
UNIVERSITEIT UTRECHT

MASTER THESIS

On Bicycle Choice Set Generation

Author:
Niels WARDENIER

Supervisors:
Dr. E.R. Dugundji, CWI

Dr. Ir. L. Knapen, UHasselt
Dr. K. Dajani, UU
Second Corrector:

Prof. Dr. R.H. Bisseling, UU

17 October 2017

Abstract

In this thesis, we studied various methods of choice set generation. The Double Stochastic Genera-
tion Function (DSGF) method was looked after in more detail. We showed that the routes provided
by this method are too complex in terms of the number of Basic Path Components (BPC). This
problem is very clear when the predicted routes are compared with the observed routes provided
by the FietsTelweek. In various ways we tried to cope with this problem. First we tried to scale
back the cumulative distribution function (cdf) of the predicted data to the cdf of the observed data.
Secondly, a maximum likelihood function was introduced to keep the most interesting predicted
routes in terms of BPC’s. The latter method proved to be more useful in constructing a choice set
containing reasonable, not too complex routes.

Acknowledgements
First I would like to thank my supervisor Dr. Dugundji of the Centrum Wiskunde & Informatica
for waking my interest to this topic, helping me with questions about my research and writing,
making it possible to give a talk at the Science for Cycling colloquium during this years VeloCity
and introducing me to various people in this expertise.

I would also like to thank my other supervisor Dr. Dajani of the Graduate School of Natural
Sciences at University Utrecht for always being available to answer my questions about the pro-
cess and monitoring my process working on this thesis.

I would also like to thank Dr. Ir. Knapen of School voor Mobiliteitswetenschappen at UHas-
selt for helping me out with coding problems, letting me use his previous work and suggesting
ways to branch out my survey.

I would also like to acknowledge Prof. Dr. R.H. Bisseling of the Graduate School of Natural
Sciences at University Utrecht as the second corrector of this thesis.

Finally, I want to thank my parents and friends for their support and interest during the time I
was writing my thesis, with special thanks to Martin van Veelen for proofreading.

Niels Wardenier

1

Contents
1 Data: FietsTelweek 6

1.1 Information about the basic data . 6
1.2 Map matching the data . 7

2 Choice Set Generation Methods 8
2.1 Breadth First Search-Link Elimination . 8
2.2 Branch and Bound . 9
2.3 Pure Statistical Methods . 10
2.4 Mental Representation Items . 10
2.5 Double Stochastic Generation Function . 11

3 Basic Path Components 14
3.1 Knapen’s algorithm . 14
3.2 Basic Path Components in FietsTelweek Data . 15

4 ETH Zürich Code (POSDAP) 18
4.1 Background Information . 18
4.2 Implementation: Examplechoice setGenerationStochasticHakatrin 18
4.3 Implementation: ChoiceSetStageCSGStochastic 19

5 UHasselt Code (Feathers) 21
5.1 Background Information . 21
5.2 Code . 21

5.2.1 Interfaces BPC code . 21
5.2.2 Implementation BPC code . 22

6 Correlation with complexity 24

7 Combining the two methods 26
7.1 Making a combination . 26
7.2 Choosing attributes . 26
7.3 Creating a sampler . 27
7.4 Using a maximum likelihood function in the sampler 29

8 Making the choice: Logit Model 31
8.1 Multinomial Logit Model . 31

9 Further Research 32

10 Discussion and Conclusion 34

2

Appendices 35

A Tables 35

B Functions of classes in
hakatrin.choice setGeneration.hakatrinStochastic 39

Alphabetical Index 40

List of Tables
1 Correlation with complexity . 24
2 Distribution of the number of kept alternatives . 29
3 Observed Data FietsTelweek Amsterdam . 35
4 Predicted Data by POSDAP for Amsterdam . 36
5 Application of the sampler method . 37
6 Relative Frequencies for the observed data and different values of N1 38

List of Figures
1 Infographic FietsTelweek 2016 (in dutch) . 6
2 Map matching of 22 routes in QGIS . 7
3 Positive Weighted Graph . 8
4 Positive Weighted Graph with link de eliminated 9
5 Positive Weighted Graph where link ad and c f are not considered 9
6 Example graphs for the DSGF method . 12
7 Overview of the calibrated parameters and variation factors 13
8 Algorithm to divide a path into a minimum number of BPC’s 14
9 Relative frequency distribution of BPC’s . 15
10 Relative cumulative distribution of BPC’s . 16
11 Routes of R1 . 17
12 Comparison between FA,O(c) and FU

A,O(c) . 17
13 imports of Examplechoice setGenerationStochasticHakatrin.java 20
14 Correlation plots . 25
15 Possible routes around the Vondelpark . 26
16 Comparison between FA,O(c)(blue) and FP

A,P(c)(red) 27

3

Introduction
In 2016 over 40.000 people in the Netherlands participated in a week-long survey using a smart-
phone app to map travel movements by bicycle. The goal of this survey is to get more insight in
cycling patterns of travelers. With this extensive data it is then possible to create stochastic models
to understand behavioral choices, such as which routes people choose. This in turn can be used by
municipalities to set priorities for improving the existing cycling network. The data generated by
the FietsTelweek 2016 will be used in this thesis and discussed in chapter 1.

One typical part of the stochastic modeling effort involves generation of routes a person could
have chosen to get from their origin to their destination. For cars there is a lot known on how to
generate such route sets, but there is a lot less known on how to generate a good route choice set
for bicycles. The generation of route choice sets for this mode of transportation is the focus of this
thesis.

The multiple angles to look at the stated problem of choice set generation are described in more
detail in chapter 2. We can use link elimination, branch and bound methods, route planning based
on important landmarks or stochastic methods. There is no clear consensus on which angle is the
most useful.

In this research we have chosen to use the method called Double Stochastic Generation Func-
tion (DSGF) . A significant benefit of this method is that in the cost function we can both vary the
link cost and can account for preferences of people. For example, people may tend to use routes
with nice scenery over a crowded city center. Furthermore, this method provides heterogeneous
routes by how it is defined.

Our main goal is to combine the DSGF method with the idea of Basic Path Components (BPC),
explained in chapter 3. The road network can be represented as a graph , where ways are edges and
crossings are nodes . Knapen et al. [1] define the BPCs as either a least cost path or a non-least cost
edge. This is interesting because in general people generate their route as a sequence of shortest
paths. Knapen also came up with an algorithm to split a path in multiple BPCs. It is shown that we
can find a minimal, non-unique splitting for every path. This can become useful in analyzing the
data, for example provided by the FietsTelweek, to check if people indeed construct their route as
a sequence of small number of shortest paths.

In chapters 4, 5 and 7 the codes of the DSGF method and BPC method and the combination
of the two methods will be handled. Here we also give background information about the writers
of the code, the purpose of the code and for which audience the code is written.

Chapter 6 shows how the number of basic path components is correlated with other attributes
of the route. It all comes together in chapter 7, where an attempt is made to make the combination
using the insights of earlier found results. It turns out that methods that have to work from a math-
ematical point of view, sometimes do not work in the real world. In that case, some engineering
tricks are needed.

4

In conclusion, survey to the route complexity (i.e. the minimum number of embedded BPC) from
GPS traces gives us information on how people tend to construct their routes. This leads to better
route choice models and in turn allows evaluation of infrastructure design before investment.

5

1 Data: FietsTelweek
1.1 Information about the basic data
The basic data set is extracted from the Fietstelweek [2] 2016 . During, the FietsTelweek 42658
people across the Netherlands downloaded the mobile phone app, (App de Fiets). In total, these
people recorded around 416.000 bicycle trips. The goal of the FietsTelweek is to get insight on
where people are biking, how long are people biking and where people are having long waiting
times. This survey is a joint initiative of the Fietsersbond, the Dutch Ministry of Infrastructure,
Environment and local authorities. Below the infographic made about the second FietsTelweek,
FietsTelweek 2016, FIGURE 1:

FIGURE 1 : Infographic FietsTelweek 2016 (in dutch)

The basic data may be freely used under certain conditions, namely the FietsTelweek has to be
mentioned in the references and derived products have to be made publicly accessible. Also,
FietsTelweek must be informed by email to what use the data is and the data may not be used for
commercial purposes without permission by consortium Nationale Fiets Telweek.

6

1.2 Map matching the data
The data is map matched onto QGIS (Quantum Geographic Information System) . Map matching
is the process of relating the recorded GPS track to edges in an existing graph. Recorded trips of
the FietsTelweek are projected on the map as a sequence of brown dots. The green lines form the
road network of Amsterdam. FIGURE 2 shows the nodes of 22 trips for the sake of visibility. The
image on the title page shows all the data, summarized in fat (many routes) and small (few routes)
red lines.

