GHz)
GPU NVIDIA GeForce GTX 1070
RAM 16GB DDR4
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5 Results

In this chapter, we look at the results from the experiments. This chapter is here to
show the main experiment results, for which the conclusions and discussion follow-
ing the results are presented in Chapter 6. However, for some evaluation It must be
made clear that when an optimum or optima are described, this will mean a local
optimum or local optima. Such a local optimum may or may not be the global op-
timum, but should this be the case, this will be stated specifically. As mentioned in
3.1.3, fitness of a solution and the objective value of the fitness of a solution are used
interchangeably.

This chapter is structured as follows. In Section 5.1, the results from the experi-
ments pertaining the different local search operators are described. Comparisons
between the greedy partitioning crossover algorithm, the linkage tree genetic algo-
rithm and, the multi-start local search algorithm are made in Section 5.2. The results
of the experiments where the time limit was extended are described in Section 5.3.
A comparison is made between the Rand Index and the internally used fitness value
in Section 5.4. In Section 5.5, the memory usage of the different approaches is dis-
cussed. Finally, a summary of the comparisons between the algorithms is presented
in Section 5.6.

5.1 Local Search Variants

In this section, we will look at how the different local search approaches, discussed in
Section 3.1 (Algorithm 2 and Algorithm 3), perform in GPX and LTGA. We expect the
local search to optimality to outperform the local search that looks at every element
once per generation. This would be at the cost of the number of generations that
can be generated. We will first look at how the local search operators converge to
an optimum in Section 5.1.1. After this, we will see how the local search operators
relate in the next sections.

5.1.1 Optimum Convergence

We look at how the local search algorithms converge to an optimum. In Figure 5.1
we see how the fitness of the best solutions in each iteration of the local search oper-
ator converges to the fitness of the optimum that is found. The fitness values, shown
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on the y-axes of the figures, are explained in 3.1.3. The x-axes represent the number
of iterations the local search performs over all the elements in the solution(s). It is
important to note that Algorithm 2 performs only one iteration over all elements,
so the improvement of the fitness stops at iteration 1. In contrast, Algorithm 3 per-
forms all iterations shown in the figures. Because the local search operator is not
deterministic, these figures are only an indication for how the fitness value can con-
verge in different runs of the local search value. The figures were generated starting
with a random solution, so the first fitness value (at iteration 0), is worse than the
fitness value would be for a starting solution in later generations in either of the GA
algorithms studied.
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FIGURE 5.1: Fitness plots for all non-german-_ instances

We can see that the first few iterations yield the highest improvement in fitness
value. Most improvements start being only marginal from iteration 2 on, except for
the cardio-10 instance, where substantial gains are also made thereafter. This can be
explained by the fact that the cardio-10 instance requires many more iterations to get
to an optimum. These figures give us a clear idea of what happens when applying
either of the local search operator(s).
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5.1.2 GPX with equal evaluation limit

In this section, we compare the GPX and the optGPX algorithms. The termination
criterion for the experiments run here is based on the maximum number of evalu-
ations. We look at the solution fitness to compare the performance. For each algo-
rithm, the mean fitness value (x̄) and standard deviation s is given. These values
are generated by the evaluation function described in Section 3.1.3; they represent
a measure of distance. The p-value resulting from a students t-test is given. This
is generally calculated one-tailed, but whenever inconclusive, the test is done two-
tailed to determine significant inequality instead. Significantly better results are dis-
played as bold text. The results can be found in Table 5.1.

TABLE 5.1: Fitness values from SSE and p-value from t-test compar-
ing GPX and optGPX with equal evaluation limit

Instance GPX x̄ GPX s optGPX x̄ optGPX s p

spheric 1.86E+06 2.06E+05 6.85E+05 5.73E+04 <0.001
structured 3.54E+06 6.76E+04 3.42E+06 3.28E-09 <0.001
unbalanced 6.35E+05 3.61E+04 2.07E+05 5.25E+04 <0.001
iris 9.25E+01 2.46E+00 7.89E+01 1.00E-13 <0.001
wine 3.08E+06 1.15E+05 2.37E+06 5.62E-09 <0.001
studenteval 1.93E+05 1.15E+03 1.77E+05 3.07E-11 <0.001
ecoli 1.76E+01 5.69E-01 1.42E+01 3.59E-01 <0.001
diabetes 5.50E+06 1.72E+04 5.14E+06 8.42E-09 <0.001
banknote 4.49E+04 4.00E+01 4.40E+04 2.19E-11 <0.001
cardio-3 5.38E+06 4.79E+04 5.10E+06 2.53E+04 <0.001
cardio-10 4.07E+06 1.33E+05 2.63E+06 3.61E+04 <0.001
german-2 1.54E+12 3.28E+10 6.03E+11 7.36E-04 <0.001
german-3 1.22E+12 7.93E+10 3.64E+11 4.91E-04 <0.001
german-4 9.40E+11 1.54E+11 1.04E+11 1.53E-05 <0.001
german-5 7.52E+11 1.84E+11 5.98E+10 9.20E-05 <0.001
german-6 5.94E+11 1.74E+11 4.58E+10 6.13E-05 <0.001
german-7 4.30E+11 1.36E+11 3.72E+10 6.90E-05 <0.001
german-8 3.68E+11 1.20E+11 3.47E+10 1.20E+09 <0.001
german-9 3.07E+11 8.53E+10 3.03E+10 3.77E+08 <0.001
german-10 2.67E+11 7.93E+10 2.91E+10 4.19E+07 <0.001

As becomes clear from the results, optGPX dominates GPX for every instance.
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5.1.3 LTGA with equal evaluation limit

In this section, we compare the LTGA and the optLTGA algorithms. The termina-
tion criterion for the experiments run here is based on the maximum number of
evaluations. We look at the solution fitness to compare the performance. For each
algorithm, the mean fitness value (x̄) and standard deviation s is given. These val-
ues are generated by the evaluation function described in Section 3.1.3; they rep-
resent a measure of distance. The p-value resulting from a students t-test is given.
This is generally calculated one-tailed, but whenever inconclusive, the test is done
two-tailed to determine significant inequality instead. Significantly better results are
displayed as bold text. The results can be found in Table 5.2.

TABLE 5.2: Fitness values from SSE and p-value from t-test compar-
ing LTGA and optLTGA with equal evaluation limit

Instance LTGA x̄ LTGA s optLTGA x̄ optLTGA s p

spheric 8.82E+05 2.32E+05 7.57E+05 1.61E+05 <0.001
structured 3.53E+06 4.73E+05 3.50E+06 5.97E+05 0.69
unbalanced 2.93E+05 6.20E+04 2.39E+05 6.10E+04 <0.001
iris 7.90E+01 1.32E-01 7.89E+01 9.74E-14 <0.001
wine 2.40E+06 3.96E+04 2.37E+06 5.62E-09 <0.001
studenteval 1.88E+05 5.89E+03 1.77E+05 5.13E-10 <0.001
ecoli 1.46E+01 5.05E-01 1.41E+01 4.48E-01 <0.001
diabetes 5.24E+06 2.48E+03 5.14E+06 1.03E-08 <0.001
banknote 4.45E+04 6.87E+01 4.40E+04 5.85E-11 <0.001
cardio-3 5.13E+06 1.53E+04 5.11E+06 8.17E+03 <0.001
cardio-10 2.78E+06 4.19E+04 2.64E+06 3.83E+04 <0.001
german-2 9.58E+11 1.33E+11 6.03E+11 7.36E-04 <0.001
german-3 3.75E+11 1.45E+09 3.64E+11 4.91E-04 <0.001
german-4 3.01E+11 2.66E+10 1.04E+11 1.53E-05 <0.001
german-5 2.30E+11 3.98E+10 5.98E+10 9.20E-05 <0.001
german-6 1.65E+11 5.05E+10 4.58E+10 6.13E-05 <0.001
german-7 1.29E+11 6.17E+10 3.72E+10 6.90E-05 <0.001
german-8 8.75E+10 5.99E+10 3.48E+10 1.07E+09 <0.001
german-9 6.40E+10 5.22E+10 3.04E+10 7.31E+08 <0.001
german-10 5.29E+10 4.29E+10 2.91E+10 3.94E+07 <0.001

As becomes clear from the results, optLTGA dominates LTGA for every instance but
the structured instance.
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5.1.4 GPX with equal time limit

In this section, we compare the GPX and the optGPX algorithms. The termination
criterion for the experiments run here is based on the maximum number of mil-
liseconds. We look at the solution fitness to compare the performance. For each
algorithm, the mean fitness value (x̄) and standard deviation s is given. These val-
ues are generated by the evaluation function described in Section 3.1.3; they rep-
resent a measure of distance. The p-value resulting from a students t-test is given.
This is generally calculated one-tailed, but whenever inconclusive, the test is done
two-tailed to determine significant inequality instead. Significantly better results are
displayed as bold text. The results can be found in Table 5.3.

