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Chapter 1

Introduction

Augmented Reality is a technology with a lot of potential, but in its current
state it’s not very attractive to end-consumers. Having to point the camera of
a device for extended periods of time is uncomfortable, and makes it hard to
engage in using AR applications. But the way the virtual objects are rendered
is completely unrealistic, which makes many AR applications unattractive to
end users as well.
The rendering of virtual objects on current AR applications has a number of
shortcomings in the state of the art: marker jiggle, inaccurate depth cues, lack
of occlusion from real life objects and incompatible lighting.
The method that we propose addresses the latter problem. Our method is based
on the idea that a 360◦ photograph of the environment can give us a lot of in-
formation about the lighting conditions. And such 360◦ panoramic photographs
are now simple to create locally on an average mobile device.
We present a method that automatically infers the lighting from a scene, and
shades virtual objects accordingly. The environment-aware lighting is applied at
runtime, and so it produces more realistic imagery regardless of the AR tracking
technology used.
Unlike previous works, we focus on mobile devices, utilizing the ease of creat-
ing 360◦ imagery in practice. This decision comes by noting that AR is better
suited for mobile devices than computers, given their ease of mobility and the
ready available sensors they have at the developer’s disposal.
The major research question we investigate is: ”Can the accuracy of lighting in
AR applications be improved by using a mobile device to its full potential?”.
What this means is that thanks to the many ways a smartphone or tablet can
interact with the user and the environment, we know a lot about the surround-
ings. Such information is useful to save computation time.

The main contributions of our method are:

• An image-based method with which the lighting conditions of the entire
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environment are approximated.

• The seamless integration of virtual objects by the emulation of shading
and shadows from acquired light sources.
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Chapter 2

Related Work

2.1 Light detection methods

[Laskowski, 2007] came up with a method to infer which pixels in an image is
a direct light source. It is a robust method that supports HDR images and
cases where there are no visible light sources. Their method has a number of
shortcomings. The response to outdoors photographs, where there is only am-
bient light, is not very accurate. Another limitation is that their algorithm has
a trade-off with accuracy and convergence time, as they explain that there is an
optional step involving a Bresenham method which makes results more accurate
but also presents a significant slow down. Our method not only calculates the
position of light sources within the image, but also approximates their proper-
ties in 3D space.

2.2 Offline synthetic image composition

There have been several methods to insert virtual objects into static photographs
automatically with highly realistic results. One such example is [Karsch et al.,
2014]. These methods are not suitable for realtime applications, and they use a
single view image to infer the lighting conditions. Our method is more robust in
the sense that it uses a 360◦ view of the environment and thus uses information
of the full environment.

2.3 Realtime synthetic image composition

[Agusanto et al., 2003] proposed a method related to our methodology. Their
method computes the scene lighting using lightmap images. In order to gen-
erate such lightmaps they need a digital single-lens reflex camera, software to
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generate HDR images from multiple exposures, and a light probe in the form
of a reflective sphere. Our method proposes using the 360◦ photograph on the
device itself, which is accessible to the average user.
[Pessoa et al., 2011] created the Real-Time Photorealistic Rendering of Syn-
thetic Objects into Real Scenes (RPR-SORS) toolkit as an extension of the
ARToolkit Augmented Reality SDK. The method behind their toolkit is an up-
dated version of the one in Agusanto et al. [2003] that uses cubemaps instead of
HDR imagery to improve the rendering. This approach also has the drawback
of requiring hand-crafted image maps that involve technical knowledge and ded-
icated software and hardware to generate.
Our method is also based on the work by [Kanbara and Yokoya, 2004]. Their
method calculates direct lighting on an AR object using a 2D/3D marker. One
part is a regular fiducial marker and the other is a small chrome sphere. The
light reflections on the sphere are detected and the light direction is approxi-
mated using this information. The advantage of this method is that it doesn’t
require pre-generated image maps. But the need for a physical chrome sphere is
still a shortcoming. Our method builds on this idea and instead uses a virtual
analogy of the chrome sphere consisting of a 360◦ panoramic image mapped on
a sphere; this has all the advantages of Kanbara’s method, without the disad-
vantage of needing an actual reflective sphere.
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Chapter 3

Theoretical Framework

In this chapter we introduce a few technical concepts in order to make our
proposed method and what we aim to accomplish more clear.

