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Abstract

Predator prey population dynamics can be modeled using a structure that
is bought forth by characteristics of the individual. In this thesis we explore
such individual state based models by both providing a theoretical back-
ground and by examining satiation and handling time based models. The
former entails providing a framework underlying such models. The latter
entails deriving properties of these models from mathematical derivations
inspired by intuition from simulations. In doing so we clarify how one can
use such models to describe and analyze a population dynamic both from a
theoretical and practical point of view.
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1 Introduction

Ecosystems exist in all shapes and sizes. They can have just a few scarcely
interacting organisms, but can also have a variety of organisms whose exis-
tence is tightly interwoven. The way in which they are interwoven can vary.
Some organisms work together while others compete for the same source of
food. Of our particular interest however are predator prey relations. In such
relations predators are dependent on the availability of prey as a source of
food. When there is an abundance of prey, predators can thrive as a result
of the plentiful food availability. When prey are scarce, the capacity of this
ecosystem is lower and thus the population size of predators is bounded.

Ecologists are often interested in modeling populations of predators and
their prey. The way in which biological and environmental processes influence
the size and structure of a population is called a population dynamic. When
modeling a population dynamic one must therefore be able to determine the
most important factors and incorporate these in the model. Predator prey
relations are very diverse and for that reason formulating a model can be
difficult. In general however, the predator and prey population sizes have a
large influence on each other by both enabling and restricting growth. This
influence is often exploited in models as it can adequately model a population
dynamic. More advanced models however try to incorporate various different
influences as well.

One such advanced way of modeling is by incorporating the structure of
a population which is brought forth by characteristics of the individual. For
example: a population of animals might be structured by their age, behaving
differently as they get older. Populations whose structure seem to have an
influence on a population dynamic can thus be described using a model that
utilizes this underlying structure. These kinds of models are called structured
population models. In this thesis we aim to explore structured population
models to provide insight into the workings and the use of such models. We
will explore structured population models as follows.

Chapter 2 is centered around the theoretical background of structured
population models. We will explain how individual characteristics can be
used to model an entire population. Then a theoretical framework underlying
structured population dynamics is constructed. This is of our interest from
both a theoretical and a practical point of view, as it enables us to construct
custom models and helps us understand examples of structured population
models. In chapter 3 and 4 we put theory to practice as we will discuss
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examples of structured population models based on satiation and handling
time. This is done with mathematical derivations and simulation techniques.
Finally in the chapter 5 we will compare these examples and show how they
are and how they are not similar. This does not only enable us to deepen
our understanding of the specific models we have chosen to elaborate on, but
also deepens our understanding of structured population models in general.

Our thesis is highly influenced by the following book written by S. Levin:
Lecture Notes in Biomathematics: The Dynamics of Physiologically Struc-
tured Populations. This book arose out of a colloquium on the dynamics of
structured populations and further expands on the idea’s that where brought
forth in this colloquium[3]. Despite the already extensive examination of
structured population models by this book, we’ve been able to elaborate and
extend upon some of the theory and models proposed in this book. This
means that some results are based on or taken from the book, but most of
the results and all of the simulations (and techniques) are our own results. In
particular, all the theory, results and off course the simulations from chapters
4 and onward are entirely conceived by us.
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2 Modeling structured population dynamics

When modeling a population dynamic, ecologists try to utilize properties of
the populations and its dynamic to describe the changes of the populations
over time. With structured population models, the dynamic can be modeled
by making use of the underlying structures that are inherent to populations.
We could for instance structure a population by the level of satiation of the
individuals. It is reasonable to assume that the satiation of an individual
affects how much hunger it has which in turn affects it’s willingness to hunt
for prey. However, to be able to quantify this relation, we must turn to
a formal notion of what a structured population model is. This will be
introduced in this chapter.

We have organized this chapter as follows: we will explicate the basic
components of structured population models in the first section of this chap-
ter. In the second section we will introduce the famous ’law of mass action’
which will prove to be useful throughout this thesis. Then in the third sec-
tion we formulate how changes in populations are generated. This differential
equation based generator is mostly based on theory from Levin’s book [3],
in particular on chapter 3. In the fourth section we will formulate bound-
ary conditions. Finally in the final section we will put this all together and
propose a four step plan you can follow to construct your own structured
population model.

2.1 Modeling structure

In this first section we will clarify why and how we structure populations and
we take the first steps in utilizing this structure for modeling a population
dynamic.

2.1.1 The individual as the basic unit

A population is defined by Odum [5] as ”a collective group of organisms of the
same species”. Consequently the basic unit of a population is the individual.
When modeling structured population dynamics it therefore reasonable to
keep track of this basic unit. However, McCauley, Wilson and De Roos
describe in their article [4] that ecologist often need to question population
models used in practice because they tend to be overly simplistic. Models
often disregard the complexity of individual behavior by using a top down
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approach. This means that they model the entire population as a whole and
derive individual behavior from this model. Individuals however have their
own traits, such as genotype, age or size and this influences their behavior.
It is for that reason that we acknowledge the complex mechanisms on the
individual level and instead of ignoring these mechanisms, we try to build
our model from the individual up. In doing so we recognize the inherent
structure of populations and use it in a bottom up approach of modeling.

2.1.2 The states, state spaces and p-equations

Describing the structure of a population is done by formulation properties of
the individual and using these properties to structure a population.

The individual is modeled by quantifying the properties that affect its
population dynamic related behavior. These properties are combined in what
we call the individual state or i-state. Examples of i-state variables are
age, size or satiation. In general, we will denote the i-state as x with x =
(x1, · · · , xk), where all xi with i ∈ {1, 2, · · · , k} are i-state characteristics.
The space of possible i-states (x) is called the state space and this is denoted
as Ω. When for instance an organism has an i-state defined as it’s size, which
can range from 1 to 50, then Ω = [1, 50].

The population is then modeled by using this state space Ω, since all indi-
viduals must by definition be characterized by a point in Ω. The population
can be described by the frequency distribution of i-states along Ω. This is
called the distribution, population state or p-state.

p-state:x 7→ n(t, x)

Finally, we need to model change in this population over time. After ini-
tialization, future p-states are brought forth by p-equations. These are dif-
ferential equations that describe the change of the p-state as a function of
i-state variables. These functions of i-state variables are in turn determined
by i-state based behavior.

Lets illustrate these definitions with an example. Say we can structure
a population of predators according to their age as we observe that older
predators catch more prey. This hunting efficiency is quantified with an
increasing function f(x). Our i-state is therefore x (age) and our initial
p-state is the amount of predators with age x for all ages in Ω. Changes
in this p-state p(x, t) are brought forth by the p-equations. For instance:
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Figure 2.1.1: Example of a p-state as a function of i-state x and time t.

∂p(x,t)
∂t

= [animals getting older] + [caught prey](f(x)). An example of a p-
state and changes of a p-state over time is provided in figure 2.1.1. Notice
how the initialized p-state in 2.1.1a is precisely equal to 2.1.1b for t = 0.

Together this information enables us to model our population over time as
it produces all the information we desire: population sizes and distributions.
If we so desire, we can zoom in on the individual level and deduce the exact
amount of organisms with a specific i-state at a specific time. This way we
capture the overall properties of a population dynamic without disregarding
the complexity of an individual.

It is important to point out that in this thesis we will only discuss mod-
els and techniques based on ordinary differential equations and partial dif-
ferential equations (ODE’s and PDE’s). Using DE’s to model population
dynamics is common practice in ecology, but it is not the only practice.
Stochastic and agent based models are becoming more popular and could be
used for structured population models as well. However, this thesis is not
about describing similar dynamics with different techniques, but about de-
scribing different dynamics with similar techniques. For this purpose, using
only ODE’s and PDE’s is reasonable. For this reason our p-equations are
always differential equations.

The p-equation we just provided is obviously not specific enough to model
change. How to formulate the p-equation is discussed in section 2.3. Before
we can do this, we first need to acquire knowledge about the mass action
law.
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2.2 The law of mass action

Population dynamics affect the p-states of predators and prey. The total
amount of organisms, regardless of their i-state, is what we call the population
size. By using a structured population model, we can keep track of the
number of animals with a specific i-state as well. This local population
’size’ is called the mass or p-mass. A law that is very useful when modeling
(changes of) mass is the law of mass action. This law originates from the field
of chemistry where it describes how a chemical reaction takes place under
ideal conditions. Say A and B are concentrations of two reacting substances
to form substance C. The law states that:

Production of C = k · A ·B (2.2.1)

where k is a rate constant describing the speed of the reaction. In this
reaction A and B typically decrease until this reaction comes to an end.
This formula implies that the production of C is proportional to the amount
of particles of both A and B. The intuition behind this is fact that the
more particles there are, the bigger the change they will collide and react.
Even though this law is very straight forward and simple, it enables us to to
describe complex dynamics [6].

This law isn’t only applicable to chemistry. It is applied in many different
fields of science, among which is ecology. In this field the law describes the
dynamics of two interacting species as a product of the two population sizes
and a constant. The reasoning behind this generalization is the fact that the
likeliness of animals interacting is brought forth by the same type of dynamic
as two substances reacting. Say A and B are now population sizes of two
interacting species. If on one hand these population sizes are large, then
surely, animals will come across each other more often and therefore interact
more often. If on the other hand A and B are small, then they will not come
across each other nearly as often, and therefore less interactions will occur.
So if a quantity C results from interactions of A and B, then it will abide by
the law of mass action.

With regards to ecology, the law isn’t restricted to the form of equation
(2.2.1). Examples of the uses of the mass action law taken from this article
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and Levin’s book [3] are:

αn (2.2.2a)∫
λ(x, y)n(y)dy (2.2.2b)∫

α0(x, y)m(y)dy · n(x) (2.2.2c)

Example (2.2.2a) describes the number of births (or deaths) in a population.
This is usually proportional to the population size, since if there are more
individuals then there are more individuals that have a chance of dying.
Again, this is not a one-to-one application of the mass action law as proposed
in equation (2.2.1), but a generalization based on the same principle.

Example (2.2.2b) describes the (local) birth rate. This example is more
similar to example (2.2.2a) than one might expect. The term λ(x, y) describes
the proportion (which now depends on x and y) and this is multiplied by the
population size. The mere fact that these number now depend on x and y
and that they are integrated with respect to y doesn’t affect the underlying
principle: a rate times the size; again an application of the mass action law.

Example (2.2.2c) describes the (local) disappearance rate due to pre-
dation. Again the same principle underlies this formula even though it is
bi-linear.

All in all, the mass action law enables us to model various phenomena in
ecology. We will use it throughout this thesis.

2.3 Modeling dynamics

Now that we are familiar with the law of mass action, we are able to describe
how change occurs in terms of p-equations. These equations account for
the changes in the p-state and thereby allow us to generate the p-state over
time. Specifying the p-equations ultimately comes down to appropriately
accounting for changes in p-mass. This means tracking all transitions within
the i-state-space Ω. We distinguish between two types of transitions. The
first type is transport, also called flow or movement. This type of change
is caused by individuals continuously flowing along Ω. For example, if the
i-state of an individual is his age, the individual’s i-state age would contin-
uously increase as time increased. The second type is jumps. This is an
instantaneous change of p-mass at a specific i-state because of spontaneous
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Figure 2.3.1: The effect of jumps on a p-state. The symbols −, +− and +
indicate whether p-mass is lost, lost and gained or gained due to jumps

from or to this i-state.

generation or disappearance, or a jump might be originating from somewhere
else within Ω. Examples are births, deaths and (instantaneous) ingestion of
prey. Internal jumps are also illustrated by figure 2.3.1

2.3.1 The general p-equation

As stated before, by using infinitesimally small time intervals we can indepen-
dently model the birth, death and migration of the population, but also less
random changes such as aging or the decrease of satiation. We can therefore
simply define a differential generator as the sum of these transitions. Hence
we have the following framework for p-equations of structured population
models:

∂n

∂t
= δtn− δs−n+ δs+n (2.3.1)
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where the following parts of the equation are contributions to local change
due to:

δtn := continuous deterministic i-state movement (t stands for transport)

δs−n := deaths or jumps to elsewhere in Ω (s stands for sink)

δs+n := births or jumps from elsewhere in Ω (s stands for source)

This generator describes all possible transitions of p-mass. We will elaborate
on the three terms after introducing some notation.