TABLE 5.3: Fitness values from SSE and p-value from t-test compar-
ing GPX and optGPX with equal time limit

Instance GPX x̄ GPX s optGPX x̄ optGPX s p

spheric 2.05E+06 2.47E+05 6.90E+05 7.00E+04 <0.001
structured 3.56E+06 7.95E+04 3.42E+06 3.28E-09 <0.001
unbalanced 6.35E+05 4.45E+04 2.04E+05 4.76E+04 <0.001
iris 9.42E+01 3.33E+00 7.89E+01 1.00E-13 <0.001
wine 3.08E+06 1.36E+05 2.37E+06 5.62E-09 <0.001
studenteval 1.94E+05 1.04E+03 1.78E+05 2.49E+03 <0.001
ecoli 1.81E+01 6.20E-01 1.42E+01 3.71E-01 <0.001
diabetes 5.50E+06 1.66E+04 5.14E+06 8.42E-09 <0.001
banknote 4.49E+04 4.40E+01 4.40E+04 2.19E-11 <0.001
cardio-3 5.38E+06 4.01E+04 5.09E+06 2.67E+04 <0.001
cardio-10 4.14E+06 1.40E+05 2.63E+06 3.74E+04 <0.001
german-2 1.54E+12 7.11E+10 6.03E+11 7.36E-04 <0.001
german-3 1.22E+12 9.33E+10 3.64E+11 4.91E-04 <0.001
german-4 9.55E+11 1.39E+11 1.04E+11 1.53E-05 <0.001
german-5 7.26E+11 1.87E+11 5.98E+10 9.20E-05 <0.001
german-6 7.79E+11 1.59E+11 4.58E+10 6.13E-05 <0.001
german-7 5.96E+11 1.77E+11 3.72E+10 6.90E-05 <0.001
german-8 4.60E+11 1.62E+11 3.46E+10 1.22E+09 <0.001
german-9 3.11E+11 7.13E+10 3.03E+10 3.77E+08 <0.001
german-10 2.77E+11 9.47E+10 2.91E+10 4.17E+07 <0.001

As becomes clear from the results, optGPX dominates GPX for every instance.
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5.1.5 LTGA with equal time limit

In this section, we compare the LTGA and the optLTGA algorithms. The termina-
tion criterion for the experiments run here is based on the maximum number of
milliseconds. We look at the solution fitness to compare the performance. For each
algorithm, the mean fitness value (x̄) and standard deviation s is given. These val-
ues are generated by the evaluation function described in Section 3.1.3; they rep-
resent a measure of distance. The p-value resulting from a students t-test is given.
This is generally calculated one-tailed, but whenever inconclusive, the test is done
two-tailed to determine significant inequality instead. Significantly better results are
displayed as bold text. The results can be found in Table 5.2.

TABLE 5.4: Fitness values from SSE and p-value from t-test compar-
ing LTGA and optLTGA with equal time limit

Instance LTGA x̄ LTGA s optLTGA x̄ optLTGA s p

spheric 2.63E+06 5.07E+05 7.37E+05 1.35E+05 <0.001
structured 4.63E+06 1.50E+06 3.55E+06 7.28E+05 <0.001
unbalanced 6.95E+05 6.51E+04 2.40E+05 6.76E+04 <0.001
iris 1.01E+02 7.93E+00 7.89E+01 9.05E-14 <0.001
wine 3.23E+06 2.39E+05 2.37E+06 5.62E-09 <0.001
studenteval 1.99E+05 2.38E+03 1.77E+05 4.78E-10 <0.001
ecoli 1.78E+01 8.92E-01 1.41E+01 3.58E-01 <0.001
diabetes 5.55E+06 1.98E+04 5.14E+06 1.03E-08 <0.001
banknote 4.50E+04 7.32E+02 4.40E+04 5.85E-11 <0.001
cardio-3 5.51E+06 7.56E+04 5.11E+06 8.17E+03 <0.001
cardio-10 4.04E+06 1.26E+05 2.64E+06 3.97E+04 <0.001
german-2 1.59E+12 8.14E+09 6.18E+11 1.57E+11 <0.001
german-3 1.38E+12 1.42E+11 3.64E+11 4.91E-04 <0.001
german-4 1.07E+12 2.83E+11 1.04E+11 1.53E-05 <0.001
german-5 8.27E+11 3.09E+11 5.98E+10 9.20E-05 <0.001
german-6 6.00E+11 3.08E+11 4.58E+10 7.69E+07 <0.001
german-7 4.65E+11 2.08E+11 3.72E+10 6.90E-05 <0.001
german-8 3.86E+11 1.19E+11 3.48E+10 1.04E+09 <0.001
german-9 3.62E+11 1.28E+11 3.05E+10 7.33E+08 <0.001
german-10 3.25E+11 8.99E+10 2.91E+10 6.84E+07 <0.001

As becomes clear from the results, optLTGA dominates LTGA for every instance.
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5.2 Algorithms

In this section, we will look at how the different algorithm approaches, discussed in
Section 3.2, Section 3.3, and Section 3.4 perform. We expect the LTGA and optLTGA
to learn structure and use this to outperform GPX and optGPX, respectively. We
expect GPX and optGPX to greedily make use of the selection of the fittest clusters
to outperform MLS, which makes no use of problem structure or learned models at
all. The next sections describe the found results.

5.2.1 GPX and LTGA with equal evaluation limit

In this section, we compare the GPX and the LTGA algorithms and the optGPX and
the optLTGA algorithms. The termination criterion for the experiments run here is
based on the maximum number of evaluations. We look at the solution fitness to
compare the performance. For each algorithm, the mean fitness value (x̄) and stan-
dard deviation s is given. These values are generated by the evaluation function de-
scribed in Section 3.1.3; they represent a measure of distance. The p-value resulting
from a students t-test is given. This is generally calculated one-tailed, but whenever
inconclusive, the test is done two-tailed to determine significant inequality instead.
Significantly better results are displayed as bold text. The results can be found in
Table 5.5 and Table 5.6.
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TABLE 5.5: Fitness values from SSE and p-value from t-test compar-
ing GPX and LTGA with equal evaluation limit

Instance GPX x̄ GPX s LTGA x̄ LTGA s p

spheric 1.86E+06 2.06E+05 8.82E+05 2.32E+05 <0.001
structured 3.54E+06 6.76E+04 3.53E+06 4.73E+05 0.81
unbalanced 6.35E+05 3.61E+04 2.93E+05 6.20E+04 <0.001
iris 9.25E+01 2.46E+00 7.90E+01 1.32E-01 <0.001
wine 3.08E+06 1.15E+05 2.40E+06 3.96E+04 <0.001
studenteval 1.93E+05 1.15E+03 1.88E+05 5.89E+03 0.0203
ecoli 1.76E+01 5.69E-01 1.46E+01 5.05E-01 <0.001
diabetes 5.50E+06 1.72E+04 5.24E+06 2.48E+03 <0.001
banknote 4.49E+04 4.00E+01 4.45E+04 6.87E+01 <0.001
cardio-3 5.38E+06 4.79E+04 5.13E+06 1.53E+04 <0.001
cardio-10 4.07E+06 1.33E+05 2.78E+06 4.19E+04 <0.001
german-2 1.54E+12 3.28E+10 9.58E+11 1.33E+11 <0.001
german-3 1.22E+12 7.93E+10 3.75E+11 1.45E+09 <0.001
german-4 9.40E+11 1.54E+11 3.01E+11 2.66E+10 <0.001
german-5 7.52E+11 1.84E+11 2.30E+11 3.98E+10 <0.001
german-6 5.94E+11 1.74E+11 1.65E+11 5.05E+10 <0.001
german-7 4.30E+11 1.36E+11 1.29E+11 6.17E+10 <0.001
german-8 3.68E+11 1.20E+11 8.75E+10 5.99E+10 <0.001
german-9 3.07E+11 8.53E+10 6.40E+10 5.22E+10 <0.001
german-10 2.67E+11 7.93E+10 5.29E+10 4.29E+10 <0.001