3.1 Augmented Reality

Augmented Reality is defined as a software system that features a blend of real
and virtual objects; the user can interact with it in real time, and it displays a
2D representation of a 3D world for both the real and virtual sides. This is the
first definition of AR originally presented by [Azuma, 1997].
In order to combine real and virtual objects, both worlds must be aligned, in
the sense that they must share a common origin for both position and rotation,
so that they can coexist in a realistic way within the same image. If the virtual
objects present in the real scene are not aligned, the consistency of the whole
composition is compromised.
The tracking of real world features as a guideline for alignment in the virtual
world is one of the challenges in the field of AR. [Zhou et al., 2008] have re-
searched the state-of-the-art technologies used for tracking. Different techniques
have been used, such as sensor-based tracking, that uses dedicated hardware to
feed the software application the position and rotation information it needs.
Our method uses vision-based tracking, in which the position and orientation
origin of the virtual world are determined by images that are recognized using
a computer vision algorithm. These images are named fiducial markers. They
are divided into the following categories:

• Binary markers: Computer-generated black and white images that form
patterns. Any combination of at least 8 × 8 black and white pixels that
doesn’t form a repeating pattern can work as a binary marker.

• Natural image markers: A computer vision algorithm extracts features
as points, lines, shapes and/or textures in any image that has identifiable
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elements. This means that the image must have contrasting details spread
across the whole image and not form repeating patterns.

• 3D markers: A small object is analyzed and a point cloud is extracted.
During the tracking phase, point clouds are generated from the camera
input and matched to the reference cloud. The main advantage is that
the viewing angle becomes irrelevant to recognize the marker.

• Mixed: Other approaches involving both sensors and vision algorithms
have also been used.

While our method does not aim to alleviate the technical challenge of track-
ing other than existing means, it is necessary to explain the concept for clarity.

3.2 Sensors

State-of-the-art smartphones and tablets in the market have built-in sensors
to perform different kinds of measurements that are helpful for application de-
velopers. Such measurements include tracking motion, orientation and other
environmental conditions. The sensors that are relevant for our method are the
following:
Accelerometer: Measures proper acceleration relative to gravity. Its appli-
cation in mobile development is to measure motion changes and to detect the
orientation of the device relative to the surface of the Earth. It usually consists
of 3 orthogonal axes, and therefore can measure acceleration on one, two or
three axes. The output is given in m/s2.
Gyroscope: A sensor that is capable of measuring the rate of rotation around
a particular axis. It serves the same purpose as the accelerometer, but mobile
devices usually have both for more robust measurements. The output is given
in rad/s. In our method, both the accelerometer and the gyroscope are used to
acquire the 360◦ panoramic photograph, making sure that the device is within
the same pitch while capturing all the images that will be stitched together to
make the panorama.
Magnetometer: It serves the purpose of a compass by measuring the orien-
tation of the device with respect to the Earth magnetic poles. For application
development, it is useful to get the heading of the device with respect to the
geographic north in a clockwise direction. This heading is an angle expressed
in degrees.
GPS: Measures the raw position of the device in three-dimensional Cartesian
coordinates where the origin is the center of the Earth. It is used to determine
where on Earth the device is located (Country, city, neighborhood, etc.). It
needs to have an uninterrupted line of sight, with no electromagnetic interfer-
ence, to at least 4 out of the 24 satellites in orbit that are used for GPS.
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3.3 Standard Illuminant

In order to describe the color of a light source, it is important to have detailed
knowledge of the type of illuminant used. The International Comission on Illu-
mination (CIE) defined a number of spectral power distributions, referred to as
CIE standard illuminants, to provide reference spectra for colorimetric issues.
The illuminants are denoted by a letter or a letter-number combination. Their
spectral power distributions (SPD) are normalized to a value of 100 at a wave-
length of 560 nm. Illuminants series A through D exist, all of them specializing
on a different kind of light source. For our method, the relevant one is series
D, as it describes a type of average light source, typically associated to daylight
global illumination.
D65 corresponds roughly to the average midday light in western and northern
Europe, comprising both direct sunlight and the light diffused by a clear sky in
indoors situations. Because of that, it is also called a daylight illuminant. The
illuminant has a correlated color temperature of approximately 6500 K. Since
a standard illuminant is represented as a table of averaged spectrophotometric
data, any light source which statistically has the same relative spectral power
distribution (SPD) can be considered as a D65 light source. It is important
to note that D65 is purely theoretical, there are no actual artificial D65 light
sources. The D65 is the white point that we used to convert chromatic informa-
tion into luminance for the light source detection, as we detail further in section
4.2.

