
Deterministic branching algorithms for parameterized
Co-Path/Cycle Packing and three variants

R. Kuipers

A thesis presented for the degree of
Master of Science in Computing Sciences

Department of Information and Computing Sciences
Utrecht University
The Netherlands

October 2017

Abstract

The Co-Cycle/Path Packing problem that tries to find a set of
vertices that, when removed, leaves a graph of maximum degree 2
is a prominent problem in the graph theory field. The related Ver-
tex Cover problem, which finds a deletion set where the remaining
graph has maximum degree 0, is one of the most famous graph theory
problems. In this thesis we describe a deterministic parameterized
algorithm for Co-Cycle/Path Packing which uses branch-and-bound
techniques. This algorithm is shown to have a time complexity of
O∗(3.0607k), which improves upon the previous best known deter-
ministic bound. A new problem which looks for a deletion set such
that the remaining graph is 2-regular is also discussed, and a branch-
ing algorithm with time-bound O∗(3k) is shown for it. Additionally,
two variants of these two problems that add the requirement that the
remaining graph is a single connected component are introduced and
shown to both have an algorithm that runs in O(2kn3) time. For the
three new problems, NP-completeness is also proven.

Contents

1 Introduction 3
1.1 Previous Work . 3
1.2 Preliminaries . 4

2 Connected variants 6
2.1 Induced Cycle Deletion Set 6

2.1.1 NP-Completeness . 6
2.1.2 Algorithm . 7
2.1.3 Analysis . 9

2.2 Induced Path/Cycle Deletion Set 9
2.2.1 NP-Completeness . 10
2.2.2 Algorithm . 11
2.2.3 Analysis . 13

3 Co-Cycle Packing 14
3.1 NP-Completeness . 14
3.2 Algorithm . 15

3.2.1 Reduction Rules . 16
3.2.2 Degree 4 or more vertices 17
3.2.3 Degree 2 vertices . 17

1

3.2.4 Cycles of length 3 . 18
3.2.5 Degree 3 vertices . 20

3.3 Analysis . 24

4 Co-Path/Cycle Packing 27
4.1 NP-Completeness . 27
4.2 Algorithm . 27

4.2.1 Reduction Rules . 28
4.2.2 Degree 5 or more vertices 29
4.2.3 Degree 4 vertices . 29
4.2.4 Degree 3 vertices . 32
4.2.5 Equality to Edge Cover 37
4.2.6 A note on correctness 38

4.3 Analysis . 39

5 Conclusion 43
5.1 Outlook . 43

2

1 Introduction

In this thesis we will consider the Co-Path/Cycle Packing problem, and sev-
eral problems related to it. Co-Path/Cycle Packing is a graph theory problem
which has applications in computational biology [CFF+10], where we try to
find a set of vertices that when removed leave a graph in which all vertices
have degree 2 or lower. A different name for this problem is Bounded-Degree-
2 Vertex Deletion, and it is a specific version of the Bounded-Degree-d Vertex
Deletion problem where d is the maximum degree of the remaining graph, 2
in our case. Another specific version of this problem is Vertex Cover, which
is equal to Bounded-Degree-d Vertex Deletion when d = 0.

We will describe and analyze a deterministic branching algorithm for the
parameterized Co-Path/Cycle Packing problem. Additionally, we construct
and analyze such algorithms for three related problems which, contrary to
the original problem, have so far not been discussed in the literature as far as
we know. The Co-Cycle Packing problem changes the requirement that the
remaining graph has maximum degree 2, to a requirement that every vertex
in it has exactly degree 2, in other words that it is 2-regular. This ensures
the remaining graph is a set of cycles, instead of a set of paths and cycles.
The Induced Cycle Deletion Set and Induced Path/Cycle Deletion Set are
variations on the Co-Cycle Packing and Co-Path/Cycle Packing problems
respectively, that add the requirement that the remaining graph has only
one connected component. This leaves the remaining graph as a single cycle
or path.

All these problems are NP-complete, which we will prove for the three
new problems. For Co-Path/Cycle Packing we refer to a proof in [LY80]
which proves the entire class of hereditary vertex deletion problems is NP-
complete. For the two connected variants we provide two similar deter-
ministic parameterized algorithms that both run in O(2kn3) time, and an
algorithm for Co-Cycle Packing that runs in O∗(3k) time. The algorithm we
provide for Co-Path/Cycle Packing has time complexity O∗(3.0607k), which
is slightly faster than the algorithm previously found in [Xia16] which has
time complexity O∗(3.0645k).

1.1 Previous Work

As stated above, the only one of these problem for which we have found
previous research was Co-Path/Cycle Packing. The earliest algorithm we
found for it was in [CFF+10], which describes an O∗(3.24k) parameterized
algorithm, and provides a 37k vertex kernel for this problem. It also shows

3

the problem is APX-hard, which means it does not have a kernel smaller
than 2k unless the Exponential time hypothesis is false [ACG+12].

In [Xia16] an deterministic algorithm for Bounded-Degree-d Vertex Dele-
tion is described, which has time complexity O∗((d+ 1)k) for any d ≥ 3, and
O∗(3.0645k) for d = 2. It also proves Bounded-Degree-d Vertex Deletion is
W[2]-hard with respect to k for unbounded d, but FPT for any fixed d ≥ 0.
A proof for the W[2]-hardness for unboudned d was also given in [FGMN11],
which also proves that for any ε > 0 a O(k1+ε) vertex kernel exists for d ≥ 2.

It is shown in [BBNU12] that Bounded-Degree-d Vertex Deletion with
a fixed d is W[1]-hard with respect to the parameter treewidth, but FPT
when parameterized by the combined parameter treewidth and k, or when
parameterized by the feedback edge set number.

A randomized parameterized algorithm for Co-Path/Cycle Packing was
shown in [FWLC15], which has a running time of O∗(3k). This is faster than
the algorithm provided in this thesis, but the algorithm presented here is the
fastest deterministic algorithm thus far.

If we look at algorithms for other fixed cases of Bounded-Degree-d Vertex
Deletion , we find there is a O(1.2738k+kn) time algorithm for Vertex Cover
(d = 0) in [CKX10]. For d = 1, [Wu15] uses a technique called Measure and
Conquer to describe a O(1.882k + |V ||E|) time algorithm. For specific values
of d ≥ 3 we have found no research, so theO∗((d+1)k) time algorithm [Xia16]
appears to be the best algorithm for these problems.

1.2 Preliminaries

All graphs discussed in this thesis is an undirected simple graph. Graphs are
denoted as G = (V,E), where V is the set of vertices, and E the set of edges.
The singleton set {v} will usually be written as v, and an edge {u, v} is
sometimes shortened to uv. The symbol n will denote the number of vertices
|V |, and m = |E| denotes the number of edges. The open neighborhood of a
vertex v ∈ V is denoted as N(v) = {u ∈ V | uv ∈ E, u 6= v}, and the closed
neighborhood as N [v] = N(v) ∪ v. If X ⊆ V , then N [X] =

⋃
v∈X N [v] and

N(X) = N [X] \ X. The degree of vertex v is denoted as d(v) = |N(v)|. A
graph where each vertex has degree d or lower is called a maximum degree d
graph, and a graph where all vertices have degree exactly d is called d-regular.
If a vertex v is said to be deleted from the graph, this means both the vertex
and any incident edges are removed from the graph. The notations G−v and
G−X are shorthand for the resulting graph after the deletion of a vertex and
a set of vertices respectively. Conversely, G[X] denotes the graph when all
vertices in V \X are deleted. The degree within specific graph H is denoted
dH(v), but if we are only taking about one graph d(v) is usually used. Two

4

operations we occasionally use are contracting a vertex and subdividing an
edge. For a vertex to be contracted, it needs to be degree 2 and the two
neighbors cannot be adjacent to each other. When contracted, a vertex is
removed from the graph and an edge is added between the two neighbors of
the removed vertex. The opposite of this action is subdivision of an edge, in
which case the edge is removed from the graph, and a new vertex which is
adjacent to the two endpoints of the edge is added.

The algorithms discussed in this thesis are branch-and-bound algorithms,
a widely used technique which traces back to [DP60]. When analyzing such
algorithms, we focus on the number of base cases, each of which can often be
solved in polynomial time. In the parameterized algorithms discussed in this
thesis have a maximum number of vertices k that are allowed to be put in the
deletion set. Therefore, if we have two branches that each put one vertex in
the deletion set, we know the number of base cases can at most be 2k, since
each branch doubles it and we can have at most k layers of branching. We
would say this branching rule has branching factor 2 and branching vector
(1, 1). If we have a more complex branching rule that has three branching
that each put one vertex in the deletion set, and one branch that puts two
vertices in it, it has branching vector (1, 1, 1, 2). If we now solve the equation

xk = 3xk−1 + xk−2

for x we get the value 3.3027, which is the branching factor of this rule.
That means an algorithm with this as the slowest branching rule has at most
3.3027k base cases, which would lead to a time complexity of O∗(3.3027k).
In this thesis, we use a new notation for branching vectors. The previous

branching vector (1, 1, 1, 2) can also be written as (
3−→
1 , 2). This notation is

often used to show the difference between certain types of branches. For
example, suppose we have a vertex x with d(x) = 3, and we have two types
of branches:

• One branch that puts x in the deletion set.

• Three branches that each put one of the neighbors of x in the deletion
set.

In this case, we would write this as (1,
3−→
1), to differentiate between the

two types of branches that put one vertex in the deletion set.

5

2 Connected variants

We start this thesis by looking at two problems with a requirement that
the graph, after removing the deletion set, consists of a single connected
component. This is a strong requirement, which means these algorithms are
faster on average, since more options do not meet the requirements and less
options need to be considered.

2.1 Induced Cycle Deletion Set

We start off with the problem with the strongest requirements, the Induced
Cycle Deletion Set problem.

