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Abstract

Transition zone discontinuities at roughly 410 and 660 km depth result from phase
transitions in mantle minerals. Depending on local temperature and composition,
these seismic discontinuities are either depressed or elevated relative to a global
average. According to mineral physics, hot olivine-dominated regions should have
a thinner transition zone. However, in hot garnet-dominated regions both the 410-
and 660-discontinuities may be depressed, resulting in no net change in transition
zone thickness. Nevertheless, transition zone topography can provide essential clues
for hotspot origin depth, which puts constraints on mantle convection. Hotspots
fed by mantle plumes from the lower mantle is an argument in favour of whole-
mantle convection. We have studied the transition zone in the mid-Pacific Ocean
covering three known hotspots: Marqueses, Tahiti and Pitcairn. The transition zone
is imaged with precursors of the SS-wave that reflect off the discontinuities. Imaging
through slowness-time stacking is complicated by the large X-shaped Fresnel zone of
underside reflections and presumed narrowness of mantle plumes. Therefore reverse
time migration using the scalar wave equation and imaging techniques common in
exploration seismics are applied to the same data set. Stacking results show that the
transition zone is slightly thinner than average near the three hotspots, which might
indicate a mantle plume origin with olivine-dominated discontinuities. Migrated
images are blurred due to limited aperture, among other factors, but may show
topography of the 410-discontinuity.
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1 Introduction

1.1 Mineralogy, hotspots and mantle convection

The mantle transition zone is bounded by two first-order global seismic discontinuities at ap-
proximately 410 and 660 km depth. It separates the upper mantle from the lower mantle. The
410-discontinuity is defined by a phase transition of olivine to wadsleyite. This reaction has a
positive Clapeyron slope, meaning that for a higher temperature, the phase change occurs at
higher pressure, and vice versa (Figure 1). So mineral physics predicts a deeper 410-discontinuity
in hot regions. For the 410-discontinuity, water may be an important factor. Water or melt
could increase the width of the phase transition to 35 km (Karato, 2011). Wadsleyite transforms
to ringwoodite at rougly 520 km depth, leading to a more intermittent seismic discontinuity
(Deuss, 2009). At 660 km depth, ringwoodite breaks down to form perovskite and magne-
siowüstite (Ringwood, 1975; Ita & Stixrude, 1992). This reaction has a negative Clapeyron
slope, causing the 660-discontinuity to be more shallow in high temperature regions (Figure 2).

The mineralogy of the mantle consists of 40-60% olivine (Ringwood, 1975), so chemical
reactions in other minerals may contribute to discontinuity topography and width. In a py-
rolitic mantle, phase transitions in garnet and pyroxene may interfere, especially for the 660-
discontinuity. High-pressure experiments showed that the transition from majorite garnet (to
ilmenite at medium to low temperature) to Mg-perovskite occurs at similar depth ranges (660-
700 km) and has a positive Clapeyron slope (Figure 2; Hirose, 2002). This reaction could become
dominant over the ringwoodite to perovskite and magnesiowüstite transition in higher temper-
ature regions. So in anomalously hot garnet-rich regions, a high temperature can correspond
to a deeper 660-discontinuity and a transition zone of average thickness. Such anomalously hot
regions are in theory mantle plumes, which have temperatures exceeding 1800°C required for
the transition from majorite garnet to Mg-perovskite to be dominant (Hirose, 2002), although
exact conditions at which majorite garnet is stable are still debatable (Yu et al., 2011).

Figure 1: Cartoon showing different mantle transition zone configurations for two thermal regimes: A)
Cold regime (e.g. subduction zone) where the transition zone is thicker. B) Hot regime (e.g. mantle
plume) where the transition zone is thinner for purely olivine-controlled discontinuities, or of average
thickness if garnet is involved. Deuss (2007), adapted from http://www.mantleplumes.org.

Whether the phase transition causing the 660-discontinuity has a positive or negative Clapey-
ron slope affects resistance to mass flow going through the transition zone (Hirose, 2002). Neg-
ative Clapeyron slopes have a tendency to impede mass flow, whereas positive slopes tend to
promote mass flow (Davies, 2000). For hot bodies crossing a phase transition with positive
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Figure 2: Phase diagram for a py-
rolitic mantle and depth range 600 to
700 km, after Hirose (2002), show-
ing the complex nature of the 660-
discontinuity. For low temperatures,
Mg-perovskite and magnesiowüstite are
formed from ringwoodite over a rela-
tively narrow depth range. The Clapey-
ron slope is negative. For high temper-
atures, Mg-perovskite forms from ma-
jorite garnet over a broader depth in-
terval with a positive Clapeyron slope.
Deuss (2009).

Clapeyron slope, transformation to the low-density phase occurs deeper in the hot body than
in its colder surroundings. This creates a region where the low-density phase in the hot body
exists next to the high-density phase, causing positive buoyancy force (upwards) and aiding its
ascent. A negative Clapeyron slope results in a negative buoyancy force (downwards) in hot
bodies, impeding its ascent and possibly causing ponding of hot material below the transition
depth. The sign of the Clapeyron slope therefore has implications for mantle convection.

Using the depth of transition zone discontinuities as a thermometer is more complicated
for the 660-discontinuity. Transition zone thickness, which does not depend strongly on man-
tle velocity corrections, has often been used as thermometer. Considering only olivine phase
transitions, a thin transition zone corresponds to warm regions and a thick transition zone
to cold regions (Figure 1). Absolute discontinuity depths have become more important, since
knowledge about the complicated nature of the 660-discontinuity has added more complexity
to the temperature-transition zone thickness relation. Because of this complexity, the abso-
lute depth of the 410-discontinuity is more reliable as source of information regarding regional
temperatures than the 660-discontinuity. Garnet-dominated 660-discontinuities may have been
observed in some studies. In a global SS precursor study, Deuss (2007) found that two-thirds
of 26 examined hotspots had a deeper 410-discontinuity paired with either a deep or shallow
660-discontinuity, consistent with hot regions in garnet-dominated or olivine-dominated mantle.
A recent receiver function study found both discontinuities to be depressed beneath Iceland, of
which the deeper (660 km) was interpreted as garnet-controlled (Jenkins et al., 2016).

Hotspots are the surface expressions of either hot rising mantle plumes caused by thermal
convection in the mantle, or anomalously hot regions near the Earth’s surface, resulting in vol-
canic activity. They are not necessarily close to spreading ridges. The origin of hotspots could
be shallow (upper mantle), intermediate (transition zone) or deep (lower mantle; D” layer in
particular), according to the classification by Courtillot et al. (2003). An intermediate-to-deep
origin is associated with mantle plumes and would leave an imprint on the topography of the
transition zone discontinuities, whereas a shallow origin would not. Transition zone observations
can thus contribute to the debate on the existence of mantle plumes, along with tomography,
bathymetry and mineralogy. Mantle plumes are difficult to resolve in seismic tomography due
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to wavefront healing, since they are (supposedly) narrow and waves are more likely to travel
through the faster surroundings. Delayed arrivals of waves that did travel through the plume
are masked by earlier arrivals (Nolet et al., 2007). Hotspot origin depths can add useful insights
to the discussion on whole-mantle convection versus layered mantle convection. Deep origins for
the hot rising material feeding hotspots are an argument in favour of whole-mantle convection.
It implies that the discontinuities have not formed a barrier to mass flow from the lower to the
upper mantle.

1.1.1 Hotspots in the study area

The Pacific Ocean has a large low shear wave velocity province (LLSVP) in the lower mantle. It
is a characteristic feature in images generated by seismic tomography (e.g. Ritsema et al., 1999).
This superswell could feed secondary hotspots, which have origin depths just below the transition
zone (Courtillot et al., 2003). As mentioned before, the other two types of hotspot proposed by
Courtillot et al. (2003) are upper mantle hotspots, possibly linked to lithospheric break-up, and
primary hotspots, anchored to the deepest lower mantle. The three Pacific hotspots in the study
area of the south-central Pacific are Tahiti, Pitcairn and Marqueses. They all have at least two
out of five characteristics for hotspots with a deep origin according to Courtillot et al. (2003).
All three have a hotspot track, of which Marqueses has a long-lived track with potentially a
flood basalt body or oceanic plateau at the start of its hotspot track (Clouard & Bonneville,
2001). All three hotspots have high buoyancy fluxes. Pitcairn and Tahiti presumably have high
3He/4He ratios, corresponding to material from a more primitive mantle reservoir. On the other
hand, Marqueses has a low 3He/4He ratio, which might indicate a more shallow origin. None of
them have a slow S-wave velocity anomaly at 500 km depth in the tomographic model S20RTS
of Ritsema et al. (1999), whereas Tahiti is shown to have a strong plume emanating from the
Pacific LLSVP by Montelli et al. (2006). Courtillot et al. (2003) argue that Pitcairn may
join Tahiti in this class of hotpots originating at superswells. Mainly because of its long-lived
hotspot track, Marqueses could be a so-called primary plume, originating at the core-mantle
boundary, but the low helium isotope ratio is an argument refuting that statement.

Figure 3: Specular ray paths of SS, S410S and S660S through PREM for 130° epicentral distance.
From shallow to deep, the dashed lines represent the Moho, 220-discontinuity, 410-discontinuity, 660-
discontinuity, core-mantle boundary and inner-outer core boundary. Note that ray paths vary the most
near the bounce point, which is therefore the area that they are most sensitive to.
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Figure 4: Fresnel zone for SS precursors with a pe-
riod of 35 seconds reflected off a discontinuity at 400
km depth. The specular reflection is situated at the
centre and contour lines show travel time differences
with respect to the specular reflection. Thick solid
line represents the Fresnel zone (travel time differ-
ence smaller than T/4). Adapted from Deuss (2009).

1.2 SS precursors and migration

The transition zone is usually imaged by underside reflections (either SS or PP precursors),
ScS reverberations, or receiver functions (P-to-S conversions at interfaces). Receiver functions
are sensitive to the mantle structure below receivers, whereas underside reflections are sensitive
to the bounce point area midway on the source-receiver path (Figure 3). ScS reverberations
are sensitive to mantle structure below receivers and source locations, as well as to the bounce
point area. They are usually used in studies with small epicentral distances (10-50°) between
source and receiver (Deuss et al., 2013). Due to the lack of seismic stations in oceans, underside
reflections are preferred in oceanic regions. The 660-discontinuity is not always observed by PP
precursors (Deuss et al., 2013), so SS precursors are the seismic phases used in this study.