3.4 Panoramic photography

Panoramic photography is a technique for capturing images with horizontal,
and sometimes also vertical, elongated fields of view. While there is no formal
definition of the minimum field of view required for a photograph to be consid-
ered panoramic, we focus on complete horizontal 360◦ captures.
There are different types of panoramic images. The one called wide-format pho-
tograph consists of a series of photos taken from the same height, that are then
stitched together to appear as a single wide image. The image can subsequently
be projected on to a cylinder. This kind of panoramic photograph captures 360◦

of the horizontal field of view, while the vertical field of view is dependant en-
tirely on the lens used to capture the individual photographs. Figure 3.1 shows
an example of a cylindrical panoramic image.
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Figure 3.1: A cylindrical panorama of Trafalgar Square.

The type of panoramic image used in our method is called equirectangular
panoramic image, or spherical panoramic image, due to the fact that the re-
sulting image can be projected on to a sphere. The projection maps meridians
to vertical straight lines of constant spacing, and circles of latitude to horizon-
tal straight lines of constant spacing. This kind of projection introduces the
types of distortion often seen in spherical projections, such as Mercator, where
the poles of the sphere appear bigger than they really are. The process used
by Google in the Street View application to create equirectangular panoramic
images on mobile devices involves taking 44 pictures of the environment and,
using the device’s sensors, project them onto a sphere in their position relative
to the geographic north.
Image features are identified for each individual image, and then those same
features on neighboring images are aligned so that they overlap. The area of
overlap is then blended, resulting in a seamless, yet distorted representation of
all the images as one. The projection is then applied as follows:

θ =
x

cos(φl)
+ θ0 (3.1)

φ = y + φl (3.2)

Where:
θ and φ are the longitude and latitude of the location to project, respectively.
φl are the standard parallels (tropics) where image distortion is zero.
θ0 is the central meridian of the map.
x and y are the horizontal and vertical coordinates of the projected location on
the map, respectively.

An example can be seen in figure 3.2.
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Figure 3.2: An example of an indoors equirectangular panorama.

3.5 Environment mapping

Environment mapping is an image-based technique to approximate the appear-
ance of the overall light conditions of an environment. This is accomplished
by means of a precomputed texture image mapped on a geometric surface as a
far-away environment surrounding. This technique was originally proposed by
[Blinn and Newell, 1976] using spheres. Nowadays there are other alternatives,
such as cube, paraboloid, pyramid or cylinder maps. The principle of projection
is similar, but the specific definition of map per surface is different.
In order to generate an environment map, it is necessary that the panorama is
made into a High Dynamic Range image. This is because a Low Dynamic Range
image fails to capture the information necessary to simulate correct color bal-
ance, shadows, and highlights of the lighting environment; ultimately producing
both inaccurate and less visually pleasing results. This has been illustrated by
[Debevec, 2008].
A relatively easy and effective way to make an image into an HDR version is a
technique called Tone Mapping, in which versions of the same image with differ-
ent exposure values are blended together to include a full range of highlights and
shadows in a single image. It’s important to disclaim that the Tone Mapping
process does not yield an actual HDR image, but a standard 24 bit image in the
0...255 range, with highlight and shadow valued clipped. Nevertheless, the ad-
vantage of this process is that the environment will be described in a richer way,
capturing the bright areas and the shadows better than the standard exposure
image.
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Chapter 4

Methodology

The input to our problem is a fiducial marker F that provides the object posi-
tion in the real world, and a 3D mesh M that will be rendered in Augmented
Reality. The method will calculate the properties of a set of light sources Li,
specifically position, rotation, intensity and color. In order to analyze the lumi-
nance (L()), a 360◦ panoramic image is required, generated as a pre-processing
step as explained in chapter 3. The complete process is depicted in the flowchart
in Figure 4.1, and each step is consequently described in more detail according
to the mentioned sections.

Figure 4.1: Our method in a nutshell.