FIGURE 2 : Map matching of 22 routes in QGIS

7

2 Choice Set Generation Methods
The models described in this section are made to generate a discrete choice set . Hence, the name,
the number of choices must be a finite number. Another name for choices is alternatives . There
must be exactly one chosen alternative, and choosing one alternative means not choosing all other
alternatives. So if there are 4 possible routes for one person to choose, say α,β ,γ,δ , if this person
chooses path β , that implies that he/she did not choose paths α,γ and δ .

In choice set generation, there is at first a universal set U containing all possible routes from
an origin to a destination . After that, for each individual n there is created a choice set Cn. Going
back to the example, maybe only routes α and γ are placed in the choice set for person n. So person
n has only two routes to choose from instead of four. This choice can be made in a deterministic
or probabilistic way.

There are various choice set generation models to approach the construction of a choice set.
Thereby we will use FIGURE 3, where the traveler wants to travel from A to C. In this case all the
edges have a positive cost. The links are named after the two edges it connects. For example, the
edge connecting C and F is called c f .

FIGURE 3 : Positive Weighted Graph

2.1 Breadth First Search-Link Elimination
Rieser-Schüssler et al. [3] came up with a shortest path method, called Breadth First Search-Link
Elimination (BFS-LE) . First the shortest path is calculated, then the link elimination is done in
various ways, like random or controlled by criteria. Looking at our example graph, the least path
cost is 6 along the path ADEC. Then if link de is eliminated, the new found least cost path is
ADFC or ABEC, both costing 8. Resulting in FIGURE 4

8

FIGURE 4 : Positive Weighted Graph with link de eliminated

Furthermore, Rieser-Schüssler described two variations. The first variation shuffles the order for
which vertex the shortest path is calculated at depth d, this makes the run time of the algorithm
shorter by preventing unneeded calculations. Here depth d means that already d edges have been
removed from the original graph. The second variation cleans the network by removing junctions,
dead ends and intersections. This second variation is tested against a method called Stochastic
Choice Set Generation (SCSG), which uses stochastic repeated shortest path based algorithms.
It turns out that the BFS-LE outperforms the SCSG method for trips under 10 km, relevant for
bicycle trips, in terms of computational efficiency. Moreover, routes provided by BFS-LE are
more diverse.

2.2 Branch and Bound
Prato and Bekhor [4] provide another method on the route choice, called Branch and Bound. This
technique looks for paths in the branches of the graph which satisfy the boundary conditions.
Supposed bounds are directional, temporal, similarity, loop and movement (avoiding left turns)
constraints. For example the temporal constraint, a route will only be placed in the choice set if the
travel time for this route does not exceed the least found travel time by a certain factor large than 1.
All the other constraints are defined in a similar way. Considering our example and suppose links
ad and c f have too many left turns, giving us the network in FIGURE 5 and resulting in the least
cost path ABDEC

FIGURE 5 : Positive Weighted Graph where link ad and c f are not considered

9

In the article just mentioned the Branch and Bound technique is compared to other deterministic
approaches; Label Approach (which calculates the shortest path considering attributes such as
time, distance and delay), Link Elimination (described in 2.1), Link Penalty (a method where the
links of the shortest path are made more expensive). The Branch and Bound technique outperforms
all the others in reconstruction of paths. The Branch and Bound technique has equal computational
times as methods that produce less results and performs well in terms of coverage. In this context,
coverage means to what extent the set of found routes reproduces the actual behavior according
to a certain overlap threshold. That is why Prato and Bekhor advise to use the Branch and Bound
technique to obtain heterogeneous route sets, one big disadvantage of this method is to choose
what are the right bounds.

2.3 Pure Statistical Methods
A method working around this problem is a pure statistical method based on biased random walks
by Frejinger [5]. In this method the choice sets are defined as the sets of all paths connecting each
origin-destination pair (OD-pair) . A probability is associated with a subpath based on its distance
to the shortest path, according to the double bounded Kumaraswamy distribution. The cumulative
distribution function F of this distribution is:

F(x;a,b) = 1− (1− xa)b where x ∈ [0,1],a,b > 0, (1)

here a and b are shaping parameters. The sampling protocol for path generation is as follows. A
choice set C̃n is generated by taking R draws with replacement from the universal set adding the
chosen path. Bovy [6] described the method of Frejinger in the following way: "By definition, all
links on the true shortest path have a link probability of one, all other links between zero and one.
The shortest paths are not saved for use in a master set. Instead, in a second step a sample of routes
are generated by a repeated random walk procedure starting from the origin from which links are
successively selected and added from node to node where the link selection process at each node
is governed by the probabilities of the associated next links. At the end a route probability results
as the product of the associated link probabilities. A possible problem with this method is that it
constructs routes consisting of many small subpaths, which is not realistic.

2.4 Mental Representation Items
A fourth method by Kazagli and Bierlaire [7] to work around the challenges of route choice gen-
eration is the introduction of Mental Representation Items (MRI). To construct a data set, they
made use of a layer system. The first layer is used to determine a MRI choice set for example
as Cl = {avoidCC,aroundCC, throughCC}, where CC stands for city center. Layer l +1 provides
additional detail in the representation of the choice in comparison with the one in layer l. In our
example the set vertices {B,E} and {D,F} can represent two neighborhoods.
For the operationalization of the choice set, an attribute is assigned to each MRI by calculating the
expected maximum utility. This can be done by taking the sum of the logarithms of all utilities
of paths using this particular MRI. This can bring computational problems along, which were
intended to avoid using this method. One clear advantage of this method stated by Kazagli is that
several possible paths connecting OD-Pairs are bundled under MRIs while going from a lower
layer to a higher layer. Hence, the choice set size decreases, and therefore the composition and
correlation are simplified.

10

2.5 Double Stochastic Generation Function
The last choice set generation method that will be discussed is the Double Stochastic Generation
Function method (DSGF) . This method, described by Nielsen [8] for public transportation and
Bovy and Fiorenzo-Catalano [9], produces heterogeneous routes because the costs and parame-
ters, used in the cost function for the links, are drawn from a probability distribution. A possible
difficulty with this method is that the link cost randomization takes lots of computational time.
However, Hood et al. [10] shows that the method is faster than the already mentioned method by
Rieser-Schüssler. In the article of Halldorsdottir et al. [11], it is stated that the DSGF method has
a high coverage level of replicating routes and performs well up to 10 km. Furthermore, Bovy
and Fiorenzo-Catalano [9] state that the method guarantees, with high probability, that attractive
routes are in the choice set and unattractive routes will not be put in the choice set. Also the size
and composition of the choice set are called stable, where stable means that for a relative low
number of randomizations the size and composition of the choice set are satisfactory. Ultimately,
we have chosen this method for the reasons mentioned above. In the DSGF method the link costs
and preference parameters are both drawn from a probability distribution, hence the name double
stochastic. In the article of Halldorsdottir et al. [11] this method is described short and clear:

"In the DSGF method, a shortest path search is carried out iteratively using an implementation
of the Dijkstra’s algorithm (Dijkstra, 1959) on a realization of the network. At each iteration, the
realization of the network is obtained by randomly drawing the cost of each link from a probability
distribution and extracting attribute preferences for each traveler from another probability distri-
bution. After each iteration, only unique routes not generated in previous ones are added to the
route choice set as the same route may be found several times during the process, even though the
realizations of the network are obtained from different costs and preference parameters. The short-
est path search is repeated iteratively until the preselected maximum choice set size is achieved or
the predefined time abort threshold is reached."

Dijkstra’s algorithm finds the shortest path between two vertices in a directed graph with posi-
tive edge weights. Then name the starting vertex s for start. Set the distance from s to s to 0. All
other vertices are placed in queue Q, are called unvisited and the distance from s to all to vertices
in Q is set to ∞. We denote d(x) for the distance from s to x. While Q is a non-empty set, we
choose the vertex with the minimal distance to s. Remove this vertex from Q and call it v. (In the
first iteration s is the vertex with the minimal distance.) For each vertex u that is a neighbor of the
just removed vertex, if the distance from start vertex to v plus the length of the edge uv is smaller
than the previous found distance, replace it. Otherwise, leave it as it was. Continue till the set Q is
empty. Look again at FIGURE 3. Dijkstra’s algorithm is performed for that graph.

• In the first iteration B,D and F are unvisited neighbors of A, the distances d(B) and d(D)
are set to 3 and d(F) is set to 6.

• In the second iteration B and D both have the shortest distance to A, we choose to pick
B. D and E are unvisited neighbors of B, the distance d(E) is set to 6 and d(D) remains
3. We now remove B from Q.

• In the third iteration D has the shortest distance to A of the unvisited vertices. E and F
are unvisited neighbors of D, the distance d(E) is set to 4 and the distance d(F) is set to

11

5. We now remove D from Q.

• In the fourth iteration E has the shortest distance to A of the vertices that are unvisited.
C and F are unvisited neighbors of E, the distance d(C) is set to 6 and the distance d(F)
remains 5. We now remove E from Q.

• In the fifth iteration F has the shortest distance to A of the unvisited vertices. C is the
only unvisited neighbor of F , the distance DC remains 6. We now remove F from Q.