2.3.2 Notation

To start off we introduce notation surrounding p-mass:

n(x)Πdxi := number of individuals in infinitesimal rectangle Π(xi, xi + dxi)
(2.3.2)

We can use n(x)Πdxi to approximate the p-mass of a region. Next we need
to define the speed:

v(x) := speed of individuals with i-state x

The speed represents the rate at which flow occurs. The flow needn’t occur
at a constant rate. The speed of this flow can depend on the i-state. The
speed function quantifies this relation.

2.3.3 Mass transport due to continuous i-state movement: δtn

Decrease of satiation over time is an example of individuals flowing through
i-states. To formulate such flow, we will formulate changes within Ω for
infinitesimally small patches of i-state. We shall examine the box with edge
x and x+ e(i)dxi and determine the change of volume in this box over time.
This provides us with change of p-mass due to flow.

As defined before, flow of i-state occurs with speed v(x). The effect of
transportation should therefore be applied to this box. We get:

x
v7→ x+ change due to v = x+ dvx

= x+
dx

dt
dt

= x+ v(x)dt (2.3.3)
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Figure 2.3.2: Changes of an infinitesimal volume of p-mass when it flows
through Ω. Graphic taken from Levin page 93 [3].

similarly we get:

x+ e(i) v7→ x+ e(i)dxi + v(x+ e(i)dxi)dt

= x+ e(i)dxi +
(
v(x) + v(e(i)dxi)

)
dt

= x+ e(i)dxi +

(
v(x) +

∂v

∂xi
dxi

)
dt (2.3.4)

where e(i) describes a change of the i-state in one of the k dimensions. This
change is also illustrated by figure 2.3.2. To model the change in p-mass, we
need to model the change in volume that occurs because of this map. We
can do this by comparing the points before and after the map and determine
the change in volume in the ith-direction.

Volume before = (xi + dxi)− xi = dxi

Volume after =

(
x+ e(i)dxi +

(
v(x) +

∂v

∂xi
dxi

)
dt

)
−
(
x+ e(i)dxi

)
=

(
e(i) +

∂v

∂xi
dt

)
dxi (2.3.5)
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If we single out only the i-th coordinate we find:

Volume after =

(
1 +

∂vi
∂xi

dt

)
dxi

=

(
1 +

∂vi
∂xi

dt

)
· [volume before] (2.3.6)

Clearly, the volume increases with the factor ∂vi
∂xi
dt. If we ignore higher order

terms, we can add up the contributions of the volume changes in the various
directions i to arrive at a total relative volume change of

∑
i
∂vi
∂xi
dt. The

change of p-mass because of i-state movement is therefore:

n(t+ dt, x+ v dt)Πdxi

(
1 +

∑ ∂vi
∂xi

dt

)
= n(t, x)Πdxi (2.3.7)

We will now rewrite (2.3.7) to arrive at δtn.

n(t+ dt, x+ v dt)

(
1 +

∑ ∂vi
∂xi

dt

)
− n(t, x) = 0

n(t+ dt, x+ v dt) + n(t+ dt, x+ v dt)
∑ ∂vi

∂xi
dt− n(t, x) = 0

n(t+ dt, x+ v dt) + [−n(t, x+ v dt) + n(t, x+ v dt)]− n(t, x) +

n(t+ dt, x+ v dt)
∑ ∂vi

∂xi
dt = 0

[n(t+ dt, x+ v dt)− n(t, x+ v dt)] + [n(t, x+ v dt)− n(t, x))] +

n(t+ dt, x+ v dt)
∑ ∂vi

∂xi
dt = 0

Dividing by dt finally gives

∂n

∂t
+
∑ ∂n

∂xi
vi + n

∑ ∂vi
∂xi

= 0

Hence:

δtn = −
∑ ∂n

∂xi
vi − n

∑ ∂vi
∂xi

(2.3.8)

which is the desired result: the change of p-mass caused by continuous i-state
movement. The two terms of this expression also have a different notation
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we will use from now on instead.

Dilation := n
∑ ∂vi

∂xi
= n5 .v

Convection := n
∑ ∂vi

∂xi
= 5n.v

The dilation accounts for the contraction or expansion of the volume. The
convection accounts for pure transportation of the individuals along the p-
state.

2.3.4 Internal disappearance and appearance of p-mass

Changes in p-state are not only caused by movement through Ω. P-mass
can change due to disappearance or appearance of p-mass as well. The
disappearance or loss of p-mass can be caused by death or emigration, but
also by internal jumps to somewhere else in Ω. For example in the satiation
example, if at one time an animal were to predate a prey its satiation would
(almost) instantly jump to a higher satiation. This means an instant loss
of p-mass at the starting satiation and an instant increase of p-mass at the
resulting satiation.

To quantify the disappearance due to deaths, emigration and internal
jumps, we can use the law of mass action. We get:

δs−n(x) = α(x)n(x) (2.3.9)

Here α is the sum of the different causes of loss of p-mass: α = αjumps +
αdeaths + αemigration. In general we call both deaths and emigrations simply
deaths.

Similar to the disappearance of p-mass, p-mass can also (re)appear. P-
mass can appear because of births, but also because of internal jumps. In the
satiation example a jump results in an increase of p-mass at the touch-down
position.

The appearance of p-mass in quantified as:

δs+n(x) = b(x) (2.3.10)

Again a mass action law argument underlies the explicit expression of b(x)
since death and jumps are like births proportional to the p-mass. This rela-
tion however isn’t explicitly quantified in δs+n(x) because b(x) is dependent
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of the disappearance term δs−n(x). For instance the appearance of p-mass
due to internal jumps is equal to the amount of p-mass lost due to internal
jumps. This means that b(x) is a function of δs−n(x). The quantity δs−n(x)
is however already based on the law of mass action and this term therefore
shouldn’t be multiplied with n(x) again. The mass action law is therefore
not explicated in δs+n(x). A more explicit formulation of b(x) can be found
in appendix A.1.

2.3.5 Putting together the general p-equation

Now we have all the required quantities we can complete our p-equation.
This enable us to model change over time. We combine equations (2.3.1),
(2.3.8), (2.3.9) and (2.3.10) to obtain:

∂n

∂t
= −5 n.v − n5 .v − α(x)n(x) + b(x) (2.3.11)

To finalize our generalized model, we will now formulate boundary conditions.

2.4 Flow of p-mass through the boundary of Ω

Thus far we have only considered change that occurred due to changes within
Ω. These changes can be accounted for by what we call the p-equations. Not
all changes can however be tracked this way. P-mass can also flow through
the boundary of Ω := ∂Ω. If p-mass flows out of Ω, this p-mass is lost since
it is only defined within Ω. For example: say we track predators with a
satiation of ε > 0. If we wait long enough, the satiation might go below 0
because these predators didn’t catch any prey. At this point the satiation
will turn negative and the predators will disappear from our model because
Ω doesn’t allow a negative satiation. Conversely if p-mass flows into Ω there
is an increase of the population size, because outside of Ω this p-mass was not
taken into account. Since these changes occur only at the boundaries, they
cannot be modeled using p-equations which account for all p-mass within Ω.
To model these kinds of changes, we need so called boundary conditions. We
will now formulate these boundary conditions in general.

2.4.1 Disappearance of p-mass through ∂Ω

We can model p-mass leaving the boundary by using flux. This describes
the flow of a volume through a space. In our case, it describes the flow of
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p-mass. More rigorously, the flux equals the speed times the local p-mass:
σ(x) = v(x)n(x). In particular we are interested in the flux through ∂Ω.
P-mass can only leave Ω when the local speed points out of Ω. The part of
the boundary where this is the case is called ∂−Ω. We are interested in the
amount of mass lost because of this outward flow. Note that if the flux is
almost parallel to the boundary then not a lot of mass is lost. Only a small
part of the displacement is actually through the boundary of Ω. If however
the flux is directed orthogonal to the boundary, the flow out through ∂−Ω
equals the local flux. To account for this difference, we should take the dot
product of the flux with the vector ν(x) orthogonal to ∂Ω. Combining these
finding, we get:

local flux out of Ω at x ∈ ∂−Ω = ν(x) · v(x)n(x) (2.4.1)

such that the total mass leaving Ω is the following:

local mass leaving Ω across x ∈ ∂−Ω =

∫
∂−Ω

ν(x) · v(x)n(x)dσ

Dealing with this loss can be done in several ways. In some cases the loss
will be actual loss and interpreted as deaths or emigrations. In other cases
it will result in a jump back to somewhere within Ω. An animal could for
instance behave only when some boundary value x ∈ Ω is reached and jump
back to somewhere within Ω after reaching that state.

2.4.2 The appearance of p-mass through ∂Ω

The appearance through the boundary is roughly equivalent to the disap-
pearance of p-mass through the boundary. However in this case, the flow
inwards can only happen in the part of the boundary where the speed vector
points inwards. We will denote this as ∂+Ω. Now the arrival rate of mass
should equal the inwards flux corrected for the negative normal ν(x) since it
should now point inwards. We obtain:

local flux into Ω at x ∈ ∂+Ω = −ν(x) · v(x)n(x) (2.4.2)

and

local mass entering Ω across x ∈ ∂+Ω =

∫
∂+Ω

−ν(x) · v(x)n(x)dσ
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Together, the formulation of a population as proposed in 2.1, the general p-
equation and the boundary conditions we just proposed allow us to construct
a structured population model of our own. The steps are reiterated in the
following section.

2.5 Summary: the basic components of a structured
population model

In summary, we can define a structured population model in four steps.

1. The states and states spaces need to be defined. This entails choos-
ing characteristics of the individual that determine population related
behavior and combining these characteristics in the i-state. Then the
allowed values of x should be determined to construct the i-state space
Ω.

2. The p-equations need to be constructed. These account for internal
transitions of p-mass. They should satisfy equation (2.3.11).

3. The boundary conditions need to be formulated. These account for
the flow into and out of Ω through ∂Ω. They should satisfy equations
(2.4.1) or (2.4.2).

4. The population should be initialized. An actual initialization is only
necessary when we want to simulate the model. In the case of a model
description, we only need to formulate how this model should be ini-
tialized.

In the following chapters we will introduce examples of structured population
models that will be set up by using these steps. The steps won’t always be
stated explicitly. Also step 2 and 3 are often combined as they are generally
strongly connected.
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3 Univariate structured population models

In the previous chapter we formulated the structured population model and
derived some general properties. In this chapter we examine actual structured
population models like holling disk based models[2] to show how one can use
structured population models in practice. This chapter consists of three
sections. In the first section we’ll make some assumptions and introduce
some notation. In the two following sections we respectively introduce a
handling time and satiation based model.

3.1 Assumptions and notation

Before diving into predator prey populations dynamics we will make three
assumptions regarding the structure of such populations. On one hand these
assumptions will allow us to simplify the problem which eases the process of
formulating, simulating and analyzing the models. On the other hand they
standardize the problem which enables us to compare the properties of the
models.

First, we assume there are at most two types of predators. Predators that
are busy searching for prey P0 and predators that are busy handling prey P1.
Searching for prey means waiting and looking out for prey to hunt. Handling
prey is the combination of hunting on a prey, eating a prey and defending
a prey item against other predators. Most models we propose keep track
of both of these subpopulations, but one will use only one of these types of
states. Second, we assume there are no births and deaths. This means that
p-mass is only transported (through jumps or flow), but not really lost or
gained. Third, we will assume that the prey density is unaffected by the
predation. It is therefore kept at the constant value x.