As becomes clear from the results, LTGA dominates GPX for every instance but the
structured instance.
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TABLE 5.6: Fitness values from SSE and p-value from t-test compar-
ing optGPX and optLTGA with equal evaluation limit

Instance optGPX x̄ optGPX s optLTGA x̄ optLTGA s p

spheric 6.85E+05 5.73E+04 7.57E+05 1.61E+05 <0.001
structured 3.42E+06 3.28E-09 3.50E+06 5.97E+05 0.16
unbalanced 2.07E+05 5.25E+04 2.39E+05 6.10E+04 <0.001
iris 7.89E+01 1.00E-13 7.89E+01 9.74E-14 1.00
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1.00
studenteval 1.77E+05 3.07E-11 1.77E+05 5.13E-10 <0.001
ecoli 1.42E+01 3.59E-01 1.41E+01 4.48E-01 0.36
diabetes 5.14E+06 8.42E-09 5.14E+06 1.03E-08 <0.001
banknote 4.40E+04 2.19E-11 4.40E+04 5.85E-11 1.00
cardio-3 5.10E+06 2.53E+04 5.11E+06 8.17E+03 <0.001
cardio-10 2.63E+06 3.61E+04 2.64E+06 3.83E+04 0.13
german-2 6.03E+11 7.36E-04 6.03E+11 7.36E-04 1.00
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1.00
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1.00
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1.00
german-6 4.58E+10 6.13E-05 4.58E+10 6.13E-05 1.00
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1.00
german-8 3.47E+10 1.20E+09 3.48E+10 1.07E+09 0.36
german-9 3.03E+10 3.77E+08 3.04E+10 7.31E+08 0.21
german-10 2.91E+10 4.19E+07 2.91E+10 3.94E+07 0.00511

Between optGPX and optLTGA, there is no clearly better performing algorithm.
The optGPX algorithm seems to perform slightly better with 4 instances having sig-
nificantly better results than optLTGA, versus 2 instances having better results for
optLTGA. However, most instances show no statistical difference between the two
approaches.
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5.2.2 MLS with equal evaluation limit

In this section, we compare the optGPX and the optLTGA algorithms with the MLS
algorithm. The termination criterion for the experiments run here is based on the
maximum number of evaluations. We look at the solution fitness to compare the per-
formance. For each algorithm, the mean fitness value (x̄) and standard deviation s

is given. These values are generated by the evaluation function described in Section
3.1.3; they represent a measure of distance. The p-value resulting from a students
t-test is given. This is generally calculated one-tailed, but whenever inconclusive,
the test is done two-tailed to determine significant inequality instead. Significantly
better results are displayed as bold text. The results can be found in Table 5.7 and
Table 5.8.

TABLE 5.7: Fitness values from SSE and p-value from t-test compar-
ing optGPX and MLS with equal evaluation limit

Instance optGPX x̄ optGPX s MLS x̄ MLS s p

spheric 6.85E+05 5.73E+04 6.73E+05 4.39E+04 0.04
structured 3.42E+06 3.28E-09 3.42E+06 3.28E-09 1.00
unbalanced 2.07E+05 5.25E+04 1.90E+05 4.14E+04 0.00598
iris 7.89E+01 1.00E-13 7.89E+01 1.00E-13 1.00
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1.00
studenteval 1.77E+05 3.07E-11 1.77E+05 3.07E-11 1.00
ecoli 1.42E+01 3.59E-01 1.40E+01 2.96E-01 <0.001
diabetes 5.14E+06 8.42E-09 5.14E+06 8.42E-09 1.00
banknote 4.40E+04 2.19E-11 4.40E+04 2.19E-11 1.00
cardio-3 5.10E+06 2.53E+04 5.09E+06 2.65E+04 0.53
cardio-10 2.63E+06 3.61E+04 2.62E+06 3.37E+04 0.0165
german-2 6.03E+11 7.36E-04 6.03E+11 7.36E-04 1.00
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1.00
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1.00
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1.00
german-6 4.58E+10 6.13E-05 4.58E+10 6.13E-05 1.00
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1.00
german-8 3.47E+10 1.20E+09 3.42E+10 1.42E+09 0.0124
german-9 3.03E+10 3.77E+08 3.03E+10 3.71E+08 0.90
german-10 2.91E+10 4.19E+07 2.91E+10 3.95E+07 0.0149

We can see that the MLS algorithm performs significantly better in 6 of the instances.
For most instances however, there is no statistical difference between optGPX and
MLS. The optGPX algorithm never performs significantly better than the MLS algo-
rithm.
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TABLE 5.8: Fitness values from SSE and p-value from t-test compar-
ing optLTGA and MLS with equal evaluation limit

Instance optLTGA x̄ optLTGA s MLS x̄ MLS s p

spheric 7.57E+05 1.61E+05 6.73E+05 4.39E+04 <0.001
structured 3.50E+06 5.97E+05 3.42E+06 3.28E-09 0.16
unbalanced 2.39E+05 6.10E+04 1.90E+05 4.14E+04 <0.001
iris 7.89E+01 9.74E-14 7.89E+01 1.00E-13 1.00
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1.00
studenteval 1.77E+05 5.13E-10 1.77E+05 3.07E-11 <0.001
ecoli 1.41E+01 4.48E-01 1.40E+01 2.96E-01 0.0415
diabetes 5.14E+06 1.03E-08 5.14E+06 8.42E-09 <0.001
banknote 4.40E+04 5.85E-11 4.40E+04 2.19E-11 1.00
cardio-3 5.11E+06 8.17E+03 5.09E+06 2.65E+04 <0.001
cardio-10 2.64E+06 3.83E+04 2.62E+06 3.37E+04 <0.001
german-2 6.03E+11 7.36E-04 6.03E+11 7.36E-04 1.00
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1.00
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1.00
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1.00
german-6 4.58E+10 6.13E-05 4.58E+10 6.13E-05 1.00
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1.00
german-8 3.48E+10 1.07E+09 3.42E+10 1.42E+09 <0.001
german-9 3.04E+10 7.31E+08 3.03E+10 3.71E+08 0.18
german-10 2.91E+10 3.94E+07 2.91E+10 3.95E+07 <0.001

We can see that the MLS algorithm performs significantly better in 7 of the instances.
The optLTGA algorithm performs significantly better than the MLS algorithm in 2
instances. For about half of the instances however, there is no statistical difference
between the algorithms.
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5.2.3 GPX and LTGA with equal time limit

In this section, we compare the GPX and the LTGA algorithms and the optGPX and
the optLTGA algorithms. The termination criterion for the experiments run here
is based on the maximum number of milliseconds. We look at the solution fitness
to compare the performance. For each algorithm, the mean fitness value (x̄) and
standard deviation s is given. These values are generated by the evaluation func-
tion described in Section 3.1.3; they represent a measure of distance. The p-value
resulting from a students t-test is given. This is generally calculated one-tailed, but
whenever inconclusive, the test is done two-tailed to determine significant inequal-
ity instead. Significantly better results are displayed as bold text. The results can be
found in Table 5.9 and Table 5.10.