• In the sixth iteration C is the only unvisited vertex. It has no unvisited neighbors. We
now remove C from Q. Q is empty, so the algorithm terminates.

Going back to the DSGF method, in our example this means that first the least cost path ADEC is
found and after that the linkcosts are adjusted (in a way discussed in the next paragraph). Assume
now that the cost of de becomes 2 , c f becomes 1 and a f becomes 5. Resulting in FIGURE 6b. In
this case least cost path AFC is found.

(a) Original Graph (b) Graph with adjusted linkcosts (in red)

FIGURE 6 : Example graphs for the DSGF method

In the earlier mentioned article by Halldorsdottir, a survey has been held to show which of the
four cost functions performs best in terms of coverage. The following cost attributes where tested:
Road Type (large roads, small roads, other roads), Cycle Lanes (segregated lanes or not), Land
Use (scenic roads, non-scenic roads, forest roads, non-forest roads) and a combination of the three
attributes. It shows that the combination of the three attributes gives the highest coverage, namely
from 63.5% at a 100% overlap threshold. This means that in 63.5% of the routes are replicated
completely. Furthermore, up to 79.2% of the routes are replicated for at least 70%. The most
successful cost function is the combination of the three cost attributes. This cost function looks as
follows:

Ca =∑
k
((βRoadtypek +ξRoadtypeak) ·RoadTypeak ·Lengtha)

+∑
k
((βBikelanesk +ξBikelanesak) ·Bikelanesak ·Lengtha)

+∑
k
((βLandUsek +ξLandUseak) ·LandUseak ·Lengtha)+ εa,

(2)

where Ca is the random cost function of link a.

12

The components Roadtypeak,Bikelanesak and LandUseak are deterministic for k, here k stands for
RoadType k, BikeLanes k Land Use k respectively. From the first half of FIGURE 7 by Hall-
dorsdottir et al. [11], we see that the initial cost of small roads is twice as high as the initial cost
of large roads. Furthermore, the initial cost of other roads is three times the price as the initial
cost of large roads. Likewise, for the other two attributes. Remark that the parameters for these
attributes are scaled to 1. The next parameter in the costfunction, Lengtha, stands for the length of
link a, in meters. The length of a segment has a linear influence on the cost. The last deterministic
parameters are βik, where i ∈ {RoadType,BikeLanes,LandUse} are coefficients to be determined
beforehand. The ξa,k and εa are the two probabilistic parameters. The ξ ′aks are proportional to their
resp. β ′s multiplied by a variation factor and a standard normal distribution, so

ξai = βa,k ·N(0,1) · v f

,where v f stands for variation factor. The variation factors can be found in the second half of
FIGURE 7. The ξ ′s accounts for the heterogeneous preferences of cyclists and can add both
a positive or a negative value to the cost function of link a. The εa is proportional to Lengtha
multiplied by a variation factor and a standard normal distribution, so

εa = Lengtha ·N(0,1) ·2

as this variation is always 2. Then this εa is added to vary in the linkcosts as an error term.

FIGURE 7 : Overview of the calibrated parameters and variation factors

13

3 Basic Path Components
The complexity of a given path in a graph is the minimum number of basic path components in the
decomposition of the path. A basic path component (BPC) is defined as either a least cost path or a
non-least cost edge. A non-least cost edge e is an edge whose cost is larger than the least cost path
connecting both vertices connected by that edge e. In the doctorate thesis of Knapen et al. [1], he
states and proves the following hypothesis:"In utilitarian trips (trips having the purpose to perform
an activity at a particular location), individuals tend to construct their route as a concatenation
of a small number of minimal cost routes i.e. basic path components (BPC)." Any given path can
be decomposed in this manner. Namely, the trivial decomposition in basic path components is to
follow the edges along the path. Due to the hypothesis over the utilitarian trips, we are interested
in the decomposition of a a path into a minimum number of BPC. The goal is in finding a way to
incorporate the statement of Knapen in the cost functions that the DSGF method uses.

3.1 Knapen’s algorithm
Knapen et al. [1] wrote an algorithm to split a path into BPC’s. FIGURE 8 displays the pseudo
code of the algorithm.

FIGURE 8 : Algorithm to divide a path into a minimum number of BPC’s

In this algorithm, the input is a graph G with positive edge costs c and a path P = (v0,v1, . . . ,vl)
with no non-shortest edges. Furthermore, there is defined a starting point called start, set to 0
and a counting variable k, set to 1. The while loop looks for a non-least cost subpath as follows.
The first vertex where a shorter path is found is called v jk , Vstart is replaced by v jk −1, the vertex
preceding v jk , and k is replaced by k+1. The vertices v j1,v j2, . . . ,v jk−1 are returned and called join
vertices. Now the path can be split at vertices preceding the join vertices. These vertices are called
split vertices. Using this algorithm, a splitting is found at k− 1 vertices, so our path P splits into
k BPC’s. Knapen proved that this decomposition is minimal but not unique. For example, we can
flip the whole setup and start in the end vertex vl and find another minimal decomposition.

14

This algorithm was used on a number of data sets in Knapen’s thesis, namely: BelgiumNavteq
(mixed), BelgiumOSM (mixed) and ItalyNavteq (car trips). For the Belgium Navteq data, the
number of minutes is added, this is the amount of time of inactivity before a stop is detected,
(red=1 minute, green=2.5 minutes, dark blue=5 minutes). FIGURE 9 shows the relative amount of
BPC’s in trips, with on the horizontal axis the number of BPC’s and on the vertical axis the relative
frequency distribution.

FIGURE 9 : Relative frequency distribution of BPC’s

This graph supports the aforementioned hypothesis. Namely, in all cases the number of found
routes consisting of 6 or more BPC’s lies below 5%.

3.2 Basic Path Components in FietsTelweek Data
A table with symbols is included to avoid a stream of definitions in the next paragraph.

Symbol Meaning
de effective distance driven by the cyclist
dmin shortest path between start- and endpoint
fNU fraction of non-utilitarian trips in the Netherlands
PA,O set of observed paths assumed to be related to Amsterdam
FA,O(c) probability mass function for the complexity found in the Ams-

terdam set of observed routes
FA,O

U(c) probability mass function for the complexity found in the Ams-
terdam set of observed routes that are qualified as utilitarian

c the complexity (minimum number of basic path components) for
a path

15

However, a difference shows up in the data of the FietsTelweek. For my thesis Knapen helped with
splitting around 280.000 routes, collected by FietsTelweek 2016. FIGURE 10 shows that only 75%
of the routes in the data consist of 5 or less BPC’s. To reach the 95% benchmark, routes up to 11
BPC’s have to be accepted.

FIGURE 10 : Relative cumulative distribution of BPC’s

Possible explanations for this difference are:

• Cyclists tend to use routes with more distinct shortest paths than mixed or car trips.

• The road network of the Netherlands is more dense and the infrastructure for cyclists is
better. For example, in the center of Amsterdam there are lots of canals, having a road at
both sides. This can lead to alternating shortest paths.

This means that we must accept routes with a greater number BPC’s in our choice set, which is
created by using Dutch data.

The basic FietsTelweek data does not provide all the information needed. Therefore, the advanced
data is used in this survey. This data gives the direction in which the cyclist is moving and in which
order the network nodes are visited. Such data is available for the city of Amsterdam, the capital of
the Netherlands. Here an arbitrary rectangle of 22 km (north-south)× 27 km (west-east) is picked,
to limit our very large data set. This rectangle is named R0. After that, all routes with at least one
link in R0 are added back to our data and this new data set is named R1. This data set consists of
31817 routes.

16

In FIGURE 11 all the routes of R1 are made visible in QGIS:

FIGURE 11 : Routes of R1

For this data set the purpose of the trip is unfortunately not known. In general, cyclists of this kind
tend to pick routes close to the shortest path. This is the reason to look at the ratio rd = de

dmin
for all

the 31817 observed routes. The question is: "can we find suitable rd such that: a trip is utilitarian
if and only if rd < rd?" If so, we can assume that every path p in our observed data set, for which
the ratio rd(p) is smaller rd is utilitarian. Define F−1(rd), where F−1(rd) is the inverse of the
distribution function of the variable rd(p). Then rd is defined as F−1(1− fNU), where fNU is the
fraction of non-utilitarian trips. According to Pucher and Buehler [12], the fraction of recreational
trips is 0.27 for the Netherlands, hence 1− fNU = 0.73. Analyzing the data using, PgAdmin III (Pg
Admin is an administration tool to search in a large data set), we found out that for the set PA,O, rd
equals 1.10. (For reference for whole Netherlands rd = 1.08.) FA,O(c) and FU

A,O(c) are compared
in FIGURE 12 in terms of number of BPC’s, one can see that there is a small shift of mass to the
lower BPC’s but there are no major differences. So we decide to use all 31817 routes in R1.