We will also introduce some general notation. The numbers 0 and 1
correspond to the subpopulations of respectively searching predators and
predators busy handling prey. These will show up in many different ways:
as subscript of functions, as subscript of population denotations, etc. Fur-
thermore, a capital P is used to denote an entire (sub)population. So for
instance P0 is used to denote the subpopulation of searching predators as a
whole. Capital letters are also used to denote the quantity or size of this
(sub)population. For example P1(t) denotes the total p-mass of the subpop-
ulation of predators handling prey at time t. Finally, a lower case p is used to
describe the local p-mass at a specific i-state. For the sake of completeness:

18



p0(t, y) would denote the local p-mass at some i-state y at time t.

3.2 Handling time based structured population model

The first model we will examine is a handling time based model. In this
(type of) model we assume that the handling time is the characteristic that
determines an individual’s population related behavior and can therefore be
used to structure a population. Here the handling time is the total amount of
time it takes to handle a prey item. When formulating a handling time based
model we should therefore be able to bookkeep the handling time that has
passed so far as a sort of internal stopwatch and relate this to the chance of
transitioning to searching for prey. This relation between the passed handling
time and the occurrence of jumps will form the basis of our handling time
based model.

We construct the model in the following way. The group of searching
predators is assumed to have no structure and can thus simply be represented
by its total p-mass. Searching predators sometimes spot a prey, and when
they do they start handling it. For simplicity we will assume this takes a
fixed time b1, after which they jump back to searching again. To set up this
model we will follow the steps described in section 2.5, then we will simulate
the model and finally we will derive observed properties from the simulations
mathematically as well.

3.2.1 Model formulation

The first step in formulating a structured population model is to define the
states and state space. At any time t, let P0(t) be the number of predators
searching for prey and let the number of predators handling prey be P1(t).
Within the population of handling predators we can distinguish between the
different individuals by considering the time already spent on handling prey.
We shall bookkeep this time with τ . This is our i-state. The total needed
handling time is assumed to be constant: b. Therefore we have 0 ≤ τ ≤ b.

1In reality, predators tend to have a handling time that is strongly peaked around some
fixed value.

19



So our state space is Ω = [0, b].2 Now let p1(t, τ) be such that:

P1(t) =

b∫
0

p1(t, τ)dτ (3.2.1)

or more generally, for internal clock times α and β, the number of predators
with clock times between these times is equal to:

∫ β
α
p1(t, τ)dτ .

Constructing the p-equations
With the i-states and state space defined we will proceed with step 2: con-
structing the p-equation. As stated before, this boils down to appropriately
accounting for changes in p-mass.3 With this in mind note that:

p1(t, τ) = p1(t−∆, τ −∆) (3.2.2)

Assuming a fixed handling time, handling prey in this model only means
waiting b long and finally returning to searching when τ = b has passed.
This means that predators don’t change along the way and are simply flowing
through τ ∈ [0, b]. Thus the number of predators handling prey at time t
with handling time τ must equal the number of predators handling prey at
time t−∆ with handling time τ −∆. To generalize this result, we see that:

p1(t, b) = p1(t− b, 0) (3.2.3)

Again, p-mass simply moves along τ , but doesn’t change during its course.
Therefore the inflow of P0 at time t equals the inflow of P1 at time t − b.
Figure 3.2.1 further illustrates this fact depicting this system as a conveyor
belt. We will rewrite equation (3.2.2) to obtain a p-equation:

p1(t, τ) = p1(t−∆, τ −∆)

p1(t, τ)− p1(t−∆, τ) = p1(t−∆, τ −∆)− p1(t−∆, τ)

∆−1 [p1(t, τ)− p1(t−∆, τ)] = ∆−1 [p1(t−∆, τ −∆)− p1(t−∆, τ)]

Now by taking the limit ∆ ↓ 0 we obtain the following partial differential
equation:

∂p1

∂t
(t, τ) = −∂p1

∂τ
(t, τ) (3.2.4)

20



Figure 3.2.1: Illustration of the p-state transformation of an infinite state
handling time model as a conveyor belt. The terms y(t) and z(t) are

volumes of transitioning p-mass.

Figure 3.2.2: Transportation of p-mass across the conveyor belt.

Formulating the boundary conditions
Now in step 3 we will construct the boundary conditions. Since p-mass
moves through [0, b] without changing we can determine the p-mass at any τ
by determining the corresponding inflow when τ was 0. If the inflow equals
y(t) which occurs at p1(t, 0), we get p1(t, 0) = y(t). Now what should this
y(t) be? Inflow of P1 comes from an outflow of P0. Since P0 is a scalar, a

2Since we also have a state ’searching’, our state space is actually Ω = [0, b]∪searching.
For simplicity we will however usually refer to the simplified notion of Ω as being [0, b]

3The procedure used is very similar to the procedure used when we set up the general
p-equation described in 2.3.3.
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volume of p-mass, we can formulate the unknown function y(t) by using the
law of mass action. We get:

y(t) = axP0(t) (3.2.5)

where the prey density x is assumed to be constant as stated before and a is
the rate constant of outflow. Lastly, we need to formulate the rates of change
for P0. Analogously to the previous steps, outflow out of p1(t, b) equals the
inflow of P0. So if z(t) = p1(t, b), then we combine this with (3.2.5):

dP0

dt
= −axP0(t) + z(t) (3.2.6)

Initializing the system of population equations
We’ve arrived at step 4. Equations (3.2.4), (3.2.5) en (3.2.6) together form
our desired system of p-equations. If we provide initial conditions then our
system is uniquely defined. These initial conditions are the following:

P0(0) = Ψ0

p1(0, τ) = ψ1(τ)
(3.2.7)

These equations together quantify the amount of predators in this system at
the start. The quantity Ψ0 is simply a number, the initial population size of
P0. The function ψ1(τ) is the initial distribution of i-states in Ω = [0, b].4

3.2.2 Model simulation

To get an idea of the general characteristics of this model, we will run sim-
ulations to show how the populations behave over time. However, solving
the system cannot (easily) be done analytically and we will therefore do
numerical experiments using Mathematica.

We’ll first rewrite the system to a recursion function. In order to do
so we discretize our time in steps of dt = 0.01 and we also discretize the
i-state space Ω into partitions of size dτ = 0.01. This means that in our
simulation, P1(t) is a list of partitions which is changed according to the
derivative determined with steps of dt = 0.01. We will refer to the mass
attributed to all values of the discretized Ω simply as P1(t). So we have
P1(t) = (pmass1, . . . , pmassb/dτ ). Obviously P0(t) is still simply a number.
Using this Ω, we can recursively define the effect of an increase of dt in time:

4From this point on the initialization is not explicated like this anymore, but is simply
demonstrated in the simulation sections.
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• P0(t) = P0(t− dt) + Dequeue(P1(t))− ax · dt · P0(t− dt)

• P1(t) = Enqueue(DeleteLast(P1(t)) , ax · dt · P0(t− dt))

Here Dequeue means, determine and take the last element from the queue
P1(t), Enqueue means add a new first element to the queue (being ax · dt ·
P0(t − dt)), and Delete-last means remove the last element. This way of
simulating captures the conveyor belt like behavior. At the beginning mass
is added, at the ending mass is removed, and everywhere in between mass is
simply transported.

For the simulations we now only to quantify the initial conditions and the
parameter values. We have chosen two initializations. Let Ω = [0, 1]. Now
for example 1 we have P0(0) = 50 and p1(0, τ) = 25− 5τ and for example 2
we have P0(0) = 30 and p1(0, τ) = 20 + 2Sin(10s). Furthermore, let a = 0.09
and x = 10. Now we can simulate this model to see the change of distribution
over time. We programmed this simulation in Mathematica. The coding of
this simulation can be found in appendix A.2.5

Running the simulation provided us with figure 3.2.3. The figure shows
two examples of the change in distribution of P1 and the total population
size of subpopulation P0. At t = 0, subfigures 3.2.3a and 3.2.3c show the
initialization of p-mass in P1. The change of the distribution from the ini-
tialization and onward can be seen in these figures for increasing values of
t. Inspecting figure 3.2.3 enables us to make the following observations and
claims about this model. First of all, the total population size does not
change over time. If we look at subfigures 3.2.3e and 3.2.3f then all changes
of the subpopulation sizes seem to cancel each other out. Second of all, the
initial distribution of mass does not have an impact on the distribution on
the long run. As soon as all the mass has jumped to P0, all former structure
is lost because searching predators spot prey at a rate that is independent
of the time they have been searching up until that moment. So all predators
have the same chance of spotting a prey item, regardless of the time they have
been searching before. Third of all, we notice that the system stabilizes over
time where P1 converges to a uniform distribution and P0 to a fixed value.
Figures 3.2.3e and 3.2.3f show diverging population sizes for t ∈ Ω = [0, 1].
Beyond t = b, convergence occurs rapidly. Fourth of all, the total handling
time b has a strong influence on the speed of convergence, because all initial

5Note that since we discretized time, a time of 100 corresponds to actual time t =
100 ∗ dt = 1.
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(a) Example 1, angle 1. (b) Example 1, angle 2.

(c) Example 2, angle 1. (d) Example 2, angle 2.

(e) Change of the total population
sizes of P0 and P1 of example 1 over

time.

(f) Change of the total population
sizes of P0 and P1 of example 2 over

time.

Figure 3.2.3: Change of population sizes and distributions of the infinite
state handling time population model. Example 1 is initialized with

P0(0) = 50 and p1(0, τ) = 25− 5τ . Example 2 is initialized with P0(0) = 30
and p1(0, τ) = 20 + 2Sin(10s).
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p-mass needs to transition to P0 before this system can converge. After b the
convergence is rather ’bumpy’ as it keeps overshooting the convergent value
instead of converging from above or below only. This is caused by the fact
that the convergence is delayed by the predators that are handling prey. The
inflow of P0 corresponds to the inflow of P1 a time b ago. An increase or
decrease of P0 results in a higher inflow only after a time b. Over time this
bumpy convergence flattens out.

3.2.3 Mathematical derivation of properties

Some of the observations made by doing simulations can be derived an-
alytically as well. We will first show that the total mass of the popula-
tion (P ) does not change. This means that P does not change as a func-
tion of t. Under the assumption of differentiability, we should have that
d
dt
· (P0(t) +

∫ b
0
p1(t, τ)dτ) = 0. We will therefore evaluate d

dt
· (
∫ b

0
p1(t, τ)dτ)

and dP0

dt
. Let’s start with the first expression. By substituting equation

(3.2.4) into (3.2.1) we get:

P1(t, τ) =

b∫
0

p1(t, τ)dτ

dP1(t, τ)

dt
=

b∫
0

∂p1

∂t
(t, τ)dτ

= −
b∫

0

∂p1

∂τ
(t, τ)dτ

= − p1(t, τ)|b0
= p1(t, 0)− p1(t, b)

= y(t)− z(t) (3.2.8)
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Now we combine (3.2.5), (3.2.6) and (3.2.8) to determine ∂
∂t
·(P0(t)+

∫ b
0
p1(t, τ)dτ).