TABLE 5.9: Fitness values from SSE and p-value from t-test compar-
ing GPX and LTGA with equal time limit

Instance GPX x̄ GPX s LTGA x̄ LTGA s p

spheric 2.05E+06 2.47E+05 2.63E+06 5.07E+05 <0.001
structured 3.56E+06 7.95E+04 4.63E+06 1.50E+06 <0.001
unbalanced 6.35E+05 4.45E+04 6.95E+05 6.51E+04 <0.001
iris 9.42E+01 3.33E+00 1.01E+02 7.93E+00 <0.001
wine 3.08E+06 1.36E+05 3.23E+06 2.39E+05 <0.001
studenteval 1.94E+05 1.04E+03 1.99E+05 2.38E+03 <0.001
ecoli 1.81E+01 6.20E-01 1.78E+01 8.92E-01 0.00233
diabetes 5.50E+06 1.66E+04 5.55E+06 1.98E+04 <0.001
banknote 4.49E+04 4.40E+01 4.50E+04 7.32E+02 0.32
cardio-3 5.38E+06 4.01E+04 5.51E+06 7.56E+04 <0.001
cardio-10 4.14E+06 1.40E+05 4.04E+06 1.26E+05 <0.001
german-2 1.54E+12 7.11E+10 1.59E+12 8.14E+09 <0.001
german-3 1.22E+12 9.33E+10 1.38E+12 1.42E+11 <0.001
german-4 9.55E+11 1.39E+11 1.07E+12 2.83E+11 <0.001
german-5 7.26E+11 1.87E+11 8.27E+11 3.09E+11 0.00291
german-6 7.79E+11 1.59E+11 6.00E+11 3.08E+11 <0.001
german-7 5.96E+11 1.77E+11 4.65E+11 2.08E+11 <0.001
german-8 4.60E+11 1.62E+11 3.86E+11 1.19E+11 <0.001
german-9 3.11E+11 7.13E+10 3.62E+11 1.28E+11 <0.001
german-10 2.77E+11 9.47E+10 3.25E+11 8.99E+10 <0.001

We can see that the GPX algorithm performs significantly better in 14 of the in-
stances. The LTGA algorithm performs significantly better than the GPX algorithm
in 5 instances. For one instance there is no statistical difference between the algo-
rithms.
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TABLE 5.10: Fitness values from SSE and p-value from t-test compar-
ing optGPX and optLTGA with equal time limit

Instance optGPX x̄ optGPX s optLTGA x̄ optLTGA s p

spheric 6.90E+05 7.00E+04 7.37E+05 1.35E+05 0.00116
structured 3.42E+06 3.28E-09 3.55E+06 7.28E+05 0.0416
unbalanced 2.04E+05 4.76E+04 2.40E+05 6.76E+04 <0.001
iris 7.89E+01 1.00E-13 7.89E+01 9.05E-14 1
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1
studenteval 1.78E+05 2.49E+03 1.77E+05 4.78E-10 0.00104
ecoli 1.42E+01 3.71E-01 1.41E+01 3.58E-01 0.0105
diabetes 5.14E+06 8.42E-09 5.14E+06 1.03E-08 <0.001
banknote 4.40E+04 2.19E-11 4.40E+04 5.85E-11 1
cardio-3 5.09E+06 2.67E+04 5.11E+06 8.17E+03 <0.001
cardio-10 2.63E+06 3.74E+04 2.64E+06 3.97E+04 0.0369
german-2 6.03E+11 7.36E-04 6.18E+11 1.57E+11 0.32
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1
german-6 4.58E+10 6.13E-05 4.58E+10 7.69E+07 0.32
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1
german-8 3.46E+10 1.22E+09 3.48E+10 1.04E+09 0.19
german-9 3.03E+10 3.77E+08 3.05E+10 7.33E+08 0.18
german-10 2.91E+10 4.17E+07 2.91E+10 6.84E+07 0.0312

We can see that the optGPX algorithm performs significantly better in 6 of the in-
stances. The LTGA algorithm performs significantly better than the GPX algorithm
in 3 instances. For the remaining 11 instances, there is no statistical difference be-
tween the algorithms.
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5.2.4 MLS with equal time limit

In this section, we compare the optGPX and the optLTGA algorithms with the MLS
algorithm. The termination criterion for the experiments run here is based on the
maximum number of milliseconds. We look at the solution fitness to compare the
performance. For each algorithm, the mean fitness value (x̄) and standard devia-
tion s is given. These values are generated by the evaluation function described
in Section 3.1.3; they represent a measure of distance. The p-value resulting from
a students t-test is given. This is generally calculated one-tailed, but whenever in-
conclusive, the test is done two-tailed to determine significant inequality instead.
Significantly better results are displayed as bold text. The results can be found in
Table 5.11 and Table 5.12.

TABLE 5.11: Fitness values from SSE and p-value from t-test compar-
ing optGPX and MLS with equal time limit

Instance optGPX x̄ optGPX s MLS x̄ MLS s p

spheric 6.90E+05 7.00E+04 6.69E+05 2.05E+04 <0.001
structured 3.42E+06 3.28E-09 3.42E+06 3.28E-09 1
unbalanced 2.04E+05 4.76E+04 1.92E+05 4.93E+04 0.0324
iris 7.89E+01 1.00E-13 7.89E+01 1.00E-13 1
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1
studenteval 1.78E+05 2.49E+03 1.77E+05 3.07E-11 0.34
ecoli 1.42E+01 3.71E-01 1.41E+01 3.18E-01 0.00887
diabetes 5.14E+06 8.42E-09 5.14E+06 8.42E-09 1
banknote 4.40E+04 2.19E-11 4.40E+04 2.19E-11 1
cardio-3 5.09E+06 2.67E+04 5.09E+06 2.70E+04 0.88
cardio-10 2.63E+06 3.74E+04 2.62E+06 3.12E+04 <0.001
german-2 6.03E+11 7.36E-04 6.03E+11 7.36E-04 1
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1
german-6 4.58E+10 6.13E-05 4.58E+10 6.13E-05 1
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1
german-8 3.46E+10 1.22E+09 3.44E+10 1.36E+09 0.19
german-9 3.03E+10 3.77E+08 3.03E+10 7.67E-06 0.25
german-10 2.91E+10 4.17E+07 2.91E+10 3.94E+07 0.00105

We can see that the MLS algorithm performs significantly better in 5 of the instances.
The optGPX algorithm does not perform significantly better for any instance. For the
remaining 15 instances, there is no statistical difference between the algorithms.
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TABLE 5.12: Fitness values from SSE and p-value from t-test compar-
ing optLTGA and MLS with equal time limit

Instance optLTGA x̄ optLTGA s MLS x̄ MLS s p

spheric 7.37E+05 1.35E+05 6.69E+05 2.05E+04 <0.001
structured 3.55E+06 7.28E+05 3.42E+06 3.28E-09 0.0416
unbalanced 2.40E+05 6.76E+04 1.92E+05 4.93E+04 <0.001
iris 7.89E+01 9.05E-14 7.89E+01 1.00E-13 1
wine 2.37E+06 5.62E-09 2.37E+06 5.62E-09 1
studenteval 1.77E+05 4.78E-10 1.77E+05 3.07E-11 <0.001
ecoli 1.41E+01 3.58E-01 1.41E+01 3.18E-01 0.95
diabetes 5.14E+06 1.03E-08 5.14E+06 8.42E-09 <0.001
banknote 4.40E+04 5.85E-11 4.40E+04 2.19E-11 1
cardio-3 5.11E+06 8.17E+03 5.09E+06 2.70E+04 <0.001
cardio-10 2.64E+06 3.97E+04 2.62E+06 3.12E+04 <0.001
german-2 6.18E+11 1.57E+11 6.03E+11 7.36E-04 0.32
german-3 3.64E+11 4.91E-04 3.64E+11 4.91E-04 1
german-4 1.04E+11 1.53E-05 1.04E+11 1.53E-05 1
german-5 5.98E+10 9.20E-05 5.98E+10 9.20E-05 1
german-6 4.58E+10 7.69E+07 4.58E+10 6.13E-05 0.32
german-7 3.72E+10 6.90E-05 3.72E+10 6.90E-05 1
german-8 3.48E+10 1.04E+09 3.44E+10 1.36E+09 0.00462
german-9 3.05E+10 7.33E+08 3.03E+10 7.67E-06 0.0182
german-10 2.91E+10 6.84E+07 2.91E+10 3.94E+07 <0.001

We can see that the MLS algorithm performs significantly better in 8 of the instances.
The optGPX algorithm performs significantly better for 2 instances. For the remain-
ing 10 instances, there is no statistical difference between the algorithms.
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5.3 Extended Time Limit

In this section, we look at the same algorithms but give them more time to run.
The time limits are multiplied by 20 for all non-german instances. The studenteval
instance is not studied here as the run time became too long to run a decent number
of experiments for. The time limits are multiplied by 100 for the german instances.
To balance the increased time limit, every instance was only ran 20 times.