Definition 1. Induced Cycle Deletion Set
Given: Graph G = (V,E), integer k
Question: Does a set S ⊆ V exist with |S| ≤ k such that the graph G−S

is 2-regular and consists of exactly one connected component? If so, give that
set.

2.1.1 NP-Completeness

To prove the minimum Induced Cycle Deletion Set problem is NP-complete
we use a reduction from Hamiltonian Cycle.

Definition 2. Hamiltonian cycle
A cycle that contains all vertices of a given graph exactly once.

Definition 3. Hamiltonian Cycle
Given: Graph G = (V,E)
Question: Does a Hamiltonian cycle exist for G? If so, give that cycle.

The Hamiltonian Cycle problem was one of the first problems that was
proven to be NP-complete [Kar72].

Lemma 2.1. Say we have a graph G = (V,E) and a graph G′ = (V ∪VE, E ′)
which is the result of subdividing each edge of G, where VE is the set of new
vertices. G has a Hamiltonian cycle if and only if G′ has an induced cycle
deletion set of size at most |E| − |V |.

Proof. First, suppose G has a Hamiltonian cycle C ⊆ E. By definition,
|C| = |V |, hence there are |E| − |V | edges not in the cycle. The set of
vertices created by subdividing those |E| − |V | edges is a solution to the

6

Induced Cycle Deletion Set problem on G′, since removing those vertices
from G′ leaves a cycle.

Now suppose we have a valid induced cycle deletion set S for G′ with
|S| ≤ |E|−|V |. The length of the remaining cycle in G′−S is |V |+|E|−|S| ≥
|V |+ |E|− (|E|− |V |) = 2 · |V |. We know in this cycle every edge is between
a vertex in V and one in VE, so exactly half of the vertices is in V . Therefore,
if |S| < |E| − |V |, there are more than 2 · |V | vertices in the cycle, which is
a contradiction if half of them are in V . Thus, we know |S| = |E| − |V | and
there are exactly 2 · |V | vertices in the cycle, including all vertices in V . If
we now take the edges in E corresponding to the vertices in VE ∩S, we have
a Hamiltonian cycle in G.

Lemma 2.2. The Induced Cycle Deletion Set problem is in NP.

Proof. The deletion set S is a polynomial size certificate. Removing the
vertices in S from a graph and checking whether the resulting graph is 2-
regular and consists of a single connected component can be done in linear
time.

Since the transformation in Lemma 2.1 can trivially be done in time linear
in |E|, the Lemmas 2.1 and 2.2 together prove that Induced Cycle Deletion
Set is NP-complete.

Theorem 2.3. The Induced Cycle Deletion Set problem NP-complete.

2.1.2 Algorithm

A simple branching algorithm can solve Induced Cycle Deletion Set inO(2kn3)
time. Suppose we have an instance (G = (V,E), k). We work with an in-
stance we reduce, which we call (G′ = (V ′, E ′), k′) and which initially is
equal to the given instance. In the algorithm a connected component C is
constructed, until it forms a cycle. All vertices adjacent to the component
but not in it are removed from the graph. Whenever the neighborhood or
degree of a vertex is discussed in this description, we mean the neighborhood
or degree in G′.

1. While G′ has a vertex v of degree 0 or 1, remove v and decrease k′ by
one.

2. Create a branch for every v ∈ V ′. In the branch where v is chosen, we
say that v is the starting vertex; v is put in C.

7

3. Create a branch for every neighbor x of v. In the branch where x is
chosen, x is added to C. The vertices v and x form the beginning of
the component C.

4. We now perform a number of checks to see whether we can directly
decide this branch. If |N(x) ∩ N(v)| ≥ 1 and k′ ≥ |V ′ \ C| − 1, we
add an arbitrary vertex from N(x) ∩ N(v) to C, and return yes with
S = V \ C as a valid solution set. Otherwise, every vertex w with
d(w) = 1 and w ∈ N(x) and all vertices in N(x) ∩ N(v) are removed
from the graph, lowering k′ by one for each removed vertex. If k′ < 0,
or if d(x) = 1, the branch fails and returns no.

5. If all the conditions from the previous step are false, we branch again.
In each branch we select a vertex y from N(x) \ C, which we know
contains at least one vertex since d(x) > 1 and x has exactly one
vertex in C. We add y to C and remove all other vertices in N(x) \ C
from the graph, lowering k′ accordingly. Finally, we rename y to x and
go back to step 4, where y now fulfills the role of x.

Lemma 2.4. If the above algorithm returns yes, the solution set it gives is
valid. If it returns no, there is no valid solution set.

Proof. If the algorithm returns yes, there was a branch where the first check
in Step 4 succeeded and we get a solution set S that leaves the final C as
the remaining graph when deleted. We know k′ ≥ |V ′| − |C|, and since k′

is lowered by one every time a vertex is removed from V ′ we know k − k′ =
|V | − |V ′|, thus k ≥ |V | − |C| = |S|. We also know C contains two adjacent
vertices after Step 3, and every time Step 5 is applied it adds a vertex adjacent
to the previous vertex added to C. Since the vertices adjacent to x that are
not in C get removed in Step 5, C remains a path while the algorithm is
running. When the algorithm ends the last vertex added to this path is one
adjacent to both ends of the path, turning the path into a cycle. This means
the solution set is valid.

Suppose the algorithm returns no, but there is a valid solution set S∗ that
leaves the cycle C as a remaining graph when deleted. Since every vertex in
C has degree 2 there was a branch that started on one of those vertices v.
There was also a branch that picked one of the vertices in N(v) ∩ C in Step
3, since all neighbors of v were chosen in one branch. From here there must
be a vertex in C that was deleted in all branches of the algorithm in Step 4
or Step 5, since S∗ was not found. When Step 4 removes a vertex it is either
degree 1 and can therefore not be part of a cycle, or it closes the cycle when
it is too small, which is not the case for C. Each vertex that is removed in

8

Step 5 is chosen in another branch of that same step, so no vertex is removed
in all branches here. Hence none of the vertices of C can be removed in all
branches, and S∗ cannot exist without being found.

2.1.3 Analysis

We will now prove a running time bound for the described algorithm.

Lemma 2.5. The algorithm in Section 2.1.2 runs in O(2kn3) time.

Proof. As usual with branching algorithms, we first look at the number of
base cases. Step 1 and 4 do not branch. Step 2 and Step 3 both create n
branches, resulting in O(n2) branches after Step 3. Step 5 branches recur-
sively. Note that x starts this step with exactly 1 neighbor in C, so Step
5 creates |N(x)| − 1 branches. Each branch lowers k′ by |N(x)| − 2, which
gives us the following recurrence:

T (k′) = (|N(x)| − 1) · T (k′ − |N(x)|+ 2)

The worst branching factor occurs when |N(x)| = 3:

T (k′) = 2 · T (k′ − 1)

This gives a branching factor of 2. Since k′ ≤ k, this leaves us with
O(2kn2) branches. If we look at the other actions, Step 1 takes O(n) time,
and Step 2 and Step 3 both take O(1) time per branch. The checks in Step
4 can be done in O(1) time, but the removal of vertices takes O(n) time
per branch. In Step 5 the removal again takes O(n) time. Since we have
O(2kn2) branches and O(n) time is used per branch, the final running time
of the algorithm is O(2kn3).

2.2 Induced Path/Cycle Deletion Set

The other connected variant we will look at is the Induced Path/Cycle Dele-
tion Set problem.

Definition 4. Induced Path/Cycle Deletion Set
Given: Graph G = (V,E), integer k
Question: Does a set S ⊆ V exist with |S| ≤ k such that the graph G−S

has maximum degree 2 and consists of exactly one connected component? If
so, give that set.

9

2.2.1 NP-Completeness

The proof that Induced Path/Cycle Deletion Set isNP-complete is similar to
the corresponding proof for Induced Cycle Deletion Set , except Hamiltonian
Path is used instead of Hamiltonian Cycle.

Definition 5. Hamiltonian path
A path that contains all vertices of a given graph exactly once.

Definition 6. Hamiltonian Path
Given: Graph G = (V,E)
Question: Does a Hamiltonian path exist for G? If so, give that path.

Like finding a Hamiltonian cycle, Hamiltonian Path was one of the first
problems that was proven to be NP-complete [Kar72].

Lemma 2.6. Say we have a graph G = (V,E) and a graph G′ = (V ∪VE, E ′)
which is the result of subdividing each edge of G, where VE is the set of new
vertices. G has a Hamiltonian path if and only if G′ has an induced path/cycle
deletion set of size at most |E| − |V |+ 1.

Proof. First, suppose G has a Hamiltonian path P . If P is a cycle, we can use
the exact same proof as we did in Lemma 2.1 since|E|−|V |+1 > |E|−|V |. If
P is not a cycle, we know by definition that |P | = |V | − 1, and |E| − |V |+ 1
edges are not part of the path. The vertices from VE that are created by
subdividing those edges that are not part of the path form a deletion set
that is a valid solution to the Induced Path/Cycle Deletion Set problem on
G′, since removing those vertices leaves a single path.

For the other direction, suppose we have a valid induced path/cycle dele-
tion set S for G′ with |S| ≤ |E| − |V | + 1. The number of vertices in the
path G′ − S is |V |+ |E| − |S| ≥ |V |+ |E| − (|E| − |V |+ 1) = 2 · |V | − 1.

If the path is a cycle, we know the number of vertices from V and VE in it
are equal, otherwise we would have at most 2 · |V |−2 vertices in the cycle. In
that case removing the edges corresponding to the vertices in S ⊆ VE from
G leaves a Hamiltonian cycle, which is a Hamiltonian path.

