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Abstract

Sensitivity analysis is a technique used to determine the robustness of the output of a math-
ematical model to inaccuracies in the assessments of its parameters. An existing method of
sensitivity analysis for discrete Bayesian networks, where the effect of varying quantitative pa-
rameters on the output is analysed, is generalised towards a type of hybrid Bayesian network,
namely the Bayesian network with Mixtures of Truncated Base Functions. The generalisation
offers multiple ways of varying the parameter functions, such as by shifting and stretching,
and gives multiple ways of co-varying the other parameters, where proportional co-variation is
deemed best.
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Chapter 1

Introduction

One of the main themes in Artificial Intelligence (AI) is reasoning. Although the definition of
intelligence is much debated, most agree that it involves the ability to reason about the world
around us. So in any AI must then be able to perform some form reasoning to show intelligence.
The earliest methods in AI used hard logic to reason. While this works for some domains, hard
logic fails if the AI is applied to a domains that are very complex or domains that have a lot of
uncertainty. For example, an AI that monitors a security system might receive as input that an
alarm is triggered. Using hard logic, it would then conclude that there is a burglar in the house.
But there might be many other reasons the alarm is triggered (e.g. an earthquake, an accident
by a resident, a software fault). So the interactions in the domain are quite complex, and there
is uncertainty about the actual presence of burglars. In this domain it might be best to model
the probability of burglars, given the evidence of the triggered alarm. Such probabilistic meth-
ods for AI can be used on many complex and uncertain domains. The prototypical example of
probabilistic methods in AI is the Bayesian Network.

The Bayesian Network can be applied to many domains, and is in practice applied to do AI
tasks such as military threat evaluation [12] and medical diagnosis [13]. In such domains, it is
not hard to understand why it is of vital importance that the output of the network is accurate.
One way of increasing the accuracy of the output, is by analysing the sensitivity of the output
to the initial assessment of the parameters of the network. More work can then be spend on
improving the assessments of the parameters the output is sensitive to.

This thesis concerns the adaptation of such a sensitivity analysis for Bayesian Networks, so
it can be applied to a generalisation of Bayesian Networks. In this chapter some terms will be
explained so the central question of this thesis can be stated in Section 1.4. That section also
provides a road map of the thesis by shortly describing each chapter.

1.1 Bayesian Network
A Bayesian Network (BN) is used to model a probability distribution over a set of random
variables, by modelling and using the independencies between those variables. A BN consists
of a qualitative part, and an associated quantitative part. The qualitative part of the network
is an acyclic directed graph. The vertices of these graph are the random variables of the net-
work, and the edges between the vertices determine the independencies between the variables
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according to the so-called d-separation criterion [22]. The associated quantitative part of the
network specifies the modelled probability distribution. The complete probability distribution
is not directly defined, but is rather factorised into several probability distributions, where each
probability distribution is a conditional distribution for a variable of the network given values
of its parents. A BN can be used to perform probabilistic inference, i.e. to find probabilities
over the probability distribution it models [8, 27, 18].

The most widely used type of BNs is the discrete BN [2]. In a discrete BN, each variable
has a discrete (and finite) state space (i.e. set of possible values). The conditional distribu-
tions that define the quantitative part of the network are discrete conditional distributions. This
means that each of these distributions gives a probability for each possible configuration of
values of its parents.

1.2 Sensitivity Analysis
A BN is mathematical model that can be constructed using a variety of data and domain exper-
tise. In any such mathematical model, there may be inaccuracies in the initial assessments of
the parameters of the model. It is important to be aware of the effects of these inaccuracies on
the output. If inaccuracies of parts of the network can be of huge consequence to the output,
it might be best to put more effort into getting reliable parameter estimates. Whereas if these
inaccuracies are hardly of influence at all, no such extra research is necessary. After the model
has been built, it may also turn out that the model gives inaccurate predictions based on real
life instances. It will then be useful to be aware of which parts of the network might cause this
unexpected output, so it can be found which parameters require more reliable estimates. For
both these problems, we can use the technique of Sensitivity Analysis [7].

Sensitivity analysis is a technique that studies the effects of inaccuracies of the parameters
of a mathematical model on the output of the model. A parameter of the network is something
that makes up the instance of the model. With BNs, we identify two types of parameters we
might do sensitivity analysis on. First of all there are the qualitative parameters, which are the
vertices (which correspond with variables and their values) and the edges making up the quali-
tative part of the network. Then there are the quantitative parameters. These are the parameters
that specify the individual conditional distributions of a variable given values of its parents. In
this thesis, we will focus on these quantitative parameters.

One method for performing sensitivity analysis on discrete BNs is described in an overview
paper by van der Gaag et al. [26]. This method analyses the sensitivity through the quantitative
parameters of the network. A quantitative parameter is studied by varying it, and then studying
the effect on a predefined (prior or posterior) output probability of the network. The variation
is done by adapting the parameter to a new value. The function that maps this new value to the
new output probability is called the sensitivity function of the output probability to the param-
eter. If the output probability varies much for small changes in the parameter, then the output
probability is deemed sensitive to it.

In the method of sensitivity analysis described by van der Gaag et al. [26], upon varying a
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parameter some other parameters of the network, namely those from the same conditional dis-
tribution, must then also be changed. This is because the probabilities of the individual distribu-
tion must sum to 1. The process of changing these additional parameters is called co-variation.
The most widely used type of co-variation for discrete BNs is called proportional co-variation,
where the ratio between each pair of the co-varied parameters is preserved.

1.3 Hybrid Bayesian Network
BNs are often applied to domains that work with both discrete and continuous random vari-
ables. This poses a problem for discrete BNs, as they can not deal with continuous random
variables. One solution to this problem is to discretise the continuous variables so we can
model them as discrete variables[14, 21]. This, however, often results in a loss of information.
A better solution might be to model the domain as a Hybrid Bayesian Network (HBN). In a
HBN, a variable can have either continuous or discrete conditional distributions over values of
its parents. We do need some conditions on our continuous distributions. For example, we still
want to be able to combine all individual conditional distributions into a joint distribution over
all variables, and we want to be able to find the marginal distribution from a joint one. The first
type of HBN developed for this purpose is the Conditional Gaussian model [17]. This model
imposes restrictions on both the quantitative part and the qualitative part of the network: The
continuous variables need to be assumed to be distributed normally, and discrete variables are
not allowed to be children of continuous variables in the graph. Some adaptations have been
suggested to overcome the shortcoming of the Conditional Gaussian model. Lerner et al. [19]
made it possible for continuous variables to have discrete variables as children, but as discussed
by Fernández et al. [9] their model does not allow for exact inference (i.e. finding the exact
prior or posterior probabilities of some variables in the network).

A more versatile proposal for a HBN is found using a mixture of truncated functions. This
approach was first suggested in the form of using a Mixture of Truncated Exponentials (MTE)
in Moral et al. [20]. More recently an approach has been suggested using a Mixture of Poly-
nomials (MOP) [24], and both have been generalised in a global framework using a Mixture
of Truncated Base Functions (MoTBF) [16]. In all these models, the domain of the condi-
tional probability distributions is truncated into subdomains and the conditional probability
distributions are defined as a combination of truncated functions on each of these subdomains.
A truncated function has a standard form in each of these types of HBNs. In the MTE it is
a summation of weighted exponentials, in the MOP a sum of weighted polynomials. In the
MoTBF this is generalised and a truncated function is a sum of weighted base functions, where
multiple legal sets of base functions are possible. Each of these models can be used to approxi-
mate any type of continuous probability distribution, for example by using Taylor Series [6] or
Generalised Fourier Series [25].

1.4 Research Question and Structure of Thesis
A HBN has obvious advantages over the discrete BN, in its capacity to model distributions over
both continuous and discrete variables. Therefore it is important that techniques of sensitivity
analysis are devised for types of HBNs. Whereas there have been techniques developed for the
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Conditional Gaussian model [11, 10, 3], no research has been done into sensitivity analysis of
the more versatile MoTBF-networks. The central question of this thesis is then: Is it possible
to generalise the method of sensitivity analysis as described by van der Gaag et al. [26] towards
the MoTBF-network? This thesis aims to generalise an existing method of sensitivity for dis-
crete BNs, so a first technique for sensitivity analysis of MoTBF-networks can be introduced.

Chapter 2 will start of with some preliminaries we will use throughout the thesis. Some nota-
tion needs to be introduced, mostly on the many intervals that are relevant due to the truncation
used in the MoTBF-network. The MoTBF-network itself will also be formally introduced, with
the definition of the MTE-network used as a stepping stone.

The topic of Chapter 3 is a necessary element of our sensitivity analysis: co-variation. Three
methods of performing co-variation in an MoTBF-network are defined and discussed according
to conditions that are either necessary or would be nice to have.

Chapters 4 and Chapter 5 together then develop the core of the sensitivity analysis. Chapter 4
develops expressions of probabilities in the network given an arbitrary variation of a truncated
function. Chapter 5 gives three specific variations that might be useful for sensitivity analysis
and develops specific expressions according to the general expressions of Chapter 4.

The thesis ends with a conclusion in Chapter 6, concluding that, with some reservations in
mind, the central question of this thesis can be answered positively. Some suggestion for future
research are also given.
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Chapter 2

Preliminaries

This chapter will introduce the necessary preliminaries for the thesis. First some notation will
be introduced. Then the MTE-network and the more general MoTBF-network will be defined.
The original work of this chapter pertains several definitions concerning intervals, which will
be necessary to develop a sensitivity analysis of MoTBF-networks later in this thesis.

2.1 Notation
In this section we will work out some notation we will use throughout the thesis.

2.1.1 Variables
We use upper case letters to denote a single variable V . We use lower case to indicate specific
values of the upper case letter, so v would be used to denote a specific value of variable V . We
use bold case upper letters to denote a set of variables V and we write v to indicate a set of
specific values for these variables.

2.1.2 Graph
Because the graph of a Bayesian Network constitutes its qualitative part and in the thesis we
will mostly concern ourselves with the quantitative part, not much graph theory is needed.
Given a directed graph G = {V,A}. For any V,W ∈ V, we say there is an arc from V to W
whenever (V,W ) ∈ E. In this case V is called a parent of W , and W is called a child of V .

2.1.3 Intervals
In MoTBF-networks we will work with truncated functions. Different truncated functions are
used on different parts of the interval of a random variable and the intervals of its parents. Be-
cause we need to do much calculations with these truncated functions, we will introduce some
notation on these different parts of an interval.

Consider a continuous random variable V . The interval of possible values of V is written
as ΩV . We can divide this continuous interval ΩV into a set of subintervals IV . We call this
IV a subinterval set of V if its elements are mutually disjoint and any element in ΩV is in an
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interval of IV . We call the intervals in a subinterval set subintervals. We write the elements of
IV as subsequent subintervals IV = {IV1 , · · · , IVnV }, so |IV | = nV . When we take an arbitrary
element of IV , we write IV .

In many cases we are given a set of variables, say this set is V = {V1, · · · , Vl}. If we want
to indicate the Cartesian product of all domains we write ΩV = ΩV1 × · · · × ΩVl and for the
subinterval sets we write IV = IV1 × · · · × IVl . We also call this a subinterval set of V. We
once again write IV ∈ IV to indicate an element of the Cartesian product of subinterval sets,
so one subinterval per variable in V.

2.2 Mixture of Truncated Exponentials
Before we will introduce the Mixture of Truncated Base Functions, we will first introduce the
Mixture of Truncated Exponentials [20]. This special case is a good starting point as it more
intuitive than the general case. We are largely inspired by Fernández et al. [9] in our style of
definition. We define an MTE-potential as follows.

Definition 2.2.1. Let X = Y ∪ Z with Y = {Y1, · · · , Yc} and Z = {Z1, · · · , Zd} as a set of
discrete and continuous variables, respectively. Now a function φX : X → R is a Mixture of
Truncated Exponentials Potential (MTE-potential) over X, if and only if for some subinterval
set IZ, it holds that for any IZ ∈ IZ, we can write φX as:

φX(x) = φX(y, z) = a0 +
m∑
i=1

ai exp(
n∑
j=1

bji · zi) if z ∈ IZ (2.1)

with m ∈ N, ai ∈ R for i ∈ {0, · · · ,m}, and bji ∈ R for i ∈ {1, · · · ,m} and j ∈ {1, · · · , n}.

In other words, the potential is defined in terms of multiple truncated functions. We have
one truncated function per value set of the discrete variables, and interval set of the continuous
variables. A truncated function is a summation of weighted exponentials, where the exponent of
each exponential is a weighted sum of values of the continuous variables. It is called a truncated
function because the domain of the potential is cut up (’truncated’) into smaller subintervals,
where on each of these subintervals a different truncated function determines the value.

Example 2.2.2. We consider a set of variables X = {A,B,C} with a binary discrete variable
A and continuous variables B,C. We have that ΩA = {true, false} and ΩB = ΩC = [2, 7).
We have that IB = {[2, 4), [4, 7)} and IC = {[2, 7)}. This means that the domain of variable
B is divided into two subsequent subintervals [2, 4) and [4, 7), and the domain of variable C is
divided into a single subinterval [2, 7). We define an MTE-potential over X as follows:

φX(a, b, c) =


0.121e0.3b−0.23c + 0.23, if a = false and 2 ≤ b < 4

0.34e2.4b + 0.12e−0.23c + 0.06, if a = false and 4 ≤ b < 7

0.2e1.6b+0.4c + 0.1e−0.2b+0.4c, if a = true and 2 ≤ b < 4

0.3e−2.5b+0.2c + 2, if a = true and 4 ≤ b < 7

Now we have seen an example MTE-potential, we are ready to define what it means for a
random variable to follow an MTE-Distribution:
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Definition 2.2.3. Consider a mixed variable set X = Y ∪ Z. We say that X follows an MTE-
Distribution if its MTE-potential φX is a density, i.e.:

P (X ∈ ΩX) =
∑
y∈ΩY

∫
ΩZ

φX(y, z)dz = 1 (2.2)

In Section 2.3 we will define the distribution of a network through the conditional distribu-
tions of each variable conditioned on its parents. We require these individual distributions to
be conditional densities. This is defined as follows:

Definition 2.2.4. Consider two disjoint mixed variable sets X1 and X2. We say an MTE-
potential φX1∪X2 is a conditional density over X1 conditioned on X2 if, for every cX2 ∈ ΩX2

we have that φX1 defined as

φX1(x1) =def φ
X1∪X2(x1, cX2) (2.3)

is a density. We will then write φX1∪X2 as φX1|X2 to clearly indicate we are discussing a
conditional density.