We compare the optGPX, optLTGA, and the MLS algorithms. The termination crite-
rion for the experiments run here is based on the maximum number of milliseconds.
We look at the solution fitness to compare the performance. For each algorithm, the
mean fitness value (x̄) and standard deviation s is given. These values are gener-
ated by the evaluation function described in Section 3.1.3; they represent a measure
of distance. The p-value resulting from a students t-test is given. This is generally
calculated one-tailed, but whenever inconclusive, the test is done two-tailed to de-
termine significant inequality instead. Significantly better results are displayed as
bold text. The results can be found in Table 5.13, Table 5.14 and Table 5.15.

TABLE 5.13: Fitness values from SSE and p-value from t-test compar-
ing optGPX and optLTGA with equal extended time limit

Instance optGPX x̄ optGPX s optLTGA x̄ optLTGA s p

spheric 6.58E+05 1.19E-10 7.81E+05 1.83E+05 0.0035
structured 3.42E+06 1.43E-09 3.42E+06 1.43E-09 1
unbalanced 1.48E+05 0.00E+00 2.18E+05 5.89E+04 <0.001
iris 7.89E+01 4.37E-14 7.89E+01 4.37E-14 1
wine 2.37E+06 4.78E-10 2.37E+06 4.78E-10 1
ecoli 1.39E+01 1.74E-02 1.42E+01 4.69E-01 0.00504
diabetes 5.14E+06 1.91E-09 5.14E+06 1.91E-09 1
banknote 4.40E+04 0.00E+00 4.40E+04 7.46E-12 1
cardio-3 5.05E+06 9.56E-10 5.11E+06 1.30E+04 <0.001
cardio-10 2.60E+06 1.37E+04 2.63E+06 3.58E+04 <0.001
german-2 6.03E+11 1.25E-04 6.03E+11 1.25E-04 1
german-3 3.64E+11 6.26E-05 3.64E+11 6.26E-05 1
german-4 1.04E+11 3.13E-05 1.04E+11 3.13E-05 1
german-5 5.98E+10 2.35E-05 5.98E+10 2.35E-05 1
german-6 4.58E+10 1.57E-05 4.58E+10 1.57E-05 1
german-7 3.72E+10 1.57E-05 3.72E+10 1.57E-05 1
german-8 3.23E+10 0.00E+00 3.32E+10 1.40E+09 <0.001
german-9 3.03E+10 3.91E-06 3.03E+10 3.91E-06 1
german-10 2.91E+10 0.00E+00 2.91E+10 3.45E+07 <0.001

We can see that the optGPX algorithm performs significantly better in 7 of the in-
stances. The optLTGA algorithm does not perform significantly better for any of the
instances. For the remaining 12 instances, there is no statistical difference between
the algorithms.
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TABLE 5.14: Fitness values from SSE and p-value from t-test compar-
ing optGPX and MLS with equal extended time limit

Instance optGPX x̄ optGPX s MLS x̄ MLS s p

spheric 6.58E+05 1.19E-10 6.58E+05 1.19E-10 1
structured 3.42E+06 1.43E-09 3.42E+06 1.43E-09 1
unbalanced 1.48E+05 0.00E+00 1.48E+05 0.00E+00 1
iris 7.89E+01 4.37E-14 7.89E+01 4.37E-14 1
wine 2.37E+06 4.78E-10 2.37E+06 4.78E-10 1
ecoli 1.39E+01 1.74E-02 1.39E+01 1.17E-02 0.34
diabetes 5.14E+06 1.91E-09 5.14E+06 1.91E-09 1
banknote 4.40E+04 0.00E+00 4.40E+04 0.00E+00 1
cardio-3 5.05E+06 9.56E-10 5.06E+06 1.79E+04 0.16
cardio-10 2.60E+06 1.37E+04 2.59E+06 1.58E+03 0.14
german-2 6.03E+11 1.25E-04 6.03E+11 1.25E-04 1
german-3 3.64E+11 6.26E-05 3.64E+11 6.26E-05 1
german-4 1.04E+11 3.13E-05 1.04E+11 3.13E-05 1
german-5 5.98E+10 2.35E-05 5.98E+10 2.35E-05 1
german-6 4.58E+10 1.57E-05 4.58E+10 1.57E-05 1
german-7 3.72E+10 1.57E-05 3.72E+10 1.57E-05 1
german-8 3.23E+10 0.00E+00 3.23E+10 0.00E+00 1
german-9 3.03E+10 3.91E-06 3.03E+10 3.91E-06 1
german-10 2.91E+10 0.00E+00 2.91E+10 0.00E+00 1

We can see that the MLS and optGPX algorithms do not have a significant difference
in performance between them.
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TABLE 5.15: Fitness values from SSE and p-value from t-test compar-
ing optLTGA and MLS with equal extended time limit

Instance optLTGA x̄ optLTGA s MLS x̄ MLS s p

spheric 7.81E+05 1.83E+05 6.58E+05 1.19E-10 0.0035
structured 3.42E+06 1.43E-09 3.42E+06 1.43E-09 1
unbalanced 2.18E+05 5.89E+04 1.48E+05 0.00E+00 <0.001
iris 7.89E+01 4.37E-14 7.89E+01 4.37E-14 1
wine 2.37E+06 4.78E-10 2.37E+06 4.78E-10 1
ecoli 1.42E+01 4.69E-01 1.39E+01 1.17E-02 0.00548
diabetes 5.14E+06 1.91E-09 5.14E+06 1.91E-09 1
banknote 4.40E+04 7.46E-12 4.40E+04 0.00E+00 1
cardio-3 5.11E+06 1.30E+04 5.06E+06 1.79E+04 <0.001
cardio-10 2.63E+06 3.58E+04 2.59E+06 1.58E+03 <0.001
german-2 6.03E+11 1.25E-04 6.03E+11 1.25E-04 1
german-3 3.64E+11 6.26E-05 3.64E+11 6.26E-05 1
german-4 1.04E+11 3.13E-05 1.04E+11 3.13E-05 1
german-5 5.98E+10 2.35E-05 5.98E+10 2.35E-05 1
german-6 4.58E+10 1.57E-05 4.58E+10 1.57E-05 1
german-7 3.72E+10 1.57E-05 3.72E+10 1.57E-05 1
german-8 3.32E+10 1.40E+09 3.23E+10 0.00E+00 <0.001
german-9 3.03E+10 3.91E-06 3.03E+10 3.91E-06 1
german-10 2.91E+10 3.45E+07 2.91E+10 0.00E+00 <0.001

We can see that the MLS algorithm performs significantly better in 7 of the instances.
The optLTGA algorithm does not perform significantly better for any of the in-
stances. For the remaining 12 instances, there is no statistical difference between
the algorithms.
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5.4 Rand Index

In Sections 5.1, 5.2 and 5.3, we looked at the fitness value as used internally by the al-
gorithms. While this indicates how well the different algorithms optimize the fitness
value (through the internal, unsupervised measure), it does not regard how good the
found solutions are compared to the clustering that was aimed for. Therefore, we
now look at the Rand Index (an external, supervised measure) for every algorithm
and every non-german-_ instance. We do not look at the german-_ instances for this
because we do not have a known perfect solution for all german-_ instances and thus
could not calculate the Rand Index for these instances.