4.1 Capture 360◦ panoramic image

We use panoramic images as a pre-process. As such it’s not within the scope of
the method to define a new way of capturing 360◦ images. The application we
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used to procure a spherical panoramic image within the device itself is Google
Street View. This application guides the user through the process of generating
the 360◦ panorama. In total 44 photos are necessary and the application shows
an orange dot on the screen on the point where the user has to point the camera
next. This functionality was originally conceived to capture outdoors scenes, but
if the user stands roughly in the middle of a room it works to capture indoors
scenes as well.
We ask the user to provide the origin of the virtual world by rotating the virtual
reflective sphere so that the view of the room aligns with that of the section of
the real room that the camera is facing. This also simplifies calculations of light
orientations later on.

4.2 Light source filtering

We factor out the luminance from the RGB representation of the panorama.
This is achieved by the following equation:

∀ Pij ;L(Pij) = 0, 2126 ·Rij + 0, 7152 ·Gij + 0, 0722 ·Bij , (4.1)

where L is the luminance obtained at D65 white point and P is the pixel in the
i, j position of the image and R,G,B are the red, green and blue components
of the pixel, respectively.
The contrast ratio has to be adjusted, so that the regions with high luminance
are more clearly separated.

g(i, j) = α · L(Pij) + β (4.2)

Where g(i, j) is the adjusted image, L(i, j) is the original grayscale image
and α and β are the brightness and contrast constants respectively, determined
by parameter tuning. We carried out the parameter tuning in a trial-and-
error basis, by using initial extreme values and run the program, and varying
the values in order to achieve the best result. The values that worked in the
implementation were α = 220 and β = 255. In order to prevent outlier pixels
and noise from causing false positives, we normalize g(i, j) as follows:

N(gij) =
2 · gij

min(L) +max(L)
, (4.3)

Where min(L) and max(L) are the overall minimum and maximum luminance
values in the image.
The result of these steps is a black and white image with the rough shape of
the light source. We call these shapes regions of high luminance. If there are
no regions of high luminance in the image at all it means that no relevant light
sources were found. A region of high luminance in the image is formally defined
as follows:

R(H) = {p00, p01, ..., pmn}, (4.4)
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where pij is the pixel in the i,j position of the image, so that

L(pij) ≤ 0.9 ·max(L(pij))

The region must also be connected side-by-side, so the pixels must be adjacent.
Regions of high luminance are for the most part characterized by much noise
and artifacts. These are caused by clear objects, reflections of light sources on
polished surfaces, and even light sources that are far away, but don’t contribute
an important amount of light to the area of interest. Therefore, it’s necessary
to also add further filtering to the pipeline.
The amount of light that a lighting source contributes to a given scene is directly
proportional to the emission area of that source. When analyzing a photograph
this area translates to the pixel size of the light source in the image. So we
consider this to be a good measure for filtering. Figuring what constitutes
an acceptable region size to determine if we have to filter a the light source
is a challenging problem for which we couldn’t find an existing solution. The
approach we took is to define a percentage of the width and height of the overall
image as a threshold in search for the best solution. The size filter is then:

width(R(H)) · height(R(H)) ≥ k ·W ·H (4.5)

Where k is the threshold, in the implementation the value that yielded the best
results was k = 0.004; W and H are the total image width and height.
Each identified region of high luminance that passes all the filters is a light
source used at runtime. We capped the maximum amount of light to 8 in prac-
tice. We decided to use a maximum of 8 for a few reasons. With more than
8 light sources it becomes challenging to keep the scene from being too lit,
even normalizing the intensities. Since we’re calculating shadows for each light
source, we found that doing it for more than 8 light sources made this process
a bottleneck that caused the whole application performance to drop.

4.3 Calculate light properties

We need to calculate position, orientation, intensity, and color for each light,
remembering that we have the original full color image available.

1. Orientation: This process is carried out with an array Pi of points con-
taining the pixel coordinates (x, y) of the regions of high luminance; the
normalized luminance analysis image N(gij) mapped on a sphere S and a
camera C facing the sphere from four different points of view (in order to
cover a full revolution). The orientation of the pth light source O(Lp) is
calculated as follows:
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Algorithm 1 Light source orientation calculation

1: for i ∈ [1, 4] do
2: for each pixel in camera view do
3: Cast ray to S
4: if Color at hit point H is white AND H = Pp then
5: Calculate O(Lp):

O(Lp) = −2 · (Nh · Cr)Nh + Cr, (4.6)

Nh: normal of S at H.
Cr: camera ray direction.

