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Utrecht University

Abstract
Fast Preprocessed Global Illumination for Massive Scenes with Live Updates

by Casper SCHOULS

This master thesis project was performed under supervision of dr. J. Bikker and
dr. A. Vaxman at Utrecht University, in collaboration with Stirling Labs Ltd. First,
we introduce our problem of precomputing global illumination on massive scenes
consisting of over a billion triangles. A broad literature study evaluates several key
aspects of dealing with this problem, such as implementing acceleration structures
for ray tracing, constructing photon maps and evaluating the rendering equation.

We propose a global illumination pipeline that starts with computing global illu-
mination using a photon map. The radiance estimate over the surface of the mesh is
then stored in a texture, which is used to generate an indirect illumination map us-
ing final gather. The indirect illumination map is composited at runtime with direct
illumination or combined with direct illumination and stored on disk.

Using live updates to our indirect illumination map, the initial lighting is im-
proved at runtime. Our method is evaluated by testing our acceleration structures,
testing our global illumination pipeline performance and comparing our lighting
with reference images produced using a path tracer. Produced lighting is of suf-
ficient quality for our purposes and the global illumination pipeline is performant
enough for the current stage of development.

Furthermore, we use this opportunity to pursue research into the practical time
complexity of ray traversal using a bounding volume hierarchy in a seperate small
paper, included as an appendix. Our results show that assumed logarithmic time
scaling for ray traversal is an underestimate of real-world ray traversal speed. Fur-
thermore, we show that ray traversal speed starts to deteriorate more rapidly after
the CPU caches are flooded.

http://www.uu.nl
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Chapter 1

Introduction

Rendering massive virtual scenes, consisting of multiple billions of triangles, is com-
putationally expensive. To do so for virtual-reality applications that use head-mounted
displays, such as the Oculus Rift [26] and the HTC Vive [7] is even more complex, as
these typically have high resolutions (HD+) and require high framerates (90+ FPS)
to avoid motion sickness. To achieve a sense of realism, the massive scenes must be
illuminated using physically-based light models.

This master project considers these massive scenes, created by architects for megas-
tructures. These megastructures are to be previsualized using virtual-reality head-
sets, during the design process. In this manner, architects can preview the result of
their work, before physical construction even begins. In cooperation with Stirling
Labs Ltd [1], the goal of this master project is to precompute global illumination for
rendering these megastructures. Our use case requires the precomputation process
to be fast: designers of these megastructures will not want to wait hours before being
able to visualize their changes. Eventually, our system should be able to precompute
global illumination within an hour. Furthermore, lighting must be accurate as our
system will be used to make decisions in the design process. However, trade-offs are
possible: if some lighting quality can be sacrificed for large performance gains, this
is considered.

1.1 Objectives

We have specifically chosen to precompute global illumination rather than work
with real-time global illumination. The scenes we are using are massive and we
therefore expect that modern real-time global illumination algorithms, such as image-
space photon mapping by McGuire et al. [29] or voxel cone tracing by Crassin et al.
[8] are not fast enough for our scenes. Instead, we precompute global illumination
and use the precomputed lighting in a rasterizer or ray tracer.

Implementing such a global illumination system requires the use of acceleration
structures for ray tracing. The opportunity is taken to pursue research into the time
scaling of ray traversal through a bounding volume hierarchy (BVH). A seperate small
paper is included with this thesis that presents our experiments and results. The
results are used to predict how our global illumination system will perform on mas-
sive scenes. Furthermore, ray tracing is investigated as a solution for determining
primary visibility of polygons in the scene.

1.2 Research Questions

The following research questions have been formulated with regards to the project
introduced above.
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1. How can global illumination for scenes consisting of billions of triangles be
precomputed fast enough for prototyping purposes described above?

(a) Is photon mapping a suitable method for fast precomputation of global
illumination on massive scenes?

2. Does the theoretical logarithmic complexity of BVH ray traversal hold up for
very large scenes?

1.3 High-level Approach

We have chosen to implement a combination of photon mapping [22] and light map
baking. Photon mapping uses ray tracing to estimate the distribution of photons in
the scene. Interpolating from this distribution of photons, an estimate of the global
illumination at any surface point can be made. This radiance estimate is cached and
used to determine indirect lighting using final gather. Direct lighting is computed
seperately and added to the indirect lighting derived from the photon map. The re-
sulting global illumination is baked in a light map and used in a forward renderer or
ray tracing renderer. At runtime, our system can incrementally update the lighting,
sacrificing initial lighting quality for faster start-up times.

1.4 Content Overview

We first start with an overview of preliminaries and related work in Chapter 2. In
Chapter 3, our implementation, as described in Section 1.3, is presented in more
detail. Relevant concepts from the literature are linked to our own implementation.
Chapter 4 presents a thorough evaluation of our work: we measure performance of
our global illumination pipeline as well as our ray tracing acceleration structures.
Furthermore, the quality of the produced lighting is evaluated. Here, future work
is also suggested for each component of our implementation. The thesis concludes
by answering the research questions posed in Section 1.2 and discussing potential
future directions for the project.
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Chapter 2

Related work

In this chapter, related work is discussed that is relevant to rendering and global illu-
mination. We start with a quick overview of what rendering entails before exploring
ray tracing further. We show how implementing efficient ray tracing algorithms is
relevant for our global illumination method. We proceed to discuss how ray tracing
can be accelerated. After this, we discuss what global illumination is and consider
algorithms that are capable of computing global illumination, either in real-time or
precomputed.

2.1 Rendering

By rendering, we denote the process by which an image is generated from a dig-
ital description of a scene, given a camera position within this scene. The output
of a rendering algorithm is a 2D image or render of the scene, as visible from the
viewpoint of the camera.

A scene often consists of polygonal geometry which is grouped into models. Fur-
thermore, light sources have to be defined which illuminate the scene. These mod-
els, together with the light sources and materials make up the description of the
scene. In many applications, the polygonal geometry is defined as a set of triangles.
Rendering algorithms typically determine which triangles are projected onto which
pixels of the output image. After this projection is complete, the color of these pixels
is determined using information about the geometry, lighting and materials in the
scene. The process of determining the color of the pixel is referred to as shading.

An important aspect of shading is to determine how each rendered surface point
is illuminated. This illumination can arrive directly from light sources, or indirectly
by bouncing off other geometry in the scene. The total illumnation arriving at a
surface point is referred to as global illumination. Global illumination and shading
will be the topics of Section 2.3.

Traditionally, two rendering algorithms can be discerned, rasterization and ray
tracing. The first is discussed briefly in Section 2.1.1, the latter is discussed in Section
2.1.2.

2.1.1 Rasterization

Rasterization is the most widely used algorithm for real-time rendering. Rasterization
projects polygonal geometry towards the virtual camera by multiplying a projection
matrix with the 3D vertices of the polygonal geometry. The result of this multiplica-
tion is the coordinate of the pixel that the 3D vertex ends up on. Rasterization thus
projects 3D world-space coordinates to 2D screen-space coordinates. After this projection,



4 Chapter 2. Related work

information about the original 3D position of the vertex can be combined with infor-
mation about lighting in the scene to determine which color the output pixel should
have. Rasterization is used in all modern graphics cards and in most modern games.

Rasterization is limited in taking into account global information about the scene.
Each triangle and surface point is processed individually by matrix multiplication,
in the process disregarding relevant information about other geometry. This makes
it hard to model global effects such as reflections, refractions and indirect lighting
which depend upon other geometry in the scene.

2.1.2 Ray Tracing

Ray tracing is a rendering algorithm that does not process each piece of polygonal
geometry individually, but instead, casts rays to determine visibility of polygons.
Each ray corresponds to a pixel on the 2D output image. These rays are checked for
intersections with the polygonal geometry in the scene using ray/polygon intersec-
tion tests. If a ray intersects the polygon, and this is the nearest intersection of all
intersected polygons, it follows that the polygon in question is visible on the pixel
of the 2D output image. Because we now know which polygon is visible there, we
can use information about the ray/polygon intersection point and the lighting in the
scene to perform shading. If necessary, additional rays can be cast from the intersec-
tion point to gather global information. Because each polygon in the scene needs to
be checked against each ray cast from the camera, ray tracing is a computationally
expensive algorithm.

Our technique uses photon mapping, which tracks photons from the light sources
and continues tracing their paths as they bounce through the scene. The individ-
ual path segments of the photons can be modelled as rays and therefore, ray trac-
ing algorithms can be used to effectively determine the complete photon path. It is
therefore crucial to develop a fast implementation of ray tracing.

Many extensions exist to both rasterization and ray tracing, which are aimed at
increasing the rendering speed and producing higher visual quality in the output
images. In this section, ray tracing is discussed extensively as it is required to imple-
ment an efficient ray tracing algorithm for both preprocessing lighting and rendering
the scene. First, in Section 2.1.2, Whitted-Style Ray Tracing is discussed. Acceleration
structures that aim to speed up ray tracing are discussed in Section 2.2.

Whitted-Style Ray Tracing

Whitted-Style ray tracing was introduced in a 1980 paper by Whitted [43]. It broke
new ground as it used global information to compute shading.

Whitted’s approach is to cast additional rays from the intersection points of the
rays used for determining visibility. The rays that are used for determining visibility,
spawned in the camera, are commonly referred to as primary rays. Additional rays
that are cast are referred to as extension rays or secondary rays. By casting additional
rays, we are able to accurately render reflections, refractions and shadows shown in
Figure 2.1.

While Whitted-style ray tracing was extremely slow when it was first imple-
mented in 1980, it is now possible to run this in real-time on modern programmable
graphics hardware as is shown in for instance, Gunther et al. [16].
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FIGURE 2.1: An image generated by T. Whitted for his 1980 paper[43],
clearly showcasing shadow, reflection and refraction.

2.2 Acceleration Structures For Ray Tracing

In ray tracing, we need to check each ray that is cast against each polygon in the
scene. This incurs massive computational cost, as both the number of rays and the
number of polygons are typically very large. In order to speed this up, the poly-
gons in the scene can be organized in an acceleration structure. Such acceleration
structures allow us to quickly reject large groups of polygons of which we can be
certain that the ray does not intersect them. This technique is referred to as intersec-
tion culling.

In general, acceleration structures either divide up the space in which the objects
reside or they group the objects together in bounding volumes. In this manner, either
large areas of the space can be culled quickly or large groups of objects can be culled
early.

In this section, we review several often used acceleration structures for ray trac-
ing. In Section 2.2.1, the uniform grid and brickmap will be discussed. These divide
space up in cells, which contain the polygons. Section 2.2.2 considers the KD-tree,
which subdivides space recursively using splitting planes. Then, Section 2.2.3 con-
siders the Bounding Volume Hierarchy (BVH), which groups polygons together in a
hierarchical tree.

