MASTER THESIS

A BLOCKCHAIN-BASED
MICRO ECONOMY PLATFORM FOR
DISTRIBUTED INFRASTRUCTURE

INITIATIVES

Jan Kramer
Department of Information and Computing Sciences
Utrecht University

Date: August 2017

Supervisors:  dr.ir. J.M.E.M. van der Werf (UU)
dr. L.M. Ruiz Carmona (UU)
J. Stokking MSc (The Things Network)
W. Giezeman MSc (The Thitngs Network)



Abstract

Distributed Infrastructure Initiatives (DIIs) are communities that collabora-
tively produce and consume infrastructure. To develop a healthy ecosystem,
DIIs require an economic model that balances supply and demand, but there is
currently a lack of tooling to support implementing such economic models. In
this research, we propose an architecture for a platform that enables DIIs to im-
plement such micro economic models, focused around a digital currency based
on blockchain technology. The currency is issued according to the amount par-
ticipants contribute to the initiative, which is quantified based on operational
metrics gathered from the infrastructure. Furthermore, the platform enables
participants to deploy smart contracts which encode self-enforcing agreements
about the infrastructure services they exchange. The architecture has been
validated through a case study at TTN, where a proof of concept of the ar-
chitecture was implemented and evaluated. The case study revealed that the
architecture is effective for the given situation, but needs more research in the
areas of scalability and security to be deployed on a larger scale.



Acknowledgement

This thesis is the culmination of my graduation project for the Master Business
Informatics program at Utrecht University. It would not have the shape it has
today without the help of several key people. In particular, I would like to thank
my supervisors who despite busy schedules were always able to provide me with
invaluable insights. Jan Martijn, thank you for the pragmatism and out-of-the-
box thinking you provided during our biweekly meetings. Johan, thank you for
the freedom you offered me to conduct my research as I saw fit and the patience
you showed along the way. Wienke, thank you for your endless enthusiasm, wise
conversations and interesting book suggestions.

Finally, I would like to thank everyone else at The Things Network for the
inspiring environment, and anyone I forgot to mention who provided input on
my research over the past year.

— Jan Kramer



Contents

[1.1 Case Subject| . . . . . .. .. o
1.2 Running Bxample] . ... ... ... ... ... ... ..

2 Research Approach

2.1 Research Questions|. . . . . . . ... ... ... ... . ......

2.2  Research Methodsl . . . . .. . .. ... ... .. ... ....
2.2.1 Taterature Reviewl . . . . .. . . .. . ... ... .....
2.2.2 Design Science| . . . . ... oo
223 CasedStudy| . . . . .. ... oo o

23 Contributiond . . . . . . . .. ...

|3 Theoretical Background|
[3.1 _Socio-Economic Perspective . . . . .. ... 000000
3.1.1 conomic Principles| . . . . ... ... 0000
3.1.2  Traditional Buyer-5Seller Market|. . . . . . .. .. ... ..
8.1.3  Mining Rewards| . . . ... .. ... ... ... ... .
[3.1.4 Distributed Peer-to-Peer Marketplace| . . . . .. ... ..
B2 Software Architecturd . . . . ... ... ... ... ... .. ...
I;‘ilzll I)s: I“i '““SI ..........................
13.2.2  Viewpoints and Perspectives] . . .. .. ... .. ... ..
8.3 Distributed Ledgers| . . . ... .. ... ... 0.
13.3.1  Public vs Private vs Hybrid| . . . . ... ... .. .....

433 Set Up Wallet|. . . .. ... ... ........... ...
4.3.4  Send/Receive Tokens|. . . . . . . . . ... ... ......




4.3.5  Marketplace]. . . . ... ... o oo

on-Functional Requirements| . . . . . . . .. ... ... .....
4.4.1  Efficient Batch Handling|. . . . . . ... ... .. ... ..
4.4.2  Distributed Deployment| . . . . . .. .. ... ... .. ..
4.4. ECUrLbY| . . . . . . .

[ Micro Economy Platform Architecture]

p.1  Context Viewpoint| . . . . . . . .. ... ... ..

[p.1.1 Context Diagram|. . . . . ... ... ... .........
5.1.2  FBEconomic Modell . . . . ... ... ... .

b.2  Functional Viewpoint| . . . .. .. ... ... ... ...

B.2.1

[6 Evaluation: Case Study at The Things Network]

6.1 roof-of-Concept Implementation|. . . . . . .. ... ... .. ..

B.1.1

Integration Agent| . . .. .. ... ... L.

0. Analysis| . . . . .. L Lo s e e

6.2.1

Scalability|. . . . .. ..o oL

6.2. ecurity| . . . .. oL o

13

Degree of Trust|. . . . .. ... ... L L.

[r.2 Threats To Validity] . .. ... .. ... .. ... .......

24
24
24
26
27
27
27
28
31
31
31

33
33
34
35
38
38
39

40
40
40
41
41
41

43
43
44

45

48

54

55



Chapter 1

Introduction

In recent years, our attitudes towards consumption and production have shifted
towards a more distributed, peer-to-peer and sharing economic model [12]. Ex-
amples of drivers for this shift include globalization and the consumerization of
digital technologies [25]. However, while platforms such as Airbnb, Kickstarter,
and Etsy are indeed based around a peer-to-peer economy, they are still fully
dependent on central organizations to manage their platforms. In the utopia of
a true peer-to-peer economy, these dependencies would also be eliminated and
replaced by a fully distributed alternative.

In addition to consumer goods and services, it is also possible to produce
infrastructural services in a decentralized manner, as shown by The Things Net-
work (TTN), a global, distributed, crowdsourced Internet of Things network
initiative [28]. To refer to this type of initiative, we define the term Distributed
Infrastructure Initiative (DII) as a group of individuals and organizations that
cooperatively produce and consume a shared set of infrastructure services, with-
out a centralized governance body.

A notable attribute of DIIs is that the participants themselves are tasked
with producing the infrastructure, whereas traditionally, corporations such as
telecom operators bear this responsibility. While corporations are incentivized
by profits to produce the infrastructure, in DIIs there is no built-in incentive for
participants to produce beyond their own need, especially in situations where
the infrastructure is offered free of charge. Therefore, given basic economic
principles, voluntary contributions to such initiatives are limited and potentially
unsustainable.

Developing a micro economy specific to DIIs can address this issue by en-
abling incentives to be set up so that contributions are rewarded. However,
while there is a vast body of literature on related topics such as reward systems,
there is little practical tooling to enable DIIs develop such micro economies.

Therefore, in this research we aim to provide a software architecture of a
platform that provides the tools necessary to operationalize an economic model
that incentivizes participants to contribute beyond their own needs and altruism.
To achieve a fully decentralized architecture, the platform is centered around
a blockchain using smart contracts to facilitate the core logic. Finally, the
architecture is validated by implementing a proof of concept and evaluating it
in the context of TTN, a real-world DII.



1.1 Case Subject

To further illustrate the problem we aim to address, we introduce The Things
Network (TTN) as our case subject. TTN aims to connect individuals and
organizations with a common interest in IoT through an online platform, and
enable them to cooperatively build the shared network.

Figure pictures a brief overview of the main roles and components in-
volved in the network. On an infrastructural level, the network consists of
gateways which, analogous to access points in WiFi networks, provide edge
connectivity to IoT devices in the field using radio technology. Each gateway
connects to the backend, which ensures uplink and downlink messages between
the IoT devices and applications are properly routed.

The initiative is distributed and each of the infrastructure components is de-
ployed multiple times and operated by separate entities. Among these entities,
we distinguish the following roles. Application owners create IoT applications
that communicate with devices in the field, and are effectively the consumers of
the infrastructure. Gateway operators subsequently provide network coverage
by placing gateways, and routing service providers operate the backend com-
ponents that ensure messages are routed properly. Note that these roles are
not mutually exclusive. For example, a gateway owner can simultaneously own
applications and host backend components.

loT Application

A j
uplink | tdownlink
Infrastructure
- ' '
Application Owner
Backend
Routing Service Provider . .
Gateway
Gateway Operator uplink E E downlink
H Y
loT Device

Figure 1.1: Roles and components in The Things Network



/S S S

Gatéway Router Broker Handler
Operator Operator Operator Operator
(e.g. Alicel Netcorp) (e.g. TTN) (e.g. :I'TN) (e.g. _'I'I'N)
~...-Chooses: -.. Backend
\ 2 2. Y Vv 3. A4 4. A 4
N N N
> > >
Gateway Router Broker Handler |-
< < <
A 9 8. 7 A
1 10. 6 5. Chooses

Y Y

Device App
(e.g. parking [€==---=-----m-mmmemceiooin [ eeieeieooeooooooo oo o) » (e.g.parking |-
space sensor) space tracker)

Application owner
(e.g. Parco)

Figure 1.2: Typical usage scenario of The Things Network

Figure depicts the typical usage of the IoT network infrastructure. The
sequence is triggered by an IoT device (e.g. a sensor) transmitting an uplink
message (1) which is received by zero or more gateways. Each gateway forwards
the message to the router it is connected to (2), which in turn routes the mes-
sage to a broker (3). The broker subsequently deduplicates the set of received
messages belonging together, does a lookup to determine the application the
message belongs to, and forwards the message to the corresponding handler (4).
The handler then decrypts and decodes the payload and publishes the message
to the application (5).

In case the application has scheduled a downlink (6) message, the handler
encodes and encrypts the corresponding payload and sends it to the broker (7)
which forwards it to the router that is connected to the gateway that has been
selected as the best downlink option based on signal strength and utilization (8).
Finally, the router schedules the downlink for the selected gateway (9) which
transmits the message to the device (10).

As the usage scenario shows, there are many roles involved in using and op-
erating the infrastructure. The gateway operator has to purchase a gateway, in-
stall it at a proper location (e.g. high altitude, outside, etc.) and provide it with
electricity and internet connectivity. The routing service providers (router/bro-
ker/handler operators) have to operate a server that runs the TTN backend
components and make sure everything is kept healthy and up to date. In short,
these roles “deposit” value by contributing infrastructure, whereas application
owners use the network and thereby “withdraw” value.



1.2 Running Example

To further concretize the example, let us introduce a running example within
the context of TTN.

Consider a fictional urban area where Parco, a parking garage company,
wants to roll out an IoT application that keeps track of its parking space occu-
pancy. However, while the software is developed in-house, they do not have the
expertise to build and operate the necessary IoT network hardware as depicted
in Figure [T[.2]

Conveniently, a group of independent parties have already invested in the
required network infrastructure. The group consists of TTN, the initiatives’
foundation, Alice, a private individual, and Netcorp, a network infrastructure
company. TTN operates a number of routing services (router, broker and han-
dler), whereas Alice and Netcorp have invested in various gateways.

Finally, we introduce Bob, an individual who believes in a future where
digital currencies such as Bitcoin and Ethereum play an important role and
therefore invests in various digital currencies in his spare time.

In later chapters, where appropriate, concepts are further clarified using this
running example in a textbox such as the following.

Example 1.1 If we apply the running example to Figure then Parco
is an example of an application owner, and their app the parking space
tracker. The devices are represented by sensors deployed in the parking
garage, and communicate through gateways operated by both Alice and
Netcorp. The routing services (router, broker and handler), finally, are are
operated by TTN and used to get the messages from the gateway to the
parking space tracker and vice versa.

1.3 Outline

The remainder of this thesis is structured as follows. Chapter [2]describes the ap-
proach of this research, including its research questions and methods. Chapter
provides a theoretical background from the perspectives of socioeconomics,
software architecture and distributed ledgers. In Chapter [4] we describe the
functional and non-functional requirements of the micro economy platform pro-
posed in this research, of which an architecture is provided in Chapter 5} The
architecture is evaluated in Chapter [0} and the findings of designing and imple-
menting the proof of concept are discussed in Chapter [7] Finally, we conclude
the research in Chapter [§] by addressing the original research questions and
describing areas for future research.



Chapter 2

Research Approach

2.1 Research Questions
The main research question this research aims to address reads as follows.

What is an effective architecture for a platform that enables dis-
tributed infrastructure initiatives to develop their own micro econ-
omy?

The following sub-questions further specify the research and support answer-

ing the main research question.

SQ1 What are appropriate methods to incentivize value adding activities?

Rationale: There is a vast body of knowledge on reward systems and in-

centives, which we can use to define the economic model.

SQ2 What are the requirements of a platform that supports implementing these

methods?

Rationale: The requirements of the system are the basis for the design

(SQ3), deployment (SQ4) and evaluation (SQ5).

SQ3 What are the main components of such platform and how do they interact

with their target environment?

Rationale: Answering SQS is necessary to establish the functional design

of the system.

SQ4 How can the platform be put into operation?

Rationale: Due to the distributed nature of the system, the deployment is

non-trivial and should be addressed separately in more detail.

SQ5 Does the designed platform meet its requirements?

Rationale: The evaluation of the system is required 1) as input for fur-
ther research, and 2) to assess the “utility, quality, and efficacy of the IT

artifact [15].”



2.2 Research Methods

The following methods are used in order find an answer to the research questions.

2.2.1 Literature Review

In order to 1) find examples of existing tools that serve similar goals and 2) ac-
quire a deeper understanding of the problem space, we review existing literature
using the snowballing technique [31].

First, some knowledge in the area of socioeconomics is necessary to under-
stand how participants would react to various types of reward systems. Second,
since the main output of this research is the architecture of a software system,
we review literature in the field of software architecture to obtain knowledge on
definitions and standard methods. Finally, an important aspect of the architec-
ture is the distributed nature of the platform and how to share state between
arbitrary participants. An appropriate architectural pattern applied in such
contexts is a distributed ledger, which we therefore discuss in more detail.

The results of the literature review are discussed in Chapter

2.2.2 Design Science

In order to develop the architecture for the micro economy platform, the Design
Science Research method [13] is applied. This method is appropriate given that
the envisioned end result is an I'T artifact which addresses a currently unsolved
problem.

The application of design science in our research is structured around the
design cycle as presented in the framework by Wieringa [30], and consists of the
following five tasks:

1. Problem investigation: explore the context of the artifact

2. Treatment design: define/refine the design of the artifact and its specifi-
cation

3. Treatment validation: check whether the designed artifact meets its re-
quirements

4. Treatment implementation: apply the artifact in original problem context

5. Implementation evaluation: investigate how the artifact responds in its
real-world context

The five tasks roughly follow the sub-questions as posed in Section|2.1] where
we begin by exploring the context through literature and studying the case sub-
ject (SQ1). Subsequently, the treatment design and wvalidation are specified
iteratively through defining the platform’s requirements (SQ2, Chapter |4) and
architecture definition (SQ3, Chapter . Then, the treatment implementation
is performed by developing a proof of concept of the architecture and testing
it in the context of TTN (SQ4, Chapter |§[), and finally, we evaluate the imple-
mentation through a case study (SQ5, also Chapter @



2.2.3 Case Study

The case study performed as part of the evaluation follows the research method
as described by Yin [33]. The case study entails implementing a proof of con-
cept within the context of The Things Network to validate the architecture.
Additionally, we observe to what extent it supports the initiative in developing
an economic model. The implementation is subsequently analyzed, both dy-
namically and statically. We measure the runtime performance of the proof of
concept in a real world setting to spot potential scalability issues in the design,
and assess any vulnerabilities from the perspective of security. The results are
discussed in Chapter [6]

2.3 Contributions

2.3.1 Scientific

The main scientific contribution of this work is the addition of an architecture
of a distributed micro economy platform to the body of knowledge on Software
Architecture. To the best of the authors’ knowledge, such system did not yet
exist at the time of writing. Additionally, while there has been a lot of discussion
around the fundamental theory of distributed ledgers, little literature is available
on actual applications of this technology. The challenges encountered while
applying the technology yield insights that add to the body of knowledge of
distributed ledgers.

2.3.2 Societal

While in our research we specifically explore the case of an IoT initiative, the
problem that it addresses can be generalized and is applicable to any DII. This
is especially relevant in the current age where we observe a trend of an increas-
ing number of peer-to-peer sharing economy initiatives [12]. However, where
examples such as Uber, Etsy and AirBnB rely on a central for-profit organiza-
tion, the platform proposed in this research contributes to a more decentralized
structure for DIIs.

10



Chapter 3

Theoretical Background

3.1 Socio-Economic Perspective

In the introduction, we stated the assumption that the growth of the current
model is limited due to the lack of incentives for participants to contribute to
the infrastructure. In this section, we aim to provide supporting evidence for
this claim and possible solutions through examples from literature.

3.1.1 Economic Principles

The actions of a collective consist of the actions of its individual agents. There-
fore, to analyze how the ecosystem acts as a whole, we have to analyze individual
behavior [19]. Following the Rational Choice Theory, individuals are generally
self-interested and tend to choose those actions that benefit themselves the most
[23]. When we apply these principles to the context of a DII, we see that if par-
ticipants can get away with using the infrastructure without contributing to it,
they generally will. Nevertheless, if participants gain something from contribut-
ing, e.g. earnings, learning or any other benefit, they have a direct incentive to
contribute and are expected to be more inclined to do so. However, not every
participant is capable of providing the infrastructure services themselves, since
it requires both technical expertise and capital investments. So, given that 1)
the pool of participants that are able to contribute is limited, and 2) not ev-
eryone from this pool has the proper incentives to contribute beyond their own
needs, we believe that there is a significant risk the DII will remain limited in
size if the underlying economic model is not changed.

To overcome this limitation, we can learn from traditional free markets.
There, as long as it is possible to make a profit by providing a service, it is
highly likely that at some point an entrepreneur will provide that service. How-
ever, a DII does not have any built-in mechanisms that enable providers to
profit, at least not in the case of the example we introduced in Section
So, if we want to incentivize value adding activities, we should consider making
them profitable. Note that profit in this context does not need to refer to mon-
etary profit. As long as the incentive is large enough to trigger participants to
contribute, it satisfies our goal.