TABLE 5.16: Rand Indices for all approaches for all non-german-_ in-
stances for the equal evaluation limit experiments

Instance LS GPX LTGA optGPX optLTGA MLS
spheric 0.9608 0.8962 0.9510 0.9706 0.9647 0.9744
structured 0.9226 0.9028 0.9190 0.9313 0.9270 0.9313
unbalanced 0.9692 0.8659 0.9509 0.9793 0.9692 0.9848
iris 0.8805 0.8386 0.8810 0.8805 0.8805 0.8805
wine 0.7202 0.7312 0.7232 0.7202 0.7202 0.7202
studenteval 0.5126 0.5152 0.5126 0.5126 0.5126 0.5126
ecoli 0.8036 0.8270 0.8332 0.8057 0.8176 0.8083
diabetes 0.5513 0.5264 0.5465 0.5513 0.5513 0.5513
banknote 0.5252 0.5171 0.5182 0.5252 0.5252 0.5252
cardio-3 0.4773 0.4621 0.4721 0.6427 0.4753 0.4813
cardio-10 0.7886 0.7389 0.7939 0.7875 0.7877 0.7871

The Rand Indices are shown in Table 5.16. The values here are from the equal eval-
uation limit experiments, but are comparable for the other experiments. We also
show the fitness values for all non-german-_ instances for the equal evaluation limit
experiments in Table 5.17.

TABLE 5.17: Fitness values from SSE for all approaches for all non-
german-_ instances for the equal evaluation limit experiments

Instance LS GPX LTGA optGPX optLTGA MLS
spheric 7.77E+05 1.86E+06 8.82E+05 6.85E+05 7.57E+05 6.73E+05
structured 3.59E+06 3.54E+06 3.53E+06 3.42E+06 3.50E+06 3.42E+06
unbalanced 2.43E+05 6.35E+05 2.93E+05 2.07E+05 2.39E+05 1.90E+05
iris 7.89E+01 9.25E+01 7.90E+01 7.89E+01 7.89E+01 7.89E+01
wine 2.37E+06 3.08E+06 2.40E+06 2.37E+06 2.37E+06 2.37E+06
studenteval 1.77E+05 1.93E+05 1.88E+05 1.77E+05 1.77E+05 1.77E+05
ecoli 1.46E+01 1.76E+01 1.46E+01 1.42E+01 1.41E+01 1.40E+01
diabetes 5.14E+06 5.50E+06 5.24E+06 5.14E+06 5.14E+06 5.14E+06
banknote 4.40E+04 4.49E+04 4.45E+04 4.40E+04 4.40E+04 4.40E+04
cardio-3 5.10E+06 5.38E+06 5.13E+06 5.10E+06 5.11E+06 5.09E+06
cardio-10 2.65E+06 4.07E+06 2.78E+06 2.63E+06 2.64E+06 2.62E+06

Looking at Table 5.16, we can see that for the spheric, structured, unbalanced, and iris
instances, the Rand Index is near or above 0.9, which means that the found solu-
tions are much alike to the perfect solutions. On the other hand, we also see that
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studenteval, diabetes, banknote, and cardio-3 have a Rand Index around 0.5. This indi-
cates that the found solutions and the perfect, known solutions only agree on cluster
membership for about half of the elements.

0.8 0.85 0.9 0.95

0

0.5

1

1.5

·107

Rand Index

fit
ne

ss

spheric

0.5 0.6 0.7 0.8 0.9

0.5

1

1.5

·107

Rand Index

fit
ne

ss

structured

0.8 0.85 0.9 0.95 1

0

2

4

6
·106

Rand Index

fit
ne

ss

unbalanced

0.6 0.7 0.8 0.9

200

400

600

Rand Index

fit
ne

ss

iris

0.55 0.6 0.65 0.7 0.75

0.5

1

1.5

·107

Rand Index

fit
ne

ss

wine

0.51 0.51 0.51 0.52 0.52

2

2.5

3

3.5

·105

Rand Index

fit
ne

ss

studenteval

0.7 0.75 0.8

20

30

40

50

60

Rand Index

fit
ne

ss

ecoli

0.5 0.51 0.52 0.53 0.54 0.55

0.6

0.8

1

1.2
·107

Rand Index

fit
ne

ss

diabetes

0.5 0.51 0.51 0.52 0.52 0.53
4

5

6

7

8

9

·104

Rand Index

fit
ne

ss

banknote

0.46 0.46 0.47 0.47 0.48

0.6

0.8

1

·107

Rand Index

fit
ne

ss

cardio-3

0.72 0.74 0.76 0.78 0.8
0.2

0.4

0.6

0.8

1

·107

Rand Index

fit
ne

ss

cardio-10

FIGURE 5.2: Correlation plots for all non-german_ instances with 150-
250 data points per plot

In the plots shown in Figure 5.2 and the correlation coefficients shown in Table 5.18,
we see how fitness and Rand Index correlate for all non-german_ instances. For about
half of the instances (spheric, structured, iris, wine, ecoli) we can see a correlation that
is roughly linear. Less so, but where one can still imagine a linear-like correlation are
the unbalanced, diabetes, and banknote instances. Completely not resembling a linear
correlation remain the studenteval, cardio-3, and cardio-10 instances.

TABLE 5.18: Correlation coefficients (r) between fitness and Rand In-
dex for all non-german_ instances and the number of involved pairs

of variables

Instance r n
spheric -0.9075 14940
structured -0.9725 4979
unbalanced -0.8768 8159
iris -0.9639 2776
wine -0.9736 1492
studenteval 0.1508 96372
diabetes -0.8887 7823
ecoli -0.9569 16747
banknote -0.9211 11499
cardio-3 -0.5988 39369
cardio-10 -0.6510 366648
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The correlation coefficients between Rand Index and fitness are presented in Table
5.18. Many of the instances show a strong negative correlation. Some instances
(structured, iris, wine, ecoli) even come close to a perfect negative correlation.

Finally, we compare our results with the results from the GGA from (Agustın-Blas
et al., 2012). We compare our best found RI values with the best presented RI values
for both GGA approaches proposed in (Agustın-Blas et al., 2012). The evaluation
functions differ: in their algorithms, the Davies-Bouldin Index (DB) and the Silhou-
ette coefficient (S) were used as internal measures. The Rand Indices are shown in
Table 5.19.

TABLE 5.19: Overview of Rand Indices between GGA approaches
and our presented approaches

Instance GGA (DB) GGA (S) GPX LTGA optGPX optLTGA MLS
spheric 0.9814 0.9578 0.9093 0.9528 0.9792 0.9647 0.9792
structured 0.9177 0.9511 0.9159 0.9259 0.9314 0.9314 0.9314
unbalanced 1.0000 0.9936 0.8820 0.9653 0.9978 0.9742 0.9978

We can see that the Rand Indices of the solutions found through our experiments are
quite close to the Rand Indices from (Agustın-Blas et al., 2012).

5.5 Memory Usage

In clustering algorithm comparison, focus lies often on quality of the produced so-
lutions given a certain run time or number of evaluations. For completeness, we
will also give some remarks about the memory usage of the studied algorithms. The
memory requirements for solving small instances mostly make it so that there is no
problem on modern machines. However, as instance size increases, different algo-
rithms scale differently in their memory usage and this may cause one algorithm to
become infeasible for larger problem instances, while another may still run fine.
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TABLE 5.20: Memory Usage for all algorithms in MB

Instance LS GPX LTGA optGPX optgomea MLS
spheric 2.36 5.19 26.16 2.88 19.76 2.37
structured 2.42 8.13 52.10 4.20 45.83 2.44
unbalanced 2.29 6.32 14.77 3.55 11.64 2.30
iris 2.30 11.42 12.77 3.82 11.18 2.30
wine 2.52 6.27 12.88 3.69 11.56 2.53
studenteval 27.38 28.33 3202.11 28.37 3199.04 27.56
ecoli 2.59 4.63 24.47 2.98 16.88 2.61
diabetes 3.24 6.48 121.88 3.85 80.31 3.26
banknote 3.42 6.54 313.64 4.04 313.46 3.46
cardio-3 8.52 8.87 436.24 8.88 436.65 8.58
cardio-10 8.53 8.91 426.57 8.96 427.45 8.59
german-2 2.23 8.03 5.76 3.20 5.19 2.23
german-3 2.25 5.71 5.75 2.84 4.71 2.25
german-4 2.25 4.31 5.13 2.62 3.96 2.25
german-5 2.25 4.47 5.10 2.48 3.95 2.25
german-6 2.25 3.57 4.64 2.49 3.94 2.25
german-7 2.25 3.66 4.63 2.51 3.92 2.25
german-8 2.25 3.75 4.63 2.53 3.63 2.25
german-9 2.25 3.84 4.62 2.42 3.62 2.25
german-10 2.25 3.19 4.26 2.43 3.61 2.26

The memory requirements for the different algorithms are shown in Table 5.20. Sta-
tistical significance is not checked, as this is only an indication for the scalability
memory-wise. As we can see, the memory requirements for LS and MLS are almost
equal. GPX and LTGA require more memory than optGPX and optLTGA, respec-
tively. The optGPX requires slightly more memory than both LS and MLS. LTGA
and optLTGA require the most memory by far.