Note that extensive comparisons of acceleration structures for ray tracing have
already been performed. See, for example, Havran et al. [18] or Thrane et al. [34].
These focus mostly on the (uniform) grid and the KD-tree. Much recent research has
focused on implementing the BVH and this has established the BVH as the state-
of-the-art for modern ray tracing. For example, Overbeck. et al [30] propose a fast
BVH-traversal algorithm and Wald et al. [39] propose a fast construction algorithm
for the BVH.

2.2.1 Grid

One of the most basic acceleration structures that can be used for ray tracing is the
uniform grid. The uniform grid subdivides space into equally-sized three-dimensional
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FIGURE 2.2: An illustration of the tested voxels during ray traversal.

cubes and is thus a spatial subdivision datastructure. These cubes are often referred
to as cells or voxels.

Grid Construction

Each cell in a uniform grid contains a list of triangles which are contained fully or
partially within the cell. Grid construction time scales linearly with the number of
polygons in the scene, which makes it one of the fastest construction processes. The
uniform grid is able to handle changes in geometry easily, by updating the list of
triangle pointers in the affected voxels.

Grid Traversal

In 1987, Amanatides and Woo introduce a fast voxel traversal algorithm [2] that
traverses uniform grids by determining the next voxel along the ray using the ray
direction and the current voxel coordinates. In this manner, traversal can stop as
soon as the first intersecting voxel is found, as geometry beyond the current voxel
will be hidden from view by the current voxel.

One of the main drawbacks of the uniform grid is that the memory access pat-
terns are incoherent. This incoherent memory access pattern can be aleviated by
applying packet-based traversal to grid, as shown by Wald et al. in 2006 [42]. The
uniform grid also suffers from the teapot in a stadium problem. This problems refers
to a scene with high geometric complexity in the centre (near the teapot) and low ge-
ometric complexity in the large stadium surrounding the teapot. If a very fine grid
resolution is chosen, a ray starting near the edge of the stadium must traverse many
empty cells before eventually reaching the teapot, incurring computation overhead.
When it does eventually reach the teapot, the teapot geometry can be checked for
intersections quickly due to the fine grid resolution. However, when a very coarse
grid resolution is chosen, the ray will reach the teapot quickly, but when it does,
must spend much time testing all of the teapot geometry against the ray because of
the coarse grid resolution.

Brickmap

A brickmap is a refinement of the uniform grid that subdivides individual cells of
the uniform grid further. In this manner, areas with high geometric complexity can
be refined with a more dense grid and areas with low geometric complexity can
be left at coarse resolutions. Referring to the teapot in a stadium, this allows us to
coarsely subdivide the space around the teapot, while finely subdividing the space
that contains the teapot. A brickmap datastructure can be an effective alternative
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FIGURE 2.3: Space subdivision in a brickmap around a skull. Image
taken from Fairlight’s post. [12]

to a uniform grid or more complex acceleration structures such as the BVH or the
KD-tree. This was demonstrated by Fairlight’s real-time ray tracing demo 5 faces [11,
12], which uses a brickmap to render animated scenes in real-time.

2.2.2 KD-tree

A KD-tree is a spatial subdivision structure that recursively subdivides space using
splitting planes. KD-trees can be constructed automatically by recursively determin-
ing the best splitting plane. These are stored as a hierarchical set of nodes in a binary
tree. Each voxel in the KD-tree contains a list of pointers to the polygons that it
contains.

KD-tree Traversal

Basic KD-tree traversal [21] starts at the root of the KD-tree. For each interior node
in the tree, it is determined which of the two child nodes is nearer and which is
further along the ray. Both of these nodes are checked in turn for intersection with
the enclosing voxels. If the ray intersects the child voxel, it is traversed as well. When
a leaf node is reached, the polygons inside the voxel are processed individually.

KD-tree Construction

Automatic KD-tree construction starts by subdividing the root node using a splitting
plane. The splitting plane is a plane that splits the set of polygons in the current
voxel in two subsets. This splitting plane can be determined automatically using
the surface area heuristic (SAH)[27]. For more on the SAH, see section 2.2.3. KD-
tree building has been investigated further by Wald and Havran [38] and they have
derived an algorithm that has many similarities to their BVH construction algorithm.
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FIGURE 2.4: A possible spatial subdivision of a KD-tree. Polygons
are shown in grey, splitting planes in red.

In Listing 2.2, a general algorithm for BVH building is shown. A similar algorithm
can be applied for KD-tree building, using the same heuristics.

2.2.3 Bounding Volume Hierarchy

The Bounding Volume Hierarcy[32] is an object subdivision structure. Polygons are
grouped and encapsulated within bounding volumes, typically axis-aligned bound-
ing boxes. The idea here is that during ray traversal, if a ray does not intersect a
bounding volume, all contained polygons are also not intersected and can be culled.

As the name implies, these groups of polygons are stored in a hierarchical tree.
The tree is typically binary, although variations exist with higher branching factors.
In the interior nodes, bounding volumes are stored along with pointers to the two
child nodes. The leaf nodes contain a list of polygons, along with a bounding vol-
ume that fully encloses these polygons. In a tree with a higher branching factor, each
interior node may have more than two children. Such a tree is referred to as a Multi-
BVH or MBVH. This was first proposed by Dammertz et al. [9], with Wald et al. [40]
proposing an optimized, SIMD-enabled traversal strategy for the MBVH.

BVH Traversal

During ray intersection testing, the BVH is traversed top down. First, the root node’s
bounding volume is tested for intersection with the ray. If it intersects, the two child
node bounding volumes are tested. This process repeats as we move down the tree
until the leaf nodes are reached, in which the containing polygons are tested for
intersection with the ray. Pseudocode for basic, recursive BVH traversal is given
below in Listing 2.1.

void TraverseBVH (Node node , Ray ray )
i f ( node . i s I n n e r ( ) )

i f ( ray . I n t e r s e c t s ( node . BoundingVolume ) )
TraverseBVH ( node . LeftChild , ray ) ;
TraverseBVH ( node . RightChild , ray ) ;
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FIGURE 2.5: An illustration of a scene with bounding volumes (left)
and the corresponding BVH (right). Each bounding volume is labeled

with a letter and each polygon is represented by a primitive.

e l s e //Process l e a f polygons
foreach ( Polygon polygon in node . Polygons )

i f ( ray . I n t e r s e c t s ( polygon ) )
re turn ;
LISTING 2.1: Basic recursive BVH traversal

Basic BVH traversal traces one ray through the BVH at a time. While this is a sim-
ple and straightforward approach, it suffers from several problems. Firstly, memory
access is incoherent like the grid. Secondly, the algorithm is recursive which gen-
erally performs less optimal than an iterative implementation. Lastly, basic BVH
traversal does not take into account the order of the child nodes during traversal,
which makes culling less efficient. Fortunately, the algorithm can trivially be con-
verted to an iterative version using a stack. A visualization of BVH traversal steps
can be seen in Figure 2.6, depicting a model of a slug. Green indicates that the ray
had to traverse relatively few interior nodes before intersecting the polygon. Red
indicates that the ray had to traverse many nodes.

This basic iterative algorithm lies at the basis of many traversal algorithms that
have been proposed over the years. In 2001, I. Wald [41] proposed a vectorized
approach to BVH traversal, which is especially suited for rays that take the same
path through the BVH. In 2007, Overbeck et al. [30] published a new algorithm that
traces large packets of rays through the BVH at once, while making use of SIMD
registers. This has the added benefit of amortizing memory access cost over the ray
packet and culling large packets of rays at once using a frustum culling test.

Much recent research has focused on improving performance for incoherent ray
sets, such as shadow rays or extension rays, as these are common in path tracing
(see Section 2.3.2). Examples are dynamic ray stream traversal [3] and ordered ray
stream traversal [13]. A notable recent approach that claims significant performance
improvements for primary ray traversal is coherent large packet traversal [13], which
traverses a BVH with a branching factor of four instead of two using precomputed
orderings of child nodes, stored in a lookup table. This method appears to be the
state of the art for BVH traversal.

BVH Construction

When Rubin et al. published the original BVH paper in 1980 [32], they proposed
manual construction of the BVH by selecting polygons for each bounding volume.
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FIGURE 2.6: A ray traced image of a slug (left), compared to it’s BVH
traversal steps visualization (right). Green indicates few traversal

steps, while red indicates many.

However, research has shown that high-quality BVHs can also be constructed auto-
matically. One of the most used methods is binned BVH construction [37], published
in 2007 by I. Wald. Their algorithm shares many similarities with their KD-tree
building algorithm, published a year earlier [38]. A basic BVH construction algo-
rithm is shown in Listing 2.2. It works by first generating a root node and then
recursively subdividing that root node into two child nodes. Listing 2.2 shows al-
location of the node pool and keeps track of the head of that pool using the poolPtr
integer. First, the root node is created which is then subdivided into two child nodes.
The Partition function determines which polygons end up in which child nodes.

void ConstructBVH ( Polygon∗ polygons i n t polygonCount )
{

//A l l o c a t e BVH node pool
nodePool = new BVHNode[ polygonCount ] ;

BVHNode root = nodePool [ 0 ] ;
root . PrimitiveCount = polygonCount ;
root . I s L e a f = f a l s e ;
root . Bounds = ComputeBounds ( polygons ) ;

//Set the head of the node pool po inter to two .
poolPtr = 2 ;

// S t a r t r e c u r s i v e l y subdividing .
Subdivide ( root ) ;

}

void Subdivide (BVHNode node )
{

i f ( node . PrimitiveCount < 3)
{

//This node i s marked as a l e a f node .
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node . I s L e a f = true ;
re turn ;

}
e l s e
{

node . Lef tChi ld = nodes [ poolPtr ++] ;
node . RightChild = nodes [ poolPtr ++] ;
P a r t i t i o n ( node ) ;
Subdivide ( node . Lef tChi ld ) ;
Subdivide ( node . RightChild ) ;
node . I s L e a f = f a l s e ;

}
}

LISTING 2.2: Basic BVH construction

Partitioning strategies work by selecting a plane along which the polygons in the
current node are seperated. This seperation results in two new groups of polygons,
that each will make up a child node. This seperating plane or split plane can be
determined using the surface area heuristic (SAH) [27]. The SAH is a heuristic that can
be used for evaluating the quality of a proposed split. It is formulated as follows:

SAH = Aleft ∗Nleft +Aright +Nright (2.1)

The goal is to find a split plane that minimizes this heuristic as the heuristic is an
indication for ray tracing performance. In the formula above, A indicates the area of
the bounding volume of either the left or right groups of polygons that are separated
by the split plane. This is multiplied by the number of polygons on either side of the
split plane, represented in the formula by N.

Binned BVH construction as presented by I. Wald [37] considers a fixed number
of split plane positions in the partition step, spaced equidistantly apart from each
other. This results in a fast BVH construction algorithm, with high-quality BVHs,
even though better split plane positions may lie in between the considered positions.