11



3.1.2 Traditional Buyer-Seller Market

A traditional approach would be to enable providers to charge their users, e.g.
in the form of a monthly subscription fee. However, there are various reasons
we think this would not be suitable in the context of DIIs. First, due to the
decentralized setting, users directly interact with many suppliers and vice versa,
so it is difficult to establish a buyer-seller relationship and agree on predeter-
mined fees. Second, the current vision of the example DII entails offering the
infrastructure free of charge, only depending on voluntary contributions. While
within this vision, there is room for commercialization, the competition of the
free infrastructure will naturally reduce the profitability of commercial offerings.

3.1.3 Mining Rewards

In recent years, other approaches have also been employed, especially in the
emerging domain of blockchain technology [26]. The primary example of an
economic model that is completely different, is that of Bitcoin [1§]: a decen-
tralized peer to peer currency. Bitcoin itself could also be regarded as a DII,
where the output of the initiative is an infrastructure for payments. In order
to keep the infrastructure running, the initiative relies on part of the commu-
nity to engage in an activity called mining. Mining is a resource intensive task
which requires capital investments. In order to incentivize users to do these
investments, the network periodically distributes a reward among those who
contributed. The reward takes the form of an amount of the native currency,
Bitcoin, and consists of a fixed number plus the transaction fees paid for by
the users to conduct their payments. Over time, the fixed reward gradually de-
creases to zero. Therefore, the economic model is deflationary, which increases
the incentive to mine, because following the laws of supply and demand, the
value of the currency will go up when faced with an increase in demand.

3.1.4 Distributed Peer-to-Peer Marketplace

Another way to incentivize users to contribute to a shared infrastructure, is
introduced by Swarm [29], a distributed storage platform based on Ethereum
blockchain technology. The goal of Swarm is to provide peer-to-peer serverless
storage hosting, and so it fully depends on its participants to operate the in-
frastructure. The incentive layer that has been built into Swarm serves to keep
the balance of the services exchanged between participants in check. It accom-
plishes this through pair-wise accounting with negotiable prices. That is, each
pair of peers that engages in trading services negotiates a price upfront, and
each node maintains a list of offered and received services with its peers. As
soon as the balance either surpasses the preconfigured payment or disconnect
threshold, a payment is triggered or the service is discontinued. To summarize,
the approach introduced by Swarm combines elements of a traditional market
with buyers and sellers with a digital currency.

3.2 Software Architecture

One of the main outputs of this research is an architecture for a software system.
To better understand what architecture is and how we should address it, the

12



following section explores software architecture from a theoretical perspective.

3.2.1 Definitions

Architecture

According to [14], architecture is defined as the “fundamental concepts or prop-
erties of a system in its environment embodied in its elements, relationships,
and in the principles of its design and evolution”. This definition is still very
abstract, but its core aspects are discussed in more detail in [22].

“Fundamental properties” tell us what a system does (externally visible be-
havior) and how it does it (quality properties). The externally visible behavior
defines the functional interactions between the system and its environment,
whereas quality properties express non-functional aspects such as performance,
maintainability, security, etc.

“Elements and relationships” refer to the pieces the system consists of and
their relationships, in other words, the structure. This can be further decom-
posed into static and dynamic structures. Static structures relate to the design-
time arrangement of elements, e.g. a module hierarchy, whereas dynamic struc-
tures indicate the run-time arrangement of elements, which could for example
be expressed in a sequence diagram.

Finally, principles of design and evolution are defined as “fundamental state-
ments of beliefs, approaches, or intents that guide the definition of your ar-
chitecture”. In practice, this boils down to practical guidelines architects use
throughout a project to base design decisions on. For example, a design prin-
ciple such as “prefer security over performance” would provide a guideline to
architects whenever they have to make a decision with a trade-off between those
two quality concerns.

Architecture description

Note that every system has an architecture, but not every architecture is doc-
umented. So, the architecture is an implicit concept, and an architectural de-
scription (AD) is used to make the architecture of a system explicit. The AD
consists of a set of products such as models that document the architecture. In
order to provide a comprehensive description, the AD discusses the architecture
from multiple angles, or views.

A view is defined as a “representation of one or more structural aspects
of an architecture that illustrates how the architecture addresses one or more
concerns held by one or more of its stakeholders.” Here, stakeholders represent
the individuals for whom the system is built.

3.2.2 Viewpoints and Perspectives

To standardize the way views are represented in an AD, [22] introduces the
notion of viewpoints and perspectives. Viewpoints are collections of patterns,
templates and conventions to describe structural aspects. Additionally, per-
spectives are similar to viewpoints in that they provide patterns, templates and
conventions, but are concerned with quality requirements of a system related to
aspects such as security, maintainability or performance. Since they cannot be
attributed to a single viewpoint, they are discussed separately.

13



Figuredepicts the views that are defined in [22] and how these are related.
Briefly summarized, the context view describes the system as a black box in its
environment (people, systems and external entities), and is useful to indicate the
responsibilities of the system. It also defines the scope, context and interfaces
for the software design, which is described in three separate viewpoints, each
addressing different concerns.

First, the functional view describes what the system does, i.e. the elements
that deliver its functionality and how they are related. Second, the information
view describes how the system stores, manipulates, manages and distributes
information, and third, the concurrency view describes what parts of the system
execute concurrently and how this is coordinated.

The development view describes how the software development process is
organized. This includes both the source code organization as well as the sur-
rounding processes such as design and testing.

Finally, the deployment and operational views describe the system in its
live environment. The deployment view prescribes the runtime environment
and addresses concerns such as the network, hardware and other platform re-
quirements, whereas the operational view provides a description on how the
system will be controlled, managed and monitored while running. This includes
concerns such as configuration management, alerting, migrations, etc.

Additionally, we can distinguish various perspectives that describe cross-
cutting concerns. For example, the security perspective discusses who can con-
trol and access which parts of a system and the performance perspective is
concerned with aspects such as throughput and latency.

An AD typically does not include all of the previously described viewpoints
and perspectives, but rather focuses on those views that are most relevant to the
system. For example, a simple single-tier system deployed on a single machine
without any special requirements can omit the deployment view. However,
the same view is essential to understand the runtime environment of a heavily
distributed system.

Deployment ) . Operational
View I<—Defines operation of— View
Defines runtime
environment for
Context | Defines scope, context - Software 3 Defines implementation_ |  Development
View and interfaces for Design constraints for View
Functional Information Concurrency
View View View

Figure 3.1: Views and their relationships as described in [22]

14




3.3 Distributed Ledgers

Distributed ledgers are an emergent topic and have received a lot of attention
recently due to the popularization of the concept of blockchains. Essentially,
a distributed ledger is a distributed database which enables consensus between
parties that do not trust each other [26]. The database consists of an append-
only sequence of transactions and therefore, once a transaction has been con-
firmed, it is not possible to modify it. This makes it very suitable for applications
which need a tamper-resistant data store, for example digital currencies.

A blockchain is a specific type of distributed ledger, where transactions are
grouped in a sequence of blocks and each block references the previous block.
Note that the term ’blockchain’ is overloaded and can be referred to as either
the generic architectural pattern that was popularized by its application in the
digital peer-to-peer currency Bitcoin [18], or to the actual instantiation of the
pattern as applied in projects such as Bitcoin and Ethereum [32]. For the
purpose of this research, we are mainly interested in the generic architectural
pattern of a distributed ledger, to assess to what extent it can solve problems
we encounter in designing the micro economy platform.

In the remainder of this section we review different aspects of distributed
ledgers. Over the previous years, many different implementations have been
developed, and while they all aim to solve the trustless distributed consensus
problem, the actual application and implementation details vary substantially.

3.3.1 Public vs Private vs Hybrid

One aspect that varies across distributed ledger implementations is to what
extent it is open and decentralized. We can distinguish three categories: public,
private and hybrid [15]. A public ledger is fully decentralized and open. It
assumes that there is no trust between any of the participants, which requires
a fully distributed consensus mechanism where any member of the network can
validate transactions. A hybrid ledger (or public-permissioned) is still open
for anyone to join, but instead of allowing anyone to validate transactions, it
depends on a consortium of trusted parties. Finally, the most restrictive form is
a private ledger, which is implemented within an organization and only allows
that organization to submit transactions. In this case, one might argue that
the main benefit of a distributed ledger, namely that of achieving consensus in
trustless settings, is lost.

3.3.2 Smart Contracts

Another aspect that differs from ledger to ledger is whether they support smart
contracts. While popularized by Ethereum [5], Smart Contracts were actually
first defined in [27]. A smart contract can be defined as the formalization of an
agreement over a public network between parties that do not necessarily trust
each other. It consists of promises that can be executed automatically, based
on future inputs. The automatic execution allows anonymous parties to engage
in transactions without a trusted third party being present. Examples of use
cases include crowdfunding, content rights management, and escrow services.
For example, given that a project needs a capital injection, it can kick off a
crowdsale smart contract, which accepts payments from arbitrary donators. As

15



soon as a preconfigured time limit or threshold of payments has been exceeded,
the smart contract can close and trigger the subsequent actions. If the total of
payments did not exceed the threshold in time, the payments of donators that
did contribute could automatically be returned for example. In essence, the
smart contract here keeps track of some state and is accompanied by arbitrary
logic to manipulate that state.

In Ethereum, smart contracts are executed as part of transactions on the
Ethereum Virtual Machine (EVM), a quasi-Turing-complete virtual state ma-
chine [32, 5]. The quasi-qualifier stems from the fact that transactions are
limited by the amount of gas the sender provided to execute the transaction.
Gas is a measure for the computational size of a transaction, and is consumed
by every instruction the EVM executes (e.g. performing a calculation or writ-
ing/reading to or from permanent storage). Therefore, a sender has to provide
sufficient gas for every step to execute. Since gas is provided by supplying ad-
ditional Ether to the transaction, which has a real-world cost, this mechanism
provides a safeguard against very large or inefficient transactions on the EVM.

3.3.3 Consensus Mechanisms

Due to the decentralized nature of distributed ledger networks, they need some
mechanism to reach consensus on the current state of the blockchain. Over the
past years, different approaches have been explored, which are summarized in
the following subsections.

Proof-of-Work

The first blockchain introduced to the general public, Bitcoin, uses a Proof-of-
Work mechanism [18] which was inspired by a hypothetic e-mail spam preven-
tion technique first introduced in 1993 [9]. By requiring senders of e-mail to
solve a computationally intensive puzzle and provide the answer in the header
of the e-mail, it becomes economically infeasible to send spam e-mails. Recip-
ients can subsequently verify that the sender has invested some resource into
sending the e-mail, which reduces the likelihood of that particular e-mail being
spam.

In the context of blockchains, the Proof-of-Work consensus mechanism works
as follows:

1. Nodes broadcast new transactions to all other nodes in the network;

2. Every node works on finding a solution to a puzzle that takes the current
set of pending transactions and a reference to the previous block as input;

3. The first node to find the solution broadcasts the newly discovered block
consisting of the solution and transactions to the rest of the nodes;

4. Other nodes either accept or reject the block depending on whether it is
correct, i.e. the hash and all transactions are valid;

5. Go back to 1.

The puzzle that is solved can have many forms. In the case of most digital
currencies it consists of finding a hash that satisfies a specific property, i.e.

16



the first n-bytes of the hash must be 0, where n represents the difficulty of
the problem. For example, if the input data derived from the transactions is
“0x1234” and n equals 2, then the puzzle is to find a value for ¢ where the hash
over “0x12344” starts with “0x00...”. While it is computationally intensive to
find a correct hash, it is very easy to verify whether a hash is correct. This
makes it very suitable as a means for other nodes to validate new blocks from
other nodes.

Proof-of-Space

One of the main drawbacks of the Proof-of-Work approach is that the com-
putations require a significant amount of energy resources. Some researchers
estimate that a Proof-of~-Work network at scale would incur a 2.1% increase in
carbon dioxide emissions worldwide [2]. In an effort to put the invested resources
by the network to better use, several attempts |10} 17, [20] have been made to
base a digital currency on network participants offering disk space instead of
computational power. Instead of solving a cryptographical puzzle, participants
store data. To verify they indeed store the data, the network issues random
challenges that require the storer to submit a proof that it in fact still can
access the original files.

Proof-of-Stake

While Proof-of-Space indeed does not use computational power, it still depletes
a physical resource, namely disk space. Therefore, in [4] another alternative con-
sensus mechanism that does not rely on spending computational power is pro-
posed: Proof-of-Stake. Where in Proof-of-Work and Proof-of-Space the prob-
ability that a user can create a new block is relative to their depletion of a
physical resource, i.e. computational power or disk space, in Proof-of-Stake,
this probability is relative to the stake users have in the system, i.e. the amount
of currency they have in the ecosystem. By burning the stake when a user pro-
vides invalid blocks, the system provides an incentive to validate blocks in an
honest manner.

Proof-of-Authority

The final consensus mechanism we found in literature, Proof-of-Authority (8],
is only partially decentralized and therefore mainly suitable for private or semi-
private blockchains. Instead of relying on an anonymous third party group of
validators, in Proof-of-Authority, a consortium of trusted parties is privileged
to create new blocks. These trusted parties are generally larger established
corporations such as banks or telecom operators. While it is less decentralized
than the previously discussed consensus mechanisms, it offers a conceptually
simpler model which is easier to maintain. Therefore, if pure decentralization
is not a must, Proof-of-Authority can prove to be a good alternative.

3.3.4 Blockchain-Free Distributed Ledgers

Note that although the term ‘blockchain’ has been popularized, a more correct
term for most use cases would be distributed ledger, since using a blockchain
as data structure is merely an implementation detail of a system that tries

17



to provide consensus in a trustless distributed setting. The fact that several
other projects [16} |6l [21] have proposed an alternative data structure to store
transactions supports this claim.

For example, IOTA uses a Directed Acyclic Graph (DAG) instead of a
blockchain [21]. Each node in the DAG represents a transaction and each edge
a reference to an earlier transaction. In order to publish new transactions on
the network, a user has to perform Proof-of~-Work that includes data from the
earlier transactions. By providing the Proof-of-Work and publishing the trans-
action, the previous transactions are verified. Note that instead of depending
on a separate group of miners, in IOTA, the users who engage in transactions
verify transactions of other users. Therefore, IOTA also does not have transac-
tion fees as in Bitcoin and Ethereum, although performing the Proof-of-Work is
computationally intensive and could be considered as implicit transaction costs.

One of the main benefits of this approach is scalability. In a blockchain-based
ledger, every transaction has to be processed in order by every node since there
is a single sequence of transactions. Due to its structure, a DAG-based ledger
allows the network to temporarily diverge and therefore accept transactions
asynchronously, which in turn leads to higher throughput.

However, at the time of writing, the distributed ledgers built using alterna-
tive data structures are still relatively immature and have to be validated by
large scale real world usage.

18



Chapter 4

Requirements for a Micro
Economy Platform

4.1 Purpose & Scope

The main purpose of the micro economy platform proposed in this research
is to enable distributed infrastructure initiatives incentivize their participants
to contribute to a shared infrastructure. It aims to provide these incentives
through a micro economy where participants can earn tokens in a DII-specific
currency by contributing to the infrastructure. Additionally, participants can
use the currency to exchange additional services with each other. The details
of these services and the reward scheme are specific for each DII and should
therefore be freely configurable.

4.2 Stakeholders

In principle, every participant of the DII is a potential stakeholder in the sys-
tem. Participants can be both organizations as well as individuals, and among
them we can distinguish two types. Firstly, contributors are participants who
add value by contributing to the infrastructure, e.g. the gateway operators and
routing service providers discussed in Section Secondly, users are partic-
ipants that utilize the infrastructure, e.g. the application owners who deploy
applications on the IoT network in the context of TTN. These two types are
not mutually exclusive, i.e. a contributor can simultaneously be a user.

Finally, a potential third group of stakeholders are investors. Since the
platform introduces an asset that represents some value and can be exchanged
freely, it is possible that the asset attracts investors similar as to how investors
hold Bitcoin and other digital currencies.

Example 4.1 If we apply these roles to the example as introduced in Sec-
tion Alice and Netcorp are contributors, since they provide gateways
and routing services. Parco is a user, since they utilize the network infras-
tructure for their parking garage application, and Bob finally is an investor

19



who speculates on the value of the currency introduced by the DII.

4.3 Functional Requirements

The following section describes the basic functional requirements for each of the
main use cases of the micro economy platform.

4.3.1 Reward Model

In order to reward contributions, we must know how much to reward and hence
need to quantify a user’s contributions. To that end, we introduce the concept
of a Karma score, which is based on the metrics the platform collects from
infrastructure components. The Karma score should be computed roughly along
the following lines:

1. Infrastructure components continuously submit metrics to the platform

2. Periodically (e.g. hourly), these metrics are aggregated per component,
and converted to a single score using a function that is configurable per
component type

3. Based on the past n scores, per component a moving average is computed

4. The overall Karma score of a participant is finally computed as the sum
of the moving averages of all individual component scores

Example 4.2 Alice has one gateway which in the preceding hour has
handled 600 messages with a total airtime — the time the gateway radio is
active — of 120 seconds, and an uptime of 100%. To calculate the current
score of Alice’s gateway, we execute the configured score—function and pass
in the following set of metrics: {600,120,100}. The function is currently
defined as follows:

if Tgirtime € [100s, 00)
if Tairtime € [18, 1005)
if Zairtime € [0.01s, 15)

otherwise

score(X) =

S = N Ot

Here, we define several tiers a gateway can be assigned to based on the
processed airtime. An initial threshold of 0.01s is introduced to prevent
inactive gateways from receiving a reward.

Since Alice’s gateway is in the upper tier, the gateway receives a score
of 5 for this period. If the moving average window is 5 periods, and the
scores in the previous 4 periods were 0, 1, 2 and 2, then the current score
of the gateway is % = 2. If Alice has another gateway with score
1, then Alice’s overall Karma score is 3 at that point in time.

Note that the scoring function definition above is slightly arbitrary and
should be tuned over time based on feedback gathered from actual operations.

20



For example, it might be desirable to include the number of messages or uptime
metrics in future versions of the scoring function. In case the scoring function
is changed, only scores from that moment onwards will be calculated using the
new function, i.e. the system does not need to retroactively compute scores.