If the path is not a cycle, we look at whether the endpoints are in V or
VE. If both endpoints are in VE, there either are two vertices from V in S,
or there is one vertex from V is S which is adjacent to both endpoints. In
the former case there are at most 2 · (|V | − 2) + 1 = 2 · |V | − 3 vertices in the
path, which is not enough. In the latter case removing that vertex from S
is also a valid solution (since any vertices it was adjacent to were either the
two endpoints or were also in S) which leaves a cycle, which means there is a
Hamiltonian cycle in G as before. If one endpoint is in V and one endpoints

10

is in VE we can also remove the vertex in V from S, as all of its neighbors
are either that one endpoint from VE or are also in S. There were no other
vertices from V in S, since if there were the path would be too small again.
Therefore this path corresponds to a Hamiltonian path as well. Finally, if
both endpoints are in V there are no vertices from V in S, since there would
be at most V − 1 vertices from V and V − 2 vertices from VE in the path,
which is too small. Hence removing the edges corresponding to the vertices
in S ⊆ VE from G leaves a Hamiltonian path.

Lemma 2.7. The Induced Path/Cycle Deletion Set problem is in NP.

Proof. The deletion set S is a polynomial size certificate. Removing the
vertices in S from a graph and checking whether the resulting graph is has
maximum degree 2 and consists of a single connected component can be done
in linear time.

The transformation in Lemma 2.6 can be completed in linear time in |E|.
Therefore the Lemmas 2.6 and 2.7 prove that Induced Path/Cycle Deletion
Set is NP-complete.

Theorem 2.8. The Induced Path/Cycle Deletion Set problem NP-complete.

2.2.2 Algorithm

This algorithm is based on the algorithm from Section 2.1.2. Only Step 1
and Step 4 are changed, but for reading clarity we repeat the other steps
here as well.

1. If k ≥ n−1, an arbitrary vertex is chosen and put in C. Then S = V \C
is a valid solution and we return yes. Otherwise, remove all vertices of
degree 0 from G′ and decrease k′ by one for each removed vertex.

2. Create a branch for every v ∈ V ′. In the branch where v is chosen, we
say that v is the starting vertex; v is put in C.

3. Create a branch for every neighbor x of v. In the branch where x is
chosen, x is added to C. The vertices v and x form the beginning of
the component C.

4. We perform a number of checks to see whether we can directly decide
this branch. If d(x) ≥ 2 and k′ ≥ |V ′ \ C| − 1, we add an arbitrary
vertex from N(x) to C, and return yes with S = V \ C as a valid
solution set. Otherwise, every vertex w with d(w) = 1 and w ∈ N(x)
and all vertices in N(x) ∩N(v) are removed from the graph, lowering

11

k′ by one for each removed vertex. If k′ < 0, or if d(x) = 1, the branch
fails and returns no.

5. If all the conditions from the previous step are false, we branch again.
In each branch we select a vertex y from N(x) \ C, which we know
contains at least one vertex since d(x) > 1 and x has exactly one
vertex in C. We add y to C and remove all other vertices in N(x) \ C
from the graph, lowering k′ accordingly. Finally, we rename y to x and
go back to step 4, where y now fulfills the role of x.

Lemma 2.9. If the above algorithm returns yes, the solution set it gives is
valid. If it returns no, there is no valid solution set.

Proof. If the algorithm returns yes, there was a branch where either the
check in Step 1 or the first check in Step 4 succeeded. In the former case,
any isolated vertex is a valid remaining graph. In the latter case, suppose
solution set S is returned that leaves the final C as the remaining graph
when deleted. We know k′ ≥ |V ′| − |C|, and since k′ is lowered by one
every time a vertex is removed from V ′ we know k − k′ = |V | − |V ′|, thus
k ≥ |V | − |C| = |S|. We also know C contains two adjacent vertices after
Step 3, and every time Step 5 is applied it adds a vertex adjacent to the
previous vertex added to C. Since the vertices adjacent to x that are not in
C get removed in Step 5, C remains a path while the algorithm is running.
The final vertex added in Step 4 is also adjacent to the previous vertex added
to C, so C is still a path.

Suppose the algorithm returns no, but there is a valid solution set S∗

that leaves the path or cycle C as a remaining graph when deleted. If C is
a path, there was a branch that started on one of the endpoints v of C. If
C is a cycle, there was a branch that started on one oft he vertices v of C.
There was also a branch that picked one of the vertices in N(v) ∩ C in Step
3, since all neighbors of v were chosen in one branch. From here there must
be a vertex in C that was deleted in all branches of the algorithm in Step 4
or Step 5, since S∗ was not found. When Step 4 removes a vertex, adding
that vertex to C would end this branch by either adding a degree 1 vertex
or a vertex adjacent to v and thereby closing the cycle. Since the first check
in Step 4 failed, we know the component is still too small to end this branch
successfully, hence removing these vertices will not lead to C. Each vertex
that is removed in Step 5 is chosen in another branch of that same step, so no
vertex is removed in all branches here. Hence none of the vertices of C can
be removed in all branches, and S∗ cannot exist without being found.

12

2.2.3 Analysis

In this section we will prove the running time of the algorithm from the
previous section.

Lemma 2.10. The algorithm in Section 2.2.2 runs in O(2kn3) time.

Proof. First we look at the number of branches created. Since Step 1 and 4
do not branch, we know the number of branches is the same as in the proof
of Lemma 2.5; a total of O(2kn2) branches. The changes to Step 1 and Step
4 do not alter their running times, so they still take O(1) and O(n) time
respectively. This means the algorithm still runs in O(2kn3) time.

13

3 Co-Cycle Packing

In the following problem we will look at, the requirement that the graph
should be a single connected component after deleting the vertices is removed.

Definition 7. Co-Cycle Packing
Given: Graph G = (V,E), integer k
Question: Does a set S ⊆ V exist with |S| ≤ k such that the graph G−S

is 2 regular? If so, give that set.

3.1 NP-Completeness

We can prove that the Co-Cycle Packing problem is NP-hard by using a
reduction from Vertex Cover, a famous NP-hard problem [Kar72].

Definition 8. Minimum Vertex Cover
Given: Graph G = (V,E), integer k
Question: Does a set S ⊆ V exist with |S| ≤ k such that each edge in E

is incident to at least one vertex in S. If so, give that set.

v01
v02

v03
v04

(a) G, the input graph

v01

v41
v31

v21

v11

v12
v22

v32

v42v02

v03 v13

v23

v33
v43

v04

v14
v24

v34

v44

(b) G′, the result of the transformation

Figure 1: An example of the transformation in Lemma 3.1. The vertices
represented as a square are added by the transformation.

14

Lemma 3.1. Say we have an graph G = (V,E) and |V | = n. Let V =
{v01, v02, . . . , v0n}. We create n new vertex sets Vi = {v0i , v1i , v2i , . . . , vni } with
1 ≤ i ≤ n, consisting of one vertex from V and n new vertices each. We
create n edge sets Ei = {{v0i , v1i }, {v1i , v2i }, . . . , {vn−1i , vni }, {vni , v0i }} with
1 ≤ i ≤ n, such that each set Vi forms a cycle. Let V ′ =

⋃n
i=1 Vi and E ′ =

E∪ (
⋃n
i=1Ei). An example of this transformation can be seen in Figure 1. G

has a vertex cover of size at most k if and only if G′ has a co-cycle packing
of size at most k · (n+ 1).

Proof. First suppose there is a vertex cover S of G with |S| ≤ k. We claim
that the set S ′ = {vji |1 ≤ i ≤ n, 0 ≤ j ≤ n, v0i ∈ S} is a co-cycle packing.
If v0i is not in S ′, it is not in S which means NG(v) ⊆ S ⊆ S ′ because S
is a vertex cover. Since v0i has exactly two neighbors in Vi, it has exactly
degree 2 in G′ − S ′. If vji with j > 0 is not in S ′, both neighbors of vji are
also not in S ′ because Vi is either entirely in S ′ or entirely disjunct from
it. Therefore the subgraph G′ − S ′ is 2-regular and S ′ is a valid co-cycle
packing. For every vertex in S, there are exactly n + 1 vertices in S ′, so
|S ′| = |S| · (n+ 1) ≤ k · (n+ 1).

Now suppose we have the minimum size co-cycle packing S ′ of G′ with
|S ′| ≤ k · (n+ 1). We claim S = S ′ ∩ V is a vertex cover of G. Each cycle in
G′−S ′ is either an entire set Vi, or consists entirely of vertices in V . Suppose
we have a vertex v0i that is not in S ′, but the rest of Vi is in S ′. In G′−S ′ v0i is
part of cycle C. If we take S∗ = (S ′∪C)\Vi we get a co-cycle packing of the
same size or smaller than S ′. Therefore we can assume for each Vi it is either
entirely in, or entirely disjunct from S ′, which we know to be minimum size.
Because a vertex v0i is never adjacent to another vertex from V in G′ − S ′,

S = S ′ ∩ V is a vertex cover of G, of size |S| = |S ′|
n+ 1

≤ k · (n+ 1)

n+ 1
= k.

Theorem 3.2. Co-Cycle Packing is NP-complete.

Proof. The construction of G′ as in Lemma 3.1 can be done in quadratic time.
This shows Co-Cycle Packing to be NP-hard, which means all that is left
to do is prove Co-Cycle Packing is in NP . The deletion set is a polynomial
size certificate. Removing these vertices from the graph and checking all
remaining vertices to have degree 2 can trivially be done in linear time.

3.2 Algorithm

In this section a branching algorithm is detailed for the Co-Cycle Packing
problem. The reduction and branching rules are exhaustively applied in the

15

described order, such that when a rule is applied, no previous rule can be
applied. In this section, a deletion set D is build up. When a vertex is put in
D it is effectively removed from the graph. When the degree or neighborhood
of a vertex is discussed, neighbors in D are not considered. Additionally, a
weight function w(v) is introduced, with w(v) = 1 for all v ∈ V at the start
of the algorithm. When a vertex is put in D, the weight of that vertex
is subtracted from k. This is used for one of the Reduction Rules, which
combines multiple vertices into a single vertex. We also talk about a residue
set R, which contains the vertices that are definitively not in D.