Many BVH construction algorithms exist that aim to construct higher quality
BVHs while reducing computation time. For example, Bonsai [15] is a multi-threaded
implementation that builds tiny BVH trees and groups them together afterwards.
The SBVH [33] is a solution that does not just group consider a fixed number of split
plane, but also allows splitting up large polygons during BVH construction. Many
other building strategies exist, each with their own advantages and disadvantages.
Furthermore, an MBVH can be constructed from a BVH by collapsing two levels of
a BVH iteratively.

2.3 Global Illumination and Shading

Using rasterization or ray tracing, we can determine primary visibility of polygons
and where their projection lies on the screen plane (Section 2.1). After this has been
determined, the color of the pixel on the output image needs to be computed. If
the goal of the rendering is to produce a realistic looking image, the final color of
the output pixel depends on both properties of the material of the rendered surface
point as well as the total, or global illumination that arrives at the surface point. The
impact of shading and global illumination can be observed clearly in Figures 2.7 and
2.8.
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FIGURE 2.7: A render of the Sponza scene without (left) and with
(right) shading.

In this section, we first show how global illumination at a surface point can be
modelled accurately, using the rendering equation [24] in Section 2.3.1. Then, several
rendering methods for global illumination are discussed. In Section 2.3.2, a Monte-
Carlo algorithm known as path tracing is considered. This algorithm casts many
rays to determine real-time global illumination. Then, Section 2.3.3 discusses photon
mapping, which preprocesses the scene by shooting photons from the light sources
and storing their surface interactions. Finally, materials and shading are considered
briefly in Section 2.3.4.

2.3.1 Rendering Equation

The rendering equation, introduced by Kajiya [24], describes how light and materials
affect the visual appearance of a surface point. It allows us to compute the amount of
light leaving a surface point towards the observer, given the incoming light energy
and material properties of the surface. From the rendering equation, a rendering
system can be contrived that accurately renders photorealistic images.

The rendering equation can be written as shown in Equation 2.2 below.

Lo(x, ωo) = Le(x, ωo) +

∫
ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (2.2)

with

• Lo(x, ωo) is the total outward radiance along direction ωo from position x.

• Le(x, ωo) is directly emitted radiance from position x along direction ωo.

• fr(x, ωi, ωo)Li(x, ωi) is the bidirectional reflectance distribution function, which is
material property that specifies how much light from incoming direction ωi is
reflected towards outgoing direction ωo at position x.

• Li(x, ωi) is the amount of incoming radiance at position x from direction ωi.

• ωi · n is the representation of light weakening due to incident angle. n repre-
sents the surface normal at position x.

Each term in the equation constitutes a specific portion of what makes up the
radiance leaving a surface point. The first term, Le, specifies directly emitted light
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FIGURE 2.8: The same rendering of the Sponza scene without (left)
and with (right) global illumination. Note that shadows have been

added as well.

towards the observer. This will only contribute to the total outgoing radiance Lo of
the surface point, if this surface is emmisive (ie, is a light source).

The integral in the equation is taken over the hemisphere centered around sur-
face position x and oriented along surface normal n. All terms within the integral
represent how light arriving through this hemisphere contributes to the total outgo-
ing radiance. Specifically, this is determined by the BRDF and the weakening factor
of incoming irradiance when it is converted to radiance. Light may arrive through
any direction over the hemisphere, either coming directly from light sources or ar-
riving via bounces over other reflective materials.

The purpose of a rendering system is to evaluate the rendering equation. In
Section 2.3.2, we describe the path tracing algorithm, which evaluates the rendering
equation stochastically. Photon mapping, discussed in Section 2.3.3 tries to solve
(part of) the rendering equation by precomputing light paths in the scene and storing
their surface interactions.

2.3.2 Path Tracing

Path tracing is an algorithm that tries to approximate the integral over the hemi-
sphere presented in the rendering equation in Section 2.3.1. It is an algorithm that
builds on distributed ray tracing presented by Cook et al. [6]. Distributed ray trac-
ing uses multiple rays to approximate a range of natural phenomena that can be
modelled as an integral, such as depth of field and motion blur. Path tracing was
presented in the same paper as the rendering equation by Kajiya [24].

Like traditional Whitted-Style ray tracing (see Section 2.1.2), intersection points
with geometry are found using ray/polygon intersection tests. However, where
traditional ray tracing then ends (or spawns additional extension rays), path trac-
ing always spawns a new ray at the intersected surface point in a random outgoing
direction. This random reflecting occurs at every subsequent surface point that is
intersected, until the ray intersects a surface that emits light. When it does, the path
is terminated and we have found a path along which light is transported from the
light source, to the observer. Using this path, we can compute exactly how much
light energy is transported from the light source, to the observer. This process is
shown in Figure 2.9, where a ray from the observer bounces twice until it finds a
light source and then terminates.
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FIGURE 2.9: An example of a path along which light can be trans-
ported towards the observer. The path is traced in reverse, from the
observer to the light source, avoiding computation of many useless

paths that would never reach the observer.

In a single iteration of path tracing, we typically shoot one ray through each pixel
in the screen plane, just like in traditional ray tracing. The result is a noisy image,
because light may arrive through many paths towards the observer, and only one
might have been found per pixel. By averaging many output frames together, the
noise is reduced, as each frame represents different paths that light may take towards
the observer. This process of convergence can be observed in Figure 2.10.

Because many paths must be found before the image converges, path tracing is
not very suitable for use in real-time applications. However, path tracing is used in
experimental games [19] and interactive physically based renderers such as KeyShot
[20]. By applying variance reduction techniques and implementing fast ray traversal
structures, these applications make real-time path tracing a possibility.

Bidirectional Path Tracing

Bidirectional path tracing by Lafortune et al. [25] attempts to make convergence (see
Section 2.3.2) faster by tracing light paths from both the light sources and the cam-
era. A path from the light source into the scene is traced independently from the path
from the camera. These two are then connected with each other, to obtain faster con-
vergence. While this takes extra computations for each path, convergence is speed
is much higher and thus, the final image is formed earlier.

Connection of a camera path to a light path is achieved by casting shadow rays
from the camera path intersection points to the light path intersection points. For
determining which paths are connected to which, importance sampling can be used
as described by E. Veach [36].

2.3.3 Photon Mapping

Instead of determining global illumination live, photon mapping, introduced by H.W.
Jensen [22] in 1996, uses a preprocessing step to determine light distribution across
the scene before rendering images. The algorithm is thus a two-pass algoritm, con-
sisting of two phases. First, the photon tracing phase (Section 2.3.3) traces photons
from the light sources into the scene to determine the photon distribution. Then, the
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FIGURE 2.10: As the number of samples (shown above) increases, the
noise is reduced.

rendering phase uses the photon distribution to determine a radiance estimate that
can be used to render global illumination in the final image.

Photon mapping has been used in real-time for global illumination on the GPU
[29, 10]. Furthermore, higher visual quality of the output image can be obtained by
applying techniques such as progressive photon mapping [17].

Photon Tracing

During photon tracing, a fixed number of photons is emitted from the light sources.
These photons bounce around the scene, similar to how paths in path tracing (Sec-
tion 2.3.2) bounce. Each indivual photon path segment can be modelled as a ray.
When a photon interacts with a surface, this interaction is stored in the photon map.
The photon map is a datastructure that contains all interactions of all photons with
surfaces in the scene.

After the interaction is stored, a technique known as Russian Roulette is used to
determine what will happen to the photon [23]. This is a chance experiment that
determines whether the photon continues along its path and bounces around, or
whether the photon is absorbed by the surface. After the photons have been traced
through the scene, it is useful to store the interactions in a manner that they can
easily be retrieved given a position. H.W. Jensen advocates the use of a KD-tree for
this purpose. For more information on spatial datastructures, see Section 2.2.

To further speed up the photon tracing phase, we may choose to emit more pho-
tons from bright light sources or use projection maps [23] to emit photons towards
geometry.
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Radiance Estimate

After the photon tracing phase is complete, the rendering phase begins. To deter-
mine the lighting at a surface point, we can either use the photon map to directly
determine a radiance estimate, or we can use final gather, discussed in Section 2.3.3.
A direct visualization of the radiance estimate of 10M photons can be seen on the
left in Figure 2.11.

To use the photon map, we must compute the radiance estimate. The radiance es-
timate at a surface point can be computed by gathering nearby photon interactions
and adding these together [23]. Specifically, photons can be gathered in a sphere
surrounding the surface point, with an expanding radius. Once a predetermined
number of photons is included in the sphere, the search stops and the radiance esti-
mate can be determined. This may result in photons being included in the estimate
that should not have been. For example, near corners, photons that lie on both sides
of the corner are included. This can be partially solved by using a disk instead of a
sphere, however, thin walls and other obstacles may still cause errors. This is mostly
solved by filtering, discussed below.

Filtering Using a filter, we can create a radiance estimate that takes into account
photons according to their distance from the surface point. Using this strategy we
can directly compute the outgoing radiance estimate on a surface point based on
the distribution of photons around that surface point. With a high resolution pho-
ton map, this can produce good-looking results. Several filters have been proposed
by Jensen et al. [22] with filters specifically suited for caustics as well as indirect
illumination.

Final Gather

Final Gather (FG) is a technique to improve the visualization of indirect illumination
at a surface point using a photon map. Where direct visualization of the radiance
estimate results in very blurry illumination, using final gather, we can get very ac-
curate and smooth global illumination.

Final gather works by casting a number of additional rays from the primary ray
intersection points. Just like path tracing, these extended rays are used to gather
illumination along the light path. However, where path tracing paths continue until
a light source is found or the ray leaves the scene, final gather paths typically termi-
nate at the first surface intersection. At this FG intersection point, the photon map is
queried to determine the radiance estimate at the FG intersection point. Light trans-
port to the original primary ray intersection point is computed and this is averaged
together over all the FG rays spawned at the primary ray intersection point. This
results in smooth indirect illumination at the rendered surface point. Using tradi-
tional light sampling, direct illumination can be determined and the sum of these is
the total illumination at the surface point.

The effects of adding final gather to a renderer can be seen on the right in Fig-
ure 2.11. While final gather is an approximation and not entirely physically correct
(due to the limited accuracy of the photon map), the method is much faster than
computing complete paths using path tracing.

Light Baking

Like object color can be stored in a texture map, light intensity at a surface point can
be stored as well. Such maps are referred to as light maps and the process of creating
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FIGURE 2.11: A direct visualization of the radiance estimate at the
surface points (left), compared to a visualization where the radiance

estimate is only used for indirect lighting (right) using final gather.

such light maps from lighting data (such as a photon map) is called baking. The
lighting data is essentially baked into a map, so that it can be retrieved at rendering
time using UV-coordinates. At baking time, the UV-coordinates can be used as a
parametrization over the surface of the models. Because lighting is unique all over
the object, all UV-coordinates in the UV-map must also be unique. Therefore, many
pre-existing UV-mappings over a model cannot be used and a new mapping must
be generated.