4.3.2 Issue Tokens

At each interval, after the Karma scores have been computed, the platform
should issue a fixed number of new tokens in the DII-specific currency, Wawvelets
in the context of The Things Network. The tokens should be distributed to all
contributors, proportional to their Karma scores.

1.

After all Karma scores have been updated, compute the number of tokens
to issue to every contributor by calculating their percentage of Karma and
multiply that with the fixed total reward;

Issue the computed number of tokens to the contributors’ wallets

Example 4.3 Consider the following scenario. The reward is set to 250
Wavelets per interval, and at the current interval the following Karma
scores have been computed: Alice: 7, Netcorp: 2, and TTN: 1. Then,
because their total Karma combined is 10, Alice would receive 70% of the
reward, Netcorp 20% and TTN 10%. Since the reward is set to 250, Alice
receives 175, Netcorp 50, and TTN 25 Wavelets.

4.3.3 Set Up Wallet

To start receiving tokens, a participant needs to set up a wallet which is linked
to a user account in the existing infrastructure.

1.
2.

The participant initializes a new wallet (client-side)

The participant sends a request to the platform to link the address of the
wallet to the user account in the exiting infrastructure

The platform requests the participant to follow an authorization flow to
verify the participant’s identity

Only on successful authorization, the wallet address is linked to the user

account.

Example 4.4 Alice has a gateway that is consistently handling traffic
from both her own and the Parco applications, and therefore has a positive
Karma score. In order to capitalize on the positive Karma score and start
receiving Wavelets, she has to let the platform know where to send the
tokens, i.e. her wallet address. This requires her to first obtain a wallet,
which entails using the wallet software to generate a wallet, and subse-
quently follow an authentication flow to prove she indeed controls that
particular TTN account. After this set-up, her wallet address is registered
to the user account on the blockchain and she will start receiving rewards

21




for her contributions.

4.3.4 Send/Receive Tokens

To allow participants freely exchange tokens of the DII-specific currency, the
platform needs to support arbitrary transactions between wallets.

1. A participant with wallet address a issues a request to send n tokens to a
given address b

2. The platform checks whether the participant has enough tokens of the
DII-specific currency

3. If that is the case, the platform decreases the balance of the wallet with
address a with n tokens, and increases the balance of the wallet with
address b with n tokens

Example 4.5 Alice has an account balance of 300 wavelets and wants to
send Bob 100 Wavelets, whose account is empty. She submits a transaction
of 100 Wavelets to Bob’s wallet. After the transaction has been verified,
Alice has 200 Wavelets, and Bob has 100 wavelets.

4.3.5 Marketplace

To enable participants set up self-enforcing agreements about network services
and their usage, the platform should allow participants to deploy contracts that
are executed periodically with aggregated network metrics, and can hold and
transfer tokens. An example of such contract is further described in Section
5.2.3l To enable participants discover such offerings, the services should be
listed in a marketplace.

1. A participant defines and deploys a smart contract on the platform which
implements an interface that receives network metrics and executes arbi-
trary logic

2. After the smart contract is deployed, the participant adds the service to
the market place

3. A participant interested in the service subscribes by making the required
payment to the smart contract

4. Periodically, when the smart contract is invoked, the predefined logic is
executed

5. The seller can discontinue the contract, which will trigger its removal from
the marketplace and shut down the contract after a predefined period of
notice

22



Example 4.6 Parco wants to continue rolling out their IoT application,
but struggle with the fact that they do not have any guarantees that the
network will be maintained properly. They discover through the market-
place that Netcorp offers an SLA on gateways that cover their area of
operation. In exchange for 5 wavelets per hour, they guarantee an uptime
of 99.99% per month. Parco subscribes to the SLA, and deposits sufficient
funds to pay for a few weeks of service. On an hourly basis, the smart
contract checks the metrics of the concerned infrastructure components. If
the conditions of the SLA hold, the smart contract pays out the hourly
fee. Otherwise, a penalty clause is triggered, which in this case consists of
burning a deposit Netcorp put upfront. However, the latter does not occur,
and after a few weeks, Parco is still satisfied with the service and continue
resubscribing to the service.

4.4 Non-Functional Requirements

Orthogonal to the functional requirements, we list several non-functional re-
quirements below that do not prescribe what the platform should do, but how
it should perform.

4.4.1 Efficient Batch Handling

As described in Sections and the platform processes metrics in
batches. The total running time of a naive implementation of these batches
would grow linearly with an increasing number of infrastructure components.
Given that the running time of a single batch should not exceed the interval
between batches, the maximum capacity of the platform is limited by the effi-
ciency of the batches. While the current number of infrastructure components
in the case subject is relatively small in the order of magnitude of several thou-
sands, the platform should be able to scale towards hundreds of thousands of
components.

4.4.2 Distributed Deployment

One of the strengths of distributed infrastructure initiatives is that they do not
have a central authority. However, this also means that they lack a single party
they entrust with managing the state of the micro economy platform. Therefore,
the platform needs to be operated in a distributed fashion by different parties.

4.4.3 Security

Since DIIs are open for anyone to join, this does not exclude malicious actors.
Especially due to the fact that the platform can be used for economic gains, it is
essential that there are safeguards in place that protect benevolent participants
from attacks of participants with malignant intents.

23



Chapter 5

Micro Economy Platform
Architecture

The following chapter describes the architecture of the micro economy platform,
based on the requirements specified in the previous chapter. The architecture
description follows the viewpoint catalog of [22], which is described in more
detail in Section [3.2.21

5.1 Context Viewpoint

5.1.1 Context Diagram

Figure shows the micro economy platform as a black box in its context.
In essence, it fulfills the following tasks. First, it accepts metrics about the
infrastructure operations. Additionally, it exposes an authentication endpoint to
link user accounts between the two systems. Second, based on the infrastructure
metrics, contributors are rewarded with tokens, which can be exchanged with
other participants. Third, the platform offers participants the ability to engage
in smart contracts, e.g. an SLA as discussed in more detail in Section
Finally, a third group of outside actors, investors, might exchange tokens with
participants without actively participating in the network.

Example 5.1 Figure gives a concrete example of the platform con-
text when implemented at TTN. The main interaction between the techni-
cal infrastructure and platform consists of submitting operational metrics,
based on which the contributions are determined. Additionally, to be able
to link user accounts from the infrastructure to accounts in the micro econ-
omy platform, the infrastructure provides user details through one or more
identity providers.

24



Figure 5.1: Context diagram of micro economy platform

'
Participant
Application owner
Gateway operator
Routing service provider
H
Use /
Contribute

Use / Cdntribute

g
Receive contribution rewards

Send / Receive tokens
Engage in smart contracts

\ Participant
Y Y
Micro Econom
Infrastructure > Platf Y
Infrastructure metrics atiorm
Authentication A

Exchange tokens

Investor

-~ -

Micro Economy Platform
Authentication Metrics Metrics Metrics Metrics
| Infrastructure
Identity
Provider
3 3y >
Gateway ”| Router 7| Broker Handler
< < <
A A
Y Y
Device [€---------------mmmmmn o] »  App

Investor

Figure 5.2: Context diagram of micro economy platform applied to TTN

25



5.1.2 Economic Model

,---Service------

Feesp,| Marketplace

Service

ser‘,"ce revenue

Exchange
tokens

Investor

Contributor

Contributions

Karma Mining
revenue

Share of total contributions

Figure 5.3: Economic model as applied in the micro economy platform

The economic model employed by the micro economy platform is summarized
in Figure 5.3] Fundamental to the model is the token reserve, a smart contract
that holds and manages the tokens that are in circulation. It is also the only
element that is able to issue new tokens, and therefore can be compared to a
central bank.

The token reserve periodically issues a mining revenue. On an hourly basis, a
fixed number of tokens is created and subsequently divided over all contributors,
proportional to the size of their contributions. Contributions are quantified
using a Karma score, as described in more detail in Section This process
is analogous to mining in Proof of Work-based cryptocurrencies, but instead of
hashing power, this model allows any service or good to count as a contribution,
as long as it can ultimately be quantified.

Another potential source of tokens for contributors is a marketplace where
they can offer specific services to users. For example, a gateway owner could
offer guarantees on a particular service level (e.g. 99.99% uptime) through an
SLA, in exchange for a number of tokens per time unit. To prevent the gate-
way owner from violating the agreement, a possible penalty could be burning a
pre-deposited amount of tokens. Given that the infrastructure already provides
metrics to the platform, the contract could even be made self-enforcing by eval-
uating these metrics against predefined conditions. This example is discussed
in more detail in Section [5.2.3] Note that this is just one example of a possible
smart contract between network participants. Additionally, since smart con-
tracts are essentially programs that can be submitted to the blockchain by any
participant, anyone could define their own smart contracts in which they can
record self-enforcing agreements with other participants.

Finally, as we have seen with other digital currencies, it is possible that the
tokens attract investors who then start trading the token. By trading against
other digital currencies or fiat, the token will gain value in the real world,
which allows contributors and users to put an actual price on their services and
contributions.

26



5.2 Functional Viewpoint

5.2.1 High-Level Structure

Figure depicts the high-level platform design by listing the main platform
components and their relationships.

Infrastructure components are instrumented to submit performance and us-
age metrics to a monitor. The monitor subsequently temporarily stores the
metrics. On a periodic basis, the batch controller triggers all monitors to sub-
mit their aggregated metrics to the infrastructure metric store. The platform
aggregates the metrics to improve scalability, because storing every individual
metric would cause a significant overhead.

Since the metrics have to be provided by an external source, it is important
that we are able to trust the agent providing the metrics. In order to accomplish
this, the DII only accepts data originating from known infrastructure compo-
nents and monitors, which are registered in the whitelist.

Based on the metrics, the karma component calculates a score for all par-
ticipants that represent the significance of their contributions. Based on this
score, the token reserve issues a number of tokens to the contributors wallets as
described in Section 3.2l

The directory keeps track of the mapping between contributors and their
wallet addresses, which is necessary to know where to issue new tokens. To
register a wallet address, new participants have to perform a one-time action
where they link their address to their infrastructure user account as described
in Section 3.3

Finally, participants can use their tokens to purchase services from other
participants in a marketplace. The services are user defined, but an example of
a possible service is provided in Section [5.2.3

Infrastructure

[ —
Infrastructure J_

Component

Micro Economy Platform

Batch
Controller : :
- v ; v

Identity Identity .~ q Lo
Provider Bridge —>»  Whitelist Directory Marketplace ; S|

Infrastructure Token

Metrics Store 2 Karma > peserve [€]  Wallet

Y

IH

T --»| User defined

Figure 5.4: High-level platform structure

5.2.2 Token Reward Workflow

Figure 5.5 shows in more detail how the token reward process as previously
mentioned is executed by the various components.

Infrastructure components continuously report metrics about the usage and
performance of the infrastructure to a monitor, which stores it in a temporary
event store. On a predefined interval, e.g. hourly, one of the authoritative agents
signals the monitors to start their batch process, which queries the event store
and submits aggregated metrics to the infrastructure metrics contract on the

27



blockchain. This contract subsequently performs various checks, before actually
storing the metrics. Firstly it ensures that the source of the metrics is in fact
allowed to submit metrics, and it verifies that the batch has not been sealed
yet, which would mean the time window to submit the metrics had expired.

Note that some precision is lost by aggregating the metrics, but storing
every metric separately would be unfeasible due to constraints in throughput
and storage.

As soon as the finalization process is triggered, the batch is sealed by the
metrics contract, and the registered batch listeners are triggered. An example
of such listener is the Karma contract, which updates the karma scores of the
users based on the newly added metrics, and calculates the token rewards that
are to be distributed. Other examples could be user-defined contracts which
also depend on metrics to execute their logic. An example of such contract is
given in the next section.

5.2.3 User Defined SLA Workflow

Figure [5.6] describes how a user defined SLA could work in practice. Note that
it would ultimately be up to users themselves to define them, although the
platform could provide template contracts.

In this example, the contract starts with a contributor deploying a SLA smart
contract. The contract contains some parameters, e.g. an uptime percentage
and a price per month. The contract subsequently registers itself as a listener for
new metrics with the infrastructure metrics contract, and the contributor adds
the service to a marketplace through which users can subscribe. A subscription
is started when a user deposits its first payment, which is kept in escrow by the
SLA contract.

Then, on every batch, the SLA contract receives a signal and queries the
infrastructure metrics component for the relevant metrics. If the metrics meet
the pre-configured criteria then the contract pays out the tokens from all active
subscribers for the current cycle to the contributor, and disables the subscrip-
tions which do not have sufficient funds left to pay for another cycle. In case
the metrics do not meet the pre-configured criteria, the remaining tokens are
returned to the users and the subscriptions are cancelled. Finally, the reputa-
tion of the contributor is updated either positively or negatively depending on
the SLA outcome. The reputation is shown on the marketplace and can provide
users with insight in the historical performance of the selling contributors.

Ultimately, a contributor can choose to sunset its service which entails re-
moving it from the marketplace and shutting down the contract. This will
unregister the listener and self-destruct the service. Any remaining tokens in
escrow are returned to the users.

28



0.65s
0.05%

1158.28s
94.71%

64.08s
5.24%

Infrastructure
Component

Send operational

events to monitor

Monitor

Store events in
temporary event store

Query event store for
aggregated metrics

Submit metrics to
blockchain

Infrastructure
Metrics
. Store

Verify source

Seal batch
Trigger batch
listeners

Batch
Controller

Hourly
trigger

Initiate batch

Batch

window
expired

Initiate batch
finalization

&

Karma User defined

Update karma scores

Calculate rewards

Process batch

per contributor

Token
Reserve

Issue tokens
to contributors

Figure 5.5: Token reward workflow

29




i Contributor

User defined SLA contract (example)

Initialize contract
with given criteria

Deploy SLA contract

on blockchain -~ [ SLA criteria

Add offering to

service listing Register listener  f=-=-=-s-mmcodemmamaaaaao

£ User

PSR

(Re-)Subscribe
to service

Register subscription /

keep tokens in escrow Batch

Controller %1‘_)) Batch trigger
_______________________ ___|__[ Signal SLA to check
newly added metrics

Check if infrastructure
metrics meet criteria

R

reputation

Remove offering from
service listing

[yes} [no} !

- Marketplace ke---, Pay fees for current Return remamlng H
cycle from escrow to cycles from escrow to 1

N H contrlbutor customers E

| s 'Z?.E'fu?”rﬁii.'ﬁ.“n""s |

1 H 9 subscriptions H

' H funds in escrow :

R Contributor | Update contributor :

Shut down

SLA contract I Unregister listener

Self-destruct

®

Figure 5.6: User defined SLA workflow

30



5.3 Deployment Viewpoint

5.3.1 Runtime Environment

Figure depicts the runtime environment of the various platform compo-
nents. Central to this view is the blockchain, which is represented as a logical
component deployed on multiple physical nodes. Most of the platform mod-
ules discussed in Section [5.2.1] are in fact deployed as smart contracts on this
blockchain, since they operate on state that has to be shared across many nodes
that lack a fully trusting relationship. All interaction with these smart contracts
is performed through blockchain clients, which is the third party software that
runs the blockchain. Note that the term client does not refer to the client—server
architectural pattern. Instead, the blockchain is a peer-to-peer network and the
client is used to operate a node in this network.

While all nodes participate in the blockchain network, only the authoritative
nodes are allowed to validate transactions and issue new blocks. In addition
to validating new blocks, they host the identity bridge module, which provides
integration with the identity provider (i.e. user directory) of the existing in-
frastructure. The identity bridge must be deployed on trusted nodes, because
the platform needs to securely verify the identity of participants, and the au-
thoritative nodes are the only nodes we can fully trust. The authorities are
chosen during the initial set-up of the blockchain by putting their addresses in
the blockchain configuration. This configuration is subsequently shared among
all authorities and must be used to successfully join the blockchain network.
At a later stage, if a new authority wants to join or an existing authority must
leave, a majority of the authorities must update their configuration, after which
the new list becomes active.

Each monitor is deployed on a contributor node. Since the number of infras-
tructure components can grow beyond the number a single monitor can handle,
the monitors should scale horizontally. Each monitor instance also has an event
store which is a simple database that is used as a buffer to temporarily store
metrics until they have been submitted to the infrastructure metrics store.

Finally, the wallet software is client-side which is necessary to keep the plat-
form distributed and hence runs on every user’s own device. Similar to the
identity bridge and monitor, it communicates with the rest of the blockchain
network through a blockchain client.

5.3.2 Technology Dependencies

The architecture is agnostic of specific technologies. However, the architecture
does make various assumptions about the functionality and characteristics of
the third party software it depends on.

First, the architecture assumes the availability of a blockchain that supports
programmable smart contracts. For example, the Karma-contract must be able
to make arbitrary calculations to convert infrastructure metrics to Karma scores
as described in Additionally, the blockchain software should support a
hybrid deployment, given that 1) the cost of using a public blockchain would be
out of proportion, and 2) a private deployment does not allow arbitrary third
parties to participate. Since the platform will be deployed in a hybrid setting,
it should also support a consensus mechanism such as Proof of Authority (cf.

31



—

Authoritative
Node
Blockchain
client
Identity
bridge

Blockchain

Participant Node

|Voting| | SLA | | User defined |

E Blockchain
| client

Batch
controller

Identity
provider

—)I Directory l(-l Karma |
T

o Infrastructure
Whitelist [€-1 " etrics store

A

Contributor Node

Blockchain client

;I Monitor l(—)i Event store |
A

— |
Infrastructure
component

Figure 5.7: Runtime environment

Section, which does not require validators to deplete a significant amount
of resources as Proof of Work does. An example of a blockchain that satisfies
these requirements is Ethereum.

Second, the monitor component depends on an event store that provides
the capability to temporarily persist metrics and aggregate these metrics over
specific periods of time. An ideal candidate would be a time-series database
such as InfluxDB, since it has built-in support for aggregation over time and
also provides mechanisms to automatically discard old data.

Finally, the ¢dentity provider must provide some authentication mechanism,
e.g. OAuth, to facilitate linking infrastructure users to blockchain accounts.
This is necessary to map contributions in the infrastructure to the right wallets
on the blockchain.