3.2.1 Reduction Rules

We start by applying a number of simple Reduction Rules. We will prove
that the instance before applying the rule (G, k) is a yes-instance if and only
if the instance after applying the rule (G′, k′) is a yes-instance. If this is the
case, we call the rule safe.

Reduction Rule 3.1. If a vertex v has degree 0, add v to D.

Reduction Rule 3.2. If a vertex v has degree 1, add v to D.

Reduction Rule 3.3. If two vertices u and v have N(u) = {v, p}, N(v) =
{u, q} and p 6= q, contract u and v into a single vertex x. Set N(x) = {p, q}
and w(x) = w(u) + w(v).

Reduction Rule 3.4. If a vertex v ∈ R has N(v) = {u,w} put u and w in
R.

Reduction Rule 3.5. If a vertex v ∈ R has degree 3 or more, and |N(v) ∩
R| = 2, add all vertices in N(v) \R to D.

Lemma 3.3. Reduction Rules 3.1, 3.2, 3.4, and 3.5 are safe.

Proof. Safeness of Reduction Rules 3.1 and 3.1 is trivial, since all vertices in
R will have to be part of a cycle, and vertices of degree 0 or 1 can never be
part of a cycle.

For Reduction Rule 3.3 consider the case when one of the vertices, say u,
is added to D. Now v is degree 1 and also needs to be put in D. Conversely,
if u is added to R, v also needs to be added to R. Therefore u and v will
always end up in the same set and we can contract them into a single vertex
that combines their weights.

Rule 3.4 is safe because u and w cannot be put in D, since then v would
have degree lower than 2 while v is already in R.

16

The safeness of Rule 3.5 follows from the fact that adding any of the
vertices in N(v) \ R to R would give v, which is already in R, degree 3 in
G[R].

Finally, we have a trivial rule that ends the branch.

Reduction Rule 3.6. If k ≤ 0 and the graph is not 2-regular, or if a vertex
exists that is both in D and in R, end this branch and return no.

3.2.2 Degree 4 or more vertices

Case 3.1 In this branching step we deal with vertices of degree 4 or more.
We pick vertex v with the highest degree in the graph, of degree at least 4.
We have two types of branches:

• One branch where we put v in D.

•
(
d(v)
2

)
branches where we put v and two vertices from N(v) in R, and

all other vertices from N(v) in D.

3.2.3 Degree 2 vertices

Case 3.2 If there is a vertex with exactly degree 2 in the graph, say vertex
v, we decide what to do with v. Let the neighbors of v be u and w. There
are a number of subcases to consider, depending on the number of vertices
adjacent to both u and w. We know u and w have degree 3, if their degree
was higher Case 3.1 would have handled it, if it was degree 1 or 2 Reduction
Rules 3.2 or 3.3 would have applied, respectively.

Regardless of the subcase, there is a branch where v is put in D. Since
this is identical for all subcases, we do not repeat this for each individual
case. Instead, in each subcase we look at what happens when u, v, and w
are put in R.

Case 3.2.1 N(u) = {v, p, q}, N(w) = {v, r, s}
In this case, we put one of {p, q} and one of {r, s} in D, and put the two

unchosen vertices in R.

Case 3.2.2 N(u) = {v, p, w}, N(w) = {v, r, u}
If v is in R, we need to put p and r in D.

17

Case 3.2.3 N(u) = {v, p, q}, N(w) = {v, r, q}
We have two new types of branches:

• One branch where we put q in D, and p and r in R.

• One branch where we put p, r, and possibly (if q is degree 3) the third
neighbor of q in D, adding only q to R.

Case 3.2.4 N(u) = {v, w, q}, N(w) = {v, u, q}
If v is in R, we always put q in D.

Case 3.2.5 N(u) = {v, p, q}, N(w) = {v, p, q}
If p and q are adjacent, or if q has degree 2, we do not need to branch

because p ∈ D and {q, u, v, w} ⊆ R is always an optimal solution. Otherwise,
suppose N(p) = {u,w, r} and N(q) = {u,w, s}. We have two new types of
branches:

• One branch where we put q and r in D and p in R.

• One branch where we put p and s in D and q in R.

3.2.4 Cycles of length 3

After the above branching rules, we are left with a 3-regular graph. The next
step is dealing with all length 3 cycles. Figures depicting each of the cases
in this section can be found in Figures 2 and 3. In this section the vertices
in the cycle we found are a, b, and c.

Case 3.3.1 N(a) = {b, c, u}, N(b) = {a, c, v}, N(c) = {a, b, w}
In this most basic case, shown in Figure 2(a), a, b, and c are all adjacent

to a different vertex. We have three types of branches:

• One branch where we put a, b, c in D.

• One branch where we put u, v, w in D and a, b, c in R.

• Three branches where we put one of {a, b, c} in D, and put the two
vertices that were not chosen in R.

18

a

bc

w v

u

(a) Case 3.3.1

a

bc

w

v

r

(b) Case 3.3.2

Figure 2: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Square: The vertex has exactly two
neighbors that are not shown.

Case 3.3.2 N(a) = {b, c, v}, N(b) = {a, c, v}, N(c) = {a, b, w}
This case is shown in Figure 2(b). Say N(v) = {a, b, r}. The different

branches are:

• Put a, b, c, v ∈ D.

• Put v, w ∈ D, a, b, c ∈ R.

• Put c, r ∈ D, a, b, v ∈ R.

• Put b ∈ D, a, c, r, v, w ∈ R.

For the last option, we can also swap a and b, but since the vertices that
are adjacent to the rest of the graph, r and w are still in R, this would be
equivalent.

Case 3.3.3 N(a) = {b, c, v}, N(b) = {a, c, v}, N(c) = {a, b, v}
We know v is degree 3, therefore we have a fully connected component of

4 vertices, as shown in Figure 3(a). We do not need to branch, as putting v
in D and the other three vertices in R gives an optimal solution.

Case 3.3.4 N(a) = {b, c, v}, N(b) = {a, c, v}, N(c) = {a, b, w}, N(v) =
{a, b, w}

This case is shown in Figure 3(b). Since w is the only vertex that is
adjacent to a vertex we do not know about, we can choose to put it in D or
in R:

• One branch where we put v and w in D, and a, b, and c in R.

• One branch where we put b and the third neighbor of w in D, and a,
c, v, and w in R.

19

a

bc

v

(a) Case 3.3.3

a

bc

w

v

s

(b) Case 3.3.4

Figure 3: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Square: The vertex has exactly two
neighbors that are not shown.

3.2.5 Degree 3 vertices

The final branching rule has eight cases in which it handles all remaining
degree 3 vertices. Say the degree 3 vertex we have is x with N(x) = {u, v, w}.
The cases depend on the number of neighbors and edges u, v, and w have in
common.

Case 3.4.1 N(u) = {x, o, p}, N(v) = {x, q, r}, N(w) = {x, s, t}
In the most straightforward case, depicted in Figure 4(a), u, v, and w

have no neighbors or edges in common, except for the vertex x. We have a
four types of branches:

• One branch where we put x in D.

• Four branches where we put u, one of {q, r}, and one of {s, t} in D.
We also put v, w, and the two unchosen vertices of {q, r, s, t} in R.

• Four branches where we put v, one of {o, p}, and one of {s, t} in D.
We also put u, w, and the two unchosen vertices of {o, p, s, t} in R.

• Four branches where we put w, one of {o, p}, and one of {q, r} in D.
We also put u, v, and the two unchosen vertices of {o, p, q, r} in R.

20

x

u

o p

v q

rs

wt

(a) Case 3.4.1

x

u

o

p

v

qs

wt

r

(b) Case 3.4.2

x

u

o

p

v

qs
w

(c) Case 3.4.3

x

u
o p

v

qs
w

t r

(d) Case 3.4.4

Figure 4: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Square: The vertex has exactly two
neighbors that are not shown.

Case 3.4.2 N(u) = {x, o, p}, N(v) = {x, p, q}, N(w) = {x, s, t}
We handle this case, shown in Figure 4(b), in much the same way as the

previous one, except for the branches where u and v were both put in R. We
now have five types of branches:

• One branch where we put x in D.

• Four branches where we put u, one of {p, q}, and one of {s, t} in D.
We also put v, w, and the two unchosen vertices of {p, q, s, t} in R.

• Four branches where we put v, one of {o, p}, and one of {s, t} in D.
We also put u, w, and the two unchosen vertices of {o, p, s, t} in R.

• One branch where p and w are put in D, and o and q are put in R.

• One branch where we put {o, q, r, w} in D and p in R.

21

Case 3.4.3 N(u) = {x, o, p}, N(v) = {x, p, q}, N(w) = {x, p, s}
In this case, shown in Figure 4(c), the vertices p and x are symmetrical,

since their neighborhoods are identical. There are four branches..

• We put p in D.

• We put u, q, and s in D.

• We put v, o, and s in D.

• We put w, o, and q in D.

Case 3.4.4 N(u) = {x, o, p}, N(v) = {x, p, q}, N(w) = {x, o, s}
This case, depicted in Figure 4(d), has a total of twelve branches, which

we describe in Table 1.

D R
p, v, s, t o, u, w, x
o, q, r, w p, u, v, w
p, u, v, x o, s, t, w
o, u, w, x p, q, r, v
u, x o, p, q, r, s, t, v, w

o, p, u, v, w, x –
v, w, x o, p, r, t, u
q, s, u o, p, r, t, v, w, x
o, p, u q, s, v, w, x
r, t, x o, p, q, s, u, v, w
p, w o, q, t, u, v, x
o, v p, q, t, u, w, x

Table 1: The twelve branches of Case 3.4.4.

