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Abstract. In this thesis, we provide an introduction to microgrids and
associated concepts. We look at the central challenges to their operational
management, and provide a discussion on the classification of microgrids
based on a number of characteristics and how this influences the planning
process.
In the second part, we describe a forecast-based centralized planning ap-
proach for the (economically) optimal operational management of (islanded)
microgrids. Using mathematical programming techniques, we formulate four
models: (1) a simple MILP-formulation of our problem, (2) an extension
adding safety constraints, (3) a scenario-based two-stage model and (4) a
scenario-based multi-stage model. Additionally, we describe an algorithm
for the generation of the scenario tree needed for the fourth model.
The performance of the models is compared on three test instances: two
are based on an existing microgrid in the Netherlands, and one is artificially
constructed. The economic advantage of the described planning approach is
not unequivocally shown for all described instances, but it is shown to have
its advantages.
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Part I.

Introduction & Theory

1. Introduction

We live in a time where it becomes increasingly clear that the climate is changing, and
that we are to blame. In its most recent assessment report (AR5), the Intergovernmen-
tal Panel on Climate Change (IPCC) stated that: “it is extremely likely that human
influence has been the dominant cause of the observed warming since the mid-20th cen-
tury” [57]. Between 90% and 100% of publishing climate scientists agree that human
activity is the cause of recent global warming [18].

The need to mitigate the potentially dramatic effect of global warming by reducing
emissions is widely recognized. On the global level, the Paris agreement, negotiated
at the 21st United Nations conference on climate change (COP21) in December 2015,
commits the signatories to limit the emission of greenhouse gases and prevent the increase
in global average temperature to be more than 2 � compared to pre-industrial levels.
It expresses the intention, however, of limiting the increase in temperature even more,
to 1.5 � [125].

The European Union has set targets for 2020 – 2050, focused on reducing emissions
(by 20% each decade compared to 1990 levels), increasing the share of renewables (20%
(2020) and 27% (2030) of the total production) and increasing energy efficiency/savings
(saving 20% (2020) and 27% (2030) compared to a “business as usual”-scenario) [32,33].

The Netherlands used to be a front-runner in the early days of climate politics (the
late 1980s). Over the years, however, Dutch climate policy and efforts have become less
ambitious, possibly due to the changing political tide in the 2000s and the dominance
of the traditional fossil fuel sector [72]. As of January 2017, the Netherlands has not
yet ratified the Paris agreement. Current (short-term) targets result from an agreement
between the government and forty organizations (including environmental groups, unions
and financial institutions): the “Energieakkoord voor duurzame groei” [117]. The main
aims of the agreement are to achieve energy savings of 1.5% per year and increase the
share of renewables in energy production to 14% in 2020 and 16% in 2023. A recent
report states that the targets for 2020 will probably not be met, although it is optimistic
about the observed trends [27].

The agreements discussed above exemplify a (policy) move to change our energy supply
chain (a energy transition): shifting production from fossil fuel-dependent generation to
renewable energy producers, reducing energy use and increasing efficiency. A prime
motivator for this move, aside from reducing the effects of global warming, is decreasing
the dependence on fossil fuels. It becomes increasingly clear that the supply of these
fuels is not infinite and that their extraction will become more and more expensive.
Additionally, a large portion of the supply of these fuels originates from (politically) less
stable regions. An energy supply that is less dependent on fossil fuels is therefore highly
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desirable. The rapid development and improvement of renewable energy technologies
support this move.

The electricity grid faces considerable challenges because of this change. The tradi-
tional system was of a hierarchical nature. Large fossil fuel-based generators ‘simply’
matched the demand of the consumers in the grid. Over the past few years, the share of
distributed energy resources (DER) in the grid has increased significantly. The energy
is no longer only produced in a few large power plants, but the production is distributed
over the grid. This situation causes a variety of problems (e.g. frequency and voltage
instability), some of which are investigated (along with potential benefits) in [83].

The balance between supply and demand should be maintained in the grid, but this
becomes increasingly difficult as a large portion of the DER installed are of an inter-
mittent nature due to the natural resource on which they depend (e.g. sun or wind).
The flexibility that existed on the generation side because of the large fossil fuel-based
generators is thereby decreased. On the other hand, technological developments allow us
to (potentially) exploit more flexibility on the consumption side, through demand-side
management (DSM), for example. The traditional approach is not capable of exploiting
this new flexibility. This has led to a move towards a “next-generation power grid”, the
smart grid. This smart grid, while based on an entirely different philosophy, has to be
built on top of the existing (old) infrastructure.

In this thesis, we will focus on microgrids. Microgrids are just one of the increas-
ingly popular new technologies that can be considered part of the larger “smart grid”-
movement. A more detailed description of these concepts will be provided in Section 2.
We will develop and evaluate a number of algorithms for the operational management
of microgrids. The main research questions of this thesis will be:

1. How can we manage the operation of microgrids with centralized control in a
(near-)optimal way?

a) What is the best way to deal with uncertainty in the input for the model?

b) Is considering an abstract supply-demand balancing problem sufficient to ar-
rive at good solutions?

2. What is the value of intelligent planning in microgrid operation?

a) What is the potential reduction in operational cost and how does it depend
on the composition of the microgrid?

b) Does the potential reduction in operational cost outweigh the cost of con-
structing a planning (cost of the IT infrastructure, etc.)?

The first main question will be the focus of my thesis. This thesis was written during
an internship at Zown (see Section 2.5), and the second question serves to provide Zown
with an indication of the potential value of this work and possible future follow-ups for
their system.

The remainder of this thesis will be organized as follows: the first part will provide
a general background on microgrids and introduce some concepts that will be used in
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the later parts of this thesis. In the second part, the problem is described and models
are developed. The algorithms used are described here as well, and a few details on the
implementation are discussed. Finally, in the third part of this thesis, we will apply the
algorithms from the previous part to a number of test instances and evaluate the results.
The latter parts use a number of concepts that are explained in the first part but can
otherwise be read separately.

2. Microgrids

2.1. The electricity system

We will sketch a very brief overview of the Dutch electricity system. A more elaborate
description can be found in [129].

As discussed above, the system is arranged to facilitate a centralized electricity supply:
demand occurs on one end of the system, and large plants match this demand on the
other end. The grid that connects both sides can be divided based on voltage level:

� The high voltage level (>50 kV) is primarily used to transport electricity over long
distances. This part of the grid is usually referred to as the transmission system,
which is managed by a transmission system operator (TenneT in the Netherlands).
The transmission grid serves hardly any demand directly, except for a very limited
number of high load consumers.

� The medium voltage level (3–30 kV) is connected to the high voltage transmission
system and distributes the electricity further. This part of the grid is known as the
distribution system. It satisfies the demand of some large consumers directly, but
its primary function is to distribute the electricity to the low voltage nets. This
part of the grid is managed by a distribution system operator.

� The low voltage level (230–400 V) is the level where most (smaller) consumers, like
households and offices, connect to. This part of the grid is also the responsibility
of the distribution system operator.

This system is designed to facilitate the transportation of electricity from high voltage
levels downwards to consumers. It is not designed to deal with the developments we
discussed briefly at the end of the previous section. Consumers are no longer exclusively
consuming electricity. Peaks caused by local generation on the (traditional) consumer
side, require upgrades of the grid to be able to transport the surplus. With an ever-
increasing penetration of (renewable) distributed generation, this practice is not tenable
in the long term. As mentioned above, the move towards a smart grid promises to solve
these problems.

2.2. Smart Grid

The term “Smart Grid” knows many definitions. In the context of this thesis, the
following definition by the European Commission is probably the most appropriate:
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“A Smart Grid is an electricity network that can cost efficiently integrate
the behaviour and actions of all users connected to it generators, consumers
and those that do both in order to ensure economically efficient, sustainable
power system with low losses and high levels of quality and security of supply
and safety.” [31]

The Smart Grid is seen as the next-generation power grid, and relies heavily on smart
digital technology to achieve a variety of goals: improving reliability, facilitating dis-
tributed generation and increasing energy efficiency, to name a few. It differs from the
standard electrical grid mainly in its organization (hierarchical, unidirectional vs. dis-
tributed, bidirectional) and the extensive use of ICT. A more elaborate introduction to
the “Smart Grid” concept and the role of ICT in its development is provided in [35]. A
smart grid that integrates multiple commodities (electricity, heat, natural gas, hydrogen,
biomass, etc.) is sometimes referred to as an Intelligent Energy Network [95].

An extensive survey of all smart grid-related work until 2011 can be found in [34]. A
more recent survey in [16] provides an overview of the critical issues that are currently
faced in smart grid technology.

2.3. Microgrid

The concept of microgrids, much like the smart grid, has been defined in many different
ways. We present here the definition from [47], which is a good representation of the
definitions used in most European projects:

“Microgrids comprise Low Voltage distribution systems with distributed en-
ergy sources, such as micro-turbines, fuel cells, PVs, etc., together with stor-
age devices, i.e. flywheels, energy capacitors and batteries, and controllable
loads, offering considerable control capabilities over the network operation.
These systems are interconnected to the Medium Voltage Distribution net-
work, but they can be also operated isolated from the main grid, in case of
faults in the upstream network. From the customer point of view, Microgrids
provide both thermal and electricity needs, and in addition enhance local re-
liability, reduce emissions, improve power quality by supporting voltage and
reducing voltage dips, and potentially lower costs of energy supply.”

Microgrids, then, are relatively small energy distribution networks comprised of three
keys types of components: distributed energy generators, storage devices and (control-
lable) loads. Microgrids are able to operate autonomously (islanded mode), but can
be connected to the traditional electrical grid (macro grid) as well. Microgrids are not
limited to electrical components but may handle multiple other commodities, such as
heat and (bio-)gas. A visualization of an example microgrid is presented in Fig. 1.

Finally, microgrids are obviously contained in the definition of a smart grid. The
properties of a smart grid apply to microgrids as well, on a small scale. The efficient
management of microgrids requires intelligent ICT to facilitate reliable and efficient
operation.
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Figure 1: Example lay-out of a microgrid, including the Microgrid platform (Section
3.4) [131]

The central problem of microgrid management is the balancing of power demand and
supply. This is complicated by several characteristics of microgrids:

� The large share of intermittent distributed energy resources (DER) in microgrids.
The output of DERs such as Photo Voltaic (PV) and Wind Turbine (WT) systems
is hard to predict and may fluctuate significantly depending on the local conditions
(i.e. the availability of primary sources such as solar radiation and wind).

� The (relatively) small scale of microgrids. The small scale on which a microgrid
balances supply and demand makes forecasting even harder. In large networks,
prediction errors and demand/supply fluctuations will usually be smoothed out be-
cause of the number and geographical spread of producers and consumers. Within
a microgrid, however, there is a high spatiotemporal correlation between all of
them.

� The possibility of islanded operation. While a grid-connected network can, in
principle, always counteract shortage and surplus using the main grid, a microgrid
in islanded mode is required to get the balance of supply and demand exactly right
by itself.
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On the other hand, a microgrid (usually) contains a considerable number of controllable
loads, storage elements and controllable energy sources. The problem translates to the
optimal management of these assets taking the operational constraints of the microgrid
(primarily supply/demand balance) into account. The types of planning problems en-
countered in microgrids will be further investigated in Section 3. Next, we will consider
the typical components of a microgrid and their role in solving this problem.

For further reading, introductions to the microgrid and surrounding concepts can be
found in [63, 110]. For a broad review of the literature about microgrids in general
see [98,126]. In [81,103,126] lists of microgrid locations are presented.

2.4. Microgrid components

As mentioned before, a microgrid consists mainly of distributed energy generators, stor-
age devices and (controllable) loads. In this section, each of these categories will be
discussed in terms of its relevance for the balancing of supply and demand. Note that
these categories are not necessarily mutually exclusive. In multi-commodity microgrids,
for example, a generator might need to be supplied with one commodity (e.g. electricity
or natural gas) to produce another (e.g. heat).

2.4.1. Generation

A variety of distributed generators can be included in microgrids. They can, broadly, be
divided along the lines of the amount of control that an operator has over the output of
a generator.

On the one hand, intermittent Renewable Energy Sources (RES) can only be con-
trolled to a very limited extent. The output depends on the availability of the primary
energy resources (e.g. solar radiation in case of PV), and curtailing the output of these
units is both inadvisable and undesirable, due to their low operating costs and environ-
mental benefits. Although curtailment is possible, the output of RES should generally
be considered as a given lower bound on energy generation in supply/demand balancing.

On the other hand, dispatchable generators such as microturbines and fuel cells enable
the operator to exert much more control over the amount of generated energy. The level
of control differs depending on the exact type of generators, and there are constraints
that limit the possibilities somewhat (e.g. ramp up constraints). Combined Heat/Power
(CHP) units are a special case. As they supply both heat and electrical power, the (lack
of) demand of both commodities needs to be considered when making control decisions.
Another challenge is to let the operation of the generators be as efficient as possible.

A review of distributed energy resources in microgrids can be found in [59].

2.4.2. Storage

Storage units provide a large amount of flexibility, as they can be used both as consumers
and producers of energy, depending on the situation. Storage devices of all kinds (e.g.
lead-acid batteries, flywheels) provide a buffer and play a large part in maintaining
system stability, power quality and reliable operation.
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Literature reviews on energy storage technologies can be found in [6, 76,108,122].
The line between buffers/storage on the one hand and loads on the other is not clear-

cut: flexible loads such as boilers may serve as buffers, effectively storing one form of
energy (heat), while consuming another (electricity or gas).

2.4.3. Loads

Finally, a microgrid usually has a number of loads, which can broadly be divided into
two categories: fixed (uncontrollable) and flexible (controllable) loads [98]. Fixed loads
are uncontrollable: their demand needs to be satisfied at any given time. Flexible loads
provide flexibility: they can be curtailed (load shedding) or shifted in time (load shifting).

The uncontrollable loads are not that interesting from a control perspective, but flex-
ible loads are. In microgrids, part of the flexibility on the generation side is lost because
of the large portion of non-dispatchable generation (e.g. PV). Controllable loads offer
an opportunity to regain some flexibility on the demand-side of the problem. This is
commonly referred to as Demand Side Management (DSM). Demand response is the
most important associated concept: it is based on changing the energy usage in response
to changes in the availability (or price) of energy. This leads to an end-user changing
its consumption of energy from its normal pattern. As mentioned above, there are two
main ways of doing this: flat-out reducing power consumption (load shedding), or shift-
ing the demand in time (load shifting). A cooling system, for example, should keep the
temperature within a certain range. When the microgrid has an excess of energy (e.g.
during the sunny hours of the day), the system can use extra energy to bring the tem-
perature down. When, sometime later, the generation drops significantly, it can refrain
from cooling for some time (as long as the temperature stays within the allowed range),
effectively reducing the overall demand at that time.

2.5. Zown: your own energy zone

This thesis was written at Zown, an initiative of Alliander. Alliander consists of a
group of companies, one of which, Liander, is the distribution system operator for a
large part of the Netherlands [3]. They will have to face the challenges that the energy
transition brings with it. Alliander does not just want to move along with the changes
but aims to actively contribute to the transition. In this context, Alliander facilitates
the development of innovative smart grid solutions. Zown is one of these so-called “new
markets” [2].

Zown offers two types of services. On the one hand, Zown advises its clients on
technical, financial and organizational aspects of meeting their energy needs. On the
other, it provides the Microgrid Platform (MGP), an application that balances supply
and demand and provides insight into the operation of the microgrid [139].

This thesis fits in the process of integrating automated planning in their system. The
Microgrid Platform has recently proven to be capable of balancing and controlling a
microgrid in real-time. The next step is to integrate forecasting and planning in the
operation of the grid. This thesis focuses on the development of optimization models
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for the planning step of this problem and aims to describe algorithms for its efficient
implementation.

The mission of Zown in providing advise on microgrids and facilitating their operation
can be approached from multiple perspectives:

� The client might be interested in creating a microgrid for various reasons. Motiva-
tions could be financial, but may also spring from a desire for a more autonomous,
sustainable and/or reliable energy supply;

� Society benefits from the implementation of microgrids as they are part of the en-
ergy transition as a reaction to global warming and the development of technologies
like it ensures the continuing existence of a reliable electricity grid;

� The system operator (during operation) profits from well-managed microgrids
because of the localized balancing of supply and demand, solving some of the
problems that distributed (renewable) generation might cause in the grid on the
local level;

� The system operator (during construction) can save a considerable amount of
investments in infrastructure as the connection of the (remote) microgrid to the
main grid can be downsized or even left out altogether.

The last two justify the investment of Alliander in the microgrid concept. In the future,
it may well be that the main grid “merely” exists as an insurance policy for a number
of microgrids that aim to operate autonomously, as much as possible. It is unlikely that
the entire grid will undergo such a transformation in the foreseeable future, in places
where extensive electric infrastructure already exists, but microgrids will be integrated
to a certain extent, bringing along all the benefits mentioned above.

This thesis aims to apply techniques from the scientific literature to the problems en-
countered in managing microgrids. In this way, we hope to contribute to the development
of innovative solutions to present-day problems.

3. Microgrid operation

In this section, we will briefly investigate some trends in microgrid operational control.
There is a number of planning problems related to microgrids, concerning different time
scales (Table 1). In this thesis, the focus will be on mid- to longterm operational control.
In reference to Table 1, unit commitment and economic dispatch are the central prob-
lems. The integration with electricity markets is included at this level. The detailed,
reactive, control will not be treated, nor will overall system planning and maintenance
problems. A few reviews on these issues can be found in [90,98,113] (real-time control)
and [41] (system planning).
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Problem Time span Description

System planning
(generation mix and
sizing)

>1 years Dimensioning of the system, determining lay-
out and components of the grid

System maintenance 1 week
– 1 year

Determining maintenance schedules

Unit commitment ∼4 hours
– 1 week

Determining on/off-state of generators

Economic dispatch ∼10 minutes
– 4 hours

Determining actual output of generators and
managing load based on short-term forecasts

Regulation, control
and protection

<10 minutes Voltage and frequency regulation, power qual-
ity control, fault protection

Table 1: Overview of planning problems on different time-scales in microgrids, based on
Table 1 from [70].

3.1. Classical approaches

Energy balancing problems have been around for quite some time. The Unit Commit-
ment problem is a classic optimization problem, which aims to optimally schedule the
operation of electrical power generating units. A solution to a UC problem requires two
types of decisions: which units to turn on/off (unit commitment) and the generation
level of the committed units (economic dispatch). A recent overview of Unit Commit-
ment formulations and solution approaches can be found in [53]. The traditional unit
commitment problem applies to large-scale systems, where the demand is always met by
a group of generators. Often, this includes planning for spinning reserve. The spinning
reserve is a part of the capacity of the generators that are online that is not used to
supply the expected load, but can be brought in fairly quickly in case of shortages. This
yields a more robust solution.