We obtain:

dP

dt
=

d

dt
· (P0(t) +

b∫
0

p1(t, τ)dτ)

=
dP0(t)

dt
+

b∫
0

∂p1

∂t
(t, τ)dτ

= −y(t) + z(t) + y(t)− z(t) = 0 (3.2.9)

Next we will show that the model converges independent of the initial
distribution. We can do this by determining the equilibrium and show what
it does depend on to see that the initialization is not one of these dependents.
In an equilibrium, the population size does not change over time. This means
that in an equilibrium the derivatives with respect to time must equal zero.
Then using (3.2.4) we find that in the equilibrium ∂p1

∂τ
(t, τ) = 0. This implies

that different values of τ are not associated with different p-masses. In other
words, the distribution p1(t, τ) converges to a uniform distribution with a
local p-mass p̄1 that is independent of τ . Equation (3.2.5) is now altered, as
y(t) = p̄1. This leads to p̄1 = axP̄0.6 Finally by using equation (3.2.9) we can
combine the former equation with bp̄1 + P̄0 = P . This gives our equilibrium
value:

P̄0 =
P

1 + abx
(3.2.10)

We can see that this equilibrium depends on the total population size and
the quantities a, b and x. So besides the initial population mass, the initial
distribution of this mass itself along P0 and P1 has no influence on the final
distribution. Using this equation we can calculate the equilibrium values of
this model. The example of figure 3.2.3 has the following equilibrium:

P̄0 =
10 +

∫ b
0
(10− 5τ)dτ

1 + 0.002 · 1 · 100

P̄0 =
17.5

1 + 0.2
= 14.5833

P̄1 = 17.5− 14.5833 = 2.9167
6Note: equivalently we could have used equation (3.2.6) using the fact that all time

derivatives equal zero and also z(t) = p̄1

26



3.3 Satiation based structured population model

Another interesting example of structured population models is a model us-
ing satiation as an i-state. The reason for looking at satiation is research
conducted by Holling in 1959[2]. In his research he noticed that the lower
the satiation of invertebrate predators, the lower their search rate. Hungry
predators have a stronger incentive to go hunting and are therefore willing to
put in more effort. Satiation as characteristic thus influences the population
related behavior and is therefore a good basis for a structured population
model.

We want the model to have the following structure. P-mass should de-
crease as a function of time, because digestion causes the satiation to de-
crease. Conversely, ingestion of prey causes the satiation to rise.

As before, we will first formulate the model, then simulate the model and
finally derive (some of) its properties analytically. Note that from this section
on, the steps needed to set up a structured population model as proposed in
section 2.5 are not explicated anymore. The steps are however carried out in
the same way as before.

3.3.1 Model formulation

Let the i-state, the satiation of an individual, be denoted as s. Then the cor-
responding i-state space is the range (0, sm] where sm is the highest satiation
a predator can reach. In order to set up the p-equations, we need to make
some assumptions and define a couple of functions.

We’ll first formulate the search rate and the corresponding search func-
tion. The search rate quantifies the rate at which prey are spotted and
the subsequent pursuits are started. Since the prey density x is fixed we
can quantify the search rate by using the mass action law: [prey capturing
constant]·x. We established that the prey capturing constant should depend
on s. This is quantified with the search function g(s). Hence the rate at
which an individual predator captures prey is xg(s). We assume that g sat-
isfies the following properties: g is a continuous, decreasing function of s and
g vanishes for s ≥ c for some c > 0. This c is called the hunger threshold.
Beyond this point predators will have no incentive to hunt at all. Further-
more, we assume w, the weight of a prey item, to be constant and to be small
enough to not fill the gut (as Holling did in his research [2]).

We also need to quantify the rate of digestion. Note how this functions
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Figure 3.3.1: Stream diagram of the digestion function (3.3.1).

is equivalent to the speed function in the general framework described in
chapter 2. If a is the rate constant of digestion, then we have:

ds

dt
= f(s) = −as (3.3.1)

Furthermore, we’ll assume the handling time to be 0.7 The absence of
handling time implies an upward jump in satiation brought forth by xg(s)
which will equal the size of the prey w. In between meals, the satiation
will drop exponentially as a result of the exponential solution of differential
equation f(s).

Setting up the p-equations
With these assumptions and functions we can now formulate the p-equations.

7This is obviously in sharp contrast with our previous model which was purely based
on the fact that handling time is not equal to zero in general. In chapter 4 we will propose
a model that will incorporate both handling time and satiation.
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Figure 3.3.2: Change of p-mass in a strip [s, s+ ∆s] due to digestion with
speed f(s).

Let p be the density function of predators busy searching for prey which is
defined for Ω = (0, sm]. Since we assume that the handling of prey is instan-
taneous, we only need to keep track of this single distribution of predators
to describe the entire dynamic. The population mass of predators between
two levels of satiation equals: P (t, (u, v)) =

∫ v
u
p(t, s)ds. This implies that

the total population size P (t) is:

P (t) =

∫
Ω

p(t, s)ds (3.3.2)

Predators flow through the i-states from right to left as digestion causes
satiation to decreases over time. In other words: f(s) ≤ 0. For now, we’ll
assume predators don’t consume any prey after initialization. We’ll get back
on this later on. Consider the mass of a small strip of p-state, say [s, s+ ∆s].
The mass of this strip by definition equals P (t, (s, s+ ∆s)). We will account
for the change of mass in this strip. We obtain the following relation:

dP (t, (s, s+ ∆s))

dt
= f(s)p(t, s)− f(s+ ∆s)p(t, s+ ∆s) (3.3.3)

The first term of the RHS describes the rate at which mass leaves the
strip: the local density (mass) times the speed at which this mass is leaving.
Similarly, the second term of the RHS describes the rate at which mass enters
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the strip from the right: the local density times the speed at which this
mass is entering. Let us now rewrite the second term. We can approximate
f(s+∆s)p(t, s+∆s) with f(s)p(t, s). Since these are very close, they are not
likely to be very different. We can however approximate the difference they
do have by using ∂f(s)p(t,s)

∂s
∆s, the derivative in this point times the distance.

Hence:

f(s+ ∆s)p(t, s+ ∆s) = f(s)p(t, s) +
∂f(s)p(t, s)

∂s
∆s + o(∆s)

We can also approximate P (t, (s, s + ∆s)) by multiplying f(s)p(t, s) by the
distance ∆s. Hence:

P (t, (s, s+ ∆s)) = p(t, s)∆s + o(∆s)

Substituting these equations in (3.3.3), dividing by ∆s and by letting ∆ ↓ 0
results in our sought equation:

∂p(t, s)

∂t
= − ∂

∂s
(f(s)p(t, s)) (3.3.4)

We can rewrite this equation with the product-rule.8 This will prove useful
when simulating this model. We get:

∂p(t, s)

∂t
= −f(s)

∂p(t, s)

∂s
− ∂f(s)

∂s
p(t, s) (3.3.5)

Now that we have a way of describing the change caused by transportation
along Ω, we should relax our assumption that predators don’t consume prey
and incorporate this in our model. Ingesting prey with satiation s will cause
a jump to satiation s + w. We defined before that the rate constant of
capturing prey is equal to g(s) making xg(s) the rate of capturing prey for
a single predator. Again using the mass action law, we find that xg(s)p(t, s)
must then be the local amount of jumps away from s as a result of catching
prey by predators with i-state s. Using this relation, jumps onto s can easily
be derived as well. Jumps to s must be caused by jumps coming from s−w.
The appearance of p-mass at s should then equal xg(s − w)p(t, s − w). By
combining the appearance and disappearance of p-mass into our previous
equation 3.3.4, we get the following p-equation:

∂p(t, s)

∂t
= − ∂

∂s
(f(s)p(t, s))− xg(s)p(t, s) + xg(s− w)p(t, s− w) (3.3.6)

8Note that the first term is the convection and that the second term is the dilation.
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Formulating the boundary conditions
When initial distribution p(0, s) is provided, this PDE can be numerically
solved. We do however have to determine what happens at the boundaries of
Ω. We have two boundaries to discuss. If predators were to flow beyond the
left boundary s = 0 because of digestion, we shall assume them to accumulate
at s = 0. Similarly, if a predator where to jump beyond sm because of
ingestion at a satiation of s > sm − w, we will assume them to occur at sm.
This implies the following side condition.

−f(sm)p(t, sm) =

sm∫
sm−w

xg(s)p(t, s)ds (3.3.7)

With this formulation of the model we could make many generalizations.
It might however be beneficial to first gain an intuition of how the model
behaves. In order to obtain this intuition, we will use simulation to solve
some examples.

3.3.2 Model simulation

As with the infinite state handling time model, we cannot (easily) solve this
system analytically. We will therefore run numerical simulations to approxi-
mate it’s behavior.

The simulation is performed as follows: we have rewritten the system to
a recursion function and we use small time and satiation steps to determine
all future states starting from our initialization. The time and satiation steps
are dt = ds = 0.01. The recursion function isn’t as straight forward as the
recursion function of the infinite state handling time model. This is because
equation (3.3.6) contains a term ∂f(s)p(t,s)

∂s
. In our previous simulation, we

were able to divide the handling predators into parts of size dτ . Like with
a conveyor belt, an increase of time could simply be simulated by changing
the first and last elements of our queue and moving all other elements one
step further. This was possible because the speed did not change along Ω.
However, in the case of satiation, the flow isn’t linearly proportional with
time anymore so this conveyor belt has different speeds along Ω. This can
however be dealt with by simulating this system in a different way. Instead of
using a conveyor belt like approach, we can approximate the local derivative
∂f(s)p(t,s)

∂s
by using the definition of a derivative. So we approximate ∂p(t,s)

∂s

with p(t,s+ds)−p(t,s)
ds

since our ds is small. This is called a finite difference type
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of approximation. A difficulty with this way of approximation is the fact
that the derivative of the final partition has no (formal) successor within Ω.
However we can use the fact that all p-mass outside Ω is equal to 0. The
final partition is therefore based on this value outside of Ω. We obtain the
following recursion function:

p(t, s) = p(t− dt, s) + dt

(
−f(s)

(
p(t− dt, s+ ds)− p(t− dt, s)

ds

)
− p(t− dt, s)f ′(s)− xg(s)p(t− dt, s) + xg(s− w)p(t− dt, s− w)

)
(3.3.8)

To apply this procedure, we first we need to set the parameters. We let
digestion parameter a = 0.5, prey density x = 10 and prey size w = 0.1.
Therefore f(s) = −0.5s. Furthermore, the satiation is s ∈ Ω = [0, 1] with
hunger threshold c = 0.8. This is combined in the search function:

g(s) =

{
1− 1.25s : 0 < s < 0.8
0 : otherwise

The basic shape of this linearly decreasing function is based on Hollings ob-
servations of actual predators[2]. Finally, we only need to decide on an initial
distribution from which to start. We have chosen two initial distributions.
Example 1: pexample 1(0, s) = 2− 2s and example 2: pexample 2(0, s) = s2− s4.
Using these initializations we have ran simulations in Mathematica. The
relevant coding can be found in appendix A.2.

The results of the simulations are shown in figure 3.3.3. The figure shows
the two examples of the satiation based model from two different angles. At
t = 0 the initial distribution can be seen. Over time this distribution changes
and this change is shown by plotting it against t. By closer inspection of
the plots, some characteristics seem to apply to this model. First of all,
the system smoothly converges to a peaked distribution with narrow tails.
Second of all, the initial distribution has no impact on the shape of this
equilibrium distribution. In both example 1 and example 2, the shape of the
initial distribution is abandoned fast and both examples take on exactly the
same shape in the long term. Last of all, the total p-mass does not appear
to change.

32



(a) Example 1, Angle 1 (b) Example 1, Angle 2

(c) Example 2, Angle 1) (d) Example 2, Angle 2

Figure 3.3.3: Change of the p-state of the satiation based structured
population model over time. Example 1 is initialized as p(s, 0) = 2− 2s,

example 2 is initialized as p(s, 0) = s2 − s4.

3.3.3 Mathematical derivation of properties

The characteristics of the models we observed in the simulations can for a
large part be derived analytically as well. In this section we will discuss and
derive some of the characteristics of this model.

The first thing to notice is that when s > c + w, p(t, s) = 0. Predators
can only jump from s < c because the search rate of predators is zero at
this point and beyond. Since all prey weigh w, jumps can only occur up to
s = c+ w. This leaves the part [c+ w, sm] with only outflow, but no inflow.
This causes all initial mass beyond s = c + w to flow through s = c + w in
the long run, leaving the range [c+ w, sm] empty.