FIGURE 12 : Comparison between FA,O(c) and FU
A,O(c)

17

4 ETH Zürich Code (POSDAP)
4.1 Background Information
For the DSGF method, the code is written in JAVA. It comes from the POSDAP (Position Data
Processing) project(2012) of the ETH Zürich. The ETH (Eidgenössische Technische Hochschule)
is a science, technology, engineering and mathematics university in Switzerland. The writers of
the code are Lara Montini and Nadine Schüssler. The tool is developed for the automatic pro-
cessing of GPS tracks to reconstruct travel diaries. Features of this project include detection of
trips, mode detection and map matching. Intended audience of the code are developers and ad-
vanced end users, the people who are actually using the code. The full code can be found on
https://sourceforge.net/projects/POSDAP/. This is a large web service where software
developers can find, create and publish open source software for free.

The POSDAP project has the GNU General Public License Version 2.0. In short, it means that
everyone can use, modify and even sell the code. Furthermore, when a code is published derived
from the source code, the original author has to be mentioned.

4.2 Implementation: Examplechoice setGenerationStochasticHakatrin
The most important package of the POSDAP code for this thesis is:
hakatrin.choice setGeneration.hakatrinStochastic. This package consists of 17 classes of which
Examplechoice setGenerationStochasticHakatrin.java is our main interest. This class has 245 lines
of which 185 with code (line 49-236). Other classes of this package are described in Appendix A.
Furthermore the class imports 20 other classes of which FIGURE 13 was made. Here the colors
indicate the package from which the certain class is imported. Now a review of the code line by
line is given(the classes that are imported are bold and when there is referred to lines that means
lines in the code).

In line 52 it is started by defining a variable starting time, so the amount of time spent can be
seen at the end. In the following lines 54-56 configutils and config are imported, a configuration
file is created and the configuration settings are stored. Furthermore, an access to the settings at
run time is created. In line 58 HakatrinNetworkImpl is imported in which links are added in
the relevant network. The next line provides a helper class to store arbitrary attributes (identified
by strings) for arbitrary objects (identified by String-Ids). The makers of the code indicates that
this implementation takes lots of memory if too many attributes are stored for too many objects.
This helper class is called ObjectAttributes. In the next five lines MatsimNetworkReader is
imported. Matsim is a open source software development project founded by the ETH Zürich.
This reader recognizes the format of the network-file and uses the correct reader for the specific
network-version without manual settings. This class reads the network and the parameters. Then
ObjectAttributesXmlReader reads object attributes from a file, in lines 67-75. Followed by
HakatrinNetworkLinkImpl, which gets the attributes for each link in the network. Now choice
setStages initialize the choice set generator and route characteristics calculator. In line 117-120,
choice set generation is done with choice setStageCSGStochastic(discussed in detail in the next
subsection), the network is adapted with choice setStageCSGtochasticNetworkAdapter and the
cost function is adapted by Costfunction.

18

https://sourceforge.net/projects/POSDAP/

In line 122-155,there are instructions by the coder to:

• Implement your own network adapter and replace ExampleNetworkAdapterLengthCost-
Normal.

• Implement your own cost function here and replace ExampleStochasticCSGCostFunc-
tionLengthCost.

This code can also be used for non-stochastic methods. To make clear that the DSGF method has
to be used, StochasticCSGSetDoublyStochasticParameters is imported in lines 158-187. Then
there is printed for which file the choice set generation is done and how many routes were found.
In the last 37 lines choice setStageAddChosenRoute adds the found route if it was not already
included in the choice set. Then the code writes out the choice set routes by choice setStageWrite-
choice sets and choice setStageWritechoice setsForGIS, where GIS stand for Geographic Infor-
mation System. Lastly, the choice set routes are cleared and there is written down in seconds how
long the choice set generation took by comparing the system time with the starting time.

4.3 Implementation: ChoiceSetStageCSGStochastic
Choice setStageCSGStochastic is part of the package choice setGeneration.algorithms. Here CSG
stands for choice set generation. choice setStageCSGStochastic is an extension of choice set-
StageAlgorithm. It consists of 186 lines of which 157 with data. This class will be discussed
globally. First the following member variables are defined: network, router (use Dijkstra to de-
termine the "shortest path), choice set size (determine the desired choice set), time of day and
time-out (by default set to 1 week). Furthermore, a network adapter and cost function are chosen.
Then there is a Boolean which indicates if we want to use the DSGF method or similar method
with ξRoadtypeak = ξBikelanesak = ξLandUseak = εa = 0. Second, two similar constructors are created,
of which the second is applicable for the DSGF method. Then if an origin-destination pair (OD-
pair) is found for which the origin is not the same as the destination (a trivial route of length zero)
and if the desired choice set size is not yet reached, the doubly stochastic algorithm is executed.
If it is the first iteration the default network and cost function is used. If this is not the case, the
network and the costfunction are adapted. Now the routing happens. If the program found a route
that is not already in our choice set, it adds the route to the choice set and add 1 to our counter. If
a route is found that is already in our choice set, the program will discard it. The code prints: "No
more paths found", when no satisfying route for the OD-pair is found. Now if at least one route
is found, it is stored. If not, the whole iteration is discarded. The code keeps running this process
until the desired number of routes is found or the time expires. For my thesis the stop criterion is
adapted . The code now stops after an predefined number of trials. For more details, see chapter 7.

19

FIGURE 13 : imports of Examplechoice setGenerationStochasticHakatrin.java

20

5 UHasselt Code (Feathers)
5.1 Background Information
For the method of basic path components, we use the JAVA code made by IMOB , Instituut Mo-
biliteit connected to the University Hasselt. Knapen is author of the code. It is written for the
FEATHERS (2010) project, where FEATHERS stands for: Forecasting Evolutionary Activity-
Travel of Households and their Environmental RepercussionS. The main reason for this project
is to facilitate the implementation of activity-based models for transport demand forecast. It is
operational in Flanders, Belgium. South Korea, Slovenia and England are also interested. In these
regions, FEATHERS tries to build models to predict the movements of cars, bicycles etc. However,
the reality cannot be or is to describe analytically. Therefore, they split the problem in multiple
aspects. For example, location choice, route choice, point of time choice and modus choice. This
process is called micro simulation. In the end, all these aspects are coupled and create a compound
model for the transportation behavior of an individual. To do this, they first have to predict the
"demand" and have to know the "supply" of transportation facilities.

Part of the simulation model described before, is the route choice model. On basis of by GPS
recorded trips, characteristics of the chosen routes are determined. Knapen handles in his doctor-
ate thesis the complexity of the route, i.e. the number of basic path components, and his code is
therefore part of the FEATHERS project.

5.2 Code
There is an application called "Route Service". This application consists of interfaces and imple-
mentation. The interfaces are available from:
code/java/src/be/uhasselt/imob/feathers2/services/routeService/
and the implementation in :
code/java/src/be/uhasselt/imob/feathers2/services/impl/routeService/.
Almost all names of the interfaces start with a capital I of interface. For the sake of completeness
first the function of the interfaces are discussed, second the function of the implementation.

5.2.1 Interfaces BPC code
• CmdArg Identifiers: Identifiers are used iteratively for passing data. It keeps the num-

ber of argument names minimal.

• IBasicRouteComponent: Gives the definition of a basic path component. Determines
what are the first and last node of a BPC and returns a list of links in the component.

• ICanonicDecomposer: This interface gives the route to be decomposed and checks if it
is a simple path

• ICanonicDecomposition: This interface provides methods to extract data for statistics.

21

• ICrdAnalyzer (Canonical Route Decomposition Analyzer): The CRD analyzer aims
to find patterns in the canonical decomposition of large amounts of routes.

• INetworkCanonical Route Decomposer: Since a Canonical Route Decomposer needs
to register some data in the network description, it needs to be opened to allocate data
structures. After use, it shall be closed as soon as possible to free heap space.

• RouteBasis: Forward and backward route decomposition is done here. It will give a list
of split vertex set pairs. The first node in each pair is generated by backward decomposi-
tion and the second node in each pair is generated by forward decomposition.

• IRouteDecompStatsRepoter This interface accepts results from multiple threads and
melds them into one report.

• RouteService: Random Route Generation is done, to produce test data.

• RouteSetLoader:
First loads the network, where the routes have to be embedded. Then delivers routes to
the network.