2.3 MTE-network
In this section we will introduce the MTE-network. An MTE-network is much like a discrete
Bayesian network, except the quantitative part of the network is an MTE-potential instead of
a discrete probability distribution. There are also some special conditions that need apply for
an MTE-network. This section will give these special conditions and simultaneously introduce
much notation. Much of the subject matter of this section is vital to the understanding of the
thesis, but it can also be perceived as quite difficult. If the reader struggles with the mathemat-
ics of this section, note that the example at the end of the section might be of help.

A Mixture of Truncated Exponentials network (MTE-network) is defined as (G, φV) where
G = (V,A) an acyclic directed graph, V a set of continuous and discrete random variables,
and φV an MTE-potential over V. We will only consider networks where all variables in V are
continuous, so no variable is discrete. The generalisation towards a mixed set of variables is
trivial, and focusing on only continuous variables makes the mathematics clearer to the reader.

As with discrete Bayesian Networks, an MTE-network defines the joint distribution φV in
terms of the conditional distributions of the children conditioned upon their parents in G, that
is[9]:

φV(v) =
∏
V ∈V

φV |ρ(V )(v, ρ(v)) (2.4)

where ρ(V ) indicates the parents of V and ρ(v) the values for the parents of V consistent with
the set v.

Consider a node V in the network, and its given potential φV |ρ(V ) with associated interval sets
IV and Iρ(V ). It is argued by Langseth et al. [16] that it is hard to make the potential φV |ρ(V )
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a conditional density. Roughly their argument states that there are an infinite constraints to
fulfil, since for all the values of ρ(V ) we want φV |ρ(V ) fixed on those values to be a potential as
defined in Definition 2.2.4. But there are only finitely many arguments. The way they solved
this is by making ρ(V ) influence the value of φV |ρ(V ) through the way the function is truncated,
but not through the truncated functions themselves. In other words, if we consider arbitrary
intervals IV ∈ IV and Iρ(V ) ∈ Iρ(v), we have that

φV |ρ(V )(v, ρ(v)) = a0 +
m∑
i=1

ai exp(bi · v) if v ∈ IV and ρ(v) ∈ Iρ(V ) (2.5)

with m ∈ N, ai ∈ R for i ∈ {0, · · · ,m} and bi ∈ R for i ∈ {1, · · · ,m}. We see this definition
is a special case of Equation 2.1. It is both special in the sense that all variables involved are
continuous, and in that only the value of v has any influence on the truncated function itself (but
none of the values in ρ(v)). The values in ρ(v) may not influence the truncated function itself.
All they do determine which truncated function is selected based on the intervals the values are
in.

Since ρ(v) only influences the potential through the truncation of the functions, it is the case that
for any Iρ(V ) ∈ Iρ(v), we get a (non-conditional) potential over v given by these subintervals.
To indicate this potential, we write φV |Iρ(V )

(v). Note that if we have two, possibly different,
sets of values for the parents ρ(v), ρ′(v) such they are both part of the same subintervals Iρ(V )

(so ρ(v) ∈ Iρ(V ) and ρ′(v) ∈ Iρ(V )) then they will select the same potential over v, since the
values of the parents only influence the selection of a potential through the subintervals they
belong to. This potential is referred to as φV |Iρ(V )

(v).

When we refer to a specific truncated function of the MTE-network, we write it is as a function
fV
IV ,Iρ(V ) . So this is the potential φV |Iρ(V ) on the subinterval IV . Since we define our MTE-

network in terms of these truncated functions, we will sometimes call them the (quantitative)
parameters of the network. We see an example of a partition of a potential in truncated func-
tions in Figure 2.1.

Of course we require that each potential φV |ρ(V ) is a conditional density, for any value of the
parents. This means, for each ρ(v) ∈ Ωρ(V ), the following holds:∫

ΩV

φV |ρ(V )(v, ρ(v))dv = 1 (2.6)

In terms of subintervals this means that for every Iρ(V ) ∈ Iρ(V ) the following holds:∑
IV ∈IV

∫
IV
fVIV ,Iρ(V )(v)dv = 1 (2.7)

Often, when we want to indicate a specific function in f , we have a set of subintervals for more
variables than a variable V and its parents. In this case the selection of correct subintervals is
left implicit. For example, if we have a variable V ∈ V and a selection of intervals over all the
variables IV, with IV ∈ IV and Iρ(V ) ⊂ IV, then we can write:

fVIV = fVIV ,Iρ(V ) (2.8)

11



Figure 2.1: A potential of a root variable V divided into three truncated functions.

Different Subinterval Sets

It is important to note that in the definition of a MTE Network, we are allowed to have different
subinterval sets for the same variable. If we have two variables A and B and in the network B
is a child of A, then there could be a different subinterval set for variable A in the definition of
the condition density of variable A than that of variable B. The first subinterval set we will still
refer to as IA, but the other subinterval set we will indicate as IA→B. Note that the latter is a
subinterval set ofA, but is used in the partition ofB. An example of this is shown in Figure 2.2.

In Chapter 4 we will have to make calculations using the overlap between these different subin-
tervals. So say we have a variable V with children C1, · · · , Cn, and we have associated subin-
terval sets IV , IV→C1 , · · · , IV→Cn . Now we are interested in all the nonempty intersections of
subintervals in these sets, defined as such:

IV+ =def (2.9)

{IV ∩ IV→C1 ∩ · · · ∩ IV→Cn |IV ∈ IV , IV→C1 ∈ IV→C1 , · · · , IV→Cn ∈ IV→Cn} − {∅} (2.10)

We note that IV+ is also a subinterval set, as proven in Theorem A.1.1. Figure 2.3 gives a nice
example of such a set. We notice that for any IV+ ∈ IV+ there is exactly one element in each
of IV , IV→C1 etc. such that it is a superset of IV+. This is proven in Theorem A.1.2. It will be
useful in Chapter 4 to be able to refer to these supersets, since we can find associated truncated
functions using these. So we introduce the function d subscripted with the relevant variable to
refer to specific supersets. For example, if we look at Figure 2.2 and Figure 2.3 we have that
dA(IA+

2 ) = IA1 and dB(IA+
2 ) = IA→B2 .

Now if we have a variable B with a single parent A, we see that a subinterval IA+ of IA+

is the subset of exactly one subinterval in IA→B, namely dB(IA+). So we can write φB|IA+ as a
shorthand for the potential φB|dB(IA+). This of course generalised trivially to multiple parents.
We will use this often in Chapter 4.
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Figure 2.2: An example of a root variable A with two different subinterval sets IA and IA→B
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Figure 2.3: The set IA+ for the example in Figure 2.2, with IA+ = {IA+
1 , IA+

2 , IA+
3 }

Figure 2.4: The qualitative part of Example 2.3.1 (made using Elvira [15])

2.3.1 Examples
We will first look at an example MTE-network, and then we will verify for some of the poten-
tials that they are indeed conditional densities.

Example 2.3.1. For our example we look at an MTE-network with three variables: A, B, and
C. The qualitative part of the network is shown in Figure 2.4. We first look at the potential of
variable A. Since A does not have any parents, the potential is not conditioned on any variable:

φA(a) =

{
0.152e−2.3a + 0.228, if 0 ≤ a < 1

0.152e1.2a − 0.261, if 1 ≤ a < 2

Now we look at the potentials for variablesB and C. SinceB and C both haveA as their single
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parent, both potentials are conditioned on A.

φB|A(b, a) =


0.121e1.3b + 0.121e−0.23b + 0.06, if 0 ≤ b < 1 and 0 ≤ a < 1

0.121e−0.5b + 0.526, if 1 ≤ b < 2 and 0 ≤ a < 1

0.116e1.3b + 0.174, if 0 ≤ b < 1 and 1 ≤ a < 2

0.116e−0.33b + 0.517, if 1 ≤ b < 2 and 1 ≤ a < 2

φC|A(c, a) =


−0.773e−2c + 1.546, if 0 ≤ c < 0.5 and 0 ≤ a < 1.3

−0.773e0.9c + 2.474, if 0.5 ≤ c < 1 and 0 ≤ a < 1.3

0.256e2.3c + 0.359, if 0 ≤ c < 0.5 and 1.3 ≤ a < 2

0.256e−6.3c + 1.157, if 0.5 ≤ c < 1 and 1.3 ≤ a < 2

Note that in the conditional potentials of variable B and C, the parent variable A only influ-
ences the value of the potential through the way the potential is truncated but not through the
truncated functions themselves. I.e. a is included in the right-hand conditional side of the defi-
nitions, but not on the left-hand side which specify the truncated functions.

We will look at the domains and the subinterval sets of all variables. Firstly we see that ΩA =
ΩB = [0, 2) and ΩC = [0, 1). The variable A has associated subinterval set IA = {IA1 , IA2 } with
IA1 = [0, 1) and IA2 = [1, 2). Now since B and C are both children of A, they too have associ-
ated subinterval sets for A. We have in this case that IA→B is equal to IA but IA→C is not. We
have that IA→C = {IA→C1 , IA→C2 } with IA→C1 = [0, 1.3) and IA→C2 = [1.3, 2). Now variables
B and C also have respective subinterval sets IB = {[0, 1), [1, 2)} and IC = {[0, 0.5), [0.5, 1)}.

In relation to the different subinterval sets, we note that IA+ = {[0, 1), [1, 1.3), [1.3, 2)}. Note
that these are the intersections of the truncation of A in the different subinterval sets IA, IA→B

and IA→C . Now we write IA+
2 = [1, 1.3) and note that dA(IA+

2 ) = IA2 and dC(IA+
2 ) = IA→C1 .

Example 2.3.2. In Example 2.3.1, we have seen three potentials defined. All these potentials
are conditional densities, save for some rounding error (smaller than 0.01). Note that the po-
tential for A is a conditional density conditioned on an empty set of parents, which means it is
a density. We see that, because of the following property, the potential over A is a density:

P (A ∈ ΩA)

=

∫
ΩA

φA(a)da

=

∫ 1

0

(0.152e−2.3a + 0.228)da+

∫ 2

1

(0.152e1.2a − 0.261da) ≈ 1

The potential over C conditioned on A is a conditional density. To see this we need to consider
all values of A. We can do this easily, by noting that for any a ∈ ΩA, we have that either
a ∈ IA→C1 or a ∈ IA→C2 . If the former holds then:

P (C ∈ ΩC |A = a)

=

∫
ΩC

φC|I
A→C
1 (c)dc

=

∫ 0.5

0

(−0.773e−2c + 1.546)dc+

∫ 1

0.5

(−0.773e0.9c + 2.474dc) ≈ 1
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and if the latter holds (i.e. a ∈ IA→C2 ) then:

P (C ∈ ΩC |A = a)

=

∫
ΩC

φC|I
A→C
2 (c)dc

=

∫ 0.5

0

(0.256e2.3c + 0.359)dc+

∫ 1

0.5

(0.256e−6.3c + 1.157dc) ≈ 1

2.4 Mixture of Truncated Base Functions
In this section, we will define the notion of Mixture of Truncated Base Functions, largely
following the work of Langseth et al. [16]. As a general form of truncated functions, we want to
abstract away from exponential functions and allow any set of functions as long as some criteria
are met. These criteria ensure that in the resulting network, any function can be approximated
with arbitrarily good precision[16, 25]. The criteria on the set of functions are not further used
in the thesis, so they do not have to be understood. But we will include them for completeness.

Definition 2.4.1. Consider a set of functions ψ = {ψ0, ψ1, · · · } with ψi : R → R for i ∈ N.
Let Q be the set of all linear combinations of the members of ψ, i.e. all members of the type∑∞

i=0 aiψi with ai ∈ R for i ∈ N. Now ψ is a legal set of base functions if the following
conditions hold:

1. The first function ψ0 is constant in its argument.

2. If we have f ∈ Q and g ∈ Q, then their composition (f ◦ g) ∈ Q.

3. For any pair of real number s, t ∈ R, there exists a function f ∈ Q such that f(s) 6= f(t).

Now we know what a legal set of base functions constitutes, we can define an MoTBF-
potential. Notice how this definition is a more general version of Definition 2.2.1.

Definition 2.4.2. Let X = Y ∪ Z with Y = {Y1, · · · , Yc} and Z = {Z1, · · · , Zd} as a set
of discrete and continuous variables respectively. Now φX is a Mixture of Truncated Base
Functions Potential (MoTBF-potential) over X, if and only if for some IZ it holds that for any
IZ ∈ IZ, we can write φX as:

φX(x) = φX(y, z) =
m∑
i=0

n∏
j=1

ajiψi(zj) if z ∈ IZ (2.11)

for m ∈ N, aji ∈ R for i ∈ {0, · · · ,m} and j ∈ {1, · · · , n}, and an arbitrary legal set of base
functions ψ.

Since this thesis aims to be as general as possible, we will prove theorems on MoTBF-
potentials. But it is recommended to think of the special case of MTE-potentials throughout
this thesis since they are more intuitive. As explained by Langseth et al. [16], we can get a
definition for the MTE-potential as a special case of the MoTBF-potential exactly by taking the
legal set of base functions ψ = {1, exp(−x), exp(x), exp(−2x), · · · }.
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The definition of an MoTBF-density and an MoTBF-network are entirely analogous to the
definitions of their respective MTE counterpart. When we consider the conditional potentials
defining our MoTBF-network, we again want the parent variables to only influence the trunca-
tion of the potential, but not the truncated functions themselves. We formalise this condition
with an equation analogous to Equation 2.5:

φV |ρ(V )(v, ρ(v)) =
m∑
i=0

aiψi(v) if v ∈ IV and ρ(v) ∈ Iρ(V ) (2.12)

for m ∈ N, ai ∈ R with i ∈ {0, · · · ,m}. We note that Equation 2.12 is a special case of
Equation 2.11 with the extra condition that aji = 0 when Xi is a parent variable.