We noticed before that the total number of predators is constant. This
is caused by the fact that jumps and flow only occur within Ω. We can also
derive this property analytically. Let P (t) =

∫ sm
0

p(t, s)ds. We will show
that this total population size doesn’t change by taking the derivative of the
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total population size. If there is no change, than the derivative should be
zero. We get:

P (t) =

∫ sm

0

p(t, s)ds

dP (t)

dt
=

∫ sm

0

∂p(t, s)

∂t
ds

Note that f(s) ↓ 0 as s ↓ 0. Thus p-mass can never reach s = 0 (which is also
not within Ω and should as such equal 0). This indicates that lims↓0 p(t, s) =
0. Combining this observation with equations (3.3.6) and (3.3.7) we obtain
the desired result:

dP (t)

dt
=

∫ sm

0

(
− ∂

∂s
(f(s)p(t, s))− xg(s)p(t, s) + xg(s− w)p(t, s− w)

)
ds

= −
∫ sm

0

(
∂

∂s
(f(s)p(t, s))

)
ds−

∫ sm

0

(xg(s)p(t, s)) ds +∫ sm

0

(xg(s− w)p(t, s− w)) ds

= −
∫ sm

0

(
∂

∂s
(f(s)p(t, s))

)
ds−

∫ sm

sm−w
(xg(s)p(t, s)) ds

= −f(s)p(t, s)|sm0 + f(sm)p(t, sm)

= −f(sm)p(t, sm) + f(sm)p(t, sm)

= 0
(3.3.9)

Thus no change of the total population size occurs due to changes over time.
Like with the model before, this model also converges to a globally stable

equilibrium. The proof of this statement goes beyond the scope of this thesis,
but can be found in Heijmans [1]. However, we will show how to calculate
the equilibrium. Since this problem isn’t (easily) solved analytically, instead
we will provide a numerical method. As we will see, the initialization has
no effect on the convergent p-state as it doesn’t show up in the procedure of
determining the convergent distribution.

When determining the stable distribution, all derivatives with respect to
time vanish. This implies we should solve the following equation:

− ∂

∂s
(f(s)p(s))− xg(s)p(s) + xg(s− w)p(s− w) = 0 (3.3.10)

Note that t has also vanished as arguments of functions, since we assume t

34



no longer influences any of the functions. To approximate the solution, we
shall discretize the state space Ω like we did when we simulated the model.
This means we should partition Ω in points with size ds. Now choose one of
such points ψ between 0 and w and assign to it the value θ. So p(ψ) = θ.
Now we will use an Euler forward type of approach. For this method we need
to obtain the derivative of p(t, s) with respect to s. We rewrite (3.3.10):

f ′(s)p(s) + f(s)p′(s) = −xg(s)p(s) + xg(s− w)p(s− w)

p′(s) =
1

f(s)
· (−f ′(s)p(s)− xg(s)p(s) + xg(s− w)p(s− w)) (3.3.11)

With equation (3.3.11) we can calculate points left from and right from our
initialization. We can respectively use the following recursive formula’s:

points left from ψ : p(s) = p(s+ ds)− ds · p′(s+ ds)

points right from ψ : p(s) = p(s− ds) + ds · p′(s− ds) (3.3.12)

Using these equations, first we will calculate all points in (0, ψ], then we
continue by calculating all points in (ψ, sm]. The reason for first determining
all points left from w is that xg(s − w)p(s − w) = 0 for all s < w. So all
terms of p’(s) are known for s < w. Beyond s = w this term is not zero, but
the values can then be obtained from the prior calculations. The resulting
approximation p(s) shows how the p-masses relate between all values of s, but
the total population size is incorrect because of our arbitrary initialization.

This should be corrected. The convergent distribution p̂(s) is determined as
follows:

p̂(s) = p(s) · P∫ sm
0

p(s)ds
(3.3.13)

Figure 3.3.4 shows an approximation of p(s) for example 1 and 2 as formu-
lated in figure 3.3.3. This was programmed using Mathematica. The coding
can be found in appendix A.2.

Looking back on the procedure we just described, it becomes clear that

the equilibrium p̂(s) depends on g(s), x and f(s). This implies that the
equilibrium does not depend on the initial distribution. As long as our initial
distribution meets some requirements regarding it’s continuity and shape,
it will always convert to the same final p-state. This corresponds to our
observation from the simulation, where g(s), f(s) and x were kept the same
in both examples.
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Figure 3.3.4: The approximation of p(s), the shape of the convergent
distribution, for examples 1 and 2 of figure 3.3.3.
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4 Multivariate structured population model

In chapter 3 we described two types of structured predator prey population
models. The models were based on the assumption of either the satiation or
the handling time being the determining factor of the population dynamic.
However, there assumptions are very contradictory. In both models, the p-
state was not influenced by the defining property of the other model. In
the case of handling time, satiation was assumed to have no influence. In
the case of satiation, handling time was (even explicitly) assumed to be zero.
This means that ingestion of prey was assumed to be instantaneous.9 If there
are good reasons for both models to assume that their i-state determines the
p-state over time, then incorporating both variables in an i-state could result
in an even more comprehensive model. In this chapter we will therefore
propose our own multivariate structured population model which combines
the variables satiation and handling time in an i-state using the techniques
described in chapter 2.

We will combine the satiation and handling time based models in such a
way, that the original models are mostly unchanged. In the satiation based
model we assumed handling time to be zero. This implied that immediately
after spotting a prey item, it was ingested and had caused the satiation of
the predator to increase according to the size of the prey item. But now
if a prey item is spotted the predator jumps to a different subpopulation.
In this subpopulation satiation increases over time as a result of ingestion.
After completing the handling of a prey, it jumps back to the searching
subpopulation of predators, but to its increased level of satiation.

As before, we will first formulate the model and then we will simulate it
to assist us in mathematically deriving general properties of this model.

4.1 Model formulation

Let P0 be the subpopulation of predators that are searching prey and let P1

be the subpopulation of predators that are busy handling prey. Like before
the prey density x is assumed to be fixed. We will therefore only model the
predator population dynamic. The i-state is defined as the combination of
the level of satiation s and the passed handling time τ . Since we base this

9In the infinite handling time model, satiation was not explicitly assumed to have no
influence, but not incorporating a variable in the model implies the assumption that this
variable does not influence the p-state.
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model on the univariate structured population models, we let s ∈ (0, sm] and
τ ∈ [0, b] as before. Thus the satiation is bounded by sm and the handling of
prey is a fixed set of events always taking exactly b long. The state space is
then Ω = (0, sm]× [0, τm]. The i-state variables aren’t determining factors in
both subpopulations of predators. In the case of handling prey P1, handling
time increases at a constant rate, and the satiation increases over time as
well. Therefore, the p-mass of subpopulation 1, p1, is a function of s and τ ,
thus p1(t, s, τ). In the case of P0 predators are looking for prey and must
therefore have a τ = 0 since they haven’t spotted any prey to handle yet.
We could therefore write p0 as a function of s and τ such that p0(t, s, 0), but
instead we will simply denote the predators handling prey as p0(t, s).

The next step in defining our model is making some assumptions about
the predator behavior based on its state. Like in the satiation model, we
assume the satiation to decrease as a function of s. Therefore the satiation
for searching predators decreases as follows: ds

dt
= f0(s) = −as. Now, when a

prey item is spotted, it is eaten completely at constant rate u > 0. Thus when
eating, the satiation of predators handling prey rises with speed f1 = f0+u or
f1(s) = −as+u. Note that the satiation is assumed to rise immediately after
spotting a prey. This means that we assume that the time of pursuit of is
negligible. We can also simply state that hunting is a part of searching prey.
This means predators only start handling prey if they already caught it. The
main reason for wanting to assume that the satiation rises for all τ ∈ [0, b] is
because it simplifies our simulation without resulting in an unrealistic model.
Especially considering the fact that our univariate satiation model assumed
the entire handling time to be zero.

Finally we need to specify the rate at which jumps to handling prey
occur. Again this is based on the same reasoning as the satiation based
model. The search function g(s) quantifies the rate at which prey is spotted
which initiates a jump to p1.

4.1.1 Setting up the p-equations

To account for the change in the population we will set op the p-equations.
The p-equations of p0(t, s) and p1(s, τ) are constructed separately using not
only the assumptions and definitions of the previous section, but also using
the results of setting up the p-equations of the related univariate population
models.

For the predators searching prey p0(t, s) we can rewrite the satiation
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based p-equation such that it can describe the behavior of this population
dynamic. By using equation (3.3.6), we obtain the following:

∂p0(t, s)

∂t
= − ∂

∂s
(f0(s)p0(t, s))− xg(s)p0(t, s) + [jumps back to searching]

In words: satiation is still the only generating factor of population dynamic
of searching predators. Also, the rate of disappearance is quantified using
a law of mass action argument using the same g(s) as with the satiation
model. This leaves us with the appearance of mass. As a predator enters
P1, its satiation continuously rises resulting from a positive flow speed f1(s).
When a predator is done handling prey at τ = b, it will then jump back to
P0 with its increased satiation. Therefore, inflow of p-mass is brought forth
by jumps from p1(t, s, b) at the same satiation s. We can thus rewrite our
first p-equation.

∂p0(t, s)

∂t
= − ∂

∂s
(f0(s)p0(t, s))− xg(s)p0(t, s) + p1(t, s, b) (4.1.1)

Next we set up the p-equation of the predators handling prey p1(s, τ).
Again we will alter the p-equations brought forth by the associated univariate
model, in particular equation (3.2.4). We obtain the following:

∂p1(t, s, τ)

∂t
= −[change due to digestion/ingestion]− ∂p1

∂τ
(t, s, τ)

Like before, the mass is transported along τ like a conveyor belt, however,
now the mass flows towards a higher satiation as well. This change is gen-
erated by the flow function f1(s) defined in the previous section. Since this
follows the same reasoning as the digestion function of the univariate satia-
tion model, we obtain that this term must equal: − ∂

∂s
(f1(s)p1(t, s, τ)). Thus

we obtain our next p-equation:

∂p1(t, s, τ)

∂t
= − ∂

∂s
(f1(s)p1(t, s, τ))− ∂p1

∂τ
(t, s, τ)

Together, this leads to the following two p-equations:

∂p0(t, s)

∂t
= − ∂

∂s
(f0(s)p0(t, s))− xg(s)p0(t, s) + p1(t, s, b)

∂p1(t, s, τ)

∂t
= − ∂

∂s
(f1(s)p1(t, s, τ))− ∂p1

∂τ
(t, s, τ) (4.1.2)
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Figure 4.1.1: Illustration of transitions between P0 and P1 in the handling
time and satiation based structured population model.

4.1.2 Formulating the boundary conditions

The last step of setting up this model is formulating the behavior at the
boundaries. Firstly, we will describe the behavior at the boundaries of P0.
Predators that appear to flow through the left boundary s = 0 are assumed
to accumulate at satiation s = 0. For the right boundary recall the reasoning
behind (3.3.7). Here all mass that was to jump beyond sm was collected at
sm. Because now the inflow occurs from p1(t, s, b) where obviously s ∈ (0, sm]
there is no more mass that can jump beyond sm. This leaves us with the
following boundary condition:

p0(t, sm) = 0 (4.1.3)

Secondly, we will describe the behavior at the boundaries of P1. Where
τ = 0, there is an inflow of p-mass from jumps out of P0. These jumps occur
at a rate xg(s)p0(t, s), therefore the inflow of predators is formulated as:

p1(t, s, 0) = xg(s)p0(t, s) (4.1.4)

Similarly, we have an outflow of p-mass at p1(t, s, b) where mass jumps back
to the searching subpopulation. We have already accounted for this change
in the p-equation of p0(t, s). This leaves us with the two satiation related
boundaries to consider. These will be dealt with analogously to the boundary
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conditions of P0. Predators that appear to flow through the left boundary
s = 0 are assumed to accumulate at this satiation. At the right boundary we
obtain the following equation again based on the same reasoning as equation
(3.3.7):

p1(t, sm, τ) = 0 (4.1.5)

Changes due to transitions within and between P0 and P1 are also illus-
trated in figure 4.1.1.