Case 3.4.5 N(u) = {x, o, p}, N(v) = {x, p, q}, N(w) = {x, o, p}
This case can be seen in Figure 5(a). Here we have four branches.

• One where {p, t, v} are put in D.

• One where {o, q, w} are put in D.

• One where p and w are put in D, and {o, q, t, u, v, x} are put in R.

• One where o and v are put in D.

22

x

u
o p

v

q
w

t

(a) Case 3.4.5

x

u

o

p

v
s

wt

r

q

(b) Case 3.4.6

x

u
o p

vw
(c) Case 3.4.7

x

u
o p

v
qw

t

s

r

(d) Case 3.4.8

Figure 5: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Square: The vertex has exactly two
neighbors that are not shown.

The vertices that get put in R are only listed for the third branch, since
for the other branches the vertices that could get put in R form a complete
cycle, in which case it does not matter.

Case 3.4.6 N(u) = {x, o, p}, N(v) = {x, o, p}, N(w) = {x, s, t}
This case is shown in Figure 5(b). We have five types of branches that

create a total of twelve branches.

• Four branches where u, one of {o, p}, and one of {s, t} are added to D.

• Two branches where u, x, and possibly w are added to D.

• Two branches where w, and either {p, q} or {o, r} are added to D.

• Two branches where q, r, x, and possibly w are added to D.

• Two branches where o, p, u, v, x, and possibly w are added to D.

23

Case 3.4.7 N(u) = {x, o, p}, N(v) = {x, o, p}, N(w) = {x, o, p}
In this case, shown in Figure 5(c), o and p are degree 3, we know their

entire neighborhoods and the entire connected component. We do not need
to branch, and put p and v in D.

Case 3.4.8 N(u) = {x, o, p}, N(v) = {x, p, q}, N(w) = {x, o, q}
This case is shown in Figure 5(d), and has four types of branches.

• One branch where we put {r, s, t, x} in D.

• Three branches where we put either {p, q, t, v}, or {o, q, r, w}, or {o, p, s, u}
in D.

• Three branches where we put either {q, u}, or {o, v}, or {p, w} in D.

• One branch where we put {o, p, q, u, v, w, x} in D.

3.3 Analysis

In this section we will analyze the time complexity of the algorithm from the
previous section, case by case.

Case 3.1 deals with vertices of degree 4 or more, and has two types of
branches. The first one is only one branch, that puts one vertex in D. The
other type of branch creates

(
d(v)
2

)
branches that each put d(v) − 2 vertices

in D. We can say this has the branching vector (1,

(d(v)
2)

−−−−−→
d(v)− 2). The worst

branching vector occurs when d(v) = 4: (1,
6−→
2).

Case 3.2 decides what to do with vertices of exactly degree 2. It has five
subcases, for which the branching vectors follow from the descriptions in a
straightforward manner. Recall that the descriptions of the subcases leave
out the branch where v is put in D, which is identical to all subcases. The
branching vectors of these Cases is shown in Table 2. Note that for Case
3.2.3 it is assumed q is degree 2; if it is degree 3 the vector is strictly faster.
The slowest of these cases is Case 3.2.1.

24

Case # Branching Vector

3.2.1 (1,
4−→
2)

3.2.2 (1, 2)
3.2.3 (1, 1, 2)
3.2.4 (1, 1)
3.2.5 (1, 2, 2)

Table 2

Case 3.3 deals with cycles of length 3 within the 3-regular graph. Such
cycles can be detected in cubic time. There are four subcases, of which only
the first has a complex analysis. With a simple analysis, Case 3.3.1 would

have branching vector (3, 3,
3−→
1). We can improve this by looking at what

happens after this branch, specifically in the three branches where a, b, or c
were put in D. In the branch where a is put in D, b and c are now adjacent
degree 2 vertices. They are contracted into a single vertex d by Reduction
Rule 3.3. We know v and w, the two neighbors of d, are both degree 3, and
since there are no degree 4 or more vertices in the graph, Case 2 will be
the next branching rule to apply. Therefore we can include the branching
vector of that case in the branching vector of this case. The slowest subcase

of 3.2 was Case 3.2.1, with vector (1,
4−→
2). Combining this into our previous

branching vector gives (3, 3,
3−→
2 ,

12−→
3).

The other cases, Cases 3.3.2 through 3.3.4, can be analyzed in a more
simple manner. Case 3.3.2 has branching vector (4, 2, 2, 1), and Case 3.3.4
has branching vector (2, 2). Case 3.3.3 does not branch, and can be solved
in polynomial time.

The subcases of Case 3.4 have a lot of branches, but are straightforward
to analyze. The branching vectors of the Cases 3.4.1 through 3.4.8 are shown
in Table 3, except for Case 3.4.7. That case does not branch, and can be
solved in polynomial time. Of these cases, 3.4.1 is the slowest.

25

Case # Branching Vector

3.4.1 (1,
4−→
3 ,

4−→
3 ,

4−→
3)

3.4.2 (1,
4−→
3 ,

4−→
3 , 2, 4)

3.4.3 (1, 3, 3, 3)

3.4.4 (
3−→
2 ,

4−→
3 ,

4−→
4 , 6)

3.4.5 (3, 3, 2, 2)

3.4.6 (
4−→
3 , 2, 3,

2−→
3 , 3, 4, 5, 6)

3.4.8 (4,
3−→
4 ,

3−→
2 , 7)

Table 3

If we calculate the branching factors for the vectors in this analysis, we
see Case 3.1 is the slowest part of this algorithm, when dealing with degree

4 vertices. The branching vector (1,
4−→
2) gives a branching factor of 3, which

means the time complexity of the described algorithm is O∗(3k).

26

4 Co-Path/Cycle Packing

The final problem we look at in this thesis is the Co-Path/Cycle Packing
problem.

Definition 9. Co-Path/Cycle Packing
Given: Graph G = (V,E), integer k
Question: Does a set S ⊆ V exist with |S| ≤ k such that the graph G−S

has maximum degree 2? If so, give that set.

4.1 NP-Completeness

For Co-Path/Cycle Packing we will not write a full NP-completeness proof
here, since it falls in the class of non-trivial and hereditary node-deletion
problems. Non-trivial means there is an infinite number of yes-instances
and an infinite number of no-instances, and hereditary means that if the
required property (maximum degree 2) holds for some graph, it also holds
for all vertex-induced subgraphs of that graph. The previously discussed
problems have non-hereditary properties, since the induced subgraphs might
have multiple connected components, or leave vertices with degree 0 or 1.
However, the Co-Path/Cycle Packing problem does belong to this class of
problems, which all have been proven to be NP-complete in a previous paper
[LY80].

Theorem 4.1. The Co-Path/Cycle Packing problem is NP-complete.

4.2 Algorithm

In this section the algorithm used for Co-Path/Cycle Packing will be detailed,
which will be analyzed in the next section. The various steps of the algorithm
are applied in the order they are described in here; for instance, after the
branching rule that deals with vertices of degree 5 or more, we can assume
the maximum degree of the graph is degree 4. In the algorithm, two sets are
build, D and R. They are the deletion and residue sets respectively, and at
the end of the algorithm every vertex is in exactly one of these sets in such
a way that G[R] = G −D has maximum degree 2. After a vertex is put in
D, k is decreased by one and the vertex is ignored and does not influence
the degree of it’s neighbors. For example, if vertex v has degree 1 and it’s
neighbor gets put in D, v will have degree 0 afterwards. When a vertex is
put in R, it always has maximum degree 2.

27

4.2.1 Reduction Rules

The algorithm starts with a number of reduction rules. We will prove these
rules are safe. We call vertices with degree 3 or more illegal.

Reduction Rule 4.1. If a vertex v has degree 0, add v to R.

Reduction Rule 4.2. If a vertex v has degree 1, add v to R.

Reduction Rule 4.3. If two vertices u and v are adjacent and both are
degree 2, add both u and v to R.

Reduction Rule 4.4. If a vertex v has degree 2 and one of its neighbors is
in R, add v to R.

Reduction Rule 4.5. If a vertex u has d(u) ≥ 2 and a vertex v has d(v) ≤ 2
such that (N(v) \ {u}) ⊆ N(u) and ∀w ∈ N(v). d(w) ≤ 3, then v is put in
R.

Lemma 4.2. Reduction Rules 4.1, 4.2, 4.3, 4.4, and 4.5 are safe.

Proof. Reduction Rule 4.1 is safe because v is not connected to any illegal
vertices, therefore putting it in D never reduces the degree of such a vertex.
Reduction Rule 4.2 is safe since putting v in D reduced the degree of at
most one illegal vertex, the neighbor of v, say u. Therefore if we have a valid
deletion set S with v ∈ S, we can create a new deletion set S ′ = (S\{v})∪{u}
with |S ′| ≤ |S|.

Reduction Rule 4.4 is safe for a similar reason. Say N(v) = {u,w} with
u ∈ R. We know u is at most degree 2 since it is in R, therefore replacing
v with w in any valid deletion set does not affect the validity of the set and
does not increase its size.

For Reduction Rule 4.3, say N(v) = {u,w} and N(w) = {v, x}. Since
deleting v reduces the degree of at most one illegal vertex u, deleting u instead
is safe, and the same holds for replacing w with x. Therefore a valid deletion
set S can be used to create S ′ = (S \ {v, w})∪{u, x} a new deletion set with
|S ′| ≤ |S|.

Reduction Rule 4.5 has two options. If a solution set S contains both
u and v, the set S ′ = (S \ {v}) would be a smaller set which would also
be a valid solution, since the vertices in N [v] that are not in S are at most
degree 2 (because u is in S). If a solution S contains v but not u, the set
S ′ = (S \ {v}) ∪ {u} would be a valid solution because the degree of the
vertices in N(v) is not increased and v itself has at most degree 2.