An example MILP formulation of a typical UC problem looks like this (adapted from
[51,53]):

minimize
∑
i,t

(zitFi + gitCi + yitSi) s.t.

∑
i

git = Dt ∀t (1)∑
i

rit = SDt ∀t (2)

git ≥ zitCapmini ∀i, t (3)

git + rit ≤ zitCapmaxi ∀i, t (4)

rit ≤ zitSPmaxi ∀i, t (5)

git + rit ≤ git−1 +RRinci ∀i, t (6)
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git ≥ git−1 + rit−1 −RRdeci ∀i, t (7)

zit ≤ zit−1 + yit ∀i, t (8)

zit ≥ zit−1 − xit ∀i, t (9)

yit ≤ ziτ ∀i, t, τ = t, ...,min{t+ Upmini , |T |} (10)

zit−1 − zit ≤ 1− ziτ ∀i, t, τ = t, ...,min{t+Downmini , |T |} (11)

git, rit ≥ 0 ∀i, t
0 ≤ xit, yit, ≤ 1 ∀i, t

zit ∈ {0, 1} ∀i, t

where
(decision variables):

git is the amount of energy produced by generator i at interval t
rit is the amount of spinning reserve available from generator i at interval t
xit is 1 if generator i shuts down at the start of interval t
yit is 1 if generator i is started at the start of interval t
zit is 1 if generator i is active during interval t

(constants):
Dt (expected) total demand at interval t

SDt (desired) amount of spinning reserve at interval t
Fit operating cost of generator i at interval t
Cit generation cost of generator i at interval t (cost per generated unit of

energy)
Sit start-up costs of generator i at interval t

Capmini minimum capacity of generator i
Capmaxi maximum capacity of generator i
SPmaxi maximum reserve contribution of generator i
RRinci ramp up rate of generator i for increasing output
RRdeci ramp up rate of generator i for decreasing output
Upmini minimum up time for generator i after start-up

Downmini minimum down time for generator i after shut down

The objective of the UC problem is to minimize overall operational cost, while sat-
isfying a number of constraints: the demand should be met (1); a sufficient amount
of spinning reserve should be available (2); units should operate within their capacity
limits (3)-(4); units should contribute at most their maximum to the spinning reserve
(5); ramp rate limits should be respected (6)-(7). (8) and (9) ensure the start up and
shut down variables get the correct value. Finally, (10) and (11) represent the minimum
up- and downtime for generators.

While this example model shows some of the constraints that need to be satisfied in
a typical Unit Commitment problem, there are more that could be included, emission
constraints for example. A more in-depth discussion of these constraints and typical
solution methods to both the deterministic and the stochastic two-stage version of the
problem can be found in [53]. The authors of [36] provide an overview of the litera-
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ture in relation to the Short-Term HydroThermal Coordination problem, a variant of
UC dealing with hydro and thermal resources instead of electric ones. Similarly, [121]
provides an overview of mathematical programming approaches to the Hydro Unit Com-
mitment problem. In [109] an overview of the (standard) Unit Commitment problem and
many solution approaches is provided, mainly focusing on so-called “non-conventional”
approaches (i.e. approaches other than dynamic programming, mathematical program-
ming and local search). A more recent survey can be found in [120]. This survey also
treats a large number of approaches, but focuses on dealing with uncertainty in unit
commitment problems.

Aside from the “missing” constraints mentioned above, there are some other factors that
prevent the direct application of the traditional unit commitment problem to microgrids.
We will discuss some of them below.

The unit commitment problem focuses on scheduling generators to meet the demand.
It does not consider storage (devices that can either consume or produce energy at
different times) or demand side management (load shedding/shifting). In the large
conventional grid, this is not really an issue: the vast majority of the energy produced
is consumed instantly. The contribution of storage in this network is small, and the
network operators typically do not have control over flexible demand. In a microgrid,
this changes. Due to the small size of the grid and the large share of intermittent RES,
storage devices and DSM are essential to balance supply and demand. They need to be
integrated into the problem.

Another consequence of the small size of microgrids and their large share of RES
is that it is difficult to forecast (uncontrollable) demand and supply. In a large grid,
for example, individual deviances from typical use profiles hardly influence the total
demand, as this is an aggregation of a large number of users. Because of the large size
of the conventional grid, forecasts can be relatively reliable. In a microgrid, individual
changes can have a comparatively large effect on the total supply/demand balance. The
localized nature of microgrids enlarges the problem, as deviations from the forecasted
generation can be relatively big. On an otherwise sunny day, at some point during the
day a cloud might pass by, decreasing the output of all solar generation in the network
at once. As significant deviations from the forecasted levels are to be expected, it is
much more important that the solutions to the problem are robust. The problem needs
to be modified to take this into account somehow.

Microgrids that operate in grid-connected mode are not (necessarily) entirely self-
sufficient. They can either buy from or sell to the main grid. This might be seen as
some type of buffer and modeled in a way similar to storage devices with time-varying
cost vectors, but this is a serious simplification. This approach might work for the short-
term imbalance market, because it does not require bidding, but only facilitates the sale
of reserve capacity. But as the planning reaches further into the future, energy markets
typically use auctioning/bidding strategies. Once the bidding is done, of course, the
amount of energy the microgrid is supposed to consume or produce is “known”, and the
prices for deviating from this amount will be established. It then can be integrated in
the problem in the aforementioned way. As long as the main goal is to balance supply
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and demand in the grid, this simplification is acceptable: bidding strategies can then
be adapted to follow the outcomes of the problem. To maximize profit (or minimize
expenses) a different modeling that takes bidding strategies into account is required.
In [21], an MIP-formulation of the problem of managing a battery for this purpose that
takes into account the Dutch short-term imbalance markets is provided, showing that it
can be done.

Modifying the unit commitment problem to suit microgrids results in an energy man-
agement problem, which will be discussed towards the end of Section 3.3. The problem
we will be studying in this thesis can be seen as a generalization of Unit Commitment.
First, a brief discussion on the control hierarchy in microgrids is provided.

3.2. Control hierarchy

Typically, the control of a (micro)grid is split into multiple levels. Higher levels of
control work over larger time-scales, with the lowest levels of control providing reactive
real-time control, and the highest levels responsible for long-term economic operation.
This hierarchical approach is used in bulk power systems [124], but has often been
applied to microgrids as well [44, 45,62,63,85,86,96,135].

Such a hierarchical control structure in microgrids typically has three types of elements
[60,63,64,86,123,135]:

� Microsource Controller (MC) and Load Controller (LC). These operate at
the device level, and control the operation of controllable devices in the microgrid.

� Microgrid Central Controller (MGCC). The MGCC is the central controller
of a single microgrid and is responsible for the energy management of the grid.

� Distribution Management System (DMS). A system responsible for the op-
eration of medium and low voltage areas with (possibly) more than one microgrid
connected to it.

The DMS is out of scope for this thesis. Depending on the control strategy (decentralized
vs. centralized), more intelligence can be located at the MCs/LCs, but they are typically
mainly responsible for low level control (e.g. voltage control), whereas the MGCC is
responsible for (longer term) planning, sending set-points down to the MCs/LCs.

3.3. Centralized/distributed control

One of the central issues of microgrid control is whether it should be controlled using a
centralized or a distributed approach. Both approaches have a number of benefits and
drawbacks and it ultimately depends on the situation which should be preferred. This
thesis, and thereby much of the discussion below, focuses on the centralized approach.
In Section 5 we will explain why the centralized approach is the best fit for this work.
A few examples of distributed approaches are: PowerMatcher [66], TRIANA [5,9,87,88]
and an associated profile steering approach [127] and others [17,111].
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Advantages Disadvantages

Centralized
� Easy to implement and maintain
� Lower cost
� Decisions can be based on

knowledge of the whole system
� Real-time observability of entire

system

� Computationally heavy
� Requires a lot of data-flow
� Single point of failure
� Not easy to expand (no ‘plug-

and-play’ capability)

Distributed
� Better suited for ‘plug-and-play’

expansion
� Lower computational cost
� More robust (no single point of

failure)
� Better scalability: more suitable

for large, complex systems

� Synchronization challenges
� More time required to reach con-

sensus
� More challenging and expensive

to implement
� Narrow control over the entire

system

Table 2: Advantages and disadvantages of centralized and distributed control strategies.

A short review of the benefits and drawbacks of both approaches, in part based on
[81,85,111,118,135], can be found in Table 2. The choice for one or the other is considered
to be “ultimately a philosophical question” [118], but in general the centralized approach
is preferred for smaller, monopolized microgrids, while the distributed approach is more
appropriate for large, complex, heterogeneous systems [85,103].

The optimal management of the assets in the grid is the responsibility of the MGCC.
This is commonly referred to as an energy management problem, and a number of
energy management systems (EMS) has been proposed to take care of this. An EMS is
ideally implemented in the MGCC [118]. The main functionalities of a microgrid EMS
are forecasting, optimization, data analysis, and providing a human-machine interface
[111,118].

3.4. The Microgrid Platform

At Zown, the Microgrid Platform (MGP) fulfills the role of the EMS. An EMS by the
same name has been proposed before [112], but this is unrelated to Zown’s MGP.

The basic architecture of the MGP is summarized in Fig. 2. The LC/MC controllers
are on the device level (the bottom square). The lowest (reactive) levels of control have
there place at the device level, outside the MGP.

The role of MGCC, in this system, is shared between myZown Local Controller and
myZown Operator (including myZown Analytics). OSGP (Open Smart Grid Platform),
in the middle, provides an abstraction layer. We will not go into the details of the
interaction between these components. The myZown Local Controller is programmed
into a remote terminal unit (RTU) that is physically located inside the microgrid, and
it controls the devices directly. On the other hand, myZown Operator is a cloud-based
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Figure 2: Basic architecture of the MGP [131]

application that receives/sends data from/to the local controller via a wireless connec-
tion. These components together (contained within the dashed red box in Fig. 2) are
known as the Microgrid Platform.

In the system, two flows of information can be identified: monitoring signals are
passed upwards and control signals are passed along downwards. The main control loop
runs from the devices, all the way up through myZown Operator and back down again
to the devices. This thesis is part of the effort to extend this loop using intelligent
planning (shown as the longest loop through myZown Analytics). A shorter loop is
also shown, that only runs through the local controller. The local controller is able
to manage the microgrid on its own, through heuristic rules and reactive control. The
intelligence (forecasting, planning and visualization) is located above myZown Operator,
however. The implementation of the optimization models will be located in this part
of the architecture, in a separate module called myZown Analytics. It comprises four
steps:

� Collect & Transform. Data is collected from multiple sources: data from the
microgrid itself (e.g. profiles, device data) and from external sources (e.g. market
data). The purpose of this step is to transform the data in such a way that it can be
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used by the system and store it in a uniform way. Outlier detection, interpolation
and aggregation all have their place here.

� Forecast. The purpose of this step is to provide forecasts of e.g. load and solar
generation that can be used in the planning. Where external services can be used
for forecasting, this boils down to retrieving the forecast and possibly manipulating
its format. Otherwise, it includes the development and usage of a predictive model.

� Optimize. This step solves an optimization problem to obtain a planning for the
operation of the system. It takes the forecasts of the previous step as input, and
produces a planning for the microgrid that ensures economical operation. This
step is the main focus of this thesis.

� Execute. The execution of the planning is listed as a separate step in the process.
The visualization of the planning, and the translation of the planning to device set
points are the responsibility of this final step.

The architecture of the MGP is highly centralized and hierarchical. In the next section,
we will provide an overview of the types of algorithms that are typically used to solve
the energy management problem in similar setups.

3.5. Modeling and algorithms

At the level of the MGCC, unit commitment and economic dispatch-like problems are
solved. A wide variety of models have been developed to capture these problems, and
the full range of optimization algorithms have been applied to solve them. Table 3 shows
an overview of approaches used in studies consulted for this thesis.

A number of studies use a heuristic approach to supply the highest priority loads
using the most convenient generation first. This is referred to as “priority list method”
[39,123] or “priority load control” [37]. This is approach is very similar to the heuristic
dispatch methods recently developed at Zown, and has been implemented in myZown
Local Controller. In [123], this method is only used to solve the unit commitment
problem, while the solution for economic dispatch is found using sequential quadratic
programming. Other heuristic strategies, like load following and cycle charging, are also
used [23], and in the case of [23] a genetic algorithm is used to select good dispatch
strategies. A comparison between the performance of the priority list method and a
genetic algorithm in [39] shows that these heuristic strategies can easily be improved
upon.

In [116] dynamic programming is used as the basis for an EMS for optimal (all-electric)
microgrid management, while [38] presents two dynamic programming approaches for
supplying heat demand: one for minimizing peaks, and one for minimizing costs of
heating systems. The authors of [92] propose a dynamic programming formulation of a
microgrid that supplies both heat and electricity.

The problem is often simplified to an abstract supply-demand balancing problem,
where non-linear constraints are linearly approximated. In many cases, this results in
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Heuristic/priority-based [23], [37], [39], [123]

Dynamic programming [38], [61], [92], [116]

Mathematical programming [8], [12], [15], [20], [48], [52], [67], [80], [84], [89],
[94], [97], [99], [100], [104], [107], [114], [123], [136]

Evolutionary/genetic algorithms [14], [23], [24], [39], [137]

Agent-based [73], [68], [69], [106]

Other [30], [78], [82]

Table 3: Overview of solution approaches

a mathematical programming formulation. The most accurate model would be a mixed
integer non-linear programming (MINLP) formulation, but this is most often simplified
to a mixed integer linear programming (MILP) formulation by approximating non-linear
constraints by (piece-wise) linear functions (e.g. in [97]).

Some other examples include evolutionary algorithms (e.g. [24]), simulated annealing
[30], fuzzy logic [78], multi-agent systems [68,69], particle swarm optimization [106], bee
colony optimization [73] and many more.

The problem of determining the lay-out of a microgrid (dimensioning, selection and
sizing) is often considered separately from the operational management (commitment
and dispatch decisions) and is therefore not in scope for this thesis. Some studies,
however, combine the two problems and solve them together (e.g. [12, 48]).

Surveys that (partly) treat this topic and give a broad overview of modeling techniques
and algorithms used can be found in [1, 41,85,98].

4. Optimal control of microgrids

The problem of optimally managing a microgrid in the operational phase has already
been touched upon in Section 3.1. In this section, it became clear that the traditional
unit commitment problem has to be adapted to be successfully applied in the context
of microgrids. Depending on the type of microgrid and the desired results a number of
choices has to be made before constructing a model. The most important of these are
discussed below.

For every section below a (non-exhaustive) table is provided with some examples
of studies that represent different approaches in optimizing the operational aspect of
microgrids.

4.1. Operation modes

A microgrid can operate in two different modes. It can either be islanded, meaning
that it has to balance supply and demand by itself, without a connection to the main
electricity grid, or grid-connected, in which case the microgrid is connected to the main
grid. The two types of microgrid may have different operation objectives. Islanded
microgrids simply want to minimize their operational costs, while ensuring the balance
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Islanded Grid-connected Both

Electricity [20], [23], [24], [37],
[46], [80], [82], [89],
[94], [97], [107],
[133], [137], [138]

[60], [99], [100],
[104], [123], [134]

[14], [39], [52], [114],
[111], [116], [130]

Electricity; Heat [15] [8], [10], [11], [12],
[67], [136]

[48], [50], [92]

Various [69], [84]

Table 4: Overview of microgrid commodities and operation modes

of supply and demand within the system. Grid-connected microgrids, on the other hand,
may use the external grid for balancing. It can even exploit the connection to the main
grid by trading on energy markets and making a profit. Table 4 provides an overview of
the operation modes considered in the studies consulted for this thesis.

Both operation modes come with their own challenges. Aside from the shared prob-
lems, the main challenge of grid-connected operation is the (possible) integration of
electricity markets in the problem, while an islanded microgrid must deal with all as-
pects of grid operation on its own (e.g. voltage/frequency control, power quality and
exact supply/demand balancing) [77]. In grid-connected microgrids, the main utility
grid takes care of most of the lower level problems.

4.2. Commodities

While microgrids are primarily thought of as small electrical grids, they may serve other
demands as well. The most common commodity to be include besides electrical power is
thermal energy. Many microgrids include cooling/heating appliances, effectively result-
ing in a multi-commodity grid. Such microgrids may contain (micro)-CHP generators,
heat pumps or cooling systems. Models of multi-commodity grids need to take the in-
teraction between the different forms of energy into account. Fig. 3 displays a model of
the energy flows in a multi-commodity microgrid, taking electricity, heat, diesel and gas
into account. Table 4 provides an overview of the commodities modeled in the studies
consulted for this thesis.

In [43], a review is presented of modeling, planning and energy management of com-
bined cooling, heating and power microgrids. The accurate modeling of thermal genera-
tors, storage systems and loads is challenging, and as with electricity, there is a trade-off
between the accuracy and the complexity of the model. The inclusion of multiple com-
modities further complicates the energy management of a microgrid due to the coupling
of the different forms of energy.

An example of a very broad approach can be found in [84], which presents a general
model for a “multigood microgrid”. A good can be anything in this context, ranging
from electricity and heat to woodchips and ice cubes.
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Figure 3: Energy flows in a multi-commodity microgrid [131]

4.3. Level of detail of the model

The bulk of the algorithms proposed so far treat the problem as an abstract supply-
demand balancing problem, ignoring the underlying network and the associated con-
straints [111]. While this simplifies the problem considerably, and yields satisfactory
results in many cases, the control decisions taken by such algorithms are not guaranteed
to be feasible in the real world.

Opinions differ considerably on this subject. If we consider the entire problem at
once to facilitate (near) real-time control, it is essential to have a very detailed model
of the system. One of the main advantages of the hierarchical control structure, as
described in Section 3, however, is that these problems can be (partially) separated.
The lower levels of control are responsible for the (real-time) control of phase, voltage
and frequency. These are responsible for ensuring the system follows power reference
values and remains stable. The higher levels consider a more abstract balancing problem,
ensuring economically optimized power dispatch [99].

Limitations that arise due to the topology of the network often need to be included in
the model, but this does not mean that the full topology should be modeled. A carefully
designed grid may not impose too many restrictions on the solution, which shows the
dependency between the design and operational phases of microgrids.
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4.4. Objective

There is a number of possible objectives in optimizing the energy management of a mi-
crogrid, which all might result in different management strategies. Fig. 1 in [1] identifies
four main categories:

1. Environment cost: minimizing or penalizing carbon emissions;

2. Capital and operational costs: fuel, maintenance, energy import-costs, etc.;

3. Energy storage cost: battery efficiency, etc.;

4. Miscellaneous: e.g. power losses, load shedding cost.

A detailed description of the objective functions of a large number of studies, based on
this classification, can be found in Tables 3–6 of [1].