A regular SS wave reflects off the Earth’s surface at a bounce point roughly midway the
source-receiver path (Figure 3). SS precursors follow nearly the same path as SS, but reflect off a
seismic discontinuity, such as the 410- and 660-discontinuities in Figure 3. Their shorter distance
results in an earlier arrival time than SS, hence the name SS precursor. The discontinuity
reflection coefficients of roughly 10% (Shearer et al., 1999), caused by relatively low impedance
contrasts compared to circa 100% at the surface, causes precursor amplitudes to be smaller
than SS. Precursor phases of SS are named SdS, with d standing for depth of the discontinuity
that they reflected off. S410S and S660S are the SS precursors that bounced off the 410- and
660-discontinuity, respectively. Using SS precursors for imaging purposes brings problems with
it that have to be taken into consideration and can partly be adressed.

Ray theory assumes infinite frequency and that the rays are specular, i.e. reflect at a single
point with equal angles of incidence and reflection. In reality, waves have finite frequency,
causing them to propagate through a finite volume in space (Fresnel volume), instead of through
an infinitely narrow ray. Finite frequency methods have therefore been gaining popularity over
ray theory methods (Tromp et al., 2005). A cross-section of the Fresnel volume is the Fresnel
zone. The first Fresnel zone is the area in which waves interfere constructively with each other.
It is usually defined as the area around the specular (geometrical) reflection point for which
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waves arrive within T/4 (T is dominant period) from the specular wave (Figure 4; Deuss, 2009).
Seismic waves with a large Fresnel zone are sensitive to a large portion of a reflector, rather
than a single point (Rost & Thomas, 2009).

The infinite-frequency assumption of ray theory breaks down for low-frequency underside
reflections. Wave energy scattered from regions up to thousands of kilometres away from the
theoretical reflection point may have travel times close to the travel time of the arrival following
the specular ray path, and therefore contribute to the observed signal (Neele et al., 1997; Rost &
Thomas, 2009). Underside reflections are mini-max phases, meaning that for the same epicentral
distance and reflection point, waves travelling non-specular paths may arrive earlier or later than
the specular ray (Cao et al., 2010). The Fresnel zone is saddle-shaped or X-shaped with the
specular reflection both as maximum and minimum travel time in the centre of the saddle
(Figure 4; Deuss, 2009). Energy reflected at points closer to the source or receiver along the
source-receiver path (radial direction) arrives earlier than the specular SdS ray, because a larger
portion of the path is spent at greater depths, where velocities are higher. On the other hand,
energy reflected at points off the theoretical ray path (tangential direction) must travel longer
distances and hence arrives later than the specular ray. These two effects balance out to a net
similar travel time as the specular ray on the “arms” of the X-shaped Fresnel zone (Lawrence &
Shearer, 2008). The Fresnel zone of SS precursors is approximately 1000 km (Neele et al., 1997),
which is problematic for imaging smaller features. If discontinuity topography wavelength is
smaller than the size of the Fresnel zone, the topography can be underestimated (Deuss, 2007),
because the topography will be smoothed over a larger area (Niu et al., 2002). Mantle plumes
are narrow features, although potentially wider than previously thought (Montelli et al., 2006),
which makes it difficult to spot their impact on discontinuity topography with SS precursors.
Receiver functions have a smaller Fresnel zone, but unfortunately the low density of seismic
stations in oceans provides insufficient coverage, as mentioned before.

Migration methods aim to resolve the issue of wave energy being sensitive to an area by
incorporating the effective size of the Fresnel zone and imaging the true reflectors. Migration
is an inverse problem, since the data are known (recorded seismograms) and are used to invert
for a model of mantle structure. In theory, each time sample in the data can be considered to
be the sum of wave energy contributions from a constant travel time surface, i.e. an isochron
(Cao et al., 2010). The most likely locations of scatterers are where these isochrons intersect
(Chambers & Woodhouse, 2006).

Examples of migration methods are the Generalized Radon Transform (e.g. Cao et al., 2010)
and using seismic array data (Rost & Thomas, 2009). Previously, Shearer et al. (1999) have
tested a migration method for SS precursors based on the concept of Kirchhoff migration in
reflection seismology. Each grid point i in their model acts as a hypothetical point scatterer of
strength mi. They posed a forward problem d = Gm, where d is a vector of observed data,
G is a matrix describing the linear relationship between scattering strength in the model m
and the seismic observations. The system has to be solved for m, the model with scattering
strength mi at each grid point i. A simple backprojection method can be employed, m = GTd,
meaning that each time sample of the data is back-projected to all possible scattering points
on the isochron, without any form of weighting (Shearer et al., 1999; Chambers & Woodhouse,
2006). Inversion methods can be fine-tuned by applying a weighted migration. The results
of Shearer et al. (1999) for backprojection were disappointing, probably due to uneven data
sampling, whereas those of Chambers and Woodhouse (2006) were more promising. Chambers
& Woodhouse (2006) have divided the Earth in a set of equally spaced image points. To migrate
scattered S and ScS phases, they have calculated predicted source-image point-receiver travel
times for each image point and looked at the amplitudes in all seismic traces within 1 second
of that predicted travel time. Summing the amplitudes for each image point provided an image
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of the strength of mantle reflectors.
Backprojection, or reverse time migration, is the method of choice in this study. In reverse

time migration, the recorded wave energy in the data is sent backward in time and spread out
over a volume using the wave equation for wave field propagation. This constitutes the receiver
wave field. Using a migration approach based on the wave equation takes finite frequency
effects, such as the Fresnel zone and waveform propagation effects as function of frequency, into
account. The scatterers are located where the receiver wave field interferes constructively with
a source wave field propagated forward in time (Claerbout, 1971).

1.3 Aim, objectives and hypotheses

The main aim of this study is to image the transition zone discontinuities and transition zone
thickness below known hotspots in the Pacific Ocean with SS precursors. This is achieved
through regular slant-stacking of waveform data and allowing for finite frequency effects with
reverse time migration applied to the data. Resulting images are then interpreted in terms of
temperature, with the complications described before in mind, and translated to hotspot origin
depth.

I expect to see variations in the two discontinuity depths in the study area, because the
study area is larger than the Fresnel zone for underside reflections. Since Tahiti and Pitcairn
are presumably of the same hotspot type (secondary hotspots), they probably have similar
effects on discontinuity depths and transition zone thickness, unless one has a garnet-controlled
and the other an olivine-controlled 660-discontinuity. In that case the temperature of the former
has to be higher than the other and/or have a higher garnet content. Marqueses is thought to
be a primary hotspot with a rooted mantle plume. It is difficult to distinguish between primary
and secondary hotspots with discontinuity observations alone, because they are affected by both
types. Therefore other kinds of observations are required to make interpretations. Migrating the
data could potentially yield more realistic depths than those given by slant-stacking, because
migration relaxes some of the assumptions made in slant-stacking. It depends on the limitations
in data quality and coverage and of the method itself, which are unknown at this point, but
will be explored.

This thesis consists of two parts. In part one I will use standard stacking techniques to
visualize the precursors and get reflection depths below the bounce point region. The second
part covers the reverse time migration applied to the data. It is a novel approach for regional
seismology, using imaging techniques typically employed for hydrocarbon exploration purposes.
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2 Part 1: Slant-stacking procedure

2.1 Method

2.1.1 Data selection and basic processing

The data selected for this study are retrieved from the database of the Incorporated Research
Institutions for Seismology (IRIS). Several criteria regarding data selection have to be met.

The earthquake magnitudes should be high enough to have sufficient precursor energy and
low enough to keep the source-time function relatively simple and pulse-like. A simple source-
time function usually translates to an SS arrival formed by a single peak with side lobes,
facilitating phase picking in a later stage. Moment magnitudes (MW) in the ranges 6-7 (Deuss,
2009), 5.8-7.5 (Lessing et al., 2014), and > 5.8 (Saki et al., 2015) have been used before in
precursor studies, among others. In this study a range of MW=6-7 is used. If the SS arrival
showed up as a clear spike in the unprocessed data and the half duration was less than 10
seconds, the event was taken into consideration. Focal mechanisms showing strike-slip faulting
appeared to have more pronounced SS arrivals, possibly due to more S-wave energy being
released from these types of earthquake. Bounce points of the specular rays should be located
in the Pacific Ocean near the locations of Tahiti, Pitcairn and Marqueses (Courtillot et al.,
2003). This makes earthquakes near Australia and New Zealand and receivers of the extensive
Transportable Array (TA) in the USA particularly suitable. Station spacing of the TA is 70
km approximately, so bounce points are spaced ca. 35 km apart (Zheng et al., 2015). Three
events west of Macquarie Island (southwest Pacific Ocean; south of New Zealand) are chosen
for further processing (Table 1; Figure 5). Their moment magnitudes are 6.3, 6.4 and 6.5 and
all half duration times are under 5 seconds. Bounce point locations are plotted in Figure 5.
Unfortunately, the hotspots are located at the rims of the densely covered region. It would
have been favourable to have an event with a different azimuth as well, to avoid bias of mantle
structure in one direction. Alas, such earthquakes were not found.

Typical discontinuity reflection coefficients for SdS are less than 10% (Shearer et al.,
1999), so in order to get at least some precursor energy, incidence angles have to be favourable.
Incidence angle, and hence epicentral distance, affects the reflection coefficient (Lessing et al.,
2014). For incidence angles of approximately 30° to 50° for the 660-discontinuity and 25° to
40° for the 410-discontinuity, corresponding to epicentral distance ranges of 100-180 degrees
(Deuss, 2009), the reflection coefficient is higher than 0.01 (Lessing et al., 2014). In addition,
for epicentral distances larger than 160 degrees and smaller than 100 degrees, other phases
start interfering with SS and its minor arc precursors, such as ScSScS precursors (Zheng &
Romanowicz, 2012), postcursors of Sdiff (core-diffracted S-wave) (Zheng et al., 2015), and major
arc SS precursors (Deuss, 2009). Therefore the epicentral distance range is limited to 100-160
degrees. Schmerr & Garnero (2006) argue that within this range other phases still interfere
with SS precursors, especially for deeper sources (∼75 km). For example, in their study they

Date Longitude
(°E)

Latitude
(°N)

Depth
(km)

MW Half-duration
(s)

# Stations

06-01-2008 150.0487 -59.5987 10 6.5 4.3 510
08-09-2008 153.9955 -60.7493 10 6.3 3.9 312
06-05-2011 147.2350 -55.8442 14 6.4 4.0 459

Table 1: Information of the three events used in this study. The last column shows the number of
stations (and seismograms) per event included in slant-stacking. Information is provided by IRIS and
the Global Centroid Moment Tensor catalogue (Dziewonski et al., 1981; Ekström et al., 2012).
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excluded the distance range 100-120 degrees from S660S arrivals, because s410sS and s660sS
(topside reflections) arrive at similar times and could contaminate the stack. These interfering
phases travel with different slownesses than SS precursors, so in vespagrams (or slowness-time
plots) they should appear as separate phases. Furthermore, contamination by other phases does
not matter too much if the amplitudes after stacking are not interpreted. However, the peak
can shift up to 5 km due to contamination (Schmerr & Garnero, 2006).