We will now look at two special cases of the MoTBF-network, the Uniform Subinterval MoTBF-
network and the Single Parameter MoTBF-network. The first will be used as a stepping stone
to prove theorems on the general MoTBF-network we have just seen in Chapter 4, and the latter
is a special case often used in practice.

2.4.1 Uniform Subinterval MoTBF-network
We call an MoTBF-network a Uniform Subinterval MoTBF-network (US MoTBF-network) if
all subinterval sets associated with a single variable are equal. Formally, this means that for
any variable V in the network with children C1, · · · , Cn, it holds that:

IV = IV→C1 = · · · = IV→Cn (2.13)

An example of a variable in this network is shown in Figure 2.5. We introduce this type of
network because it is simpler to work with than the general MoTBF-network. The US MoTBF-
network is a good stepping stone towards the general MoTBF-network when developing our
sensitivity analysis in Section 4.1.

We see that the network used in Example 2.3.1 is not a US MoTBF-network. It would be
if for example IA→C1 = [0, 1) and IA→C2 = [1, 2), because then all subinterval sets of A would
be equal.

2.4.2 Single Parameter MoTBF-network
We call an MoTBF-network a Single Parameter MoTBF-Network (SP MoTBF-network) if no
conditional potential is truncated through the values of its associated variable. Formally, this
means that for any variable V in the network it holds that:

|IV | = 1 (2.14)

Note that this means that the conditional potential is not truncated through the value of the
associated variable itself, but it can be truncated through the values of its parents. An example
of a variable in this network is shown in Figure 2.6.

This special case of the MoTBF-network is found in the paper by Langseth et al. [16]. Whereas
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Figure 2.5: An example of a root variable A with a single child B in a US MoTBF-network

the paper starts with the generalised MoTBF-network, it switches to the definition of the SP
MoTBF-network when the implementation is discussed. It is argued that one truncated function
is enough to approximate any function in its interval, given enough legal basis functions[25].
Therefore only one truncated function is used, presumably to make the representation less com-
plex. The R package for MoTBFs also implements this special case of the network[23].
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Figure 2.6: An example of a root variable A with a single child B in an SP MoTBF-network
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Chapter 3

Parameter Co-variation

This chapter concerns parameter co-variation. In Chapter 4 we will discuss variations of a pa-
rameter in a MoTBF-network and the effect of these variations on the output of the network.
But to preserve the validity of the network under variation, some additional parameters do need
to be co-varied with the varied parameter. This chapter will define and evaluate multiple ways
of doing this co-variation.

Suppose we want to vary a parameter of the quantitative part of the network. That is, for a
variable V ∈ V and intervals JV ∈ IV, Jρ(V ) ∈ Iρ(V ) we want to adapt the truncated function
fV
JV ,Jρ(V ) . We want to adapt it into a new truncated function, an arbitrary truncated function g.

Formally, we write:

µ(fVJV ,Jρ(V ))(v) = g(v) (3.1)

Here we write µ as the function that maps the original parameter to its varied counterpart.
For example, we see an original potential in Figure 3.1, and the variation in Figure 3.2.

Now we need to adapt other parameters of the same variable to ensure that we still have a con-
ditional density. This is called co-variation, and a systematic way to co-vary parameters given
a varied parameters is called a co-variation scheme. We also write µ to show the mapping of
the original parameters to the co-varied parameters. And to combine parameter variation and
co-variation, we write µ to map the original potential of a variable to its varied counterpart, by
application of µ to all its individual parameters.

If we look at Equation 2.7, we see we only need to co-vary the parameters that are in the
same parent interval as our varied parameters to ensure our potential stays a density under vari-
ation. In other words, upon varying fV

JV ,Jρ(V ) we only need to co-vary parameters fV
IV ,Jρ(V ) ,

where IV 6= JV . This means we can keep all our other parameters constant, which is of course
something we want to do. So we have that for Iρ(V ) 6= Jρ(V ) and for any IV ∈ IV , that µ
is constant, i.e. µ(fV

IV ,Iρ(V )) = fV
IV ,Iρ(V ) . So for this chapter it is only interesting to look at a

potential for fixed parent subintervals Jρ(V ). We will therefore restrict ourselves in this chapter
to looking at a root variable V , since its potential behaves the same as a potential for a variable
under fixed parent subintervals.

We consider a root variable V , with potential φV that is a probability density. We then would
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Figure 3.1: The original potential of our running example.

Figure 3.2: The potential of our running example, with parameter variation. g(v) = µ(fV
IV3

).
No co-variation scheme has been applied yet.
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want µ(φV ) to be a probability density as well. For this its area must sum to 1, corresponding
with the following equation:

∫
ΩV

µ(φV )(v)dv (3.2)

=
∑
IV ∈IV

∫
IV
µ(fVIV )(v)dv = 1.

And we want the potential to be positive, which means that for every v ∈ ΩV that:

µ(φV )(v) ≥ 0 (3.3)

Throughout the chapter we will find that Equation 3.2 is easy to fulfil, where Equation 3.3
will be harder to fulfil under more intricate co-variation schemes. In this chapter we will look
at several co-variation schemes. The next section will describe some conditions we want for
our different co-variation schemes. This will include the two conditions we just discussed, but
also include conditions we might impose to save as much of the original potential as possible.
The sections thereafter will each define a co-variation scheme and analyse it according to those
conditions. The chapter ends with a concluding section that determines which co-variation
scheme will be used throughout the rest of the thesis.

3.1 Conditions
In this section we will look at some conditions that might be favourable for a co-variation
scheme. The first two conditions are as described in the previous section, and are necessary
if we want to preserve densities under variation. The other conditions are nice to have, and
all concern maintaining certain properties of the parameters under co-variation, so co-variation
saves as much of the original potential as possible. This makes intuitive sense: We want to
study the effect of variation, and we only use co-variation as a means to preserve a probability
density.

In Figure 3.1, we see an example potential of a root variable V , and in Figure 3.2 we see
one of its parameters varied. We see that the parameters we need to co-vary can be either on
the left or on the right side of the varied parameter. We will refer to these as the left side and
the right side of the potential, which we will often use in the definition of the conditions. We
define the following conditions:

Area If the potential has an area summing to 1 under its interval, then this will be maintained
under potential variation.

This is the condition we have formalised in Equation 3.2.

Positive Positive parameters remain positive under co-variation.

This is the condition we have formalised in Equation 3.3.1 Note that this means that
every co-varied parameter is a positive function in its subinterval. We will see in Sections

1We use ’positive’ to indicate anything greater or equal to zero. Otherwise we will use ’strictly positive’.
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3.3.1 and 3.4 that this condition is hard to maintain, since many simple transformations
could already make the parameters negative. We might check if we can at least fulfil
this condition within reasonable variation. It would at least be reasonable to restrict the
varied parameter to having an area smaller or equal to 1. If it would have a larger area, it
would be impossible make the varied potential a probability density; the area of the rest
of the potential must be negative to ensure Condition Area, and therefore this condition
can not hold.

Ratio The ratio between the area of the left side and the area of the right side remains constant
under potential variation.

When we vary a parameter, the area under its subinterval might change. Since we want
the potential to be a density, this means that the area on the left and right side can not
always remain constant under co-variation. What is possible however is that the ratio
between the area of the left and right side remains constant.

Joining The property of joining parameters is preserved under potential variation.

With the property of joining parameters, we mean that consecutive parameters join each
other on the extremes of the intervals. We can see this is the case in Figure 3.1, as all
lines of different colours ’touch’. Variation alone might not preserve this property, as we
see in Figure 3.2, where the visualisation of the truncated function g does not ’touch’
those of fV

IV2
and fV

IV4
at respectively its left and right end.

The formalisation of this property is quite hard, mostly because of the mutually dis-
joint property of subinterval sets. The joining condition corresponds to the following:

For every i ∈ {1, nV − 1}, we have two consecutive subintervals IVi , I
V
i+1 ∈ IV . Now if

IVi = [a, b) for some a, b ∈ R then IVi+1 = [b, c) for some c ∈ R. It then holds that:

fVIVi
(b) = fVIVi+1

(b) (3.4)

then it holds that

µ(fVIVi
)(b) = µ(fVIVi+1

)(b). (3.5)

Note that even though b 6∈ IVi there is a value for fV
IVi

(b) since fV
IVi

: R → R. So this
property states that for every two consecutive subintervals, if their truncated functions
are equal on their ’overlapping’ end point, this will persist under variation. Here ’over-
lapping’ is not entirely correct, since the lower interval is open at that end point, but the
property is still correctly defined.

One way of fulfilling this condition is found by shifting the left and the right side verti-
cally to join the varied parameter. We will follow this strategy later in this chapter.

Shape The shape of the co-varied functions remains largely unchanged.

We see that, since variation might change the area of the varied parameter, some co-
variation will be unavoidable. Still, we would rather not change the shape of the pa-
rameters too much, since we want to preserve a function as much as possible under
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Table 3.1: Co-variation Schemes and Conditions
Proportional Shift&Normalise Shift&Linear

Condition Area Yes Yes Yes
Condition Positive Yes No No
Condition Ratio Yes No Yes
Condition Joining No Yes Yes
Condition Shape Yes Yes No
Condition Varied Yes No Yes

co-variation. If we only shift and scale the co-varied parameters, we will consider this
condition fulfilled.

Varied The varied parameter remains unchanged under the co-variation scheme.

It seems very reasonable we would want a co-variation scheme to not further vary the
already varied function. We include this condition because we will look at a naive scheme
that will not fulfil this.

This concludes the conditions we would like to impose upon our co-variation schemes. We
will proceed discussing several schemes. In Table 3.1 we summarise how well the different
schemes fulfil the conditions.

3.2 Proportional Co-variation
For our first co-variation, we consider proportional co-variation. Proportional co-variation is
a method of co-variation in discrete sensitivity analysis. Chan and Darwiche [4] show that
proportional co-variation in the discrete case minimises a distance from the original according
to a distance measure they argue as very reasonable (and admittedly have invented themselves).
With proportional co-variation, we want to multiply each function fVIV with a c that is constant
given a fixed variation. We want to pick c in such a way that the proportion between each of the
co-varied functions remains unchanged. But we want to pick c in a way that we fulfil Condition
Area, i.e. the area of the varied potential is 1. We find this to be the case for:

c =def
1−

∫
JV
g(v)dv

1−
∫
JV
fV
JV

(v)dv
. (3.6)

Wee see this c is constant for a given variation µ(fVJV ) = g. We will show this c fulfils Condition
Area in the analysis. So under proportional co-variation, we have that, for IV 6= JV :

µ(fVIV )(v) = fVIV (v) · c (3.7)

For example, we can see the effect of proportional co-variation on the example variation of
Figure 3.2 in Figure 3.3.

3.2.1 Analysis
We will now analyse proportional co-variation using the conditions we have defined in Section
3.1.
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Figure 3.3: The potential of our running example, co-varied with proportional co-variation.

Firstly we will look at Condition Area. We want to show this condition indeed holds. To show
this, we first recall a definition of a conditional density given in Equation 2.7. To properly show
Condition Area holds, we also consider the following equivalent definition:∑

IV ∈IV ,IV 6=JV

∫
IV
fVIV (t)dt = 1−

∫
JV
fVJV (t)dt (3.8)

Now we will shows the condition holds:∫
ΩV

µ(φV )(v)dv (3.9)

=
∑
IV ∈IV

∫
IV
µ(fVIV )(v)dv (3.10)

=

∫
JV
g(v)dv +

∑
IV ∈IV ,IV 6=JV

∫
IV
µ(fVIV (v))dv (3.11)

=

∫
JV
g(v)dv +

∑
IV ∈IV ,IV 6=JV

∫
IV
fVIV (v) ·

1−
∫
JV
g(v)dv

1−
∫
JV
fV
JV

(v)dv
dv (3.12)

=

∫
JV
g(v)dv +

1−
∫
JV
g(v)dv

1−
∫
JV
fV
JV

(v)dv
·

∑
IV ∈IV ,IV 6=JV

∫
IV
fVIV (v)dv (3.13)

Now by the identity of Equation 3.8, we see that Equation 3.13 is equivalent to

∫
JV
g(v)dv +

1−
∫
JV
g(v)dv

1−
∫
JV
fV
JV

(v)dv
·
(

1−
∫
JV
fVJV (v)dv

)
(3.14)

=

∫
JV
g(v)dv + 1−

∫
JV
g(v)dv = 1 (3.15)
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We therefore see that Condition Area holds for proportional co-variation.

We will continue with Condition Positive. We can assume we are going to vary a potential
that is a probability density, so all parameters are positive within their respective subinterval
and their areas in those subintervals sum to 1. We see that Condition Positive will be fulfilled if
the parameters are multiplied by a positive constant, so if c ≥ 0. We recall the definition of c:

c =
1−

∫
IV
g(v)dv

1−
∫
JV
fV
JV

(v)dv
. (3.16)

We see that the denominator of the fraction will be positive, since no original parameter can
have an area larger than 1 in their respective subinterval. So c will be positive if the numerator
is positive. We see this is the case if

∫
IV
g(v)dv ≤ 1. As explained in the definition of Con-

dition Positive, this is a very reasonable assumption since otherwise it would be impossible to
make the varied potential a probability density. So we consider Condition Positive fulfilled.

We will now look at the rest of the conditions, which are all not necessary but nice to have.
Firstly we see that Condition Ratio is fulfilled. If we multiply all the parameters on the left side
and on the right side with the same constant, then the ratio between the areas will be preserved
since the constant will cancel out in the ratio. Condition Joining, however, is not fulfilled. This
is clearly shown in Figure 3.3. We start of with a graph with all sides properly joined, but after
proportional co-variation we see that the left side does not join the varied parameter, and the
varied parameter does not join the right side. We also see Condition Shape is fulfilled, since
we only scale the co-varied parameters by multiplying them with a constant. Finally, Condi-
tion Varied is fulfilled, since we do not alter the varied parameter under the co-variation scheme.