LS and MLS save the least information, as they keep the best encountered solution,
and the investigated solution in memory. GPX and optGPX also store information
about individual cluster fitnesses. LTGA and optLTGA store most information, as a
LT has to be constructed and kept in memory.

We can see that LS, GPX, optGPX, and MLS scale up nicely with increased instance
size. However, we also see that LTGA and optLTGA grow quickly in memory re-
quirement. This makes LTGA and optLTGA infeasible much sooner than any of the
other algorithms. For the studenteval instance, more than 3 GB of memory was used.
On the system used (Table 4.5), this was not a problem yet, but much larger instances
exist for which LTGA and optLTGA could not run on non-specialized hardware.
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5.6 Experiment Summary

In this section, we will give a summary of the main experiments. The tables shown
in this section summarize the outcomes of the experiments. We show the following
data in the summary:

• Number of times the approach had significantly better results than the ap-
proach it was compared to, denoted as win

• Number of times the compared approaches had results that were not signifi-
cantly different, denoted as tie

• Number of times the approach had significantly worse results than the ap-
proach it was compared to, denoted as loss

The format of the summary in the tables is as follows:

In each column (win / tie / loss) for the approach in the column versus the ap-
proaches in the row.

Likewise, in each row: (loss / tie / win) for the approach in the row versus the ap-
proaches in the column.

Example: In Table 5.21, we see in the LTGA column and the GPX row the following
result: (19 / 1 / 0). This then means that the LTGA algorithm had significantly better
results than the GPX algorithm for 19 instances, there was no significant difference
for 1 instance, and the LTGA algorithm had significantly worse results than the GPX
algorithm for 0 instances.
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In the experiments where the number of evaluations was equal for the studied algo-
rithms, we see the following:

TABLE 5.21: Summary of experiments with equal evaluations

Algorithms GPX LTGA optGPX optLTGA MLS
GPX (19 / 1 / 0) (20 / 0 / 0)

LTGA (0 / 1 / 19) (19 / 1 / 0)
optGPX (0 / 0 / 20) (2 / 14 / 4) (6 / 14 / 0)

optLTGA (0 / 1 / 19) (4 / 14 / 2) (7 / 11 / 2)
MLS (0 / 14 / 6) (2 / 11 / 7)

In the experiments where the time limit was the same for the studied algorithms, we
see the following:

TABLE 5.22: Summary of experiments with equal time limits

Algorithms GPX LTGA optGPX optLTGA MLS
GPX (5 / 1 / 14) (20 / 0 / 0)

LTGA (14 / 1 / 5) (20 / 0 / 0)
optGPX (0 / 0 / 20) (3 / 11 / 6) (5 / 15 / 0)

optLTGA (0 / 0 / 20) (6 / 11 / 3) (8 / 10 / 2)
MLS (0 / 15 / 5) (2 / 10 / 8)

In the experiments where the time limit was increased, we see the following:

TABLE 5.23: Summary of experiments with extended equal time lim-
its

Algorithms optGPX optLTGA MLS
optGPX (0 / 12 / 7) (0 / 19 / 0)

optLTGA (7 / 12 / 0) (7 / 12 / 0)
MLS (0 / 19 / 0) (0 / 12 / 7)
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6 Conclusions

In this chapter, we will give our conclusions in Section 6.1. Furthermore, we will dis-
cuss interesting observations and give recommendations for future work in Section
6.2.

When an optimum or optima are described, this pertains a local optimum or local
optima. Such a local optimum may or may not be the global optimum, but should
this be the case, this will be stated specifically. As mentioned in 3.1.3, fitness of a
solution and the objective value of the fitness of a solution are used interchangeably.

6.1 Conclusions

Local Search Variants

Regarding the local search variants, it becomes clear that the algorithms using local
search to an optimum (Algorithm 3) outperform the algorithms using local search
iterating over all elements once (Algorithm 2).

This can be explained by the following: Both GPX and LTGA start with random so-
lutions, which most likely are not optima. Both algorithms proceed to recombine
solutions to generate a new population. This process of recombination (using the
greedy partitioning and the linkage tree approaches, respectively) is destructive for
at least some of the clusters. From Section 5.1.1 and from the numerical results, it is
clear that improving the cluster assignment of every element once after this destruc-
tive operation likely does not lead to an optimal solution. In contrast, optGPX and
optLTGA always end up with solutions that are optima. The recombination process
is as destructive as for GPX and LTGA, but in this case, it is guaranteed that the
newly created population consists of only solutions that are optima. The fitness of a
solution that is an optimum (be it local or global), will very likely be better than the
fitness of a solution that is not. Thus, recombination for optGPX and optLTGA starts
with fitter solutions with fitter individual clusters and also generates offspring that
will be improved to an optimum again.

The fitness of optGPX and optLTGA solutions is higher for GPX and LTGA solutions
when looking at it from a point of optima. However, this higher fitness comes at the
cost of more evaluations and thus more time required. This gives GPX and LTGA
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more opportunity to learn good clusters than optGPX and optLTGA. As the results
show however, the higher fitness given by the local search to an optimum outweighs
the cost of evaluations and time that could be spent on learning or utilizing cluster
structure. We can thus conclude that, for the algorithms considered, using the local
search which only stops when an optimum was found is more effective than its
counterpart which only improves each element at most once.

GPX and LTGA

Regarding the difference in GPX and the LTGA approaches, we see that when using
the number of evaluations as termination criterion, LTGA outperforms GPX. In con-
trast, GPX outperforms LTGA when using the run time as the termination criterion,
albeit not as decisively.

This can be explained by the following: The process of calculating the LTs and us-
ing the information found for recombination in the LTGA algorithm is more time-
consuming than the process of using cluster fitness to decide how to recombine in
the GPX algorithm. It is very likely that LTGA learns more about good clusterings
than GPX, on average per evaluation. As such, the time spent per evaluation lies
higher in the LTGA algorithm, but this results in a higher fitness value per evalua-
tion overall. The GPX algorithm does not spend as much time per evaluation, which
is why many more evaluations fit in the same time period than LTGA evaluations
do. In the experiments where the time limit is the termination criterion, GPX is more
time efficient per evaluation, meaning that more generations can be generated and
therefore more time is spent on local search. The LTGA algorithm is less dependent
on the effectiveness of the LS operator than the GPX algorithm by learning structure
more explicitly, while the GPX algorithm emphasizes the success of the LS operator
and uses the good results of the LS operator to build new solutions from there.

optGPX, optLTGA and MLS

Regarding the optGPX, optLTGA and the MLS algorithms, we see that in all experi-
ments, performance is not significantly better for one or the other for most instances.
This indicates that the local search operator has more influence than the recombina-
tion operator getting to fit solutions. The optGPX algorithm performs slightly better
than the optLTGA algorithm in general. MLS performs better or equally well than
both optGPX and opgLTGA. However, we see that when the run time is increased,
the difference in performance between MLS and optGPX becomes negligible.