32



Chapter 6

Evaluation: Case Study at
The Things Network

6.1 Proof-of-Concept Implementation

In order to validate the design of the architecture and provide a starting point
for a real-world implementation, we developed a proof of concept of the micro
economy platform. The proof of concept does not implement the full architec-
ture, but is restricted to a subset of components that we deemed necessary to
validate the essential aspects of the concept.

Figure [6.1] provides an overview of which aspects have been implemented
and which have been omitted. In essence, the proof of concept consists of two
high-level components. The first component being a blockchain implementation
with on top a set of smart contracts, and secondly an integration agent that
links the blockchain and existing infrastructure.

Infrastructure

Micro Economy Platform

[ ——
Infrastructure Infrastructure Token ¢

Component Metrics Store RKene Reserve pratst

:

' ' :

' ' '

— | v v N T |

1 H H

Identity ' P " H '
Provider > Whitelist Directory Marketplace ; SLA

i)

--»| User defined |:

Figure 6.1: Overview of implemented components. Note that only the shaded
components with bold text (e.g. Monitor) have been implemented.

In the remainder of this section, the implemented components are discussed

in more detail.




6.1.1 Integration Agent

For the proof of concept, the monitor and identity bridge components have
been developed in one software component, the integration agent, for ease of
development and deployment. The main responsibility of the monitor is ensuring
operational metrics are collected and submitted to the rest of the micro economy
platform. Secondly, the identity bridge provides the integration of the existing
user base with the blockchain user infrastructure.

Monitor

] [
Monitor Aggregated Blockchain
metrics

Operation ] | -
events ——>| gRPIC server | |Batch irocess I > Infrastructure Metrics Store

Measurements Aggregated
metrics
InfluxDB

Figure 6.2: Monitor implementation

Figure depicts a more detailed view of the implemented monitor. Given
that in the context of TTN infrastructure components already expose data over
gRPCE streams and bindings for these streams are available in the Go program-
ming languageﬂ we chose to implement a gRPC server in Go. The infrastructure
components are configured to send events about their operation to the monitor,
which are then temporarily stored as measurements in InﬂuxDBEL a time-series
database. A time-series database, and specifically InfluxDB, is appropriate here,
since it allows for easy aggregation over time and has built-in support for reten-
tion policies to automatically discard old data.

For the proof of concept, we only implemented the collection of uplink and
downlink events (see Section . For these events, the amount of airtime is
stored per message as a measurement. Since airtime indicates the amount of
time a radio is active transmitting or receiving, it provides a metric for the
utilization of a device. The set of metrics is deliberately kept simple for the
proof of concept, but the goal is to keep track of more sophisticated metrics
in the future, such as component uptime or signal strength. Currently, only
metrics about gateways are tracked, but the goal is that eventually also metrics
about other infrastructure components such as routers, brokers and handlers
are collected.

The batch process that submits the aggregated metrics to the blockchain
runs in a separate thread parallel to the gRPC server. This process is triggered
on an hourly basis, and aggregates the number of messages and total airtime
over the previous period through a query on the InfluxDB data store.

1See https://grpc.io/about/
2See https://golang.org/
3See https://github.com/influxdata/influxdb

34



Example 6.1 Imagine Alice has a gateway that has handled 2 uplink
messages of 50ms each and 1 downlink message of 100ms in a given period,
then the metrics submitted for that particular gateway would be [2, 50, 1,
100]. Submitting the metrics occurs by sending a transaction to the smart
contract on the blockchain that keeps track of the metrics.

Note that even though we have only deployed a single monitor in the current
proof of concept, the architecture prescribes that ultimately many monitors are
deployed and they all collect and report metrics. This is necessary to distribute
the load when more infrastructure components join the network, but also in-
troduces the need for an additional component that coordinates the various
monitors. This task is delegated to the batch controller, which has been omitted
in the proof of concept.

Identity Bridge

Both the existing infrastructure and blockchain have their own security system.
Since we need to identify users according to their TTN credentials, for example
to know where to send rewards, we need to provide an integration between the
two systems.

The TTN security system is a bespoke software component, but is based
on standard protocols and offers integration facilities through OAuth. The
blockchain has, due to its distributed nature, a slightly different approach to
security based on public key cryptography. Users need to generate a wallet,
which in essence is a private key. To submit transactions from that wallet, a
user needs to sign the transaction using the private key, and only with a proper
signature will the transaction be accepted by other blockchain nodes.

As depicted in Figure to integrate the two systems, the identity bridge
component requests users to follow the OAuth flow of the TTN security system,
and subsequently provide their wallet address. The identity bridge then registers
the username-address combination on the blockchain in the Directory contract,
after which the identification procedure is finished.

6.1.2 Blockchain

Most of the core functionality has been implemented through smart contracts
on the private blockchain. For the proof of concept, there are two concepts of
importance: the underlying blockchain itself, i.e. the infrastructure, and the
smart contracts we implemented on top.

Ethereum Implementation

Although there are many different blockchain technologies available, for this
proof of concept we opted for a private Ethereum instance. Our main reason
to choose Ethereum is its ability to deploy and execute smart contracts that
contain arbitrary logic through the Ethereum Virtual Machine (EVM). Smart
contracts for Ethereum are written in Solidity, a strongly typed language of
which the syntax closely resembles those of general purpose languages such as
Java and C#. Solidity is compiled to EVM-specific bytecode, so in theory,

35



Identity Bridge Identity Provider Directory

1
Participant

Link wallet request

\ 4

, Request authentication
)l

L
Authenticate

Authentication result

Retry authentication
[not OK] | |

i 4

Figure 6.3: Sequence diagram of wallet registration

other languages could be developed to build smart contracts for EVM-enabled
blockchains. Listing[6.1.2]shows a simple example of a smart contract in Solidity
that keeps track of an arbitrary token and the balances of its users.

As visible from this example, a smart contract in Solidity is similar to the
concept of a class, i.e. it has a constructor, methods and properties. Deploying
a smart contract subsequently resembles instantiating a class, and consists of
compiling the contract to EVM bytecode and attaching it to a transaction.
When the contract has been deployed, i.e. the next block is mined, the smart
contract is assigned a unique address. Read operations on a smart contract
can occur without any transactions. One has to simply inspect the state of
the blockchain at the address where the smart contract is deployed. However,
when performing operations that manipulate the state of a smart contract, one
needs to send a transaction to the smart contract with the operation encoded
in bytecode.

Note that instead of using the public Ethereum chain, the proof of concept
uses a private instance. A deployment on the public blockchain would not be
cost-effective, since storing a relative high amount of data is expensive, i.e. in the
order of magnitude of hundreds or thousands of USD per hour. Additionally, by
having a private blockchain, we have more control over the configuration and are
thereby able to tune parameters such as block time to maximize the performance
for our specific case, which would not be possible in a public blockchain.

Implemented Smart Contracts

Figure depicts the actually implemented smart contracts as a simplified
UML class diagram.

Note that although the architecture suggest a separation between the Karma
and Infrastructure Metrics Store contracts (cf Figure , the functionality of
both contracts has been implemented in the Karma contract for the purpose of
this proof of concept. The main reason was to reduce cross-contract commu-
nication, which made it both easier to implement as well as resulted in better
performance. The reward flow, as previously described in Section and of

36



contract Token {
address owner;
mapping(address => uint) balances;

function Token() {
// ‘msg.sender‘ contains the address of the user deploying the contract
owner = msg.sender;

}

// Issue new token
function create(address recipient, uint amount) {
// Only allowed by the owner of the token contract
if (msg.sender != owner) {
throw;

}

balances[recipient] += amount;

}

// Transfer tokens to another user
function transfer(address to, uint amount) {
if (balances[msg.sender] < amount) {
throw;

}

balances[msg.sender] -= amount;
balances[to] += amount;

}

Listing 1: Example of smart contract in Solidity

which an example is given in Section [£:3.3] therefore concretely looks as follows.

First, from the monitor, new metrics are submitted to the Karma contract.
Since every component type is different and hence has different sets of metrics,
the Karma contract accepts an integer array of arbitrary length as input. For
example, for a gateway, the metrics consist of the number of messages and total
airtime, e.g. [2, 100, 3, 180] for “2 uplink messages, 100ms uplink airtime, 3
downlink messages, 180ms downlink airtime”. Although currently not imple-
mented, the metrics for a router would most likely not contain the airtime, but
instead something that would be more representative of its performance such as
average latency and uptime.

Secondly, we need to compute a single Karma score for every component,
regardless of the types of metrics we receive. To that end, we define a Karma
Scorer interface, which takes as input an arbitrary set of metrics and outputs
a single Karma score. For the proof of concept, only a GatewayScorer has
been implemented, but due to the common interface it should be trivial to add
support for other component types. The GatewayScorer implementation defines
a number of tiers based on the amount of airtime a gateway has processed, where
more airtime indicates a larger contribution and hence a higher reward.

After the Karma score has been calculated, the overall current Karma score
of both the component and subsequently the user have to be updated given that
they are moving averages of previous n periods. Finally, after the metrics have
been updated and the batch finalization is initiated, the rewards are 'mined’
and issued to all contributing participants. This entails calculating the total
reward, and subsequently dividing a fixed number of Wavelets proportionally
over the contributors.

For more details on the actual implementation of the smart contracts, please

37



«interface»

Infrastructure
Metrics Store
A
Karma
1 1 0.*
«interface» | Wavelets |
Karma Scorer Component User .
Directory Directory !
iy v
: | StandardToken |
| GatewayScorer | !
v
| Token |

Figure 6.4: Overview of smart contracts and their relationships

refer to Appendix [A] which contains their source code.

6.2 Analysis

6.2.1 Scalability

The implementation of the proof of concept shows that the scalability of the
architecture is limited by the current use of a blockchain. Notably, a large share
of the active running time is spent on submitting metrics to the blockchain.
We measured the time the proof of concept required to process a single batch
by logging timestamps at various stages in the batch: 1) at the start, 2) after
the metrics are aggregated, 3) after the metrics are submitted, and 4) after the
batch is finalized. See Figure for the exact steps the stages encompass. The
measurements were conducted during a 24-hour period, so in total 24 runs were
measured. The number of infrastructure components active during this period
ranged from 2,010 to 2,082. On average, a single run took 20 minutes and 23
seconds (SD = 5:05), of which 94.71% of the time was spent submitting metrics
to the blockchain, 5.24% finalizing the batches, and only 0.05% aggregating the
metrics. Please refer to Appendix [B|for the details of the measurements.
Given that the interval between batches is one hour, there is not a lot of
headroom to scale up in terms of number of tracked infrastructure components.
In addition to the computational time, another constraint is storage. Af-
ter circa two months of running, the total storage required for a single node
amounts to roughly 40GiB, and it will increase only more over time. Although
the smart contracts only store metrics for a given window, currently Ethereum
retains all data ever submitted to the blockchain. There are theoretical solutions
to this problem, but none of them have been implemented. For example, in [24]
a concept called State Tree Pruning is proposed where nodes from the state
tree that are no longer in use can be removed. This would allow to keep a con-
stant storage requirement for a constant number of infrastructure components.
Another potential solution is proposed in [11], where only a few nodes need to
retain the entire blockchain, and most nodes only need a significantly smaller

38



blockchain, without reducing the security of the overall system. Unfortunately,
none of these solutions have been implemented yet.

Another, more radical, solution would be to stop storing metrics on the
blockchain altogether, and instead move to offchain storage, e.g. based on IPFS
as described in [3]. This would mean that the actual data would be stored in
a distributed filesystem, and only a reference would need to be stored on the
blockchain. The obvious benefit would be that a solution such as IPFS is a
much more efficient data store, but it would make integrating the metrics in
scenarios such as the proposed user defined SLA smart contracts more complex.

6.2.2 Security

Given that rewards contributors receive constitute some value, it is necessary
to make sure the system does not contain any loopholes that can be used by
malicious actors to gain an unfair advantage. There are several ways one could
gain such advantage.

First, one could try to directly steal the rewards of another participant by
gaining control of his/her private key. While it is certainly not impossible, this
scenario is unlikely given that we use the standard Ethereum software which
provides sufficient measures for users to protect themselves against such attacks.
For example, the wallet is only accessible through a private key, which in turn is
secured by a passphrase. Without the combination of the two, it is impossible
to access the funds in a wallet, so as long as users keep these safe, there funds
are too.

A second type of vulnerability could exist in the integration with the existing
identity providers. If a user were to gain control over the account of a user in
the existing infrastructure, it would be possible to generate a new wallet and
link it to the other user’s account, thereby receiving his/her rewards. However,
here we again rely on standard software and protocols (e.g. OAuth) which have
been peer reviewed by many experts, so any vulnerabilities are less likely.

Thirdly, the smart contracts could contain unforeseen vulnerabilities. Al-
though the current smart contracts are relatively simple, it is possible that over
time when they grow more complex vulnerabilities are introduced. Additionally,
the underlying language and Ethereum Virtual Machine are prone to contain
vulnerabilities as noted in [1]. We expect that this is in part due to immaturity
in the technology that will solve itself over time.

Finally, a user could generate fake data and provide it to the monitor. For
example, a user could implement a software gateway that generates a lot of
messages. Without any additional mechanisms, the platform would pick this
up, and assume that the particular user is contributing significantly and issue
rewards accordingly. In the current set-up, we prevent this through the ap-
plication of a whitelist. Every component first has to be whitelisted by other
(trusted) users, before data from that component is accepted. However, there
are two main drawbacks to this approach. First, the solution is not watertight.
As soon as a component is “in”, it is trusted and it can start generating fake
data. It can be very hard (if not impossible) to detect the authenticity of the
data, so this is a severe issue. The second drawback is that it requires a manual
step before contributors can get rewarded, namely getting authorized by the
whitelist. Ideally, the platform would provide a built-in mechanism to overcome
this issue in an automated way, but we are yet to come up with such solution.

39



Chapter 7

Discussion

7.1 Findings

Theory on distributed ledgers is advancing at a rapid pace, and an increasing
amount of research is performed on that topic. However, the technology is still
awaiting widespread adoption and real "killer applications”, which is reflected
in the literature on distributed ledgers. Most publications are concerned with
fundamental aspects, or trying to provide an overview of the various concepts
through taxonomies and ontologies. These are important topics, but exploring
real-world applications is also essential to close the feedback loop and gain a
deeper understanding of the potential and limitations of the technology.

To illustrate this, in the early phases of this research we regarded blockchain
mainly as a means, i.e. a solution to the problem of achieving consensus in
distributed systems in trustless contexts. However, as the project progressed,
new capabilities became apparent that were only possible because of the use of a
blockchain. For example, it was only after several iterations before we began to
see the possibility to enable participants engage in SLAs that are self-enforced
based on actual network metrics. We therefore found that without diving deep
in an actual implementation, it is very difficult to foresee the full potential of a
new technology.

7.1.1 Scalability

Nevertheless, during the implementation of these smart contracts we quickly
ran into the current technical limits of blockchain, especially in the area of
scalability. The proof of concept developed during the case study showed us
that both computational and storage requirements quickly become too high to
still be practical when scaling up. Note that this is not only a pressing is-
sue for private distributed ledger implementations such as the one explored in
our research, but also for well-known public blockchains such as Bitcoin and
Ethereum. Noteworthy in that regard is the scaling debate Bitcoin is currently
facing. Various groups within the ecosystem have different visions on how the
underlying technology should be scaled, but up until the time of writing no con-
sensus (ironically) has been achieved on which direction the community should
pursue.

40



7.1.2 Off-Chain Assets

Another pain point for distributed ledgers relates to off-chain assets, i.e. data
about “stuff” from the real world, as opposed to assets that live on the blockchain
such as bitcoins. For on-chain assets, their validity and ownership is governed
by built-in mechanisms, i.e. they only exist because the blockchain tells us
so. However, for off-chain assets, someone first has to submit facts about the
asset to the blockchain. Although that specific fact is securely stored on the
blockchain from that point on, it does not prove anything about its truthfulness
in the real world. Ultimately, everyone has to trust the original party to have
provided valid data. Measures can be taken to improve the trustworthiness, e.g.
by requiring a quorum to agree on the data before accepting it, but that still
does not provide any watertight proof on the truthfulness.

7.1.3 Degree of Trust

One should note that not every ecosystem is fully trustless. Currently, most
of the major blockchains assume that all participants are anonymous and not
necessarily to be trusted. However, this assumption does not hold for every
community. For example, in the context of TTN we saw that it was possible to
identify a consortium of organizations that are widely recognized as being trust-
worthy. In addition to circumventing the previously discussed issue on off-chain
data, this ”semi-trustlessness” can be leveraged to use a less strict consensus
mechanism such as Proof of Authority. This results in a lower operational cost,
since it is no longer necessary to perform the mining as is the case for Proof of
Work. Naturally, some communities do require the system to be able to operate
under the “trustlessness assumption”, but it is nevertheless an important aspect
to consider when designing a new system that employs a distributed ledger.

7.2 Threats To Validity

The main limitations for these findings stem from the relative short timespan
that was available for the research.

First, while we expect the platform and underlying concepts to be applicable
to other DIIs, we only studied one case study which is a threat to the external
validity of this research. We can therefore not make any claims on the true
generalizability of the proposed platform. Second, the implemented proof of
concept is a subset of the proposed architecture, and some concessions have been
made due to time constraints. Therefore, these discrepancies might threaten
the construct validity of our research. Third, while we have compared various
distributed ledger technologies, we implemented the platform only on top of
Ethereum. This may have led to a bias in our findings. Given more time, we
would have explored different technologies. Finally, the time between launching
the platform in production and the evaluation was relatively short. We therefore
expect that more lessons are still to be learned when the platform has been in
production for a longer timespan.

On a more conceptual level, another limitation stems from the fact that the
terms distributed infrastructure initiative and micro economy have been coined
specifically for the purpose of this research, and do not originate from earlier

41



research. This was necessary since the authors could not find any fitting terms
at the time of writing, but that does limit the rigor of the research.

Finally, the topic of this research crosses many different domains, from soci-
ology to computer science. However, the technical background of the researchers
may have introduced bias in the results, despite frequent discussions with ex-
perts from other domains.