During baking, it must first be determined which UV-coordinates correspond
to which triangle coordinates. This preprocessing step builds a 2D map that stores
pointers to the triangles and their corresponding world space coordinates. Then,
during baking, all UV-coordinates are iterated over and their corresponding world
space positions are retrieved. For each world space position, the radiance estimate is
determined using the photon map. This radiance estimate is stored in the light map
at the original UV-coordinates. Then, the radiance estimate light map can either be
visualized directly or be used in a final gather renderer. Final gather rays can also
be spawned at the world space coordinates corresponding to the UV map, and this
lighting in turn can be baked into a seperate light map, to be visualized directly [4].

2.3.4 Materials

The appearance of a surface point depends on the way light interacts with it, which
can be modelled using a bidirectional scattering distribution function, or BSDF. Surfaces
are always both slightly transmissive as well as reflective. Often, the transmissive
component is ignored completely in rendering, in which case we are left with the
bidirectional reflectance distribution function, or BRDF. The BRDF determines the ratio
of light that is reflected by a surface point, given an incoming light direction and
outgoing light direction.

Diffuse surfaces can be rendered by using Lambertian shading. Perfectly diffuse
surfaces scatter light equally in all directions across the hemisphere centered around
a surface point and oriented around the surface normal. Therefore, the diffuse BRDF
is constant across the hemisphere.

Glossy surfaces differ from reflective surfaces as they do not scatter light pre-
cisely along the reflected direction of an incoming light ray. The difference is clearly
visible in Figure 2.12.
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FIGURE 2.12: Three spheres, each with a different surface material.

Phong shading [31] is an implementation of a BRDF for glossy surfaces. Many
other, physically-based BRDFs exist, such as the microfacet model by K.E. Torrance
and E.M. Sparrow [35]. Accurately rendering these BRDFs requires an integration
step over the hemisphere at the visualized surface point, because the material may
scatter light in any of these directions. However, an approximation can be rendered
that only takes into account direct illumination from (point) light sources in the
scene.
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Chapter 3

Implementation

In this chapter, the implementation of our pipeline for precomputed global illumina-
tion is presented. The key ingredients are the acceleration structures for ray tracing,
the global illumination pipeline and our live updates to the light maps. The accel-
eration structures are used for both rendering and photon path tracing. Our global
illumination pipeline consists of building a photon map and deriving a light map.
Using live updates, we can construct a coarse photon map quickly and incrementally
increase detail during rendering.

Our primary goal is to create an extensible framework that allows for precom-
puting global illumination and visualizing the results. The approach we present is
not new. Light map baking can use any illumination model to determine the light-
ing over the surface of a mesh. In our case, we have chosen to use a photon map
because of its fast construction time and flexibility. A similar approach is mentioned
by Christensen [5].

Section 3.1 presents our implementation of BVH and MBVH construction and
traversal algorithms. Then, in Section 3.2, our global illumination pipeline is dis-
cussed. Finally, our implementation of live updates to the photon map is presented
in Section 3.3.

3.1 Ray Traversal Acceleration Structures

Our implementation of photon mapping and final gather relies heavily on the ability
to quickly trace rays and find their intersection with scene geometry. Furthermore,
our scene is rendered using ray tracing. In accordance with our findings in the liter-
ature in Chapter 2, we have chosen to implement the BVH for primary ray traversal
and the MBVH (Section 2.2.3) for incoherent ray traversal. Our implementations are
discussed below in Sections 3.1.1 and 3.1.2.

3.1.1 BVH

We have implemented the binned BVH construction algorithm as described by I.
Wald [37] for fast BVH construction. We have seperated traversal and construction
of the BVH, which allows the same BVH to be traversed by multiple traversal algo-
rithms. Two traversal strategies have been implemented for the BVH. First, we have
implemented iterative, ordered single ray traversal (see Section 2.2.3). This is mostly
used for debugging purposes, considering that single ray traversal using the MBVH
is faster. Packet traversal according to Overbeck et al. [30] has been implemented
as well, which is used to trace primary rays for rendering. All elements of the origi-
nal papers, for both construction and packet traversal, have been transferred to our
implementation. Performance of all traversal strategies is reviewed in Section 4.1.
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3.1.2 MBVH

Our MBVH construction algorithm consists of collapsing an existing BVH. Each
node in the BVH adopts its child nodes’ children, to a maximum of four children
per node. In this manner, each node in the MBVH can contain up to four children.
The algorithm is analagous to the BVH collapse algorithm by Dammertz et al. [9]

We have adapted our single ray traverser for the BVH to work with the MBVH
structure. The adjustment is trivial: at each interior node, the four child nodes are
checked and if they intersect with the ray, pushed on the stack. Ordered traversal is
not implemented here. This is our fastest option for incoherent, random ray traversal
(see Section 4.1).

3.2 Global Illumination Pipeline

Our global illumination pipeline is capable of precomputing diffuse illumination on
large scenes. It has been tested on scenes containing up to twelve million triangles.

Our global illumination pipeline is capable of computing diffuse global illumi-
nation for perfectly diffuse surfaces. Multiple light sources are supported. These
can be both point lights, as well as rectangular area lights. The global illumination
pipeline does not handle glossy or specular surfaces, nor does it handle caustics or
transmissive objects.

In this section, the global illumination pipeline is decomposed into several com-
ponents, which are then discussed seperately. An overview of the pipeline is given
in Section 3.2.1. Each individual component is discussed in turn, in Sections 3.2.2
through 3.2.6.

3.2.1 Implementation Overview

An overview of the steps in the pipeline will be given here, with each step being
worked out in more detail in subsequent sections. The implementation consists of
the following steps:

1. Photon Map - A photon map with a uniform grid for fast lookup.

2. UV Mapping - A parametrization of the mesh is created in order to enable light
map baking.

3. Radiance Map - The photon map and UV map are used to create a radiance map,
a parametrized representation of the global illumination created by computing
the radiance estimate over the surface of the mesh.

4. Final Gather Map - The final gather map is created by tracing rays at discretized
points of the UV map. The results are stored in an indirect illumination map.

5. Light map - The light map is a parametrized representation of the global illu-
mination in the scene. It combines indirect illumination from the final gather
map with deterministically computed direct illumination.

The following sections will discuss each step in the pipeline in more detail.
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3.2.2 Photon Map

Our implementation of the photon map is straightforward and mostly according to
the practical guide to photon mapping by Jensen et al.[23]. First, photons are emit-
ted from the light sources and traced through the scene. They are stored for quick
lookup in a uniform grid, discussed below. The radiance estimate is determined
using a cylinder and cone filter.

Emission

During the emission phase, a fixed number of photons are emitted from randomly
selected light sources, in a random direction over the hemisphere. The photons are
traced through the scene using the MBVH traversal algorithm discussed in Section
3.1.2, as this appears to perform best for incoherent ray sets (see Section 4.1).

Our photon datastructure consists of a photon position, direction and power. At
each surface interaction, the position of the photon is stored, along with its power.
Then, using Russian Roulette as described in [23], it is determined whether the pho-
ton is absorbed or reflected. If it is reflected, the photon power is reduced according
to the material properties of the surface and the process repeats. In this manner,
a distribution of photons throughout the scene is determined, with photon density
corresponding directly to light intensity. In other words, at brightly lit areas, the
number of photons present is larger than in dimly lit areas.

For performance reasons, our implementation has a configurable maximum num-
ber of bounces that a photon may undergo along its path. Furthermore, our photon
tracing implementation is multithreaded and utilizes SIMD instructions to speed up
photon tracing.

Storage and lookup

After the distribution of photons in the scene has been determined, they are orga-
nized in a uniform grid (see Section 2.2.1). The uniform grid can be constructed
rapidly and allows for much faster lookup times. During construction, photons are
placed in a grid cell based on their position in the scene. The grid has been chosen
as our photon map acceleration structure for its relative simplicity to implement. In
the future, the grid may be replaced by other acceleration structures, if these prove
to be more efficient in lookup or construction.

Radiance estimates can be determined at any surface point in the scene by query-
ing the photon map. The photon map then uses the uniform grid to search linearly
through the grid cell which contains the surface point, as well as its neighbours
which fall within the search radius.

Radiance Estimate

The radiance estimate at any surface point can be determined using the photon map
and the grid. Our implementation uses a cylinder to determine which photons
should be included in the radiance estimate. The photon map is queried by pro-
viding the surface point, a cylinder radius and cylinder height. All grid cells which
overlap with the sphere around the surface point are searched. Only those that fall
within the cylinder are included in the radiance estimate.

During the search, all photons within the searched grid cells are tested. If the
following two conditions are met, the photon falls within the search cylinder and is
included in the radiance estimate:
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FIGURE 3.1: A depiction of the unwrapping process of a cube. Each
point in the flattened cube corresponds to a single point on the surface

of the 3D cube. Attribution: Zephyris at en.wikipedia.

1. The distance from the photon to the surface point is less than the search radius.

2. The distance from the photon to the plane oriented perpendicularly to the sur-
face normal at the surface point is less than the cylinder height.

Once all photons that meet these two conditions have been located, the radiance
estimate is determined by summing their power and normalizing the result using
the cone filter described by Jensen et al. [23]. Note that our implementation differs
from theirs as we use a volume of fixed size (the cylinder) for the photon search,
rather than an expanding volume. Where the original algorithm stops when a fixed
number of photons have been located, ours stops when all photons within the vol-
ume are located. Our approach makes performance more predictable, as there is
a maximum number of grid cells that can be considered during the search, while
maintaining quality of the estimated lighting. Furthermore, we can tune the size of
the grid cells to the fixed search radius.

3.2.3 UV Mapping

The final output of our global illumination pipeline is a light map. This is a rep-
resentation of the light in the scene that is two-dimensional and depends upon
a parametrization of the surface of the scene. This parametrization is referred to
as a UV-map. A UV-map maps each three-dimensionsal surface point to a two-
dimensional point in UV-space. The process of determining a UV-map is called un-
wrapping. Figure 3.1 visualises a UV-map of a cube, with textures overlayed on both
the cube and the UV-map.

In our case, the UV map needs to be unique: each point on the UV map must
correspond to exactly one point on the surface of the 3D scene. We will be storing
the lighting in a texture, based on the UV map. This one-to-one mapping is required
because the lighting in the scene is not repetitive and differs at every surface point.

Splitting

Unwrapping a 3D model is a whole other area of research. Therefore, we have cho-
sen to use a third-party SDK to perform the unwrapping of arbitrary scenes for us.

https://en.wikipedia.org/wiki/User:Zephyris
http://en.wikipedia.org/


3.2. Global Illumination Pipeline 23

FIGURE 3.2: The radiance map visualized directly on the Sponza
scene (left), containing global illumination. A visualization of the final

gather map, containing indirect illumination only (right).