Reduction Rule 4.6. If a vertex v has three or more neighbors in R, put v
in D.

28

Reduction Rule 4.7. If a vertex v has d(v) ≥ k + 2, put v in D.

Lemma 4.3. Reduction Rules 4.6 and 4.7 are safe.

Proof. Reduction Rule 4.6 is clearly safe, since putting v in R would give
G[R] a degree 3 (or more) vertex, meaning v will always have to end up in
D. Reduction Rule 4.7 is safe because we can put at most k neighbors of
v in D, after which it would still be at least degree 3. Therefore any valid
deletion set will contain v.

Finally, there is a trivial rule to end the current branch.

Reduction Rule 4.8. If k ≤ 0 and there is a vertex v with d(v) > 2, end
this branch and return no.

4.2.2 Degree 5 or more vertices

Case 4.1 In the first branching step we deal with all vertices with degree 5
or more. Say we have vertex v of degree d(v) ≥ 5. We have four types of
branches.

• One branch where v is put in D.

•
(
d(v)
2

)
branches where all but two neighbors of v are put in D.

• d(v) branches where all but one neighbor of v are put in D.

• One branch where all neighbors of v are put in D.

4.2.3 Degree 4 vertices

After the above step the maximum degree of the graph is 4, and in this step
we will deal with all degree 4 vertices. In this section, we have a degree 4
vertex v and one of its neighbors u. We will look a number of different cases
for u, and provide a branching rule for each. We look at these cases in the
order described here.

A neighbor in R
Case 4.2 If u is in R, we either put v in D, or put two of the three other
neighbors in D. The latter type of branch can be done in three ways. Note
that, if v has more than one neighbor in R some of these branches can be
ignored.

29

A degree 4 neighbor
In the case where u is degree 4, we have four different subcases depending
on the number of common neighbors between u and v.

Case 4.3.1 If u and v have no common neighbors, the branches are very
straightforward. For each branch, we look at whether both, one or none of
u and v will be put in D, and then which vertices should additionally be
added.

• One branch where both u and v are put in D.

• Six branches where one of u and v, and one neighbor of the other are
put in D.

• Nine branches where neither u and v are in D. In this case two neigh-
bors of both vertices should be put in D.

Since we know u and v are degree 4, they each have 3 neighbors beside
each other, which gives us six and nine branches for the latter two types of
branch.

Case 4.3.2 If u and v share one common neighbor, say o, the branches
where at least one of u and v is put in D are the same, so we will not repeat
them. There are two other types of branches, depending on whether o is put
in D.

• Four branches where o is put in D, together with one other neighbor
of both u and v.

• One branch where o is not put in D, but both other neighbors of u and
both other neighbors of v are put in D.

Case 4.3.3 When u and v share two common neighbors, say o and p, the
branches where at least one of u and v is put in D are the same once again.
The two new types of branches originate from putting one or both of o and
p in D; putting neither D means u and v will not become degree 2 or lower.

• One branch where o and p are put in D.

• Two branches where either o or p is put in D, together with the other
neighbor of u and that of v.

30

Case 4.3.4 Finally, when u and v share three common neighbors (o, p,
and q), we say they dominate each other, which means N [u] ⊆ N [v] and vice
versa. This means putting u in D but not v, is equivalent to putting v in D
but not u. Therefore the branches where u is put in D but v is not can be
ignored, reducing the total number of branches.

• One branch where both u and v are put in D.

• Three branches where v, and one of {o, p, q} are put in D.

• Three branches where two of {o, p, q} are put in D.

• One branch where o, p, and q are put in D.

A degree 3 neighbor
If u is degree 3, we have three subcases depending on how many neighbors
u and v have in common, similar to when u is degree 4.

Case 4.4.1 When u and v have no neighbors in common, we have three
types of branches.

• One branch where v is put in D.

• Three branches where u and another neighbor of v are put in D.

• Six branches where one neighbor of u and two neighbors of v are put
in D.

Case 4.4.2 If u and v share one neighbor o, the first two types of branches,
where u and v are put in D, also appear so we will not repeat them. In
addition, we have two new types of brances depending on whether o is put
in D.

• Two branches where o and another neighbor of v are put in D.

• One branch where the two other neighbors of v and the other neighbor
of u are put in D.

Case 4.4.3 When u and v have two neighbors in common (o and p),
the branches change a bit, since v now dominates u. Therefore the branches
where u is put in D (and v is not) can be ignored since they will never lead
to the optimal solution. This leaves us with only two branches.

• One branch where v is put in D.

• One branch where both o and p are put in D.

31

A degree 2 neighbor
Case 4.5 In the case where u is degree 2, we use a very simple branching
rule.

• One branch where v is put in D.

• Six branches where two neighbors of v are put in D.

The fact that u is degree 2 is only relevant in the analysis, because if u
and v are not put in D, Reduction Rule 4.3 applies.

4.2.4 Degree 3 vertices

Now that all vertices with degree higher than 3 have been handled, we will
take a look at the degree 3 vertices in the graph. This will be done by taking
a degree 3 vertex and looking at the neighborhood of that vertex.

Two neighbors in R
Case 4.6 First we handle degree 3 vertices with 2 neighbors in R. Say we
have x with N(x) = {u, v, w} and u, v ∈ R. In this case, either w or x has
to be in D, and we branch on either of these options.

One neighbor in R
Say there is a degree 3 vertex x with 1 neighbor in R, so N(x) = {u, v, w}
and u ∈ R. Of v (and w) we know it is either degree 2 or degree 3, and if it
is degree 2 its other neighbor is degree 3. If any of the degrees are lower, v
would be in R because of Reduction Rules 4.2 and 4.3.

Case 4.7.1 If at least one of v and w is degree 2, we can branch on
putting either of them in D. We do not need a branch where we put x in D,
since at most one of its neighbors is degree 3, and therefore any deletion set
containing x can replace it with its degree 3 neighbor (or a degree 2 neighbor
if there is no degree 3 neighbor) and it would still be a valid deletion set of
the same size.

32

Case 4.7.2 If both v and w are degree 3 and they are neighbors, the
same can be done since removing one makes the other degree 2 (and x never
needs to be removed for the same reasons as above). Finally, if they are not
neighbors we need a more complex branching rule. In this case there are a
total of six branches:

• One branch where x is put in D.

• One branch where v and w are put in D.

• Two branches where v and either of the two vertices in N(w) \ {x} are
put in D.

• Two branches where w and either of the two vertices in N(v) \ {x} are
put in D.

Length 3 cycles
Case 4.8.1 After the previous cases we know there are no degree 3 vertices
with a neighbor in R remaining. We look for a vertex v with at least two
degree 3 neighbors u and w that share an edge between them. If u, v, and
w do not have other neighbors in common, i.e. when |N({u, v, w})| = 3, we
branch on putting either of the three vertices u, v, and w in D, or putting
all three outer vertices in D, resulting in 4 branches.

Case 4.8.2 If two of the vertices do share a neighbor, say N [u] = N [v] =
{o, u, v, w} we know o is degree 3. If it was degree 2, Reduction Rule 4.5
would have applied. Say N(o) = {p, u, v} and N(w) = {q, u, v}. We create
three branches:

• One branch where u is put in D.

• One branch where o and q are put in D.

• One branch where w and p are put in D.

In the case where o is also adjacent to v, we do not need to branch as
none of the vertices have a connection to the rest of the graph, so we can
simply put one of the vertices in D.

Length 3 chains
Now we look for a degree 3 vertex v with at least two degree 3 neighbors,
say u and w. This can occur in a number of cases, which will be discussed
below. In all these cases, we will look at the neighborhoods of u, v and w.

33

u

o r

s

wv

qp

(a) Case 4.9.1

u

o r

s

wv

p

(b) Case 4.9.2

Figure 6: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Open square: The vertex has one or two
neighbors that are not shown.

Case 4.9.1: N(u) = {o, p, v}, N(v) = {q, u, w}, N(w) = {r, s, v}
This is the most basic case, shown in Figure 6(a). The vertices u, v and

w do not have other common neighbors. We create ten total branches for
this, of four types:

• One branch where only v is put in D.

• One branch where u and w are put in D.

• Four branches where either u and one of {r, s}, or w and one of {o, p}
are put in D.

• Four branches where one of {o, p} and one of {r, s} and q are put in D.

Note that none of the sets of vertices that are put in D in any of the
branches is a subset of the set of vertices put in D in another branch. Because
v can be put in D on it’s own, it is not considered in any of the other branches.

Case 4.9.2: N(u) = {o, p, v}, N(v) = {p, u, w}, N(w) = {r, s, v}
In this case, shown in Figure 6(b), u and v have a common neighbor p.

We know that p is degree 2, if it was degree 3 we would have a length three
3 cycle of degree 3 vertices, and it would previously have been found. Here
we have eight branches that each ensure the degree 3 vertices u, v, and w are
either in D or have at least one neighbor in D:

• One branch where only v is put in D.

• Three branches where u and one of {r, s, w} is put in D.

• Two branches where w and one of {o, p} is put in D.

• Two branches where p and one of {r, s} is put in D.

34

u

o r

w
v

p

q

Case 4.9.3

Figure 7: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Open square: The vertex has one or
two neighbors that are not shown. Closed square: The vertex has exactly one
neighbor that is not shown.

Case 4.9.3: N(u) = {o, p, v}, N(v) = {q, u, w}, N(w) = {p, r, v}
In this case, which is shown in Figure 7, u and w have a common neighbor

p. We know p is degree 3; if it was degree 2 Reduction Rule 4.5 would have
applied. There are five types of branches.

• One branch where only v is put in D.

• One branch where u and w are put in D.