4.2 Model simulation

Now that we have defined our model, we are interested in it’s behavior in the
short and long run. However, since this model doesn’t seem fit for solving
analytically we will approximate its change with simulations. We’ll first
initialize the parameters of the population dynamic.

Since we have barely any new parameters compared to the univariate sa-
tiation and handling time based models, we can simply copy the parameters
chosen before. Some minor differences are the result of fine tuning the pa-
rameters to obtain clear results. The state space is based on the satiation
s ∈ (0, 1] and handling time τ ∈ [0, 1]. This results in Ω = (0, 1] × [0, 1].
Furthermore, as we saw before the search function is:

g(s) =

{
1− 1.25s : 0 < s < 0.8
0 : otherwise

Moreover we choose the following parameters:

• Digestion parameter a = 0.5

• Prey density: x = 10

• Ingestion parameter u = 0.5

This results in the digestion and ingestion functions to take on the following
form:

f0(s) = −0.5s f1(s) = −0.5s+ 0.5

It is important to note that at lower satiations the flow is faster than at
higher satiations. This will have an impact on the behavior of this population
dynamic.
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The simulation is executed by combining the techniques from the simu-
lations of the univariate models. Subpopulation P0 is modeled equivalently
to the satiation based model and thus needs no further explanation. Sub-
population P1 however is more complex as it depends on both s and τ . The
change due to the preceding of time is: ∂p1

∂τ
(t, s, τ) which implies a conveyor

belt like behavior described before in section 3.2. This means p-mass is sim-
ply shifted dτ along Ω at every time step. Since this rate is constant, we can
simply model this with a queue. The change due to ingestion/digestion is
then modeled using the finite difference technique described in the univariate
satiation model. Together, we obtain the following recursive functions:

p0(t, s) = p0(t− dt, s) + dt

(
−f0(s)

(
p0(t− dt, s+ ds)− p0(t− dt, s)

ds

)
− p0(t− dt, s)f ′0(s)− xg(s)p0(t− dt, s) + p(t− dt, s, b)

)
p1(t, s, τ) = Enqueue[DeleteLast[p1(t− dt, s, τ)

+ dt

(
−f1(s)

(
p1(t− dt, s, τ)− p1(t− dt, s− ds, τ)

ds

)
− p1(t− dt, s, τ)f ′1(s)

)
] , dt · xg(s)p0(t− dt, s)]

(4.2.1)
To simulate this population we need to initialize the p-state. We will

provide two initializations. In the first example both P0 and P1 are initialized
as uniform distributions except for s = sm for which p(t, sm, τ) = 0. In the
second example we initialize p0 as a linear function 2 − 2s, and p1 with the
more exotic:

p1(0, s, τ) =

{
( x

0.7
)2 − ( x

0.7
)4 : 0 < s < 0.7

0 : otherwise

The coding of the simulations can be found in appendix A.2.
The results of the simulations are displayed in figure 4.2.1 and 4.2.2.

Subfigures 4.2.1a to 4.2.1d and 4.2.2a to 4.2.2d display the changes of P1 for
the two examples. The distribution of p-mass is plotted for t = 0, 100, 200
and 800. Furthermore, subfigures 4.2.1e to 4.2.1f and 4.2.2e to 4.2.2f show
the distributions of P0 at time t = 0 and t = 800. Finally, the change that
has occurred in the distribution of P0 at is displayed in subfigures 4.2.1g to
4.2.1h and 4.2.2g to 4.2.2h. These subfigures display two viewpoints of the
change of P0 for the two examples.
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By inspecting these figures we have obtained the following properties of
the model. In both examples we can see that the distributions converges over
time to the distributions displayed in subfigures d and f. This suggests that
the convergent p-state does not depend on the initial distribution.

Interestingly, the convergence isn’t as smooth as the univariate satiation
based model. Soon after initialization a peak emerges in both P0 and P1

as can be seen in subfigures b, g and h. Even though subfigures b and c
do seem to imply a very gradual change, subfigures g and h show that in
fact the convergence is rather ’bumpy’. Like the handling time based model,
this is caused by the delay brought forth by the handling time taking b long.
In these particular examples the total population size of P0 is considerably
lower at initialization than the total population size of P1. Recall that we
initialized P0 as a uniform distribution, so before t = 100, the inflow of p-
mass in P0 is constant. However, beyond t = 100 the inflow is reduced to the
outflow of P0 at t = 0 which was much lower just after the initialization. This
causes a decrease of the total p-mass of P0 since the outflow is now suddenly
much higher than the inflow. The impact of this sudden decrease of inflow
continues to impact the distribution throughout our simulation. The impact
however diminishes as t increases. The change of the total p-mass is also
displayed in figure 4.2.3.

In addition it seems that the total population size is unaffected by the
changes generated in this model. A decrease in the total p-mass of P0 results
in an increase of the total p-mass of P1 and vice versa. This implies that the
total population size of both subpopulation combined is not altered by the
changes that occur in the p-state over time.

Lastly there are observations to be made about the convergent distribu-
tion itself. Like with the satiation based model, the searching predators P0

converge to a peaked distribution. The predators handling prey however do
not converge to a mere peak. As we can see by inspecting subfigures d and
figure 4.2.4, at the inflow τ = 0 the distribution is roughly the same as the
distribution of searching predators. But as time progresses, the kurtosis of
the distribution increases as the p-mass is shifted along (0, sm]. This is caused
by the difference in the digestion rate which depends on s. Higher levels of
satiation have a higher digestion rate. This reduced the net increase of satia-
tion caused by the ingestion of the prey item. In other words: ingestion rate
u isn’t much larger than the digestion rate −as. At lower levels of satiation
the reverse is true. Digestion doesn’t happen as fast as ingestion so p-mass is
transported along (0, sm] relatively fast. This causes the initial distribution
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at τ = 0 to be compressed as τ increases. Hence the final distribution has a
higher kurtosis. This process is also illustrated in figure 4.2.5.

4.3 Mathematical derivation of properties

Many of the characteristics observed in the simulations can be derived ana-
lytically as well. In this section we will concern us with the observations that
the total population size does not change over time and that the convergent
distribution does not to depend on the initial distribution.

The total population size can be quantified in the following way:

P (t) = P0(t) + P1(t)

=

sm∫
0

p0(t, s)ds+

sm∫
0

b∫
0

p1(t, s, τ)dτds (4.3.1)

Since we want to show that the total population size doesn’t change we will
show that the derivative equals 0. We have the following derivative:

dP (t)

dt
=

sm∫
0

∂p0(t, s)

∂t
ds+

sm∫
0

b∫
0

∂p1(t, s, τ)

∂t
dτds (4.3.2)

We can substitute (4.1.2) in equation (4.3.2). We’ll rewrite the two terms of
the resulting equation separately.

sm∫
0

∂p0(t, s)

∂t
ds =

sm∫
0

(
− ∂

∂s
(f0(s)p0(t, s))− xg(s)p0(t, s) + p1(t, s, b)

)
ds

sm∫
0

∂p0(t, s)

∂t
ds = −

sm∫
0

(
∂

∂s
(f0(s)p0(t, s))

)
ds−

sm∫
0

xg(s)p0(t, s)ds +

sm∫
0

p1(t, s, b)ds

= −f(s)p(t, s)|s=sms=0 −
sm∫
0

xg(s)p0(t, s)ds+

sm∫
0

p1(t, s, b)ds
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(a) P1 at t = 0 (b) P1 at t = 100

(c) P1 at t = 200 (d) P1 at t = 800
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Figure 4.2.1: Change of p-state over time of example 1. The figures are
initialized with a uniform distribution. Subfigures 4.2.1a to 4.2.1d display

the change of P1. Subfigures 4.2.1e to 4.2.1h display the states and changes
of P0.
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(a) P1 at t = 0 (b) P1 at t = 100

(c) P1 at t = 200 (d) P1 at t = 800

0.2 0.4 0.6 0.8 1.0
Satiation: s

0.005

0.010

0.015

0.020

Population mass

(e) Initialization of P0

0.2 0.4 0.6 0.8 1.0
Satiation: s

0.05

0.10

0.15

0.20

0.25

Population mass

(f) Distribution of P0 at t = 800

(g) Change of P0 over time, angle
1 (h) Change of P0 over time, angle

2

Figure 4.2.2: Change of p-state over time of example 2. Subpopulation P0

is initialized as 0.01 ∗ (2− 2s), a diagonal line, P1 is initialized with
( x

0.7
)2 − ( x

0.7
)4. Subfigures 4.2.1a to 4.2.1d display the change of P1.

Subfigures 4.2.1e to 4.2.1h display the states and changes of P0.
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Figure 4.2.3: The change of the total subpopulation size of P0 and P1 of
example 2 over time.

Figure 4.2.4: The limit of the multivariate structured population model
form another angle.
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Figure 4.2.5: The emergence of a narrower peak as a result of a difference
in the digestion speed. The image on the left shows the convergent

distribution of P1 at τ = 0. The image on the right shows the convergent
distribution of P1 at τ = 1.

Using the same reasoning as with the satiation based model, we can claim
that lims↓0 p0(t, s) = 0. If we then also use boundary condition (4.1.3), the
first term equals 0 and we obtain our first intermediate result.

dP0(t)

dt
= −

∫ sm

0

xg(s)p0(t, s)ds+

∫ sm

0

p1(t, s, b)ds (4.3.3)

Next we rewrite the second term of (4.3.2). We get:

sm∫
0

b∫
0

∂p1(t, s, τ)

∂t
dτds = −

sm∫
0

b∫
0

(
− ∂

∂s
(f1(s)p1(t, s, τ))− ∂p1

∂τ
(t, s, τ)

)
dτds

= −
b∫

0

sm∫
0

∂

∂s
(f1(s)p1(t, s, τ)) dsdτ −

sm∫
0

b∫
0

∂p1

∂τ
(t, s, τ)dτds

= −
b∫

0

f1(s)p1(t, s, τ)|s=sms=0 dτ −
sm∫
0

p1(t, s, b)ds+

sm∫
0

p1(t, s, 0)ds

= −
b∫

0

f1(s)p1(t, s, τ)|s=sms=0 dτ −
sm∫
0

p1(t, s, b)ds+

sm∫
0

xg(s)p0(t, s)ds

Note that for all s, f(s) > 0. Thus p-mass can never reach s = 0 (which is
also not within Ω). This indicates that lims↓0 p(t, s, τ) = 0. If we then use
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boundary condition (4.1.5), again the first term equals 0 and we obtain our
second intermediate result.

dP1(t)

dt
= −

sm∫
0

p1(t, s, b)ds+

sm∫
0

xg(s)p0(t, s)ds (4.3.4)

If we then substitute intermediate results (4.3.3) and (4.3.3) into (4.3.1), we
obtain:

dP (t)

dt
= −

sm∫
0

xg(s)p0(t, s)ds+

sm∫
0

p1(t, s, b)ds

−
sm∫
0

p1(t, s, b)ds+

sm∫
0

xg(s)p0(t, s)ds

= 0 (4.3.5)

So in fact the total p-mass does not change over time. This is in line with
what we observed in the simulations.