42



Chapter 8

Conclusions

In the preceding chapters, we have described the development of an architecture
for a platform that enables distributed infrastructure initiatives to develop their
own micro economy. To conclude our research, in this chapter we reflect on the
original research questions and address areas for future research.

8.1 Results

The original research question — What is an effective architecture for a plat-
form that enables distributed infrastructure initiatives to develop their own micro
economy? — has been addressed by answering the following sub-questions.

SQ1 What are appropriate methods to incentivize value adding activities?
Literature provides little consensus on what the best methods are to incentivize
people to conduct specific behavior. This is only natural given the complexity
of human nature and the wide array of settings in which various experiments
have been performed. For this research, we therefore specifically looked for ap-
proaches that have been applied in settings similar to that of TTN, i.e. decen-
tralized communities mainly consisting of technology-oriented people. From the
examples we found, the approach adopted by digital currencies such as Bitcoin,
where contributors are rewarded by issuing an amount of freely exchangeable
tokens proportional to their contribution, proved to be the most compelling.
Firstly because their goals are well-aligned with those in our research, i.e. in-
centivize contributions to shared infrastructure, and secondly because this ap-
proach has been validated in practice on a large scale.

SQ2 What are the requirements of a platform that supports implementing a

reward system?
The requirements of the platform are described in Chapter [4] and center around
providing a platform to introduce a digital currency in the ecosystem of a dis-
tributed infrastructure initiative, and where new tokens of the currency are
issued based on a configurable reward model similar to that of Bitcoin and
Ethereum.

SQ3 What are the main components of such platform and how do they in-
teract with their target environment? The answer to this research question is
provided through the architecture for the micro economy platform as described
in Chapter The main components of the architecture are 1) a blockchain

43



which hosts a set of smart contracts to introduce a digital currency and an
economic model, and 2) a set of components to integrate the currency in an
existing ecosystem.

SQ4 How can the platform be put into operation?
In order to validate the architecture, we implemented the core aspects in a proof
of concept and deployed it in the context of The Things Network, a real-world
example of a distributed infrastructure initiative. The results of the implemen-
tation are discussed in more detail in Chapter [6]

SQ5 Does the designed platform meet its requirements?
While the implementation of the proof of concept fulfills the functional require-
ments, there is still more research to be performed to address some concerns
related to scalability and security. In essence, the current blockchain imple-
mentation does not provide sufficient performance to be scaled up significantly,
and needs fundamentally more secure mechanisms to obtain metrics about the
infrastructure components operations.

8.2 Future Research

The results of our research provide an initial architecture for a Micro Economy
Platform for Distributed Infrastructure Initiatives, but the implementation has
revealed several areas that require more research before it can be deployed at a
larger scale.

First, more research is necessary to find mechanisms to securely collect met-
rics about infrastructure components, because the current architecture is not
fully sealed against attacks where participants fake component data to gain an
advantage. One solution we envision would be to apply cryptography to securely
sign messages so their origin is warranted to be legitimate. Another possible
solution is to use a system of witnesses that vote on the legitimacy of submitted
data. Nevertheless, more research is required to validate both ideas and find
possible alternative solutions.

Secondly, the implementation shows that the scalability of the current ar-
chitecture is relatively limited due to the processing speed and storage require-
ments of the blockchain. While there is still room to optimize the current proof
of concept, e.g. by tuning parameters such as block size and the interval be-
tween batches, we don’t expect order of magnitude improvements. Therefore,
it is necessary to fundamentally improve the performance of the architecture.
Two ideas that need to be further investigated are 1) storing metrics off-chain
(e.g. using IPFS [3]) to reduce the storage requirements, and 2) explore the pos-
sibility of using payment channels |7] for smart contracts to reduce the number
of required transactions and thereby increasing the overall throughput.

On a final note, the landscape of distributed ledgers advances at a rapid
pace and is of relatively tender age. It is therefore essential to keep track of
developments in this research area and continuously assess the potential of new
ideas and technologies.

44



References

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A Survey of At-
tacks on Ethereum Smart Contracts (SoK)”. In: Principles of Security
and Trust: 6th International Conference, POST 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Matteo
Maffei and Mark Ryan. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 164-186. 1SBN: 978-3-662-54455-6. DOI: |10.1007/978-3-662-
54455-6_8.

Jorg Becker et al. “Can We Afford Integrity by Proof-of-Work? Scenarios
Inspired by the Bitcoin Currency”. In: The Economics of Information
Security and Privacy. Ed. by Rainer Bohme. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013, pp. 135-156. 1SBN: 978-3-642-39498-0. DOI: 10.
1007/978-3-642-39498-0_7.

Juan Benet. “IPFS - Content Addressed, Versioned, P2P File System”. In:
CoRR abs/1407.3561 (2014). URL: http://arxiv.org/abs/1407.3561.

Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. “Cryptocurrencies With-
out Proof of Work”. In: Financial Cryptography and Data Security: FC
2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ
Church, Barbados, February 26, 2016, Revised Selected Papers. Ed. by
Jeremy Clark et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp- 142-157. 1SBN: 978-3-662-53357-4. DOI: 10.1007/978-3-662-53357~
4_10.

Vitalik Buterin. A Next-Generation Smart Contract and Decentralized
Application Platform. 2014. URL: https://www . ethereum. org/pdfs/
EthereumWhitePaper.pdf.

A Churyumov. Byteball: a decentralized system for transfer of value. 2015.
URL: https://byteball.org/Byteball.pdf.

Christian Decker and Roger Wattenhofer. “A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels”. In: Sta-
bilization, Safety, and Security of Distributed Systems: 17th International
Symposium, SSS 2015, Edmonton, AB, Canada, August 18-21, 2015, Pro-
ceedings. Ed. by Andrzej Pelc and Alexander A. Schwarzmann. Cham:
Springer International Publishing, 2015, pp. 3-18. 1SBN: 978-3-319-21741-
3. DOI: |10.1007/978-3-319-21741-3_1.

45


http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-662-54455-6_8
http://dx.doi.org/10.1007/978-3-642-39498-0_7
http://dx.doi.org/10.1007/978-3-642-39498-0_7
http://arxiv.org/abs/1407.3561
http://dx.doi.org/10.1007/978-3-662-53357-4_10
http://dx.doi.org/10.1007/978-3-662-53357-4_10
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf
https://byteball.org/Byteball.pdf
http://dx.doi.org/10.1007/978-3-319-21741-3_1

[11]

Tien Tuan Anh Dinh et al. “BLOCKBENCH: A Framework for Ana-
lyzing Private Blockchains”. In: Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data. SIGMOD ’17. Chicago, Illi-
nois, USA: ACM, 2017, pp. 1085-1100. 1SBN: 978-1-4503-4197-4. DOT: |10.
1145/3035918.3064033. URL: http://doi.acm.org/10.1145/3035918.
3064033.

Cynthia Dwork and Moni Naor. “Pricing via Processing or Combatting
Junk Mail”. In: Advances in Cryptology — CRYPTO’ 92: 12th Annual
International Cryptology Conference Santa Barbara, California, USA Au-
gust 16-20, 1992 Proceedings. Ed. by Ernest F. Brickell. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1993, pp. 139-147. 1sBN: 978-3-540-
48071-6. DOI: [doi:10.1007/3-540-48071-4_10.

Stefan Dziembowski et al. “Proofs of Space”. In: Advances in Cryptology —
CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA,
USA, August 16-20, 2015, Proceedings, Part II. Ed. by Rosario Gennaro
and Matthew Robshaw. Berlin, Heidelberg: Springer Berlin Heidelberg,
2015, pp. 585-605. 1SBN: 978-3-662-48000-7. DOI: [10.1007/978-3-662-
48000-7_29.

Davide Frey et al. “Bringing Secure Bitcoin Transactions to Your Smart-
phone”. In: Proceedings of the 15th International Workshop on Adaptive
and Reflective Middleware. ARM 2016. Trento, Italy: ACM, 2016, 3:1-3:6.
ISBN: 978-1-4503-4662-7. DOI: |10 .1145/3008167 . 3008170, URL: http:
//doi.acm.org/10.1145/3008167.3008170

Juho Hamari, Mimmi Sjoklint, and Antti Ukkonen. “The sharing econ-
omy: Why people participate in collaborative consumption”. In: Journal
of the Association for Information Science and Technology 67.9 (2016),
pp- 2047-2059.

Alan R Hevner et al. “Design science in information systems research”.
In: MIS quarterly 28.1 (2004), pp. 75-105.

“ISO/IEC/IEEE Systems and software engineering — Architecture de-
scription”. In: ISO/IEC/IEEFE 42010:2011(E) (Dec. 2011), pp. 1-46. DOI:
10.1109/IEEESTD.2011.6129467.

Joost de Kruijff and Hans Weigand. “Understanding the Blockchain Us-
ing Enterprise Ontology”. In: Advanced Information Systems Engineering:
29th International Conference, CAiSE 2017, Essen, Germany, June 12-
16, 2017, Proceedings. Ed. by Eric Dubois and Klaus Pohl. Cham: Springer
International Publishing, 2017, pp. 29-43. 1SBN: 978-3-319-59536-8. DOI:
10.1007/978-3-319-59536-8_3|

Sergio Demian Lerner. DagCoin: a cryptocurrency without blocks. 2015.
URL: https://bitslog.files . wordpress . com/2015/09/dagcoin-
v4l.pdf.

Andrew Miller et al. “Permacoin: Repurposing Bitcoin Work for Data
Preservation”. In: Proceedings of the IEEE Symposium on Security and
Privacy. IEEE, May 2014. URL: https : //www . microsoft . com/en-
us/research/publication/permacoin-repurposing-bitcoin-work-
for-data-preservation/.

46


http://dx.doi.org/10.1145/3035918.3064033
http://dx.doi.org/10.1145/3035918.3064033
http://doi.acm.org/10.1145/3035918.3064033
http://doi.acm.org/10.1145/3035918.3064033
http://dx.doi.org/doi:10.1007/3-540-48071-4_10
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1007/978-3-662-48000-7_29
http://dx.doi.org/10.1145/3008167.3008170
http://doi.acm.org/10.1145/3008167.3008170
http://doi.acm.org/10.1145/3008167.3008170
http://dx.doi.org/10.1109/IEEESTD.2011.6129467
http://dx.doi.org/10.1007/978-3-319-59536-8_3
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
https://bitslog.files.wordpress.com/2015/09/dagcoin-v41.pdf
https://www.microsoft.com/en-us/research/publication/permacoin-repurposing-bitcoin-work-for-data-preservation/
https://www.microsoft.com/en-us/research/publication/permacoin-repurposing-bitcoin-work-for-data-preservation/
https://www.microsoft.com/en-us/research/publication/permacoin-repurposing-bitcoin-work-for-data-preservation/

32]

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
URL: https://bitcoin.org/bitcoin.pdf|

Mancur Olson. The Logic of Collective Action: Public Goods and the The-
ory of Groups. Harvard University Press, 1974.

Sunoo Park et al. Spacecoin: A cryptocurrency based on proofs of space.
Tech. rep. TACR Cryptology ePrint Archive, 2015: 528, 2015.

Sergei Popov. The tangle. 2016. URL: https://iotatoken.com/I0TA%5C_
Whitepaper.pdf.

Nick Rozanski and Eéin Woods. Software systems architecture: work-
ing with stakeholders using viewpoints and perspectives. 2nd ed. Addison-
Wesley, 2012.

John Scott. “Rational Choice Theory”. In: Understanding Contemporary
Society: Theories of the Present. 2000, pp. 126-138.

State Tree Pruning. URL: https://blog.ethereum. org/2015/06/26/
state-tree-pruning/.

Arun Sundararajan. The Power of Connection: Peer-to-Peer Businesses.
2014. URL: https://smallbusiness.house.gov/UploadedFiles/1-15-
20147,5C_Revised’,5C_Sundararajan/5C_Testimony.pdf.

Melanie Swan. Blockchain: Blueprint for a new economy. ” O'Reilly Media,
Inc.”, 2015.

Nick Szabo. “Formalizing and securing relationships on public networks”.
In: First Monday 2.9 (1997).

The Things Network. URL: https://thethingsnetwork.org,.

Viktor Trén et al. SWAP, SWEAR and SWINDLE: Incentive system for
Swarm. May 2016. URL: http://swarm-gateways.net/bzz:/theswarm.
eth/ethersphere/orange-papers/1/sw/,5C/5E3. pdf.

Roel J Wieringa. Design Science Methodology for Information Systems
and Software Engineering. Springer, 2014.

Claes Wohlin. “Guidelines for Snowballing in Systematic Literature Stud-
ies and a Replication in Software Engineering”. In: Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering. EASE ’14. London, England, United Kingdom: ACM, 2014,
38:1-38:10. 1SBN: 978-1-4503-2476-2. DOI: 10 .1145/2601248 . 2601268
URL: http://doi.acm.org/10.1145/2601248.2601268.

Gavin Wood. FEthereum: A secure decentralised generalised transaction
ledger. 2014. URL: https://bravenewcoin. com/assets/Whitepapers/
Ethereum - A - Secure - Decentralised - Generalised - Transaction -
Ledger-Yellow-Paper.pdf.

Robert K Yin. Case study research: Design and methods. Sage publica-
tions, 2003.

47


https://bitcoin.org/bitcoin.pdf
https://iotatoken.com/IOTA%5C_Whitepaper.pdf
https://iotatoken.com/IOTA%5C_Whitepaper.pdf
https://blog.ethereum.org/2015/06/26/state-tree-pruning/
https://blog.ethereum.org/2015/06/26/state-tree-pruning/
https://smallbusiness.house.gov/UploadedFiles/1-15-2014%5C_Revised%5C_Sundararajan%5C_Testimony.pdf
https://smallbusiness.house.gov/UploadedFiles/1-15-2014%5C_Revised%5C_Sundararajan%5C_Testimony.pdf
https://thethingsnetwork.org
http://swarm-gateways.net/bzz:/theswarm.eth/ethersphere/orange-papers/1/sw%5C%5E3.pdf
http://swarm-gateways.net/bzz:/theswarm.eth/ethersphere/orange-papers/1/sw%5C%5E3.pdf
http://dx.doi.org/10.1145/2601248.2601268
http://doi.acm.org/10.1145/2601248.2601268
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf
https://bravenewcoin.com/assets/Whitepapers/Ethereum-A-Secure-Decentralised-Generalised-Transaction-Ledger-Yellow-Paper.pdf

o B N A N

A W W W W W W W WWWNNNNNNNDNNDE R R e e e e
O 0 ®UO oA QWNROO®WTRNAARNRO®OWNO®O A WNR O ®©

Appendix A

Smart Contracts

contract KarmaScorer {
function score(int64[] metrics) constant returns (int64);

}

contract GatewayScorer is KarmaScorer {
struct Tier {
int64 threshold;
int64 reward;

}
Tier[] tiers;

function GatewayScorer (int64[] thresholds, int64[] rewards) {
if (thresholds.length != rewards.length) {
return;

}

tiers.length = thresholds.length;

for (uint i = 0; i < thresholds.length; i++) {
tiers[i].threshold = thresholds[i];
tiers[i] .reward = rewards[i];

}

function score(int64[] metrics) constant returns (int64)
{
if (metrics.length < 4) {
return 0;

}

int totalAirtime = metrics[1] + metrics[3];
for (uint i = 0; i < tiers.length; i++) {
if (totalAirtime >= tiers[i].threshold) {
return tiers[i].reward;
}
}

return 0;

48



contract Karma {
uint public constant blockReward = 250 * 10%*18;

1

2

3

4 struct KarmaPart {

5 bytes32 sourceRef;
6 int64 karma;

7

8

¥
9 struct BlockData {
10 int64[] metrics;
11 int64 score;
12 int64 karma;
13 KarmaPart[] karmaParts;
14 bool mined;
15 }
16
17 struct BlockMeta {
18 BlockState state;
19 int64 totalKarma;
20 }
21
22 enum BlockState { New, Sealed, Mined }
23
24 ACL acl;
25 ComponentDirectory componentDir;
26 UserDirectory userDir;
27 Wavelets wavelets;
28
29 mapping(uint => KarmaScorer) karmaScorers;
30 uint32 windowSize = 500;
31 uint32 public lastBlock;
32
33 mapping (uint32 => mapping(bytes32 => BlockData)) public data;
34 mapping(uint32 => BlockMeta) public meta;
35
36 function Karma(ACL _acl, ComponentDirectory _karmaDir, UserDirectory _userDir, Wavelets _wavelets) {
37 acl = _acl;
38 componentDir = _karmaDir;
39 userDir = _userDir;
40 wavelets = _wavelets;
41 }
42
43 function update(uint32 blockNo, bytes32 componentRef, int64[] input) returns (bool) {
44 // To prevent karma and wavelets being issued multiple times, check if metrics have been set before
45 if (data[blockNo] [componentRef] .metrics.length > 0) { return; }
46
47 if (meta[blockNo].state != BlockState.New) { return; }
48
49 // Do not process karma sources without collaborators
50 uint numCollaborators = componentDir.getComponentCollaboratorCount (componentRef) ;
51 if (numCollaborators == 0) {
52 return;
53 }
54
55 // Retrieve the karma source type (e.g. gateway, router, etc.)
56 uint sourceType = componentDir.getComponentType (componentRef) ;
57
58 // Store the metrics for future reference
59 data[blockNo] [componentRef] .metrics = input;
60
61 // Use the source-type-specific scorer to calculate the karma score at the present
62 data[blockNo] [componentRef].score = karmaScorers[sourceType] .score(input);
63
64 // Calculate the current karma score, which is a moving average of the past fwindowSize scores
65 int64 karmaToRemove = data[blockNo-windowSize] [componentRef].score / int64(windowSize);
66 int64 karmaToAdd = (data[blockNo] [componentRef].score / int64(windowSize));
67 int64 currentKarma = data[blockNo-1] [componentRef].karma;
68
69 // In case of missing data points, it can occur that the moving average drops below 0.
70 // During normal operation this should not happen, but if it does, we reset the average.
71 if (currentKarma - karmaToRemove < 0) {
72 data[blockNo] [componentRef] .karma = karmaToAdd;
73 } else {
74 data[blockNo] [componentRef] .karma = currentKarma - karmaToRemove + karmaToAdd;