Microsoft prodives such an SDK in the form of UVAtlas. Their SDK becomes increas-
ingly slow as the number of polygons in the scene increases, making it nearly impos-
sible to unwrap models of several millions of polygons. To counter this effect, we
have chosen to split the model up into parts and then feeding these parts to UVAtlas.
This allows UVAtlas to scale (close to) linearly in the number of parts. This requires
multiple UV maps, radiance maps, FG maps and light maps, thus taxing memory
heavily. Fortunately, each map can be of a lower resolution than when a single map
is used for the entire scene. Another advantage is that each part of the model can be
unwrapped concurrently, allowing for a multithreaded implementation.

Inverse Mapping

A UV map allows us to go from a 3D surface point in world-space to a 2D point in
texture space. In our case, we will often find that we need to go from 2D texture
space, to 3D surface points. This will become necessary to determine illumination
over the surface of the mesh. Therefore, an inverse mapping must be constructed.

We determine the inverse mapping by looping over the unwrapped triangles.
For each triangle, we determine the UV coordinates of it’s three vertices. Then, for
each UV-space pixel in the bounding rectangle of the three UV coordinates corre-
sponding to the vertices, we check whether it is contained within the UV-space tri-
angle formed by its three UV coordinates. If this is the case, we can pair the world-
space triangle and the current UV-space pixel.

At runtime, we can compute the barycentric coordinates of any UV-space point
by looking up the triangle corresponding to the nearest whole UV-space pixel. These
barycentric coordinates can then be converted to world-space using the world-space
coordinates of the three vertices.

3.2.4 Radiance Map

After the photon map has been computed and a UV parametrization is available,
the radiance map can be constructed. The radiance map is a texture that contains
the radiance estimate at each surface point of the mesh. It uses the inverse unique
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FIGURE 3.3: The full light map visualized. The light map has a reso-
lution of 4096x4096 pixels, to allow for crisp shadows.

mapping constructed using UVAtlas (Section 3.2.3). The radiance map can be con-
structed by determining, for each pixel in the inverse mapping, the radiance estimate
that corresponds to the world-space coordinate in the scene.

In this manner, a texture map containing the radiance estimate over the entire
scene is constructed and stored for use in the next step of the pipeline. A visualiza-
tion of the radiance map can be seen for the Sponza scene in Figure 3.2 on the left.
Our implementation is multithreaded.

3.2.5 Final Gather Map

The radiance map contains an estimate of the global illumination at each surface
point in the scene. In our approach, we want to seperate indirect illumination from
direct illumination, as the latter can often be computed rapidly in a deterministic
manner (especially for point lights).

When constructing the final gather map, this is exactly what happens. As dis-
cussed in Section 2.3.3, final gather works by casting aditional rays from the primary
ray intersection points into the scene. At each FG ray intersection, the radiance es-
timate is determined using the photon map. Light transport back to the original
primary ray intersection point is then determined and used to shade the point. In
our case, we want to build a map using final gather, that maps the indirect illumina-
tion over the surface of the scene.

To this end, we use the inverse mapping constructed using UVAtlas (see Section
3.2.3) to iterate over the surface. For each UV-space pixel, we compute the corren-
sponding world-space coordinate and use this as the origin for a predetermined
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FIGURE 3.4: A visualization of the view-based updates. The left im-
age shows initial lighting, computed using eight FG rays. The middle
image shows lighting being updated by casting additional FG rays.
The right image shows the converged result, as enough FG rays have
been cast for detailed lighting. The image has been brightened for the

purpose of comparison.

number of final gather rays. At each final gather ray intersection point, we do not
determine the radiance estimate using the photon map, but instead pull it directly
from the radiance map constructed according to Section 3.2.4. The resulting light
transport from the final gather rays is indirect illumination only and is stored in a
texture. After the final gather map is complete, the map is blurred with a small,
adjustable blur kernel to smooth out the soft indirect illumination. The final gather
map is visualized in Figure 3.2 on the right.

Like photon mapping, final gather traces a large number of rays through the
scene. Like photon path tracing, the most efficient traversal strategy is MBVH traver-
sal, as described in Section 3.1.2. Our implementation is, once again, multithreaded.

3.2.6 Light Map

The final step in our pipeline is to determine the complete light map. The light map
combines indirect and direct illumination into a single texture. Its size is indepen-
dent of the size of the final gather map. To construct the light map, direct illumina-
tion is determined at each surface point corresponding to each UV-space pixel in the
inverse mapping. Then, indirect illumination of the closest final gather map pixel is
added. The result is global illumination at the surface point, stored in a texture map.
A full light map visualization can be seen in Figure 3.3. The visualized light map
has a resolution of 4096x4096, allowing for crisp shadows.

3.3 Incrementally Updating the Light Map

As discussed in Chapter 1, our global illumination pipeline will be used to preview
megastructures (massive scenes) by architects and designers, during their design
process. This means that startup time of the visualization application must be short
as it is undesirable to wait for prolonged periods of time between visualization of
the megastructures. Application startup time can be decreased by lowering the light
map resolution. This reduces the quality of the baked lighting, as the resolution of
the map is now lower. At runtime, a higher resolution version of the light map can
be improved in the background, incrementally accumulating detail in the lighting.
The light maps can then be switched out once enough detail is present, gradually
increasing the quality of the lighting in the scene.
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FIGURE 3.5: A visualization of the position-based updates. The left
image shows initial lighting, computed using sixteen FG rays. This
is what the user sees at runtime. The right image shows what is go-
ing on in the background: additional FG rays are cast at higher LOD
levels to compute more detailed lighting. The image has been bright-

ened for the purpose of comparison.

In this section, two light map updating techniques are discussed. The first tech-
nique initializes high-resolution maps during start-up, but computes lighting sparsely
on these maps. The resulting lighting is blurred out to fill up the light map. At run-
time, view-based updates are applied to the light map. This technique is discussed
in Section 3.3.1. The second technique uses a hierarchy of light maps and a uniform
grid to update lighting based on the position of the camera. This position-based
technique is discussed in Section 3.3.2.

3.3.1 View-based Updates

Our must rudimentary method of updating the light map is the view-based updat-
ing technique. At application start-up, the light maps are initialized at the final,
desired resolution. However, during baking, not every pixel of this light map is con-
sidered. In essence, a lower resolution light map is computed and scaled-up to the
final desired resolution. This leaves lighting coarse at start-up.

At runtime, our raytracer traces primary rays from the camera, into the scene.
At the intersection points of these primary rays with the scene geometry, additional
final gather rays are spawned using a chance experiment. The closer a primary ray is
to the center of the screen, the higher the probability of spawning a final gather ray
at its intersection point. These final gather rays are traced within the same frame,
using the result to update the light map. This is visualized directly, resulting in
spotty lighting, as can be seen on the left in Figure 3.4. However, after the camera
has viewed the same area for a while, the light map starts to converge, resulting in
more detailed lighting. This can be seen on the right in Figure 3.4. Furthermore, it is
possible to blur the lightmap using a small blur kernel, to make the lighting appear
smoother.

3.3.2 Position-based Updates

The position-based updating technique is more sophisticated than the view-based
updating technique discussed in Section 3.3.1. The position-based updating tech-
nique consists of three components, each discussed in more detail below:
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FIGURE 3.6: A visualization of the different LOD levels in the light
map hierarchy. The left-upper image has a light map resolution of
256x256, the right-upper 512x512, left-lower 1024x1024 and the right-

lower 2048x2048.

1. Light Map Hierarchy - A hierarchy of light maps, doubling in resolution at
each level of the hierarchy.

2. Light Map Grid - A grid that divides the light maps up in cells. These cells are
used to update the light maps.

3. Automatic LOD switching - As light maps are updated, higher LODs are switched
to automatically, once they are of sufficient quality.

Our system allows us to update light maps based on the position of the camera.
Cells of the grid that are close to the camera are updated more frequently than those
further away, resulting in higher quality lighting near the observer. Furthermore, the
system hides the update process from the user: the updates are applied to the light
maps in the background. The updated light maps are only visualized once enough
detail has accumulated. Using this system, high-quality lighting can be rendered at
runtime and combined with a fast application start-up.

Light Map Hierarchy

Instead of initializing the light maps at their final, desired resolution, a hierarchy
of light maps is initiliazed. Each level in the hierarchy contains a light map and is
referred to as a light map LOD (level of detail). As we move up one level in the hier-
archy, the resolution of the light map is doubled. At application start-up, the lowest
light map in the hierarchy is computed entirely. The other levels of the light maps
are updated using the light map grid (Section 3.3.2) and switched to automatically
once they are detailed enough according to our automatic LOD switching (Section
3.3.2). Several levels of the light map hierarchy are visualized in Figure 3.6. While
returns are diminishing, clear differences are present between each level of the light
map hierarchy.
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FIGURE 3.7: Two grid cells near the camera have switched over the
next level of detail. A border is visible between the grid cells that are
at the lower LOD level and those that are at the higher level. The

image has been brightened for the purpose of comparison.

Light Map Grid

The light map grid is a uniform grid of tuneable resolution, that is overlayed over the
scene. The grid is constructed by looping over all UV-map pixels and determining
which grid cell their corresponding world-space position is in. This then assigns
that UV-pixel to the corresponding grid cell. In essence, each grid cell contains a
partial light map. Furthermore, each grid cell keeps track of which LOD level it is
at. During start-up, this is set to the lowest level for each grid cell.

At runtime, grid cells that are close to the camera are selected for updating. The
grid cell has a set of UV-pixels associated with it and one is selected at random
from this set. A final gather ray is traced from the 3D position corresponding to
the randomly selected UV-pixel and the result is stored in a higher level of the LOD
hierarchy. These updates are not yet visible: using the grid, a higher level of the
LOD is thus updated in the background. The process of updating in the background
is illustrated in Figure 3.5.

Automatic LOD Switching

As each cell of the grid keeps track of its own LOD level, the grid can be queried
to determine which LOD must be rendered at which position in the scene. Once a
primary ray intersects a polygon, the light map grid is queried to determine which
LOD level must be used for shading.

At runtime, the light map pixels corresponding to the grid cells are updated as
described in Section 3.3.2. Per grid cell, the number of updates is kept track of. Once
a predetermined threshold has been reached, the grid cell applies a slight blur to the
partial light map it contains. Then, the grid cell increments its current LOD level
and the next LOD is thus used for shading. A grid cell that has switched to the next
LOD is visualized in Figure 3.7.
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Chapter 4

Results and Validation

To determine whether our implementation of the global illumination pipeline is both
sufficiently performant and produces high-quality results, we have set up several
experiments. In this chapter, each experiment is first described, its results presented
and then discussed. We will refer to such a trio of setup, results and discussion as
an evaluation. Each section or subsection of this chapter adheres to this structure and
presents a single evaluation.