In conclusion, we see that only Condition Joining is not fulfilled under proportional co-variation.
The next co-variation scheme we will consider will be a naive approach to fulfilling this condi-
tion.

3.3 Shift & Normalise
In Section 3.2, we have seen that proportional co-variation fulfils all our conditions except for
Condition Joining. This means that if we vary a potential with all its parameters joined at their
respective ends, this property is not necessarily preserved under proportional co-variation. We
will look at a naive approach to preserve this condition.

When we want to fulfil Condition Joining, the easiest way to do this is to shift the left side
and the right side to meet the varied parameter. We call this the Shift action. We for example
see the result of parameter variation in Figure 3.2. The effect of Shift action is then seen in
Figure 3.4. We see all parameters to the left of the varied parameter are all increased (or de-
creased) by the same constant, and all parameters on the right side all by another constant.

We want all of our schemes to at least fulfil Condition Area. For this scheme, we solve this
using the Normalise action. This action means that we multiply the entire potential by one
over its area, so that the resulting area is exactly equal to 1. The result of the Normalise action
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Figure 3.4: The potential of our running example, with variation and the Shift action.

Figure 3.5: The potential of our running example, co-varied with the Shift&Normalise scheme.
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applied to Figure 3.4 is shown in Figure 3.5.

The combination of the Shift action and the Normalise action is called the Shift&Normalise
scheme.

3.3.1 Analysis
We will again analyse our co-variation scheme according to the conditions defined in Section
3.1.

Firstly we see Condition Area is met. The area under the co-varied potential is equal to one,
since we end with a Normalise action. We note that the Normalise action will fail if, after the
Shift action, the potential has an area of 0. This is quite a degenerate case however, and we
will not see this in practice because it would almost certainly only occur if Condition Positive
is violated.

We see Condition Positive is not necessarily fulfilled with this scheme. The Shift action could
shift parts of the potential below the x-axis. Luckily it is easy to check for which variations
the condition will be violated. We can look at the lowest point of the left side of the potential,
and we can reason we can only shift the left part so that the lowest point meets the x-axis. So
this gives us a direct limit to how low the leftmost point of the varied potential can be so we
can join the left side with a Shift action while preserving the positivity of the left side of the
potential. Likewise we can find a limit to how low the right most point of the varied potential
can be so we preserve positivity of the right side of the potential.

We see Condition Ratio is also not met. While the Normalise action does preserve ratios,
the Shift action does not. Condition Joining is preserved, however, since the Shifting action
corrects the joining of left side to varied potential and varied potential to right side, and the
Normalise action preserves the joining. We see Condition Shape is met, since all co-varied
potentials are first shifted by a constant (Shift action) and then multiplied by a constant (Nor-
malise action).

Lastly, we have Condition Varied. We see this condition is not met. While the Normalise action
seems like a good and direct way to fulfil Condition Area, it does cause us to further change our
varied parameter under co-variation. In some cases this might lead to our co-variation scheme
’resetting’ the variation, as demonstrated in Figure 3.6.

In conclusion we see that a naive approach to fulfilling Condition Joining causes us to vio-
late several other conditions. The violation of Condition Positive will not be too negative since
we can at least easily verify the space of variations we can do without violating it. Condition
Ratio is not maintained, which is unfortunate. More problematic is Condition Varied. We see
our scheme can invalidate our original variation. We note that the scheme works well for vari-
ations that change the shape of the parameter, but works horribly for variations that shift the
parameter. All in all, the Shift&Normalise scheme has too many problems to properly work
with. In the next section, we will attempt to develop a scheme that addresses some of the issues.
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Figure 3.6: The Shift&Normalise scheme on an example potential, showing the scheme can
lead to a full reset.

3.4 Shift & Linear
In the previous section, we have seen the Shift&Normalise scheme. We have seen that where
this scheme does fulfil Condition Joining, it does quite badly at many of the other conditions.
In this section, we will develop a scheme based on the Shift&Normalise scheme, that addresses
some of the shortcomings.

First of all, we want our new scheme to fulfil Condition Ratio. Let us refer to the original
area of the left and right side as L and R respectively. If we have the co-varied area of the left
and right side equal to L′ and R′, with

L′ =
L · (1−

∫
JV
g(v)dv)

L+R
,R′ =

R · (1−
∫
JV
g(v)dv)

L+R
, (3.17)

then we will fulfil both Conditions Area and Ratio. We will show this in the analysis.

The first step of our scheme is again going to be the Shift action as defined in Section 3.3.1.
For the second step we want to add a linear function to the left side of the potential, and a linear
function to the right side of the potential. We have two conditions we want to place on both
linear functions. We will give the conditions for the linear function added to the left side, the
right side is analogous:

• The area under the linear function plus the area under the shifted function should total
L′. This way, we fulfil Conditions Area and Ratio as previously explained.
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Figure 3.7: The potential of our running example, co-varied with the Shift&Linear scheme.

• The linear function should be 0 at the joining point with the varied parameter. This way
we maintain Condition Joining, since the Shifting action has shifted the left side to the
right place and the linear function will not shift it further.

Now we have a target area and a target value at one point, so we have exactly one linear func-
tion that fulfils both. We add this linear function to all the parameters on the left side, and add
an analogous linear function to all the parameters on the right side. We call adding these linear
functions the Linear action. We see the effect of the Linear action on the example of Figure 3.4
in Figure 3.7.

The combination of the Shift action and the Linear action is called the Shift&Linear scheme.

3.4.1 Analysis
We again will analyse this scheme through the conditions defined in Section 3.1.

Firstly we have Condition Area. In the Linear action we have made exactly sure that the new
area of the left and right side is L′ and R′ respectively. We therefore observe that:∫

ΩV

φV (v)dv = L′ +R′ +

∫
JV
g(v)dv (3.18)

=
L · (1−

∫
JV
g(v)dv)

L+R
+
R · (1−

∫
JV
g(v)dv)

L+R
+

∫
JV
g(v)dv (3.19)

=
L+R

L+R
· (1−

∫
JV
g(v)dv) +

∫
JV
g(v)dv (3.20)

=1−
∫
JV
g(v)dv +

∫
JV
g(v)dv = 1 (3.21)

So Condition Area is met.
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Condition Positive is quite problematic in this scheme. Not only is it possibly violated in
this scheme, it is also hard to check if it is violated as both the Shift action and the Linear
action might be the cause. Because the Linear action is more intricate than the Shift action, it
is harder to check for legal variations with this scheme than it was with the Shift&Normalise
scheme.

For Condition Ratio, we will again look at the mathematics. We see:

L′

R′
=
L · (1−

∫
JV
g(v)dv)/(L+R)

R · (1−
∫
JV
g(v)dv)/(L+R)

=
L

R
(3.22)

so the ratio is kept constant under co-variation.

Condition Joining is fulfilled, as the Shift action joins the left and right side with the varied
parameter and the Linear action does not disturb these join points. Condition Varied is also
fulfilled, as both actions leave the varied potential undisturbed. Condition Shape is violated
however, as we add a linear function to the left and right side. This is not just a shifting or scal-
ing of the co-varied parameters, and if we compare Figure 3.1 with Figure 3.7, we see scheme
disturbs the parameters quite a lot in their shape.

In conclusion, we find that this scheme does a lot better than the Shift&Normalise we tried
to improve upon, so we have done good on that part. While it is unfortunate that Condition
Shape is violated, we do not think this invalidates our scheme and do think one could come up
with likewise schemes that disturb the original shape less. The big problem, however, is Con-
dition Positive. It seems impossible to fulfil Condition Joining without some form of shifting,
but any shifting will possibly make the new potential negative at some points. Even worse, the
more intricate we make our scheme the harder it is to check for which variations we will vio-
late Condition Positive. So we see it is extremely hard to combine the ’nice to have’ Condition
Joining with the necessary Condition Positive.

3.5 Conclusion
In conclusion, we have introduced the concept of co-variation and have set some conditions we
would want our co-variation schemes to meet. The first scheme we have seen, Proportional Co-
variation, has done great for almost all conditions. The big problem with the scheme was that,
if the original potential was a nice function without gaps, then after co-variation there might be
gaps between the varied parameter and the left and right side of the potential. A naive solution
to this problem was found in the Shift&Normalise scheme. This solution violated many im-
portant conditions however. Many of these violations were solved in the Shift&Linear scheme.
This scheme had a minor problem in that not the entire original shape was preserved, and the
major problem that the varied potential is not necessarily a positive function. It was argued that
it might be impossible to find a good co-variation scheme that gives a positive potential where
the varied parameter joins the left and right side.

So Proportional Co-variation might be the best scheme we can find for co-variation in the
MoTBF context. While it does not fulfil a condition that would be nice to have, it might be
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no scheme can fulfil this condition without violating a necessary condition, and if the neces-
sary conditions are violated we do not necessarily have a probability density under co-variation.
Therefore we will use Proportional Co-variation as our selected method of Co-variation through
the rest of the thesis.
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Chapter 4

Variation Expression

For our sensitivity analysis, we want to know the effect of variations. This means that if we vary
a parameter of the MoTBF-network, we want to know what the effect is on the prior and pos-
terior probabilities of events in the network. So we would want to find an expression for those
probabilities in terms of the variation function µ we introduced in Chapter 3. We call these
expressions the variation expressions of those probabilities. We want to find these expressions
for arbitrary variations of the parameters. In the next chapter we will look at families of specific
variations which will be the sensitivity functions and will be the core of our sensitivity analysis,
and we will do this by using the variation expressions we will develop here for general variation.

The variation expressions of subintervals in the US MoTBF-Networks (as defined in Section
2.4.1) will first be developed in Section 4.1. This is a good stepping stone to then develop
the variation expressions of subintervals in the general MoTBF-Networks in Section 4.2. For
the general MoTBF-Network we will then continue to find variation expressions for arbitrary
marginal probabilities in the network.

4.1 US MoTBF
We consider a US MoTBF-network (G, φV). We recall that a US MoTBF-network is a special
case of the general MoTBF-network in that it has only one subinterval set associated with
each variable. We want to vary a certain parameter of the network, say fA

JA,Jρ(A) . We remind
ourselves thatA is a variable, JA is a subinterval of variableA, and Jρ(A) is a set of subintervals
of the parents ρ(A) of A. We adapt it according to Equation 3.1. To reiterate:

µ(fAJA,Jρ(A))(a) = g(a)

where µ is the function mapping all parameters to their counterpart under variation of the sin-
gle parameter fA

JA,Jρ(A) , and g(a) is exactly this single varied parameter. For co-variation we
use proportional co-variation, as defined in Section 3.2. We will use proportional co-variation
throughout the chapter without specific mention. As in the previous chapter, we write µ to
indicate the effect of variation on the different truncated functions of the network. Since the
potentials and conditional potentials of the network are defined in terms of those truncated
functions, we now also use µ to indicate the variation of these potentials and conditional poten-
tials. So for example, the conditional potential µ(φA|ρ(A)) is the conditional potential φA|ρ(A)
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Figure 4.1: An example of the conditional potential φA|ρ(A) varied on Jρ(A) and JA.

with each of its truncated functions mapped by µ, i.e. it is φA|ρ(A) under the specified variation.
Likewise, since we write probabilities in terms of potentials, we write µ(P ) to indicate the
probability function under the specified variation.

The effect of variation on an example conditional potential φA|ρ(A) is shown in Figure 4.1.
The potential φA|Jρ(A) , which is the conditional potential φA|ρ(A) conditioned on the set of par-
ent subintervals Jρ(A), is varied in the subinterval JA and co-varied on the other parts of the
domain ΩA. It is also shown in the figure that for any other Iρ(A) ∈ Iρ(A), Iρ(A) 6= Jρ(A), the
potential φA|Iρ(A) is constant under variation. Suppose we want to know, for certain target vari-
ables T ⊆ V, what the prior probability is that our variables fall into subintervals IT (i.e. that
each variable T ∈ T falls into some subinterval IT ∈ IT). We want to write P (T ∈ IT) in
terms of the variation µ.

We use N = V − T to indicate all non-target variables, and V′ = V − {A} to indicate
all variables minus the variable that has its parameter varied. When we have subintervals for
the target variables IT and subintervals for the non-target variables IN we write IV = IT×IN.
In the proofs we will use the notation O(1) to indicate any constant under µ; this makes the
proofs easier to read than if we would have used a variety of different constants.

Theorem 4.1.1. Given a US MoTBF-network (G, φV) and a set of target variables T ⊆ V.
Suppose we vary a network parameter fA

JA,Jρ(A) for some A ∈ V, JA ∈ IA and JρA ∈ Iρ(A) as:

µ(fAJA,Jρ(A))(a) = g(a).

We can then write the prior probability of the variables in T falling into subintervals IT ∈ IT

as:

µ(P )(T ∈ IT) = c1 + c2

∫
JA
g(a)da (4.1)

where c1, c2 ∈ R are constants with respect to µ.
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Proof: We will first break down the prior probability into a summation of multiple parts,
and then show that each of these parts can be written down in a certain general form. So firstly:

µ(P )(T ∈ IT) (4.2)
(we write the probability as a potential)

=

∫
IT
µ(φT)(t)dt (4.3)

(we marginalise out the non-target variables)

=

∫
IT

∫
ΩN

µ(φV)(t,n)dndt (4.4)

(we rewrite using Equation 2.4)

=

∫
IT

∫
ΩN

∏
V ∈V

µ(φV |ρ(V ))(v|ρ(v))dndt (4.5)

(we split the domain of N into subintervals, and split φ into the truncated functions)

=

∫
IT

∑
IN∈IN

∫
IN

∏
V ∈V

µ(fVIV ,Iρ(V ))(v)dndt (4.6)

(we take the summation out, which is independent of t)

=
∑
IN∈IN

∫
IT

∫
IN

∏
V ∈V

µ(fVIV ,Iρ(V ))(v)dndt (4.7)

(we merge T and N into V)

=
∑
IN∈IN

∫
IV

∏
V ∈V

µ(fVIV ,Iρ(V ))(v)dv (4.8)

(we split V into A and V′)

=
∑
IN∈IN

∫
IA

∫
IV′

µ(fAIA,Iρ(A))(a)
∏
V ′∈V′

fV
′

IV ,Iρ(V )(v
′)dv′da (4.9)

(we move the truncated function out of the integral)

=
∑
IN∈IN

∫
IA
µ(fAIA,Iρ(A))(a)

∫
IV′

∏
V ′∈V′

fV
′

IV ,Iρ(V )(v
′)dv′da (4.10)

(the integral over IV
′

is constant in both µ and a. Because of the former we can

make it O(1), and because of the latter we can move it out of the integral over IA)

=
∑
IN∈IN

O(1)

∫
IA
µ(fAIA,Iρ(A))(a)da (4.11)

This leaves us a sum of integrals over functions µ(fA
IA,Iρ(A)), multiplied by a respective constant

factor. In each component of the summation we can have one of three cases:

Case 1 The function µ(fA
IA,Iρ(A)) under consideration is exactly the one we are varying, i.e.