An optimization problem may be formulated to maximize/minimize one or multiple of
these objective functions. Most often, a single objective is selected, but multi-objective
optimization is not uncommon. Not all formulations allow for the explicit incorporation
of multiple objectives, but a linear combination of objectives into a single objective is
always a possibility.

In most models, it is relatively easy to replace the objective function, while leaving
the rest of the model unchanged. It is therefore not crucial to select a single objective
in advance. Changing the objective from minimizing operational costs to minimizing
CO2 emissions simply requires the change of the coefficients in the function. In other
words: the monetary cost per kWh generated has to be converted to the amount of CO2

emitted per kWh generated.
Of course, this is not always as straight forward. It has to be possible to express

the objective in terms of the units that the problem uses. In a simple unit commit-
ment/economic dispatch problem, these are decisions on the on/off-state of generators
and power in- or output levels of generators, storage units and loads. Any objective
function needs to be expressed in terms of cost per generated kW and cost for being
switched on or off. If different costs are associated with multiple efficiency levels of a
generator, for example, the modeling of the problem does need to change to account for
this in the objective function.

4.5. Uncertainty and robustness

A central challenge in the management of microgrids is dealing with the uncertainty
that exists. As discussed in section 3.1, the uncertainty associated with the amount of
renewable energy generated on the one hand and the demand on the other complicates
the problem significantly. It is unlikely that any approach that does not take this into
account in some way will be capable of managing microgrids efficiently.

There is number of ways that uncertainty can be dealt with. An overview is provided
in Table 5, as a supplement to the discussion below.

One of the simplest ways of dealing with uncertainty is the planning of spinning
reserve. In this way, there is always back-up capacity available that can compensate for
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MPC/RH [11], [46], [67], [80], [84], [94], [97], [99],
[100], [104], [114], [133], [134], [136], [138]

Two/multi-stage stochastic programming [58], [105], [107], [115], [119]

Chance-constrained programming [74]

Robust optimization [68]

Table 5: Overview of approaches to uncertainty

fluctuations in actual demand. An example of the usage of spinning reserve in microgrids
is [39].

Many studies apply Model Predictive Control (MPC) or Rolling Horizon strategies,
which boils down to solving an updated version of the same deterministic problem ev-
ery time step, thereby adjusting the planning to the current situation (see e.g. [97]).
These strategies deal with uncertainty without explicitly modeling it. It is countered by
reevaluating the planning quite often based on updated information.

Other approaches, that do modify the model significantly to take uncertainty into
account, include two-stage (scenario-based) stochastic programming (e.g. [115]), multi-
stage stochastic programming [105], chance-constrained programming [74] and robust
optimization [68]. These studies mainly consider all-electric microgrids. The number of
studies considering multi-commodity microgrids is much more limited [43,75,102,132].

The authors of [19] aim to give an overview of stochastic programming approaches
to solve unit commitment problems. Stochastic unit commitment is also extensively
discussed in [53]. The authors of [71] review stochastic modeling and optimization tools
used for microgrid planning, operation and control.

Roughly, uncertainty can be dealt with in one of three ways:

� Increasing the model complexity to explicitly take the uncertainty into account
(e.g. two-stage stochastic programming);

� Increasing the number of times a new planning is generated, re-evaluating the
problem based on the current situation (e.g. rolling horizon strategies);

� Adding large safety margins in the constraints of the model, such that it can be
expected that the planning will be feasible in most cases, but will typically be far
from optimal (e.g. robust optimization).
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Part II.

Models & Algorithms
In this part, we will introduce the problem of the optimal operational management of
microgrids. We will present an outline of the solution process and describe it step-by-
step.

5. Problem definition

The optimal operational management of a microgrid involves making decisions about
the control of all devices in the grid. As explained in Section 3, we will not consider
real-time control, but the generation of a planning for the microgrid for the next 24
hours. We aim to develop a flexible model and solution algorithm that is easily adapted
to various microgrid configurations.

Our optimization problem is to find the cheapest solution (in terms of operational
costs) that ensures the energy balance in every time step (i.e. supply and demand are
balanced), given the constraints that the grid and the devices in it impose. This objective
fits in the second category mentioned in Section 4.4.

As we explained in Section 3.1, the problem can be seen as an extension of the classical
unit commitment problem, where adding the possibility of including buffers (like bat-
teries) into the problem is the most substantial change with respect to the problem that
we described in Section 3.1. It is, therefore, a more general version of unit commitment.
We will show that the basic problem is already NP-hard by providing a polynomial time
reduction from the knapsack problem. We have presented a typical unit commitment
problem in Section 3.1. Stripping the possible extensions from this problem, a basic unit
commitment problem can be formulated as follows:

minimize
∑
i,t

(yitfi + gitci + xitsi) s.t.

∑
i

git = Dt ∀t

yitP
min
i ≤ git ≤ yitPmaxi ∀i, t

yit ≤ yit−1 + xit ∀i, t
xit, yit ∈ {0, 1} ∀i, t

where
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(decision variables):
git is the amount of energy produced by generator i at interval t
xit is 1 if generator i is started at the start of interval t
yit is 1 if generator i is active during interval t

(constants):
Dt (expected) total demand at interval t
fi operating cost of generator i at interval t
ci generation cost of generator i at interval t (cost per generated unit of energy)
si start-up costs of generator i at interval t

Pmini minimum production of generator i
Pmaxi maximum production of generator i

Note that this is a special case of our more general problem, obtained by omitting
buffers and disregarding efficiency constants and reserve constraints. In other words, by
reducing the knapsack problem to this problem we show that the inclusion of a balance
constraints and generator capacity and start-up constraints suffice to make the problem
NP-hard.

Now consider the knapsack problem:

maximize

n∑
i=1

viqi s.t.

n∑
i=1

wiqi ≤W

qi ∈ {0, 1} ∀i

where
(decision variables):
qi is 1 if we select item i and 0 otherwise

(constants):
W the size of the knapsack
wi the weight of item i
vi the value of item i

Any knapsack problem of this form can be reduced to a unit commitment problem as
follows, assuming a formulation of the knapsack problem is given, where n is the number
of items:

1. Set si, ci = 0 ∀i
2. Set T = 0 (i.e. t ∈ {0}) and G = {0, 1, ..., n} (i ∈ G)
3. Set fi = −vi ∀i ∈ {1, ..., n}
4. Set Pmini = Pmaxi = wi ∀i ∈ {1, ..., n}
5. Set D0 = W
6. Set Pmin0 = 0, Pmax0 = W, f0 = 0

22



This reduces the knapsack problem to a single-time step unit commitment problem
where every item is represented by a generator that can be turned on or off at only one
output level corresponding to the weight of the item in the original problem. Turning a
generator on has a negative cost corresponding to the value of the item in the original
problem. The demand that has to be met equals the size of the knapsack and an
additional generator 0 ensures that the equality of the demand constraint is satisfied. An
optimal solution to the problem thus obtained can be translated to an optimal solution
to the original knapsack problem by selecting all the items of which the corresponding
generator was turned on in the transformed problem. The value of the objective function
for this solution will equal the value of the objective function of the transformed problem,
multiplied by minus one.

Knapsack is a weakly NP-hard problem. A reduction from the strongly NP-hard 3-
partition problem was provided in [7]. However, this requires the addition of minimum
downtime constraints or a restriction on the number of start-ups to the basic problem
described above. Including fuel tank constraints allows for a similar reduction.

Every device in the microgrid either consumes or produces energy (or both). So,
the essential variable defining the behavior of a device is its in- or output over time,
otherwise called the device profile. While some devices may require additional variables
to model them, all devices will have variables that represent this profile. The variable git
in the problem above is an example of such a profile variable that defines the output of
generator i at every time step t. A profile for a single device may be represented by two
variables if the device can both produce and consume energy, as we will see exemplified
by the batteries in the next sections. The profile variables should sum to zero for every
time step, to ensure energy balance in the system.

The general problem thus is to find profiles for all devices in a microgrid such that
the energy balance can be maintained in every time step.

To account for multiple commodities (such as heat, electricity and gas), one might
include multiple balance constraints (one for every commodity) and multiple profile vari-
ables for each device. However, we will limit ourselves to a single commodity, electricity,
in this thesis.

As it is unnecessary to model devices of which the profiles cannot be controlled (such
as PV-panels, for example) they can be eliminated from the problem by including their
contribution in the expected demand at every time step. However, uncertainty may
exist about the output or consumption of these uncontrollable components (e.g. loads
and PV). So, we may need to cover a range of possibilities, depending on the expected
output of PV panels and the expected demand of the loads in the system. In general: we
need to account for the uncertainty around the behavior of uncontrollable components
in our grid.

We will use this basic understanding of the problem in the models in Section 9. Al-
though we limit ourselves to one commodity and a limited number of devices, it should
be clear from the discussion above how these models can be extended to include mul-
tiple commodities and new devices. Similarly, it is therefore straightforward to adapt
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the model described in the following sections to use a different objective (e.g. CO2

minimization) by changing cost constants and possibly introducing additional auxiliary
variables.

In Section 3.3, we compared the (dis)advantages of using a centralized or distributed
control architecture. We will assume centralized control of the microgrid, for the follow-
ing reasons:

� The system architecture of the MGP, the layout of the existing microgrids, and
the plans for the myZown Analytics are (currently) not suited for a distributed
approach, thereby requiring a centralized approach;

� The microgrids that are currently managed by Zown and those expected to be
added in the near future, are all relatively small microgrids that are managed by a
single stakeholder. This is the kind of microgrid for which a centralized approach
is the most suitable, as explained in Section 3.3;

We assume that the local microgrid controller (programmed into an RTU, see Section
3.4) implements a recovery policy that monitors the grid for extreme situations. Our
model generates a planning (or more than one, in case of a scenario-based approach)
that is feasible with a high probability. However, due to a number of reasons (e.g. a
low-quality forecast or large fluctuations within a single time step), it may be found
to be infeasible during operation, when the local controller is implementing it. When
this occurs, the RTU steps in and overrules the decisions from the generated problem.
This is done by monitoring certain bounds that the system should never exceed (e.g. a
minimal state of charge for the batteries when all generators are off-line). When such a
bound is exceeded, the system detects that an extreme situation is occurring, causing it
to take over control to avoid a black-out.

We will use mathematical programming techniques to model the problem, which will
be explained in more detail in Section 9.

To avoid unnecessary repetition, we will first provide a list of symbols that will be
used in the formulations of the models below. Example values, based on the Island test
case (Section 12), are provided for the constants listed.
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(decision variables): stage
gits is the amount of energy produced by generator i at interval t in

scenario s
1

xits is 1 if generator i is started at the start of interval t in scenario s 1
yits is 1 if generator i is active during interval t in scenario s 1
binits is the amount of energy going into battery i at interval t in sce-

nario s
2

boutits is the amount of energy coming out of battery i at interval t in
scenario s

2

chits is the level of charge of battery i at interval t in scenario s 2
w+
ts unsatisfied demand at interval t in scenario s 2

w−ts unused surplus at interval t in scenario s 2
rit is 1 if the reserve is above the maximum threshold for battery i

at interval t
n.a.

(constants): value
ps relative probability of scenario s occurring
D−ts Negative demand at interval t in scenario s
D+
ts Positive demand at interval t in scenario s
fi operating cost of generator i ¤0.40
cgi generation cost of generator i (cost per generated unit of energy) ¤0.30
si start-up costs of generator i ¤0.50

Pmini minimum production of generator i 40/32 kW
Pmaxi maximum production of generator i 8/6.4 kW

cbi cost per unit of energy discharged from battery i ¤0.00057
Ei maximum charge level of battery i 20 kWh
vci maximum charging speed of battery i 12 kW
vdi maximum discharging speed of battery i 12 kW

Rmaxi maximum reserve threshold of battery i 3 kWh
Rmini minimum reserve threshold of battery i 1 kWh

ηbi efficiency of battery i 0.93
cw penalty for 1 kWh of unsatisfied demand or surplus ¤2
ηg Grid efficiency 0.97

(other symbols):
T Index set of time steps in the problem (i.e. t ∈ T )
G Index set of generators in the problem (e.g. i ∈ G)
B Index set of batteries in the problem (e.g. i ∈ B)
S Index set of scenarios in the problem (e.g. s ∈ S)

Note that the subscripts mentioned may not always all be present. For example, in
some models, we do not work with scenarios, which means that the subscript s is dropped
from most constants and variables. However, if a variable is missing a subscript, it will
always be the last one mentioned here, i.e. the subscripts of a variable may be inter-
preted in the order that they are introduced here.
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Figure 4: High level representation of the solution process. The orange arrows repre-
sent the flow for the stochastic models, while the green arrows represent the
flow for the deterministic models. Note that “Simulation” is replaced by the
application to the actual grid when the algorithms are operational.

The rest of this part will be organized as follows. It may be noted that the organization
of the discussion in this part follows the flow of the solution approach (Fig. 4), treating
each aspect as it occurs chronologically in the process.

In Section 6 we will briefly discuss the models that generate the forecasts used as
input for the optimization models and some observations on what makes a forecast
‘good’ for our purpose. We will then discuss the generation of scenarios in Section 7. In
Section 8 we discuss how the individual components of a microgrid are modeled. This
is followed by a description of the optimization models in Section 9. All models in this
section use the forecasts as described in Section 6 and (part of) the device models as
described in Section 8. The stochastic models also use the scenarios generated by the
approach described in Section 7. Following the optimization models, we will describe the
simulation model in Section 10 that simulates the application of the planning generated
by the optimization models in a microgrid and evaluates its performance. Finally, we
will provide some details on the implementation that were not yet included in other
sections in Section 11.

6. Forecasts

In our models, we use forecasts to predict the output of PV panels and the demand in
the microgrid(s) under study. No prediction is made for the generation of wind energy,
although a small number of WTs is installed on Island (see Section 12 for a description
of this microgrid). The contribution of these generators, however, is very small. At
the time of writing, they have even been temporarily removed, after being severely
damaged during a storm. Their output was not measured separately, but is part of the
load measurements: the WTs are connected to a small load in the network, and only
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the total power output/usage of this group is measured. The contribution of the WTs
is therefore not considered separately but is included in the load forecast. This may,
theoretically, lead to a negative load. However, the contribution of the WTs is far too
small to satisfy the base load in this microgrid, even when fully functional. In practice,
the load will always be positive.

We will describe the models and algorithms used for both PV-output and load fore-
casting briefly below.

6.1. PV

The forecasting models and algorithms for the PV-forecast were developed by iCarus [56].
The algorithm uses a number of different models to predict the output of a group of

solar panels based on historical data from this system and weather data. The forecasts of
these models are combined and scaled by a time-specific weight. These weights determine
how much the forecast of each of the models influences the final forecast. They are
learned from minimizing the forecast-error on historical data and can vary based on the
time that the forecast is created and how far ahead the predicted value is in time.

The algorithm also learns how well it performs from its own performance on past data.
Based on this, a standard deviation is determined and passed along with each predicted
value to indicate the distribution at that particular time, based on past experience. The
underlying assumption that the forecast error is approximately normally distributed was
made after analyzing the distribution of the forecast error on past predictions.

We used this existing algorithm to obtain forecasts for the test instances discussed in
Section 12.

6.2. Load

The forecasting models and algorithms for the load-forecast were developed as a joint
effort by iCarus and Zown during this project. The general principle of these algorithms
is the same as for the PV-forecast: the outcomes of a number of models are combined to
obtain a single forecast. The standard deviation is determined in the exact same way.

The models that were studied to be used for the prediction of the load profiles are:
neural networks, (S)ARIMA(X) models, random forest and a number of “educated guess-
models”. These last models include the “profile predictor”, which uses the exact profile
of the most comparable historical day as a prediction, i.e. it tries to forecast the type
of day rather than the individual load values, and the “basecases” which simply predict
today to be the same as yesterday (basecase yesterday) or the same day last week (base
case last week).

In the end, only the two basecases were included in the combined forecasting algorithm,
which we use in our test instances.

6.3. Forecast quality

While developing the models described below (Section 9) we have constructed artificial
forecasts and performed a simulated test of two weeks using the (preliminary) optimiza-
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tion model that was available at that particular time. These tests were otherwise set up
exactly as the tests we discuss in Section 13 and were aimed at determining the effect
of specific features of the forecast on the cost of operation. We generated a new plan-
ning every 15 minutes and determined the costs using the same simulator described in
Section 10. This provided some insight in the relevant features of a good forecast. We
will briefly describe some of these investigations and draw some conclusions about the
necessary features of a good forecast. Keep in mind that all tests were run for a single
microgrid (Island, see Section 12), currently managed by Zown, and that the results can
therefore by no means be seen as general principles. To elicit what aspects of a forecast
are most important for a particular application, one should run their own set of artificial
forecasts through a simulator and analyze the results.

The first set of artificial forecasts was constructed based on the data of two weeks of
operation from 6 until 19 March 2017.

The PV forecasting algorithm used has proven itself in similar situations before, but
the load forecasting algorithms described above are themselves currently being devel-
oped. To elicit which features of a load forecast contribute to a good result we con-
structed a number of artificial scenarios and fed them to the simulator (described in
Section 10), which provided an indication of the performance of the entire solution
approach using these forecasts as input. Note that we only constructed artificial load
forecasts for this purpose: the PV forecast was not artificially constructed. The artificial
scenarios include the following:

� The “perfects”. These predict the actual values (perfect prediction) for a number
of hours, and after that just predict the overall average at every time step. We
tested scenarios that have a perfect prediction for the first 1, 2, 4, 6 and 12 hours.
⇒ The quality of the solution improves significantly as the length of the perfectly
predicted part increases. However, this effect only holds for the first four hours.
There is hardly any difference in the quality between the 6- and 12-hour versions.
This indicates that the accuracy of the prediction for later time steps does not
have that much impact.

� The “shifts”. These predict the actual values, but shifted by a number of hours.
We have tested scenarios with a shift of 1, 2, 4 and 8 time steps in both directions
(early and late).
⇒ This has a very large impact on the performance. This indicates that the
prediction of the timing of peaks in demand is very important.

� The “bias’s”. These predict the actual values, but with a bias of -10%, -5%, -2%,
-1%, 1%, 2%, 5% or 10% (of the average value). These structurally predict either
too low or too high values.
⇒ Bias decreases the performance on the short term, but not dramatically.

� The “blocks”. These predictions are aggregated into blocks. During a block, the
average actual value of that block is predicted. We constructed scenarios with
blocks of 2, 4 and 8 time steps.

28



⇒ Aggregation results in solutions that are a little worse, but the effect is not that
large.