We have already established that the local search operator has a large influence. We
have also established that spending extra time on learning structure via a LT gives
fitter solutions per evaluation. What we look at now is, given the better local search
function, does learning structure via a LT or using information about individual



Chapter 6. Conclusions 63

cluster fitness via GPX provide better results than a simple multi-start local search?
The answer becomes clear from our results: MLS never performs significantly worse
than either optGPX or optLTGA and in some cases performs significantly better.
Thus, we can conclude that for our representation of the clustering problem and our
evaluation function, the effort of creating a genetic algorithm does not provide any
advantage over a rather simple search approach. Moreover, the MLS algorithm can
be simplified by not using the framework described in Algorithm 1. This would also
speed up the algorithm by removing (for MLS) unnecessary overhead. The simpler,
sped up algorithm would then spend less time per evaluation and therefore would
be even more efficient in solution fitness per evaluation.

Rand Index

Looking at the Rand Index gives us insight in how good the found solutions are
compared to the clustering that was aimed for. This gives us information about
the performance regarding solution quality. It is important to note that looking at
the Rand Index values does not give any indication as to how the different studied
approaches perform. Rather, this pertains to how well the evaluation method fits the
problem instance.

From Tables 5.16 and 5.17, it becomes clear that better (lower) fitness values do not
guarantee better (higher) Rand Index values. Looking at correlation plots and coef-
ficients between these two variables gives us a clearer perspective. For about half
of the instances (spheric, structured, iris, wine, ecoli) we can see a correlation that is
roughly linear. Less so, but where one can still imagine a linear-like correlation are
the unbalanced, diabetes, and banknote instances. Completely not resembling a linear
correlation remain the studenteval, cardio-3, and cardio-10 instances.

We have to keep the linearity of the plotted data in mind when looking at the cor-
relation coefficients (Table 5.18). Many of the instances show a strong negative cor-
relation. Some instances (structured, iris, wine, ecoli) come close to a perfect negative
correlation. A strong negative correlation between fitness and Rand Index would be
ideal: it means that as the fitness of a solution gets better (lower), the likeness of the
solution to the perfect solution also gets better (higher).

That the correlation coefficient is close to 0 for the studenteval instance is not surpris-
ing given the plot. That the correlation coefficients are closer to r = 1.0 than to r = 0

for the cardio-3 and cardio-10 instances is more surprising. A possible explanation
could be the impact of the number of elements in the regions of lower fitness val-
ues. The number of elements there is much higher, thus having a larger influence on
the correlation coefficient than the elements in the regions of higher fitness values
have. However, the plots show such non-linearity that the r-values do not reflect
the correlation correctly either way.
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Then, when comparing our Rand Indices with those found in (Agustın-Blas et al.,
2012) (Table 5.19), we can see that even though our internal evaluation measure
(SSE) is simpler than DB or S, the Rand Indices found from our experiments are
quite close to the Rand Indices from (Agustın-Blas et al., 2012). It is of importance
to note that we cannot determine which approach is better as the data sets are dif-
ferent, even when created using the same parameters. That the internal evaluation
measures are different is another reason why no direct comparison can be made.
The aforementioned correlation between internal measure value and external mea-
sure value is different for each problem instance and especially when using different
internal measures. Still, the Rand Indices being close indicate that our higher-scoring
approaches may work as well as the GGA approaches.

Research Questions

To return to our research questions mentioned in Chapter 1, we will first repeat them.

Can we use a greedy partitioning crossover approach to solve the clustering
problem?

Can we use a linkage tree genetic algorithm to solve the clustering problem?

These questions are answered through one additional question.

How do the performances of the GPX, LTGA, and MLS approaches in solving
the clustering problem compare?

From the above, we can answer our research questions. The first and second ques-
tions have the same answer: yes. This answer comes with an additional commentary
though. The clustering problem can be handled by these approaches, but these ap-
proaches are not necessarily the best and not the easiest approaches. This is where
answer to the third question provides more nuance: the GPX and the LTGA ap-
proaches solve the presented problem instances to a satisfactory degree, but the
easier MLS approach solves the presented problem instances as well. The MLS ap-
proach is either as good or better in solving the given problem instances. We can
thus conclude that the more complicated approaches of GPX and LTGA do not re-
turn increased performance on the invested time to create these approaches.

6.2 Discussion and Future work

In this section, we discuss several observations and some additional thoughts on the
conclusions. For the sake of conciseness, we mention GPX and LTGA approaches
in this section, meaning the GA method, independent from the LS operator. So
GPX here stands for both GPX and optGPX, while LTGA stands for both LTGA and
optLTGA.
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As mentioned, the results clearly show that MLS is the overall best-performing ap-
proach. This means that the best solution, can be found easily using a repeated hill-
climbing algorithm. The main benefit one would expect from our GA approaches,
namely finding better solutions than can be found by just hill-climbing, does not
show. The question arises, why do we not see the influences from our crossover
operators? Some possible explanations come to mind: the chosen problem instances
are not complex or large enough for it to matter or the algorithms did not get enough
time for the crossover operators’ benefits to show.

When we look at the chosen problem instances, we can see that they are quite di-
verse in numbers of data points, clusters, and variables. They were chosen to repre-
sent common clustering problems encountered throughout the literature. It is pos-
sible that the chosen instances were not complex or large enough, but we deem this
unlikely. When examining larger instances, the times required for local search to im-
prove solutions to an optimum become larger. As both our studied algorithms still
require LS to perform the improvements, the run times for our approaches would
become infeasible to solve such a problem. If we could incorporate a different way
to perform improvements, or limit the LS operator in some other way, it may be
possible to use the GPX or LTGA approaches to solve instances of some orders of
magnitude larger. An interesting area of research would be to look at the fitness
landscape for the studied problem instances. This may very well provide additional
insight into why the MLS approach dominates the other approaches.

Increasing the time GPX and LTGA can spend increases the effectiveness of the algo-
rithms in solving the presented problem instances, but they do not get more effective
than MLS. Relatively, they go from worse than MLS to more equal to MLS. Giving
the algorithms more time will not increase performance for many of the problem
instances, as MLS and optGPX, and to a lesser degree optLTGA, already find the
same best solution for all runs for many of the instances. This was found in the ex-
periments with extended time limits. This indicates that allowing more time to be
spent will not improve results for most instances. Some instances will benefit from
a higher time limit, but this will be the case for all algorithms.

Something else of considerable interest is the issue of increasing the Rand Index for
all problems, especially the problems where the Rand Index was below 0.9. As for
some instances the same optimum was reached in all runs of an experiment, we
could assume that this is the global optimum. If this is so, we would like the cor-
responding Rand Index to be 1.0. However, this was never the case. The problem
here thus lies with the evaluation function. If a different evaluation function would
be used, it would be likely that most, if not all, optima would change. More optima
could appear, or fewer optima could remain. Either way, from the correlations origi-
nating from our experiments and the simple observation that the Rand Indices were
not always close to or exactly 1.0, we can see an important next step in the process
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of determining the value and performance of the GPX and LTGA approaches in the
general clustering problem.

One would need to look at different evaluation methods to eventually find better
final results (determined through the Rand Index, for example). Comparing how
the studied algorithms interact with different evaluation methods would be an in-
teresting research on its own. It is possible that the LS operator has an easy time
improving solutions using the SSE evaluation, as used in this thesis. Other evalua-
tion methods may be harder to use for the LS operator, resulting in the rest of a GA
becoming more important. Even if the LS operator stays as effective, it may con-
sume so much time that a search to an optimum could become infeasible. Studies
into whether greedy partitioning or the structure learned through linkage trees be-
come more effective compared to the MLS approach when using different evaluation
functions seem to be a possible next area of investigation.

It is difficult to say what the influence of the representation is on the ability to solve
problem instances. The chosen representation may in general, or even specifically
for these approaches, not be the best one, as another representation based on the
cluster centres exists and is used with success (e.g. Maulik and Bandyopadhyay,
2000; Siddiqi and Sait, 2017). It would be interesting to see how the studied GPX and
LTGA approaches would perform when adapted to fit this different representation.
Comparing the effectiveness of the algorithms using the different representations
could also allow one to gain additional insight into why one representation possibly
works better than the other.
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