35



Jρ(A) = Iρ(A) and also JA = IA. So per definition:

O(1)

∫
IA
µ(fAIA,Iρ(A))(a)da (4.12)

=O(1)

∫
JA
g(a)da (4.13)

Case 2 Our function µ(fA
IA,Iρ(A)) is on the same parent subinterval as the function we are vary-

ing, but it is not equal to it. So we have that Jρ(A) = Iρ(A) but JA 6= IA. In this case
we are co-varying the function. As argued in Section 3.5, we have decided to use the
Proportional Co-variation scheme as defined in Section 3.2. Using Equation 3.6, we
then see:

O(1)

∫
IA
µ(fAIA,Iρ(A))(a)da = O(1)

∫
IA
fAIA,Iρ(A)(a) · c da (4.14)

=O(1)

∫
IA
fAIA,Iρ(A)(a) ·

1−
∫
JA
g(a)da

1−
∫
JA
fA
JA,Iρ(A)(a)da

da (4.15)

=O(1)
1−

∫
JA
g(a)da

1−
∫
JA
fA
JA,Iρ(A)(a)da

∫
IA
fAIA,Iρ(A)(a)da (4.16)

=O(1)
1−

∫
JA
g(a)da

O(1)
(4.17)

=O(1) +O(1)

∫
JA
g(a)da (4.18)

Case 3 We have that our function fA
IA,Iρ(A) is not on the same parent subinterval as the param-

eter we are varying. In this case we are neither varying nor co-varying the truncated
function, so the function is constant under µ. So Jρ(A) 6= Iρ(A). In this case we see:

O(1)

∫
IA
µ(fAIA,Iρ(A))(a)da (4.19)

=O(1)

∫
IA
fAIA,Iρ(A)(a)da = O(1) (4.20)

Any of these final forms can be written as O(1) +O(1)
∫
JA
g(a)da. So we sum over parts that

we can write asO(1)+O(1)
∫
JA
g(a)da. The summation of these parts can then also be written

as O(1) +O(1)
∫
JA
g(a)da, i.e. c1 + c2

∫
JA
g(a)da for some c1, c2 ∈ R.

4.1.1 Examples
We will calculate an entire variation expression in an example network. Then we will show
part of the calculation of a different variation expression, chosen so we will see examples of all
the cases of the proof of Theorem 4.1.1.

Example 4.1.2. We will use the network specified in Example 2.3.1, with the alteration that
IA→C1 = [0, 1) and IA→C2 = [1, 2). This makes all the subinterval sets of A equal, and since
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the other two variables, B and C, are leaves so only have one associated subinterval set, the
resulting network is a US MoTBF-Network.

Say we vary µ(fA
IA1

(a)) = g(a), and we are interested in the variation expression of P (B ∈ IB2 )

in terms of this variation. We will write out this probability, just like in the proof of Theorem
4.1.1.

µ(P )(B ∈ IB2 )

=
∑

IA,C∈IA,C

∫
IA
µ(fAIA)(a)

∫
IB2

∫
IC
fBIB2 ,IA

(b)fCIC ,IA(c)dc db da

We note that this summation consists of four parts, for each element in
IA,C = {{IA1 , IC1 }, {IA1 , IC2 }, {IA2 , IC1 }, {IA2 , IC2 }}. We will look at all four parts individually.
Firstly we consider IA1 and IC1 . We then see:∫

IA1

µ(fAIA1
)(a)

∫
IB2

∫
IC1

fBIB2 ,IA1
(b)fCIC1 ,IA1

(c)dc db da

=0.308 ·
∫
IA1

µ(fAIA1
)(a)da

=0.308 ·
∫
IA1

g(a, x)da

This corresponds to Case 1 of the cases in our proof of Theorem 4.1.1. Likewise, if we consider
IA1 and IC2 , we get: ∫

IA1

µ(fAIA1
)(a)

∫
IB2

∫
IC2

fBIB2 ,IA1
(b)fCIC2 ,IA1

(c)dc db da

=0.275 ·
∫
IA1

g(a)da
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For a more complicated expression, we consider IA2 and IC1 . We see:∫
IA2

µ(fAIA2
)(a1)

∫
IB2

∫
IC1

fBIB2 ,IA2
(b)fCIC1 ,IA2

(c)dc db da1

=0.247 ·
∫
IA2

µ(fAIA2
)(a1)da1

=0.247 ·
∫
IA2

fAIA2
(a1) ·

1−
∫
IA1
g(a2)da2

1−
∫
IA1
fAA1

(a3)da3

da1

=0.247 ·
1−

∫
IA1
g(a2)da2

1−
∫
IA1
fAA1

(a3)da3

∫
IA2

fAIA2
(a1)da1

=0.247 · 0.287 ·
1−

∫
IA1
g(a2)da2

1−
∫
IA1
fAA1

(a3)da3

=0.07 ·
1−

∫
IA1
g(a2)da2

0.713

=0.1 +−0.1 ·
∫
IA1

g(a)da

This corresponds to Case 2. Likewise, if we consider IA2 and IC2 , we see:∫
IA2

µ(fAIA2
)(a)

∫
IB2

∫
IC1

fBIB2 ,IA2
(b)fCIC1 ,IA2

(c)dc db da

=0.14 +−0.14 ·
∫
IA1

g(a)da

Now that we have all the parts of the summation, we can sum them together. We then get:

µ(P )(B ∈ IB2 )

=0.308 ·
∫
IA1

g(a)da+ 0.275 ·
∫
IA1

g(a)da+ 0.1

+−0.1 ·
∫
IA1

g(a)da+ 0.14 +−0.14 ·
∫
IA1

g(a)da

=0.24 + 0.083

∫
IA1

g(a)da

This result is in the general form of Theorem 4.1.1.

Example 4.1.3. We have seen an example of Case 1 and Case 2 of Theorem 4.1.1, but no
example of Case 3. For this we consider a new example. We vary µ(fC

IC1 ,I
A
2

)(c) = g(c), and
we are again interested in the variation expression of P (B ∈ IB2 ) in terms of this variation. We
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find:

µ(P )(B ∈ IB2 )

=
∑

IA,C∈IA,C

∫
IC
µ(fCIC ,IA)(c)

∫
IB2

∫
IA
fBIB2 ,IA

(b)fAIA(a)da db dc

Now we consider only one part of the summation, namely where the subintervals of the sum-
mation are IA1 and IC1 . We find:∫

IC1

µ(fCIC1 ,IA1
)(c)

∫
IB2

∫
IA1

fBIB2 ,IA1
(b)fAIA1

(a)da db dc

=

∫
IC1

fCIC1 ,IA1
(c)

∫
IB2

∫
IA1

fBIB2 ,IA1
(b)fAIA1

(a)da db dc

=0.287 · 0.584 · 0.527 = 0.088

We see this corresponds with Case 3. We leave our example at this, because we have now seen
all cases.

4.2 General MoTBF
In this section, we will develop the variation expression for a general MoTBF-network. The
main difference between the general MoTBF-network and the US MoTBF-network we have
seen previously, is that different subinterval sets may be associated with the variable A of
which we vary a parameter. This leads us to work with the intersection of the different subin-
terval sets, i.e. with elements of the set IA+ (as defined in Section 2.3).

We will first develop variation expressions for prior probabilities of subintervals, and then gen-
eralise these results so we can find a variation expression for any marginal probability of the
network.

4.2.1 Subinterval probabilities
Consider a MoTBF-Network (G, φV). We vary a parameter of the network, say fA

JA,Jρ(A) . The
main difference between the US MoTBF-Network and the general MoTBF-Network is that we
have a subinterval set IA+ in the general network that is not equal to IA. This set was defined
in Equation 2.9. Therefore we are now interested in the pieces of IA+ that make up JA. We
define:

JA+ =def {IA+|IA+ ∈ IA+ and d(IA+) = JA} (4.21)

An example of this set is shown in Figure 4.2. We note that JA+ is a subinterval set over the
interval JA.

Suppose we want to know, for certain target variables T ⊆ V, the variation expression of
the prior probability that our variables fall into subintervals IT+ for IT+ ∈ IT+.
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Figure 4.2: Top image: An example of the elements of subinterval sets IA and IA+ for variable
A on the interval ΩA = [0, 1). Bottom image: The set JA+ for the example in the top image,
for JA = IA2 .

Theorem 4.2.1. Given an MoTBF-network (G, φV) and a set of target variables T ⊆ V.
Suppose we vary a network parameter fA

JA,Jρ(A) for some A ∈ V, JA ∈ IA and Jρ(A) ∈ Iρ(A)

as:

µ(fAJA,Jρ(A))(a) = g(a).

We co-vary the other parameters with proportional co-variation. We can then write the prior
probability of the variables in T falling into subintervals IT+ ∈ IT+ as a variation expression
of µ as:

µ(P )(T ∈ IT+) (4.22)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

g(a)da (4.23)

where c0 ∈ R and cJA+ ∈ R (for all JA+ ∈ JA+) are constants under µ.

Proof: Our proof will greatly resemble the proof of Theorem 4.1.1. Firstly we will break
down the prior probability in a summation. The steps in between are omitted and can be found
in Appendix A.2.1.

µ(P )(T ∈ IT+) (4.24)

=
∑

IN+∈IN+

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (4.25)

This leaves us a sum of integrals over functions µ(φA|I
V+

), multiplied by a respective constant
factor.

Inside the summation, we sum over some IN+ ∈ IN+ and we are considering some target
subintervals IT+ ∈ IT+. We consider the combination of these, IV+ =def I

N+ ∪ IT+. In the
proof it is shown that IA+ ∈ IV+, this is the subinterval of the varied potential. Since the
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potential is varied on a subinterval of IA, not IA+, we are interested in the subinterval in IA

of which IA+ is a subset. This is the subinterval IA =def dA(IA+). Likewise, we also have
subintervals of each of the parents of A in the set Iρ(A)+ ⊂ IV+, but we are interested in the
subintervals in Iρ(A) of which the subintervals IρA+ are subsets. This is set of parent subinter-
vals Iρ(A) =def {dA(IP+)|IP+ ∈ Iρ(A)+}. Here each P is a parent variable of A, i.e. P ∈ ρ(A).

In each component of the summation we can have one of three cases:

Case 1 The function µ(φA|I
V+

) under consideration is part of the domain of the function we
are varying, i.e. Jρ(A) = Iρ(A) and also JA = IA. So:

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (4.26)

=O(1)

∫
IA+

g(a)da (4.27)

Also, we have that IA+ ∈ JA+.

Case 2 The domain of our function µ(φA|I
V+

) is defined for the same parents as our varied
function, but the domain is not a sub-domain of the domain of the varied function. So
we have that Jρ(A) = Iρ(A) but JA 6= IA. In this case we are co-varying the function.
We again use proportional co-variation with the constant c as defined in Equation 3.6.

O(1)

∫
IA+

µ(φA|I
V+

)(a)da = O(1)

∫
IA+

φA|I
V+

(a) · c da (4.28)

=O(1)

∫
IA+

φA|I
V+

(a) ·
1−

∫
JA
g(a)da

1−
∫
JA
φA|JV ,Jρ(v)(a)da

da (4.29)

=O(1)
1−

∫
JA
g(a)da

1−
∫
JA
φA|JV ,Jρ(v)(a)da

∫
IA+

φA|I
V+

(a)da (4.30)

=O(1)
1−

∫
JA
g(a)da

O(1)
(4.31)

=O(1) +O(1)

∫
JA
g(a)da (4.32)

=O(1) +O(1)

( ∑
JA+∈JA+

∫
JA+

g(a)da

)
(4.33)

=O(1) +
∑

JA+∈JA+

O(1)

∫
JA+

g(a)da (4.34)

(4.35)

Case 3 We have that our function µ(φA|I
V+

) is not on the same parent subinterval as the pa-
rameter we are varying. In this case we are neither varying nor co-varying the truncated
function. So Jρ(A) 6= Iρ(A). In this case we see:

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (4.36)

=O(1)

∫
IA+

φA|I
V+

(a)da = O(1) (4.37)
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So we sum over parts that we can write, in any case, as equations of the form of Equation 4.23.
The summation of these parts can then also be written as an equation of the form of Equation
4.23.

4.2.2 Marginal probabilities
For our sensitivity analysis, we want to know the probabilities of the values of target vari-
ables falling into intervals, as expressions of the variation in the network. We have seen
such expressions for prior probabilities of a specific type of intervals (i.e. the probabilities
µ(P )(T ∈ IT+)). But we want to find variation expressions for probabilities of arbitrary inter-
vals, and we want to find both prior and posterior probabilities. We will state some corollaries
for these expressions, and will sketch the idea for proofs heavily based on the proof of Theorem
4.2.1.

We again consider an MoTBF-Network (G, φV), and vary a network parameter fA
JA,Jρ(A) for

some A ∈ V, JA ∈ IA, Jρ(A) ∈ Iρ(A), and we use co-variation to co-vary the other parameters.

Corollary 4.2.2. Given a target variable T ∈ V such that A 6= T . Given some interval UT

such that UT ⊆ IT+ for some IT+ ∈ IT+. Then we can write the probability

µ(P )(T ∈ UT ) (4.38)

as a variation expression of the form of Equation 4.23.

The proof of this corollary is given in Appendix A.2.2.