6: Normalize O(Lp):

O(Lp)N = (
O(LP )x
|O(LP )|

,
O(LP )y
|O(LP )|

,
O(LP )z
|O(LP )|

) (4.7)

7: end if
8: end for
9: Obtain the next camera view by rotating C 90◦ clockwise

around the y axis of S
10: end for

This process is depicted in Figure 4.2 for further clarification. The figure
shows the vectors Nh and Cr, the C orbiting S and the four distinct points
of view with which C reconstructs the entire 360◦ environment.

Figure 4.2: Illustration of the computation of the light orientations based on
the virtual reflective sphere.

2. Position: With the orientation calculated in the previous step we know
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the angles of the light source with respect to the marker F . What we don’t
know is how far away along that vector the light actually is. In order to
approximate the distance from a camera to an object in a photograph we
can use triangle similarity, the device’s known camera parameters and a
known object size. The ratio of the size of the object on the camera sensor
and the size of the object in real life is the same as the ratio between the
focal length of the lens and distance to the object. We use the average of
a light source’s height to approximate the desired distance:

D =
f · h(Or) · h(L)

h(Op) · h(s)
, (4.8)

where f is the camera aperture size, h(Or) and h(Op) are the real object
height in millimeters (the value we used is 200 mm) and the image object
height in pixels, respectively; h(L) is the height of the full image and h(s)
is the camera sensor height.

3. Color: Storing both versions of the panorama, one in full color and an-
other one after processing, allows us to have both the color and the lu-
minance information. Once a light source is detected, the equivalent area
in the color image is averaged to determine the color of the light source.
We obtain the linear average of each individual color channel and use the
combined results.

4. Intensity: There are two factors that influence the intensity of a light
as perceived by a camera, the light size and the color temperature. The
light’s color temperature in Kelvin is calculated using the approximation
proposed by [McCamy, 1992], as follows:

T (Cp) = −949.86315 + 6253.80338
−n

0.92159 + 28.70599
−n

0.20039 + 0.00004
−n

0.07125

(4.9)

n =
0.23881 ·R+ 0.25449 ·G− 0.58291 ·B
0.11109 ·R− 0.85406 ·G+ 0.52289 ·B

(4.10)

Where R,G,B are the red, green and blue components of the light color.
The other significant factor to determine the light intensity is the size. In
our method the size is given by the integral of the region of high luminance
with respect to the full image.
The light intensity is finally expressed by:

I(Lp) = T (Cp) ·
∫
R(Lp)

N(gij) dµ (4.11)

Where N(gij) is the output image of the luminance analysis and R(Lp) is
the pth region of high luminance. I(Lp) is the scalar value that denotes
the intensity of the light source at runtime.
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4.4 Calculate ambient light

Since a panoramic image of the environment is already available, we can use it
to implement environment mapping. However, asking the user to capture the
environment more than once in order to carry out the Tone Mapping would
have a bad impact on user friendliness. It is also highly unlikely that the pro-
duced image would have the exact same framing every time. Alternatively, we
produce the different exposure values for the Tone Mapping by altering the
brightness and contrast values of the base image using equation 4.2 once again.
Afterwards, we produce the HDR image using the Debevec and Malik [1997]
weighting algorithm.

4.5 Real-time Phase

We use the original spherical panoramic image to create a cubemap of the real
environment for ambient lighting, to calculate the ambient contribution of the
diffuse shaders and to use as reflections for the specular shaders.

1. Cubemap: We take the polar coordinates of a unit sphere (1, θ, φ). The
image coordinates are divided into four regions by latitude −π/4 < θ <
π/4, π/4 < θ < 3π/4, 3π/4 < θ < 5π/4, 5π/4 < θ < 7π/4. These repre-
sent either one of the four faces of the cube, top or bottom. The projected
coordinates are given by:

Pc = (1, tan(φ),
cot(θ)

cos(φ)
), (4.12)

The process is further explained in Figure 4.3.

The projected points for each face of the cube are composed into an image
and each image stitched together to create a cross cube map.