The records start at the event time and end 60 minutes after the event time. Only the
long period channels (∼1 Hz sampling rate) of high gain seismometers are used, since SS phases
are long period waves. Ideally the north component has an azimuth of 0 degrees and the east
component of 90 degrees, but this is not always the case. Data with component azimuths that
differ more than 5 degrees from their ideal azimuth are removed, because they could cause
trouble when the east and north components are rotated to the great circle path. Subsequently,
the ZNE coordinate system is rotated to the ZRT system, with R as radial component along
the great circle path and T as transverse component perpendicular to the great circle path. S-
wave energy is favoured by the transverse component, so that is the component used for further
processing (Deuss, 2009).

The instrument response is removed by deconvolution. The data are cut -800 seconds to
+400 seconds around the theoretical SS arrival, calculated using ak135 (Kennett et al., 1995)
and travel time software ttimes (Kennett & Engdahl, 1991), and bandpass filtered using a
two-way (acausal) fourth order butterworth filter with corner periods of 15 and 75 seconds,

Figure 5: Stations (red triangles), sources (yellow stars) and midway points (white dots) for the most
densely covered bounce point region. Nearby hotspots are indicated by orange hexagons.
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which is typical for SS precursor studies (Deuss, 2009), although other corner periods have been
applied as well (e.g. 20-100 s in Zheng & Romanowicz, 2012). Filtering between 10 and 100
seconds did not produce different results. The trend and mean are also removed. After filtering,
seismograms with a signal-to-noise (S/N) ratio higher than 3 are kept for further processing.
The signal is defined as the highest amplitude in the time window -60 to +60 seconds relative
to the theoretical SS arrival. Noise is the highest amplitude in the time window of -300 to -60
seconds (i.e. precursor time window) relative to the theoretical SS arrival. The time window for
determining noise is not extended beyond -300 seconds, because Sdiff arrives at approximately
-400 seconds and has a much larger amplitude than SS precursors. The true SS arrivals are
picked manually to ensure better quality of the picks. Polarities are reversed if necessary (for 22
out of 1281 seismograms) and the maximum amplitude of SS is normalized to unity to equalize
energy across all events.

2.1.2 Stacking

The amplitude of SS precursors is typically about 5-10% of the SS pulse in individual seismo-
grams (Figure 6), requiring stacking to enhance their visibility (Shearer et al., 1999; Zheng et al.,
2015). Stacking can be done in many ways. One way is stacking with epicentral distance bins.
The data are divided into epicentral distance range bins with a width of 5 degrees and simply
stacked per bin without slowness corrections. This procedure yields clearly visible precursors
for a global data set (Deuss, 2009), but was less successful for this regional study. Regional
differences in mantle structure and not accounting for slowness variations probably made this
method unsuitable for a smaller data set.

A more successful stacking method concerns making bounce point bins. The bounce points
(midway on the source-receiver path) of the three events are plotted in Figure 5. The most
densely sampled region lies between 0 to 30 degrees south and 190 to 240 degrees east in the

Figure 6: Example of an individual seismogram (network: TA, station: Z35A), after going through all
processing steps explained in the text. SS is the large peak at zero seconds. S410S and S660S should be
between -100 and -300 seconds, but do not exceed noise levels in a single seismogram.
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Figure 7: Vespagram for cap 9 (see Figure 8a for bin numbering) with relative slowness w.r.t. SS on the
y-axis and time w.r.t. SS on the x-axis. Dashed line is the PREM profile line. Slowness-time relations
for three discontinuities in PREM are annotated. Colour scale is enhanced for the part left of the solid
black line (left colour bar), to visualize precursor phases.

Pacific Ocean. Hotspots from Courtillot’s catalogue (2003) that are potentially covered by
bounce point locations are Tahiti, Marqueses and Pitcairn (Figure 5). Samoa and Macdonald
are too far away from the bounce points. This region can be divided into bounce point bins
with a width of 10 degrees, roughly the same dimensions as the size of the Fresnel zone of SS
precursors.

SS precursors travel a slightly different path than the SS wave, since they do not reach
the Earth’s surface. This difference in ray path results in a difference in slowness. Slownesses
of SS precursors are smaller than the slowness of SS, because they do not travel through the
slow surface layers of the Earth at the bounce point location. Slowness differences are visible
in epicentral distance stacking: for larger distances, S410S and S660S arrive later with respect
to the SS phase. Move out stacking can correct for slowness differences. The SS phase is the
reference phase at time zero and slowness zero. The data are stacked for a range of slownesses
(-2 to 1 sec/deg relative to SS slowness) with increment 0.01 sec/deg, generating vespagrams
or slowness-time stacks (e.g. Deuss, 2009). A reference epicentral distance needs to be cho-
sen for relative time shifts before slant stacking. The average of all epicentral distances in the
data set (128 degrees) was chosen as reference epicentral distance. This reference epicentral
distance is not ideal for some bins with a different average epicentral distance, but opting for
a single reference value is more convenient in the time-to-depth conversion. The vespagrams
are cross-cut by a dashed curved line representing SS precursor slownesses and arrival times in
PREM (Dziewonski & Anderson, 1981; Figure 7), calculated with the TauP toolkit (Crotwell
et al., 1999). Precursor arrivals should fall on this curve and have the same polarity as the
SS arrival. In Figure 7 the stacked SS amplitude is positive (red), so the precursors should be
positive as well. The further away from the optimum stacking slowness for the specific phases,
the more diffuse the peaks become. Making a cross-section along this line results in stacked
traces with clearly visible S410S and S660S precursor reflections. Time has been converted to
depth using travel times of SdS phases in PREM. Time-depth relations in between those travel
times and reflection depths were obtained with linear interpolation. The validity of using a
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laterally homogeneous velocity model for this conversion will be discussed later. Depths of the
410- and 660-discontinuities and transition zone thickness for each cap have been inferred from
the time-depth relation.

2.2 Results

The vespagrams do not show coherent contaminating phases that could cause a peak shift for
S410S and S660S (Figure 7). Cross-sections through vespagrams along the PREM slowness-
time curve are shown in Figure 8 for each bin. Global averages for transition zone thickness,
410-discontinuity depth and 660-discontinuity depth have been estimated at 242.5 km, 410.1
km, 652.6 km respectively (Deuss, 2007). These averages mark the centres of the colour scales
in Figures 9, 10 and 11. Transition zone thickness for each bin is illustrated in Figure 9. The
transition zone is 1 to 5 km thinner than the global average near hotspot locations of Marqueses,
Tahiti and Pitcairn. Depths of the 410-discontinuity are plotted in Figure 10. A deeper 410-
discontinuity most likely indicates a hot region. Relative abundances of garnet and olivine are
not important at this depth. In the entire region southeast of the line between Marqueses and
Tahiti the 410-discontinuity is relatively depressed, whereas it is elevated northwest of this line.
It is not significantly deeper close to the hotspot locations. The nature of the 660-discontinuity
depth (Figure 11) is a bit more complicated, as stated in the Introduction. Its topography
depends on whether the discontinuity is garnet-controlled or olivine-controlled. Near Marqueses,
the 660-discontinuity is 7 km more shallow than the global average, causing the transition zone
to be thinner than average. Near Tahiti and Pitcairn the 660-depth is around the global average,
whereas the region in between these two hotspots has a 7 km deeper 660-discontinuity.

2.3 Robustness of the peaks

As an estimation of the robustness of the peaks in the stacked traces over time, a 95% confidence
interval for the mean (equal to the stacked trace) is calculated for each time sample in each
stack. The 95% confidence interval is bounded by the sample mean plus 1.96σm and the mean
minus 1.96σm, where σm is standard error in the mean (equation 1; Squires, 2001). Standard
error is a measure of the precision of the sample mean, so a smaller σm implies a more precisely
stacked trace. This error analysis assumes a normal distribution.

σm ≈
(

1

n− 1

) 1
2

s (1)

In equation 1 n is the number of seismograms in the stack and s is the standard deviation:

s2 =
1

n

∑
d2i (2)

The residual di is the difference between the amplitude xi in a single trace and the stacked
(mean) amplitude xi at one time sample.

Figure 12 shows the stacked traces for all bins with the 95% confidence interval plotted
as well. S410S and S670S are robust peaks in all traces. The general trend is that bins with
less traces have less robust peaks. An increase in the sample size leads to a smaller standard
error in the mean. Furthermore, standard error decreases with decreasing standard deviation,
which happens when all individual traces have a peak of similar amplitude. A robust S520S is
probably observed in bins 12-15 (Figure 12).
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Figure 8: a) Numbering of the bins; b) Outlines (black circles) and midpoints (blue dots) of the 5°

radius caps; c) Cross-sections through vespagrams along the PREM slowness-time curve. The 410 and
660 precursors are indicated by blue lines. Scale is enhanced below the dashed line to amplify the
precursors.
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Figure 9: Transition zone thickness (km) per bin

Figure 10: Depth of 410-discontinuity (km) per bin
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15

Figure 11: Depth of 660-discontinuity (km) per bin

Figure 12: Stacked traces over time (black wiggles) for every bin plotted with 95% confidence interval in
between the red lines. Peaks are robust if the entire confidence interval manages to surpass the baseline.
Robust positive peaks are black.



3 Part 2: Reverse time migration

3.1 Method

3.1.1 Theory

The method used in this study is in essence similar to the one used in Shearer et al. (1999)
mentioned in the Introduction, with the exception that here the data coverage is more dense.
In this section the theory underlying the method of reverse time migration is outlined. Let us
start from the beginning with the inhomogeneous scalar wave equation in the frequency domain(

∇2 +
ω2

c(x)2

)
u(x, ω) = s(ω) (3)

where ∇2 is the second order spatial differential (Laplace) operator, ω is frequency, c the wave
velocity, u the wave field, and s the source function. The left hand side can be rewritten with
the linear PDE operator L (equation 4), which substitutes ∇2 + ω2/c2.

Lu = s (4)

L depends on the medium through which the wave travels, since it depends on the wave velocity
of the medium.