5.2.2 Implementation BPC code
The implementation of the code consists of 17 classes. The names of the classes will be bold
in the coming overview. AESAS(Algorithm Execution Specific Attribute Set) Node Canonic
Route Decomposition keeps track off visited nodes, unvisited nodes and current distance to the
origin. Basic Route Component defines the route Id and checks if the components constitutes a
shortest path. To use the algorithm a simple path, a path with no repeating vertices, is needed, to
check this Canonic Decomposer checks that the number of components of the forward algorithm
is equal to the number of components of the backward algorithm. Furthermore, there is a method
called HeadHunter. HeadHunter determines the head BPC of a route. Finds the shortest path
using Dijkstra’s algorithm and finds out whether or not the sub route in the shortest path covers a
sequence of the route. After that, it compares the length of the shortest path equals the distance on
given route from node to node. Then Canonic Route Decomposer provides methods, so that data
can be extracted. One of the most important class Canonical Route Decomposition Analyzer
embeds all routes, get all decompositions, can keep track of all decompositions (not advisable for
large route sets) and keeps track of the run time. In Route all information about routes is kept
track of: origin node, destination node, how the route is embedded in the network, the route Id,
ownerId (who recorded the route), tripNr, walkNr, which links of the network are contained and
the direction in which the link is traversed. It also detects cycles in the route, by the Boolean called
Ispath. Route Basis checks the number of components in forward and backward direction again
and prepares an array to keep track of SplitVertex defining pair offsets. RouteCommandProvider
asks the application to: split all the routes in the data set, setup a test route generator, generate test
data and to reload the configuration.

22

Route Decomp Stats Reporter creates a csv file, inserts the results into a sql database, generates
a set of text files and generates a single xml document in a text file.The routes are loaded from sets
of csv files specified by a directory and a regular expression of the file names. The class that does
this is called RouteSetLoader.

23

6 Correlation with complexity
For the complexity, that is the number of basic path components, of a route, we are interested in
how it is correlated with other characteristics of a path. These characteristics are length of the path
len(p), the number of links of the path size(p), the ratio length of the path/length of the shortest
path len(p)/lenShortest(p) and the ratio length of the path/Euclidean distance between endpoints
of the path len(p)/Euclid(p). The correlation coefficient (or population Pearson coefficient) for
two random variables X ,Y is given by

ρX ,Y =
Cov(X ,Y)

σX σY
=

E[(X−EX)(Y −EY)]
σX σY

(3)

By the Cauchy-Schwarz inequality this coefficient is bounded between −1 and +1, where +1
means the two random variables are perfectly positive linearly related and −1 perfectly nega-
tive linearly related. When this coefficient goes to 0, the variables are more and more uncorre-
lated. A test in R is done to find out the correlation between the complexity and len(p), size(p),
len(p)/lenShortest(p) and len(p)/Euclid(p). The correlation is calculated by taking a full sample
test, using all the 31817 routes in box R1. The results stand in TABLE 1. Here the observed data
for Amsterdam is used (PA,O), where again the ratio’s are determined using Pg Admin III.

TABLE 1 : Correlation with complexity

Correlation with Sample correlation coefficient Confidence interval
len(p) 0.646 (0.639;0.651)
size(p) 0.833 (0.830;0.837)

len(p)/lenShortest(p) 0.239 (0.229;0.250)
len(p)/Euclid(p) 0.149 (0.138;0.159)

There is pretty much correlation between complexity and the size. Also there is a slight correlation
between the complexity and length of the path. In the latter two cases, there is a lot less correlation.
Plots were made for each of the four characteristics of interest (FIGURE 14). On the horizontal
axis in all four cases the complexity and on the vertical axis the attribute we’re interested in. All
blue open circles are observations extracted from the data. The plots strengthen the statements
about correlation just made.

24

FIGURE 14 : Correlation plots

25

7 Combining the two methods
In this section we explain how a combination is made of the BPC method by Knapen and the DSGF
method by Halldorsdottir.

7.1 Making a combination
Two options to combine both methods come to mind. The first option is to add an extra attribute to
the cost function. Then this attribute will add a positive amount to the cost function if the number
of BPC’s exceeds 5. In this manner routes consisting of many BPC’s are more expensive and there-
fore less interesting. So it will be less likely that such routes will end up in our choice set. From a
software design point of view this "on the fly" option seems to be complicated for this thesis as it
will be very complicated to write this on the fly code.

The other option is to run the DSGF method, just like Halldorsdottir does. After that, we can make
a route splitting of those routes with the method of Knapen. This splitting gives a distribution for
the number of BPC’s in the choice set made by the DSGF method. After that, the found choice
set must be adapted, keeping in mind the idea of Knapen that routes with a high number of BPC’s
are highly unlikely. In the end, we chose this option. There is no agreement on how many routes
a choice set generation method must produce. We arbitrary stated that the DSGF method should
produce 16 routes for each OD pair and call this number N0 for later use. The software is forced
to stop at M = 128 iterations. For some OD-pairs the software is unable to find N0 routes, in that
case all the found routes are used. To calculate the number of BPC’s for all this found POSDAP
routes, the code of the ETHZ software was adapted to write all the routes to a csv file, so it can be
read by the BPC code.

7.2 Choosing attributes
After that, we must choose which attributes are most interesting. Prato and Bekhor [4] use di-
rectional (a link is not taken in consideration if it brings the biker farther from the destination),
temporal (a link is not taken in consideration if it takes significantly more time to travel this
link in comparison with other links), similarity (a route is not included in the choice set if it
is too similar to an already included route) and loop constraints (a segment is not included in
the choice set if it causes a too large detour). They also use avoiding left turns, as turning left
means interaction with other traffic and thus is considered dangerous. Fietsersbond Amsterdam
(https://fietsersbond.amsterdam/wat_vinden_wij) pleads for bicycle routes with a low
amount of cars like Weesperzijde instead of Wiboutstraat and Vondelpark instead of Overtoom
(made visible in FIGURE 15).

(a) Multiple routes around Von-
delpark (b) Busy street Overtoom (c) Quiet road in the Vondelpark

FIGURE 15 : Possible routes around the Vondelpark

26

https://fietsersbond.amsterdam/wat_vinden_wij

Furthermore, if the maximum speed for cars exceeds 50 km/h, they want segregated bicycle lanes.
This matches the survey of Halldorsdottir et al. [11] where she uses the attribute BikeLanes. Also
they prefer red asphalt because it is very comfortable to use and remains of high quality. This
in contrary to ”klinkers”, which are very bumpy and uncomfortable to ride on. This matches
Halldorsdottir’s attribute called RoadType, where she makes a distinction between large, small and
others road. By considering the opinion of Fietsersbond Amsterdam and the will to compare with
the results of Halldorsdottir, RoadType and BikeLanes are the attributes of interest and LandUse
is left out. All parameters are kept as they were in the original POSDAP code.

7.3 Creating a sampler
A table with symbols is included to avoid a stream of definitions in the next paragraph.

Symbol Meaning
fA,O(c) probability mass function for the complexity found in the Ams-

terdam set of observed routes
FA,O(c) cumulative distribution function for the complexity found in the

Amsterdam set of observed routes
f P
A,P(c) probability mass function of the complexity found in the set of

routes predicted for Amsterdam by the POSDAP software
FP

A,P(c) cumulative distribution function of the complexity found in the
set of routes predicted for Amsterdam by the POSDAP software

c the complexity (number of basic path components) for a path

Before adapting the choice set the probability distribution function (cumulative distribution func-
tion) of the observed data, fA,O(c) (resp. FA,O(c)) (TABLE 3) and the routes provided by the
POSDAP generation, f P

A,P(c) (resp. FP
A,P(c)) (TABLE 4) have to be compared. To do this, a plot

in R is made. (see FIGURE 16)

FIGURE 16 : Comparison between FA,O(c)(blue) and FP
A,P(c)(red)

27

The table shows that the cdf’s are not very similar. This is also the result of various statistical tests,
namely the Kolmogorov-Smirnov test (KS-test) and χ2-test . Both test reject at an α = 0.05 level
the null hypothesis that the two data sets come from the same distribution. For the KS-test the
ks.boot function in R is used to bootstrap the non-continuous distributions with 1000 repetitions.

The null hypothesis is rejected if supremum of the absolute distance is higher than c(α)
√

n+m
nm

where c(α) = 1.36 and n,m are the number of data points in both samples. In our case the supre-

mum is 0.1571, while c(α)
√

n+m
nm = 0.007. So at α = 0.05 level the null hypothesis is rejected

with p < 2.2e−16. The p-value is the probability for a given statistic model, that when the null
hypothesis is true, the statistical summary (such as the sample mean difference between two com-
pared groups) would be the same as or of greater magnitude than the actual observed results.

The result of the χ2-test is very similar. The score of the χ2-test statistic is 4077.39. This is
much bigger than 146.57. So at α = 0.05 level the null hypothesis is rejected with p = 0.00050.