To conclude this section, we will provide a method to obtain the con-
vergent distribution of this system. The procedure has similarities with the
univariate satiation based model, but is considerably more complex. The
convergent p-state is brought forth in particular by the system of PDEs
(4.1.2) and boundary condition (4.1.4). In the equilibrium all derivatives
with respect to time vanish. We therefore obtain:

0 = − ∂

∂s
(f0(s)p0(s))− xg(s)p0(s) + p1(s, b)

0 = − ∂

∂s
(f1(s)p1(s, τ))− ∂p1

∂τ
(s, τ) (4.3.6)

Note that we cannot simply initialize a point on, say P0, and approximate
the other values with a Euler forward type of approach. If we would try
this for P0, we would lack the equilibrium values of p1(t, s, b). This implies
that we should start with P1 instead. However, the inflow of P1 depends on
the equilibrium of P0 because of boundary condition (4.1.4). This means we
should initialize P0 instead. But we already established that P0 needs the
equilibrium values of P1, so that’s not possible. Apparently the equations
circle reference. This problem can however be solved regardless.

We will still use an Euler forward (EF) type of approach combined with
a finite difference method, but in a different way. First we need to discretize
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Ω. Subpopulation P0 should be partitioned in ds sized parts, subpopulation
P1 should be partitioned in ds × dτ sized parts. To deal with the circular
referencing, instead of initializing with a constant we initialize the partitioned
P0 with n = sm

ds
variables. If the variable corresponding to part i of P0 is vi,

then P0 = (v1, v2, . . . , vi, . . . , vn). With this initialized value of P0, we can
determine P1. Recall that the inflow of P1 is only generated by P0. We get
p1(s, 0) = xg(s)p0(s). Now we have our first list of values that describe P1

in the equilibrium. Namely when τ = 0. To obtain the states of all other
values of τ , we proceed in a way similar to the simulations: by combining
a conveyor belt and finite difference type of approach. However instead of
change occurring over time t, change occurs over τ . We get:

p1(s, τ) = p1(s, τ − dτ)

+ dt

(
−f1(s)

(
p1(s, τ − dτ)− p1(s− ds, τ − dτ)

ds

)
− p1(s, τ − dτ)f ′1(s)

) (4.3.7)

This way we obtain all equilibrium values of P1, in particular p1(s, b). Now we
return to P1. By now p1(s, b) is no longer unknown as it is now vector of linear
combinations of (v1, . . . , vn). Recall that the only reason we were unable to
use the EF approach on P0 before, was because p1(s, b) was unknown. Now
since we do know the values this list of points take on, we apply EF the
same way as with the satiation based model. For P0 we obtain from the first
subequation of (4.3.6):

p′0(s) =
1

f0(s)
· (−f ′0(s)p0(s)− xg(s)p0(s) + p1(s, b)) (4.3.8)

Distribution P0 is then computed by using p1(s, b) we just obtained and
applying EF starting from point 1: v1. So for any point of P0 except the
first, we have:

p0(s) = p0(s− ds) + ds · p′0(s− ds) (4.3.9)

Now finally we should realize that the values of p0(s) we just determined
are redundant in the sense that we already defined what these values are,
namely (v1, . . . , vn). The values we just computed with 4.3.9 in fact refer
to the same points, but they include the change such points endure over
time. Both quantities of these points should therefore be equal, because in
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Figure 4.3.1: The shapes of the convergent p-states of subpopulation P0

and P1.

an equilibrium no change is allowed. We therefore need to solve the following
system of equations:

v1 = θ

v2 = v1 +
ds

f0(s1)
· (−f ′0(s1)v1 − xg(s1)v1 + p1(s1, b))

...

vn = vn−1 +
ds

f0(sn−1)
· (−f ′0(sn−1)vn−1 − xg(s− ds)vn−1 + p1(sn−1, b))

(4.3.10)
where θ > 0 can be picked arbitrary, but a θ close to 0 gives the best

approximation of the actual convergent distribution as v1 tends to 0 for ds ↓
0. Solving this system and substituting all the solutions vi in P0 and P1

provides us with the approximated shape of the convergent distribution: P0

and P1. To obtain the actual convergent distributions p̂0(s) and ̂p1(s, τ) we
should correct P0 and P1 for the actual total population size P . We get:

p̂0(s) = p0(s) · P∫ sm
0

p0(s)dŝp1(s, τ) = p1(s, τ) · P∫ sm
0

∫ b
0
p1(s, τ)dτds

(4.3.11)

We see that this procedure does not depend on the initial distribution. Thus
the shape of the convergent distribution does not depend on the shape of the
initial distribution.
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As an example we calculated P0 and P1 for the examples provided in
figures 4.2.1 and 4.2.2. This is coded in Mathematica and the coding can be
found in appendix A.1. The result is displayed in figure 4.3.1. By inspecting
these results we can clearly see that these distributions are equal to the p-
states we observed in subfigures d and f of figures 4.2.1 and 4.2.2.
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5 Comparison of the uni- and multivariate

predator prey population models

In the previous chapters we have formulated, simulated and analyzed three
i-state based predator prey population models. The complexity of the models
gradually increased as we progressed, concluding with a model that incor-
porated all features of the univariate models we formulated before. In this
chapter we will compare the univariate and multivariate population models
by showing similarities and differences. In doing so we can show the added
value of using not only these specific models, but of structured population
models in general.

5.1 Characteristics of the models

Before comparing the characteristics of the example models, we will revisit
the different models and give a short overview of some of their most important
characteristics.

5.1.1 The univariate handling time based model

The handling time model is based on the idea that the time spent on handling
a prey item brings forth the change in a population. Using an i-state τ
to bookkeep the handling time that has passed up until that moment, we
were able to set up a model in which we distinguished between two types of
subpopulations: predators busy handling prey and predators busy searching
for prey. The former could be structured with the use of τ since predators
had been handling prey for 0 ≤ τ ≤ b long. The latter was not internally
structured and was simply a memoryless collection of individuals. Change of
the p-state is generated by three processes. First of all, as time progresses
predators handling prey are transported along [0, b]. Second of all, predators
that are done handling prey jump to searching prey. Last of all, predators
that spot a prey item start searching for prey.

This model has the following properties. For one thing, the population
distribution converges to a uniform distribution in a somewhat bumpy fash-
ion. The convergent distribution is not affected by the initial distribution,
as all initial structure is lost by the time all the initialized p-mass of the
predators handling prey has transitioned to the searching subpopulation of
predators. The loss of the initial structure is caused by the lack of memory
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of the searching predators. All predators have the same chance of spotting
a prey item, regardless of the time they have already been searching. The
speed of convergence itself is for a large part determined by the total time b
it takes to handle a prey item. This is the time it takes for the initial dis-
tribution to jump to the subpopulation of searching predators. Finally, the
total population size is unaffected by the change generated over time. The
model is a closed system where p-mass is only transported, but not altered
in total quantity.

5.1.2 The univariate satiation based model

The satiation model is based on the idea that satiation affects the need and
desire for food and the speed at which the satiation decreases over time.
By using an i-state s ∈ (0, sm] to bookkeep the satiation of a predator,
we described this population as a distribution of searching predators with
satiation s. Change occurs as a result of three generating factors. Firstly,
internal jumps occur when predators spot prey. We assumed the ingestion to
be instantaneous which causes the satiation to increase with fixed quantity
w. This causes a decrease of p-mass at the source. Secondly, after a jump
the predators appeared at s+ w which causes an increase of p-mass at that
i-state. Thirdly, digestion caused transportation of predators along Ω.

We then continued to derive some properties. It turned out that the
population distribution converged smoothly to a peaked distribution over
time. This convergence was not affected by the initial distribution as it
smoothly transitioned from the initial distribution to the peaked distribution.
Also the total population size was unaffected by the change over time, since
p-mass was simply moved but not altered.

5.1.3 The multivariate satiation and handling time based model

Finally, the multivariate satiation and handling time model is based on the
combination of the univariate models. Like in the univariate satiation model
we assumed that the predation rate and digestion rate are influenced by the
level of satiation. However now we also assumed there was an ingestion rate
independent of the satiation s. This caused the satiation to increase when a
predator was handling prey. Now the i-state is the combination of the level
of satiation s and the passed handling time τ . We distinguished between
two types of predators, predators that are searching prey and predators that
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are handling prey. Only the latter is influenced and thus structured by both
i-state variables. The former is affected by satiation only since all predators
of this type have τ = 0.

The characteristics of this model are the following. The population distri-
bution converges over time in a bumpy fashion. The convergent distribution
was in a way a combination of the two convergent distributions of the uni-
variate models. The subpopulation of predators searching for prey converged
to a peaked distribution. The population distribution of the predators han-
dling prey however wasn’t simply a peak, but was shaped more like a ridge.
At τ = 0 we saw a peaked distribution which had the same shape as p0.
Over time this peaked distribution was transported and compressed to form
a narrower distribution at higher values of s. In this convergence, the initial
distribution at t = 0 does not seem to affect this convergent distribution.
Also the total population size is unaffected by the changes.

5.2 Similarities and differences

Using the properties we reiterated in the previous section, we can now an-
alyze the similarities and differences between the different models. This is
combined in table 5.2.1.

τ s τ and s

Number of state types 2 1 2

Converges yes yes yes

Way of converging bumpy smooth bumpy

Total pop. size changes no no no

Initial distribution affects no no no
convergent distribution

Shape of final distribution uniform peak peak and ridge

Table 5.2.1: Comparison of the uni- and multivariate structured population
models based on satiation and handling time.

By inspecting the table it becomes clear that the three proposed models
are in many ways very similar. In particular in the way they converge.
Mass is relocated in the beginning until a stable distribution arises. The

55



result of this process is not affected by the initial distribution and also this
process does not change the total population size. These similarities can in
large be ascribed to the similar assumptions that underlie the models: the
prey density is kept constant, no births or deaths occur and we only model
predators searching for prey and predators handling prey. These assumption
don’t just simplify our model and make them easier to compare, they also
cause similar behavior in particular in the long run. Similarities are also the
result of the fact that the models are all structured population models. Since
these kinds of models are constructed in the same way, the mechanics that
deal with the assumptions stated before are equivalent.

There are however differences between these models. For one thing, the
models don’t converge in the same way. While the satiation based model
converges rather smoothly, the handling time and combined model show a
bumpy convergence behavior. More importantly however, we also see that
the models converge to different shaped distributions. The generating compo-
nents interact in different ways and therefore result in different distributions
of p-mass along Ω. We thus obtain both uniform, peaked and ridge shaped
convergent distributions.

The convergent distribution of the multivariate model is particularly in-
teresting as we can see characteristics of the convergent distributions of both
univariate models. If we consider the shapes of the convergent distribution
of the multivariate model, this is mostly the result of characteristics of the
satiation based model. Subpopulation P0 converged to a peak similar to the
peak we see with the satiation based model. Subpopulation P1 converged
to a ridge which is simply a peaked distribution that is somewhat altered
over time. The process of convergence is however strongly influenced by the
characteristics of the handling time based model. The delay which is caused
by having a handling time of b causes the convergence to be rather bumpy
and it also takes longer than when the satiation based model.

All in all, modeling predator prey population dynamics with different
models has resulted in both strong similarities and differences. All models
converged to a predetermined distribution regardless of the initialization.
The process of convergence and the resulting distributions themselves where
however different among the models.
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5.3 The added value of using a structured population
model

We have now arrived at the pinnacle of this thesis since can now underpin the
added value of using a structured population model. Through the specific
results of the proposed models we have been able to make a general observa-
tion. Namely: by using a structured population model we don’t only know
that dynamics converge in some way, but we know what kinds of distribution
they converge to. This is a major advantage of the use of structured popu-
lation models. Modeling a population is about understanding how and why
populations change and what they change into. By modeling the distribution
of a population we obtain information about both the individuals and the
entire population.

Imagine if we had used a top down approach and we had just modeled
the total population size. Modeling only the total population size would
have provided us with very little information, since this did not change over
time. If we had even only modeled the subpopulation sizes, then still our
information of the convergent population would be limited. In this case we
would know how the subpopulations relate, but we would have no information
about the structure of the subpopulations or how this structure affects the
dynamic itself. This is why structured population models allow for a deeper
understanding of the individuals and the population as a whole.
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6 Discussion

This thesis was centered around the theory behind and examples of struc-
tured population models. In essence this thesis has provided two kinds of
results.