Corollary 4.2.2 gives us variation expressions for prior probabilities of intervals UT such that
UT ⊆ IT+ for some IT+ ∈ IT+. The next corollary will give us prior probabilities of arbitrary
intervals UT ⊆ ΩT .

Corollary 4.2.3. Let A, T be as before, with A 6= T . Given some interval UT ⊆ ΩT . Then we
can write the probability

µ(P )(T ∈ UT ) (4.39)

as a variation expression of the form of Equation 4.23.

This follows directly from Corollary 4.2.2. The interval UT can be split into smaller in-
tervals such that each is a subset of some IT+ ∈ IT+, since the subinterval set IT+ covers the
interval ΩT . The probabilities for each of these intervals can then be written as a variation
expression of the form of Equation 4.23 by Corollary 4.2.2, and the sum of these variation
expressions will then also be of the form of Equation 4.23.

Corollary 4.2.4. Let A, T be as before, with A 6= T . Given some observed variables E ⊆ V,
such that A 6∈ E, and their observed values e ∈ ΩE. Given some interval UT such that
UT ⊆ IT+ for some IT+ ∈ IT+. Then we can write the probability

µ(P )(T ∈ UT |E = e) (4.40)
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as a variation expression of the following form:

c1 +
∑

JA+∈JA+ c1
JA+

∫
JA+ g(a)da

c2 +
∑

JA+∈JA+ c2
JA+

∫
JA+ g(a)da

(4.41)

where c1, c2 ∈ R and cxJA+ ∈ R (for all JA+ ∈ JA+) are constants under µ.

Proof: First we assume that T 6∈ E. (If T ∈ E then the probability of T is fixed so constant
under variation, so the corollary holds.) We can write the probability as follows:

µ(P )(T ∈ UT |E = e) = (4.42)

=

∫
UT
µ(φT |E)(t, e)dt (4.43)

=

∫
UT

µ(φT,E)(t, e)

µ(φE)(e)
dt (4.44)

=

∫
UT
µ(φT,E)(t, e)dt · 1

µ(φE(e))
(4.45)

We note that we can write both
∫
UT
µ(φT,E)(t, e)dt and µ(φE(e)) as variation expressions of the

form of Equation 4.23. This is shown for
∫
UT
µ(φT,E)(t, e)dt in Appendix A.2.3, the rewriting

for µ(φE(e)) goes entirely analogous except with no variable T . This means that we can write
Equation 4.45 as a fraction with a nominator and a denominator both of the form of Equation
4.23. This fraction has the form of Equation 4.41.

Corollary 4.2.5. Let A, T be as before, with A 6= T . Given some observed variables E ⊆ V,
such that A 6∈ E, and their observed values e ∈ ΩE. Given some interval UT ∈ ΩT . Then we
can write the probability

µ(P )(T ∈ UT |E = e) (4.46)

as a variation expression of the following form:

c1 +
∑

JA+∈JA+ c1
JA+

∫
JA+ g(a)da

c2 +
∑

JA+∈JA+ c2
JA+

∫
JA+ g(a)da

where c1, c2 ∈ R and cxJA+ ∈ R (for all JA+ ∈ JA+) are constants under µ.

This corollary follows directly from Corollary 4.2.4 in the same way that Corollary 4.2.3
follows from Corollary 4.2.2.

4.2.3 Example
We will calculate a variation expression in an example network.

Example 4.2.6. We will use the network specified in Example 2.3.1. We note that for this
example it holds that IB+ = IB and IC+ = IC since both B and C are leaves of the network.
We have that IA+ = {IA+

1 , IA+
2 , IA+

3 } with IA+
1 = [0, 1), IA+

2 = [1, 1.3), IA+
3 = [1.3, 2).
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Now say we vary µ(fA
IA2

(a)) = g(a), and we are interested in the variation expression of the

probability P (C ∈ IC+
2 ) in terms of this variation. We will write out this probability, directly

rewriting an equation of the form of Equation 4.24 into an equation of the form of Equation
4.25:

µ(P )(C ∈ IC2 )

=
∑

IA+,B+∈IA+,B+

∫
IA+

µ(φA)(a)

∫
IB+

∫
IC+
2

φB|I
A+

(b)φC|I
A+

(c)dc db da

We will go over all individual parts of the summation. Firstly, for IA+
1 and IB+

1 :∫
IA+
1

µ(φA)(a)

∫
IB+
1

∫
IC+
2

φB|I
A+
1 (b)φC|I

A+
1 (c)dc db da

=0.196 ·
∫
IA+
1

µ(φA)(a)da

=0.196 ·
∫
IA+
1

φA(a1) ·
1−

∫
IA2
g(a2)da2

1−
∫
IA2
φA(a3)da3

da1

=0.196 ·
1−

∫
IA2
g(a2)da2

1−
∫
IA2
φA(a3)da3

·
∫
IA+
1

φA(a1)da1

=0.196 · 0.287 ·
1−

∫
IA2
g(a2)da2

0.287

=0.196− 0.196 ·
∫
IA2

g(a)da

=0.196− 0.196 ·
∫
IA+
2

g(a)da− 0.196 ·
∫
IA+
3

g(a)da

We see this corresponds with Case 2, i.e. co-variation. Now the part of the summation for IA+
2

and IB+
1 . We see: ∫

IA+
2

µ(φA)(a)

∫
IB+
1

∫
IC+
2

φB|I
A+
2 (b)φC|I

A+
2 (c)dc db da

=0.194 ·
∫
IA+
2

µ(φA)(a)da

=0.194 ·
∫
IA+
2

g(a)da

We see this corresponds with Case 1: The subinterval we are considering (IA+
2 ) is a subset of

the subinterval we are varying on (IA2 ) so we have that the varied potential µ(φA) is equal to
g on the subinterval under consideration. The same holds for the subinterval IA+

3 , so we have
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that: ∫
IA+
3

µ(φA)(a)

∫
IB+
1

∫
IC+
2

φB|I
A+
3 (b)φC|I

A+
3 (c)dc db da

=0.239 ·
∫
IA+
3

µ(φA)(a)da

=0.239 ·
∫
IA+
3

g(a)da

The calculation for the other parts of the summation (with IB+
2 ) is performed the same way, so

we will not go over these individually. Now we combine all these 6 parts of the summation1.

µ(P )(C ∈ IC2 )

=
∑

IA+,B+∈IA+,B+

∫
IA+

µ(φA)(a)

∫
IB+

∫
IC+
2

φB|I
A+

(b)φC|I
A+

(c)dc db da

=0.196− 0.196 ·
∫
IA+
2

g(a)da− 0.196 ·
∫
IA+
3

g(a)da

+0.194 ·
∫
IA+
2

g(a)da+ 0.239 ·
∫
IA+
3

g(a)da

+0.275− 0.275 ·
∫
IA+
2

g(a)da− 0.275 ·
∫
IA+
3

g(a)da

+0.277 ·
∫
IA+
2

g(a)da+ 0.341 ·
∫
IA+
3

g(a)da

=0.471 + 0 ·
∫
IA+
2

g(a)da+ 0.109 ·
∫
IA+
3

g(a)da

1The 0 coefficient for
∫
IA+
2

g(a)da results from some special properties of this example. There will not be a 0

coefficient in the general case.
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Chapter 5

Sensitivity Analysis

5.1 Introduction
In this chapter, this method of sensitivity analysis for discrete BNs will be generalised to
MoTBF-networks. Note that qualitative parameters are of the same types for both type of
networks, but quantitative parameters are different. Whereas the discrete BN has numerical
probabilities as its quantitative parameters, the MoTBF-network has truncated functions. The
major distinction between these two types of parameters is that truncated functions allow for
many ways of variation. With the probabilities of the discrete BN the only method of variation
is to increase or decrease the probability by a variation quantity. The MoTBF-network also al-
lows to shift the truncated function (as we shall see in Section 5.2) but since we have a mixture
of basis functions much more variations are possible. There is not one right method of varying
the truncated functions, a method can be useful as long as it provides insight in the effect of
inaccuracies of the parameter on the output probability.

In this chapter we will develop a sensitivity analysis for MoTBF-networks by using several
variations of the truncated functions. We will specify each variation, motivate its use for sensi-
tivity analysis, and then develop the sensitivity function for arbitrary output probabilities of the
network.

We end this introduction with some notes on the connection between Chapter 4 and this chapter.
In Chapter 4 we developed variation expressions for arbitrary probabilities in the network given
general variations. For sensitivity analysis, we are interested in the variation expressions for
specific variations. So we can use the theorems and corollaries we have developed in Chapter 4
directly. Moreover, we want to study a set of variations indexed by some variation quantity x,
which denotes how ’large’ the variation is. A sensitivity function maps this x to a variation ex-
pression. So for each specific variation we will introduce in this chapter, we will study a family
of variation expressions. On these variation expressions we can apply the theory developed in
Chapter 4.
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5.2 Shift
One method of parameter variation for an MoTBF-network is shifting the parameter in its en-
tirety upward or downward. This method of variation is directly inspired by the sensitivity
analysis of van der Gaag et al. [26] for discrete BNs. By shifting the parameter we change
the probability mass of the parameter. For a positive(/negative) shift we increase(/decrease) the
probability mass in the subinterval of the parameter while decreasing(/increasing) the proba-
bility mass in the rest of the interval (by proportional co-variation). This gives an insight in
the sensitivity of the output probability to overestimation or underestimation of the probability
mass in the subinterval of the parameter.

Definition 5.2.1. Given an MoTBF-network (G, φV). Given a variable in the network A ∈ V,
and a parameter fA

JA,Jρ(A) ofA. The Shift variation of a parameter by a variation quantity x ∈ R,
denoted as µShiftx, is defined as follows:

µShiftx(f
A
JA,Jρ(A))(a) = fAJA,Jρ(A)(a) + x (5.1)

Note that the right hand side of this equation is an instance of the function g(a) we used in
Chapter 4, but for the specific variation of shifting the parameter by x. An example of the Shift
variation can be found in the top-right corner of Figure 5.1.

5.2.1 Sensitivity Function
For sensitivity analysis using the Shift variation, we need the sensitivity function for probabil-
ities in the network. We will first look at prior probabilities. So if we have a target variable
T ∈ V and some interval UT ⊆ ΩT then we want to know the probability that the value of
T falls within UT . We consider a T 6= A so we can use the results of Chapter 4. We want to
express this probability in terms of x, since a sensitivity function maps the magnitude of the
specific variation to an output probability. We note that x is only used in the variation, so we
can use the results of Corollary 4.2.3. This means that:

µShiftx(P )(T ∈ UT ) = (5.2)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

g(a, x)da (5.3)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

fAJA,Jρ(A)(a) + x da (5.4)

=c0 +
∑

JA+∈JA+

(
cJA+

∫
JA+

fAJA,Jρ(A)(a)da

)
+
∣∣JA+

∣∣ · x (5.5)

=c1 + c2 · x (5.6)

for some c1, c2 ∈ R which are constant in x. Likewise, if we have some variables E ⊆ V (with
A 6∈ E, again so we can use the results of Chapter 4) with observed values e ∈ ΩE then we can
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Figure 5.1: Plots of the effect of the Shift and Stretch variations. The original potential (top-
left) has its parameter fV

IV3
varied. In the top-right corner it is shifted 0.001 upwards, in the

bottom-left corner it is stretched(/shrunk) by a factor 0.5 and in the bottom-right corner it is
stretched by a factor 2. No co-variation is applied.
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find the sensitivity function for the posterior probability the same way using Corollary 4.2.5,
so:

µShiftx(P )(T ∈ UT |E = e) = (5.7)

=
c1 + c2 · x
c3 + c4 · x

(5.8)

Example 5.2.2. We will give an example of a sensitivity function using the Shift variation
with a prior probability as an output probability. This example is a direct continuation of
Example 4.2.6. In that example, we were interested in the probability that C fell within IC2
as an expression of the variation of fA

IC2
, so µfA

IC2
(a) = g(a) for some general function g.

For this example, we consider the variation of fA
IC2

as a Shift variation of x, so we determine
g(a) =def f

A
JA,Jρ(A)(a) + x. We can then find the sensitivity function as follows:

µShiftx(P )(C ∈ IC2 )

=0.471 + 0 ·
∫
IA+
2

g(a)da+ 0.109 ·
∫
IA+
3

g(a)da

=0.471 + 0.109 ·
∫
IA+
3

fAIA2
(a) + x da

=0.471 + 0.109 ·
∫
IA+
3

fAIA2
(a)da+ 0.109 · |IA+

3 | · x

=0.471 + 0.109 ∗ 0.61 + 0.7 ∗ 0.109 ∗ x
=0.537 + 0.076 · x

This sensitivity function is plotted in Figure 5.2. At x = 0 no variation has taken place so
we find that P (C ∈ IC2 ) = 0.537. The upwards slope tells us there is a positive relationship
between x and µShiftx(P )(C ∈ IC2 ). So if the parameter fA

IC2
is estimated too low in our model,

then this will affect our estimation of P (C ∈ IC2 ) to be too low as well (at least for a Shift of
fA
IC2

). The absolute value of the slope, here 0.076, tells us how sensitive the output probability
P (C ∈ IC2 ) is to a shift in the parameter. A larger slope means the output probability is more
affected by a Shift of the parameter. The sensitivity analysis does not determine what a large
slope is objectively, just as in discrete sensitivity analysis, but it does determine that some
output probabilities are more sensitive to Shifts in a certain parameter.

5.3 Stretch
Another method of variation is by stretching (or shrinking) the parameter. We want to do this
while keeping the average value of the parameter constant in its associated subinterval. This
way the probability mass under the subinterval of the parameter also stays constant, as will be
shown later in this section.

Since the variation keeps the probability mass of the parameter constant, no co-variation is
necessary and proportional co-variation will not affect the co-varied parameters. This also
means that this variation is applicable to an SP MoTBF-network, since the probability mass of
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Figure 5.2: A plot of the sensitivity function of Example 5.2.2.

the varied parameter then remains 1. This variation however is not suited for the US MoTBF-
network, as the parameter then only affects the output probability through its probability mass
within the entire subinterval, as can be seen in the result of Theorem 4.1.1, so the output prob-
ability will be constant under variation.