We propose to alter f P
A,P(c) to a probability mass function very similar to fA,O(c), we want to

do this to obtain routes that are more realistic. A discrete sampler function fs(c) is defined as
follows:

∀c ∈ N+ : fs(c) = β ·
fA,O(c)
f P
A,P(c)

(4)

∑
c∈N+

fs(c) = β · ∑
c∈N+

fA,O(c)
f P
A,P(c)

= 1 (5)

β = (∑
c∈N+

fA,O(c)
f P
A,P(c)

)−1 (6)

where the second expression is used to compute the constant β by normalization. After generating
a candidate route r by the POSDAP code, the complexity c(r) is determined. Then a random
number 0 < k ≤ 1 is computed for this route r and the route is kept if fs(c(r)) ≤ r(k). One
difficulty in this approach is that for large values of c, i.e. many basic path components, there are
very few observations. So, when there is such observation this method tends to assign a too high
amount of mass to it. Two methods are tried to fix this problem. The first one is grouping boxes for
larger values of c so that each box has a least 1% of the mass attached to it. In the second method
all trips with c≥ 41 are discarded. The second method proved to work better since,

• It is easier to apply because we do not have to define the boxes containing less then 1%
of the mass.

• It keeps more routes; 21k vs 17k.

• The maximum error in comparison with fA,O(c) is 0.3% in the second method and 0.6%
in the box method.

28

The found sampler distribution fs(c) (TABLE 5) was applied to the 494546 found routes of the
POSDAP method and kept 21425 routes. The used β = 0.043. Initially the POSDAP software
tried to find 16 alternatives for each OD pair and after applying the sampling function the following
number of alternatives are kept (TABLE 2).

TABLE 2 : Distribution of the number of kept alternatives

Number of Alternatives Frequency
0 16985
1 9831
2 3711
3 1043
4 200
5 40
6 6
7 1

If the sampler function is applied the maximal error between fA,O(c) and probability mass function
of the sampled data is 0.3%, so in that sense the sampler is working well. However, in 84,2% of
the cases there is at most one route kept by the sampler. The goal was to make a choice set, so
another method is proposed in the next paragraph.

7.4 Using a maximum likelihood function in the sampler

Symbol Meaning
PA,P set of routes predicted for Amsterdam
PA,O set of observed paths assumed to be related to Amsterdam
N0 desired number of predictions by the POSDAP software
N1 the number of alternatives we want in our choice set for each OD-pair

For each OD pair we want at least N1 alternatives in our choice model. To do this, define N0(i) as
the initial number of found alternatives for OD-pair 〈Oi,Di〉 and N1(i) as the number of alternatives
we want to keep for OD-pair 〈Oi,Di〉. This number is equal to the minimum of N0(i) and N1. Now
call the set of POSDAP predictions for OD-pair 〈Oi,Di〉;PA,P(Oi,Di) . We are interested in all
subsets of PA,P(Oi,Di) with cardinality N1(i). Denote Sk

i as one of these subsets. The likelihood
for Sk

i to have been drawn from a set for which is the complexity distribution is fA,O(c) is given by:

L(Sk
i) = ∏

r∈Sk
i

fA,O(c(r)) (7)

The subset with the maximal value is kept as the choice set. Define this subset as Si:

Si = argmax
p⊂PA,P(Oi,Di)

L(p) (8)

29

The required number of subset evaluations nE is
(N0(i)

N1(i)

)
. One possible problem with this approach

is the case that L(p) = 0,∀p ⊂ PA,P , so that a random subset Si has to be selected. To fix this,
f
′
A,O(c(r)) is defined as:

f
′
A,O(c(r)) =

{
fA,O(c(r)) if fA,O(c(r))> 0

1
|PA,O|·c(r) otherwise

(9)

And replace L(Sk
i) by ∏r∈Sk

i
f
′
A,O(c(r)). This is done in order to favor routes with low complexity.

This process is executed, by running the program sampleCsFromPosdapPreds, which performs
the process described above, for N1 = {3,4,5,6,7,8,9} to see what the effect of choosing N1 is.
Something strange is occurring for routes using only one BPC for all values of N1. Namely, the
original Amsterdam observed data consists for 8.7% of only one BPC. Using this method, a per-
centage of 0.4% is found of routes consisting of only one BPC for all possible values of N1. This
effect probably occurs because fA,O(2)> fA,O(1), so if there are routes consisting of a few BPC’s,
it is more likely to include only the routes consisting of 2 BPC’s. In general we observe that the
amount of mass given to routes consisting of more BPC’s increases if N1 increases. In TABLE 6
is this made visible. By determining which number N1 performs best, look at the maximal error
in relative frequency leaving out the frequencies belonging to a complexity of 1 and where errors
occur. For N1 = {6,7,8} is the maximal error minimal around 2%. For all these values there is an
overestimation for the tails and for N1 = 6 there is also a large overestimation when the complexity
is 2. Concluding for this method, N1 = 7 or N1 = 8 are not perfect, but the best we can do for this
method. A large advantage for this method is that for almost all OD-pair a choice set consisting of
7 or 8 routes can be found. So a bit of quality is given up for quantity.

30

8 Making the choice: Logit Model
8.1 Multinomial Logit Model
Using previous section we can construct a choice set consisting of 7 or 8 routes for almost each
OD-pair. To make a choice out of these routes, one often uses the logit method. The name logit is
derived from the analogy with the probit model. The probit function is the quantile function of a
standard normal distribution. In this logit method a utility function is needed. The utility Uin for
choicemaker n and alternative i is given by Vin an observable part and εin a stochastic error part
(Uin = Vin + εin). In general, a choicemaker chooses the alternative with the highest utility. This
choice can be inconsistent because the stochastic error plays a role. We can define Pi(n) as

Pi(n) = P(Uin ≥U jn, ∀ j ∈Cn, i 6= j) (10)

the probability that choicemaker n chooses alternative i, where Cn is the choice set of choicemaker
n as defined earlier.

In the most basic multinomial logit model (MNL) , if we assume that the errors are i.i.d Gumbel(0,µ),
so with cumulative density function F(ε) = e−eµε

, it can be derived that

Pi(n) =
eVin

∑
j∈Cn

eV jn
(11)

where one can check that the sum of probabilities for alternatives in Cn is equal to 1. From now
on we omit choicemaker n, because we have built a choice set which is equal for each cyclist.
The MNL model seems very simple but is used to study travel modes, choice of occupation, brand
of automobile purchase, and decisions on marriage and number of children. Actually, McFadden
received in 2000 a Nobel Prize in economics for his work.

In our case a choice has to be made out of 7 alternatives for each OD−pair. The most impor-
tant attribute in this thesis is the number of basic path components. We do not know right now how
to construct a utility function for this particular case, hence we are right now not able to choose
between the 7 routes found by our program. Once we know how the utility function looks like,
one can use the Biogeme software written by Bierlaire [13]. Biogeme is an open source freeware
designed for the maximum likelihood estimation in discrete choice models. Also multiple logit
models are part of this software. In chapter 9 more on these other logit models. The model that is
needed for the MNL model is called 01logit. It is written for the hypothetical choice for people to
choose between train, car and Swiss metro (a vacuum tube train). Therefore, it should be adapted
to be useful for choosing between routes.

31

9 Further Research
For further research it might be interesting to look at other areas than the city of Amsterdam,
for example at smaller cities like Amersfoort or rural areas such as the north of the Netherlands
(Groningen, Friesland, etc.). It is expected that the distributions of complexity (fX ,O), where X
is a place to be determined, are different here and also might influence, for example, the sampler
function we have to use to make a realistic choice set for these places.

In the POSDAP software there are other predictors described. One can maybe look at how the
distributions differ from the distribution we found (f P

A,P). Due to timing considerations, there was
not unfortunately enough time to answer this question in this thesis because each run will take
around 60 to 70 hours of computing time. This because over 500.000 routes are predicted using
single threaded software which means on average that 2 routes are predicted per second. The al-
gorithm can be improved by rewriting the POSDAP code as a multi threaded software.

With respect to split vertices, there could be research done on the occurrence frequency. What
makes it that some vertices occur very frequently as split vertex and others do not and is it possible
to see patterns in how these are distributed in a network.

The model in section 8 can be improved in various ways. A slight adaption can be made to this
model by grouping very similar paths into a so-called nest, where each alternative is grouped into
exactly one of the nests. This model is called the Nested Logit (NL) . However, these methods are
not suitable for this type of route choice sets. Prato [14] states: "MNL does not allow to account
for similarity among alternatives, while NL assumes that each alternative belongs exclusively to
one nest while in real-size networks routes share links with hundreds of other paths." Therefore,
he discusses multiple variations of the MNL and NL. I used his work to give an overview of some
variations of the MNL.

Cascetta et al. [15] came up with C-logit, where a commonality factor CFi is defined to give very
similar routes less utility. The probability of choosing route i is

Pi =
eVi+βCF ·CFi

∑
j∈C

eV j+βCF ·CFj
(12)

where βCF is a parameter to be estimated. For the commonality factor CFi various expressions are
proposed and tested of which

CFi = ln[1+ ∑
j∈C,i 6= j

(
Li j√
LiL j

)(
Li−Li j

L j−Li j
)] (13)

seemed to perform as expected and satisfactory. Here Li,L j are lengths of routes i and j and Li j
is the overlapping length between those two routes. Remark that CFi is positive, so our estimator
βCF should be negative in order to penalize similar routes.