2. Ambient contribution: The environment lighting contribution is done
with a shader. The ambient contribution is reduced to a single value in the
range of 0 and 1 and applied to the diffuse color component. The result is
a dimmer color when the ambient light is low. The ambient contribution
value Ac for each region of high luminance R(L(Pij)) in the luminance
analisys image N(gij) is given by:

∀R(L(Pij));Ac =

∑
i=1,j=iR(L(Pij))

width(R(L(Pij))) · height(R(L(Pij)))
(4.13)

3. Reflections: The cubemap from step 1 is also used to for reflections. A
vector is cast from every vertex of the object along its normal and in-
tersected with the cubemap generated from the panoramic image. The
texture color is mixed with the diffuse color according to the specularity
defined for the material to simulate reflection, this information is calcu-
lated in advance and used at runtime.
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Figure 4.3: The cubemap creation process.

4. Shadows: During early experiments it became clear that one of the bigger
differences between real and virtual object were a product of the shadows
as well as the light. A problem when it comes to casting shadows for virtual
objects in AR is the fact that there has to be an object underneath M to
cast the shadow on. But this object has to be as unobtrusive as possible.
We worked around this issue by using a transparent material on a plane
that receives shadows. M is projected on the plane from each light source
and rendered flat in black color.
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Chapter 5

Implementation

In this chapter, we explain implementation details of our method. Our method
is designed to work entirely on a mobile device. To that end, the implementation
uses the following available technologies:

• We used the Google Street View app for panoramic image capture, as it’s
available for both iOS and Android and it’s a ready-made solution to use
panoramic images as a tool for our experiments.

• The base of the implementation is done in Unity, but with a native code li-
brary written in C++. Our library uses OpenCV for the image processing
tasks.

• The ARToolKit library is used for the Augmented Reality tasks of tracking
markers and providing the virtual world’s point of reference.

All of these technologies are platform independent, even as some adjustments
do have to be made in order to target either iOS or Android. For instance, to
be able to use the panoramic images created with Street View, we had to create
a native code plugin to read images from the file system of the device. This
plugin needs separate implementations for Android and iOS.
The device used for this particular implementation is an iPad Air tablet running
iOS 11. Having said that, adjusting the application to support Android devices
as well would be a simple task.
The OpenCV API has all the necessary functions implemented to apply the
mathematical functions proposed in the method section so this part of the im-
plementation was a direct translation into code. We used the tools available
in Unity for the sake of achieving the desired graphic quality. Reflections are
implemented using Reflection Probes for example. Shadows are baked using
Unity, but we created a custom shader for the ”shadow catcher” plane. We also
applied a full screen Film Grain effect to the composted scene. We dit it in
order to make the clean virtual camera match the noisy device’s camera and so
homologate the look of both the real and virtual camera.
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Chapter 6

Experiments

The aim of the method is to produce plausible lighting for Augmented Reality
applications, and thus increase the sense of realism of the composed graphics.
The experiments are designed to evaluate the similarity of a real object and a
virtual representation of the same object in the same controlled lighting condi-
tions.

6.1 Setup

We chose a particular object with a rich variety of materials, in this case it was
an Xbox 360 controller with a custom paint job. We modified a 3D model of the
same Xbox 360 controller to match the custom paint job and the materials were
replicated as closely as possible to the real object using Unity’s built-in shaders.
In the end 4 main shaders were used, a highly reflective plastic for the borders
and some of the buttons, a more matte plastic for the main body, a completely
specular chrome for the Xbox button and a semi-transparent and glossy plastic
for the colored buttons. The choice of this motif was based both on the ease to
find a reliable 3D counterpart for a real object and on the already wide variety
of materials present in the object.
In order to provide a ground truth for a reliable side-by-side comparison, we take
a screen capture of the application running while both the real and virtual object
are in the frame, in similar positions and orientations and affected by controlled
lighting that is also simulated using the method for the virtual counterpart.
Another experiment is a direct substitution: place the marker on the table,
then place the real controller on the marker in a similar position and orientation.
This provides a clear comparison, everything in the scene remains the same, and
both the real and virtual objects can be appreciated in the same setting.
As for benchmarking, how our method stands in comparison to other similar
ones, we replicate the conditions of the experiments presented in the results
section for the methods by Kanbara and Yokoya [2004], Karsch et al. [2014]
and Pessoa et al. [2011] in terms of similar setting and virtual objects used.
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The resulting images are compared to the ones from their respective methods.
In order to replicate these settings additional 3D models are needed, namely a
teapot and the dragon and Buddha from the Stanford 3D Scanning Repository.
The actual way in which the experiment is conducted is defined in the following
scenario:

• Setting: A room with consistent and invariable lighting is used and some
kind of flat, matte surface to lay the objects on. An Xbox 360 controller
with the characteristics described previously and a marker to track the
virtual object.