� The “errors”. These predictions are the actual values with a random error (either
positive or negative) of up to 1%, 2%, 5%, 10% or 20% of the average value. This
error is determined separately for every value.
⇒ For problems with a smaller planning horizon (e.g. 4 hours) these errors decrease
the solution quality. On problems with a longer planning horizon, however, they
result in a better solution. Keep in mind that these tests were run with a naive
deterministic model. The artificial errors seem to emulate the effect of scenarios.

The main conclusions drawn from this are that it is important for the forecast to be
accurate on the short term (first 4-6 hours). The accuracy of prediction on the long-term
is less important. However, not considering the planning after six hours does reduce the
solution quality significantly. One might say that it is relevant to consider that the
future exists, but it is not particularly crucial to predict it accurately after six hours.

Furthermore, it is more important to predict the timing of the peaks correctly than
getting their height exactly right.

To investigate the effect of improving the forecast on the overall quality of the planning
resulting from the optimization, we constructed another set of artificial forecasts.

We based this set on the data for the first seven days of May 2017. Every artificial
forecast samples its “prediction” at every time step from a normal distribution with bias
times the realized value as its mean and stdev times the realized value as its standard
deviation. The values considered for bias are: 0.8, 1.0, 1.2 and 1.4 and for stdev : 0.0,
0.1, 0.2, 0.4 and 0.6. The standard deviation linked with the resulting values is learned
in the same way as before.

Unsurprisingly, decreasing the standard deviation results in significantly better solu-
tions, and a bias closer to 1.0 yields better results, both in terms of overall costs of the
planning and the number of times that the reactive control has to overrule the generated
planning.

7. Scenario trees

For the stochastic models, we need to represent the uncertainty associated with the
forecasts described in the previous section. We will do this by generating scenarios and
constructing scenario trees based on these scenarios. In general, this process consists of
two major steps: (1) sampling scenarios and/or constructing an initial scenario tree; (2)
reducing the size of the initial scenario tree and adapting its structure to obtain a tree
of the desired size and form that can be used in the optimization model.

For the two-stage model presented in Section 9.3, only the first step is relevant, while
both are crucial for the multi-stage model presented in Section 9.4.
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Figure 5: The correlation of the forecast-error (load) as a function of the time-lag (the
number of time steps between two values) for 15 different 24-hour forecasts.

Figure 6: The correlation of the forecast-error (PV) as a function of the time-lag (the
number of time steps between two values) for 15 different 24-hour forecasts.

7.1. Sampling and initial tree construction

First, we will sample a large number of random scenarios. In this thesis, we are only
considering scenarios for load and PV-output, but this approach can be generalized to
any number of uncertain factors.

We assume the solar and load scenarios to be independent. Additionally, we assume
that the errors on the forecast at different time steps within the same scenario are
correlated. In an analysis on the autocorrelation of the error of older forecasts for the
Island system we found this to be the case in the load forecasts (see Fig. 5) and the
PV forecasts (see Fig. 6). The mean correlation for values that are one time step apart
was around 0.63 (load) and 0.74 (PV). We will simplify our modeling of the scenarios
by only considering the correlation between values that directly follow each other, and
we will use a correlation coefficient of 0.63 when constructing load scenarios and of 0.74
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when constructing solar scenarios.
Note, however, that this is by no means a general conclusion. The correlation coef-

ficient might change as the forecasting method changes, different algorithms are used
for forecasting, a different period in time or microgrid is considered or another variable
is forecasted. Before implementing this algorithm anywhere, the particular system and
its forecasting algorithms should be studied to validate the choice for any correlation
coefficient to be used. This choice should also be periodically re-evaluated.

Assuming that the correlation coefficient (ρ) is known, the sampling of a single scenario
is done as described in Alg. 1. We sample a value for each time step based on the
distribution defined by the predicted value and the associated standard deviation at that
time step, taking the correlation of the errors in subsequent time steps into account. As
we assume the solar and load scenarios to be independent, a single scenario is obtained
by performing Alg. 1 twice: once to obtain a solar scenario and once to obtain a load
scenario. Combining these independently sampled scenarios yields a single scenario to
be plugged into the problem.

Input: planning horizon T , correlation ρ, forecasts µ = (µ1, ..., µT ), standard
deviations σ = (σ1, ..., σT )

X1 ∼ N (0, 1)
s1 ← µ1 + σ1X1

for i← 2 to T do
Xi ∼ N (0, 1)
Xi ← ρXi−1 +

√
1− ρ2Xi

si ← µi + σiXi

end
return (s1, ..., sT )

Algorithm 1: Sampling a single scenario

We repeat this process |S| times to come up with the initial scenario fan.
There are alternative ways of constructing an initial scenario tree. In [101] a tree is

constructed by determining the b points that best represent the probability distribution
in each step. The value of b can differ in every stage and is called the bushiness. It is
a level-wise branching factor. Picking b = 3 for all levels would result in a tree with 3N

leaves, where N is the number of time steps in the model. As our problem considers
between 40 and 100 time steps, even a small bushiness of 2 would yield extremely
large trees: the smallest possible tree would already have 240 ≈ 1.1 · 1012 leaves, each
representing a separate scenario. Reducing that to a reasonable amount for use in
our model will take way too much computational time and effort, considering that the
resulting tree might not represent the full range of possibilities as much as we would
like: in the first time step just two scenarios are considered.

One might solve this problem by increasing the bushiness in the earlier time steps and
keeping it low in the later levels. At this point, it is guesswork to determine what the
best bushiness-values are to obtain a good initial tree. An algorithm is presented in [101]
that generates such a tree with “flexible” bushiness. This increases the bushiness in each
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node, until it has found a bushiness that is within some fixed bound on a certain distance
measure, which is a way to ensure that the tree represents the underlying distribution
well.

Our approach is to “trust” the random sampling of a large number of scenarios, as
described above, to come up with a fairly representative set. Typically, such a sample
will represent the distribution a lot better in the earlier time steps and will be a much
less accurate representation in the later stages. We already touched upon this issue
before: this is exactly in line with the importance of the earlier time steps compared to
the later ones. It is important that the scenarios represent the first few time steps well.
The further we get in time, the less important accuracy becomes. This is partly due to
the fact that we are not using many of the decisions taken for the later time steps in
most cases.

The idea is to join the generated scenarios at the root, and start the reduction process
on that initial tree, grouping similar scenarios as we go. This approach follows the
general scenario tree construction approach outlined in [25], where it is recommended to
use cluster analysis to group similar scenarios after the initial sampling. We will follow
an approach that is similar to the one taken in [42].

7.2. Scenario reduction

From the initially constructed large scenario fan, we want to construct a much smaller
(in terms of the number of nodes) scenario tree (see Fig. 7). We want the probability
distribution of this scenario tree to match the distribution of the original fan as close as
possible.

We will be using some of the algorithms developed in [26, 49] and applied in [42] for
this purpose. More specifically, we will be using the simultaneous backward reduction
algorithm, using the Kantorovich distance as a distance measure. An overview of the
algorithm is presented in Alg. 3.

Figure 7: The scenario reduction process reduces the scenario fan (left) to a scenario tree
(right), by grouping scenarios at every level of the tree. This means that the
tree has fewer leaves than the fan, and that it branches on all levels, instead
of just the first.
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7.2.1. Kantorovich Distance

We will be using the Kantorovich Distance as a measure to compare scenarios. The
description in this section is based on [42].

The Kantorovich Distance DK , for discrete probability distributions, is the optimal
solution to the following linear programming problem:

minimize
∑
i∈S

∑
j∈S′

ηijc|T |(ξ
i, ξ̃j) s.t.

∑
i∈S

ηij = qj ∀j ∈ S′∑
j∈S′

ηij = pi ∀i ∈ S

ηij ≥ 0 ∀i ∈ S,∀j ∈ S′

Where S is the index set of scenarios from one distribution with scenarios ξi and corre-
sponding probabilities pi, and S′ is the index set of scenarios from the other distribution
with scenarios ξj and probabilities qj .

The problem comes down to finding a mapping of minimal weight between the sce-
narios representing both distributions, where ct is the distance measure between two
scenarios defined as:

ct(ξ
i, ξj) =

t∑
τ=1

dist(ξiτ − ξjτ )

So, c|T | represents the distance of two scenarios over the entire planning horizon.
Our scenarios contain two values: a forecast for the PV-output, and a forecast for

the load. To determine the distance between scenarios, however, we can reduce these to
a single value. Only the difference between uncontrollable demand (load) and uncon-
trollable production (PV-output) matters in our models. So, we define dist() on these
composite scenarios as follows.

Let ξit,pv be the forecast for the PV-output at time step t in scenario i and ξit,load the
load forecast:

dist(ξit − ξ
j
t ) = |(ξit,load − ξit,pv)− (ξjt,load − ξ

j
t,pv)|

This distance measure defines the distance between two scenarios at time t as the
difference in reduced or net demand (the difference between PV-output and load) between
two scenarios. A scenario with a high PV-output and a high load may, therefore, be
treated as very similar to a scenario with a low PV-output and a low load, as the
net demand that has to be satisfied is nearly the same. While this is a good idea
in the context of the models presented in Section 9, this may not always be the best
choice for a distance measure. For example, when explicitly modeling PV curtailment,
the two example scenarios mentioned before are actually very different. In this case
one might consider the difference in both forecasts separately (i.e. dist(ξit − ξjt ) =
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|(ξit,load − ξ
j
t,load)|+ |(ξ

i
t,pv − ξ

j
t,pv)|). But as we consider both PV-output and load to be

uncontrollable in our model, the aforementioned distance measure is a good fit.
We want to use the Kantorovich distance to express to which extent the distribution

represented by a subset of scenarios resembles the distribution represented by the original
set. Let J be an index set of the scenarios that are deleted from the original set to obtain
the reduced set. If the original set contained |S| scenarios, we have that J ⊂ {1, ..., |S|}.
Our reduced set of scenarios contains all ξj such that j ∈ {1, ..., |S|} \ J . Now the
Kantorovich distance of this subset to the original set equals

∑
i∈J

pi min
j 6∈J

c|T |(ξ
i, ξj). This

follows directly from our definition of the Kantorovich distance above if we consider
that all non-deleted scenarios will map onto themselves, and we therefore only have to
consider the distance of the deleted scenarios from the original set to one of the remaining
scenarios in the subset.

It follows that the probability qj of the any preserved scenario ξj should equal its
original probability, plus the probability of all scenarios mapped onto it: qj = pj +∑
i∈J(j)

pi, where J(j) = {i ∈ J | arg min
j′ 6∈J
{cT (ξi, ξj

′
)} = j}.

Minimizing the Kantorovich distance over all possible subsets of a given size can now
be formulated as a MILP, and presents an NP-hard problem in itself.

As there is no efficient way to find the optimal solution for this problem, we will use
a heuristic algorithm called simultaneous backward reduction that has been shown to
provide good results in [49].

7.2.2. Simultaneous backward reduction

The idea of the simultaneous backward reduction algorithm is to repeatedly delete a
single scenario: the one that increases the Kantorovich distance of the reduced set to
the original one the least. It is fairly straight-forward to determine which scenario this
is:

min
j∈{1,...,|S|}

{pi min
j 6=i

cT (ξi, ξj)}

This is used in Alg. 2. It uses a stopping condition θ, that controls how many sce-
narios remain after the reduction. In this way, the complexity of the resulting tree can
be controlled. Alternative stopping conditions include a tolerance ε. This tolerance ex-
presses a maximum distance increase that the deletion of a single scenario may result in.
Alternatively, this tolerance could apply to the overall distance increase (over all deleted
scenarios).

The idea is to apply this algorithm on every level of the tree and fixing the child/parent
pointers of every scenario based on which scenario it collapses into. This idea is imple-
mented in Alg. 3, which uses a slightly modified version of Alg. 2 as a subroutine.

For this algorithm, consider every scenario to be a list of T entries, each with one value
for every forecasted variable and an associated probability at that time step. Addition-
ally, imagine a T × S matrix M defining the parent of every scenario. E.g. Mts = s′

means that scenario s is joined with scenario s′ at time step t − 1. If a scenario is not
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Input: set of scenarios {ξi}, i ∈ {1, ..., |S|} and associated probabilities pi, target
θ

/* Compute the distances of all scenario pairs */

for i← 1 to |S| do
for j ← 1 to |S| do

cij ← cT (ξi, ξj)
end

end
/* Iteratively remove a single scenario */

J ← ∅
repeat

foreach l ∈ {1, ..., |S|} \ J do
foreach k ∈ J ∪ {l} do

c′kl ← min
j 6∈J∪l

ckj

end
zl ←

∑
k∈J∪{l}

pkc
′
kl

end
li = arg min

l 6∈J
zl

J ← J ∪ {li}
until |S| − |J | = θ;
/* Recompute the probabilities of the remaining scenarios */

foreach i ∈ {1, ..., |S|} \ J do
J ′ ← {j ∈ J | arg min

j′∈J
cij′ = i}

qi ← pi +
∑
j∈J ′

pj

end
return {q1, ..., q|S|}

Algorithm 2: Simultaneous backward reduction

removed at t we have that s = s′. These fully represent the tree structure of the sce-
nario tree. Note that the probability of a scenario may be computed by summing the
probabilities of its children, but for ease of notation, we store the result of this sum at
every node in the tree.

The algorithm will start at t = |T | by reducing the number of scenarios at this level
to θ|T | by iteratively removing the scenario that causes the smallest increase in distance
of the reduced set to the original set of scenarios. This is repeated for every level in
the tree, where deleted scenarios will contribute their probability mass to the closest
remaining scenario. A scenario that is deleted at time step t is only deleted in all levels
above t in the tree, representing the time steps before t (i.e. 0, 1, ..., t− 1, t), but is still
present in the lower part of the tree (time steps t+ 1, ..., |T |). The node representing the
deleted scenario one level deeper (at t+ 1) becomes a child of the node representing the
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Input: set of scenarios {ξi}, i ∈ {1, ..., |S|} and associated probabilities pi(|T |+1),
|T | × |S|-matrix of parent pointers M , targets θt, t ∈ {1, ...|T |}

for t← |T | to 1 do
/* Compute the distances of all scenario pairs */

for i← 1 to |S| do
for j ← 1 to |S| do

cij ← ct(ξ
i, ξj)

end

end
/* Iteratively remove a single scenario */

J ← ∅
repeat

foreach l ∈ {1, ..., |S|} \ J do
foreach k ∈ J ∪ {l} do

c′kl ← min
j 6∈J∪l

ckj

end
zl ←

∑
k∈J∪{l}

pkc
′
kl

end
li = arg min

l 6∈J
zl

J ← J ∪ {li}
until |S| − |J | = θi;
/* Recompute the probabilities of the remaining scenarios */

foreach i ∈ {1, ..., |S|} \ J do
J ′ ← {j ∈ J | arg min

j′∈J
cij′ = i}

pit ← pi(t+1) +
∑
j∈J ′

pj(t+1)

foreach j ∈ J ′ do
m(t+1)j ← i

end

end
S ← S − J

end
Algorithm 3: Scenario reduction algorithm
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|S| lx time (s)

300
l1 60.44
l2 60.98
l3 60.75

350
l1 111.50
l2 111.08
l3 110.60

|S| lx time (s)

400
l1 190.33
l2 190.63
l3 190.31

450
l1 >300.00
l2 >300.00
l3 >300.00

|S| lx time (s)

500
l1 >300.00
l2 >300.00
l3 >300.00

Table 6: Timings of the scenario selection method for three different “branching models”.
The computation time in the last column is an average over ten runs of the
algorithm.

closest remaining scenario at time step t, effectively merging the deleted scenario into
the closest remaining scenario at this point.

We can use the level-wise target θt to control the complexity of the resulting tree.
Note that we only control the number of nodes (or scenarios) present at every level of
the tree, and thereby define the average branching factor at every level. We do not
control the maximum or minimum branching factor. We only control the number of
scenarios that is removed, into which other branches the deleted parts are then merged
is determined based on the distance measure, as explained above.

We tried three ways of determining our targets θt:

l1 has a linear increase in the number of scenarios. So, a tree of depth 42 (the depth
of the scenario tree for problems where τ = 24) and 300 scenarios will have a linear
increase of 300/42 at every level. Each time, we round the resulting number to the
nearest integer: the first level will have 7 scenarios, the second will have 14, and
so on until the last level, which contains 300 leafs;

l2 has a constant branching factor. For τ = 24 and |S| = 300, this branching fac-
tor equals 42

√
300. The first level will have round( 42

√
300) scenarios, the second

round(( 42
√

300)2), and so on until the last level, which again contains 300 leafs;

l3 is a variation on l1, as the target number of scenarios also increases linearly. How-
ever, it increases linearly over only the first 24 levels, and after that remains con-
stant. So, again for τ = 24 and |S| = 300, we have an increase of 12.5 per level.
We round the resulting number to the nearest integer at every level: the first level
has 13 scenarios, the second 25, the third 38 and so on until the 24th, which has
300 scenarios. All levels after that will also have 300 nodes.

First, we ran the scenario reduction algorithm with these three ways of determining
the target number θt for a few different values of |S|. The results of this are presented
in Table 6. There is virtually no difference in the time it takes to create the scenario
tree using l1, l2 or l3. However, the time needed increases rapidly when increasing the
initial number of scenarios |S|. We allow a total of 10 minutes for the entire planning
process. This means that the generation of the scenario tree takes time away from the
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solver. Based on this, we can discard any combination of |S| and lx that takes more
than five minutes immediately.

This leaves the values of |S| between 300 and 400. Initial tests with these values
showed, however, that using 350 or 400 initial scenarios led to problems for which a
solution that was reasonably close to the optimum could often not be found within the
available time. Using 300 scenarios, a solution that was proven to be reasonably close to
the optimum could be found in most cases. Therefore, we chose to construct the scenario
tree for the multi-stage problems with 300 initials scenarios.

We have evaluated the performance of each of these “branching models”. The results
are presented in Section 13.5.

8. Grid components

In this section, we will describe the modeling of the various components in the micro-
grids under study. This includes controllable and uncontrollable generation, uncontrol-
lable load and storage technologies. Controllable loads are not included. Everything is
modeled in terms of energy (kWh) produced or consumed.

8.1. Generators

The generators are represented by three variables every time step: yit describes whether
generator i is on or not, xit is 1 if it is started up at time step t and git represents the
power output of the generator. The variables xit and yit depend on each other as follows:

yit − yit−1 ≤ xit
The three generators in the Island scenario run on diesel. Two of them are Olympian

GEP55-1 diesel generators. They have a maximum production of 40 kW [13]. The
other one is a Kohler SDMO K44C3, with a maximum production of 32 kW [65]. In the
Residential scenario, we add a CAT C4.4-110, with a maximum production of 80 kW [4].
For all three generators we use 20% of their maximum production as an estimate of the
minimum possible production (i.e. 8 kW, 6.4 kW and 16 kW). This is modeled in the
following constraint:

yitP
min
i ≤ git ≤ yitPmaxi

where yit is the on/off-state of generator i at time step t, git is its power output and
Pmini and Pmaxi are its production limits.