We will first define the average of a parameter before we move on to the definition of the
Stretch variation.

Definition 5.3.1. Given A and fA
JA,Jρ(A) as before. The average of the parameter fA

JA,Jρ(A) ,
denoted as avg(fA

JA,Jρ(A)), is defined as follows:

avg(fAJA,Jρ(A)) =def

∫
JA
fA
JA,Jρ(A)(a)da

|Jρ(A)|
(5.9)

By stretching the parameter, we want to stretch out the points at the values furthest from the
average the most, while keeping the points at the average constant. We do this by shifting the
parameter so its average value is on the x-axis, then multiplying the parameter with a variation
quantity, and then shifting it back up.

Definition 5.3.2. Given A and fA
JA,Jρ(A) as before. The Shift variation of a parameter by a

variation quantity x ∈ R+, denoted as µStretchx, is defined as follows:

µStretchx(f
A
JA,Jρ(A))(a) (5.10)

=(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A))) · x+ avg(fAJA,Jρ(A)) (5.11)

Note that we only consider x ∈ R+ since any negative x will flip the potential vertically,
and we do not deem it interesting to analyse the sensitivity to such a variation. We note that the
set of feasible variation quantities x can differ for different variations.
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We will show that the stretch variation preserves the probability mass of the varied parame-
ter. We note: ∫

JA
avg(fAJA,Jρ(A))da

=

∫
JA

∫
JA
fA
JA,Jρ(A)(a)da

|JA|
da

=|JA| ·
∫
JA
fA
JA,Jρ(A)(a)da

|JA|

=

∫
JA
fAJA,Jρ(A)(a)da

so it follows that:∫
JA
µStretchx(f

A
JA,Jρ(A))(a)da

=

∫
JA

(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A))) · x+ avg(fAJA,Jρ(A))da

=(

∫
JA
fAJA,Jρ(A)(a)da−

∫
JA
avg(fAJA,Jρ(A))da) · x+

∫
JA
avg(fAJA,Jρ(A))da

=(

∫
JA
fAJA,Jρ(A)(a)da−

∫
JA
fAJA,Jρ(A)(a)da) · x+

∫
JA
fAJA,Jρ(A)(a)da

=

∫
JA
fAJA,Jρ(A)(a)da

So the probability mass is preserved.

For x = 1 the parameter is kept constant, for x > 1 the parameter is stretched and for x < 1
the parameter is shrunk. Examples of shrunk and stretched parameters can be found in the
bottom-left and bottom-right corner of Figure 5.1 respectively.

5.3.1 Sensitivity Function
The sensitivity function for this method of variation is found in much the same way as in
Subsection 5.2.1. For the prior probability it is:

µStretchx(P )(T ∈ UT ) (5.12)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

µStretchx(f
A
JA,Jρ(A))(a)da (5.13)

=c1 + c2 · x (5.14)

for some c1, c2 ∈ R which are constant under x. The rewriting of Equation 5.13 into Equation
5.14 can be found in Appendix A.3.2. We notice this sensitivity function is of the same form
as the sensitivity function of the Shift variation in Equation 5.6 (albeit for different constants
c1, c2). The form of the sensitivity function for a posterior output probability will of course also
be equal to the one we found for the Shift variation (i.e. Equation 5.8).
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Example 5.3.3. We will again give an example of the sensitivity function with the stretch
variation based on Example 4.2.6.

µStretchx(P )(C ∈ IC2 )

=0.471 + 0 ·
∫
IA+
2

g(a)da+ 0.109 ·
∫
IA+
3

g(a)da

=0.471 + 0.109 ·
∫
IA+
3

(
fAIA2

(a)− avg(fAIA2
)
)
· x+ avg(fAIA2

) da

=0.471 + 0.109 ·

(∫
IA+
3

fAIA2
(a)da−

(
avg(fAIA2

) · |IA+
3 |
))
· x

+ 0.109 · avg(fAIA2
) · |IA+

3 |

=0.526 + 0.012 · x

5.4 Extra Base Functions
The Shift and Stretch variations are useful for sensitivity analysis of MoTBF-networks without
any supplied context. The sensitivity analysis then gives insight in the general inaccuracies
of the model. Since MoTBF-networks can be learned from any probability distribution, it can
also be interesting to analyse how sensitive the output is in the approximation of the MoTBF-
network to the distribution. In this section we develop a variation (with respective sensitivity
function) to do just that.

Langseth et al. [16] describe a method for making an approximated MoTBF-network from
an arbitrary probability distribution, and predefined graph structure, in their paper as follows.
Initially, the conditional potential of each variable is a single truncated function with just a sin-
gle base function. Then the best improvement is iteratively picked until the MoTBF-network is
within permissible error (i.e. a good enough approximation of the distribution). An improve-
ment can be found either by introducing an extra base function to a parameter, or by splitting a
subinterval of a continuous parent (e.g. an element in IV→C) into two subintervals. After such
an MoTBF-network is made, it will then be interesting to see how sensitive the output probabil-
ities are to these two improvements. If the output is very sensitive to certain improvements, this
means that the MoTBF-network might not be a close enough approximation of the distribution.
Alternatively, this sensitivity analysis could be used directly in learning the MoTBF-network,
by picking improvements based on the highest sensitivity of the output probability as an adap-
tation of the original learning algorithm. The first improvement, adding an extra base function,
will be used for the variation discussed in this section. The second improvement will be dis-
cussed in Section 6.2.

We use the extra base functions variation, µExtraBasex, to introduce extra base functions to a
parameter. Equation 2.12 gives us the definition of the original parameter in terms of base
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functions:

fAJA,Jρ(A) =
m∑
i=0

aiψi(a) (5.15)

Introducing extra base functions then is just increasing this summation. For x ∈ N, we then
have that the extra base functions variation introduces more base functions. This is defined as
follows:

Definition 5.4.1. Given A and fA
JA,Jρ(A) as before. The Shift variation of a parameter by a

variation quantity x ∈ N, denoted as µExtraBasex, is defined as follows:

µExtraBasex(f
A
JA,Jρ(A)) =

m+x∑
i=0

aiψi(a) (5.16)

So this variation will make truncated function better resemble the potential of the original
HBN on the truncated function’s associated interval.

5.4.1 Sensitivity Function
For a prior probability, the sensitivity function for the extra base functions variation will be of
the form:

µExtraBasex(P )(T ∈ UT ) (5.17)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

µExtraBasex(f
A
JA,Jρ(A))(a)da (5.18)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

m+x∑
i=0

aiψi(a)da (5.19)

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

m∑
i=0

aiψi(a)da (5.20)

+
∑

JA+∈JA+

cJA+

∫
JA+

m+x∑
i=m+1

aiψi(a)da (5.21)

=c1 +
∑

JA+∈JA+

cJA+

∫
JA+

m+x∑
i=m+1

aiψi(a)da (5.22)

for some c1 ∈ R and cJA+ ∈ R for JA+ ∈ JA+ that are constant under x. The sensitivity
function for the posterior probability is again a fraction of two of these sensitivity functions.

5.5 Experiments
In this section, we will support the theory of this thesis with two experiments. The goal of these
experiments is to test that for an example MoTBF-network the sensitivity functions of the Shfit
and Stretch variations for a prior output probability will show the form predicted by the theory.
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We use Elvira to do inference with an example MoTBF-network. Elvira is a software pack-
age that can be used to model and do inference with BNs [5], and it has an implementation
for MoTBF-networks specifically. The example MoTBF-network we will use is based on an
example network made by the same author as the Elvira package, called mte pos [1]. This is a
network of three variables, V1, V2 and V3. All three variables are continuous, and the network
is an MoTBF-network or more specifically an MTE-network. The variable V1 is a root of the
network, with as only child V2, and V2 has as only child V3 which is a leaf of the network. The
subintervalsets of mte pos are all equal: IV1 = IV1→V2 = IV2 = IV2→V3 = IV3 = {[0, 1), [1, 2)}.

We will make two small modifications to the mte pos network to arrive at the network we
will use for our experiments. The first is that we redefine IV1→V2 = {[0, 0.6), [0.6, 2]} and
the second is that we redefine IV2→V3 = {[0, 1.2), [1.2, 2]}. The reason we do this is that the
mte pos is a US MoTBF-network. This new network is not a US MoTBF-network. This way
our experiments will support the theory of sensitivity analysis for general MoTBF-networks,
instead of just the theory of sensitivity analysis for US MoTBF-networks.

For our two experiments, we are interested in the same parameter to vary and the same output
probability. The parameter we will be varying is the first parameter of variable V1, i.e. fV1

I
V1
1

with

IV11 = [0, 1). The output probability of interest will the prior probability P (0.4 ≤ V3 < 1.5).

For the first experiment, we will vary the parameter fV1
I
V1
1

according to the shift variation. The

parameter fV1
I
V1
2

will be co-varied according to proportional co-variation. We will do this shift

variation for several variation quantities x, namely x ∈ {−0.2,−0.1, 0, 0.1, 0.2}, and then find
the output probability under these variations. The theory predicts that

µShiftx(P )(0.4 ≤ V3 < 1.5) = c1 + c2 · x

for some c1, c2 ∈ R (see Section 5.2.1). So the theory predicts that the output probabilities
fall on one line if plotted against the variation quantity x. As can be seen in Figure 5.3, the
experiment supports this prediction. The points in the plot fall on the line 0.615 + 0.03 · x.

For the second experiment, we will vary the parameter fV1
I
V1
1

according to the shift variation.

This time we will do the variation for the variation quantities x ∈ {0, 0.5, 1, 1.5, 2}. The theory
predicts that

µShiftx(P )(0.4 ≤ V3 < 1.5) = c1 + c2 · x

for some c1, c2 ∈ R (see Section 5.3.1). The output probabilities for the specified variation
quantity again fall on a line as predicted by the theory, as seen in Figure 5.4.
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Figure 5.3: Left: The output probability for the shift variation for several values of x. Right:
The same image, with the addition of a plotted line that fits through these points.

Figure 5.4: Left: The output probability for the stretch variation for several values of x. Right:
The same image, with the addition of a plotted line that fits through these points.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion
The central question posed in the introduction was: It is possible to generalise the method
of sensitivity analysis as described by van der Gaag et al. [26] towards the MoTBF-network?
In this thesis, an effort was made to answer this question by developing such a method. The
answer to this question is therefore a positive one. The contributions of this thesis will be sum-
marised per chapter.

Firstly some preliminaries were introduced in Chapter 2. The original work of this chapter
concerned intervals. The intervals of random variables in the MoTBF-network were divided
into subintervals used in the definition of the truncated functions. The notion of a subinterval
set was then introduced. This is a set of mutually exclusive subintervals that exactly cover an
interval, usually the interval of a random variable. In an MoTBF a random variable can have
multiple subinterval sets associated with it, and a new subinterval set was introduced that cuts
the interval in even smaller pieces by taking the intersections of all the subintervals in the other
sets.

Then, the notion of co-variation was extended towards truncated functions in the MoTBF-
network in Chapter 3. Some necessary and optional conditions were imposed on co-variation
schemes. Then some schemes were defined and analysed through these conditions. The first of
these was proportional co-variation, a direct generalisation of the most widely used scheme for
discrete BNs. This scheme fulfilled all conditions save for one: The optional condition that the
joining of neighbouring parameters should be preserved under co-variation. The other schemes
considered did fulfil this condition but fared worse on other conditions, most critically they all
failed the necessary condition that all parameters should be positive on their entire subinterval.
Therefore proportional co-variation was suggested as the best co-variation scheme and was
used throughout the rest of the thesis.

In Chapter 4, probabilities in the network were expressed in terms of a general variation of
a truncated function in the network. These expressions are called variation expressions. Firstly
variation expressions were developed for a special kind of MoTBF-network, the US MoTBF-
network, where each variable only has a single associated subinterval set. This was then used as
a stepping stone for developing variation expressions for the general MoTBF-network, which
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was more labourious since more subinterval sets were involved. For both these types of net-
work the initial variation expressions only were developed for a fixed type of probability of the
network, namely probabilities of target variables falling into subintervals of some subinterval
set. The theory was therefore extended to more general probabilities, namely the probabilities
that a certain target variable falls into an arbitrary interval given some observed evidence for
some variables. For this generalisation to work, it was assumed that the varied variable (i.e.
the variable with the varied parameter) did not equal the target variable and was not part of the
observed variables.

In Chapter 5, a sensitivity analysis for MoTBF-networks was developed. Where in Chapter 4
variation expressions for a general variation were developed, this chapter introduced some spe-
cific methods of variation. For each of these a sensitivity function was developed: A function
that gives for a variation quantity (i.e. how large the variation is) an expression of probabil-
ities in the network in terms of the variation. This was done by directly applying the theory
of Chapter 4. Three methods of variation were introduced and had sensitivity functions devel-
oped. Firstly the Shift variation, that is the most direct generalisation of the variation in the
discrete case, and gives insight in the sensitivity of probabilities to the varied parameter being
too low or high overall. Then the Stretch variation, which give insight in the sensitivity of prob-
abilities to the values of the parameter being closer or further away from the average value of
the parameter. Lastly the Extra Base Functions variation, which gave insight in the sensitivity
of probabilities to the parameter being a better approximation of a probability distribution the
MoTBF-network models.

In conclusion it has been shown in this thesis that it is possible to generalise the method of
sensitivity analysis as described by van der Gaag et al. [26] towards the MoTBF-network. This
is an important achievement, since no method for sensitivity analysis of MoTBF-networks had
been developed thus far. Much groundwork was necessary to eventually develop the method
in Chapter 5. It is regretful though that this generalisation is not entirely complete, since in
Chapter 4 there were some assumptions made on the probabilities that variation expressions
can be found for (and thus sensitivity analysis can be performed on), namely only probabilities
where the varied variable does not equal the target variable and the varied variable is not part of
the observed evidence. But with this note in mind, sensitivity analysis can still be performed on
all these probabilities. By doing sensitivity analysis using the Shift variation and using propor-
tional co-variation, the most direct generalisation is made. Proportional co-variation seems to
make the most sensible scheme, but many variations next to the Shift variation are possible to
which the theory in this thesis can be directly applied, which makes that in this generalisation,
sensitivity analysis comes in even more flavours.