We assume a medium with some point scatterers. The total wave field u has linear operator
L = ∇2 + ω2/c2 with velocity c = c0 + δc, whereas the background wave field u0 (without
scatterers) has linear operator L0 = ∇2 + ω2/c20 with velocity c0. Therefore the wave equation
for the background wave field is L0u0 = s. Since the total wave field is a sum of the background
and scattered wave fields, u = u0 + us, the scattered wave field us equals the total wave
field minus the background wave field: us = u − u0. Combining this expression for u with
Lu− L0u0 = 0 (since s− s = 0) results in:

L(us + u0)− L0u0 = 0 (5)

and rewritten:
(L− L0)u0 + Lus = 0 (6)

Defining the scattering potential ν as, similar to Miller et al. (1987):

ν = L− L0 = ω2

[
1

c20
− 1

c2

]
(7)

equation 6 becomes
Lus = −νu0 (8)

Equation 8 states that the difference δc between the total velocity and background velocity
creates a scattering potential ν (Miller et al., 1987) that results in a scattered wave field us.
Velocity perturbations relative to the background model are what we are after. Therefore, the
main question is: How can equation 8 be solved for δc?

We will need Green’s functions to solve this problem. Green’s functions are defined as the
solutions to differential equations for a Dirac delta function as right hand side. If the source
s(xs, t) = δ(x−xs)δ(t− t0) is a delta pulse in space and time at t0 = 0, it can be written in the
frequency domain as s(xs, ω) = δ(x − xs), since the Fourier transform of δ(t) = 1 for fixed ω.
The wave equation then becomes LG = δ(x − xs). The wave field u has been replaced by the
Green’s function G, which is the wave field due to a delta pulse as source. For complex media,
G does not have a simple analytical solution. It is usually computed numerically. G depends on
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the linear operator L, which in turn depends on the medium. A useful characteristic of Green’s
functions is that they are additive. They can be summed to get the total wave field.

We do not have a delta pulse as source, instead we have a complicated unknown source
term. If we suppose that the source term is known, the total wave field can be obtained by
convolving the Green’s functions with the source term in the time domain. The convolution
theorem states that for two signals x(t) and y(t), the product of their Fourier transforms X(ω)
and Y (ω) is equal to the Fourier transform of the convolution of the two signals.

F (x(t) ∗ y(t)) = F (x(t))F (y(t)) = X(ω)Y (ω) (9)

So equivalent to convolving in the time domain is multiplying the Green’s functions with the
source term in the frequency domain, and summing over the volume (equation 10; Tromp et
al., 2005).

u(xr,xs, ω) =

∫
V
G(xr,x, ω) s(x,xs, ω) d3x (10)

Equation 10 reflects the general form

u =

∫
ID

[kernel] [source(s)] d3x (11)

for the case where Lu = s.
As mentioned before, in reality the earthquake source-time function is not a delta pulse.

However, we will assume that it is a delta pulse from now on. Following the same logic as
before for a generic source term, equation 8 for a delta pulse as source becomes

LGs = −νG0 (12)

The source term in equation 11 is in this case −νG0 and Gs replaces u. The general form
(equation 11) of equation 12 is therefore (see equation 7 in Miller et al. (1987))

Gs(xr,xs, ω) = −
∫
V
G(xr,x, ω) ν(x)G0(x,xs, ω) d3x (13)

for x ∈ V and V ∈ IR3. The scattered wave field is induced by points where the medium differs
from the background medium, reflected in the interaction between the scattering potential ν
and the background wave field G0 (Miller et al., 1987).

Born approximation

Equation 13 has two nonlinearity issues. First of all, scattered wave field Gs appears in the
integrand, since G = G0 + Gs (Miller et al., 1987). The scattered wave field Gs is nonlinearly
dependent on δc, because scatterers act as sources for the wave field of other scatterers (Figure
13a). To solve this first complication, equation 13 is changed by dropping the nonlinear wave
field Gs from G = G0 +Gs:

Gs(xr,xs, ω) = −
∫
V
G0(xr,x, ω) ν(x)G0(x,xs, ω) d3x (14)

Now you only have the wave field from the source to point x, G0(x,xs, ω), and from point x
to the receiver, G0(xr,x, ω), to take into account. By dropping Gs, the scattered wave fields of
individual scatterers do not serve as sources for other scatterers (Figure 13b).

Secondly, ν(x) is nonlinearly dependent on δc, since ν = ω2
[

1
c20
− 1

c2

]
= ω2

[
1
c20
− 1

(c0+δc)2

]
.
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To solve the second problem, we rewrite the expression for the scattering potential ν to an
expression linear on δc:

ν(x) = ω2

[
1

c20
− 1

c2

]
=
ω2

c20

1− 1(
1 + δc

c0

)2
 (15)

with the last term rewritten as

1− 1(
1 + δc

c0

)2 = 1−
(

1 +
δc

c0

)−2
(16)

The second term in expression 16 can be approximated using the first two terms of the binomial
series

(1 + x)p =
∞∑
n=0

(
p

n

)
xn = 1 + px+

p(p− 1)

2!
x2 + · · · (17)

which converges for |x| < 1, with p = −2 and x = δc/c0, to(
1 +

δc

c0

)−2
≈ 1− 2

δc

c0
(18)

Substituting this expression into equation 15 gives

ω2

c20

1− 1(
1 + δc

c0

)2
 ≈ ω2

c20

(
2
δc

c0

)
= 2ω2 δc

c30
(19)

ν(x) ≈ νB(x) = 2ω2 δc

c30
(20)

Figure 13: a) Wavefront due to a source (star) is scattered multiple times by the point scatterers
(blue hexagons); b) Single scattering by the point scatterers (Born approximation). Dashed wavefront
represents the background wave field. Solid circles represent the scattered wave field.
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Including the third term of the binomial series (equation 17) results in a second term in the
expression for the scattering potential that is only one order of magnitude smaller than the first
term. Truncating the binomial series after two terms is therefore a crude approximation. These
two solutions to the nonlinearity problems lead to the Born approximation and change equation
13 to:

GBs (xr,xs, ω) = −
∫
V
G0(xr,x, ω) νB(x)G0(x,xs, ω) d3x (21)

Least squares inverse

We change the notation of the following variables in equation 21 for clarity: G0(xr,x, ω)⇒ Gxr
0

for the receiver wave field, G0(x,xs, ω) ⇒ Gxs
0 for the source wave field, νB(x) ⇒ νB for Born

scattering potential, and scattered wave field GBs (xr,xs, ω) ⇒ ds (where d stands for data).
When substituting the expression for νB and adopting the new notation, equation 21 becomes
(Dai et al., 2010):

ds = −2ω2

∫
V

1

c30
Gxs

0 Gxr
0 δc(x) d3x (22)

Equation 22 can be recognized as a matrix-vector multiplication, since a = Mb is equivalent
to:

a(x′) =

∫
µ(x′, x′′)b(x′′) dx′′ (23)

where a(x′) are the elements of column vector a, µ(x′, x′′) the elements of matrix M, and b(x′′)
the elements of column vector b. Equation 22 rewritten as matrix-vector multiplication with L
containing −2ω

2

c30
Gxs

0 Gxr
0 and δm containing δc for every grid point is:

ds = L δm (24)

The space domain is discretized in N points. For a unique source-receiver pair and single
frequency, the scattered wave field ds is given by:

ds = L δm =

(
−2ω2

c30(x(0))
Gxs

0 (x(0))G
xr
0 (x(0)) . . . −2ω2

c30(x(N))
Gxs

0 (x(N))G
xr
0 (x(N))

)
δc(x(0))

.

.

.
δc(x(N))


(25)

The vector of unknowns is δm. To solve for the model δm that contains the velocity
perturbations δc, the forward problem (equation 24) needs to be inverted. We first define a
residual vector e = ds−L δm and then apply least squares inversion to find δm that minimizes
the norm of the residual squared, ‖e‖2. We start by writing the normal equations. Since L
is not a square matrix and complex, we need the adjoint of L, denoted by L†, instead of the
transpose. The adjoint of a matrix is the conjugate transpose, i.e. (LT)

∗
. An element of L

is of the form −2ω2

c30
Gxs

0 Gxr
0 , whereas an element of L† is of the form −2ω2

c30
(Gxs

0 )∗ (Gxr
0 )∗ with

complex conjugates of the Green’s functions. Multiplying equation 24 by the adjoint of L on
both sides yields the normal equations (equation 26).

L† ds = L† L δm (26)

It is followed by a multiplication by (L†L)−1 on both sides:

(L†L)−1 L† ds = (L†L)−1 L† L δm (27)
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Recognizing the identity matrix in (L†L)−1 L† L on the right hand side of equation 27, the least
squares solution to the normal equations (equation 26) can be written as:

δminv = (L†L)−1 L† ds (28)

Equation 28 minimizes the norm of the residual squared in a least squares sense. The quantity
L†L is the integral blurring operator and is represented by a resolution function (Hu et al.,
2001; Bai et al., 2012). If (L†L)−1, or L†L, is close to the identity matrix, δminv will be well
resolved.

Using the proper inverse (L†L)−1 has some drawbacks. First of all, this quantity is highly
sensitive to perturbations in the data (Bai et al., 2012). Secondly, the inverse of a matrix
exists if the matrix is square, and if it has full rank, which means that the rows or columns are
linearly independent. The former criterion is satisfied, since L†L is a square matrix. The latter
criterion, however, may not be satisfied or the inverse may be too computationally costly to
compute (Bai et al., 2012). The simplest course of action is to approximate (L†L)−1 ≈ I, i.e. to
drop the resolution indicator term. In doing that, we finally arrive at the expression that can
be solved for δc in δmmig:

δmmig = L† ds (29)

Deblurring will be applied to the migrated image at the end with a less costly method than
using the inverse of the integral blurring operator. The adjoint operator L† is called reverse time
migration operator (Dai et al., 2012) or conventional migration operator. The adjoint is safer to
use than the formal inverse, because it amplifies noise to a lesser extent, tolerates imperfections
in the data and does not demand full and complete information from the data (Claerbout &
Fomel, 2008). Equation 29 is an important result that we will use in reverse time migration.