As both generators can be brought on-line fairly quickly, no ramp-up rate constraints
are included in the model. Additionally, fuel consumption and power output seem to
have an almost linear relationship, as shown in Fig. 8. This is based on information
about the fuel consumption of all three generators running at 100%, 75% and 50% of
their maximum production [4, 13, 65]. All types of diesel engines use approximately 0.3
liters of diesel per kWh produced. The diesel price is estimated at around ¤1 per liter,
which means that the production of one kWh by a diesel generator costs ¤0.30.
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Figure 8: Fuel consumption / power output of the diesel generators

We validated these values by looking at the measurements over the first six months
of 2017. Here we found that all generators reached somewhat higher maximum outputs
(42 kW, 43 kW and 33 kW, respectively). The production rarely drops below the
minimum that we determined, but all generators seem to have a real minimum at around
4 kW. Although the generators can produce more than their theoretical maximum, their
efficiency presumably goes down. We chose to only model the part of the range of the
generator where we know the cost-curve to be approximately linear (between 20% and
100% of its capacity).

Every generator has three associated cost coefficients. One (cgi ) expresses the (fuel)
cost per generated kWh of energy. Another (fi) models basic (fixed) operational cost,
including device wear, for every time unit that the generator is on-line. The last one
(si) expresses the additional cost associated with bringing a generator on-line.
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We have seen that the costs of the production of a single kWh of energy are estimated
to be ¤0.30, so cgi = 0.3 for all i.

It is hard to determine and validate the operational and start-up costs for the diesel
engines. Most comparable studies do not explicitly list the values used for these con-
stants, and it is hard to determine them empirically. In a previous model of the same
generators, start-up costs were determined to be ¤0.10 and operational costs ¤4 per
hour. However, one would expect the start-up cost to be larger than the operational
cost - as the reverse will cause the state of the generator to switch quite often, which is
the type of behavior we would like to avoid.

In [14], microturbines and fuel cells that are similar in terms of their maximum power
output are modeled. Their start-up costs are determined to be between $0.14 and $0.24,
and no additional operational costs are used. As the initially assumed cost constants
caused the generators to behave in a way that was determined to be undesirable by field
experts, we decided to assume different values (start-up cost of ¤0.50 and operational
costs of ¤0.40 per hour). However, these values cannot be validated, although they do
result in a more intuitive planning.

8.2. Batteries

A relatively simple model has been assumed for the batteries. Self-discharge is not
considered in this model. As the batteries are used intensively in the Island scenario, we
expect this to be of little consequence.

We do take the inverter efficiency of the battery into account. To some extent, losses
due to self-discharge etc. are covered by this as well. The efficiency applies both when
charging and when discharging the battery. The efficiency of the battery (ηbi ) is multi-
plied with the energy to model the losses. The state of charge of the battery is therefore
related to the energy charged to/discharged from the battery as follows:

chit−1 − chit =
boutit

ηbi
− binit ηbi

where boutit is the output of battery i at time step t, binit its input and chit its state of
charge (all in kWh).

The model does include costs per kWh discharged to model battery degradation, the
wear of the device by (dis)charging it. This is based on the decrease in value of the
battery before it is installed, and after it has out-lived its usefulness.

In the Island scenario, we have two batteries: one lithium-ion and one lead-acid bat-
tery. The lithium-ion battery has a maximum charge level of 20 kWh. We assume that
it will degrade to 75% of this (15 kWh) after 8000 cycles. This will decrease its value
by 25%. It was originally purchased for ¤350. This means it will decrease in value by
¤87,50 over 8000 cycles of 20 kWh. This comes down to ¤0,00056875 per kWh dis-
charged. The lead-acid battery has no remaining value, which would lead to a cost of
¤0 per kWh discharged. But, as it is an old, unreliable battery, the use of the lithium-
ion battery is preferred. It is currently rarely used (only in cases of emergency). We
therefore decided to exclude it from the model altogether.
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We validated the capacity of the batteries by looking at the measurements over the first
six months of 2017. The measurements of the output of the batteries is only reliable
when the generators are off, so we determined the amount of energy drawn from the
lithium-ion battery over a period of time during the night, when no generators are active.
Between 11-06-2017 03:48 and 11-06-2017 07:53, the state of charge of the lithium-ion
battery goes down from 100% to 28%. During this time, 16.9 kWh is extracted from the
battery. This would indicate that the storage capacity of the battery is actually higher
than specified, as this would mean than approximately 23.5 kWh can be drawn from the
battery in total.

Similarly, the lead-acid battery goes from 100% to 62% between 05:33 and 08:20 on
24-06-2017. During this time, approximately 8.5 kWh is discharged from the battery.
This means that the capacity of the lead-acid battery is more than twice the specified
amount, at 22.5 kWh.

To make the model more robust, the batteries can be operated using minimum reserve
thresholds. The thresholds have the following purpose:

� Minimum reserve threshold (Rmini ): The minimum reserve threshold. If the state of
charge starts below this threshold (before the first time step), it has to be charged
to at least this threshold in the first time-step. The state of charge of the battery
can never be below this threshold after the first time step;

� Maximum reserve threshold (Rmaxi ): If the state of charge is below this threshold,
the battery cannot be discharged in the planning, but it is not required to be
charged either. The battery can only be used as a producer of energy if its state
of charge stays above this threshold (in the planning).

In essence, the minimum threshold guarantees a minimal reserve that will always be
available to compensate any mismatch in the realization. By requiring a higher state
of charge for discharging the battery, we aim to avoid continuous fluctuations around
the minimum threshold. Without this threshold, the planning keeps the state of charge
almost continuously at its minimum threshold, or very near to it, causing it to dive
below the threshold with every mismatch that occurs. This would force the starting of a
generator in the next time step to get the battery state of charge back up. This is not a
desirable situation, and we hope to avoid it by limiting the use of the battery to higher
charge levels. This translates to the following bounds and constraints:

chit ≥ Rmini

This bound makes sure that the state of charge of the battery is above the minimum
threshold at the end of every time step. The following two constraints ensure that
the battery is only discharged when the state of charge is above the maximum reserve
threshold:

Rmaxi rit ≤ chit
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boutit ≤ ritvdi
Where rit is an auxiliary variable to force the described behavior.

8.3. Other

In practice, it is possible to curtail the output of a PV-park, but this is not modeled.
The same applies to load shedding, which is even less desirable. This allows for the
treatment of all uncontrollable components as a single “reduced demand”.

The total demand Dt equals (the forecast of) the uncontrollable load minus the (ex-
pected) uncontrollable generation (e.g. PV-output). This means that the demand can
assume both positive and negative values. It is therefore modeled using two constants:
D+
t and D−t for the positive and negative part of the demand, respectively. This results

in the following relationship:

Dt = D+
t −D

−
t

Determining the value of these constants is a matter of preprocessing.
The main aim of the model is to balance supply and demand. This is expressed in the

following constraint:

D+
t

ηg
−D−t ηg =

∑
i∈G

git +
∑
j∈B

(
boutjt − binjt

)
where 0 ≤ ηg ≤ 1 is the grid-efficiency, modeling grid losses.

9. Models

In this section we will propose a number of optimization models, in order of increasing
complexity. First we will present a simple deterministic model in Section 9.1, which
we will extend with safety constraints in Section 9.2. Then, we will describe our first
stochastic (two-stage) model in Section 9.3, followed by a more complex multi-stage
model in Section 9.4. Finally, we will discuss a model improvement that can be applied
to all of these models in Section 9.5.

The models use the device models as described in Section 8. They solve the energy
balancing problem by balancing the sum of the energy produced and consumed in every
time step. This is equivalent to balancing the average power output (input) of the devices
in the grid for every time step: average power output in kilowatts over one time step is
convertible to energy in kWh by dividing by the number of time steps in an hour. Input
that has a different unit (other than kWh, like watts or kilowatts) is converted before
being plugged into the model.

The models will be formulated as MILPs. This technique is most often used in practice
(c.f. Table 3 in Section 3), and seems suitable for the problem at hand. The charac-
teristics of the appliances in the microgrids can be approximated reasonably well with
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(piecewise) linear functions. When these characteristics are modeled accurately, the re-
sulting model will be able to arrive at solutions that are very close to the optimum.
Finally, as we consider (monopolized) microgrids, we expect the problem size to remain
manageable. Most (commercial) solvers will be able to deal with MILP problems of the
size that we expect to encounter reasonably fast. These considerations justify the selec-
tion of a mathematical programming approach to solve the energy management problem
for these microgrids.

9.1. Naive model

This model takes a similar approach to [97], re-solving a simple MILP problem over a
number of time steps every time step. As we will see in the section on implementation,
we have chosen to solve the problem for the next 24 hours every 15 minutes. The length
of one time step is 15 minutes, our planning horizon is 24 hours (or 96 time steps) and
we solve the problem every 15 minutes. Only the decisions for the first time step are
then used to actually control the micro grid. In short, we use a rolling horizon strategy.

This initial model does not take the uncertainty in the forecast into account: it assumes
that the forecasted values will be realized exactly as predicted.

The objective is to minimize operational costs. This includes fuel costs but also costs
associated with device wear. The cost function sums over the cost of operation of all
devices. The batteries only have a discharge cost, as we have seen in Section 8.

The total contribution of the batteries to the cost function is:∑
t∈T

∑
j∈B

cbjb
out
jt

Using the cost constants discussed in Section 8, the total contribution of the diesel
generators to the cost function becomes:∑

t∈T

∑
i∈G

(fiyit + cgi git + sixit)

Let G be the set of all traditional generators, and let B be the set of all batteries.
Finally, let T be the set of time steps within the planning horizon. The unit of all
constants and variables is converted to kWh. The full model then becomes:

minimize
∑
t∈T

∑
i∈G

(fiyit + cgi git + sixit) +
∑
j∈B

(
cbjb

out
jt

) s.t.

D+
t

ηg
−D−t ηg =

∑
i∈G

git +
∑
j∈B

(
boutjt − binjt

)
∀t ∈ T (12)

yitP
min
i ≤ git ≤ yitPmaxi ∀t ∈ T, i ∈ G (13)

yit − yit−1 ≤ xit ∀t ∈ T, i ∈ G (14)
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chit−1 − chit =
boutit

ηbi
− binit ηbi ∀t ∈ T, i ∈ B (15)

yit ∈ {0, 1} ∀t ∈ T, i ∈ G
0 ≤ xit ≤ 1 ∀t ∈ T, i ∈ G
0 ≤ chit ≤ Ei ∀t ∈ T, i ∈ B
0 ≤ binit ≤ vci ∀t ∈ T, i ∈ B
0 ≤ boutit ≤ vdi ∀t ∈ T, i ∈ B

Refer to Section 5 for a list of variables and constants used in this model.
Constraint (14) does not work for t = 0. To deal with this special case, we define that

xit expresses the initial state of generator i if t = −1. Similarly, in constraint (15), chit
expresses the initial charge level of battery i for t = −1.

9.2. Adding safety constraints

To make sure the planning always has a small buffer to (cheaply) recover from a mis-
match, the model is extended by adding some safety constraints that ensure a reserve
is present in the batteries (as explained in Section 8). Note that, when for all batteries
Rmini = Rmaxi = 0, the model is equivalent to the naive model.

This addition is intended to make the planning a bit more robust against fluctuations
of the realized demand. All other parts of the model are kept exactly the same.

Again, let G be the set of all traditional generators, and let B be the set of all
batteries. The unit of all constants and variables is converted to kWh. The full model
then becomes:

minimize
∑
t∈T

∑
i∈G

(fiyit + cgi git + sixit) +
∑
j∈B

(
cbjb

out
jt

) s.t.

D+
t

ηg
−D−t ηg =

∑
i∈G

git +
∑
j∈B

(
boutjt − binjt

)
∀t ∈ T (16)

yitP
min
i ≤ git ≤ yitPmaxi ∀t ∈ T, i ∈ G (17)

yit − yit−1 ≤ xit ∀t ∈ T, i ∈ G (18)

chit−1 − chit =
boutit

ηbi
− binit ηbi ∀t ∈ T, i ∈ B (19)

Rmaxi rit ≤ chit ∀t ∈ T, i ∈ B (20)

boutit ≤ ritvdi ∀t ∈ T, i ∈ B (21)

yit ∈ {0, 1} ∀t ∈ T, i ∈ G
rit ∈ {0, 1} ∀t ∈ T, i ∈ B
0 ≤ xit ≤ 1 ∀t ∈ T, i ∈ G
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Rmini ≤ chit ≤ Ei ∀t ∈ T, i ∈ B
0 ≤ binit ≤ vci ∀t ∈ T, i ∈ B
0 ≤ boutit ≤ vdi ∀t ∈ T, i ∈ B

where the definitions of all decision variables and constants are the same as before,
with the addition of decision variables rit and constants Rmaxi and Rmini . See Section 5
for a brief description and overview of variables and constants used in the model.

The additional provisions for xit and chit at t = −1 in (18) and (19) are the same as
before.

9.3. Two-stage model

We want to take the uncertainty in the forecast explicitly into account in the planning.
In order to do so, we need to include a way to represent that in the model.

We will do this using scenarios in a two-stage model. As stages we consider two
timescales: planning and realization, where the first stage (planning) variables are those
that we can control and decide on, and the second stage variables are those that are
(reactively) adjusted to the scenario that is materializing during operation. In our
example below, the battery decisions would form the second stage and everything else
(generator state and output) would be the first stage decisions. In this example, the
two-stage structure of the problem is relatively simple, as the output of the batteries is
the only thing that is decided in the second stage. One can, however, imagine extending
the microgrid with other devices or a grid-connection, and changing which decisions are
contained in the second stage.

The constraints of the resulting model are very similar to those of the naive model
but the constraints concerning energy balance and battery output are repeated for every
scenario. The objective function is slightly different as well: the contribution of the
generators remains unchanged, but the contribution of the battery is now the expected
cost over all scenarios. In other words: the contribution of the battery is a weighted
sum of the battery costs over all scenarios, where the cost of every scenario is weighted
by its relative probability.

It may happen that two scenarios are too different (either in a single time step or over
multiple time steps), meaning that the difference between them cannot be compensated
by the batteries. This means that there is no feasible solution to the entire problem.
Even when this is the case, we still want to generate a planning that is feasible for
most scenarios. To make this possible, we will add two variables for every time step
and scenario that represent the unsatisfied demand (or surplus). A high penalty ensures
that it is still optimal to satisfy the demand in all scenarios and match the demand
as closely as possible in those where it is not feasible to satisfy it completely, without
causing infeasibilities.

We obtain the scenarios using the sampling method discussed in Section 7. However,
we do not execute Alg. 2, and we keep the original scenario fan.

Let S be the full (index) set of scenarios. Also, let ps be the (relative) probability
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assigned to scenario s ∈ S, such that
|S|∑
1
ps = 1. Then, we get the following deterministic

equivalent of the stochastic problem:

minimize
∑
t∈T

∑
i∈G

(fiyit + cgi git + sixit) +
∑
s∈S

ps

∑
t∈T

∑
j∈B

cbjb
out
jts + cw

(
w+
ts + w−ts

) s.t.

D+
ts

ηg
−D−tsηg =

∑
i∈G

git +
∑
j∈B

(
boutjts − binjts

)
+ w+

ts − w
−
ts ∀t ∈ T, s ∈ S (22)

yitP
min
i ≤ git ≤ yitPmaxi ∀t ∈ T, i ∈ G (23)

chi(t−1)s − chits =
boutits

ηbi
− binitsηbi ∀t ∈ T, s ∈ S, i ∈ B (24)

yit − yit−1 ≤ xit ∀t ∈ T, i ∈ G (25)

0 ≤ chits ≤ Ei ∀t ∈ T, s ∈ S, i ∈ B
0 ≤ binits ≤ vci ∀t ∈ T, s ∈ S, i ∈ B
0 ≤ boutits ≤ vdi ∀t ∈ T, s ∈ S, i ∈ B

yit ∈ {0, 1} ∀t ∈ T, i ∈ G
0 ≤ xit ≤ 1 ∀t ∈ T, i ∈ G

See Section 5 for a brief description and overview of variables and constants used in
the model.

The additional provisions for xit and chits at t = −1 in (24) and (25) are the same as
before.

9.4. Multi-stage model

From the discussion above, it has become clear that the problem as we have defined it
displays a stage-wise structure in two dimensions: on the one hand we have the decision
stages (as made explicit in the model from Section 9.3) and on the other we have the
time steps, dividing the problem in |T | intervals, each with its own associated decisions.

The temporal structure of the problem is best modeled by a multi-stage model. Each
time step becomes a stage in the problem.

The general form of a multistage stochastic program is stated in [101] as follows:

minimize {F (x) := R[Q(x, ξ)] : x ∈ X and x / F}

Where x are the decision variables, ξ are the random values, X is the set of constraints,
Q(x, ξ) is the objective function, R is a risk functional of the cost function and x /
F represents the non-anticipativity constraint. For some background on multi-stage
stochastic models, refer to [101].
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Figure 9: The model captures the stage-wise structure of the model both in the time that
decisions are meant to be implemented (operation time) and the time that the
decision is fixed (decision time). This image gives an impression of the model
structure for the first five time steps of a problem. The blue boxes represent
the “first-stage” decisions and the orange boxes represent the “second-stage”
decisions. Adjacent boxes are meant to be implemented in the same time
step. The transparent green boxes represent the actual stages of the problem,
grouping the decisions together that are made in the same time step, with the
same available information.

The non-anticipativity constraint requires that decisions for stage t can only be based
on information that is available at t. In our model, because of the use of a scenario tree,
the non-anticipativity is implicit.

By defining our model this way, however, we lose the capability of differentiating
between decision stages. Each time step is represented by a stage in the model, meaning
that all decisions for that time step are made on the basis of the exact same information.
In the model from section 9.3, the first-stage decisions were made before the actual values
of the demand and PV-output would become known, while the second-stage decisions
were used to adjust the solution after these were known. In the simplest multi-stage
model, however, all these decisions are made at the same time.

To resolve this problem, we need to realize that the information used for the “first-
stage” decisions of time step t + 1 is exactly the same as the information available in
the “second-stage” of time step t. By shifting the decisions that were previously in the
first stage of period t to period t− 1, we are again able to differentiate between decision
stages for a single time step. The basic idea is illustrated in Fig. 9.