• Two branches where either u and r, or o and w are put in D.

• One branch where o, q and r are put in D.

• One branch where p and q are put in D.

u

o

w
v

p

q

(a) Case 4.9.4

u

o

w
v

p

q

(b) Case 4.9.5

Figure 8: The vertex shapes have different meanings. Circle: The entire
neighborhood of the vertex is shown. Open square: The vertex has one or
two neighbors that are not shown. Closed square: The vertex has exactly one
neighbor that is not shown.

35

Case 4.9.4: N(u) = {o, p, v}, N(v) = {q, u, w}, N(w) = {p, q, v}
This case is shown in Figure 8(a). Here, u and w have a common neighbor

p again, and so do v and w with q. We know p is degree 3, otherwise
Reduction Rule 4.5 would have applied. We also know q is degree 2; if it
were degree 3 there would be a cycle that would have been found previously.
Say N(p) = {r, u, w}. We have a total of nine branches:

• Three branches where o, v, and one or none of {p, r} are put in D.

• Three branches where u, and one of {p, r, v} are put in D. If r is put
in D, we also add w to D.

• Three branches where v and one of {p, r, w} are put in D.

In the branch where we put u, r and w in D, w is added since after
removing u and r it is still degree 3.

Case 4.9.5: N(u) = {o, p, v}, N(v) = {q, u, w}, N(w) = {o, p, v}
In this case, shown in Figure 8(b), u and w have two common neighbors o

and p. We know they both are degree 3, otherwise Reduction Rule 4.5 would
have applied. We have N(o) = {s, u, w} and N(p) = {r, u, w}.

• Seven branches where one of {o, s}, one of {p, r}, and one of {q, v} are
put in D, with at least one of {o, p, v} being put in D.

• Three branches where u and one of {o, p, v} are put in D.

• One branch where u and w are put in D.

In the first type of branch, there are three binary options, resulting in
23 = 8 variants of that branch, and the restriction removes the combination
{q, r, s}. In the second type of branch we could exchange u and w since they
are symmetrical.

Two adjacent degree 3 vertices
Case 4.10 If we now have two adjacent degree 3 vertices u and v, we know
all vertices in N({u, v}) have degree 2; if any of them had degree 3 one of the
previous cases would have applied. This allows for a simple branching rule.

• Two branches where one of {u, v} is put in D.

• Four branches where a vertex from N(u) \ {v} and one vertex from
N(v) \ {u} are put in D.

36

4.2.5 Equality to Edge Cover

What remains now is a graph where all vertices are either degree 2 or 3,
with the additional knowledge that the two neighbors of a degree 2 vertex
are always degree 3 vertices, and the three neighbors of a degree 3 vertex are
always degree 2 vertices. Say G = (V,E) and V = V2∪V3, where V2 contains
all degree 2 vertices in G, and V3 contains all degree 3 vertices. We can now
say G is a biregular bipartite graph, with V2 and V3 as the two color classes.

Theorem 4.4. If a bipartite graph has one partition with only vertices of
degree 2 and one partition with only vertices of degree 3, we can construct an
Co-Path/Cycle-Packing on it in polynomial time.

We will prove this theorem in the rest of this section. For this, we trans-
form the graph and solve the Minimum Edge Cover problem on the new
graph.

Definition 10. Minimum Edge Cover
Given: Graph G = (V,E)
Question: Give the set S ⊆ E of minimum possible size such that each

vertex in V is incident to at least one edge in S.

Lemma 4.5. There is always a minimum cardinality co-path/cycle packing
which contains no vertices from V3.

Proof. Suppose we have a minimum co-path/cycle packing S with v ∈ S∩V3.
If any of the neighbors of v are in S, S ′ = S − v would be a smaller co-
path/cycle packing than S since v and all it’s neighbors have maximum
degree 2 in G−S. This cannot be the case, since S has minimum cardinality.
Therefore N(v) ∩ S = ∅. Say u is a neighbor of v, S ′′ = (S − v) ∪ {u} is a
co-path/cycle packing with |S| = |S ′′|. We can repeat this for all vertices in
S ′′ ∩ V3.

In the following Lemmas we will use G = ((V2∪V3), E) and G′ = (V3, E
′),

where G′ is the graph G′ with all vertices in V2 contracted. It will be used
to perform the Edge Cover algorithm on.

Lemma 4.6. If S is a co-path/cycle packing in graph G with V3 ∩ S = ∅,
SEC = {uw | v ∈ S ∨ uv ∈ E ∨ vw ∈ E} is an edge cover in graph G′.

Proof. If SEC is not an edge cover, there must be a vertex v ∈ V3 for which
no adjacent edges are in SEC . This would mean no neighbors of v in G are
in S, which would mean v is still degree 3 in G[(V2 ∪ V3) \ S], but since S is
a co-path/cycle packing this cannot be the case.

37

Lemma 4.7. If SEC is an edge cover in graph G′, S = {v | uw ∈ SEC ∨uv ∈
E} is a co-path/cycle packing in G.

Proof. If S is not a co-path/cycle packing in G, there must a vertex v ∈ V3
with all three neighbors not in S, which would mean no edges adjacent to v
in G′ are in SEC . Since SEC is an edge cover, this cannot be the case.

Lemma 4.8. We can construct a minimum co-path/cycle packing in G in
polynomial time.

Proof. Constructing graph G′ can trivially be done in polynomial time, and
we can find a minimum edge cover SEC on it in polynomial time by finding
a maximum matching and extending it greedily [Law76]. Using SEC we can
construct a co-path/cycle packing S according to Lemma 4.7, which also
takes polynomial time.

All that is left to show is that S has minimum size. Suppose there is
some co-path/cycle packing S∗ with |S∗| < |S|. We can use Lemma 4.6 to
construct an edge cover onG′, say S∗EC . By construction we have |S∗EC | = |S∗|
and |SEC | = |S|, which means |S∗EC | < |SEC |, but since we know SEC is a
minimum edge cover, we have a contradiction and thereby show that S has
minimum size.

In summary, we know we can construct a minimum size solution with
only degree 2 vertices through Lemma 4.5. After we contract them, these
vertices become edges in G′, and Lemmas 4.6 and 4.7 show that an edge
cover on G′ is also a Co-Path/Cycle-Packing on G, and vice versa. Finally
Lemma 4.8 shows that if the edge cover on G′ is of minimum size, so is
the Co-Path/Cycle-Packing on G, and that we can construct these sets in
polynomial time.

4.2.6 A note on correctness

Usually a proof of correctness would be shown, proving that the algorithm
will find a solution if it is available, and that any solution it finds is valid.
However, due to the extensive case analysis making up a large part of the
algorithm, these proofs are straightforward and repetitive, and will therefore
not be shown.

One can see that a solution will be found if it is available, by looking
at each individual case and seeing that each minimal sub-solution for the
described subgraph is included in one of the branches. A sub-solution is a
set of vertices that leaves only vertices of degree 2 or lower when removed
from the subgraph. Such a set is minimal if no vertex can be removed from
the set and still have it be a valid sub-solution.

38

One can also easily see that any solution the algorithm finds will be valid.
Suppose it is not, and we have a solution set S provided by the algorithm,
and a vertex v that is still degree 3 or more in G− S. We know v cannot be
degree 5 or more, since Case 4.1 would have applied. If it was degree 4 one
of the cases in Section 4.2.3 would have applied, and if it was degree 3 one of
the cases in Section 4.2.4 would have applied. After any case is applied, one
or more vertices are added to D and that same case can no longer apply in
that same place. Therefore we know a v cannot have a degree higher than 2
in G− S.

4.3 Analysis

In this section we will analyze the algorithm described in the previous section,
part by part.

Case 4.1 deals with vertices of degree 5 or more. It is slowest vertices

with degree 5, in which case it has branching vector (1,
10−→
3 ,

5−→
4 , 5). While the

number of branches grows for higher degrees, the number of vertices put in
D also grows, which outweighs the increased number of branches and ensures
higher degrees get faster.

In the next step, vertices of degree 4 or more are handled. We start with
Case 4.2, a vertex that has a neighbor in R, which has the branching vector

(1,
3−→
2).
The next phase, which deals with two adjacent degree 4 vertices, has four

subcases 4.3.1 through 4.3.4, depending on the number of common neighbors
between the degree 4 vertices. In order of increasing case number, the branch-

ing vectors are (2,
6−→
2 ,

9−→
4), (2,

6−→
2 ,

4−→
3 ,

1−→
4), (2,

6−→
2 , 2,

2−→
3), and (2,

3−→
2 ,

3−→
2 , 3).

The step after that deals with a degree 4 vertex adjacent to a degree 3
vertex. It has three subcases 4.4.1 through 4.4.3, with branching vectors (in

order of increasing case number again) (1,
3−→
2 ,

6−→
3), (1,

3−→
2 ,

2−→
2 , 3), and (1, 2).

In Case 4.5 we deal with a degree 4 vertex with a degree 2 neighbor. It

has no subcases, and has a branching vector (1,
6−→
2).

The part that deals with degree 3 vertices consists of a number of different
cases.

Case 4.6 handles degree 3 vertices with two neighbors in R. Two branches
are created that both put one vertex in D, so this has branching vector (1, 1).

39

In Case 4.7.1 vertices with one neighbor inR are dealt with. Two branches
are created with one vertex added to D in each, giving the branching vector
(1, 1) again. Case 4.7.2 (where v and w are degree 3 and not adjacent) creates

six branches and results in the branching vector (1,
5−→
2).