Summing over sources, receivers and frequencies

Next we will see how exactly equation 29 can be solved for δm. For one receiver, one frequency
and one source, the model value δmmig at point xp is given by (returning to the old notation)

δmmig
s,r,ω(xp) =

−2ω2

c30(xp)
G∗0(xp,xs, ω)G∗0(xr,xp, ω) ds(xr,xs, ω) (30)

which can be rewritten using a property of complex conjugates a∗b = (ab∗)
∗

to

δmmig
s,r,ω(xp) =

−2ω2

c30(xp)
G∗0(xp,xs, ω) [G0(xr,xp, ω) d∗s(xr,xs, ω)]∗ (31)

In this study we have multiple sources, receivers and frequencies to sum over. For Ns sources,
Nr receivers and Nω frequency samples, the summation for model point xp is

δmmig(xp) =

Ns∑
i=1

Nr∑
j=1

Nω∑
k=1

−2(ωk)2

c30(xp)
G∗0(xp,xs

i, ωk)
[
G0(xr

j ,xp, ω
k) d∗s(xr

j ,xs
i, ωk)

]∗
(32)

The data vector ds would be very large (with a size of: Ns · Nr · Nω) if it contained data for
every source-receiver-frequency combination. Luckily, the summation over receivers is implicit
in finite difference modelling. Data at the receivers belonging to one source can be injected all
at once and their wave fields are added. The summation over frequencies can be simplified by
evaluating the cross-correlation between source and receiver wave fields at τ = 0, i.e. zero lag
(Claerbout, 1971). If f(τ) is the cross-correlation function, depending on lag time τ , its inverse
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Fourier transform (mapping frequency domain to the time domain) can be written in integral
notation,

f(τ) =

∫
F (ω) eiωτdω (33)

or as Riemann summation.

f(τ) ≈
Nω∑
k=1

F (ωk)e
iωkτ∆ω (34)

By evaluating the Riemann summation at τ = 0, the exponential term becomes equal to one:

f(τ = 0) ≈
Nω∑
k=1

F (ωk)∆ω (35)

Neglecting scalar ∆ω in equation 35 results in the statement: Evaluating the cross-correlation at
τ = 0 is equivalent to summing over all frequency samples. The actual computation is performed
in the time domain, instead of the frequency domain in which all equations have been derived
thus far. The imaging condition for each shot-gather is obtained by cross-correlating in time
at every image location (x,z) between the source and receiver wave fields, followed by image
extraction at τ = 0. Summation over sources results in a final migrated image.

The idea behind all these equations is imaging reflectors in the mantle (δc), using the data
and a background velocity model. As Claerbout (1971, p. 467) put it: “reflectors exist at
points in the ground where the first arrival of the downgoing wave is time coincident with an
upgoing wave.” From the source position, propagate a “delta” pulse (a delta pulse can only be
approximated numerically) in the background medium. From the receiver position, propagate
the time reverse of the seismic data in the background medium. Reflectors are imaged with
correlation techniques and are positioned where these two wave fields interfere constructively
(Claerbout, 1971). Scatterers are thus not included in the velocity model used for FD modelling
of wave field propagation.

In summary, the steps to be taken are:

1. Time-reverse the data (d∗s in the frequency domain equals time reversal in the time do-
main);

2. Propagate time-reversed data from xr ⇒ xp in background medium (G0(xr,xp, ω)d∗s)
resulting in a receiver wave field;

3. Propagate a “delta” source from xs ⇒ xp in background medium, resulting in a source
wave field G0(xp,xs, ω));

4. Cross-correlate G0(xp,xs, ω) with the resulting wave field of step 2 and extract the image
at τ = 0 (zero lag);

5. Sum over all data (sources).

3.1.2 Finite difference model set-up

Finite difference (FD) modelling of source and receiver wave fields and extraction of the imaging
condition are executed in Madagascar software. Because of subsurface imaging purposes of the
software, the Earth is assumed to be spherical (in Cartesian coordinates) and acoustic, even
though it is better approximated by an ellipsoid and predominantly elastic. Reverse time
migration is performed on a 2-D section through the Earth. The intersection between the
section plane and the Earth’s surface is a great circle that runs approximately through the
centres of source locations, of receivers in North-America and of bounce points in the Pacific
Ocean (Figure 14). Sources and receivers have to be added to the model. Projecting source and
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Figure 14: Blue great circle arc from point A to point B represents the intersection between the section
plane and Earth’s surface. All symbols have the same meaning as before.

receiver locations onto the section line along the shortest distance results in a shorter epicentral
distance than the true distance. Reflecting surfaces in the imaging condition are then more
shallow than they should be. Therefore, locations of sources and receivers are rotated onto the
section line with the correct epicentral distance. The background velocity model has a grid
size of 30 by 30 km and is based on the 3-D S-wave velocity model S40RTS (Ritsema et al.,
2011). Velocities in S40RTS are velocity difference percentages with respect to PREM velocities.
Equation 36 is used to obtain absolute S-wave velocites at every grid point xp, in which the
value for the fraction term is taken from S40RTS.

vs(xp) = vs,prem(xp) + vs,prem(xp) · vs(xp)− vs,prem(xp)

vs,prem(xp)
(36)

Three background models were made:

1. Realistic model: Mantle and crust with realistic S-wave velocities computed with equation
36. Very small velocities (0.001 km/s) in the core and atmosphere (not zero, because that
is computationally unstable).

2. Smoothed model: Fifteen-point triangular smoothing filter applied twice to the realistic
model, causing lateral velocity heterogeneities to smear out.

3. Masked model: All mantle velocities higher than 7.3 km/s (close to the core-mantle bound-
ary (CMB)) are set to 7.3 km/s, including the core. All mantle velocities lower than 4.4
km/s (close to the surface) are set to 4.4 km/s, including the atmosphere.

None of the models have a free surface at the top, since the top of the model intersects the
centre of the Earth. Amplitudes at all model boundaries decay exponentially, so there will be
no reflections off the boundaries.

The realistic model (Figure 15) has undesired reflections and multiples off the CMB and
surface, because of the large sharp velocity contrasts. Those unwanted reflections will eventually
enter the imaging condition and distract from the reflectors you want to image. The background
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Figure 15: Realistic velocity model. Velocities are in km/s. A and B represent the ends of the section
line in Figure 14. The star indicates source locations and the pink line the receiver locations.

model through which the source and receiver wave fields are propagated should not have strong
reflectors. Waves in the smoothed model are partly absorbed and reemitted by the CMB and
surface, which is not ideal either for the same reason. The masked model is the best background
model, since it does not have sharp velocity contrasts at the CMB and surface. It does still have
the transition zone discontinuities in it, which are sharp velocity contrasts as well, albeit of a
lower magnitude. Those reflections carry less energy than the direct wave. A possible solution
to this problem is local or general smoothing. The background model in a study by Cao et
al. (2010) is reference Earth model ak135. They put gradual velocity transitions instead of
velocity discontinuities at the depths of transition zone discontinuities. It is also required here,
because the transition zone discontinuities are strong enough to cause reflections. Therefore, a
three-point smoothing filter is applied to the masked model. All further imaging is done in the
smoothed masked model (Figure 16) and the other two models are discarded.

The data injected at the receiver side are processed in a similar fashion to processing in
the regular stacking procedure. I have generated four different data sets, in order of increasing
processing intensity:

1. Raw transverse component data without any filtering, cutting or normalization.
2. Bandpass filtered (15-75 sec), cut -300 to +60 seconds around theoretical SS arrival

(ttimes) data. This time window includes both the SS wave and its precursors.
3. Bandpass filtered (15-75 sec), cut -300 to -60 seconds around theoretical SS arrival (ttimes)

data. This time window does not include the SS wave, but encompasses the precursor
window.

4. Bandpass filtered (15-75 sec), cut -300 to -60 seconds around theoretical SS arrival (ttimes),
normalized with respect to the SS magnitude and polarity reversed for 22 out of 1281 seis-
mograms.

The last data set with amplitude normalization and polarity reversal is most like the processed
data used in slant-stacking in the first part.

As source wavelet and delta pulse approximation, a Ricker wavelet is implemented. This type
of source simulates an explosion, emitting P-wave energy through the acoustic medium. The
peak frequency (most energetic frequency) of the Ricker wavelet corresponds to the dominant
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Figure 16: Masked velocity model with smoothing. Velocities are in km/s. A and B represent the
ends of the section line in Figure 14. The star indicates source locations and the pink line the receiver
locations.

frequency in the filtered data revealed by Fourier transformation: 0.02 Hz. To make sure that
the frequency is not too low to leave an imprint on the width of reflectors in the imaging
condition, several higher frequencies were tested. It turned out that 0.02 Hz is not too low.
For every source, the seismic data are reversed in time and given to the receivers as input.
The FD model calculates the source and receiver wave fields at every time increment ∆t = 1
second. The zero-lag cross-correlation is implemented by first reversing the source wave field
in time, followed by multiplication of the time-reversed source wave field and total receiver
wave field at every time step. The wave field at each (x,z) coordinate is then stacked over time
(Chattopadhyay & McMechan, 2008), followed by a summation over the sources.

image(x, z) =
∑

sources

∑
time

s(x, z, t) r(x, z, t) (37)

Or in the frequency domain:

image(x, z) =
∑

sources

∑
freq

S(x, z, ω)R(x, z, ω) (38)

The source wave field S(x, z, ω) in equation 38 corresponds toG∗0(xp,xs
i, ωk) in equation 32. The

receiver wave field R(x, z, ω) in equation 38 corresponds to
Nr∑
j=1

G0(xr
j ,xp, ω

k) d∗s(xr
j ,xs

i, ωk)

in equation 32. Summation over receivers is implicit in R(x, z, ω).

3.1.3 Numerical stability

The FD scheme used here is conditionally stable, meaning that for a given grid spacing, ∆t
must be small enough to avoid numerical instability. When ∆t used to calculate wave fields
at different time steps is smaller than ∆t = 1 of the data, the data must be resampled at a
higher rate. Interpolation increases the input sampling rate to a higher output sampling rate.
The Shannon-Nyquist sampling theorem states that a signal can be perfectly reconstructed,
i.e. without aliasing, if the highest frequency in the signal is smaller than fs/2, where fs is
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the sampling frequency (Shannon, 1949). The highest frequencies in the unfiltered and filtered
signals are 0.5 Hz and 0.067 Hz, respectively, which are both smaller than a Nyquist frequency
of 5 Hz, corresponding to a sampling frequency of 10 Hz (∆t = 0.1). For a resolution of 30x30
km, resampling the data is not required. For 10x10 km, however, resampling is required.