Our objective function becomes a recursive expression, recursively adding the expected
cost of all decisions further ahead in time. Every node in the scenario tree has its own
set of constraints concerning balance and batteries and a set of constraints modeling the
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behavior of the generators in its children.
Assuming a scenario tree to be given (refer to Section 7 for the algorithms used for

its construction), we can once again express this as a MILP.
Let St be the index set of all scenarios present at time step t. In other words: St is a list

of the scenario indices of all nodes at depth t in the scenario tree. Let par(s), s ∈ St be
(the scenario index of) the direct parent of s in the tree, so par(s) ∈ St−1. Additionally,
let ch(s) be the set of (scenario indices of) children of s, i.e. all nodes s′ for which
par(s′) = s. Remember that ps is the relative probability assigned to scenario s at every
step (i.e. the conditional probability of s occurring at t given that its parent scenario did
occur at t−1, etc.). This means the following. Let s′ = par(s). Now, ps is the probability
of scenario s occurring relative to its siblings. In other words,

∑
s′′∈ch(s′)

ps′′ = 1. Note

that we have that S0 ⊆ S1 ⊆ ... ⊆ S|T |−1 ⊆ S. The combination of the s and t indices
uniquely identify a node in the tree.

minimize
∑
i∈G

(fiyi00 + cgi gi00 + sixi00) +
∑
s∈S0

ps

∑
j∈B

cbjb
out
j0s+

cw
(
w+
0s + w−0s

)
+
∑
i∈G

(fiyi1s + cgi gi1s + sixi1s) +
∑

s′∈ch(s)

ps′

(
...+

∑
s′′′∈ch(s′′)

ps′′′

(∑
j∈B

cbjb
out
j(|T |−1)s′′′ + cw

(
w+
(|T |−1)s′′′ + w−(|T |−1)s′′′

)))

s.t.
D+
ts

ηg
−D−tsηg =

∑
i∈G

git(par(s)) +
∑
j∈B

(
boutjts − binjts

)
∀t ∈ T, s ∈ St

+ w+
ts − w

−
ts

yitsP
min
i ≤ gits ≤ yitsPmaxi ∀t ∈ T, i ∈ G, s ∈ St−1

chi(t−1)(par(s)) − chits =
boutits

ηbi
− binitsηbi ∀t ∈ T, s ∈ St, i ∈ B

yits − yi(t−1)(par(s)) ≤ xits ∀t ∈ T, i ∈ G, s ∈ St−1
0 ≤ chits ≤ Ei ∀t ∈ T, s ∈ St, i ∈ B

0 ≤ binits ≤ vci ∀t ∈ T, s ∈ St, i ∈ B
0 ≤ boutits ≤ vdi ∀t ∈ T, s ∈ St, i ∈ B

yits ∈ {0, 1} ∀t ∈ T, i ∈ G, s ∈ St−1
0 ≤ xits ≤ 1 ∀t ∈ T, i ∈ G, s ∈ St−1

See Section 5 for a brief description and overview of variables and constants used in
the model.

The additional provisions for xit and chits at t = −1 are the same as before.
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Figure 10: Graphical representation of the change in time resolution. The time steps
up to t = τ will be 15 minutes long, while all time steps after that will be
considered in groups of four, in other words: the time resolution changes to
1 hour per time step.

9.5. Model-independent improvements

As we have seen in Section 6.3, the accuracy of the forecast is not as crucial for the later
time steps in the planning. This inspired a modification of the models that is graphically
represented in Fig. 10. The idea is to change the time resolution from 15 minutes to one
hour after a number of time steps (τ). This leads to a significant reduction in the size of
the problem: fewer scenarios will be needed to approximately express the same range of
possibilities as the depth of the scenario tree significantly decreases, and a problem with
the same amount of scenarios will become easier from a computational point of view,
allowing for the consideration of larger problems in the same computation time.

This time shift is fairly easily modeled. It requires the aggregation of the forecasts
after time step τ . This can be achieved by taking the average over the predicted values
for each of the quarters of the aggregated hour.

The resulting pooled standard deviation can be computed by taking the square root
of the average variance (i.e. the squared standard deviation) and the variance of the
mean over all periods:

σagg =

√√√√√√√√
t+3∑
i=t

σ2i4 +

t+3∑
j=i+1

(µi − µj)2
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where t is the index of the first time step being included in the aggregation and µt is
the predicted value (i.e. the mean of the distribution) at time t. We have chosen this
approach to determine the aggregated standard deviation, based on how it is computed
in the first place. As explained in Section 6, the standard deviation is determined
by looking at the distribution of the error of the forecast in the past. The standard
deviations are determined separately for forecasts of different time steps created at a
different time of day. Effectively, the four standard deviations that we want to aggregate
express the spread of the error for non-overlapping groups of predictions in the past.
To obtain a standard deviation that expresses the spread of the error for the combined
group of predictions, we use the formula above to determine the aggregate standard
deviation of the four time steps together.
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Aside from this, a number of constants (fi, P
min
i , Pmaxi , vci , v

d
i ) need to be multiplied

by four relative to the quarter-long time periods. Otherwise, the model remains the
same. This can be easily implemented by including a parameter τ in the generation of
the model files and modifying the constraints over variables where t ≥ τ to work with
the multiplied constants. The value of τ can be anything between 0 and |T |, the only
limitation on τ is that it has to be a multiple of four.

10. Simulation model

To evaluate the effects of the planning constructed in the previous step, a simple simula-
tor was implemented. The simulator determines the effect of the planning by following
it as closely as possible and solving any mismatch of prediction and realization by apply-
ing simple rules-of-thumb. The cost of operation is then computed, which results in an
estimation of the cost of operation when following the generated planning. More details
will be provided below.

The simulation takes over the role of the microgrid controller, which initiates the
planning process and implements the decisions during operation. A rolling horizon
strategy is followed: every simulated time step, the loop as depicted in Fig. 4 is executed.
New forecasts are created, from which scenarios are (possibly) constructed. These are
in turn fed to the optimization model, from which the relevant decisions are retrieved.
The simulation then determines the effect of the decisions for one time step, considering
the realized values of the uncertain factors in the model, and updates the state of the
system accordingly (as described below). This entire process is then repeated for the
next time step.

We have, however, also implemented variants of this process where a new planning is
only generated after the old one is not valid anymore.

In the *-variants, this means that re-planning occurs when the predicted value had
a distance larger than δ to the realization in the previous time step (for the naive and
safety models) or there was no scenario that had a distance smaller than δ (for the
scenario-based models). In other words, if a sufficiently similar scenario was included,
we can re-use the current planning. Otherwise, we have to re-plan. The values of δ for
the different scenarios will be listed in Section 12.

The **-variants only re-plan after the planning had to be adjusted, meaning that the
batteries were unable to compensate the mismatch on their own in that time step.

The simulator computes the realized cost of the planning. For this, it uses the same
cost coefficients as the optimization model (fit, c

g
it, sit and cbit above). The only difference

is that the actual (realized) values of the PV production and the demand have become
known. These values are almost never exactly the same as the forecast, and this difference
is accounted for by simple rules that can be summarized in the following schematic:

A shortage occurs when the reduced demand (demand minus PV output) is higher
than the forecast, and a surplus occurs when it is lower. First, the batteries are used
to resolve the mismatch (within their operational limits). If the batteries cannot solve
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Compensate with battery

Adjust generator output

Bring additional
generator on-line

PV-curtailment

the mismatch on their own, we turn to the generators. If one or more generators are on-
line, their output will be adjusted (again, within their operational limits) to compensate
the remainder. Finally, if the batteries and on-line generators together are unable to
resolve the situation, an additional generator is brought on-line (in case of shortage) or
PV-output is curtailed (in case of surplus).

The first two steps of this process (adjusting the batteries and adjusting the generator
output) can be inverted. In Section 13.1 we will evaluate both strategies.

The operational limits that are taken into account are the same as in the optimization
models. For batteries, this includes the maximum charge level and charging/discharging
speeds. For generators, this includes maximum and minimum production.

11. Implementation details

11.1. Forecasting

The forecasting models are implemented as Python scripts. The models produce a
forecast for each quarter of an hour in the next 24 hours every 15 minutes, which comes
down to 96 forecasted values every 15 minutes, or 9216 values a day.

For PV forecasting, the output of all PV-installations is aggregated and predicted as
one. This results in a single prediction in the Island scenario for example, even though
it has three PV-fields.

Similarly, the load forecasting predicts just one aggregated value for the expected load.

11.2. Optimization

As stated above, the model uses time steps of 15 minutes, which means that some of the
constants from the model presented above are divided by 4 (all constants expressed in
kW, plus the operating cost fi).

The model is written in AMPL [40], saved in .mod and .dat files. The solvers used
are GLPK (v4.60) [79] and CPLEX (v12.7.1) [54] (after using GLPK to convert the
model to the LP-format). A cloud-based version of CPLEX (DOcplexcloud [55]) was
also used, but as this does not add anything to the analysis, we will exclude it from our
results. In addition to the timelimit of 10 minutes (discussed below), we use the standard
optimality gap of 0.01% as a stopping condition when using the models from Section 9.1
or 9.2. When using the models from Section 9.3 or 9.4 we use an optimality gap of 1%
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as a stopping condition. Additionally, we use the CPLEX parameter objdifference

to instruct the solver to only look for (new) solutions with an objective value that
differs by at least ¤0.01 from the current solution. This helps to speed up the proof of
optimality. However, it may lead to skipping of an interval in which the true integer
optimum may lie. This weakens the guarantee of optimality somewhat, but by keeping
the allowed difference as low as ¤0.01 we do profit from a speed-up, without skipping
large intervals.

The models are a direct translation of the ones presented above.

11.3. Simulation

The basic simulator is implemented as a Python script. The script gathers the input
from the forecasts, the current system state and the actual realized values for every time
step. It performs some preprocessing and provides the input for the optimization. From
the solution that the solver comes up with, it extracts the control actions. These control
actions are adjusted using the rules described in section 10 to match the realized reduced
demand. The simulation updates the system state and the (cumulative) costs afterward
and provides the input for the optimization problem for the next time step.

We chose to put a time limit of 10 minutes on the optimization process. Most models
can be solved to optimality within this time. In some cases, however, especially for
problems with long planning horizons, it may take multiple hours to find the optimal
solution. This is, obviously, impossible to work with in practice when a new problem
has to be solved every 15 minutes. Considering the other work that has to be done in
this 15 minutes (retrieving forecasts, implementing decisions), it seems reasonable to set
a maximum of 10 minutes for the optimization to use. If no feasible solution is found
within this time, the problem remains unsolved and the decisions from a previous time
step will be used.
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Part III.

Results & Discussion

12. Test instances

The models and algorithms described in Part II were applied to three test cases. Each
of these test cases consists of:

1. A set of system parameters defining the devices in the grid and their associated
constants (discussed in detail in Section 8);

2. A forecast of the PV-output of the solar panels in the grid for the period of 1-7
June (Section 6);

3. A load forecast for the period of 1-7 June (also Section 6);
4. Realizations of the PV-output and load for the same period.

These four elements make up a test case, to which the process described in Part II
can be applied. This is done by running a simulation of either one day (June 1st) or one
week (1-7 June). June is a month in which both load and PV-output are comparatively
high in the Island case, which makes for an interesting test case. June 1st is a fairly
typical day in this month, while the week of 1-7 June features a mix of interesting days:
typical days like June 1st but also a day that the site was open for longer than usual
and a Monday, when it is usually closed, that it was open. This means that the load
forecast will be much too low for these days, which will help in testing the robustness of
the different approaches.

The simulation will be set up as described in Section 10: based on the provided fore-
casts and the system parameters a model will be created and solved every time step to
obtain a planning for the next time step, which will then be corrected by the simulator
based on the realizations using the rules-of-thumb described in Section 10.

In this section, we describe the three test cases that will be used in the simulations.
In Section 13, we will discuss the simulation runs in more details and present the results.

12.1. Island

The Island case is based on a microgrid that is currently managed by Zown. The PV
forecasts and load forecasts used in this case are the actual forecasts created for the period
of 1-7 June 2017 for this grid. Similarly, the realized values used in the simulation to
determine the actual demand and PV output are the actual realized values of this same
period.

On Island, three generators are installed. One Kohler SDMO K44C3 and two Olympian
GEP55-1 diesel generators, as described in Section 8. There are two batteries on Island,
one lead-acid battery and one lithium-ion battery. Only the latter is included in the
model, as was explained in Section 8, along with its specifications. A number of solar
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panels is installed, that together have a maximum output of 12 kW. A visitor center and
a restaurant on Island are responsible for the majority of the electrical load.

The values used for the battery thresholds were determined by experience. These
values were found to work well for the Island case: they reduced the number of times
that the batteries were unable to solve the mismatch, but were not too limiting for the
planning. As a result, the overall costs were often brought down.

In summary:

� Devices:

2x Olympian GEP55-1 diesel generator: Pmin = 8 kW, Pmax = 40 kW, s = 0.50,
f = 0.40, cg = 0.30;

1x Kohler SDMO K44C3 diesel generator: Pmin = 6.4 kW, Pmax = 32 kW,
s = 0.50, f = 0.40, cg = 0.30;

1x Lithium-ion battery: E = 20 kWh, vc = vd = 12 kW, Rmax = 3 kWh,
Rmin = 1 kWh, ηb = 0.93, cb = 0.00057.

� Other constants: cw = 2, ηg = 0.97, δ = 0.25;
� Average load: 9.6 kW; Maximum PV-output: 12 kW.

12.2. Island+

We tested a variation on the Island case, slightly altering the relative magnitude of system
components to observe the effects on the planning. The PV-output and the battery size
(both in terms of storage capacity and maximum power output) are currently relatively
small compared to the generators and peak load on Island. Indeed, plans have been
developed to increase both the number of PV panels on Island and the size of the
batteries. This test case investigates the potential benefits of such a change, while also
evaluating if the planning algorithms are still valuable in this scenario. The devices in
this case are the same as those used in the Island case, with the exception of the battery,
which differs in its storage capacity and maximum output, as described below.

The average quarterly load on Island is around 2-2.5 kWh (min. ∼0.75 kWh, max.
∼7 kWh). The total load to bridge the gap overnight is around 50 kWh in total. During
this period, the Island is closed and the demand for electricity is at its lowest and most
predictable. We want the battery to be able to satisfy this nightly demand, in principle.
The total daily load is around 200 - 250 kWh on average. In addition to satisfying the
nightly demand, we want the capacity of the battery to match the load of around 4-6
typical hours of use. The storage capacity of the battery in Island+ will therefore be
60 kWh, or three times that of the Island battery. Similarly, we want the battery to be
able to provide the peak load (i.e. the highest load that occurs over fifteen minutes).
The peak load is around 30 kW, so this will be the maximum output of our battery as
well. This means that the battery can charge/discharge about 2.5 times as fast as in the
Island case.

Because the load does not increase, we do not need to scale the reserve thresholds
for the battery with the same factor. We double the minimum reserve threshold (to 2
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kWh), and keep the maximum reserve threshold at 2 kWh above the minimum reserve
threshold (at 4 kWh).

On Island, all solar panels together have a maximum output of 12 kW, which means
that even when they provide their maximum output, they are hardly able to match the
average load. Averaged over the whole day, they produce about 0.8 kWh every quarter
(in June, the sunniest month of the year). To make things a little more interesting, we
multiply their capacity by two, reducing the need for fossil back-up. This means that we
scale the PV forecast (both the predicted value and the standard deviation) and the PV
realization. The load forecast and realization remains the same as in the Island case.

In summary:

� Devices:

2x Olympian GEP55-1 diesel generator: Pmin = 8 kW, Pmax = 40 kW, s = 0.50,
f = 0.40, cg = 0.30;

1x Kohler SDMO K44C3 diesel generator: Pmin = 6.4 kW, Pmax = 32 kW,
s = 0.50, f = 0.40, cg = 0.30;

1x Lithium-ion battery: E = 60 kWh, vc = vd = 30 kW, Rmax = 4 kWh,
Rmin = 2 kWh, ηb = 0.93, cb = 0.00057.

� Other constants: cw = 2, ηg = 0.97, δ = 0.5;
� Average load: 9.6 kW; Maximum PV-output: 24 kW

12.3. Residential

A final test case was constructed to investigate the performance of the developed ap-
proach in situation where all components are larger (more PV-panels, more loads, a larger
battery and larger generators), and where the demand is of a different type: households.
The load profile in particular is much more stable, and much easier to predict.

We model this case as an isolated village: a residential area of 200 households without
a connection to the main utility grid. The demand needs to be satisfied with locally
generated energy, either produced by the PV-panels or by one of the two generators
connected to the grid. The storage of energy is facilitated by a large battery. We look
at the same period as the Island and Island+ cases: 1-7 June 2017.

The load profiles and predictions were constructed in the following way. Using the
(fractional) electricity profiles [128] provided for 2017 by NEDU [91] and the average
yearly electricity consumption of Dutch households (2910 kWh) [93], we constructed the
average profile of a household for the period of 1-7 June. Given this average profile,
we sample values for each household individually, from a normal distribution with the
average demand as its mean and 50% of this demand as its standard deviation, much
like the sampling of a scenario in Alg. 1. We assume a correlation of 0.63 between
adjacent time steps. To come up with a realization, we simply sum 200 of such samples,
while we use the expected profile (i.e. 200 times the average profile of a household) as a
prediction. As these profiles are independently sampled, the variance of the prediction
is equal to the sum of the variances of the summed distributions, which means that the
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standard deviation of the prediction equals
√

200 times the standard deviation of the
distribution from which the household profiles were sampled.

For the PV profiles, we use a scaled version of a set of predictions and realizations.
The original data set we used is an average constructed for a number of PV systems
in the Enschede area in the Netherlands. For each of the systems, the realizations and
forecasts were collected. The data set provides an average realization and prediction
for a PV-system with a maximum output of 2.7 kW in this area. When scaling up,
we simply multiply the realization and mean of the forecast by a scaling factor, which
means that the standard deviation can also simply be multiplied by this factor.

The average expected demand is just over 14 kWh per quarter. We want the PV-
panels to satisfy a significant portion of the daily demand. During the day, the load is
around 60-80 kW. As we have no option to get rid of excess energy (only the battery, to
a limited extent), but we want to use as much solar energy as possible, we will scale the
PV-panels such that they satisfy the demand of an average day at maximum production.
Multiplying the forecast for a system with a maximum output of 2.7 kW by 30 yields
a forecast for a system with a maximum output of 81 kW, close to the demand of an
average day.

The composition of the grids in terms of the devices they contain will be similar to
Island, meaning that they may contain PV panels, loads, diesel generators and batteries.
As argued before, the model can easily be extended to include other types of devices,
but we will limit ourselves to these for the time being.