• Requirements: A mobile device running the developed demo applica-
tion, a marker for virtual objects. A real object and its corresponding
virtual counterpart, modelled as close as possible. Common 3D models
from the Stanford 3D Scanning Repository.

• Goals: Obtaining a set of images that will enable readers and experi-
menters alike to make a fair comparison of the method application, side
by side with a real object counterpart.

• Actions: Place the controller on the surface, and capture and image.
Then remove the real controller and substitute it with the marker in a
way that the virtual controller appears in the most similar position and
orientation possible; capture an image in the end as well. Replicate the
scenarios in Kanbara and Yokoya [2004], Karsch et al. [2014] and Pessoa
et al. [2011] using teapots, Buddahs and dragons and capture images of
each.

• Benchmark: We capture the image result yielded by our method, as well
as the time per frame and use them for comparison’s sake and benchmark-
ing, head to head with the results from similar methods.

It is important to also mention the need of replicating the settings of previ-
ous works. In some cases, the product is not a runtime application, and thus
the only applicable comparison is image-based. We contacted the authors of
other runtime methods to ask the possibility of using their binaries to produce
images and they either declined or gave no answer. And so the only possible
comparison is image to image and taking their word for the performance indi-
cations in the form of frames per second.
All of the experiments were recorded on video by connecting the tablet device
to a laptop, and are available to watch. The images shown here are select still
images from said videos and the framerates discussed per experiment are aver-
ages from the on-screen counter seen on each video. It’s also important to say
that the recorded framerates are about 10% lower than when the application is
not being recorded.
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6.2 Experiment 1: Real object substitution

This experiment produced satisfactory results, the materials and the position
and orientation on the virtual object are not exactly the same, and so the
highlights shining off the surface are not in the same relative places. But the
shadow shows that the light is placed in an acceptable approximation of the real
light position. The application is running at 24 FPS on this screen capture and
it’s a good measure of the average performance time.

Figure 6.1: Real custom painted Xbox
360 controller

Figure 6.2: Virtual counterpart of the
same object

6.3 Experiment 2: Karsch’s scenario

This scenario was hard to replicate, due to the unusual framing and placing of
the objects. The method we are comparing to is not a runtime method, but
even so there are conclusions that can be drawn. In the image produced by the
Karsch et al. [2014] application it’s hard to say if the lighting in the real and
virtual components of the image really corresponds. The light sources, except
for one, are not present in the frame and there are no similar real objects to
the virtual ones that would serve as ground truth. Our results show enough
evidence that the lighting in both the real and virtual worlds is similar, with
cues such as the presence of real objects and their shadow directions.
The framerate of our application for this experiment is 15 FPS on average. It
is still acceptable considering that there are 6 virtual dense models.
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Figure 6.3: Karsch’s method results
Figure 6.4: Our results

6.4 Experiment 3: Kanbara and Pessoa’s sce-
narios

These two scenarios will be grouped together due to the fact that the steps to
replicate the experiment are the same. They both presented ceramic material
teapots with a lighting setting that they did not specify.

Figure 6.5: Pessoa’s method results Figure 6.6: Kanbara’s method results

Both results look well blended into the environment. However, in Pessoa’s
case it also must be said that the lighting setting is not disclosed and is not
obvious from just looking at the results. For the aforementioned method there’s
also a considerable amount of pre-production required for the method to actu-
ally work, and the performance has a rather bad scaling, ranging from 180 FPS
with no objects to 5 FPS with seven objects. Our method doesn’t have those
problems, and performance scales better going from 24 FPS with a single object
to 15 with six of them.
In the case of Kanbara’s results, their scene looks well composed. The down-
sides to their method that ours resolves are the need for a physical 3D marker to
probe lighting and the performance. They report 20 FPS on a computer for the
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experiment they published. Our method is achieving slightly better framerates
on a mobile device.