The scenes which we use in our experiments are the well-known Sponza, San
Miguel and Powerplant models. We have also used scenes that contain the Power-
plant model four times, eight times and twelve times respectively. Sponza contains
262,267 triangles, while San Miguel and Powerplant contain 7,852,948 and 12,759,246
triangles. Powerplant x4, x8 and x12 contain 51,036,984, 102,073,968 and 153,110,952
triangles. All our measurements were taken on a system with an Intel Core i7 5930K
processor, clocked at 3.50 GHz. The system had 64 GB of RAM available.

First, the overall quality of the BVH and MBVH construction algorithms as well
as the traversal algorithms are evaluated in Section 4.1. After that, the performance
of the global illumination pipeline is evaluated in Section 4.2. Its individual com-
ponents are evaluated as well as the overall running time of the pipeline. Lastly, an
evaluation of the visual quality of global illumination is presented in Section 4.3.

4.1 (M)BVH Performance Evaluation

In this section, we evaluate the performance of the key ingredients of the global illu-
mination pipeline and rendering system, the BVH and MBVH. Both the construction
time is evaluated in Section 4.1.1 and the traversal performance is evaluated for pri-
mary rays and random rays in Section 4.1.2. Our implementations are according to
Sections 3.1.1 and 3.1.2. Note that BVH and MBVH traversal performance is also
discussed extensively in the accompanying small paper, found in appendix A. All
construction and traversal experiments in this section are single-threaded.

4.1.1 BVH and MBVH Construction Time

Experiment Setup

To determine whether the construction time of the BVH and MBVH is fast enough
for the massive scenes consisting of several billion polygons, we have set up an
experiment that tests the construction time of the BVH and MBVH, using the scenes
described in the chapter introduction.

Our binned BVH builder uses 64 bins and has a maximum of three primitives
in a leaf node. Using a stopwatch in code, the duration of the BVH construction
process is measured and recorded. This process is repeated five times, after which
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the resulting measurements are averaged together. The same is done for the MBVH
construction process. The results are shown in Table 4.1.

Results

Scene BVH construction time MBVH collapse time
Sponza 0.983 0.059
San Miguel 35.35 1.694
Powerplant 62.23 2.824
Powerplant x4 269.5 12.60
Powerplant x8 968.3 30.79
Powerplant x12 1456.0 134.22

TABLE 4.1: BVH and MBVH construction times for several different
scenes. All times are in s.

Discussion

The BVH construction time clearly dominates over that of the MBVH. Therefore,
any future improvements should focus on constructing the BVH more rapidly. At
the moment, our BVH construction implementation, according to Wald et al. [37] is
fast enough for testing and supporting the global illumination pipeline.

Our implementation is straightforward and unoptimized, nor does it use SIMD.
Therefore, if necessary, our implementation can be sped up. More likely, a different
construction algorithm will be needed to support the massive scenes. We propose to
use either the Bonsai BVH construction algorithm [15] or create an implementation
of a parallel SBVH construction algorithm by Fuetterling et al. [14].

4.1.2 Ray Traversal Performance

Experiment Setup

As established in Chapter 3, implementing fast ray traversal algorithms is critical for
achieving performant photon mapping and final gather. In this experiment, we test
the performance of our ray traversal algorithm implementations. The experiment
setup is the same for each experiment, varying either the BVH/MBVH, the traversal
strategy or the ray type.

All experiments start by generating a batch of rays. In the case of primary rays,
one hundred sets of primary rays for a screen of 640x640 pixels are constructed.
This results in 640x640x100 rays. In the case of final gather rays, the total batch size
remains the same, except rays are generated at random. The starting point of a ray
is a random point on a randomly selected triangle within the scene. The direction of
the ray is generated randomly in the hemisphere oriented along the triangle normal.
All primary rays are spawned from the first viewpoints used in Section 4.3. After
the ray batch has been generated, a code stopwatch is set and each ray or ray packet
is traced in turn. After the ray batch traversal process has completed, our stopwatch
time is measured. From this data, we compute the number of rays per seconds that
are traced.
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Results

Scene Ray Packets (BVH) Single Ray (BVH) Single Ray (MBVH)
Sponza 3.330 1.078 1.030
San Miguel 1.898 0.989 0.943
Powerplant 2.252 0.373 0.389
Powerplant x4 2.027 0.289 0.293
Powerplant x8 1.902 0.240 0.247
Powerplant x12 1.691 0.228 0.237

TABLE 4.2: Primary ray performance for three traversal strategies.
Expressed performance figures are in MRays per second.

Scene Single Ray (BVH) Single Ray (MBVH)
Sponza 0.281 0.291
San Miguel 0.093 0.097
Powerplant 0.071 0.072
Powerplant x4 0.058 0.060
Powerplant x8 0.049 0.050
Powerplant x12 0.046 0.049

TABLE 4.3: Final Gather ray performance for two traversal strategies.
Expressed performance figures are in MRays per second.

Discussion

Primary Rays As can be seen from the results, the large packet traversal strategy
clearly works best for primary rays, especially as scenes become larger. The results
also show that both the geometrical layout of the scene and the camera position
affect ray traversal performance. While the Powerplant scene is twice as large as
the San Miguel scene, it still renders faster using packet traversal. This is likely
caused by the fact that many ray packets completely miss the large, geometrically
complex Powerplant structure. These can be culled efficiently using the frustum
test described in Overbeck et al. [30]. Single ray BVH and MBVH performance are
similar to each other.

The current traversal strategies are not fast enough to render the proposed megas-
tructures in real-time at high-definition resolution. Fortunately, this is not a problem,
as a rasterization solution is in place. In the future, primary ray traversal can be sped
up to allow for such rendering. Our implementation is not optimized and does not
utilize SIMD to test multiple rays against the BVH bounding boxes or polygons.
Furthermore, algorithmic improvements can be made by implementing ray traver-
sal according to Fuetterling et al. [13]. However, the focus for now was on creating
an extensible framework upon which can be improved later on.

Final Gather Rays Our experiment for final gather rays shows that the coherence
and starting point of rays can have a huge impact on performance. All our final
gather rays have a different starting point and a different direction. This makes them
extremely incoherent, as they can start nearly anywhere in the scene. Furthermore,
as the starting point of the rays always lies on a triangle surface, the BVH traversal
process will often reach deeply within the tree.
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Final gather ray traversal performance is fast enough for precomputing global
illumination on our current scenes, especially placed within the context of the main
bottleneck of our pipeline, unwrapping (see Section 4.2). Here we can also use the
traversal strategy by Fuetterling et al. [13]. In our special case, we always trace
a fixed number of final gather rays from a single position on the 3D-model, corre-
sponding to a UV-map pixel. These rays thus share a common origin and can be
grouped in packets. As shown for primary rays, packet traversal has the potential
to be much faster than single ray traversal.

4.2 Global Illumination Pipeline Performance

To determine whether the global illumination pipeline performance is fast enough
for prototyping purposes, we break down the pipeline into steps and measure how
long each step takes to complete. Summing their contributions gives us the total
time that the global illumination pipeline takes to complete for the tested scenes.
Using this, we determine whether the pipeline will be fast enough for larger scenes.

4.2.1 Experiment Setup

In our experiment, we break down the pipeline into five steps. For each of the five
steps, we measure how long it takes to complete using a stopwatch in code. Their
contribution is summed to determine the total pipeline duration. The parameter
values governing the steps in the pipeline are given in Table 4.4. The following five
steps are discerned within the pipeline:

1. Unwrapping - Invoking UVAtlas on parts of the model to determine UV maps
(Section 3.2.3).

2. Photon Map Construction - The tracing of photons throughout the scene and
constructing the uniform grid to store them (Section 3.2.2).

3. Radiance Baking - The baking of radiance maps according to Section 3.2.4.

4. FG Baking - The baking of indirect illumination maps using final gather as de-
scribed in Section 3.2.5.

5. Light Map Composition - The combining of deterministic direct illumination
with the indirect illumination maps produced using final gather (Section 3.2.6).

For each of these steps, we measure the time they take to complete. This is done
for three consecutive runs, after which the resulting measurements are averaged.
Our results can be seen in Section 4.2.2.
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Parameter Sponza San Miguel Powerplant
BVH Bin Count 64 64 64
BVH Max Prims per Leaf 3 3 3
Photon Count 1.000.000 1.000.000 2.000.000
Photon Max Bounces 5 5 5
Final Gather Ray Count 32 32 10
Blur Kernel Size 3 3 2
Radiance Map Resolution 128x128 96x96 Adaptive, 6-76
Final Gather Map Resolution 256x256 128x128 Adaptive, 32-304
Light Map Resolution 1024x1024 512x512 1024x1024
Number of Maps (parts for unwrap) 8 197 355
Number of Threads 12 12 12

TABLE 4.4: Parameter values governing the steps in the pipeline for
each scene.

4.2.2 Results

FIGURE 4.1: A breakdown of the duration of steps in the global illu-
mination pipeline for the Sponza scene. For each section of the chart,
the duration is indicated in seconds, along with what percentage of
the pipeline it makes up. The left pie-chart shows the total pipeline,

the right pie-chart omits the unwrapping step.
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FIGURE 4.2: A breakdown of the duration of steps in the global il-
lumination pipeline for the San Miguel scene. For each section of the
chart, the duration is indicated in seconds, along with what percent-
age of the pipeline it makes up. The left pie-chart shows the total

pipeline, the right pie-chart omits the unwrapping step.

FIGURE 4.3: A breakdown of the duration of steps in the global il-
lumination pipeline for the Powerplant scene. For each section of the
chart, the duration is indicated in seconds, along with what percent-
age of the pipeline it makes up. The left pie-chart shows the total

pipeline, the right pie-chart omits the unwrapping step.

4.2.3 Discussion

All three breakdowns of the duration of the steps in the pipeline show that unwrap-
ping clearly takes up the most time. This is especially visible for the Powerplant
scene, where UV map generation takes up over 80% of the total processing time.
Unwrapping is outside of the scope of this thesis and handled by an external tool.
Attempts have been made to mitigate the effects of the slow unwrapping process,
by splitting up the model into parts.

Disregarding the unwrapping time, we can analyze the rest of the pipeline. Each
figure also shows a breakdown for the pipeline without the unwrapping step. Here,
we can clearly see that photon map construction is the shortest step in the pipeline.
Radiance map baking and FG map baking are either the largest, or second largest
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contributors to the total time. We note that all our tested scenes are processed within
the hour, even if unwrapping is included. If unwrapping is omitted, our larger
scenes are processed within several minutes. Clever solutions that only unwrap
modified parts of the scene can be thought of, to avoid having to unwrap the entire
model at every application start-up.