The battery used in this instance is based on the battery-cluster that was used in the
”Smart Storage” project, running from 2010 till 2013 in Etten-Leur, The Netherlands
and will remain operational until 2017 [22, 28, 29]. The batteries used here are lithium-
ion batteries, similar to the one in the Island scenario. However, they are significantly
larger. The total capacity is 230 kWh, the maximum power output is 400 kW, and the
maximum charging power is 100 kW.

In addition we assume two diesel generators to be present, while no grid connection ex-
ists. One small generator (the Kohler SDMO K44C3 also present in the Island scenario)
and one larger generator (a CAT C4.4-110, also discussed in Section 8).

We use comparable battery reserve thresholds of 10 kWh and 30 kWh. At the start of
the simulation, the state of charge of the battery is at 40% (92 kWh) and all generators
are turned off.

In summary:

� Devices:

1x CAT C4.4-110: Pmin = 16 kW, Pmax = 80 kW, s = 0.50, f = 0.40, cg = 0.30;
1x Kohler SDMO K44C3 diesel generator: Pmin = 6.4 kW, Pmax = 32 kW,

s = 0.50, f = 0.40, cg = 0.30;
1x Lithium-ion battery: E = 230 kWh, vc = 100 kW, vd = 400 kW, Rmax = 30

kWh, Rmin = 10 kWh, ηb = 0.93, cb = 0.00057.

� Other constants: cw = 2, ηg = 0.97, δ = 1.
� Average load: 58 kW; Maximum PV-output: 81 kW
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13. Results

All simulations described in this section have been run on a PC with an Intel Core
i5-6600K CPU and 8 GB RAM.

In the tables below we report eight metrics on the different simulation runs. The
column title associated with each metric is put in brackets:

� Average computation time, in seconds: the average time that the solver needed to
generate the solution that was implemented in every time step of the simulation
(time (s));

� Average computation time, in ticks: same as above, using the deterministic time-
measurement that is a built-in feature of CPLEX (time (ticks));

� Average optimality gap: the average optimality gap, as a percentage of the value
of the objective function, of the implemented solution (gap);

� Actual total cost: a summation of the cost of all individual time steps. These
are the costs of operating the grid, following the generated planning as closely as
possible, as determined by the simulator (cost, real);

� Expected total cost: a summation of the expected cost of all individual time steps.
These are the costs of implementing the planning as-is before adjustments are
determined in the simulation. In other words: this is what you expect to pay for
implementing the generated planning (cost, exp.);

� Corrected total cost: a correction of the real cost, based on the change in the
amount of energy stored in the batteries. This is computed by subtracting the
minimal cost of the generation of this difference in energy, cg · ∆ch, from the
actual total cost (cost, cor.);

� Change in the amount of energy stored in the batteries. This represents the differ-
ence between the amount of energy (in kWh) stored in the system at the beginning
of the simulation, and the amount stored at the end (∆ch);

� Total number of times intervention was required: the number of time steps in
which more than just the battery was used to adjust the planning based on the
realizations. This means that the output of a generator was adjusted, the state of
a generator was changed, energy generated by the PV-panels was wasted or the
demand could not be satisfied in this time step (#adj.);

� Total number of times the planning failed: the number of time steps no feasible
solution could be found, and no new planning was generated or no new planning
was necessary (*- and **-variants, see Section 10) (#fail).

13.1. Simulation mode

The first set of experiments was done to determine which simulation mode works best.
As described in Section 10, we first adjust the output of the batteries, and only if that
is not sufficient, we adjust the generator output. However, this could just as well be
the other way around. Note that we can only adjust the output of a generator if it is
already on. In both situations, adjusting the output of the batteries takes precedence
over starting an off-line generator.
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time cost
scenario mode (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
gen 0.57 578.65 0.008% ¤58.25 ¤59.80 ¤54.18 +13.56 53 0
bat 0.66 597.94 0.008% ¤58.00 ¤61.84 ¤53.91 +13.62 16 0

Island+
gen 0.59 304.40 0.003% ¤17.40 ¤19.29 ¤16.59 +2.71 8 0
bat 0.48 278.04 0.003% ¤17.24 ¤17.93 ¤16.25 +3.29 5 0

Residential
gen 0.07 65.80 0.006% ¤230.01 ¤230.52 ¤240.79 -35.93 63 0
bat 0.07 63.13 0.006% ¤230.19 ¤230.19 ¤241.77 -38.60 0 0

Table 7: Results of simulation runs comparing adjustment strategies generator-first (gen)
vs. battery-first (bat). For all runs: |T | = 96, τ = 96, model: naive (see Section
9.1), solved with CPLEX (see Section 11).

time cost
scenario mode (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
gen 5.02 5996.85 0.010% ¤56.27 ¤58.80 ¤54.55 +5.75 46 0
bat 5.55 6711.12 0.010% ¤51.68 ¤56.05 ¤52.25 -1.91 13 0

Island+
gen 0.51 588.17 0.004% ¤18.82 ¤21.82 ¤16.81 +6.71 8 0
bat 0.46 548.57 0.004% ¤17.85 ¤19.58 ¤15.70 +7.16 5 0

Residential
gen 101.12 133274.90 0.033% ¤236.60 ¤236.15 ¤243.16 -21.85 67 0
bat 101.10 128782.62 0.025% ¤239.86 ¤239.86 ¤244.39 -15.09 0 0

Table 8: Results of simulation runs comparing adjustment strategies generator-first (gen)
vs. battery-first (bat). For all runs: |T | = 96, τ = 96, model: safety (see Section
9.2), solved with CPLEX (see Section 11).

We have run a number of single day-simulations to determine which one yields better
results: adjusting the generator first or adjusting the battery first. The results are listed
in Table 7 for the naive model (Section 9.1) and in Table 8 for the naive model extended
with safety constraints (Section 9.2).

For the naive model we observe only minimal differences in the total cost but in the
safety version, the differences are more pronounced. In two of the three test cases, the
battery-first variant consistently performs better, while it is consistently beaten in the
Residential case. At the very least this justifies the conclusion that using the battery
first is no worse than using the generator first.

It is much easier to formulate a two-stage model if we use the battery output as
the second stage: the battery is always available to adjust to an emerging shortage or
surplus. A generator, however, has to be running to be able to contribute. Additionally,
a battery can also actively store excess energy, while a generator can only decrease its
contribution, and is, therefore, more limited when solving a surplus.

We will be using the battery-output as a second stage variable in our two-stage model
9.3. Given this, it is sensible to mirror this when solving a mismatch of planning and
realization in the simulator by using the battery first. By using the same strategy in our
simulations with the naive and safety models we are better able to compare the results.

The results of these simulations show that the battery-first strategy is not inferior to
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time cost
scenario τ (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
96 1.76 1704.29 0.009% ¤421.56 ¤455.33 ¤419.09 +8.23 88 0
24 0.29 196.78 0.007% ¤422.73 ¤454.72 ¤419.49 +10.81 96 0

Island+
96 0.34 192.63 0.002% ¤255.61 ¤263.85 ¤251.58 +13.43 60 0
24 0.15 55.03 0.001% ¤251.12 ¤255.98 ¤246.92 +14.01 61 0

Residential
96 0.05 44.73 0.003% ¤2230.41 ¤2148.04 ¤2258.01 -92.00 197 0
24 0.02 13.33 0.002% ¤2229.08 ¤2154.35 ¤2256.68 -92.00 173 0

Table 9: Results of simulation runs comparing different values for τ . For all runs: |T | =
672, model: naive (see Section 9.1), solved with CPLEX (see Section 11).

time cost
scenario τ (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
96 20.04 25538.45 0.009% ¤421.72 ¤466.79 ¤421.46 +0.86 83 0
24 0.63 610.73 0.008% ¤419.82 ¤462.22 ¤419.82 +0.01 88 0

Island+
96 1.38 1773.56 0.004% ¤251.34 ¤265.17 ¤246.11 +17.45 47 0
24 0.11 97.29 0.002% ¤246.24 ¤258.64 ¤241.52 +15.74 50 0

Residential
96 40.41 53531.66 0.012% ¤2237.72 ¤2237.58 ¤2262.56 -82.80 0 0
24 0.50 536.65 0.005% ¤2237.78 ¤2237.66 ¤2260.00 -74.05 0 0

Table 10: Results of simulation runs comparing different values for τ . For all runs:
|T | = 672, model: safety (see Section 9.2), solved with CPLEX (see Section
11).

the generator-first strategy. All simulations from this point onwards use the battery-first
strategy.

13.2. Shrinking the problem: using τ

The next set of experiments were performed to check the validity of the model im-
provement described in Section 9.5: shifting the time resolution of the problem from 15
minutes to an hour after a number of time periods. We have simulated the results of
running the microgrids for a week using τ = 96 (i.e. no change in resolution) and τ = 24
(shift to one-hour-resolution after six hours) for all our test grids. The results of doing
this using the naive model are in Table 9, and those using the safety model are in Table
10.

We can see a large reduction in the average computation time in these results. With
the naive and safety models, a solution proven to be within 0.01% of the optimum is
found almost always, for both values of τ , but this shows that a lower value for τ allows
for solving the problems much faster. This is not surprising, considering that a value of
τ = 24 cuts the amount of variables and constraints in the problem almost in half.

It is, however, interesting to see how this smaller version of the problem performs
on other aspects. First, we see that the cost are generally comparable, and even lower
for the τ = 24 case, when a difference can be noted at all. The two approaches show
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time cost
scenario solver (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
CPLEX 0.22 144.82 0.005% ¤53.36 ¤56.65 ¤53.36 -0.00 13 0
GLPK 589.33 - 2.38 % ¤56.36 ¤61.77 ¤52.98 +11.28 17 0

Island+
CPLEX 0.22 85.64 0.001% ¤18.55 ¤18.48 ¤16.04 +8.36 5 0
GLPK 399.17 - 1.15 % ¤17.47 ¤18.20 ¤15.77 +5.68 5 0

Residential
CPLEX 0.03 18.46 0.002% ¤242.10 ¤242.10 ¤241.66 +1.47 0 0
GLPK 3.09 - 0.00 % ¤234.21 ¤234.20 ¤242.22 -26.69 0 0

Table 11: Results of simulation runs using different solvers. For all runs: |T | = 96,
τ = 24, model: naive (see Section 9.1).

no consistent or large difference in the amount of energy they add to or take from the
system (∆ch). Finally, judging by the number of adjustments that have to be made, the
τ = 96 variant is the clear winner.

In all, the performance of both the full τ = 96 case and the reduced τ = 24 case is
similar. It does seem that the τ = 96 cases are more conservative, as they plan using a
more detailed forecast of the later time steps. However, as the reduced version provides
a large speed-up, we will be using a value of τ = 24 for all upcoming tests. Especially for
the more difficult two-stage and multi-stage models, where a solution within 1% of the
optimum is often not found before the time limit is exceeded, this improvement allows
us to find better solutions within the available time.

13.3. Solver comparison

As was mentioned in Section 11, we implemented our process in such a way that multiple
solvers could be used to solve the resulting problems. In this section we look at the
relative performance of two of these solvers: an open-source solver (GLPK [79]) and a
commercial solver (CPLEX [54]). The results are summarized in Table 11.

Purely looking at the quality of the resulting solutions, both solvers perform approxi-
mately equally well. The difference in the cost can mainly be explained by the difference
in ∆ch: the more expensive solutions end up with more energy stored in the battery at
the end of the day.

The number of adjustments that have to be made is also equal in the Island+ and
Residential scenarios. In both of these cases, both solvers were able to find a solution
that was proven to be (close to) the optimal one in (almost) all time steps. In the case of
the Island scenario, however, the run using GLPK almost never arrived at a near-optimal
solution and were generally cut short by the time limit of 10 minutes. This may be one
of the reasons why this run had to make more adjustment than the CPLEX run.

The problems presented to the solvers in this case were the easiest ones available. The
fact that τ = 24 means that the problem size was cut in half compared to runs with
τ = 96. Also, the naive model has the smallest number of constraints and variables, con-
sidering that the safety model adds a number of reserve variables and constraint and that
the two- and multi-stage approaches multiply the number of variables and constraints by
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time cost
scenario |S| (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
100 17.10 15360.92 0.930% ¤56.65 ¤56.91 ¤53.54 +10.36 1 0
200 58.41 41822.19 0.903% ¤56.69 ¤55.72 ¤54.07 +8.72 2 0
300 106.63 81862.66 0.917% ¤56.32 ¤56.60 ¤54.05 +7.58 1 0

Island+
100 19.31 18580.18 0.962% ¤27.09 ¤27.06 ¤17.65 +31.46 0 0
200 78.83 59976.25 0.957% ¤25.76 ¤25.74 ¤16.68 +30.27 0 0
300 206.46 148203.58 1.017% ¤24.49 ¤24.47 ¤16.40 +26.96 0 0

Residential
100 1.89 1985.70 0.375% ¤244.41 ¤244.37 ¤245.90 -4.96 0 0
200 6.24 5318.35 0.391% ¤239.82 ¤239.78 ¤244.79 -16.57 0 0
300 11.88 11443.50 0.214% ¤243.88 ¤243.85 ¤244.68 -2.68 0 0

Table 12: Results of simulation runs with different numbers of scenarios. For all runs:
|T | = 96, τ = 24, model: two-stage (see Section 9.3), solved with CPLEX (see
Section 11).

a factor of O(|S|). Considering that the GLPK solver already struggles with the Island
scenario, it cannot be expected to perform well with the more complex models. Indeed,
we found it was impossible to (consistently) find reasonably good solutions to two- or
multi-stage problems with the GLPK solver. We therefore decided to use the CPLEX
solver for all other test presented in this section.

The CPLEX solver, however, solves these problems reasonably fast. Most problems
are solved almost instantly by CPLEX, which is impressive when compared to the time
GLPK needs. To be fair, CPLEX is able to exploit the fact that the tests were run on a
quad-core processor, as it uses multi-threading, while GLPK does not. But, even after
correcting for this, the difference is still huge. There can be no doubt that CPLEX has
the faster solver.

13.4. Two-stage: Determining the number of scenarios

The model described in Section 9.3, uses a number of randomly sampled scenario (see
Alg. 1 in Section 7). We have run (one-day) simulations with different amounts of
scenarios to evaluate the effect of increasing the number of scenarios on the solution
quality.

The results in Table 12 show that the gains of increasing the number of scenarios from
100 to 300 are minor. However, the problem remains manageable and a solution within
1% of the optimum is usually found before the time limit is exceeded.

The small difference in cost is probably due to the way this model is set-up and the
relative importance of the first time steps when using the rolling horizon approach. With
100 scenarios, we already have a quite accurate image of what to expect in the first few
time steps. This does not improve much by increasing the number of scenarios to 300.
However, in the later time steps, this does increase the quality of the representation a lot
more, but this is not affecting the overall performance as much, as we have seen before.

It would, therefore, suffice to sample only 100 scenarios, or even less. However, we
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time cost
scenario lx (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island
l1 416.02 230588.94 0.987% ¤57.96 ¤57.01 ¤54.89 +10.22 2 0
l2 164.08 90404.24 0.971% ¤62.80 ¤64.16 ¤58.41 +14.62 12 0
l3 500.91 263430.98 1.994% ¤54.92 ¤55.45 ¤53.68 +4.12 1 0

Island+
l1 499.52 271007.69 1.318% ¤17.26 ¤16.04 ¤16.02 +4.15 1 0
l2 453.56 259248.22 1.326% ¤24.03 ¤25.10 ¤18.43 +18.67 2 0
l3 487.54 245878.79 1.987% ¤17.78 ¤16.56 ¤16.15 +5.43 1 0

Residential
l1 8.91 6504.60 0.292% ¤244.50 ¤244.45 ¤242.96 +5.14 0 0
l2 1.94 1423.97 0.436% ¤250.73 ¤250.69 ¤247.21 +11.74 0 0
l3 21.02 13597.85 0.226% ¤243.28 ¤243.23 ¤245.63 -7.84 0 0

Table 13: Results of simulation runs with different “branching models”. For all runs:
|T | = 96, |S| = 300, τ = 24, model: multi-stage (see Section 9.4), solved with
CPLEX (see Section 11).

chose to sample 300 scenarios for the comparison with the other algorithms. This is
mainly due to two factors: (1) The problem is still manageable with 300 scenarios, so it
is not absolutely necessary to use less, and, more importantly, (2) the multi-stage model
starts out with 300 scenarios as well (as we will see in the next section). Choosing the
same number of initial scenarios for both approaches allows for a better comparison.

13.5. Multi-stage: “branching model”

Comparing the different “branching models” defined in Section 7 in a single-day sim-
ulation led to the results presented in Table 13. We can see at a single glance that l2
performs the worst. This is not surprising, considering that the first few time steps only
have a very small number of scenarios, and they do not come close to representing the
full range of possibilities.

The other two, l1 and l3, perform approximately equally well. They both have a
large number of scenarios in the first few time steps, which gives them an edge over
l2. However, the increase in scenarios from l3 when compared to l1 does not seem to
make much of a difference. This is probably due to the fact that we apply a rolling
horizon strategy: only the decisions from the first time step are actually implemented.
We do expect l3 to generate scenario trees that produce solutions that are more often
reusable when running the *-variant with the multi-stage model. It has more scenarios
representing the earlier time step and therefore is more likely to contain one that is close
enough to the realization to continue. Therefore, we chose to use l3 from now on, even
though l1 performs similarly.

13.6. Re-planning strategies

We implemented the *-variant (described in Section 10) for the naive, safety and multi-
stage models and the **-variant (also described in Section 10) for the naive and safety
models. We will compare how well the decisions taken in the different cases are able to
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be re-used, and what the effects of skipping the generation of a new planning until the
old one is invalidated (according to the criteria described in Section 10) are. The results
are shown in Table 14 (one day) and Table 15 (one week).

Surprisingly, it appears that the runs using *- and **-variants are not consistently
beaten by the same run using the original variant. This indicates that re-planning every
time step is not necessary, and may sometimes even worsen the result.

First, looking at the naive model, we see that (taking the difference in ∆ch into ac-
count) the three variants (original, * and **) perform almost equally well in the one-day
simulations. The *- and **-variations even seem to be slightly better in the week-long
simulations, with the exception of naive** in the Residential case. Now, if we include
the number of adjustments necessary, we see that the *-variation usually increases the
number of adjustments, while the **-variation needs fewer in almost all cases. Consid-
ering the number of time steps that the generation of a new planning was skipped, the
performance of the *- and **-variations is impressive.

When we look at the safety model, the three variants again show similar results. We see
that, although they are all fairly close together, the original model is slightly better than
the *- and **-variations. Neither one of the *- and **-variations performs consistently
better than the other. In the one-week simulations the original model performs worse
than the other variations in the Island case but still wins in the other two test cases.
Looking at the number of adjustments, the differences are small, although the original
usually performs the best on this metric. The number of time steps that the planning is
re-used in the variations of the safety model is comparable to the *- and **-variations
of the naive model, and the results are equally impressive.