49



75 }

76

77 meta[blockNo] .totalKarma += data[blockNo] [componentRef].karma;

78

79 // The karma generated ©s divided evenly over its contributors

80 int64 karmaPerCollaborator = datal[blockNo] [componentRef] .karma / int64(numCollaborators);
81 for (uint i = 0; i < numCollaborators; i++) {

82 bytes32 collaborator = componentDir.getComponentCollaborator(componentRef, i);

83 data[blockNo] [collaborator] .karma += karmaPerCollaborator;

84 data[blockNol [collaborator] .karmaParts.push(KarmaPart (componentRef, karmaPerCollaborator));
85

86 delete data[blockNo-windowSize] [collaborator];

87 }

88

89 delete data[blockNo-windowSize] [componentRef];

20 ¥

91

92 function mineWavelets(uint32 blockNo, bytes32[] refs, bool last) {

93 if (metal[blockNo].state != BlockState.Sealed) { return; }

94 for (uint i = 0; i < refs.length; i++) {

95 address addr = userDir.getWalletAddress(refs[i]);

96 if (addr == address(0x0) || data[blockNo] [refs[i]].karma == || data[blockNo] [refs[i]].mined)
97 continue;

98 }

29

100 uint share = blockReward * uint(datal[blockNo] [refs[i]].karma) / uint(meta[blockNo].totalKarma);
101

102 wavelets.mint (addr, share, blockNo);

103 data[blockNol [refs[i]] .mined = true;

104 }

105

106 if (last) {

107 meta[blockNo] .state = BlockState.Mined;

108 lastBlock = blockNo;

109 ¥

110 ¥

111 }

50



1 contract Token {

2 uint256 public totalSupply;

3 function balanceOf (address _owner) constant returns (uint256 balance);

4 function transfer(address _to, uint256 _value) returns (bool success);

5 function transferFrom(address _from, address _to, uint256 _value) returns (bool success);
6 function approve(address _spender, uint256 _value) returns (bool success);

7 function allowance(address _owner, address _spender) constant returns (uint256 remaining);
8 event Transfer(address indexed _from, address indexed _to, uint256 _value);

9 event Approval(address indexed _owner, address indexed _spender, uint256 _value);
0}

11

12 contract StandardToken is Token {

13 function transfer(address _to, uint256 _value) returns (bool success) {
14 if (balances[msg.sender] >= _value && _value > 0) {

15 balances[msg.sender] -= _value;

16 balances[_to] += _value;

17 Transfer (msg.sender, _to, _value);

18 return true;

19 } else {

20 return false;

21 }

22 X

23

24 function transferFrom(address _from, address _to, uint256 _value) returns (bool success) {
25 if (balances[_from] >= _value &% allowed[_from] [msg.sender] >= _value && _value > 0) {
26 balances[_to] += _value;

27 balances[_from] -= _value;

28 allowed[_from] [msg.sender] -= _value;

29 Transfer(_from, _to, _value);

30 return true;

31 } else {

32 return false;

33 }

34 }

35

36 function balanceOf (address _owner) constant returns (uint256 balance) {
37 return balances[_owner];

38 }

39

40 function approve(address _spender, uint256 _value) returns (bool success) {
41 allowed [msg.sender] [_spender] = _value;

42 Approval (msg.sender, _spender, _value);

43 return true;

44 }

45

46 function allowance(address _owner, address _spender) constant returns (uint256 remaining) {
47 return allowed[_owner] [_spender];

48 }

49

50 mapping (address => uint256) balances;

51 mapping (address => mapping (address => uint256)) allowed;

52 }

53

54 contract Wavelets is StandardToken {

55 string public constant name = "Wavelets";

56 string public constant symbol = "WVT";

57 uint256 public constant decimals = 18;

58 string public version = "1.0";

59 ACL acl;

60 event Mint(address indexed _to, uint256 _value, uint32 _blockNo);

61

62 function Wavelets(ACL _acl) {

63 acl = _acl;

64 ¥

65

66 function mint(address recipient, uint256 value, uint32 blockNo) {

67 if ('acl.hasRole(tx.origin, "admin")) { return; }

68 totalSupply += value;

69 balances[recipient] += value;

70 Mint (recipient, value, blockNo);

71 }

72}

o1



e B N

B OR A A W OW W W W W W W WWNNNNNNNNNDE R R R e e e
AR R OO®ITO R WNONRO®®®TO T ARNRO®©OWNO®O A WNW R O ©

contract ComponentDirectory {
struct Component {

uint8 _type;

string id;

bytes32[] collaborators;
}
ACL acl;

mapping(bytes32 => Component) public components;
bytes32[] componentRefs;
uint componentCount;

function ComponentDirectory(ACL _acl) {
acl = _acl;

}

function registerComponent (bytes32 ref, uint8 _type, string id, bytes32[] collaborators) {
if ('acl.hasRole(tx.origin, "admin")) { return; }

if (components[ref]._type > 0) { return; }

components[ref] = Component(_type, id, collaborators);
componentRefs.push(ref) ;
componentCount++;

}
function unregisterComponent (bytes32 ref) {
if ('acl.hasRole(tx.origin, Dadminm)) { return; %}

delete components[ref];

for (uint i = 0; i < componentCount; i++) {

if (componentRefs[i] == ref) {
componentRefs[i] = componentRefs[componentRefs.length-11;
componentCount--;
return;

}

}

function setCollaborators(bytes32 ref, bytes32[] collaborators) {
if (lacl.hasRole(tx.origin, Dadminm)) { return; }
components [ref] .collaborators = collaborators;

52



1 contract UserDirectory {

2 struct User {

3 string name;

4 address walletAddress;

5 }

6

7 ACL acl;

8 mapping(bytes32 => User) public users;

9 mapping(address => bytes32) public addresses;

10 bytes32[] userRefs;

11 uint userCount;

12

13 function UserDirectory(ACL _acl) {

14 acl = _acl;

15 }

16

17 function registerUser(bytes32 ref, string name, address walletAddress) {
18 if ('acl.hasRole(tx.origin, "admin")) { return; }
19

20 if (bytes(users[ref].name).length > 0) {

21 return;

22 }

23

24 userRefs.push(ref);

25 users[ref] .name = name;

26 if (walletAddress != address(0x0)) {

27 users[ref] .walletAddress = walletAddress;
28 }

29 userCount++;

30 }

31

32 function unregisterUser(bytes32 ref) {

33 if ('acl.hasRole(tx.origin, "admin")) { return; }
34

35 if (bytes(users([ref].name).length == 0) {

36 return;

37 }

38

39 delete users[ref];

40

41 for (uint i = 0; i < userCount; i++) {

42 if (userRefs[i] !'= ref) {

43 continue;

44 }

45

46 userRefs[i] = userRefs[userCount-1];

47 userCount--;

48

49 return;

50 ¥

51 }

52

53 function setWalletAddress(bytes32 ref, address walletAddress) {
54 if ('acl.hasRole(tx.origin, "admin")) { return; }
55 users[ref].walletAddress = walletAddress;

56 addresses[walletAddress] = ref;

57 ¥

58 }

53



Appendix B

Performance measurements

Table B.1: Durations of various stages of the batch process
Run  Query (s) Submit (s) Finalize (s) Total (s)

1 1.09 1118.53 68.97 1188.59
2 1.06 785.74 54.04 840.84
3 1.07 769.12 47.69 817.88
4 0.67 1423.98 72.23 1496.88
) 1.25 1584.80 75.69 1661.74
6 0.54 1244.05 54.84 1299.43
7 0.60 1008.48 57.92 1067.00
8 0.58 1123.82 58.92 1183.32
9 0.53 956.95 52.29 1009.77
10 0.58 1199.23 74.14 1273.95
11 0.96 1632.09 71.10 1704.15
12 0.67 1300.21 93.22 1394.10
13 0.47 1149.37 80.01 1229.85
14 0.53 1598.02 66.56 1665.11
15 0.56 989.79 51.97 1042.32
16 0.51 976.80 80.80 1058.11
17 0.39 1583.02 58.59 1642.00
18 0.53 880.52 54.35 935.40
19 0.10 769.72 78.58 848.40
20 0.86 1712.16 79.40 1792.42
21 0.40 1230.27 51.00 1281.67
22 0.53 621.34 45.76 667.63
23 0.50 993.13 57.82 1051.45
24 0.54 1147.60 52.10 1200.24
Mean 0.65 1158.28 64.08 1223.01
SD 0.26 299.52 12.63 305.47
Ratio 0.05% 94.71% 5.24% 100%

54



A Blockchain-Based Micro Economy Platform
for Distributed Infrastructure Initiatives

Jan Kramer!, Jan Martijn E. M. van der Werf* and TBD
*Utrecht University, Princetonplein 5, 3584 CC Utrecht, Netherlands
Email: {j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl
TThe Things Network, Herengracht 182, 1016 BR Amsterdam, Netherlands
Email: jan@thethingsnetwork.org

Abstract—Distributed Infrastructure Initiatives (DIIs) are
communities that collaboratively produce and consume infras-
tructure. To develop a healthy ecosystem, DIIs require an
economic model that balances supply and demand, but there is
currently a lack of tooling to support implementing these. In this
research, we propose an architecture for a platform that enables
DIIs to implement such models, focused around a digital currency
based on blockchain technology. The currency is issued according
to the amount participants contribute to the initiative, which
is quantified based on operational metrics gathered from the
infrastructure. Furthermore, the platform enables participants to
deploy smart contracts which encode self-enforcing agreements
about the infrastructure services they exchange. The architecture
has been validated through a case study at TTN, where a proof of
concept of the architecture was implemented and evaluated. The
case study revealed that the architecture is effective for the given
situation, but needs more research in the areas of scalability and
security to be deployed on a larger scale.

Index Terms—Software architecture, blockchain, smart con-
tract, digital currency, reward system.

I. INTRODUCTION

In recent years, our attitudes towards consumption and
production have shifted towards a more distributed, peer-to-
peer and sharing economic model [1]. Examples of drivers
for this shift include globalization and the consumerization
of digital technologies [2]. However, while platforms such
as Airbnb, Kickstarter, and Etsy are indeed based around a
peer-to-peer economy, they are still fully dependent on central
organizations to manage their platforms. In the utopia of a
true peer-to-peer economy, these dependencies would also be
eliminated and replaced by a fully distributed alternative.

In addition to consumer goods and services, it is also
possible to produce infrastructural services in a decentralized
manner, as shown by The Things Network (TTN), a global,
distributed, crowdsourced Internet of Things network initiative
[3]. To refer to this type of initiative, we define the term
Distributed Infrastructure Initiative (DII) as a group of individ-
uals and organizations that cooperatively produce and consume
a shared set of infrastructure services, without a centralized
governance body.

A notable attribute of DIIs is that the participants them-
selves are tasked with producing the infrastructure, whereas
traditionally, corporations such as telecom operators bear this
responsibility. While corporations are incentivized by profits
to produce the infrastructure, in DIIs there is no built-in

incentive for participants to produce beyond their own need,
especially in situations where the infrastructure is offered
free of charge. Therefore, given basic economic principles,
voluntary contributions to such initiatives are limited and
potentially unsustainable.

Developing a micro economy specific to DIIs can address
this issue by enabling incentives to be set up so that con-
tributions are rewarded. However, while there is a vast body
of literature on related topics such as reward systems, there
is little practical tooling to enable DIIs develop such micro
economies.

Therefore, in this research we aim to provide a software
architecture of a platform that provides the tools necessary
to operationalize an economic model that incentivizes par-
ticipants to contribute beyond their own needs and altruism.
To achieve a fully decentralized architecture, the platform is
centered around a blockchain, a type of distributed ledger,
using smart contracts to facilitate the core logic. Finally, the
architecture is validated by implementing a proof of concept
and evaluating it in the context of TTN, a real-world DII.

The remainder of this paper is structured as follows. Section
II provides some background on distributed ledger technology
which is applied in the micro economy platform introduced
in Section III. The case study is described in Section IV, and
in Section V we discuss the findings of our research. Finally,
Section VI concludes this paper and describes several areas
for future research.

II. DISTRIBUTED LEDGERS

Distributed ledgers are an emergent topic and have received
a lot of attention recently due to the popularization of the
concept of blockchain and its use in digital currencies such as
Bitcoin. Essentially, a distributed ledger is a replicated, shared
and distributed database which enables consensus between
parties that do not trust each other [4]. The database consists of
an append-only sequence of immutable transactions. As such,
once a transaction has been confirmed, it is not possible to
modify it. This makes it very suitable for applications which
need a tamper-resistant data store, e.g. digital currencies or the
micro economy platform we propose in this research.

A blockchain is a specific type of distributed ledger which
groups transactions in blocks that are organized in a linked
list, i.e. a chain of blocks. Blocks are brought into existence by



participants of the network through a process called “mining”.
Mining is intentionally made expensive so that it is economi-
cally infeasible for participants to forge data in order to gain an
advantage. As such, mining can be used as a decentralized con-
sensus mechanism. The actual implementation of consensus
mechanisms differs between various types of ledgers, which
is discussed in more detail in Section II-A.

Note that the term ’blockchain’ is overloaded and can be
referred to as either the generic architectural pattern that
was popularized by its application in the digital peer-to-peer
currency Bitcoin [5], or to the actual instantiation of the pattern
as applied in projects such as Bitcoin and Ethereum [6]. For
the purpose of this research, we are mainly interested in the
generic architectural pattern of a distributed ledger.

A. Consensus Mechanisms

The consensus mechanism is core to a distributed ledger
given that it provides its primary function: reaching consensus
between parties about the “true” state of the ledger. The first
ledger that was popularized, the Bitcoin blockchain, uses a
Proof-of-Work (Pow) consensus mechanism [5]. PoW relies on
participants continuously competing to solve puzzles, where
the solution of each puzzle represents the missing piece of the
next block. Since this process is computationally intensive,
finding the next block and hence defining the upcoming state
of the blockchain is expensive. Under the assumption that there
is not a single party that operates more than half of the total
mining resources, it is not possible for a single party to record
false transactions, e.g. to double spend tokens.

The puzzle that is solved can have many forms. In the case
of most digital currencies it consists of finding a hash that
satisfies a specific property, i.e. the first n-bytes of the hash
must be 0, where n represents the difficulty of the problem.
For example, if the input data derived from the transactions is
“0x1234” and n equals 2, then the puzzle is to find a value for
i where the hash over “0x1234;” starts with “0x00...”. While
it is computationally intensive to find a correct hash, it is very
easy to verify whether a hash is correct. This makes it very
suitable as a means for other nodes to validate new blocks
from other nodes.

One of the main drawbacks of the PoW approach is that the
computations require a significant amount of energy resources.
Some researchers estimate that a PoOW network at scale would
incur a 2.1% increase in carbon dioxide emissions worldwide
[7]. Alternative approaches that do not incur a severe pressure
on the environment include Proof-of-Space [8]-[10], which is
based on miners providing disk space instead of computational
resources, Proof-of-Stake [11], where miners have to put up
a deposit — or stake — that can be burnt if they misbehave,
and finally Proof-of-Authority, where a consortium of trusted
parties is chosen upfront that are allowed to mine new blocks.
While partially decentralized, this approach is not as open,
given that not every participant can arbitrarily start mining.

B. Smart Contracts

Another aspect that varies across distributed ledgers is
whether they support smart contracts. While popularized by
Ethereum [12], Smart Contracts were actually first defined in
[13]. A smart contract can be defined as the formalization of an
agreement over a public network between parties that do not
necessarily trust each other. It consists of promises that can be
executed automatically, based on future inputs. The automatic
execution allows anonymous parties to engage in transactions
without a trusted third party being present. Examples of use
cases include crowdfunding, content rights management, and
€sCrow services.

In Ethereum, smart contracts are executed as part of trans-
actions on the Ethereum Virtual Machine (EVM), a quasi-
Turing-complete virtual state machine [6], [12]. The quasi-
qualifier stems from the fact that transactions are limited
by the amount of gas the sender provided to execute the
transaction. Gas is a measure for the computational size of
a transaction, and is consumed by every instruction the EVM
executes (e.g. performing a calculation or writing/reading to or
from permanent storage). Therefore, a sender has to provide
sufficient gas for every step to execute. Since gas is provided
by supplying additional Ether to the transaction, which has a
real-world cost, this mechanism provides a safeguard against
very large or inefficient transactions on the EVM.

C. Blockchain-Free Distributed Ledgers

Although the term ‘blockchain’ has been popularized, a
more correct term for most use cases would be distributed
ledger, since using a blockchain as data structure is merely
an implementation detail of a system that tries to provide
consensus in a trustless distributed setting. The fact that several
other projects [14]-[16] have proposed an alternative data
structure to store transactions supports this claim.

For example, IOTA uses a Directed Acyclic Graph (DAG)
instead of a blockchain [16]. Each node in the DAG represents
a transaction and each edge a reference to an earlier trans-
action. In order to publish new transactions on the network,
a user has to perform PoW that includes data from the
earlier transactions. By providing the PoW and publishing the
transaction, the previous transactions are verified. Note that
instead of depending on a separate group of miners, in IOTA,
the users who engage in transactions verify transactions of
other users. Therefore, IOTA also does not have transaction
fees as in Bitcoin and Ethereum, although performing the
PoW is computationally intensive and could be considered as
implicit transaction costs.

One of the main benefits of this approach is scalability.
In a blockchain-based ledger, every transaction has to be
processed in order by every node since there is a single
sequence of transactions. Due to its structure, a DAG-based
ledger allows the network to temporarily diverge and therefore
accept transactions asynchronously, which in turn leads to
higher throughput.



However, at the time of writing, the distributed ledgers built
using alternative data structures are still relatively immature
and have to be validated by large scale real world usage.

III. MICRO ECONOMY PLATFORM

The main purpose of the micro economy platform proposed
in this research is to enable DIIs incentivize their participants
to contribute to a shared infrastructure. It aims to provide these
incentives through a micro economy where participants can
earn tokens in a DII-specific currency by contributing to the
infrastructure. Additionally, participants can use the currency
to exchange additional services with each other.