6.2 Future Research
The major future research should be looking into the assumption made in Chapter 4. Here the
assumption was made that the varied variable should not be the target variable and not be part
of the set of observed variables. Without these assumptions the general form of the variation
expressions will no longer be valid, but we do think that the general form of the sensitivity
functions for the Shift and Stretch variations will still be valid. A proof of this did not fit in the
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structure of this thesis, but it should be possible. This allows the sensitivity analysis to work on
Naive Bayesian networks as well for example, as they only have evidence and target variables.

A variation considered in Chapter 5 was the More Base Functions variation, where a parameter
was made a better estimation of an original potential by adding more base functions to it. It is
also possible to make the parameter a better estimation by splitting its subinterval in two pieces.
Subinterval sets without associated parameters, the parent subinterval sets, can also have their
subintervals split into two pieces. This can all give insight into the size of subinterval sets, and
if the output probability is sensitive to increasing this size. The focus of this thesis has been
entirely on changing the parameters of the network, but not on changing the subinterval sets of
the network. So new theory would be needed to do sensitivity analysis on subinterval sets as
well. This branch of sensitivity analysis seems less interesting to us however, since it only gives
insight in the sensitivity of output probabilities to how good the approximation of the MoTBF
is to the modelled probability distribution, but not to the validity of the probability distribution
itself.
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Appendix A

Mathematics

A.1 Subinterval Sets
Theorem A.1.1. Consider subinterval sets IV1 , · · · , IVn over the domain ΩV . Then the set

IV+ =def {IV1 ∩ · · · ∩ IVn |IV1 ∈ IV1 , · · · , IVn ∈ IVn } − {∅}

is also a subinterval set over the domain ΩV .

Proof: We recall a set IV is a subinterval set over the ΩV if:

1. Every element IV ∈ IV is a subinterval of ΩV , i.e. IV ⊆ ΩV

2. The elements in IV are mutually exclusive, i.e. for any two IV , JV ∈ IV such that
IV 6= JV , it holds that IV ∩ JV = ∅.

3. The domain ΩV is entirely covered by the subintervals in IV , i.e., for any v ∈ ΩV , there
is some IV ∈ IV such that v ∈ IV .

We will proof all of these requirements for the set IV+.

1. Consider an arbitrary element IV+ ∈ IV+. From the definition of IV+ we see that IV+ =
IV1 ∩ · · · ∩ IVn for some IV1 ∈ IV1 , · · · , IVn ∈ IVn . Now for any IVi with i ∈ {1, · · · , n} it
holds that IVi ⊆ ΩV since IVi is a subinterval set over the domain ΩV . Since any IVi is
a subinterval of ΩV , their intersection IV+ is too. Since IV+ is an arbitrary element of
IV+, this proofs that every element of IV+ is a subinterval of ΩV .

2. Consider two arbitrary elements IV+, JV+ ∈ IV+ such that IV+ 6= JV+. From the
definition of IV+ we see that IV+ = IV1 ∩ · · · ∩ IVn for some IV1 ∈ IV1 , · · · , IVn ∈ IVn , and
JV+ = JV1 ∩ · · · ∩ JVn for some JV1 ∈ JV1 , · · · , JVn ∈ JVn . We can see that there must be
an i ∈ {1, · · · , n} such that IVi 6= JVi , otherwise we would have that IV+ = JV+. Since
IVi , J

V
i ∈ IVi and IVi 6= JVi it follows that IVi ∩JVi = ∅, since IVi is a subinterval set so its

elements are mutually exclusive. It is also clear that IV+ ⊆ IVi and likewise JV+ ⊆ JVi
since IVi and JVi are part of the intersections that define respectively IV+ and JV+. If two
elements have an empty intersection, then so do their subsets. So IV+ ∩ JV+ = ∅. Since
we haven taken two arbitrary unequal elements of IV+ and have shown their intersection
empty, this shows that the elements of IV+ are mutually exclusive.
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3. Consider an arbitrary value v ∈ ΩV . Now for any i{1, · · · , n} the set IVi is a subinterval
set over the domain ΩV , so there is an element IVi ∈ IVi such that v ∈ IVi . Now consider
the intersection of all these sets, IV+ =def I

V
1 ∩ · · · ∩ IVn . Since v is in all the intersected

elements, it is also part of the intersection, so v ∈ IV+. It holds that IV+ ∈ {IV1 ∩
· · · ∩ IVn |IV1 ∈ IV1 , · · · , IVn ∈ IVn }. Also since v ∈ IV+ so IV+ 6= ∅. This shows that
IV+ ∈ IV+. So there is an element IV+ ∈ IV+ such that v ∈ IV+. Since v is an arbitrary
value in ΩV , this shows that the subintervals in IV+ cover the entire domain ΩV .

Theorem A.1.2. Consider subinterval sets IV1 , · · · , IVn over the domain ΩV , and the set

IV+ =def {IV1 ∩ · · · ∩ IVn |IV1 ∈ IV1 , · · · , IVn ∈ IVn } − {∅}.

For any IV+ ∈ IV+ and for any i ∈ {1, · · · , n}, there is exactly one IVi ∈ IVi such that
IV+ ⊆ IVi .

Proof: Consider an arbitrary IV+ ∈ IV+ and an arbitrary i ∈ {1, · · · , n}. From the def-
inition of IV+ we see that IV+ = IV1 ∩ · · · ∩ IVi ∩ · · · ∩ IVn for some IV1 ∈ IV1 , · · · , IVi ∈
IVi , · · · , IVn ∈ IVn . Since IV+ is an intersection of some sets including IVi , we know that
IV+ ⊆ IVi . So IV+ is a subset of at least one element in IVi , namely IVi .

Consider an arbitrary JVi ∈ IVi such that JVi 6= IVi . First we note that IV+ is not empty,
since the set IV+ is defined with the empty set subtracted. So there is some element v ∈ IV+.
Now since IV+ ⊆ IVi it follows that v ∈ IVi . Since IVi is a subinterval set it follows that its
elements are mutually exclusive, so IVi ∩ JVi = ∅ and so v 6∈ JVi . This means that IV+ 6⊆ JVi .
Since JVi was an arbitrary element of IVi such that JVi 6= IVi , we know that IV+ is a subset of
no other element of IVi than IVi . So IV+ is a subset of exactly one element of IVi , namely the
set IVi .

A.2 Variation Expression
The following shows how to rewrite Equation 4.24 into Equation 4.25.

A.2.1 General

µ(P )(T ∈ IT+) (A.1)
(we write the probability as a potential)

=

∫
IT+

µ(φT)(t)dt (A.2)

(we marginalise out the non-target variables)

=

∫
IT+

∫
ΩN

µ(φV)(t,n)dndt (A.3)

(we rewrite using Equation 2.4)
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=

∫
IT+

∫
ΩN

∏
V ∈V

µ(φV |ρ(V ))(v|ρ(v))dndt (A.4)

(we split the domain of N into truncated functions)

=

∫
IT+

∑
IN+∈IN+

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dndt (A.5)

(we take the summation out, which is independent of t)

=
∑

IN+∈IN+

∫
IT+

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dndt (A.6)

(we merge T and N into V)

=
∑

IN+∈IN+

∫
IV+

∏
V ∈V

µ(φV |I
V+

)(v)dv (A.7)

(we split V into A and V′)

=
∑

IN+∈IN+

∫
IA+

∫
IV′+

µ(φA|I
V+

)(a)
∏
V ′∈V′

φV
′|IV+

(v′)dv′da (A.8)

(we move the truncated function out of the integral)

=
∑

IN+∈IN+

∫
IA+

µ(φA|I
V+

)(a)

∫
IV′+

∏
V ′∈V′

φV
′|IV+

(v′)dv′da (A.9)

(the integral over IV
′

is constant in both µ and a. Because of the former we can

make it O(1), and because of the latter we can move it out of the integral over IA)

=
∑

IN+∈IN+

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (A.10)

A.2.2 Prior marginal
The rewriting rules in this proof of Corollary 4.2.2 heavily resemble those in Appendix A.2.1.
The notable differences are that we are considering a single variable T here as opposed to a
set of variables T, and that we are considering an integral over some UT ⊆ IT+ instead of
an integral over IT+. Note that this does not matter in the way the conditional potentials are
conditioned, as the same truncated functions are selected by UT and IT+ (since the subintervals
in IT+ are ’the smallest units’ in selecting truncated functions).

Proof of Corollary 4.2.2: We do some familiar rewriting.

µ(P )(T ∈ UT) (A.11)
(we write the probability as a potential)

=

∫
UT
µ(φT)(t)dt (A.12)

(we marginalise out the non-target variables)

=

∫
UT

∫
ΩN

µ(φV)(t,n)dndt (A.13)

(we rewrite using Equation 2.4)
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=

∫
UT

∫
ΩN

∏
V ∈V

µ(φV |ρ(V ))(v|ρ(v))dndt (A.14)

(we split the domain of N into truncated functions. Here IV+ = IN+ ∩ {IT+})

=

∫
UT

∑
IN+∈IN+

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dndt (A.15)

(we take the summation out, which is independent of t)

=
∑

IN+∈IN+

∫
UT

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dnt (A.16)

(we split N into A and N′ (since A 6= T ) and we split V into A and V′

=
∑

IN+∈IN+

∫
UT

∫
IA+

∫
IN′+

µ(φA|I
V+

)(a)
∏
V ′∈V′

φV
′|IV+

(v′)dn′ da dt (A.17)

(both the truncated function and the integral over a are independent of both n′

and t so we move them out of those integrals)

=
∑

IN+∈IN+

∫
IA+

µ(φA|I
V+

)(a)

∫
UT

∫
IN′+

∏
V ′∈V′

φV
′|IV+

(v′)dn′ dt da (A.18)

(the integral over UT and IN
′

are constant in both µ and a. Because of the former
we can make them O(1), and because of the latter we

can move it out of the integral over IA)

=
∑

IN+∈IN+

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (A.19)

This leaves us with an equation exactly of the form of the one in the proof of Theorem 4.2.1,
so the case part of this proof can be applied to this corollary as well.

A.2.3 Posterior marginal
We do rewriting for

∫
UT
µ(φT,E)(t, e)dt for the proof of Corollary 4.2.4. Firstly we write IE+

for the unique set of subintervals for the values of e, i.e. for any e ∈ e and IE+ ∈ IE+ we have
e ∈ IE .

=

∫
UT
µ(φT,E)(t, e)dt (A.20)

(we marginalise out the non-target variables)

=

∫
UT

∫
ΩN

µ(φV)(t, e,n)dtdn (A.21)

(we rewrite using Equation 2.4)

=

∫
UT

∫
ΩN

∏
V ∈V

µ(φV |ρ(V ))(v|ρ(v))dndt (A.22)

(we split the domain of N into truncated functions. Here IV+ = IN+ ∩ {IT+} ∩ IE+)

=

∫
UT

∑
IN+∈IN+

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dndt (A.23)
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(we take the summation out, which is independent of t)

=
∑

IN+∈IN+

∫
UT

∫
IN+

∏
V ∈V

µ(φV |I
V+

)(v)dnt (A.24)

(we split N into A and N′ (A ∈ N since A 6= T,A 6∈ E) and we split V into A and V′

=
∑

IN+∈IN+

∫
UT

∫
IA+

∫
IN′+

µ(φA|I
V+

)(a)
∏
V ′∈V′

φV
′|IV+

(v′)dn′ da dt (A.25)

(both the truncated function and the integral over a are independent of both n′

and t so we move them out of those integrals)

=
∑

IN+∈IN+

∫
IA+

µ(φA|I
V+

)(a)

∫
UT

∫
IN′+

∏
V ′∈V′

φV
′|IV+

(v′)dn′ dt da (A.26)

(the integral over UT and IN
′

are constant in both µ and a. Because of the former
we can make them O(1), and because of the latter we

can move it out of the integral over IA)

=
∑

IN+∈IN+

O(1)

∫
IA+

µ(φA|I
V+

)(a)da (A.27)

A.3 Sensitivity Analysis

A.3.1 Stretch
We will show that the stretch variation preserves the probability mass of the varied parameter.
We note: ∫

JA
avg(fAJA,Jρ(A))da

=

∫
JA

∫
JA
fA
JA,Jρ(A)(a)da

|JA|
da

=|JA| ·
∫
JA
fA
JA,Jρ(A)(a)da

|JA|

=

∫
JA
fAJA,Jρ(A)(a)da
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so it follows that:∫
JA
µStretchx(f

A
JA,Jρ(A))(a)da

=

∫
JA

(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A))) · x+ avg(fAJA,Jρ(A))da

=(

∫
JA
fAJA,Jρ(A)(a)da−

∫
JA
avg(fAJA,Jρ(A))da) · x+

∫
JA
avg(fAJA,Jρ(A))da

=(

∫
JA
fAJA,Jρ(A)(a)da−

∫
JA
fAJA,Jρ(A)(a)da) · x+

∫
JA
fAJA,Jρ(A)(a)da

=

∫
JA
fAJA,Jρ(A)(a)da

A.3.2 Sensitivity Function for Stretch
Here we will show the rewriting of Equation 5.13 into Equation 5.14.

c0 +
∑

JA+∈JA+

cJA+

∫
JA+

µStretchx(f
A
JA,Jρ(A))(a)da

=c0 +
∑

JA+∈JA+

cJA+

∫
JA+

(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A))) · x+ avg(fAJA,Jρ(A))da

=
∑

JA+∈JA+

(
x · |JA+| · cJA+

∫
JA+

(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A)))da

)
+

c0 +
∑

JA+∈JA+

∫
JA+

avg(fAJA,Jρ(A))da

=x · |JA| ·
∑

JA+∈JA+

(
cJA+

∫
JA+

(fAJA,Jρ(A)(a)− avg(fAJA,Jρ(A)))da

)
+

c0 +
∑

JA+∈JA+

∫
JA+

avg(fAJA,Jρ(A))da

=c1 + c2 · x

for some c1, c2 ∈ R independent of x.
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