Another factor to take into consideration is an artefact called numerical dispersion. It is
caused by interpolation errors used in approximating derivatives of the true wave field. Space
and time discretization affect dispersion. Too few samples per wavelength in space and period
in time lead to this numerical artifact. A source wavelet frequency of 0.02 Hz did not lead
to numerical dispersion, whereas increasing the frequency to 0.04 Hz did, which is another
argument in favour of using 0.02 Hz. An increase in the frequency of the source wavelet leads to
less samples per wavelength and therefore to numerical dispersion. The solution therefore lies
in choosing a sufficiently high resolution grid and small time step. A rule of thumb is to get at
least 10 samples per wavelength in space and period in time. Fourier transformation of the data
to the frequency domain showed that the dominant frequency in bandpass filtered data (15-75
sec) is 0.02 Hz, corresponding to a period of 50 seconds. So the time step should be 5 seconds
or less. A time step of 1 second satisfies this condition. For an average S-wave velocity of 6
km/s, the wavelength would be 300 km. The maximum grid spacing would be 30 km. This ∆x
might be too large for the supposedly km-scale variations in transition zone topography that
we want to image. However, decreasing the grid size would probably not lead to the desired
increase in topography resolution, because of the long-period nature of the data. The highest
frequency in the filtered data is approximately 0.067 Hz (period of 15 seconds) and requires a
maximum grid spacing of 9 km. So for the maximum frequency there would not be 10 samples
per wavelength in space in the current 30x30 km grid cells.

For numerical stability, the Courant criterion needs to be satisfied. In 1-D the Courant
criterion is defined as:

C =
u∆t

∆x
≤ Cmax (39)

It means that for a given model velocity u, the time step ∆t must not be too large and grid
spacing ∆x not be too small. Furthermore, if the velocity model contains large velocity contrasts
between a cell and neighbouring cells, the wave field will become unstable once it reaches this
velocity contrast. Problems with the Courant criterion and velocity contrast were encountered
during synthetic modelling experiments. Point scatterers with a large velocity contrast between
the scatterer and the surrounding cells were not stable. Once the source wave field arrived at
such a scatterer, the wave field became unstable. Smoothing of the point scatterers smeared out
the velocity amplitude over a larger area and ensured a lower velocity gradient between cells.

3.1.4 Improving the imaging condition

Several techniques can be applied to improve the resulting imaging conditions. Differences in
phase amplitudes could come from coupling between receiver and the ground (although the sig-
nals have been deconvolved for impulse response), local impedance contrasts (hard rock vs soft
rock), take-off angle and geometrical spreading. The data have 3-D geometrical spreading, while
the FD modelling is performed in 2-D. A brute correction for taking geometrical spreading from
3-D to 2-D is done by scaling every time sample amplitude of receiver data by a factor

√
time.

Travel time is proportional to R in a homogeneous medium, with R being radial distance to
the source. Geometrical spreading is proportional to 1/R in 3-D and 1/

√
R in 2-D. Therefore,

multiplying by
√

time ≈
√
CR approximates 2-D geometrical spreading.

To account for the total energy per event, the sum over sources is weighted by the total
power of the signal at 19 shared receivers between all three events. For each of the four data
sets, these weights are calculated separately. Visual inspection of the weighted data of all three
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events in one image without clipping served as a sanity check.
Sharpening the imaging condition can be done with the triangle smoothing filter in Mada-

gascar by subtracting an extremely smoothed version of the image from a gently smoothed
version. The Gaussian smoothing filter is constructed by convolving two identical n-point tri-
angular wavelets. The number of points in this filter determines the degree of smoothing. More
points results in more smoothing, because the amplitude of one image point is spread out over
a larger area.

Two additional operations that will improve the imaging condition are source illlumina-
tion and deconvolution normalization (Claerbout, 1971). Dividing the cross-correlated imaging
condition by source illumination improves the accuracy of reflectivity information in the cross-
correlation image. It is a way of dealing with geometrical spreading in the model. Parts of
the cross-correlated image close to the source are highlighted stronger, simply because they are
closer to the source and therefore have experienced less spreading of energy. Other parts that
are highlighted more strongly are conduits where energy “escapes” from the model due to high
local wavefront curvature. Source illumination is equal to autocorrelation at zero lag of the
source wave field. It is computed in the frequency domain, because autocorrelation in the time
domain did not yield a plausible result. The source wave field is firstly transferred to the fre-
quency domain by taking the Fourier transform: s(x, z, t) → S(x, z, ω). Then the source wave
field is multiplied by its complex conjugate, yielding the power of the source wave field in the
frequency domain: S(x, z, ω)S∗(x, z, ω) = |S(x, z, ω)|2. This operation is equivalent to taking
the Fourier transform of the autocorrelation in the time domain, according to the convolution
theorem. Summing over all frequencies is the same as evaluating the autocorrelation at zero lag
(τ = 0).

image(x, z) =
∑

sources

∑
freq

R(x, z, ω)S∗(x, z, ω)〈 ∑
freq

|S(x, z, ω)|2
〉
smooth

(40)

Figure 17: Smoothed and normalized source illumination map for masked velocity model, source wavelet
peak frequency 0.02 Hz and source location of the 2008-06-01 earthquake. Clipping percentage is 99.

If the amplitudes in the cross-correlated image would have had any physical meaning, di-
viding it by the source illumination strength would have yielded an image with the same unit
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(dimensionless), sign and scaling as the reflection coefficient (Chattopadhyay & McMechan,
2008). However, the absolute amplitudes in the cross-correlated image do not have any physical
meaning, because the Earth’s interior is not acoustic. Therefore, the source illumination map
can safely be normalized by the largest value, before it is applied to the cross-correlation images.
The irregularity of the source illumination map shows clearly that the velocity model is hetero-
geneous (Figure 17). A homogeneous velocity model would have yielded a circular symmetric
source illumination map. The high-power conduit going down from the source (Figure 17) is a
high curved wavefront that travels outside of the Earth.

A sharper image can be obtained by deconvolution imaging. It is linked to the inverse of
the blurring operator, (L†L)−1, that was dropped in the derivation of an expression for reverse
time migration because of its complicated and costly computation. Each diagonal element of
the matrix (L†L) is a summation over sources, receivers and frequencies for one point xp in the
model:

Ns∑
i=1

Nr∑
j=1

Nω∑
k=1

(ωk)4G0(xp,xs
i, ωk)G0(xr

j ,xp, ω
k)G∗0(xp,xs

i, ωk)G∗0(xr
j ,xp, ω

k) (41)

Recognizing that G∗0(xp,xs, ω) is the source wave field S, it can be rewritten as:

Ns∑
i=1

Nr∑
j=1

Nω∑
k=1

(ωk)4
∣∣∣S(xp,xs

i, ωk)
∣∣∣2 ∣∣∣G0(xr

j ,xp, ω
k)
∣∣∣2 (42)

The matrix has off-diagonal elements as well (Nemeth et al., 1999), but under the assumption
that (L†L) is a diagonal matrix, its inverse (L†L)−1 is simply the reciprocal of equation 42.

Ns∑
i=1

Nr∑
j=1

Nω∑
k=1

(ωk)−4
∣∣∣S(xp,xs

i, ωk)
∣∣∣−2 ∣∣∣G0(xr

j ,xp, ω
k)
∣∣∣−2 (43)

Geometrical spreading is frequency dependent, which is another reason for performing wave
equation migration. It can be shown that the power of the source wave field varies with fre-
quency. So instead of obtaining one image of source wave field power by averaging over all
frequencies as in source illumination, calculating the power per frequency is more accurate.

Deconvolution is the reverse operation of convolution. It is used in signal processing when
the original signal x(t) is modified by the instrument or recorder to y(t) (equation 44). De-
convolution filters out this instrument response by finding a wavelet f(t) that becomes a delta
function when convolved with a(t) (equation 45).

y(t) = x(t) ∗ a(t) (44)

y(t) ∗ f(t) = x(t) ∗ a(t) ∗ f(t) = x(t) ∗ δ(t) (45)

For deconvolution imaging, we have to find a filter f(x, z, t) that transforms the source wave
field s(x, z, t) into a delta function in time (equation 46). Equivalently, in the frequency domain
(equation 47), find F (x, z, ω) that gives 1 when multiplied with the source wave field.

f(t) ∗ s(t) = δ(t) (46)

F (x, z, ω)S(x, z, ω) = 1 (47)

So F (x, z, ω) is the reciprocal of S(x, z, ω). Substituting F (x, z, ω) = 1/S(x, z, ω) for S(x, z, ω)
in equation 38 and assuming a sum over receivers, as is implicitly implemented in the finite
difference model, expression 38 changes into:

image(x, z) =
∑

sources

∑
freq

R(x, z, ω)

S(x, z, ω)
=

∑
sources

∑
freq

R(x, z, ω)
S∗(x, z, ω)

|S(x, z, ω)|2
(48)
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The extra term that has appeared in equation 48 w.r.t. equation 38 is the reciprocal of the
power of the source wave field. This extra term appears as well in equation 43 for diagonal
elements of (L†L)−1, the deblurring operator. That is why deconvolution imaging creates a
sharper image. It compensates for the distortions in the images due to limitations in recording
time, bandwidth and aperture by using the resolution kernel (Bai et al., 2012). However,
deconvolution approaches are ill-posed, making the resulting deconvolved images sensitive to
noise (Bai et al., 2012).

3.2 Results: migrating real data

After executing the five steps outlined at the end of the Theory section for each of the four
different data sets, the resulting imaging conditions are analyzed. Firstly, the first data set (raw
data) is migrated. The most prominent signal in this data set is a high-amplitude surface wave
at 3000-3500 seconds after the earthquake origin time. Surface waves are non-scattered data, so
they should ideally not be in the data used for migration. As expected, the imaging condition
for migrated raw data does not show any transition zone discontinuities (Figure 18a). The
surface waves are projected to the prominent banana-doughnut-shaped sensitivity kernel (Figure
18a) which does not follow the Earth’s surface, probably because the model is not suitable for
projecting surface waves. It looks like a sensitivity kernel for a direct wave propagating in a
linear fashion from sources to receivers (Tromp et al., 2005), but since the data do not contain
such an arrival, it is meaningless. The only coherent physical feature is a reflector near the
Earth’s surface due to the constructively interfering SS phase (following the green dashed line
representing the Earth’s surface in Figure 18a).

Since the imaging condition for raw data is overpowered by the projection of surface waves,
the second data set with filtered SS plus precursor window is migrated next. A reflector near the
location of the Earth’s surface (green dashed line) that partly follows the curvature of the Earth’s
surface is observed in the imaging condition for a migrated filtered SS plus precursor window
(data set 2; Figure 18b). This reflector appears stronger than in the previous imaging condition.
Black areas in the imaging condition have negative amplitudes, whereas white areas have positive
amplitude. Since nearly all data have negative SS and precursor polarities (opposed to positive
peaks in the stacking approach), black lines are interpreted the reflectors. The surface reflection
follows the green dashed line for only a specific part of the section. Where it deviates from the
theoretical surface of the Earth due the limited extent of the receiver array, other reflectors
will probably deviate from the true reflectors as well. Therefore, only parts of the imaging
conditions in the black boxes in Figure 18 should be interpreted.