First of all, we have shown how to construct and use structured population
models. We’ve seen how to set up a structured population model in four
steps, what characteristics should be modeled and what general rules such
models abide by. These practical tools are provided both explicitly and
implicitly. We explicitly proposed our four steps of modeling which were
also demonstrated with the the uni- and multivariate structured population
models. We implicitly provided you with an understanding of how you could
go about simulating and generating such a model by using queues or by using
a finite difference type approach. All in all these results give you the tools
necessary for constructing, simulating and analyzing a structured population
model of your own.

Second of all, we have shown why structured population model are rele-
vant and why they should often be preferred over unstructured population
models. Structured population models allow us to utilize characteristics of
the individual that affect its population related behavior. These charac-
teristics are the basis of modeling change in a population with a bottom-up
approach. With such a basis we acknowledge the complexity of the individual
and implement it in our model instead of ignoring it. This provides us with
a lot more information about the population, since structured population
models generate not only macro scale states like population size, but gener-
ate the distribution of individuals as well. This is an important advantage
of the use of structured population models.

Because of the benefits of structured population models, our opinion
might be perceived as being that structured population models are always
the best choice. Obviously top-down approaches of modeling do have their
own advantages. For one thing structured population models are often much
more computationally demanding. Simulating a distribution requires a lot
more computations than simulating only the total population size. Another
reason for choosing a top-down approach could be that all the detail a struc-
tured population model provides is unnecessary. If for instance the total
population size is the only quantity you are interested in, then a structured
population model might be unnecessarily complex.

In general however, generating the change of the p-state can provide in-
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sights in the dynamic of a population that could have gone unnoticed if a
top-down approach had been used. Choosing a structured population model
will bring forth an in-depth understanding of what a population was, is and
will become. And for an ecologist, that’s what its all about.
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A Appendices

A.1 Quantifying the appearance term of the general
p-equation

The quantity of appearing p-mass is for a large part determined by the quan-
tity of disappearing p-mass. We will therefore first quantify the disappear-
ance of p-mass due to internal jumps and we will use this to quantify the
appearance of p-mass afterwards. This section is based on theory from chap-
ter three in Levin’s book [3].

Let γ(x, y)Πdyi be the probability per unit of time that an individual with
i-state x will jump to Π(yi, yi + dyi). If we integrate over all y ∈ Ω, we can
determine the chance of an individual jumping, since we combine the chances
of jumping to all possible destinations. This means that the contribution of
αj to α is:

αj(x) =

∫
Ω

γ(x, y)Πdyi (A.1.1)

We can rewrite this equation. Notice that γ(x, y) acts as a density function.
We can obtain this density function by using the fact that γ(x, y) must be
equal to the chance of jumping times the chance of jumping to a specific y.
Or:

γ(x, y) = αj(x)p(x, y) (A.1.2)

where p(x, ·) is the probability density of ”touch down” for jumps starting
at x. We will use this relation to quantify the appearance of mass in section
2.3.4.

We can use this density function to quantify the reappearance of p-mass
within the interior of Ω. Such increases of p-mass are a result of jumps like
births, internal jumps and jumps from the boundary. In general we will
consider all such arrivals to be births since this simplifies our model. The
probability function we just described therefore accounts for both jumps and
actual births. Sometimes, we have more than one touchdown as the result
of a birth with multiple children. The average number of touchdowns at y is
therefore quantified with r(y).

We now have enough information to formulate the first contribution to
δs+n(x) using a mass action law argument. If we separate partitions of Ω
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and denote these as Ωi, then we have:

Contribution 1:
∑
i

{
∫

Ωi

r(y)p(y, x)αJ(y)n(y)dY } (A.1.3)

The integral describes the expected number of arrivals at x resulting from
jumps originating from Ωi. This is the product of the expected number
of offspring, chance of jumping to x, the chance of jumping at all and the
number of individuals. If we summarize the expected number of departures
to x over all area’s in Ω, we obtain the contribution to the appearance of
p-mass because of (strictly) internal births.

So far we have ignored jumps from the boundary of Ω which are allowed
in some structured population models. These follow a similar reasoning as
before, with the difference being that we use the adjusted flux at the bound-
ary which quantifies the amount of p-mass flowing through the boundary.
Using r(y) and p(y, x), we arrive at the second contribution:

Contribution 2:
∑
i

{
∫
∂−Ωi

r(y)p(y, x)φ(y)ν(y)dY } (A.1.4)

Now we can add up these contributions to arrive at the contribution of
p-mass from within the interior of Ω. We obtain:

b(x) =
∑
i

{
∫

Ω

r(y)p(y, x)αJ(y)n(y)dY +

∫
∂ Ωi

r(y)p(y, x)φ(y) · ν(y)dσ}

(A.1.5)
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A.2 The programming behind the various structured
population models

In this appendix all of the coding behind the simulations is provided. Note
that often some boundary conditions are not incorporated in the model. This
is justified because many boundary conditions don’t influence the simulation
in a noticeable way. By omitting them the simulations often become much
simpler.

A.2.1 Univariate handling time based model coding

The simulation of section 3.2 is programmed in Mathematica as follows:

With[{d\[Tau] = 0.01, dt = 0.01, a = 0.09, x = 10.},

ClearAll[f];

f[0] = {50.,

d\[Tau]*Table[

25. - 5. (i - 0.5*d\[Tau]), {i, d\[Tau], 1., d\[Tau]}]};

f[t_] :=

f[t] = {f[t - 1][[1]] + Last[f[t - 1][[2]]] - a x dt f[t - 1][[1]],

Delete[Prepend[f[t - 1][[2]], a x dt f[t - 1][[1]]], -1]};

]

A.2.2 Univariate satiation based model coding

The simulation of section 3.3 is programmed in Mathematica as follows:

With[{dt = 0.01, a = 0.5, x = 10., ds = 0.01, w = 0.1},

ClearAll[f, g, p];

f[s_] := -a s;

g[s_] :=

Piecewise[{{0, s < 0}, {1. - 1.25 s, 0 <= s < 0.8}, {0, s >= 0.8}}];

p[0] = Table[{i, ds 30/4 (i^2 - i^4)}, {i, 0.5*ds, 1. - 0.5*ds, ds}];

p[t_] := p[t] =

Block[{s = #1[[1]], \[Rho] = #1[[2]], pminw},

pminw = SelectFirst[p[t - 1], #[[1]] == s - w &, {0, 0}][[2]];

{s,

Max[\[Rho] +

dt (-f[s]*((#2[[2]] - \[Rho])/ds) - \[Rho]*f’[s] -
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x g[s] \[Rho] + x g[s - w] pminw), 0]}] & @@@

Partition[p[t - 1]~Join~{{1 + 0.5 ds, 0}}, 2, 1]

];

The approximation of p(s) which is used for determining the convergent
distribution is programmed in Mathematica as follows:

With[{a = 0.5, x = 10., ds = 0.001, w = 0.1, windex = 100},

ClearAll[p, f, g];

f[s_] := -a s;

g[s_] :=

Piecewise[{{0, s < 0}, {1. - 1.25 s, 0 <= s < 0.8}, {0, s >= 0.8}}];

p[100] = 10^-9;

Set[p[#], 0] & /@ Table[-i, {i, 0, 110}];

p[sindex_] := p[sindex] =

Block[{s = sindex*ds - 0.5*ds},

If[sindex > windex,

p[sindex - 1] +

ds*(1/f[s] (-f’[s] p[sindex - 1] - x g[s] p[sindex - 1] +

x g[s - w] p[(sindex - windex - 1)])),

p[sindex + 1] -

ds*(1/f[s] (-f’[s] p[sindex + 1] - x g[s] p[sindex + 1] +

x g[s - w] p[(sindex - windex + 1)]))

]

]

]

A.2.3 Handling time and satiation based model coding

The simulation of chapter 4 is programmed in Mathematica as follows:

With[{dt = 0.01, a = 0.5, x = 10., ds = 0.01, w = 0.1, d\[Tau] = 0.01,

taue = 0.5, u = 0.5},

ClearAll[g, p0, p1, f0, f1];

(*Functions*)

f0[s_] := -a s;

f1[s_] := -a s + u;
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g[s_] :=

Piecewise[{{0, s < 0}, {1. - 1.25 s, 0 <= s < 0.8}, {0, s >= 0.8}}];

(*Initialization*)

p0[0] = Table[{i, ds 2}, {i, 0.5*ds, 1. - 0.5*ds, ds}];

p1[0] =

Table[{s, 2 ds}, {s, 0.5*ds, 1. - 0.5*ds, ds}, {\[Tau],

0.5*d\[Tau], 1. - 0.5*d\[Tau], d\[Tau]}];

(*Recursive functions*)

p0[t_] := p0[t] =

Block[{s = #1[[1]], \[Rho] = #1[[2]]},

{s,

Max[\[Rho] +

dt (-f0[s]*((#2[[2]] - \[Rho])/ds) - \[Rho]*f0’[s] -

x g[s] \[Rho]) +

p1[t - 1][[Round[(s + ds/2)/ds], -1, 2]]

, 0]}] & @@@

Partition[p0[t - 1]~Join~{{1 + 0.5 ds, 0}}, 2, 1];

p1[t_] := p1[t] =

Map[Block[{s = Part[#, 1, 1]}, Delete[Prepend[#,

{s, dt x g[s] p0[t - 1][[Round[(s + ds/2)/ds], 2]]}], -1]] &,

MapIndexed[

Block[{sindex = #2[[1]], \[Tau]index = #2[[2]],

s = #1[[1]], \[Tau] = #2[[2]]*d\[Tau] - d\[Tau]/2, ps,

p = #1[[2]]},

ps =

If[sindex > 1, p1[t - 1][[sindex - 1, \[Tau]index, 2]], 0];

{#1[[1]], #1[[2]] + dt (-f1[s]*((p - ps)/ds) - p*f1’[s])}] &,

p1[t - 1], {2}]

]

];

The approximation of p0(s) and p1(s, τ) which are used for determining the
convergent distribution is programmed in Mathematica as follows:

With[{a = 0.5, x = 10., ds = 0.01, w = 0.1, u = 0.5, d\[Tau] = 0.01},

ClearAll[g, p0, p1, f0, f1, dp0];

g[s_] :=
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Piecewise[{{0, s < 0}, {1. - 1.25 s, 0 <= s < 0.8}, {0, s >= 0.8}}];

f0[s_] := -a s;

f1[s_] := -a s + u;

p1[0] = Table[

d\[Tau]*x*g[i*ds - 0.5*ds]*ToExpression["v" <> ToString[i]], {i, 1,

1/ds}];

p1[\[Tau]_] :=

p1[\[Tau]] =

Simplify /@

MapIndexed[#1[[2]] +

d\[Tau] (-f1[First[#2]*ds - 0.5*ds]*((#1[[2]] - #1[[1]])/ds) -

#1[[2]]*f1’[First[#2]*ds - 0.5*ds]) &,

Partition[{0}~Join~p1[\[Tau] - 1], 2, 1]];

dp0[s_, v_] := 1/f0[s] (-f0’[s] v - x g[s] v);

p0 = Table[

ToExpression["v" <> ToString[i]] +

ds*dp0[i*ds - 0.5*ds, ToExpression["v" <> ToString[i]]] +

1/f0[i*ds - 0.5*ds]*p1[99][[i]], {i, 1, 1/ds}];

solutions =

Solve[ReplacePart[

MapIndexed[ToExpression["v" <> ToString[First[#2] + 1]] == #1 &,

p0], -1 -> v1 == 10^-12],

Table[ToExpression["v" <> ToString[i]], {i, 1, 1/ds}]][[1, All,

2]];

]
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