In principle, every participant of the DII is a potential stake-
holder in the system. Participants can be both organizations
as well as individuals, and among them we can distinguish
two types. First, contributors are participants who add value
by contributing to the infrastructure. Second, users are par-
ticipants that utilize the infrastructure. These two types are
not mutually exclusive, i.e. a contributor can simultaneously
be a user. Finally, a potential third group of stakeholders are
investors. Since the platform introduces an asset that represents
some value and can be exchanged freely, it is possible that the
asset attracts investors similar as to how investors hold Bitcoin
and other digital currencies.

From a technical perspective, at the core of the DII is the
infrastructure which consists of components that collect data
about their operations, e.g. performance metrics or statistics
about the amount of usage. This will form the basis for the
integration with the proposed platform, as discussed in the
next sections.

A. Requirements

The following functional (FR) and non-functional (NFR)
requirements describe the features the platform should provide.

FRI1 — Contributor ranking In order to reward contributions,
we must know how much to reward and hence need to quantify
a user’s contributions. To that end, we introduce the concept
of a Karma score, which is based on the metrics the platform
collects from infrastructure components. The Karma score
should be computed roughly along the following lines:

1) Infrastructure components continuously submit metrics
to the platform

2) Periodically (e.g. hourly), these metrics are aggregated
per component, and converted to a single score using a
function that is configurable per component type

3) Based on the past n scores, per component a moving
average is computed

4) The overall Karma score of a participant is finally
computed as the sum of the moving averages of all
individual component scores

FR2 — Issue tokens At each interval, after the Karma
scores have been computed, the platform should issue a fixed
number of new tokens in the DII-specific currency, Wavelets
in the context of The Things Network. The tokens should
be distributed to all contributors, proportional to their Karma
scores.

1) After all Karma scores have been updated, compute
the number of tokens to issue to every contributor by
calculating their percentage of Karma and multiply that
with the fixed total reward;

2) Issue the computed number of tokens to the contributors’
wallets

FR3 — Set up wallet To start receiving tokens, a participant
needs to set up a wallet which is linked to a user account in
the existing infrastructure.

1) The participant initializes a new wallet (client-side)

2) The participant sends a request to the platform to link the
address of the wallet to the user account in the exiting
infrastructure

3) The platform requests the participant to follow an au-
thorization flow to verify the participant’s identity

4) Only on successful authorization, the wallet address is
linked to the user account.

FR4 — Exchange tokens

To allow participants freely exchange tokens of the DII-

specific currency, the platform needs to support arbitrary
transactions between wallets.

1) A participant with wallet address a issues a request to
send n tokens to a given address b

2) The platform checks whether the participant has enough
tokens of the DII-specific currency

3) If that is the case, the platform decreases the balance of
the wallet with address a with »n tokens, and increases
the balance of the wallet with address b with n tokens

FR5 — Marketplace

To enable participants set up self-enforcing agreements

about network services and their usage, the platform should
allow participants to deploy contracts that are executed pe-
riodically with aggregated network metrics, and can hold
and transfer tokens. An example of such contract is further
described in Section III-C2. To enable participants discover
such offerings, the services should be listed in a marketplace.

1) A participant defines and deploys a smart contract on
the platform which implements an interface that receives
network metrics and executes arbitrary logic

2) After the smart contract is deployed, the participant adds
the service to the market place

3) A participant interested in the service subscribes by
making the required payment to the smart contract

4) Periodically, when the smart contract is invoked, the
predefined logic is executed

5) The seller can discontinue the contract, which will
trigger its removal from the marketplace and shut down
the contract after a predefined period of notice

NFRI — Efficient Batch Handling The platform processes

metrics in batches, and therefore the running time of a
single batch should not exceed the interval between batches.
An important factor to the running time is the number of
metrics to be processed, which is dependent on the number
of infrastructure components. While for the initial proof of
concept, this number is relatively small, i.e. in the order of



magnitude of several thousands, the platform should be able
to scale towards hundreds of thousands of components.

NFR2 — Distributed Deployment One of the strengths of
DIIs is that they do not have a central authority. However,
this also means that they lack a single party they entrust with
managing the state of the micro economy platform. Therefore,
the platform needs to be operated in a distributed fashion by
different parties.

NFR3 — Security Since DIIs are open for anyone to join, this
does not exclude malicious actors. Especially due to the fact
that the platform can be used for economic gains, it is essential
that there are safeguards in place that protect benevolent
participants from attacks of participants with malignant intents.

B. Architecture

Following the requirements, we describe the architecture
from several viewpoints based on the method described in
[17].

1) Context: Figure 1 shows the micro economy platform
as a black box in its context. In essence, it fulfills the fol-
lowing tasks. First, it accepts metrics about the infrastructure
operations. Additionally, it exposes an authentication endpoint
to link user accounts between the two systems. Second,
based on the infrastructure metrics, contributors are rewarded
with tokens, which can be exchanged with other participants.
Third, the platform offers participants the ability to engage
in smart contracts, e.g. an SLA as discussed in more detail
in Section III-C2. Finally, a third group of outside actors,
investors, might exchange tokens with participants without
actively participating in the network.

: Receive contribution rewards
Use / Contribute Send / Receive tokens

Participant Engage in smart contracts

Micro Economy
Platform

A

Exchange tokens

Investor

Infrastructure
Infrastructure metrics

Fig. 1. Context diagram of micro economy platform

The economic model employed by the micro economy
platform is summarized in Figure 2. Fundamental to the model
is the foken reserve, a smart contract that holds and manages
the tokens that are in circulation. It is also the only element
that is able to issue new tokens, and therefore can be compared
to a central bank.

The token reserve periodically issues a mining revenue.
On an hourly basis, a fixed number of tokens is created
and subsequently divided over all contributors, proportional
to the size of their contributions. This process is analogous to
mining in PoW-based cryptocurrencies, but instead of hashing
power, this model allows any service or good to count as a
contribution, as long as it can ultimately be quantified.

L Sel
Exchange ‘
tokens '
{ Investor ](—){ Contributor
Contributions

Mining

revenue
Share of total contributions

Token Reserve

Fig. 2. Economic model as applied in the micro economy platform

Another potential source of tokens for contributors is a
marketplace where they can offer specific services to users.
For example, a gateway owner could offer guarantees on a
particular service level (e.g. 99.99% uptime) through an SLA,
in exchange for a number of tokens per time unit. To prevent
the gateway owner from violating the agreement, a possible
penalty could be burning a pre-deposited amount of tokens.
Given that the infrastructure already provides metrics to the
platform, the contract could even be made self-enforcing by
evaluating these metrics against predefined conditions. This
example is discussed in more detail in Section III-C2. Note that
this is just one example of a possible smart contract between
network participants. Additionally, since smart contracts are
essentially programs that can be submitted to the blockchain
by any participant, anyone could define their own smart
contracts in which they can record self-enforcing agreements
with other participants.

Finally, as we have seen with other digital currencies, it
is possible that the tokens attract investors who then start
trading the token. By trading against other digital currencies or
fiat, the token will gain value in the real world, which allows
contributors and users to put an actual price on their services
and contributions.

C. Functional Structure

Figure 3 depicts the high-level platform design by listing
the main platform components and their relationships.

Infrastructure components are instrumented to submit per-
formance and usage metrics to a monitor. The monitor sub-
sequently temporarily stores the metrics. On a periodic basis,
the batch controller triggers all monitors to submit their aggre-
gated metrics to the infrastructure metric store. The platform
aggregates the metrics to improve scalability, because storing
every individual metric would cause a significant overhead.

Since the metrics have to be provided by an external source,
it is important that we are able to trust the agent providing
the metrics. In order to accomplish this, the DII only accepts
data originating from known infrastructure components and
monitors, which are registered in the whitelist.



Based on the metrics, the karma component calculates a
score for all participants that represent the significance of
their contributions. Based on this score, the token reserve
issues a number of tokens to the contributors wallets following
requirement FR2.

The directory keeps track of the mapping between contrib-
utors and their wallet addresses, which is necessary to know
where to issue new tokens. To register a wallet address, new
participants have to perform a one-time action where they
link their address to their infrastructure user account following
requirement FR3.

Finally, participants can use their tokens to purchase ser-
vices from other participants in a marketplace. The services are
user defined, but an example of a possible service is provided
in Section III-C2.

Micro Economy Platform

Monitor
Infrastructure I j— Infrastructure o Token I
c i Metrics Store arma Reserve alle
Batch
Controller :
Identity

. v l
l T --» User defined

Identity H } Directory

Provider U

Whitelist ‘

Fig. 3. High-level platform structure

1) Token Reward Workflow: Figure 4 shows in more detail
how the token reward process as previously mentioned is
executed by the various components.

Infrastructure components continuously report metrics about
the usage and performance of the infrastructure to a monitor,
which stores it in a temporary event store. On a predefined
interval, e.g. hourly, one of the authoritative agents signals
the monitors to start their batch process, which queries the
event store and submits aggregated metrics to the infrastructure
metrics contract on the blockchain. This contract subsequently
performs various checks, before actually storing the metrics.
Firstly it ensures that the source of the metrics is in fact
allowed to submit metrics, and it verifies that the batch has
not been sealed yet, which would mean the time window to
submit the metrics had expired.

Note that some precision is lost by aggregating the metrics,
but storing every metric separately would be unfeasible due to
constraints in throughput and storage.

As soon as the finalization process is triggered, the batch
is sealed by the metrics contract, and the registered batch
listeners are triggered. An example of such listener is the
Karma contract, which updates the karma scores of the users
based on the newly added metrics, and calculates the token
rewards that are to be distributed. Other examples could be
user-defined contracts which also depend on metrics to execute
their logic. An example of such contract is given in the next
section.

2) User Defined SLA Workflow: Figure 5 describes how a
user defined SLA could work in practice. It would ultimately
be up to users themselves to define them, although the platform
could provide template contracts.

Infrastructure
it N
Component Send operational
events to monitor

Monitor

Hourly
trigger

Store events in Batch
temporary event store Controller
Query event store for \__

aggregated metrics

006652: Initiate batch

Submit metrics to
blockchain

Batch
L) window
expired

Infrastructure
Metrics

Whitelist - Store -

1158.285
94.71%

Verify source

Seal batch -
Trigger batch
listeners

Karma User defined

Update karma scores
Process batch
64.08s
5.24%

Calculate rewards
per contributor

®

__|._{ itiate batch
finalization

Token
Reserve

Issue tokens
to contributors

Fig. 4. Token reward workflow

In this example, the contract starts with a contributor
deploying a SLA smart contract. The contract contains some
parameters, e.g. an uptime percentage and a price per month.
The contract subsequently registers itself as a listener for
new metrics with the infrastructure metrics contract, and the
contributor adds the service to a marketplace through which
users can subscribe. A subscription is started when a user
deposits its first payment, which is kept in escrow by the SLA
contract.

Then, on every batch, the SLA contract receives a signal and
queries the infrastructure metrics component for the relevant
metrics. If the metrics meet the pre-configured criteria then the
contract pays out the tokens from all active subscribers for the
current cycle to the contributor, and disables the subscriptions
which do not have sufficient funds left to pay for another cycle.
In case the metrics do not meet the pre-configured criteria, the
remaining tokens are returned to the users and the subscrip-
tions are cancelled. Finally, the reputation of the contributor is
updated either positively or negatively depending on the SLA
outcome. The reputation is shown on the marketplace and can
provide users with insight in the historical performance of the
selling contributors.



|

P—
Deploy SLA contract ) __
on blockchain
. Add offering to
service listing

: £ User

(Re-)Subscribe ~ Tk e - o Register subscription / -
to service pken payment keep tokens in escrow Batch

User defined SLA contract (example)

Initialize contract
with given criteria

[

LA criteria

Register listener

Controller @ Batch trigger
_|._[ Signal SLA to check
newly added metrics

Check if infrastructure
metrics meet criteria
[yfl [njl

Pay fees for current Return remaining
cycle from escrow to cycles from escrow to
contributor

| I

REEL Marketplace €--=
3 ; |s§(:|e fubscv_\puons Disable all
: without remaining subscriptions
£ Contributor

: funds in escrow
[ SO Update contributor
: reputation
Remove offering from
service listing
Shut down .
SLA contract

—————————————— Unregister listener

Self-destruct

Fig. 5. User defined SLA workflow

Ultimately, a contributor can choose to sunset its service
which entails removing it from the marketplace and shutting
down the contract. This will unregister the listener and self-
destruct the service. Any remaining tokens in escrow are
returned to the users.

3) Runtime Environment: Figure 6 depicts the runtime
environment of the various platform components. Central to
this view is the blockchain, which is represented as a logical
component deployed on multiple physical nodes. Most of
the platform modules discussed in Section III-C are in fact
deployed as smart contracts on this blockchain, since they
operate on state that has to be shared across many nodes that
lack a fully trusting relationship. All interaction with these
smart contracts is performed through blockchain clients, which
is the third party software that runs the blockchain. Note that
the term client does not refer to the client—server architectural
pattern. Instead, the blockchain is a peer-to-peer network and
the client is used to operate a node in this network.

While all nodes participate in the blockchain network, only
the authoritative nodes are allowed to validate transactions and
issue new blocks. In addition to validating new blocks, they
host the identity bridge module, which provides integration
with the identity provider (i.e. user directory) of the existing
infrastructure. The identity bridge must be deployed on trusted
nodes, because the platform needs to securely verify the
identity of participants, and the authoritative nodes are the only

nodes we can fully trust. The authorities are chosen during the
initial set-up of the blockchain by putting their addresses in the
blockchain configuration. This configuration is subsequently
shared among all authorities and must be used to successfully
join the blockchain network. At a later stage, if a new authority
wants to join or an existing authority must leave, a majority
of the authorities must update their configuration, after which
the new list becomes active.

Each monitor is deployed on a contributor node. Since the
number of infrastructure components can grow beyond the
number a single monitor can handle, the monitors should
scale horizontally. Each monitor instance also has an event
store which is a simple database that is used as a buffer to
temporarily store metrics until they have been submitted to
the infrastructure metrics store.

Finally, the wallet software is client-side which is necessary
to keep the platform distributed and hence runs on every user’s
own device. Similar to the identity bridge and monitor, it
communicates with the rest of the blockchain network through
a blockchain client.

Authoritative
Node

Blockchain
client

Identity
bridge

Batch
controller
Identity |
provider

Participant Node

Wallet
Blockchain
client

Contributor Node

Blockchain client

Infrastructure
component

Fig. 6. Runtime environment

IV. CASE STUDY

To evaluate the architecture, we conducted a case study in
the context of TTN. Figure 7 depicts the typical usage of the
IoT network infrastructure provided by TTN. The sequence
is triggered by an IoT device (e.g. a sensor) transmitting
an uplink message (1) which is received by zero or more
gateways. Each gateway forwards the message to the router
it is connected to (2), which in turn routes the message
to a broker (3). The broker subsequently deduplicates the
set of received messages belonging together, does a lookup
to determine the application the message belongs to, and
forwards the message to the corresponding handler (4). The
handler then decrypts and decodes the payload and publishes
the message to the application (5).

In case the application has scheduled a downlink (6) mes-
sage, the handler encodes and encrypts the corresponding
payload and sends it to the broker (7) which forwards it to
the router that is connected to the gateway that has been



LKA X

Galéway Router Broker Handler
Operator Operator Operator Operator
..Chooses : Backend
vi [ v v v
2. 3. 4.
Gateway Router Broker Handler
3_: le— le—

Device |€-----=s==m-mmeen [ ceeeeeiiiiaooo > App

Application owner

Fig. 7. Typical usage scenario of The Things Network

selected as the best downlink option based on signal strength
and utilization (8). Finally, the router schedules the downlink
for the selected gateway (9) which transmits the message to
the device (10).

As the usage scenario shows, there are many roles involved
in using and operating the infrastructure. The gateway operator
has to purchase a gateway, install it at a proper location
(e.g. high altitude, outside, etc.) and provide it with elec-
tricity and internet connectivity. The routing service providers
(router/broker/handler operators) have to operate a server that
runs the TTN backend components and make sure everything
is kept healthy and up to date. In short, these roles “deposit”
value by contributing infrastructure, whereas, application own-
ers only use the network and thereby “withdraw” value.

A. Proof-of-Concept Implementation

In order to validate the design of the architecture, we
developed a proof-of-concept (PoC) of the micro economy
platform. The PoC does not implement the full architecture,
but is restricted to a subset of components that we deemed
necessary to validate the essential aspects of the concept.

Figure 8 provides an overview of which aspects have been
implemented and which have been omitted. In essence, the
PoC consists of two high-level components. The first compo-
nent being a blockchain implementation with on top a set of
smart contracts, and secondly an infegration agent that links
the blockchain and existing infrastructure.

Micro Economy Platform

Infrastructure I j— : i by| nrastructure Karma Token
Ci | : Batoh 1 7] Metrics Store Reserve
| controller |1 ! ; : l
: i v v
| = H whist ‘ Markeace F BT
l o 5 --»{ User defined |!
! Integration Agent | | Blockchain

Monitor

wenity |||
Provider U

Directory

Fig. 8. Overview of components. Implemented components are highlighted
(e.g. Monitor)

1) Integration Agent: The monitor and identity bridge
components have been developed in one software component,
the integration agent, for ease of development and deployment.
The main responsibility of the monitor is ensuring operational

metrics are collected and submitted to the rest of the micro
economy platform. Secondly, the identity bridge provides the
integration of the existing user base with the blockchain user
infrastructure.

1T
Monitor Aggregated Blockchain

metrics
Operation
e e"—+—»{ gRPC server | [Batch pArocess Infrastructure Metrics Store

I
Measurements Aggregated
metrics
InfluxDB

Fig. 9. Monitor implementation

Monitor Figure 9 depicts a more detailed view of the
implemented monitor. Given that in the context of TTN
infrastructure components already expose data over gRPC!
streams and bindings for these streams are available in the
Go programming language?®, we chose to implement a gRPC
server in Go. The infrastructure components are configured
to send events about their operation to the monitor, which
are then temporarily stored as measurements in InfluxDB?, a
time-series database. A time-series database, and specifically
InfluxDB, is appropriate here, since it allows for easy aggre-
gation over time and has built-in support for retention policies
to automatically discard old data.