32

For Path Size Logit by Ben-Akiva and Bierlaire [16] the probability of choosing route i is of a very
similar form, namely:

Pi =
eVi+βPS·ln(PSi)

∑
j∈C

eV j+βPS·ln(PS j)
(14)

where βPS is a parameter to be estimated. The original expression of PSi is:

PSi = ∑
a∈Γi

La

Li

1
∑

j∈C
δa j

(15)

here La is the length of link a, Γi is the set of links belonging to route i and

δa j =

{
1 if route j uses link a
0 otherwise

(16)

(Remark: Earlier the size of the path was defined as the number of links of this path. In this case
it counts the number of new alternatives the routes add to the choice set.)

Looking at this formula, the first that one notices is that one accounts for the fraction of the length
a link makes part of the route. Second, if a link from a certain route is unique then 1

∑
j∈C

δa j
equals 1

and if a link appears in 4 routes 1
∑

j∈C
δa j

will be 1
4 .

Prato [14] states that Path Size Logit modifications outperform C-logit models and that is the
reason more survey is done to improve the PSL method. One of this modifications is the Path Size
Correction Logit (PSC) by Bovy et al. [17]. In this model ln(PSi) is replaced by PSCi which is of
the following form:

PSCi =− ∑
a∈Γi

(
La

Li
ln ∑

j∈C
δa j) (17)

This PSCi is clearly negative resulting in subtracting utility in the case of very similar paths, mak-
ing this method a more intuitive angle of view. It can be viewed as a combination of both the
Multinomial and Nested Logit model. In predictions this PSC provides better performance that the
original PSL model.

Also Dugundji, Knapen and myself are planning to write a paper about the conclusions of this
thesis.

33

10 Discussion and Conclusion
Concluding, there are various methods to generate choice sets. In this thesis the Doubly Stochastic
Generation Function is chosen. Mostly, because it generates heterogeneous routes, performs well
up to trips of 10 km and puts the more attractive routes in the choice set. A common problem for
these methods is that the routes they produce, are overcomplicated and unreal.

To overcome this problem, we looked at the data provided by the FietsTelweek in Amsterdam.
We looked at the distribution of complexity for all routes in box R1 and at the distribution of com-
plexity for routes in R1 with a low rd value. We found out that there was only a slight mass shift
towards lower complexities, so box R1 is the data set we worked with along this thesis.

After that, routes were generated with a slightly adapted POSDAP code and compared in FIG-
URE 16 showing the cumulative density functions of the observed and the predicted data. From
this it was observed that the DSGF method indeed produced way too many complex routes. This
is in line with what we expected from earlier results. In an attempt to fix this a sampler was build
to filter routes with a high complexity out of predicted data. By doing this the idea was to get a
choice set with routes with a complexity distribution similar to the observed data in Amsterdam.
This worked in terms of getting a complexity distribution very similar to the observed data but only
in 16,2% of the origin destination pairs, there was an actual choice set left, with at least 2 choices.

We decided that giving up a bit of quality for quantity was needed. In order to do this, we looked
at the likelihood of the observed routes to value routes with a relative low complexity over routes
with a relative high complexity. This method also has it limitations as it is underestimating the
number of routes with only one basic path component and overestimating the number of routes
with two basic path components. Using this method we observed that keeping 7 or 8 out of the
16 predicted routes, provide us a choice set that is most similar to the observed data. One of the
limitations of this conclusion is that this only holds true for the city Amsterdam and maybe for
other cities with a high dense network.

From our results it might be useful for other researchers in this field to filter out unlikely routes
when constructing a choice set. This can be done by applying the method of basic path components
but maybe there are other working methods or methods yet to be found.

Furthermore, it is shown that there is correlation between the number of components of a route
and the length of the route and correlation between the number of components of the route and
size of the route. So if one wants to construct a choice set for longer bicycle routes, we expect that
routes with a higher number of basic path components must be kept.

34

Appendices
A Tables

complexity absFreq relFreq relCumFreq
1 2782 0,087 0,087
2 4691 0,147 0,235
3 4424 0,139 0,374
4 3855 0,121 0,495
5 3065 0,096 0,592
6 2583 0,081 0,673
7 2039 0,064 0,737
8 1671 0,053 0,789
9 1370 0,043 0,832

10 1062 0,033 0,866
11 866 0,027 0,893
12 717 0,023 0,916
13 565 0,018 0,933
14 444 0,014 0,947
15 363 0,011 0,959
16 293 0,009 0,968
17 225 0,007 0,975
18 175 0,006 0,980
19 139 0,004 0,985
20 96 0,003 0,988
21 81 0,003 0,990
22 63 0,002 0,992
23 49 0,002 0,994
24 27 0,001 0,995
25 40 0,001 0,996
26 32 0,001 0,997
27 16 0,001 0,998
28 19 0,001 0,998
29 20 0,001 0,999
30 6 0,000 0,999
31 10 0,000 0,999
32 3 0,000 0,999
33 6 0,000 1,000
34 4 0,000 1,000
35 5 0,000 1,000
36 1 0,000 1,000
37 1 0,000 1,000
38 2 0,000 1,000
39 1 0,000 1,000
40 0 0,000 1,000

Total 31811

TABLE 3 : Observed Data FietsTelweek Amsterdam

35

complexity absFreq relFreq relCumFreq
1 6660 0,013 0,013
2 32737 0,066 0,080
3 50918 0,103 0,183
4 49167 0,099 0,282
5 41976 0,085 0,367
6 36155 0,073 0,440
7 31759 0,064 0,504
8 27983 0,057 0,561
9 24848 0,050 0,611

10 22345 0,045 0,656
11 19364 0,039 0,695
12 17555 0,035 0,731
13 15488 0,031 0,762
14 13972 0,028 0,790
15 12297 0,025 0,815
16 11044 0,022 0,838
17 9778 0,020 0,857
18 8715 0,018 0,875
19 7841 0,016 0,891
20 6819 0,014 0,905
21 6050 0,012 0,917
22 5428 0,011 0,928
23 4638 0,009 0,937
24 4180 0,008 0,946
25 3768 0,008 0,953
26 3273 0,007 0,960
27 2862 0,006 0,966
28 2538 0,005 0,971
29 2146 0,004 0,975
30 1887 0,004 0,979
31 1621 0,003 0,982
32 1372 0,003 0,985
33 1238 0,003 0,988
34 1020 0,002 0,990
35 847 0,002 0,991
36 699 0,001 0,993
37 623 0,001 0,994
38 504 0,001 0,995
39 444 0,001 0,996
40 325 0,001 0,997

Total 492884

TABLE 4 : Predicted Data by POSDAP for Amsterdam

36

complexity fAO/fAP fS
1 6,494 0,278
2 2,228 0,095
3 1,351 0,058
4 1,219 0,052
5 1,135 0,049
6 1,111 0,048
7 0,998 0,043
8 0,928 0,040
9 0,857 0,037

10 0,739 0,032
11 0,695 0,030
12 0,635 0,027
13 0,567 0,024
14 0,494 0,021
15 0,459 0,020
16 0,412 0,018
17 0,358 0,015
18 0,312 0,013
19 0,276 0,012
20 0,219 0,009
21 0,208 0,009
22 0,180 0,008
23 0,164 0,007
24 0,100 0,004
25 0,165 0,007
26 0,152 0,007
27 0,087 0,004
28 0,116 0,005
29 0,145 0,006
30 0,049 0,002
31 0,096 0,004
32 0,034 0,001
33 0,075 0,003
34 0,061 0,003
35 0,092 0,004
36 0,022 0,001
37 0,025 0,001
38 0,062 0,003
39 0,035 0,001
40 0,000 0,000