The phase that deals with cycles of length 3 consisting of degree 3 vertices
has two distinct cases. The first one, Case 4.8.1, where the vertices have no
common neighbors apart from each other, results in the branching vector

(
3−→
1 , 3). This is very slow, but we can improve upon this when we look at the

branches where one of the vertices in the cycle is put in D.
We will try to find a vertex of degree 3 with a neighbor in R. Say

N(u) = {r, v, w}, N(v) = {s, u, w}, and N(w) = {t, u, v}. We know r,
s, and t are either degree 3, or degree 2 with two degree 3 neighbors. If we
now put v in D (the case is symmetrical when u or w is put in D), Reduction
Rule 4.3 will put u and w in R. If either r or t is degree 3, we have found
the vertex we are looking for. If not, both are degree 2, and we apply rule
4.4 to put r in R. The other neighbor of r was degree 3 before this step, and
if it still is we have found the vertex we are looking for. The only vertices
that now have a lower degree than before this step are s, u, and w, and we
know r is not adjacent to any of them. We know the neighborhoods of u and
w, and if it was adjacent to s rule 4.5 would have applied. Therefore this
neighbor of r is still degree 3 and we have found a vertex that meets both of
the requirements.

If this degree 3 vertex we found has three or more neighbor in R, it is put
in D by rule 4.6, so the branch puts two vertices in D. Otherwise, the next
time a branching step is performed, it is the one that applies to a degree 3

vertex with a neighbor in R, which has a branching vector of (1, 1) or (1,
5−→
2),

where the latter is the slower one. Since this is always slower than putting

two vertices in D, this branching rule has branching vector (
3−→
2 ,

15−→
3 , 3).

The other case, Case 4.8.2, where two of the vertices from the cycle have a
common neighbor, is much simpler than the previous one, and has branching
vector (1, 2, 2).

The step that handles three adjacent degree 3 vertices is split into a
number of cases. Since most of the branching vectors are straightforward
from the branching rule, they are summarized in Table 4. Case 4.9.2 is the
only case with a special analysis and we will deliberate on it.

In the first and last types of branches of Case 4.9.2, we can apply the
same technique as we did in Case 4.8.1. We will first look at the case in the
first branch, where v is put in D. After v gets put in D, Reduction Rule 4.2

40

Case # Branching Vector

4.9.1 (1, 2,
4−→
2 ,

4−→
3)

4.9.2 (2,
5−→
3 ,

3−→
2 ,

2−→
2 ,

2−→
3 ,

10−→
4)

4.9.3 (1, 2,
2−→
2 , 3, 2)

4.9.4 (2,
2−→
3 ,

2−→
2 , 3,

3−→
2)

4.9.5 (
7−→
3 ,

3−→
2 , 2)

Table 4

will put p in R, after which u will be put in R by rule 4.4. As before, we
look for a degree 3 vertex with a neighbor in R. If o is degree 3, we have
found it. If o is degree 2, it had two degree 3 neighbors before v was put in
D. Since the other neighbor cannot be one of the vertices that was adjacent
to o (since we know the complete neighborhood of those three vertices) it is
still degree 3. Because o is put in R by rule 4.3 the other neighbor meets the
requirements we are looking for.

Similar to Case 4.8.1, the degree 3 vertex with a neighbor in R we have
found will either get put in D by Reduction Rule 4.6, or it will still have
a neighbor in R when the next branching rule is performed. In the former
case, which can happen when r and s are degree 2 and also adjacent to
this degree 3 vertex, this branch puts two vertices in D, and in the latter

case it guarantees a branching rule with branching vector (1,
5−→
2) as the next

branching rule performed.
In the last type of branches, where p and one of {r, s} are put in D, this

happens as well. The vertices u, v, and w are now degree 2 and get put in
R by rule 4.3 and rule 4.4. Say in this branch r is put in D, then o and
s are the vertices that are either the degree 3 vertex we are looking for, or
they are degree 2 and get put in R by rule 4.4. We will focus on s. In the
latter case where it is degree 2 the other neighbor will be the degree 3 vertex
we are looking for. It cannot have been adjacent to r, since then rule 4.5
would have been applied. Therefore we have found a vertex that meets the
requirements.

As before, this will either lead to a removal of this vertex by rule 4.6, or

the branching rule with branching vector (1,
5−→
2) can be applied next. Since

41

guaranteeing the application of the branching rule is slower than putting an
extra vertex in D, this slower branching vector is listed in the table.

The final branching rule, Case 4.10, uses the same technique as Cases

4.8.1 and 4.9.2 do. A simple analysis would yield branching vector (
2−→
1 ,

4−→
2),

but in the two branches were u or v are put in D, the two degree 2 neighbors
of that vertex will become degree 1 get put in R by Reduction Rule 4.2.
Additionally, if u is put in D, v and both of its neighbors are also put in R
by rules 4.3 and 4.4, and the opposite happens when v is put in D. This
means there are four vertices (the ones that started in N({u, v}) that are
now in R that have a degree 3 neighbor that is not in R. That means there
is either a vertex that gets put in D by 4.6, or a degree 3 vertex that has two
or one neighbor in R. The slowest of these cases is the latter; it guarantees

a branching step with vector (1,
5−→
2) which gives the branching final vector

(
2−→
2 ,

10−→
3 ,

4−→
2) for this case.

Theorem 4.4 proves that the final step can be done in polynomial time.
Considering all this, the slowest is the branching factor for Case 4.9.1, which

was shown in Table 4 to be (1, 2,
4−→
2 ,

4−→
3). This has branching factor 3.0607,

which means this algorithm has a running time of O∗(3.0607k). This is
slightly faster than the algorithm of [Xia16] which has a running time of
O∗(3.0645k).

42

5 Conclusion

In this thesis we have shown four deterministic parameterized algorithms for
four related vertex deletion problems. Three of these problems are newly
introduced in this thesis, and we have proven they are NP-complete. Table
5 summarized the time complexities we have shown for each problem.

Problem name Time complexity
Induced Cycle Deletion Set O(2kn3)

Induced Path/Cycle Deletion Set O(2kn3)
Co-Cycle Packing O∗(3k)

Co-Path/Cycle Packing O∗(3.0607k)

Table 5

We have improved the deterministic time-bound on Co-Path/Cycle Pack-
ing , the only problem which previously had one, fromO∗(3.0645k) toO∗(3.0607k).

5.1 Outlook

Possible further research could look into an analysis of the algorithms for
Co-Cycle Packing and Co-Path/Cycle Packing using a Measure and Conquer
approach [VFGK09]. This technique has previously been used to improve the
parameterized time-bound on the Bounded-Degree-1 Vertex Deletion prob-
lem, which is very related to the problems discussed in this paper [Wu15].
We expect the time-bound on the described algorithms can be improved with
this technique because deciding a vertex definitively does not go to the dele-
tion set (and gets put in the residue set R) currently does not improve the
time-bound on that branch. Using Measure and Conquer might change this.

For the Co-Cycle Packing algorithm the branching rule which is the bot-
tleneck is the one that deals with vertices of degree 4. For this case, a very
simple branching rule is used. This might be improved upon this by doing
a case analysis, similar to the case analysis for vertices of degree 3. The
second slowest branching rule, for Case 3.4.1, has branching factor 2.6759,
which means the time-bound can be improved significantly if the current
bottleneck is improved.

43

References

[ACG+12] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo
Kann, Alberto Marchetti-Spaccamela, and Marco Protasi. Com-
plexity and approximation: Combinatorial optimization problems
and their approximability properties. Springer Science & Business
Media, 2012.

[BBNU12] Nadja Betzler, Robert Bredereck, Rolf Niedermeier, and Jo-
hannes Uhlmann. On Bounded-Degree Vertex Deletion parame-
terized by treewidth. Discrete Applied Mathematics, 160(1):53 –
60, 2012.

[CFF+10] Zhi-Zhong Chen, Michael Fellows, Bin Fu, Haitao Jiang, Yang
Liu, Lusheng Wang, and Binhai Zhu. A Linear Kernel for Co-
Path/Cycle Packing. In Bo Chen, editor, Algorithmic Aspects in
Information and Management, pages 90–102, Berlin, Heidelberg,
July 2010. Springer.

[CKX10] Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved upper bounds
for vertex cover. Theoretical Computer Science, 411(40):3736 –
3756, 2010.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM (JACM), 7(3):201–
215, 1960.

[FGMN11] Michael R. Fellows, Jiong Guo, Hannes Moser, and Rolf Nieder-
meier. A generalization of Nemhauser and Trotters local opti-
mization theorem. Journal of Computer and System Sciences,
77(6):1141 – 1158, 2011.

[FWLC15] Qilong Feng, Jianxin Wang, Shaohua Li, and Jianer Chen.
Randomized parameterized algorithms for P2-Packing and Co-
Path Packing problems. Journal of Combinatorial Optimization,
29(1):125–140, Jan 2015.

[Kar72] Richard M Karp. Reducibility among combinatorial problems. In
Complexity of computer computations, pages 85–103. Springer,
1972.

[Law76] Eugene L Lawler. Combinatorial optimization: networks and
matroids. Courier Corporation, 1976.

44

[LY80] John M. Lewis and Mihalis Yannakakis. The node-deletion prob-
lem for hereditary properties is NP-complete. Journal of Com-
puter and System Sciences, 20(2):219 – 230, 1980.

[VFGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch. A Mea-
sure & Conquer Approach for the Analysis of Exact Algorithms.
Journal of the ACM (JACM), 56(5):25, August 2009.

[Wu15] Bang Ye Wu. A Measure and Conquer Approach for the Param-
eterized Bounded Degree-One Vertex Deletion. In Dachuan Xu,
Donglei Du, and Dingzhu Du, editors, International Computing
and Combinatorics Conference, pages 469–480, Beijing, China,
August 2015. Springer.

[Xia16] Mingyu Xiao. A Parameterized Algorithm for Bounded-Degree
Vertex Deletion. In Thang N. Dinh and My T. Thai, editors,
International Computing and Combinatorics Conference, pages
79–91, Ho Chi Minh City, Vietnam, August 2016. Springer.

45