The batch process that submits the aggregated metrics to
the blockchain runs in a separate thread parallel to the gRPC
server. This process is triggered on an hourly basis, and
aggregates the number of messages and total airtime, i.e. the
duration of the gateway being active to send or receive a
message, over the previous period through a query on the
InfluxDB data store.

Note that even though we have only deployed a single
monitor in the current proof-of-concept, the architecture pre-
scribes that ultimately many monitors are deployed and they
all collect and report metrics. This is necessary to distribute the
load when more infrastructure components join the network,
but also introduces the need for an additional component that
coordinates the various monitors. This task is delegated to the
batch controller, which has been omitted in the PoC.

Identity Bridge Both the existing infrastructure and
blockchain have their own security system. Since we need to
identify users according to their TTN credentials, for example
to know where to send rewards, we need to provide an
integration between the two systems.

The TTN security system is a bespoke software component,
but is based on standard protocols and offers integration facil-
ities through OAuth. The blockchain has, due to its distributed
nature, a slightly different approach to security based on public
key cryptography. Users need to generate a wallet, which in
essence is a private key. To submit transactions from that
wallet, a user needs to sign the transaction using the private
key, and only with a proper signature will the transaction be
accepted by other blockchain nodes.

I'See https://grpc.io/about/
2See https://golang.org/
3See https://github.com/influxdata/influxdb



As depicted in Figure 10, to integrate the two systems,
the identity bridge component requests users to follow the
OAuth flow of the TTN security system, and subsequently
provide their wallet address. The identity bridge then registers
the username-address combination on the blockchain in the
Directory contract, after which the identification procedure is
finished.

Identity Provider

’ Identity Bridge ‘ ’ Directory ‘

Participant
. Link wallet request

Request authentication

Authenticate

Authentication result !

Retry authentication

[not OK] [OK] Store wallet add:ress + username

Fig. 10. Sequence diagram of wallet registration

2) Blockchain: Most of the core functionality has been im-
plemented through smart contracts on the private blockchain.
There are two concepts of importance here: the underlying
blockchain itself, i.e. the infrastructure, and the smart contracts
we implemented on top.

Ethereum implementation Although there are many different
blockchain technologies available, for this PoC we opted
for a private Ethereum instance. Our main reason to choose
Ethereum is its ability to deploy and execute smart contracts
that contain arbitrary logic through the Ethereum Virtual
Machine (EVM). Smart contracts for Ethereum are written
in Solidity, a strongly typed language of which the syntax
closely resembles those of general purpose languages such as
Java and C#. Solidity is compiled to EVM-specific bytecode,
so in theory, other languages could be developed to build smart
contracts for EVM-enabled blockchains.

A smart contract in Solidity is similar to the concept of
a class, i.e. it has a constructor, methods and properties. De-
ploying a smart contract subsequently resembles instantiating a
class, and consists of compiling the contract to EVM bytecode
and attaching it to a transaction. When the contract has been
deployed, i.e. the next block is mined, the smart contract is
assigned a unique address. Read operations on a smart contract
can occur without any transactions. One has to simply inspect
the state of the blockchain at the address where the smart
contract is deployed. However, when performing operations
that manipulate the state of a smart contract, one needs to
send a transaction to the smart contract with the operation
encoded in bytecode.

Instead of using the public Ethereum chain, the PoC uses a
private instance. A deployment on the public blockchain would
not be cost-effective, since storing a relative high amount of
data is expensive, i.e. in the order of magnitude of hundreds or
thousands of USD per hour. Additionally, by having a private
blockchain, we have more control over the configuration and
are thereby able to tune parameters such as block time to
maximize the performance for our specific case, which would
not be possible in a public blockchain.

Implemented Smart Contracts

«interface»
Infrastructure
Metrics Store

«interface»
Karma Scorer

User
Directory

Component
Directory

>I

: StandardToken
GatewayScorer H
\V/

Fig. 11. Overview of smart contracts and their relationships

Figure 11 depicts the actually implemented smart contracts
as a simplified UML class diagram.

Although the architecture suggest a separation between the
Karma and Infrastructure Metrics Store contracts (cf Figure
8), the functionality of both contracts has been implemented
in the Karma contract for the purpose of this PoC. The main
reason was to reduce cross-contract communication, which
made it both easier to implement as well as resulted in better
performance. The reward flow, as previously described in
Section III-Cl1, therefore concretely looks as follows.

First, from the monitor, new metrics are submitted to the
Karma contract. Since every component type is different and
hence has different sets of metrics, the Karma contract accepts
an integer array of arbitrary length as input. For example, for
a gateway, the metrics consist of the number of messages and
total airtime, e.g. [2, 100, 3, 180] for “2 uplink messages,
100ms uplink airtime, 3 downlink messages, 180ms downlink
airtime”. Although currently not implemented, the metrics
for a router would most likely not contain the airtime, but
instead something that would be more representative of its
performance such as average latency and uptime.

Secondly, we need to compute a single Karma score for
every component, regardless of the types of metrics we receive.
To that end, we define a Karma Scorer interface, which takes
as input an arbitrary set of metrics and outputs a single
Karma score. For the PoC, only a GatewayScorer has been
implemented, but due to the common interface it should
be trivial to add support for other component types. The
GatewayScorer implementation defines a number of tiers based
on the amount of airtime a gateway has processed, where
more airtime indicates a larger contribution and hence a higher
reward.

After the Karma score has been calculated, the overall cur-
rent Karma score of both the component and subsequently the
user have to be updated given that they are moving averages
of previous n periods. Finally, after the metrics have been
updated and the batch finalization is initiated, the rewards are
’mined’ and issued to all contributing participants. This entails
calculating the total reward, and subsequently dividing a fixed
number of Wavelets proportionally over the contributors.



B. Analysis

By implementing and deploying the PoC, we were able
to analyze the architecture from a performance and security
perspective.

1) Performance: The implementation of the PoC shows
that the performance of the architecture is limited by the
current use of a blockchain. Notably, a large share of the active
running time is spent on submitting metrics to the blockchain.

We measured the time the PoC required to process a single
batch by logging timestamps at various stages in the batch:
1) at the start, 2) after the metrics are aggregated, 3) after the
metrics are submitted, and 4) after the batch is finalized. Figure
4 has been annotated to highlight the exact steps the stages
encompass. The measurements were conducted during a 24-
hour period, so in total 24 runs were measured. The number
of infrastructure components active during this period ranged
from 2,010 to 2,082. On average, a single run took 20 minutes
and 23 seconds (SD = 5:05), of which 94.71% of the time was
spent submitting metrics to the blockchain, 5.24% finalizing
the batches, and only 0.05% aggregating the metrics.

Since the interval between batches is one hour, there is not
much headroom to scale up in terms of number of tracked
infrastructure components.

In addition to the computational time, another constraint is
storage. After circa two months of running, the total storage
required for a single node amounts to roughly 40GiB, and
it will increase only more over time. Although the smart
contracts only store metrics for a given window, currently
Ethereum retains all data ever submitted to the blockchain.
There are theoretical solutions to this problem, but none of
them have been implemented. For example, in [18] a concept
called State Tree Pruning is proposed where nodes from
the state tree that are no longer in use can be removed.
This would allow to keep a constant storage requirement
for a constant number of infrastructure components. Another
potential solution is proposed in [19], where only a few nodes
need to retain the entire blockchain, and most nodes only
need a significantly smaller blockchain, without reducing the
security of the overall system. Unfortunately, none of these
solutions have been implemented yet.

Another, more radical, solution would be to stop storing
metrics on the blockchain altogether, and instead move to
offchain storage, e.g. based on IPFS as described in [20].
This would mean that the actual data would be stored in a
distributed filesystem, and only a reference would need to be
stored on the blockchain. The obvious benefit would be that a
solution such as IPFS is a much more efficient data store, but
it would make integrating the metrics in scenarios such as the
proposed user defined SLA smart contracts more complex.

2) Security: Given that rewards contributors receive con-
stitute some value, it is necessary to make sure the system
does not contain any loopholes that can be used by malicious
actors to gain an unfair advantage. For most of the platform
we use open-source software and standards which are well-
maintained. Vulnerabilities might occur in these components,

but can largely be mitigated by keeping the software up-to-
date.

More pressing is that, in theory, a user could generate fake
data and present it to the platform as being legit. For example,
a user could implement a software gateway that generates
messages. The platform would process these messages and
assume that the particular user is contributing significantly and
issue rewards accordingly. In the current set-up, we prevent
this through the application of a whitelist. Every component
first has to be whitelisted by other (trusted) users, before
data from that component is accepted. However, there are
two main drawbacks to this approach. Firstly, the solution
does not provide full guarantees. As soon as a component is
trusted, it can start generating fake data. The second drawback
is that it requires a manual step before contributors can get
rewarded, namely getting authorized by the whitelist. Ideally,
the platform would provide a built-in mechanism to overcome
this issue in an automated way, but this remains an open issue.

V. DISCUSSION
A. Findings

1) Scalability: During the implementation of these smart
contracts we quickly ran into the current technical limits of
blockchain, especially in the area of scalability. The PoC
developed during the case study showed us that both com-
putational and storage requirements quickly become too high
to still be practical when scaling up. Note that this is not only
a pressing issue for private distributed ledger implementations
such as the one explored in our research, but also for well-
known public blockchains such as Bitcoin and Ethereum.
Noteworthy in that regard is the scaling debate Bitcoin is
currently facing. Various groups within the ecosystem have
different visions on how the underlying technology should be
scaled, but up until the time of writing no consensus (ironi-
cally) has been achieved on which direction the community
should pursue.

2) Off-Chain Assets: Another pain point for distributed
ledgers relates to off-chain assets, i.e. data about “stuff” from
the real world, as opposed to assets that live on the blockchain
such as bitcoins. For on-chain assets, their validity and own-
ership is governed by built-in mechanisms, i.e. they only exist
because the blockchain tells us so. However, for off-chain
assets, someone first has to submit facts about the asset to the
blockchain. Although that specific fact is securely stored on
the blockchain from that point on, it does not prove anything
about its truthfulness in the real world. Ultimately, everyone
has to trust the original party to have provided valid data.
Measures can be taken to improve the trustworthiness, e.g.
by requiring a quorum to agree on the data before accepting
it, but that still does not provide any watertight proof on the
truthfulness.

3) Degree of Trust: One should note that not every ecosys-
tem is fully trustless. Currently, most of the major blockchains
assume that all participants are anonymous and not necessarily
to be trusted. However, this assumption does not hold for
every community. For example, in the context of TTN we saw



that it was possible to identify a consortium of organizations
that are widely recognized as being trustworthy. In addition to
circumventing the previously discussed issue on off-chain data,
this ”semi-trustlessness” can be leveraged to use a less strict
consensus mechanism such as Proof of Authority. This results
in a lower operational cost, since it is no longer necessary
to perform the mining as is the case for PoW. Naturally,
some communities do require the system to be able to operate
under the “trustlessness assumption”, but it is nevertheless an
important aspect to consider when designing a new system
that employs a distributed ledger.

B. Threats To Validity

While we expect the platform and underlying concepts to be
applicable to other DIIs, we only studied one case study which
is a threat to the external validity of this research. Second, the
implemented PoC is a subset of the proposed architecture, and
some concessions have been made due to time constraints.
Therefore, these discrepancies might threaten the construct
validity of our research. Finally, while we have compared
various distributed ledger technologies, we implemented the
platform only on top of Ethereum. This may have led to a
bias in our findings. Given more time, we would have explored
different technologies.

VI. CONCLUSIONS AND FUTURE WORK

The results of our research provide an architecture for a
Micro Economy Platform for DIIs that based on our initial
findings appears to be effective. However, the implementation
has revealed several areas that should be researched more
extensively.

First, more research is necessary to find mechanisms to
securely collect metrics about infrastructure components, be-
cause the current architecture is not fully sealed against attacks
where participants fake component data to gain an advantage.
One solution we envision would be to apply cryptography
to securely sign messages so their origin is warranted to
be legitimate. Another possible solution is to use a system
of witnesses that vote on the legitimacy of submitted data.
Nevertheless, more research is required to validate both ideas
and find possible alternative solutions.

Secondly, the implementation shows that the scalability
of the current architecture is relatively limited due to the
processing speed and storage requirements of the blockchain.
While there is still room to optimize the current proof of
concept, e.g. by tuning parameters such as block size and the
interval between batches, we don’t expect order of magnitude
improvements. Therefore, it is necessary to fundamentally
improve the performance of the architecture. Two ideas that
need to be further investigated are 1) storing metrics off-chain
(e.g. using IPFS [20]) to reduce the storage requirements, and
2) explore the possibility of using payment channels [21] for
smart contracts to reduce the number of required transactions
and thereby increasing the overall throughput.

On a final note, the landscape of distributed ledgers ad-
vances at a rapid pace and is of relatively tender age. It

is therefore essential to keep track of developments in this
research area and continuously assess the potential of new
ideas and technologies.

REFERENCES

[1] J. Hamari, M. Sjoklint, and A. Ukkonen, “The sharing economy:
Why people participate in collaborative consumption,” Journal of the
Association for Information Science and Technology, vol. 67, no. 9, pp.
2047-2059, 2016.

[2] A. Sundararajan, “The power of connection:
Peer-to-peer businesses,” 2014. [Online]. Avail-
able: https://smallbusiness.house.gov/UploadedFiles/1-15-

2014_Revised_Sundararajan_Testimony.pdf
[3] The things network. [Online]. Available: https://thethingsnetwork.org
[4] M. Swan, Blockchain: Blueprint for a new economy. “O’Reilly Media,
Inc.”, 2015.
S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[Online]. Available: https://bitcoin.org/bitcoin.pdf
[6] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” 2014.
J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Bohme,
Can We Afford Integrity by Proof-of-Work? Scenarios Inspired by the
Bitcoin Currency. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 135-156.
S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, Proofs of
Space. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 585-
605.
A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in Proceedings of the IEEE
Symposium on Security and Privacy. 1EEE, May 2014. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/permacoin-
repurposing-bitcoin-work-for-data-preservation/
S. Park, K. Pietrzak, J. Alwen, G. Fuchsbauer, and P. Gazi, “Spacecoin:
A cryptocurrency based on proofs of space,” IACR Cryptology ePrint
Archive, 2015: 528, Tech. Rep., 2015.
[11] 1. Bentov, A. Gabizon, and A. Mizrahi, Cryptocurrencies Without Proof

[5

—_

[7

—

[8

—

[9

—

[10]

of Work. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.
142-157.

[12] V. Buterin, “A  next-generation smart contract and de-
centralized application platform,” 2014. [Online]. Available:

https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf

N. Szabo, “Formalizing and securing relationships on public networks,”

First Monday, vol. 2, no. 9, 1997.

S. D. Lerner, “Dagcoin: a cryptocurrency without blocks,” 2015. [On-

line]. Available: https://bitslog.files.wordpress.com/2015/09/dagcoin-

v41.pdf

[15] A. Churyumov, “Byteball: a decentralized system for transfer of value,”
2015. [Online]. Available: https://byteball.org/Byteball.pdf

[16] S. Popov, “The tangle,” 2016. [Online].
https://iotatoken.com/IOTA_Whitepaper.pdf

[17] N. Rozanski and E. Woods, Software systems architecture: working with

stakeholders using viewpoints and perspectives, 2nd ed.  Addison-

Wesley, 2012.

“State tree pruning.” [Online].

https://blog.ethereum.org/2015/06/26/state-tree-pruning/

[19] D. Frey, M. X. Makkes, P-L. Roman, F. Taiani, and
S. Voulgaris, “Bringing secure bitcoin transactions to your
smartphone,” in Proceedings of the 15th International Workshop
on Adaptive and Reflective Middleware, ser. ARM 2016. New
York, NY, USA: ACM, 2016, pp. 3:1-3:6. [Online]. Available:
http://doi.acm.org/10.1145/3008167.3008170

[20] J. Benet, “IPFS - content addressed,
system,” CoRR, vol. abs/1407.3561, 2014.
http://arxiv.org/abs/1407.3561

[21] C. Decker and R. Wattenhofer, A Fast and Scalable Payment Network
with Bitcoin Duplex Micropayment Channels. Cham: Springer Inter-
national Publishing, 2015, pp. 3-18.

[13

—

[14]

Available:

[18] Available:

P2P file
Auvailable:

versioned,
[Online].



	Introduction
	Case Subject
	Running Example
	Outline

	Research Approach
	Research Questions
	Research Methods
	Literature Review
	Design Science
	Case Study

	Contributions
	Scientific
	Societal


	Theoretical Background
	Socio-Economic Perspective
	Economic Principles
	Traditional Buyer-Seller Market
	Mining Rewards
	Distributed Peer-to-Peer Marketplace

	Software Architecture
	Definitions
	Viewpoints and Perspectives

	Distributed Ledgers
	Public vs Private vs Hybrid
	Smart Contracts
	Consensus Mechanisms
	Blockchain-Free Distributed Ledgers


	Requirements for a Micro Economy Platform
	Purpose & Scope
	Stakeholders
	Functional Requirements
	Reward Model
	Issue Tokens
	Set Up Wallet
	Send/Receive Tokens
	Marketplace

	Non-Functional Requirements
	Efficient Batch Handling
	Distributed Deployment
	Security


	Micro Economy Platform Architecture
	Context Viewpoint
	Context Diagram
	Economic Model

	Functional Viewpoint
	High-Level Structure
	Token Reward Workflow
	User Defined SLA Workflow

	Deployment Viewpoint
	Runtime Environment
	Technology Dependencies


	Evaluation: Case Study at The Things Network
	Proof-of-Concept Implementation
	Integration Agent
	Blockchain

	Analysis
	Scalability
	Security


	Discussion
	Findings
	Scalability
	Off-Chain Assets
	Degree of Trust

	Threats To Validity

	Conclusions
	Results
	Future Research

	References
	Smart Contracts
	Performance measurements
	Paper