Radiance baking time increases when the number of photons in the photon map
is increased. This can clearly be observed for the Powerplant scene, where the num-
ber of photons is doubled compared to other scenes. However, higher photon counts
are required to illuminate all regions in a large scene. Radiance baking time may be
lowered by improving the photon grid datastructure search process.

Final gather time is affected quite negatively by increasing the number of trian-
gles in the scene. Furthermore, when the number of triangles increases, our FG map
resolution must also be higher, because more detail will be present. This is mitigated
by our incremental updates, as discussed in Section 3.3. Fortunately, the number of
FG rays can be lowered for larger models, allowing detail to accumulate at runtime.
Final gather time can be decreased by improving BVH traversal, as discussed in
Section 4.1.

Light map writing also takes up a significant portion of the total duration of the
pipeline. The light map resolution must be high, to preserve crips shadows. This
step may be avoidable in the future, if only the indirect light maps are exported and
combined with shadow mapping and local shading. This also proves to be beneficial
for image quality, as shown in section 4.3.

If we assume that scaling of our total pipeline duration is linear and we use the
breakdown for the Powerplant as a starting point for a linear extrapolation, we can
conclude that a scene containing one billion triangles will take our pipeline approx-
imately eight hours to process. However, when scenes contain more triangles, the
total area of the scene does not neccesarily increase. The area of the scene is directly
correlated to the desired resolution of the lowest light map LOD and therefore, it
may not be required to increase the resolution of the light maps linearly. Further-
more, we can lower the resolution of the lowest light map LOD and increase the
number of LODs, thereby moving computation time from start-up to runtime.

4.3 Visual Quality

In this section, we attempt to determine whether the global illumination pipeline
produces light maps that are sufficiently accurate for the prototyping purposes de-
scribed in Chapter 1. To this end, a path tracer (Section 2.3.2) has been implemented
in the global illumination framework that is capable of rendering photorealistic im-
ages. Comparisons will be made between the pathtracer and two of our approaches.

4.3.1 Experiment Setup

To evaluate the quality of the produced lighting, we take two camera viewpoints
within the Sponza scene, one within the San Miguel scene and one within the Pow-
erplant scene to confirm that our pipeline also produces correct results as scenes
grow larger. At each viewpoint, we produce three images. The left image in our re-
sults is rendered using our photorealistic path tracer. The second is rendered using
ray tracing. In this middle image, indirect illumination is determined using the final
gather map and direct illumination is determined using shadow rays and local shad-
ing. The third image, on the left, is rendered using ray tracing, but uses primary rays
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only to directly visualize the composite light map, which includes shadows, direct
illumination and indirect illumination.

All parameters for these experiments are the same as those use for the global
illumination pipeline experiments in Section 4.2, shown in Table 4.4.

4.3.2 Results

FIGURE 4.4: A pathtraced render of Sponza using one point light as
a sun (left), compared to our approach using indirect illumination

maps (middle) and our composite light map approach (right).

FIGURE 4.5: A pathtraced render of Sponza using two point lights
(left), compared to our approach using indirect illumination maps

(middle) and our composite light map approach (right).

FIGURE 4.6: A pathtraced render of San Miguel using one point light
(left), compared to our approach using indirect illumination maps

(middle) and our composite light map approach (right).
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FIGURE 4.7: A pathtraced render of Powerplant using one point light
(left), compared to our approach using indirect illumination maps

(middle) and our composite light map approach (right).

4.3.3 Discussion

Our approach, shown in the middle and on the right of Figures 4.4, 4.5, 4.6 and 4.7
differs from the photorealistic image produced by the pathtracer. However, our ap-
proach is not intended to be completely photorealistic, as discussed in Chapter 1.
If lighting quality is sufficiently accurate, it can be used for prototyping and pre-
viewing purposes. Our approach for rendering the middle image produces lighting
quality that is sometimes hard to distinguish from a path traced render, especially
without the direct comparison. This approach thus seems to produce the most ac-
curate results with a relatively short startup time. The image quality on the right is
most easily transfered to a rasterization renderer, as these are simply textures that
can be exported from our pipeline directly. However, the effect that is created in the
middle image can also be transferred to a rasterization renderer, by implementing
techniques such as shadow mapping and local shading.

We conclude that the quality of the produced lighting is sufficiently accurate for
our purposes, taking into account the short processing times of our global illumina-
tion pipeline. On larger scenes, our final composite light map may show artefacts
for more complicated scenes. These stem from inadequate performance of the ex-
ternal unwrapping tool. By using adaptive light map sizes, in which the size of the
light map depends on the actual area of the triangles it covers, many artefacts are re-
moved. This is visualized by the increase in lighting quality between the San Miguel
scene and the Powerplant scene. At the moment, it is recommended to use our in-
direct illumination maps in combination with the shadow maps in a rasterizer or, in
combination with shadow rays, in a ray tracer.
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Chapter 5

Conclusion

In this master’s thesis, we first introduced our problem of precomputing global
illumination for massive scenes in Chapter 1. We formulate three research ques-
tions which, when answered should help solve rendering these massive scenes with
global illumination. Then, we review relevant literature to our approach in Chapter
2. We use these preliminaries as building blocks for our global illumination pipeline,
presented in Chapter 3. Our pipeline first constructs a photon map and uses an ex-
ternal tool to generate one or more 2D parametrizations of the surface of the scene.
These parametrizations are used to generate radiance maps and final gather maps,
which contain the indirect lighting in the scene. The indirect lighting is then either
composited at runtime with direct lighting in a ray tracer, or combined with direct
lighting and baked to a single texture. We also present two methods for updating
the final gather maps, increasing the quality of rendered lighting at run-time.

Our results are then evaluated in three parts in Chapter 4. First, we evaluate
our implementations of algorithms that concern the BVH and MBVH in Section 4.1.
Both construction speeds and traversal speeds are evaluated. Our findings indicate
that large performance gains may be achievable, but are not required at this point
for testing and development purposes. Then, the duration of individual steps in the
global illumination pipeline is measured in Section 4.2. The key bottleneck of our
pipeline is UV-mapping, which is done using an external tool. Disregarding UV-
mapping, we conclude that baking the radiance map and the final gather map are
key contributors to the global illumination pipeline running time. In Section 4.3, we
evaluate the visual results of pipeline, concluding that live composition of direct and
indirect lighting is our best result.

Using our results, we can now answer our research questions.

1. How can global illumination for scenes consisting of billions of triangles be
precomputed fast enough for prototyping purposes described in Chapter 1?
- By implementing a global illumination pipeline that precomputes our infor-
mation using the steps outlined in Section 3.2, coarse global illumination can
be precomputed rapidly. Extrapolation of our results indicates that global illu-
mination for scenes consisting of a billion triangles can be precomputed within
eight hours using our system, disregarding UV-mapping and BVH construc-
tion time. However, we have implemented a system that updates light maps
at run-time, allowing us to lower the initial resolution of the light maps and
speed up precomputation. In this manner, lighting becomes increasingly accu-
rate at run-time. We have determined that the resulting lighting is sufficiently
accurate enough for our prototyping purposes.

2. Is photon mapping a suitable method for fast precomputation of global il-
lumination on massive scenes? - Yes, photon mapping is suitable because
photon map construction time is extremely low compared to the other steps in
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the pipeline. We show that photon maps can be constructed extremely rapidly,
even for massive scenes. The steps required for transferring the information
stored in the photon map to a format that is suitable for fast rendering takes up
the bulk of the time in our global illumination pipeline. However, these steps
can be sped up by lowering the initial light map resolution, thereby moving
computation time from start-up to runtime.

3. Does the theoretical logarithmic complexity of BVH ray traversal hold up
for very large scenes? - It does not. This research question is answered in
more detail in Appendix A.

5.1 Future Work

The global illumination pipeline is by no means complete. Many topics have been
touched upon in our related work chapter, that are not included in the pipeline. For
example, the pipeline can be further extended by supporting specular and translu-
cent materials. Implementing advanced material properties, such as those described
in Section 2.3.4, is another potential direction for future work. Furthermore, area
lights and soft shadows currently only have a very rudimentary implementation
that places tremendous strain on the pipeline running time.

As discussed in Chapter 4, much work can be done to speed up both BVH con-
struction and traversal. By implementing algorithms such as those developed by
Fuetterling et al. [13], significant performance gains should be achievable. There-
fore, we suggest that future work focuses on improving the quality of the illumina-
tion by adding the missing elements described above, while improving the acceler-
ation structures that they depend upon. Special emphasis must remain to be placed
on keeping the total execution time of the pipeline as low as possible.
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Scalability of Ray Traversal Time
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Abstract

In this paper, we investigate the time complexity of ray traversal. Theoretically, ray traversal time
complexity scales logarithmically. In practice, the behaviour of the memory hierarchy affects the per-
formance of ray tracing renderers. We show how rendering time is affected by gradually increasing the
number of triangles in a standardized scene for both single ray traversal and ranged traversal using pack-
ets. Our results indicate that the assumed logarithmic scaling of BVH traversal time underestimates
real-world BVH traversal performance, for both single ray traversal as well as ranged traversal. Further-
more, the coherence of the ray set does not appear to affect the scaling of rendering time. Extrapolation
of our results indicates that single ray traversal may become faster than ray packet traversal as scenes
contain more than a hundred billion triangles.

1 Introduction

Rendering using ray tracing has the potential to scale logarithmically in the number of rendered primitives
using acceleration structures such as the bounding volume hierarchy (BVH). Once such a BVH has been
constructed for the given set of primitives, ray traversal time can scale logarithmically in the number of
rendered primitives. This scaling behaviour is much better than that of traditional forward renderers, where
rendering time typically scales linearly in the number of rendered primitives. Therefore, ray tracing has the
potential to render large scenes significantly faster than forward renderers.

While theoretically ray traversal time through a BVH scales logarithmically, in practice, many other
factors affect the performance of a ray tracing renderer. When rays are highly coherent, which is the case for
primary rays, they tend to intersect the same geometry. This improves CPU cache performance. Incoherent
ray sets, such as extension rays, have a lower probability of intersecting the same geometry and traversing
the same nodes of the BVH.

Furthermore, when geometry becomes small, the likelihood of two rays intersecting the same geometry
decreases. This incurs higher cache miss rates and more lookups from main memory. Packet traversal,
as described by Overbeck et al.[2], attempts to reduce this effect by amortizing memory lookup cost over
multiple rays.

In this paper, we investigate how traversal time of primary rays scales using both ordered single ray BVH
traversal and an implementation of ranged traversal using ray packets. Furthermore, we investigate how
diminishing coherence of ray sets affects traversal time and scaling. Our research questions are as follows:

1. Does the theoretical logarithmic complexity of BVH ray traversal hold up in practice?

2. What is the effect of the ray traversal scheme on scaling of BVH traversal time?

3. How does diminishing coherence of ray sets affect scaling of BVH traversal time?

Section 2 describes our research methodology. The results of our measurements are described and dis-
cussed in section 3. Lastly, we answer our research questions and predict how ray traversal time will scale
to even larger scenes in section 4.
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2 Research Methods

Figure 1: The viewpoint from
which we generate primary rays.