In the Island case, the multi-stage run has a somewhat better result than multi-stage*.
In the Island+ and Residential cases, the differences are minimal, but multi-stage is the
cheaper one in the Island+ case, while multi-stage* wins in the Residential case. The
number of time steps that can be skipped using this approach is generally more than for
the *-variations of the naive and safety models, but less than for the **-variations.

In summary, the approaches that skip the generation of a new planning, in an intelli-
gent way, in a large number of time steps have a comparable performance to the original
approach, that generates a new planning every time step.

13.7. Overall comparison

In Table 14 (one day) and Table 15 (one week) we present a comparison of the different
approaches discussed in this thesis, using the settings that were in part determined based
on the results presented in the previous sections.

For comparison, we also computed the cost of operating the grid based solely on the
rules-of-thumb that are otherwise used to adjust the generated planning. These results
are labeled as “none” in Table 14 and 15. In almost all cases, the approaches that do
use any form of planning outperform the run without planning, although the differences
in cost are not huge. In the number of adjustments needed, however, all planning
approaches soundly beat this no-planning run.

63



time cost
scenario model (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island

none - - - ¤56.59 - ¤54.51 +6.94 29 -
naive 0.22 144.82 0.005% ¤53.36 ¤56.65 ¤53.36 -0.00 13 0
naive* 0.25 176.24 0.004% ¤57.63 ¤60.25 ¤52.76 +16.22 15 57
naive** 0.16 103.16 0.006% ¤56.68 ¤56.55 ¤52.39 +14.29 7 88
safety 0.57 402.59 0.008% ¤51.56 ¤54.54 ¤52.18 -2.06 12 0
safety* 0.64 524.85 0.008% ¤53.11 ¤55.07 ¤52.87 +0.79 9 57
safety** 0.72 612.57 0.009% ¤55.46 ¤57.10 ¤52.46 +10.00 12 82
two-stage 106.63 81862.66 0.917% ¤56.32 ¤56.60 ¤54.05 +7.58 1 0
multi-stage 500.91 263430.98 1.994% ¤54.92 ¤55.45 ¤53.68 +4.12 1 0
multi-stage* 531.18 274058.15 2.367% ¤59.17 ¤58.64 ¤55.53 +12.12 4 50

Island+

none - - - ¤20.13 - ¤16.74 +11.29 2 -
naive 0.22 85.64 0.001% ¤18.55 ¤18.48 ¤16.04 +8.36 5 0
naive* 0.12 90.79 0.004% ¤18.47 ¤19.49 ¤16.01 +8.20 5 65
naive** 0.11 74.37 0.003% ¤20.15 ¤21.03 ¤15.94 +14.03 7 86
safety 0.12 102.03 0.002% ¤17.88 ¤18.70 ¤15.00 +9.60 4 0
safety* 0.15 100.82 0.002% ¤18.93 ¤19.98 ¤15.71 +10.75 4 65
safety** 0.16 112.90 0.002% ¤21.61 ¤23.14 ¤16.87 +15.79 6 87
two-stage 206.46 148203.58 1.017% ¤24.49 ¤24.47 ¤16.40 +26.96 0 0
multi-stage 487.54 245878.79 1.987% ¤17.78 ¤16.56 ¤16.15 +5.43 1 0
multi-stage* 501.16 254372.72 1.861% ¤19.20 ¤20.11 ¤16.64 +8.52 2 65

Residential

none - - - ¤233.44 - ¤261.04 -92.00 39 -
naive 0.03 18.46 0.002% ¤242.10 ¤242.10 ¤241.66 +1.47 0 0
naive* 0.04 17.55 0.003% ¤226.78 ¤226.78 ¤241.98 -50.68 0 60
naive** 0.02 13.13 0.002% ¤222.72 ¤222.75 ¤240.72 -60.01 0 92
safety 0.63 703.31 0.008% ¤239.43 ¤239.43 ¤241.68 -7.49 0 0
safety* 1.08 796.36 0.008% ¤233.34 ¤233.33 ¤241.76 -28.06 0 60
safety** 0.52 465.23 0.008% ¤231.74 ¤231.76 ¤240.78 -30.12 0 92
two-stage 11.88 11443.50 0.214% ¤243.88 ¤243.85 ¤244.68 -2.68 0 0
multi-stage 21.02 13597.85 0.226% ¤243.28 ¤243.23 ¤245.63 -7.84 0 0
multi-stage* 20.09 13782.87 0.163% ¤234.58 ¤234.52 ¤245.51 -36.62 0 74

Table 14: Results of simulation runs with different models. For all runs (if applicable):
|T | = 96, |S| = 300, τ = 24, lx = l3, solved with CPLEX (see Section 11).

64



time cost
scenario model (s) (ticks) gap real exp. cor. ∆ch #adj. #fail

Island

none - - - ¤416.09 - ¤417.28 -3.97 226 -
naive 0.29 196.78 0.007% ¤422.73 ¤454.72 ¤419.49 +10.81 96 0
naive* 0.31 226.23 0.007% ¤414.95 ¤453.57 ¤411.99 +9.88 109 312
naive** 0.40 240.91 0.008% ¤416.80 ¤443.69 ¤414.01 +9.31 90 570
safety 0.63 610.73 0.008% ¤419.82 ¤462.22 ¤419.82 +0.01 88 0
safety* 0.99 816.69 0.009% ¤415.46 ¤465.09 ¤414.63 +2.77 88 312
safety** 1.08 969.34 0.009% ¤417.33 ¤456.91 ¤416.01 +4.41 98 563
two-stage 163.29 114539.78 0.951% ¤428.94 ¤438.39 ¤427.68 +4.19 73 0
multi-stage* 526.87 275213.52 7.852% ¤438.00 ¤452.18 ¤434.41 +11.97 71 391

Island+

none - - - ¤265.64 - ¤254.39 +37.51 61 -
naive 0.15 55.03 0.001% ¤251.12 ¤255.98 ¤246.92 +14.01 61 0
naive* 0.09 61.93 0.002% ¤249.89 ¤251.50 ¤245.68 +14.02 58 381
naive** 0.11 66.56 0.002% ¤250.26 ¤246.77 ¤244.51 +19.18 53 598
safety 0.11 97.29 0.002% ¤246.24 ¤258.64 ¤241.52 +15.74 50 0
safety* 0.20 126.61 0.003% ¤245.63 ¤257.89 ¤240.80 +16.10 49 381
safety** 0.19 104.36 0.003% ¤248.15 ¤252.87 ¤243.71 +14.79 47 606
two-stage 154.79 119895.71 0.957% ¤262.12 ¤260.54 ¤250.68 +38.14 24 0
multi-stage* 418.74 216911.97 2.002% ¤255.28 ¤256.78 ¤252.88 +7.99 30 473

Residential

none - - - ¤2299.01 - ¤2326.61 -92.00 522 -
naive 0.02 13.33 0.002% ¤2229.08 ¤2154.35 ¤2256.68 -92.00 173 0
naive* 0.03 12.89 0.003% ¤2230.43 ¤2149.11 ¤2255.41 -83.25 192 382
naive** 0.03 12.59 0.001% ¤2237.91 ¤2220.65 ¤2262.89 -83.25 43 605
safety 0.50 536.65 0.005% ¤2237.78 ¤2237.66 ¤2260.00 -74.05 0 0
safety* 0.80 593.89 0.006% ¤2239.15 ¤2237.19 ¤2261.34 -73.96 13 382
safety** 0.67 585.69 0.008% ¤2246.30 ¤2233.48 ¤2267.68 -71.25 6 640
two-stage 8.60 9257.26 0.360% ¤2247.84 ¤2247.59 ¤2263.57 -52.42 0 0
multi-stage* 17.61 12030.12 0.114% ¤2248.62 ¤2248.28 ¤2265.88 -57.52 0 517

Table 15: Results of simulation runs with different models. For all runs (if applicable):
|T | = 672, |S| = 300, τ = 24, lx = l3, solved with CPLEX (see Section 11).

65



We can see that the safety model yields the best results overall (in terms of the cost
of operation), both in the one-day and one-week simulations

Looking at the original intent of each of the models, they all seem to do what they
were designed to do: the safety model improves over the naive model by bringing the
number of adjustments down and thereby (usually) reducing the cost. The two-stage
model is the most conservative of them all, bringing the number of adjustments down
even further when compared with the other approaches. It does, however, pay a price
for this: the costs are also the highest of all approaches. The multi-stage model, in turn,
was designed to be less conservative, without bringing the number of adjustments up by
too much, and this is exactly what it does: at a cost comparable to that of the safety
model and a number of adjustments comparable to the two-stage model, this approach
combines the best of both worlds. The downside of the multi-stage approach, however,
is that it is computationally heavy.

13.8. Discussion

In the previous section, we briefly discussed the results of the different approaches. In
this section, we aim to provide an explanation for some of the observed results and try
to put them into perspective.

The first thing to note is that the difference in cost between most approaches is small.
This is not surprising. In all scenarios, the output of the PV panels is not sufficient
to satisfy the full load. The difference between the production of the PV panels and
the consumption has to be produced by the generators at some point. This amount
is the same for all approaches. How much has to be produced can only be slightly
increased depending on how much energy is stored in the battery in between generation
and consumption, as some of the energy stored there will be lost, due to the efficiency of
the battery. Compared to the minimal production of the generators, their operational
cost is small and the only other significant contribution comes from the start-up cost of
the generators.

Some advantage can be gained by timing the production right, so less energy has to
be routed through the batteries. This can further be improved by reducing the number
of start-ups or reducing the operation time of the generators. However, the latter po-
tentially counter-acts the timing of your production, and the difference in the number of
start-ups will never be large. This means that any improvement should not be expected
to be huge.

We approximated the cost of the actual operation of the Island scenario in the test
period by looking at the reported values and compute an estimation of the actual cost
using the same cost coefficients used in our models. This results in a cost of ¤50.76
for June 1st, and ¤405.26 for the entire week following June 1st. This seems a lot
cheaper than even the cheapest of our planning approaches. However, a closer analysis
of these results shows that the simulated approaches produce a larger amount of energy.
Additionally, the battery costs are lower, indicating that less energy is routed through the
batteries in the simulated cases. The difference in required production can be explained
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by our choices for the grid- and battery-efficiencies to be on the conservative side. In
reality, the losses turn out to be smaller. If we keep this in mind, most approaches do
seem to improve the current situation, albeit only slightly.

In an earlier set of simulations, the difference between our approach and the current
mode of operation was much larger. The cost of the simulation of the naive model was
compared to the cost of real operation. There were two major differences when comparing
it to our current tests: (1) the cost coefficients of the generators were different and (2)
the test period was different. The cost coefficients used were those mentioned in Section
8: ¤1 operational cost per quarter and start-up cost of ¤0.10.

These cost coefficients reward the reduction of the time that a generator is opera-
tional far more and punish start-ups way less than the current coefficients. This makes
the difference between approaches much more pronounced and allows for much more
improvement on the current mode of operation, as the generators are operational for rel-
atively long periods of time. However, this does result in a drastically different planning,
where generators are switched on and off much more often.

In the current problem, the cost of operating the generators dominate. The usage of
batteries costs very little, and the other sources of production (PV, and possibly wind) do
not contribute anything to the cost. Determining the right values for the cost coefficients
of the generator is therefore essential. We have found that changing these coefficients
may result in a drastically different planning being generated, which leads to a similarly
drastic difference in cost when compared to the (estimated) current operational cost.
In this thesis, we have determined our cost coefficients mainly by adjusting them in
such a way that they resulted in a planning that seemed sensible. This means that we
cannot draw any strong conclusions about the economic advantage of using the described
planning process.

However, we have mentioned before that the described approach can be extended rel-
atively easily to include multiple commodities and more device types. For the problem
used to obtain the results in this section, the main challenge is getting the planning of
the generators right. This is relatively easy to grasp, and therefore it is possible to come
up with reasonably good heuristic strategies for operation. When the grid becomes more
complex it is harder to oversee the consequences of the interactions between different
devices and/or commodities. The approach described here has the potential to provide
good solutions in these cases as well, when devising good strategies becomes increasingly
challenging.

The test period used to evaluate our approach also contributes to the small difference
when compared to strategies that do not use planning. The production of the PV panels
is at its peak during the month of June. For most of the year, the number of time steps
where any PV output is predicted at all is smaller, and the peak is smaller as well. The
variation is at its highest in June.

Additionally, a number of days were included in the test period of Island and Island+
where the load forecast was completely wrong, as the site was unexpectedly open during
hours that it would usually have been closed. During these days, a planning generated
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based on the load forecast is not very useful – it will probably only increase the cost.
This shows in the results: in the Island and Island+ cases, the runs that use planning
are only slightly better than the run that does not use any planning. If we look at the
Residential case, where this unexpected deviation from the typical load did not occur,
we observe that the planning approaches do perform better than the no-planning run.

In summary, the test period that we used is relatively challenging. So, even though
the benefits of using any of the developed approaches seem small, it does show that using
the described approach has the potential to save cost. We also have to consider that we
are dealing with a relatively small microgrid, which makes it harder to predict the load
accurately. This also leads to (in our case) a standard deviation that is relatively large
compared to the overall load. For larger systems, this situation will improve, which will
potentially allow the planning approaches to perform better as well.

One aspect that we have not discussed so far is the number of adjustments needed.
All of the planning approaches need fewer adjustments than the no-planning approach.
This means that only the output of the batteries has to be adjusted to keep the energy
balance. The process using a two-stage or multi-stage model, in particular, produces
a planning that will almost always be valid. This indicates that generators with more
complex production constraints or efficiency functions may be effectively incorporated in
the planning. Another advantage is the predictability of the system behavior. When a
grid operator looks at the planning, it is actually likely to be an accurate representation
of what will happen in the grid.

Finally, we have to consider the set-up of our experiments. It is hard to compare
the results of different approaches, as there are multiple metrics that all define different
aspects of a “good” solution: the cost is not the only thing that matters. At the
very least, we need to take the change in the state of the batteries into account. One
might have counteracted this by fixing the state of charge that the battery should be
at when the simulation ends. However, this may also confuse the results, as this limits
the freedom in choosing a battery management strategy, which may contribute to the
quality of the overall solution. We have computed a corrected cost taking the state of
charge of the batteries into account, but the correction is only an approximation. It is
also unclear how to incorporate the number of adjustments in the cost. One could add a
penalty for every adjustment necessary. While this would help in showing the difference
in performance of the approaches, it has its problems. The resulting cost is no longer an
indication of the actual cost of operation using a particular approach, and this makes it
harder to evaluate why one approach is better than another.
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14. Conclusion and future work

The main research questions of this thesis were the following:

1. How can we manage the operation of microgrids with centralized control in a
(near-)optimal way?

a) What is the best way to deal with uncertainty in the input for the model?

b) Is considering an abstract supply-demand balancing problem sufficient to ar-
rive at good solutions?

2. What is the value of intelligent planning in microgrid operation?

a) What is the potential reduction in operational cost and how does it depend
on the composition of the microgrid?

b) Does the potential reduction in operational cost outweigh the cost of con-
structing a planning (cost of the IT infrastructure, etc.)?

With regard to the first question, we have shown that the safety model generally comes
up with the cheapest solution, while the planning generated by the more conservative
two-stage model is almost always valid. The multi-stage model combines these two
advantages, resulting in solutions that are only slightly more expensive than the safety-
solutions and need to be adjusted only a little more often than the two-stage-solutions.

Additionally, we found that it is not necessary to generate a new planning every time
step to achieve a good result. In fact, in terms of computational cost and economic
value, it may even be advisable to put off the generation of a new planning until it is
absolutely necessary. This may, however, increase the number of adjustments necessary
to keep the energy balance in the grid.

From what we have seen so far, it seems that repeatedly solving an abstract supply-
demand balancing problem yields good solutions. We will only know for sure, however,
when the algorithms using one of the developed models is actually put in charge of a real
microgrid. At this time, Zown is taking steps to make this happen in the near future.

The second main question is a little harder to answer. The reduction in operational
cost is not large, and it is hard to say whether it will outweigh the cost of developing and
implementing the planning process in the long term, in particular for smaller microgrids.
It does show potential to do so, however. For larger systems with more predictable en-
ergy profiles, it certainly provides an advantage.

There are multiple ways in which work on this topic could be continued:

� Implementing the approach described in thesis and evaluating the results. The
results in this thesis are all based on simulations, with a number of underlying
assumptions. An experimental study determining the performance of this approach
in practice would be valuable;
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� Extending the current model with multiple commodities or other device types. We
expect the same approach (or a similar one) to be effective in these cases, but it
would be interesting to put this expectation to the test;

� Repeating the test on different (types of) microgrids. This may be an extension
of the previous point, but this one is aimed at strengthening the claim of general
applicability of the current model;

� Refining the scenario selection and scenario tree construction approaches. The ap-
proach described in this thesis is only one of a large number of possible approaches,
and it is not unthinkable that a considerable improvement on the current approach
can be made. Multiple sampling methods, distance definitions or even alternative
selection algorithms could be studied;

� Comparing the current approach to approaches using other optimization tech-
niques. We listed our reasons for choosing this approach in Section 5 and Section
9, but other approaches are possible. Genetic algorithms have been tried in the
past, for example, but different approaches have rarely been compared.

Aside from these, rather large, topics additional work may be done on determining
values for the parameters of the current approach. The approach has a lot of parameters,
ranging from the constants used in the models (the cost coefficients, efficiency, etc.) to
parameters like τ , |S| and |T |. While at least some analysis was performed to find good
settings for all of these, there is room for improvement.

The operational management of microgrids remains a challenging problem that will
require continued study. We have demonstrated the potential of the application of
forecasting and planning techniques to this problem. We are confident that the imple-
mentation of this approach in practice and its continued development will contribute to
the efficient operation of microgrids in the near future.
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Appendices

A. List of Abbreviations

CHP Combined Heat and Power
DER Distributed Energy Resource
DMS Distribution Management System
DSM Demand Side Management
EMS Energy Management System
GA Genetic Algorithm
ICT Information and Communication Technologies
LC Load Controller
LP Linear Programming
MC Microsource Controller
MGCC MicroGrid Central Controller
MGP MicroGrid Platform
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MPC Model Predictive Control
OSGP Open Smart Grid Platform
PV PhotoVoltaic
RES Renewable Energy Resources
RTU Remote Terminal Unit
UC Unit Commitment
WT Wind Turbine

B. Results summary

A summary of the results is presented on the following pages. For a discussion on these
results, refer to Section 13.
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