Figure 6.7: Pessoa’s comparison re-
sults

Figure 6.8: Kanbara’s comparison re-
sults

6.5 Gallery

In the following are a few more screen captures from the application that show
the potential of the method for the reader to draw their own conclusions.
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Chapter 7

Discussion

In this chapter the results are discussed and a conclusion is formulated. The
shortcomings of the method and the implementation are also mentioned and
taken into consideration for future work.

7.1 Discussion

In our experiments, there is close resemblance among the virtual and real ob-
jects. However it’s still not a perfect fit. Some of the factors cannot be worked
around trivially, for example one of the differences is that there are small imper-
fections present in the real object that are not there in the virtual one. In order
to account for them, a 3D scan of the specific real object would be necessary. 3D
scans are often extremely dense meshes that would pose a problem to maintain
interactive framerates.
Despite the film grain filter, it’s still evident that the virtual camera has better
resolution than the real one. The fact that in the virtual world everything looks
”too perfect” also breaks the illusion of realism. However, in a real application
of the method the user would ideally use AR to view something that is not there
in the real world, instead of a side-by-side comparison to a real object. So by
not having a clear ground truth of how such an object would look through the
camera feed, this problem is lessened.
Our method is placing lights using a reasonably accurate orientation, but at an
admittedly inaccurate distance. After seeing the results we can also conclude
that the orientation is far more important than the position. We do see dif-
ferences in the length of the projected shadow, which is a determined by the
distance to the light source, nevertheless this discrepancy is less noticeable than
when the angle of the shadow is different with respect to the real object refer-
ence.
When virtual shadows overlap a real object that is in front of it the result is
not visually pleasing or realistic. In order to prevent this and make the shadow
cast on non-planar neighboring objects, or at least have the objects occlude it,
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some knowledge of the environment in 3D would be necessary, and that would
require hardware that is not present on average consumer smartphones.
There are a few known cases where false positives are found by the light detec-
tion algorithm. When a light source is directed towards a glossy surface, such
as a varnished desk for example, the incidence of the light on such a surface is
detected as a light source as well. A similar thing happens sometimes for intense
white objects that are not light sources. Although in the first scenario it can be
argued that the light bouncing off a glossy surface could indeed be considered
a light source.
Our system doesn’t adapt to light changes. Due to the nature of the method,
having a pre-calculation phase and a runtime phase, it is not possible to change
the light setup at runtime in the same way as it was originally captured.
The system limits the amount of lights it simulates to 8 for performance reasons,
but even at 8 light sources the performance of the application is low. Between
15 and 24 FPS, it can still be considered interactive, but it’s not ideal, specially
when taking into account that the application is only doing rendering, a real
application of the method, such as a game, would require other layers of com-
plexity that would need processing time.

7.2 Conclusion

All in all, despite the shortcomings of the method, the objective was achieved.
The main goals of the method are to approximate the lighting conditions of the
environment via a panoramic image and to use this knowledge of the environ-
ment to improve the realism of the rendering. Both objectives are met, in the
understanding that improvement is not an absolute measure, meaning that as
long as the method makes the composted scene more realistic the objective is
fulfilled, regardless of being far from perfection still.
There’s room for improvement, both on the technical side, on the user experi-
ence side and in the results. This will be further developed in the next section.

7.3 Future work

During the development of this method there were several changes to the Aug-
mented Reality landscape through the introduction of new SDK’s. ARKit [Ap-
ple, 2007] and Tango/ARCore [Google, 2007] are more robust solutions than the
ARToolKit we used in this method. While both ARKit and ARCore have an
ambient light estimation feature, and ARCore supposedly even has direct illu-
mination estimation, the overlap with what was proposed here is not complete.
In a future iteration of the system it would be interesting to see the method
working with these new SDK’s. Google Tango would be even more interesting,
due to the fact that it has a depth sensing camera, so it would even be possible
to roughly reconstruct the scene for accurate shadow casting and determine the
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distance to light sources precisely.
Other than that, a vast improvement would be support for changing light con-
ditions. Most real-world applications for such AR graphics would require in-
teraction outdoors for more than a few minutes, so the lighting conditions are
bound to change in the middle of a session.
Just for the sake of maintaining a more uniform user experience it would be a
nice addition to implement something similar to the Google Street View spher-
ical panorama capture module within the app. This is something completely
off-topic for the method and something not trivial to implement, but if it was
there it would be a nice addition nonetheless.
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