We set up four types of experiments to measure the effects of several
parameters on ray traversal time. For each experiment, we measure the
duration of tracing a precomputed set of rays through a scene. This is
done for 256 iterations and the average render time over these iterations
is taken.

Our scene setup is a Menger sponge of level 1, rendered from the
perspective shown in figure 1. The Menger sponge allows us to construct
a completely balanced BVH and thus negates effects of inbalanced trees
on render time. By subdividing the triangles, we increase the number of
triangles in the scene while maintaining the same tree layout. Using our
subdivision scheme, each triangle is split into four subtriangles. We use
midpoint splits to build our BVH and stop when a node contains less than
four triangles.

All rays are generated before starting our experiment and are stored
in main memory. During the experiment, the stored rays traverse the
BVH. No shading is applied afterwards. Our implementation is single-threaded and does not utilize SIMD
instructions. The ray batches which we generate are always of size 409,600 (640x640), both for primary and
random rays. All primary rays are generated from the camera position shown in figure 1.

2.1 Experiment 1 - Single Ray Traversal, Primary Rays

In our first experiment, we measure scaling of render time for ordered single ray traversal of primary rays.
We generate a set of 640x640 rays for a virtual screen plane, with one ray per pixel.

2.2 Experiment 2 - Ray Packet Traversal, Primary Rays

In our second experiment, we measure scaling of render time for ray packet traversal of primary rays. We
generate a set of ray packets for a virtual screen plane, spanning 640x640 pixels, with one ray per pixel. Our
packet size varies, ranging from 2x2 to 32x32. The packet traversal scheme we use is described by Overbeck
et al. [2] as ranged traversal.

2.3 Experiment 3 - Ray Packet Traversal, Rays of Diminishing Coherence

Our third experiment is intended to bridge the gap between highly coherent primary rays (section 2.2) and
highly incoherent random rays (section 2.4). We generate rays in packets as in section 2.2, but increase
the distance between ray targets on the virtual screen plane gradually. This effectively increases the angle
between the rays in the packet, as done previously in J. Bikker’s PhD thesis[1]. This diminishes coherence in
the ray set because rays are now more divergent and less likely to intersect the same triangles. We investigate
how render time depends on both coherence of the rays in the ray packet and the number of triangles in the
scene.

Like our experiment for ray packets, described in section 2.2, we generate rays for a virtual screen plane
spanning 640x640 pixels. The distance between ray targets is now no longer fixed at one, but can vary. This
causes packets to overlap and diminishes coherence in the rays in the packet. Our packet size is fixed at 4x4
and the distance between ray targets ranges from one to ten. Our packets traverse the BVH using ranged
traversal[2].

2.4 Experiment 4 - Single Ray Traversal, Random Rays

In our final experiment, we measure scaling of render time for ray packet traversal of random rays. These
random rays are generated by picking a starting point on the bounding sphere containing the Menger sponge.
A random ray target is selected on this bounding sphere and is used to generate the ray direction. The same
number of rays is traced as in the other experiments, except now they are no longer generated by the camera.
The ray traversal scheme we use is basic ordered single ray traversal.
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3 Results and evaluation

In this section, we present the results for the experiments described in section 2. Each of these results is
accompanied by a short discussion.

3.1 Experiment 1 - Single Ray Traversal, Primary Rays

Figure 2: Rendering times for single ray traversal (y) as the triangle count increases logarithmically (x).

Our results for our first experiment (2.1), shown in figure 2, show the average render time in milliseconds on
the y-axis and the triangle count for that scene on the x-axis as the blue line. Our x-axis uses a logarithmic
scale of base two, which means that theoretical predictions of the render time should follow a straight line.
As we can see in figure 2, this is clearly not the case. The purple lines indicate when a scene no longer fits
within the mentioned CPU cache.

Render times at first do appear to grow logarithmically: between triangle counts of 980 through 245,760,
the graph shows a fairly straight line. The same can be seen between triangle counts of 983,040 and
251,658,240. There thus appears to be a break between these where render times start increasing faster. At
this point, the L3 cache of our CPU seems to overflow, causing render times to increase faster. In our case,
a more accurate approximation of single ray render times can be given using equation 1. This equation is
plotted in figure 2 in red.

y = 13x
1
8 (1)

with (for all equations in this paper)

• y is the average render time in milliseconds.

• x is the number of triangles in the scene.

Using this equation, we predict that rendering a single frame of the Menger sponge, consisting of a
billion triangles, at a resolution of 640x640 will take approximately 173 ms. Increasing the number of
triangles to one hundred billion would then allow a single frame to render in approximately 308 ms, not
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even doubling the render time. Our solution is relatively unoptimized and does not use SIMD instructions to
speed up processing. Therefore, real-world render times of an optimized implementation might be even lower.
Furthermore, our implementation is single-threaded and as ray tracing is easy to parallelize, performance
could be increased greatly.

3.2 Experiment 2 - Ray Packet Traversal, Primary Rays

Figure 3: Rendering times in ms for ranged traversal using ray packets (y-axis) as the triangle count increases
logarithmically (x-axis) for primary rays. Packet sizes ranging from 2x2 to 32x32 are displayed.

The results for our second experiment (section 2.2) are shown in figure 3. Each line in the graph represents
a different packet size. The x-axis uses a logarithmic scale of base two for the triangle count and the y-axis
shows the average render time in milliseconds. These plots are similar to the graph for single ray traversal
(figure 2). The purple lines again indicate when a scene exceeds the bounds of our CPU caches.

Average render time using ray packets clearly does not scale logarithmically. Here, we observe the same
break in the line as with single ray traversal, especially visible for the smaller ray packets. Enlarging the
packet improves performance at low triangle counts, but smaller ray packets outperform large packets for
higher triangle counts. For the tested triangle counts, 4x4 packets appear to be ideal: they accomodate
adequate traversal speeds at low triangle counts, while maintaining high performance as the triangle count
increases. However, extrapolation would seem to indicate that 4x4 packets will be outperformed by 2x2
packets at some point. Therefore, small packet sizes appear to be more suitable for scenes containing billions
of triangles, perhaps even switching to single ray traversal once this becomes faster.

Ray packet render time can be approximated using equations 2 and 3 for 2x2 and 4x4 packets. See
equation 1 for variable definitions.

y = 8.9x
1
7 (2)

y = 2.7x
1
5 (3)
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Evaluating the 2x2 equation for one bilion, and one hundred billion triangles gives us a expected render
times of 171 ms and 331 ms. The 4x4 variant results in render times of 170 ms and 427 ms, respectively.
According to our measurements and approximations, single ray traversal will thus be the fastest option for
one hundred billion triangles (see section 3.1). We do note that our ray packet traversal implementation
is straightforward and does not utilize SIMD to test multiple rays concurrently against multiple bounding
boxes or triangles. Doing so might increase performance so much that the turning point for switching to
single ray traversal may occur at much higher triangle counts.

3.3 Experiment 3 - Ray Packet Traversal, Rays of Diminishing Coherence

Figure 4: A three-dimensional plot showing the effects of the angle between rays (horizontal axis), the
triangle count (depth-axis) on the rendering time (in ms, vertical axis) using ranged traversal.

The results of our experiments using rays of diminishing coherence (section 2.3) can be seen in figure 4. This
three dimensional plot shows the distance between ray targets on the horizontal axis, the number of triangles
on the depth axis and the resulting render times (in milliseconds) on the vertical axis. Here, the depth axis
is not logarithmic.

The graph shows that render times increase as the distance between ray targets increases. We can see
that the coherence of a ray set has few effects on the scaling characteristics of ray tracing: incoherent rays
respond to an increasing number of triangles in the same manner as coherent rays. The only difference is
that render times are consistently higher for incoherent rays.

We also note that distances between ray targets that are multiples of two appear to run faster than those
that are not.
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3.4 Experiment 4 - Single Ray Traversal, Random Rays

Figure 5: Rendering times for single ray traversal (y) of random rays as the triangle count increases loga-
rithmically (x).

Figure 5 shows the results for our experiments for randomly generated rays, as described in section 2.4. This
graph is similar to those for single rays and ray packets: the x-axis is base two logarithmic and shows the
triangle count, while the y-axis shows the average render time in milliseconds. The blue line are the results
of our measurements, while the red line is the approximation given by equation 4. Once again, the line is
not straight and thus does not represent logarithmic scaling. The purple lines indicate when a scene exceeds
the bounds of our CPU caches.

Our results for single ray traversal of primary rays indicate a break in the line between 245,760 and
983,040 triangles. The same break can be observed here, but it occurs earlier, between 61,440 and 245,760
triangles. If we assume that this is indeed caused by overflooding caches, we can speculate that CPU cache
policies are less effective at predicting which data will be required next for random rays than they are for
primary rays. This might cause the break to occur earlier.

Equation 4 approximates the average render time for random rays. Using this equation, we predict
that rendering times for one billion and one hundred billion triangles are at 488 ms and 868 ms. This is
significantly longer compared to the approximated render times for primary rays (section 3.1), showcasing
the impact of coherence of ray sets on rendering time. See equation 1 for variable definitions.

y = 36.6x
1
8 (4)
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4 Conclusion and Future Work

In this paper, we have described four different experiments for testing the effects of increasing the number
of triangles on the rendering time of a ray tracer. We have shown how logarithmic scaling of rendering time
is an underestimate of real-world scaling. Using our results, we can answer our research questions clearly
and concisely:

1. Does the theoretical logarithmic complexity of BVH ray traversal hold up in practice?
- It does not: logarithmic scaling is an underestimate of real-world BVH ray traversal performance.
Furthermore, our experiments show that a triangle count exists, which when exceeded causes render
times to grow faster. This triangle count likely depends on the size of the CPU caches.

2. What is the effect of the ray traversal scheme on scaling of BVH traversal time? - The
ray traversal scheme affects scaling significantly. Small packets scale better than larger packets, while
larger packets provide better performance at low triangle counts. Large packets scale less well than
smaller packets, but provide better performance at low triangle counts. As triangle counts get larger
(in our case, around a hundred billion), single ray traversal begins to outperform ray packet traversal.

3. How does diminishing coherence of ray sets affect scaling of BVH traversal time? -
Diminishing coherence of ray sets does not affect scaling of BVH traversal time. It does affect rendering
time, but the manner in which these scale is the same, regardless of the coherence of the ray set.

Future work may focus on validating our assumption that the break in scaling is caused by the CPU
caching policy. A subdivision scheme or a scene that allows for a more gradual increase in the number of
triangles, while maintaining the same BVH topology, can confirm that this break is indeed present.
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