sum 23,357
beta 0,043

TABLE 5 : Application of the sampler method

37

Complexity Observed Data Value of N_1
3 4 5 6 7 8 9

1 0,087 0,004 0,004 0,004 0,004 0,004 0,004 0,004
2 0,147 0,256 0,222 0,192 0,168 0,147 0,130 0,116
3 0,139 0,142 0,149 0,156 0,160 0,161 0,159 0,155
4 0,121 0,099 0,101 0,102 0,104 0,106 0,108 0,110
5 0,096 0,077 0,079 0,081 0,083 0,084 0,084 0,085
6 0,081 0,063 0,064 0,066 0,067 0,068 0,069 0,070
7 0,064 0,054 0,055 0,056 0,058 0,059 0,060 0,060
8 0,053 0,047 0,048 0,049 0,050 0,051 0,052 0,052
9 0,043 0,039 0,041 0,042 0,043 0,044 0,045 0,046
10 0,033 0,033 0,035 0,037 0,038 0,038 0,039 0,040
11 0,027 0,029 0,030 0,031 0,032 0,032 0,034 0,034
12 0,023 0,024 0,026 0,027 0,028 0,029 0,030 0,030
13 0,018 0,021 0,022 0,023 0,024 0,025 0,025 0,026
14 0,014 0,018 0,019 0,020 0,021 0,022 0,023 0,023
15 0,011 0,014 0,016 0,017 0,018 0,019 0,020 0,020
16 0,009 0,013 0,014 0,015 0,016 0,017 0,018 0,018
17 0,007 0,011 0,011 0,012 0,013 0,014 0,015 0,015
18 0,006 0,010 0,010 0,011 0,011 0,012 0,013 0,013
19 0,004 0,009 0,010 0,010 0,010 0,011 0,011 0,012
20 0,003 0,007 0,008 0,008 0,008 0,009 0,009 0,010
21 0,003 0,006 0,007 0,007 0,008 0,008 0,008 0,009
22 0,002 0,005 0,006 0,006 0,007 0,007 0,008 0,008
23 0,002 0,004 0,005 0,005 0,006 0,006 0,006 0,007
24 0,001 0,001 0,002 0,002 0,002 0,003 0,003 0,004
25 0,001 0,004 0,005 0,005 0,006 0,006 0,006 0,006
26 0,001 0,003 0,004 0,004 0,004 0,005 0,005 0,005
27 0,001 0,001 0,001 0,001 0,001 0,002 0,002 0,002
28 0,001 0,001 0,001 0,002 0,002 0,002 0,003 0,003
29 0,001 0,002 0,003 0,003 0,003 0,003 0,004 0,004
30 0,000 0,000 0,001 0,001 0,001 0,001 0,001 0,001
31 0,000 0,001 0,001 0,001 0,001 0,002 0,002 0,002
32 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
33 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,002
34 0,000 0,000 0,000 0,000 0,001 0,001 0,001 0,001
35 0,000 0,001 0,001 0,001 0,001 0,001 0,001 0,001
36 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
37 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
38 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,001
39 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
40 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000

TABLE 6 : Relative Frequencies for the observed data and different values of N1

38

B Functions of classes in
hakatrin.choice setGeneration.hakatrinStochastic

• Examplechoice setGenerationBalmerHakatrin.java
Same function as Examplechoice setGenerationStochasticHakatrin.java

• Examplechoice setGenerationStochasticHakatrin.java
Discussed in chapter 4

• Examplechoice setStagechoice setGenerationBalmer.java
Same function as Examplechoice setGenerationStochasticHakatrin.java

• ExampleCostFunctionLengthLandUse.java
Determine parameters Length and LandUse

• ExampleCostFunctionLengthPath.java
Determine parameters Length and Path

• ExampleCostFunctionLengthType.java
Determine parameters Length and RoadType

• ExampleCostFunctionLengthTypePathLandUse.java
Determine Length, LandUse, Path and RoadType

• ExampleNetworkAdapterLengthLandUseNormal.java
Computes ξlanduse and εa

• ExampleNetworkAdapterLengthPathNormal.java
Computes ξpath and εa

• ExampleNetworkAdapterLengthTypeNormal.java
Computes ξlroadtype and εa

• ExampleNetworkAdapterLengthTypePathLandUseNormal.java
Computes Length,ξroadtype,ξlanduse,ξl path and εa

• ExampleStochasticSetDoublyStochasticParametersLengthLandUse.java
Sets ξlanduse and εa

• ExampleStochasticSetDoublyStochasticParametersLengthPath.java
Sets ξl path and εa

• ExampleStochasticSetDoublyStochasticParametersLengthType.java
Sets ξlroadtype and εa

• ExampleStochasticSetDoublyStochasticParametersLengthTypePathLandUse.java
Sets Length,ξroadtype,ξlanduse,ξl path and εa

• config.xml

• configpara.xml

39

Alphabetical Index
χ2-test, 28
PA,O, 17
PA,P, 29
FA,O(c), 17
fA,O(c), 27
f
′
A,O(c(r)), 30

FP
A,P(c), 27

f P
A,P(c), 27

FU
A,O(c), 17

N0, 26
N0(i), 29
N1, 29
N1(i), 29
R0, 16
R1, 16
rd , 17
Sk

i , 29

alternatives, 8

Basic Path Component, 14
Branch and Bound, 9
Breadth First Search-Link Elimination, 8

choice set, 8
complexity, 14
correlation, 24
correlation coefficient, 24
cost function, 12
coverage, 10

destination, 8
Dijkstra’s algorithm, 11
Double Stochastic Generation Function, 11

edges, 4
ETH Zürich, 18

FEATHERS, 21
FietsTelweek, 6

graph, 4

heterogeneous, 4

IMOB, 21

KS-test, 28
Kumaraswamy distribution, 10

least cost path, 14

map matching, 7
Mental Representation Items, 10
MNL, 31

NL, 32
nodes, 4
non-least cost edge, 14

OD-pair, 10
origin, 8

Path Size Correction Logit, 33
POSDAP, 18

QGIS, 7

simple path, 22
Stochastic Choice Set Generation, 9

universal set, 8
utilitarian trips, 14

40

REFERENCES
[1] Knapen, L., I. B. Hartman, D. Schulz, T. Bellemans, D. Davy Janssens, and G. Wets, Determining

structural route components from GPS traces. Transportation Research Part B: Methodological (90),
2016, pp. 156–171.

[2] Fietstelweek, Data Fietstelweek, 2015.

[3] Rieser-Schüssler, N., M. Balmer, and K. W. Axhausen, Route choice sets for very high-resolution data.
Working paper Transport and Spatial Planning, 2012.

[4] Prato, C. G. and S. Bekhor, Applying Branch-and-Bound Technique to Route Choice Set Generation.
TRANSPORTATION RESEARCH RECORD JOURNAL OF THE TRANSPORTATION RESEARCH
BOARD, 2006.

[5] Frejinger, E., Route sampling of alternatives in a route choice context, 2007.

[6] Bovy, P. H. L., On Modelling Route Choice Sets in Transportation Networks: A Synthesis. Transport
Reviews, Vol. 29, No. 1, 2009, p. 58.

[7] Kazagli, E. and M. Bierlaire, A route choice model based on Mental Representations. 15th Swiss
Transport Research Conference, 2015.

[8] Nielsen, O. A., A stochastic transit assignment model considering differences in passengers utility
functions. Transportation Research Part B 34 (2000), 2000.

[9] Bovy, P. H. and S. Fiorenzo-Catalano, Stochastic route choice set generation: Behavioral and proba-
bilistic foundations. Transportation Research Part B 34 (2000), 2007.

[10] Hood, J., E. Sall, and B. Charlton, A GPS-based bicycle route choice model for San Francisco, Califor-
nia. Transportation Letters: The International Journal of Transportation Research (2011) 3: (63-75),
2007.

[11] Halldorsdottir, K., N. Rieser-Schüssler, K. W. Axhausen, O. A. Nielsen, and C. G. Prato, Efficiency of
choice set generation methods for bicycle routes. EJTIR 14(4), 2014.

[12] Pucher, J. and J. Buehler, City Cycling, 2012, p. 13.

[13] Bierlaire, M., BIOGEME: A free package for the estimation of discrete choice models. Proceedings of
the 3rd Swiss Transportation Research Conference, Ascona, Switzerland, 2003.

[14] Prato, C. G., Route choice modeling: past, present and future research directions. Journal of Choice
Modeling, 2009, pp. 77–87.

[15] Cascetta, E., A. Nuzzolo, F. Russo, and A. Vitetta, A modified logit route choice model overcoming
path overlapping problems: specification and some calibration results for interurban networks. Pro-
ceedings of the Thirteenth International Symposium on Transportation and Traffic Theory, 1996, pp.
697–711.

[16] Ben-Akiva, M. and M. Bierlaire, Discrete choice methods and their applications to short term travel
decisions. Handbook of Transportation Science, 1996.

[17] Bovy, P., S. Bekhor, and C. Prato, The factor of revised path size: an alternative derivation. Trans-
portation Research Record, 2076, 2008, pp. 132–140.

41

	Data: FietsTelweek
	Information about the basic data
	Map matching the data

	Choice Set Generation Methods
	Breadth First Search-Link Elimination
	Branch and Bound
	Pure Statistical Methods
	Mental Representation Items
	Double Stochastic Generation Function

	Basic Path Components
	Knapen's algorithm
	Basic Path Components in FietsTelweek Data

	ETH Zürich Code (POSDAP)
	Background Information
	Implementation: Examplechoice setGenerationStochasticHakatrin
	Implementation: ChoiceSetStageCSGStochastic

	UHasselt Code (Feathers)
	Background Information
	Code
	Interfaces BPC code
	Implementation BPC code

	Correlation with complexity
	Combining the two methods
	Making a combination
	Choosing attributes
	Creating a sampler
	Using a maximum likelihood function in the sampler

	Making the choice: Logit Model
	Multinomial Logit Model

	Further Research
	Discussion and Conclusion
	Appendices
	Tables
	Functions of classes in hakatrin.choice setGeneration.hakatrinStochastic
	Alphabetical Index