The SS surface reflection dominates the imaging condition, rendering the transition zone
discontinuities invisible, so in data set 3 the data are cut around the precursor window only,
removing the SS arrival. The imaging condition for a migrated filtered precursor window (data
set 3) shows three reflectors near transition zone depths (Figure 18c). The surface reflector that
appeared in the previous two imaging conditions (Figures 18a and 18b) has indeed disappeared
by cutting out the SS arrival. Two out of three reflectors align with the depths of the 410- and
660-discontinuities (yellow and red dashed lines in Figure 18c, respectively). The third reflector
is situated between 410 km depth and the surface at ca. 200 km depth. Normalizing w.r.t. SS
and reversing polarity if needed (data set 4) does not yield a visually different image (Figure
19a), probably because only 22 out of 1281 seismograms have had their polarity reversed and
amplitudes of the SS phase vary at most one order of magnitude and are thus very similar
(Figure A.1).

Source illumination and deconvolution normalization, as explained in the previous section,
can be applied to the imaging condition. Deconvolution imaging has not been implemented
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Figure 18: Imaging conditions with source wavelet peak frequency 0.02 Hz and migrated data of a)
data set 1 (raw data); b) data set 2 (SS plus precursor window); c) data set 3 (filtered precursor window).
Dashed lines represent the Earth’s surface (green), the 410-discontinuity (yellow) and 660-discontinuity
(red). A and B are the ends of the section line drawn in Figure 14. Black boxes outline the part in which
the SS reflector aligns with the green dashed line.



Figure 19: a) Imaging condition for migrated data set 4 (normalized, filtered, polarity reversed precursor
window) and source peak frequency 0.02 Hz, divided by source illumination. b) Zoomed in on the black
box of a). Arrows indicate the presumed peaks of the reflections, with red for the 660-reflection, yellow
for the 410-reflection and blue for the reflection at ca. 200 km depth. Black dashed circles highlight
changes in the 410-discontinuity depth.

successfully yet, whereas source illumination normalization has been implemented. The source-
normalized image of the migrated precursor window has subdued reflections near the source
location and wherever the power of the source wave field is high. This is easily spotted in a
comparison between Figure 18c and Figure 19a. The reflectors that are not physical (mostly
outside of the Earth near point A) and had high amplitudes purely for the source wave field
having high power there, have faded away in Figure 19.

Figure 19b shows a zoomed in portion of the source-normalized imaging condition. The
two reflections representing the transition zone boundaries at roughly 410 and 660 km depth
have a negative (black) peak, whereas the most shallow reflection at roughly 200 km depth
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seems to have a positive (white) peak. Peaks of the reflections are indicated with arrows. The
410-reflector seems to show some topography; it appears to move closer to the 660-discontinuity
in the left black circle in Figure 19b, and move farther away from the 660-discontinuity in the
circle towards B.

3.3 Results: synthetic modelling experiments

Several synthetic modelling experiments are set up for resolution tests and to explain features in
the imaging conditions gathered from migrating real data. For these experiments, source wave
fields are propagated through a background velocity model with and without added artificial
reflectors. The difference between the synthetic data generated at the receivers in both models
is the scattered data caused by these artificial reflectors. The steps that follow are equal to
the steps taken for migrating real data. The scattered data is reversed in time and propagated
through the background model from the receiver side, creating a receiver wave field. Source
wave fields are also propagated through the background medium. The imaging condition is
extracted in the usual way, by cross-correlating source and receiver wave fields at zero lag and
summing over the sources.

To test resolution, point scatterers are added to the background velocity model (masked
model, number 3 in list of models). The scatterers are placed at the boundaries of the transi-
tion zone, with four at 410 km and four at 660 km depth (Figure 20a). They are smoothed to
keep the solution from becoming numerically unstable. In the resulting imaging condition for
the real receiver array, the individual scatterers are highly distorted (Figure 20b). Therefore,
images obtained for real data will be blurred as well. It implies that the amplitude at a point
in the imaging condition is a function of the amplitudes at multiple surrounding points. The
blurred point scatterers merge into a reflector appearing continuous, because of the source-
reflector-receiver geometry. Even only two point scatterers will form a continuous reflector. To
test whether poor resolution results from the limited extent of the receiver array, receivers are
placed along the Earth’s surface in a synthetic experiment. If receivers are placed everywhere
at the Earth’s surface, i.e. along a half-circle in the model, individual point scatterers are
distinguishable (Figure 20c). When receivers are placed in a full enclosing circle around the
scatterers, they would appear as points. Due to finite frequency, the point scatterers would still
be a bit blurred and not be perfect points.

Another test that can be done with synthetic modelling, is adding a curved reflector to the
background model (Figure 21a) and apply migration. If the curvature is well-resolved in the
imaging condition, it could be possible to image curved reflectors for real data. Unfortunately,
the curved reflector does not appear curved in the imaging condition (Figure 21b). So if there
would be any large scale undulations in the discontinuities, they would not be well-resolved.
At least one of the reasons is limited aperture, because when receivers are placed at the entire
Earth’s surface, most of the reflector’s curvature is resolved in the imaging condition (Figure
21c).

To make sense of the features observed in the data imaging condition, two artifical strong
discontinuities at 410 and 660 km depth are added to the background model in a final synthetic
modelling experiment (Figure 22a). As we have seen, in the imaging condition for a migrated
precursor window (data sets 3 and 4), three reflectors light up (Figure 19b). In the imaging con-
dition for synthetic modelling with two discontinuities, three reflectors light up as well (Figure
22b). When the two images are compared, the three reflection depths at roughly 200, 410 and
660 km correspond to each other, with a slight phase shift. This argument makes it even more
plausible to say that the deepest reflector (top reflector in the image) is the 660-discontinuity
and the middle reflector is the 410-discontinuity. The 410-reflector is somewhat weaker than
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Figure 20: a) Masked velocity model with artificial point scatterers at 410 and 660 km depth. Velocities
are in km/s. It is used for synthetic modelling, yielding the imaging conditions for b) the real receiver
geometry; c) receivers placed along the entire Earth’s surface. The point scatterers are distinguishable
in c), in contrast to the limited aperture of the real receiver array in b). The point scatterers do not
appear as points in c), because the receivers form a half-circle around the scatterers, rather than a full
circle.



Figure 21: a) Masked velocity model with a strongly curved artificial discontinuity at a mean depth of
410 km. Velocities are in km/s. It is used for synthetic modelling, yielding the imaging conditions for
b) the real receiver geometry; c) receivers placed along the entire Earth’s surface. The curvature of the
discontinuity is recovered in the imaging condition in c).



Figure 22: a) Masked velocity model with artificial discontinuities at 410 and 660 km depth. It is used
for synthetic modelling, to yield b) the imaging condition, with source wavelet peak frequency 0.02 Hz.
An extra reflector appears vaguely in between the surface (green dashed line) and 410-reflector (yellow
dashed line).

the 660-reflector. It is probably caused by the data rather than blurring. The point scatterer
resolution test showed that blurring affects features at 660 km depth as badly as at 410 km
depth. Furthermore, the S410S phase has on average a smaller amplitude than S660S in the
stacked data of Figure 8c.

The most shallow reflector at ca. 200 km depth in Figure 22b (lowest in the image) is less
prominent than the other two in the synthetic image and appears to have a negative polarity,
instead of positive in Figure 19b. The amplitude of the 200-reflector is one order of magnitude
smaller than the amplitudes of the transition zone discontinuities. Since only scattered data
by the artificially added reflectors are migrated for the synthetic image, this reflector must be
related to scattering from the artificial reflectors. It is most likely a multiple following the
path depicted in Figure 23, which is projected to a position closer to the Earth’s surface by
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migration, because it arrives later in the data. Cutting the real data from -300 to -110 seconds
with respect to the theoretical SS arrival, instead of -300 to -60 seconds, gets rid of the most
shallow reflector. This proves that it is a coherent phase that arrives later in the data than the
two transition zone SS precursors, S410S and S660S. However, a multiple would be expected
to have a smaller amplitude than the underside reflections that have only one bounce point.
The data image does not show this, contrary to the synthetic image. Furthermore, a multiple
would have a negative polarity, as in the synthetic image. The reflection has a positive polarity
in the real data image. The origin of this extra reflector in the data will be discussed in the
Discussion.

Figure 23: Ray path (solid black line) of the multiple reverberating once between the 410- and 660-
discontinuities. The phase is projected according to the dashed lines to the location of the red line in
migration, which explains the vague reflector in between the surface and 410-discontinuity in synthetic
imaging.
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4 Discussion

4.1 Interpretation of stacking results

In part 1, S410S and S660S have been robustly resolved using conventional stacking analysis
in the slowness-time domain, according to an error analysis (Figure 12). Although this error
analysis (wrongly) assumes a normal distribution and does not fully include several assumptions
made in the slant-stacking approach, which will be discussed later, it gives an indication of
robustness of the peaks. The presence and non-splitting of S520S in the most southern bins in
the study area is consistent with observations from Deuss & Woodhouse (2001). They did not
find this mid-transition zone discontinuity near the equator in the Pacific, but did observe it
further away from the equator.

Transition zone thickness and depths of the 410- and 660-discontinuity have been inferred
from slant-stacking. Of these three variables, transition zone thickness is most reliable. When
calculating transition zone thickness, velocity corrections largely cancel out, because S410S and
S660S follow similar paths. It is mainly the velocity structure in the bounce point region that
affects S410S and S660S differently (Lawrence & Shearer, 2008). Absolute discontinuity depth
depends more on the velocity model used to go from time to depth. Near the three hotspots, the
transition zone is slightly thinner (1-5 km) than the global average (Figure 9). A thin transition
zone would correspond to an intermediate to deep hotspot origin in an olivine-dominated mantle
composition. However, this interpretation can change when uncertainties are accounted for, to
be discussed below.

A regional study of the same three hotspots (Marqueses, Tahiti and Pitcairn) following a
similar stacking procedure, found a thickness of 213 ± 5 km for the transition zone beneath
Tahiti (Niu et al., 2002). This is much thinner than the transition zone thickness of the bin
closest to Tahiti (bin 10), which has a thickness of 241 km. In the study by Niu et al. (2002)
it is mainly the result of a deep 410-discontinuity at 448± 4 km depth. For the other hotspots,
the transition zone thickness did not show any clear anomalies. The most logical explanation
put forward by the authors is a low velocity anomaly caused by a mantle plume that has
not been accounted for in the time-to-depth conversion. This velocity anomaly would lead
to 10 km more shallow discontinuities and the situation of Figure 1B for olivine-dominated
discontinuities. Combined with the observation of Montelli et al. (2006) of a well-resolved
low velocity conduit in tomographic images below Tahiti, it is plausible that Tahiti is fed by a
mantle plume. Discrepancies between this study and that of Niu et al. (2002) could come from
differences in the stacking method and/or variations in data coverage and azimuths of source-
receiver pairs, since data coverage here is much more sparse around the hotspot locations and
azimuths are more aligned than in their study.

There are some assumptions made in the slant-stacking approach, that are relaxed in the
migration approach. First of all, the slant-stacking method does not account for waveform
propagation effects as function of frequency. These propagation effects could have shifted the
position of the precursor peaks, thereby shifting the discontinuity depths.

Secondly, the velocity model used for inferring discontinuity depths is an assumption that
affects the resulting discontinuity depths. In this study the 1-D velocity model PREM was used.
Because using PREM in converting from time to depth does not account for 3-D and crustal
velocity structure, resulting discontinuity topography may be the result of anomalous velocity
structure. On the ray paths from source to receivers, waves encounter high-velocity zones in
the form of subducted slabs near New Zealand and the Pacific coast of North-America, and
the cold thick North-American craton. However, most of the mantle velocities in the Pacific
Ocean are lower than the 1-D average, according to S40RTS (Ritsema et al., 2011). In a PP
and SS precursor study of the transition zone beneath India (Lessing et al., 2014), travel time
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corrections for crust and mantle heterogeneities resulted in a systematic depth error estimation
of ±8 km in discontinuity depth. In a receiver functions study of mantle discontinuities beneath
Iceland (Jenkins et al., 2016), accounting for the crust and 3-D variations in velocity made the
depressions of both mantle discontinuities found with PREM less extreme (ca. 30 km less deep),
while transition zone thickness remained relatively invariant to the choice of velocity model. It
should be noted that low velocity anomalies are up to -11% in the Icelandic region (Rickers et
al., 2013), so for the Pacific region the effect of velocity model will likely be smaller.

Absolute depths should nevertheless be interpreted with care, even in the studies that have
used a 3-D velocity model to go from time to depth. For SS precursors, the time residual between
measured travel time and predicted travel time by ray theory through a 1-D background model
is the combined result of 3-D heterogeneities and discontinuity topography. A complication for
observing discontinuity depths is that the travel time residual cannot be linearly decomposed
into a topography part and a 3-D velocity structure part (Koroni & Trampert, 2016). To
properly infer discontinuity topography, one needs to use non-linear techniques, such as full
waveform inversion, to obtain both topography and 3-D velocity structure (Koroni & Trampert,
2016).

Other assumptions are made in dividing the study area into bounce point bins. In the high
frequency approximation, i.e. ray theory, the rays bounce midway at a single point and their
sensitivity is limited to that point. Seismograms are grouped according to their ray theoretical
bounce point in the stacking procedure, whereas in reality, the bounce points are not single
points. Wave energy interpreted as precursor arrivals recorded at the receiver may not have
originated from the bounce point location. Rather, it may have originated from a scatterer far
away in the X-shaped Fresnel zone. Excluding seismograms from stacking that have their ray
theoretical bounce point just outside of a bin/cap does not take all the energy in the bin into
account. An improvement on this aspect could be weighting the data by distance from bounce
point to the stack location (Shearer et al., 1999; Niu et al., 2002) or including the sensitivity
kernels of each trace in stacking (Lawrence & Shearer, 2008).

4.2 Interpretation of migration results

In part 2, migration was applied to the same data set. In selecting an appropriate time window,
i.e. the precursor window, the 410- and 660-discontinuities can be imaged. The resulting imag-
ing condition in the migration approach (Figure 19b) shows topography of the 410-discontinuity
in the black circles. Projection of the locations of the two black circles onto the section line
gives locations on either side just outside of the bounce point covered region of Figure 14. This
raises the question whether the observed topography is due to true discontinuity topography or
due to reaching the limits of the region covered sufficiently by the data. The discontinuities in
the synthetic image of Figure 22b do not show topography in the locations of the black circles,
which is an argument in favour of real discontinuity topography. However, whether the migrated
image of the data is actually showing discontinuity topography or an imaging artefact, requires
further investigation.

An extra reflector at approximately 200 km depth can be observed in imaging conditions
both for real and synthetic data. In synthetic imaging, it is a multiple, since it is an order of
magnitude smaller than the synthetic 410- and 660-discontinuities and has the same polarity.
In real data, it could be a S220S precursor, reflected off the Lehmann discontinuity, which has
been observed in the study area (Deuss & Woodhouse, 2004). However, the polarity of the extra
reflector seems to be opposite to those of the 410- and 660-discontinuities, and its amplitude is
1.5 times larger than of the 410- and 660-discontinuities, which makes the S220S precursor hy-
pothesis illogical. The answer can be found in the stacking results, where a large negative peak
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occurs around -100 seconds relative to SS, especially visible in Figures 12 and 7, corresponding
to ca. 200 km depth. It has an opposite polarity to the S410S and S660S precursors and a larger
amplitude. The peak is most likely a consequence of stacking, since it is not distinguishable in
individual seismograms. It is probably part of the long-period down swing before the SS arrival
(Schmerr & Garnero, 2006).

Poor resolution inferred from scatterer tests and other synthetic modelling experiments
illustrates the resolution challenge, since the amplitude of one image point depends on the sur-
rounding image points as well. The high degree of blurring in this study is a consequence of
migration with limited aperture and finite frequency approximation and without the integral
blurring operator. Wave energy is not focussed in an infinitely narrow beam but rather it is
spread over an area. Furthermore, migration allows for waveform propagation effects as function
of frequency and at finite frequency ranges. Methods based on ray theory cannot adequately
model wave propagation effects in complex media (Rickett, 2000). That is the reasoning for
using a wave equation migration approach. However, depth of the reflectors is still dependent
on the background velocity model. The migration background model (PREM + S40RTS) is
more laterally heterogeneous and arguably more realistic than PREM alone, which is used in
slant-stacking.

Another assumption in migration is that the medium is acoustic, because we have used the
scalar wave equation as starting point of the theoretical derivation. It implies that the waves
are purely compressional and the shear modulus is equal to zero. Since the real data contain
mostly S-wave energy, imaging condition amplitudes should not be interpreted quantitatively.
The positions of scatterers can still be interpreted qualitatively. How can we justify using a
scalar wave equation for S-waves? The homogeneous wave equation for elastic wave propagation
in an infinite homogeneous isotropic medium is given by (Aki & Richards, 2002):

ρ
∂2u

∂t2
= (λ+ 2µ)∇ (∇ · u)− µ∇× (∇× u) (49)

where µ and λ are the Lamé parameters and ρ the density. The total vector wave field u can
be decomposed into a scalar (φ) and vector (ψ) Helmholtz potential:

u = ∇φ+∇× ψ (50)

in which ∇φ and ∇× ψ are the P-wave and S-wave components of u (Aki & Richards, 2002).
Solving for the vector potential (S-wave component) results in the following differential equation
for S-wave potential, with β =

√
µ/ρ as S-wave velocity.(

∇2 − 1

β2
∂2

∂t2

)
ψ = 0 (51)

Note the similarity to equation 3 in the frequency domain. Equation 51 has vector potential ψ
instead of a scalar potential, as in equation 3 used in migration. The solution to equation 51
is a three-component vector. Reducing the vector wave equation to a scalar wave equation for
S-waves is equivalent to only taking one of the three components into account. For isotropic
media, this approximation is justified.

4.3 Future research

Two methods have been used to image transition zone discontinuities. The first method, slant-
stacking, is a tried and tested approach (e.g. Lawrence & Shearer, 2008; Deuss, 2009; Saki et
al., 2015), whereas reverse time migration for global seismology is a novel approach. This study
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raises opportunities for further research into these methods. Assumptions have been made in
both methods. However, their effects have not been quantified. It would, for example, be
useful to do the time-to-depth conversion for the stacked traces with different velocity models,
accounting for various degrees of heterogeneity, and see how much the outcome changes.

As of yet, it is hard to truly compare the outcomes of the two methods, because they live in
different coordinate frames and because of different implicit assumptions regarding wave propa-
gation regimes. To make the results more comparable, discontinuity depths should be extracted
from the migrated images by making radial cross-sections through the migrated images. To
make the two methods more similar, migration could be done in 3-D for the same 15 bounce
point bins employed in stacking. Migration was done in 2-D, which required 3-D to 2-D con-
versions and geometrical spreading corrections. Now that we know the discontinuities can be
imaged, migration can be done directly in 3-D to see topographic changes in the entire study
area, if resolution permits it. Resolution of the images can be improved further by techniques
such as deconvolution imaging, as explained in the section on improving the imaging condition.

Finally, a more extensive receiver array would improve the resolution of the images, as
synthetic modelling experiments have shown. The current source-receiver configuration has
too little coverage. Acquisition of a wider receiver array is limited by the preferred epicentral
distance range of 100-160 degrees for SS precursors. Fortunately, migration can be used to
include different phases that are more suitable for smaller epicentral distances, such as ScS
reverberations.

5 Conclusion

The transition zone discontinuities beneath three hotspots in the Pacific Ocean have been suc-
cessfully imaged with SS precursors in slant-stacking and reverse time migration. Data of three
earthquakes near New Zealand were divided into spherical caps of 10° width according to their
geometrical bounce point and subsequently stacked with slowness corrections. Stacking results
show that the transition zone is 1-5 km thinner in bounce point bins covering the three hotspots
(Marqueses, Tahiti and Pitcairn), possibly indicating a hot olivine-dominated transition zone
and mantle plume origin. The 410-discontinuity is 1-4 km deeper than the estimated global
average for Tahiti and Pitcairn, whereas the thinner transition zone for Marqueses is caused
by a 7 km more shallow 660-discontinuity than average. These results may change with the
velocity model that is used to convert time of the precursors to discontinuity depth.

Reverse time migration has been applied to the same data. It relaxes some of the assump-
tions made in slant-stacking, because it is a finite frequency method that takes the Fresnel zone
and waveform propagation effects into account. Although they might show some topography
of the 410-discontinuity, the resulting migrated images are blurred, because of limited aperture
and finite frequency wave propagation. Synthetic modelling experiments show that the migra-
tion method itself will probably be more successful for a wider receiver array than the current
set-up.
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Figure A.1: Amplitudes of SS picks before normalization for all three events.
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